
A M O D U L A R A P P R O A C H F O R T H E D E T E C T I O N A N D

I N T E R C O N N E C T I O N O F O B J E C T S , H A N D S , L O C A T I O N S ,
A N D A C T I O N S F O R E G O C E N T R I C V I D E O U N D E R S T A N D I N G

Georgios Kapidis



A Modular Approach for the Detection and Interconnection of Objects, Hands,
Locations, and Actions for Egocentric Video Understanding

PhD Thesis, Utrecht University, the Netherlands

ISBN: 978-94-6423-273-8

Cover: Fenna Schaap

Print: ProefschriftMaken || www.proefschriftmaken.nl

© Georgios Kapidis, 2021



A Modular Approach for the Detection and Interconnection
of Objects, Hands, Locations, and Actions for Egocentric

Video Understanding

Een modulaire aanpak voor de detectie en interconnectie van objecten, handen,
locaties, en acties voor het begrijpen van egocentrische video

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht

op gezag van de
rector magnificus, prof.dr. H.R.B.M. Kummeling,

ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op

woensdag 9 juni 2021 des middags
te 2.15 uur

door

GEORGIOS KAPIDIS

geboren op 26 april 1990
te Thessaloniki, Griekenland



Promotor:
Prof. dr. R.C. Veltkamp

Copromotor:
Dr. R.W. Poppe

This thesis was accomplished with financial support from the European Union’s
Horizon 2020 research and innovation program under the Marie Skłodowska-Curie
grant agreement No 676157.



Summary

The topic of this dissertation is the analysis and understanding of egocentric (first-
person) videos with respect to the performed human actions of the camera wearer,
in a structured and automatic manner. Perhaps, the most identifying characteristic
of the egocentric perspective is that it provides an information-rich view of the scene
that the person holding the camera experiences. The resulting scenes are often in-
dicative of the location of the persons and the activities they undertake. Recognition
is based on high-level information, such as the hands of the camera wearer and the
objects that are being manipulated, as well as low-level features made available
through data-learning methods. In this thesis, we use deep convolutional neural
networks trained on egocentric images, video segments, and/or (a)synchronously
acquired high-level features of the scene as the backbone of action classification
models. We demonstrate that the training process and architecture of the models
is detrimental to their success; a topic largely investigated with the application of
multitask learning, measuring the effect of a variety of learnable outputs to the final
action recognition result. We additionally pursued the combination of video data
from a variety of sources simultaneously. In the context of the thesis, it is called
multi-dataset multitask learning and refers to a novel way to combine related and
unrelated data sources to improve egocentric action recognition quality.
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Samenvatting

Het onderwerp van dit proefschrift is het analyseren en begrijpen van egocentrische
(first-person) video’s met betrekking tot de uitgevoerde menselijke handelingen
van de drager van de camera, op een gestructureerde en automatische manier.
Misschien wel het meest karakteristieke kenmerk van het egocentrische perspectief
is dat het een informatief overzicht geeft van de scène die de persoon met de
camera ervaart. De resulterende scènes zijn vaak indicatief voor de plaats waar
de persoon zich bevindt en de activiteiten die hij of zij onderneemt. Herkenning
is gebaseerd op betekenisvolle informatie, zoals de handen van de drager van de
camera en de voorwerpen die worden gemanipuleerd, en op data die beschikbaar
worden via dataleermethoden. In deze thesis worden diepe convolutionele neurale
netwerken, getraind op egocentrische beelden, videosegmenten, en/of (a)synchroon
verworven kenmerken informatie over de scène gebruikt als basis voor modellen
voor de classificatie van actieviteiten. We laten zien dat het trainingsproces en
de architectuur van de modellen bepalend zijn voor hun succes; een onderwerp
dat grotendeels wordt onderzocht met de toepassing van multitask leren, waarbij
het effect van een verscheidenheid aan geleerde outputs op het eindresultaat van
actieherkenning wordt gemeten. Ook onderzoeken we in deze thesis het gebruik
van een combinatie van videogegevens uit verschillende bronnen tegelijk. In de
context van dit proefschrift wordt dit multitask learning genoemd en verwijst het
naar een nieuwe manier om gerelateerde en niet-gerelateerde gegevensbronnen te
combineren om de egocentrische herkenning van acties te verbeteren.
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Introduction 1
1.1 Egocentric Vision

From the abacus to robotic exoskeletons, science always paved the way to overcome
the mental and physical limitations of the human body. Moving into the 21st century,
digital technology has advanced to surround and support humans in many aspects of
daily life. One of the steps forward has been to promote technological equipment into
an inseparable companion with access to and understanding of human experiences.
This is the case of wearable devices which, due to their proximity to the human body,
are able to accurately monitor the world in our immediate vicinity. Humans perceive
their environment through five senses; sight, hearing, smell, taste, and touch, and
process their inputs continuously with their brains. The responses are the conscious
and subconscious actions that allow us to navigate the world. Devices, on the other
hand, are mostly capable of capturing visual, audible, and tactile inputs with limited
capability in processing and understanding them the way humans do. Until they
become adept at perceiving the world in a manner that resembles that of humans,
they are reduced to a passive role with decision making out of reach.

In this dissertation we focus on understanding human actions from video captured
from the first-person perspective. Success in our task would mean that decision
making may be shared and immediate assistance would be available especially in
cases where human perception may be limited, as for example, in old age. We utilize
features comprehensible by humans as well as features made available through data
learning approaches. The video view is called "egocentric" from the words "ego"
meaning self or person and "center" denoting that the protagonist of the video is
the person recording it. Although not explicitly stated in this definition, egocentric
videos generally do not show the person holding the camera, rather they capture
the person’s view of their surroundings, in practice providing an additional set of
eyes to enhance the human experience.

The use of egocentric cameras is alluring as they are becoming smaller and less
intrusive, two essential qualities for wearables targeting everyday use. They can be
used as an alternative to expensive multi-sensor installations that convert an existing
house into a smart home. By taking advantage of recent advances in machine

5



Chapter 1 Introduction

learning, a single sensor – the egocentric camera – will capture information about a
person’s location in the house, sociability or loneliness, the performed activity and
even imminent dangers stemming from the latter.

Egocentric cameras can be placed above the forehead, attached on either side of the
head, on top of a shoulder or on the chest, facing forward. Furthermore, they can
be attached to Virtual/Augmented reality headsets to enhance comprehension of
the user’s surroundings. Lately, the most prominent camera positions for capturing
egocentric videos are either above the forehead or strapped to the chest. Both
positions allow for a field of view that clearly includes the hands of the camera
wearer when they are raised in front of the body to perform a movement or an action.
Generally, the view also includes the objects that are visible and/or manipulated,
providing rich information about the immediate environment. In this work, we
develop feature- and data-oriented techniques to detect hands and objects with the
aim of understanding the human actions and environments that can be associated
with them.

1.2 ACROSSING Innovative Training Network

This thesis is developed as part of the ACROSSING project. ACROSSING stands
for "Advanced TeChnologies and PlatfoRm fOr Smarter ASsisted LivING". It is an
Innovative Training Network (ITN) and part of the Marie Skłodowska Curie Actions
funded under the European Commission’s Horizon 2020 research and innovation
program.

The aim of the ACROSSING project is to bring together a multi-disciplinary network
of 26 leading European research groups, industry partners, and user organisations,
to develop an open Smart Home technology infrastructure and train 15 Early Stage
Researchers (ESRs) across sectors on concepts and methodologies of Smart Homes.

This thesis delineates the scientific aspects of the project of ESR 10: "Egocentric
subject monitoring and tracking in Smart Homes". These involve the development
of a tracking system that uses a mobile camera mounted on a subject to capture
and analyze egocentric video. The video is utilized to perform object detection for
location and activity determination in Smart Home environments. In this context,
the algorithms and methods for video understanding can be used to monitor the
well-being of Smart Home residents and encourage independent living with the
assistance of modern technology.
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1.3 Thesis Objectives

1.3 Thesis Objectives

The scope of our work is to research the building blocks of a system that leads to
video understanding from the perspective of the person recording the video. Given
that egocentric videos employ characteristic views of a scene we aim to answer two
fundamental questions:

• Can accurate recognition of visited locations and performed actions be achieved
based only on the outputs of object and egocentric hand detection systems?

• Is it possible to improve on the action recognition performance by utilizing
end-to-end video recognition approaches? Instead of relying on intelligible
information and extracted features about objects and hands throughout the
video, can we use it directly as input to provide action inference without
intermediate steps?

The first question pertains to the step-wise approach that focuses on the explicit
cues that characterize a scene or an action, such as the presence or the movements
of indicative objects. The input video signal is broken down into understandable
notions based on which the context of a scene can be clearly expressed. For example,
this approach may lead to understandable narratives such as "lifting a cup towards
the mouth results in a drinking action" or "seeing a sink and a fridge signifies that
the person is located in a kitchen". We focus on object-based video understanding
in Chapters 3 and 4 where we rely on explicit detections of objects and hands to
identify locations and actions.

The second question refers to methods based on deep learning where the features
that lead to inference are not as clear and are not necessarily the result of an explicit
detection process. Rather, models with millions of learnable parameters acquire the
values of features that best describe the dataset that defines the task to be learned.
In this light, we focus on the task of egocentric action recognition using large scale
neural network structures. These networks are given videos for input and output
specific inferences without providing a clear explanation about the characteristics
that define them. Initially, we begin with networks that classify videos directly
into actions, without interpreting the learned features that lead to a specific result.
Eventually, we modify the network to focus on the humanly intelligible features
that characterize an action. We do this in a multitask learning fashion that aims
to enhance the networks’ knowledge by "nudging" it towards the information that
needs to be acquired. Chapters 5 and 6 employ deep networks for visual feature
extraction and classification into actions.
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Chapter 1 Introduction

1.4 Thesis Outline

In the remainder of this chapter, we present the outline of this thesis with a short
description of the work presented in each chapter.

In Chapter 2 we present an overview of the related work in egocentric video percep-
tion. We make a distinction between feature-based and network-based methods for
location and action classification and identify the progress from the third-person
vision domain that has inspired the advances in egocentric vision. Furthermore, we
introduce related work on Multitask Learning and Multi-dataset training approaches
that characterize our approach in Chapters 5 and 6. Lastly, we provide a synopsis of
the public datasets that define the context of our research.

In Chapter 3 we introduce our approach for object-based location and activity
recognition. We describe the use of visual object detectors the output of which
is analyzed to detect indoor locations and activities of daily living. We employ
Artificial Neural Networks (ANN) for inference on single frames and Long Short-
Term Memory Networks (LSTM) to analyze the temporal associations of the detected
objects. Furthermore, we reflect on the effect of object detection quality on the
location and activity recognition outputs. Parts of this chapter are published in [68,
70].

Chapter 4 follows a similar cue-based approach with a focus on the temporal associa-
tions of egocentric hand motions. We describe our pipeline to detect and track hand
regions. Furthermore, we classify the progression of hand coordinates into actions
using LSTMs. We proceed with combining object and hand tracking information
to further improve the inference capability of our model. Parts of this chapter are
published in [66].

In Chapter 5 we develop a model for end-to-end action recognition from video. The
novelty of our approach is based on the concept of Multitask Learning (MTL). In
MTL we train a single network to produce multiple inferences about a video in a
way similar to training multiple networks, each for a single inference. MTL states
that joint training for multiple tasks on the same network can be beneficial for
performance as long as the tasks are describing related concepts. We investigate
the association between action recognition, hand detection and gaze estimation in
egocentric videos. This chapter is published in [67].

In Chapter 6 we extend the MTL paradigm to tasks from a variety of related datasets
using a single model. Our aim is to explore the learning capacity of neural network
architectures when tasked to address similar objectives jointly. We investigate the
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1.4 Thesis Outline

relationship between egocentric food preparation datasets, as well as more generic
actions when captured from both the first- and the third-person perspectives. Parts
of this chapter are published in [69].

Finally, Chapter 7 offers a general discussion on our introduced methods and their
results and concludes the thesis. Furthermore, it provides directions for future work
in egocentric video understanding and multitask learning.
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Related Work 2
Egocentric vision is an integral part of computer vision with applications in conven-
tional fields such as activity recognition [96] and video summarization [27] as well as
in more elaborate domains, for instance social interaction analysis [169], guideline
generation for visual assistance [25] and infant visual attention [77]. In this chapter,
we discuss related work about location detection (Sec. 2.1) and activity and action
recognition (Sec. 2.2) in egocentric videos. We present feature-based approaches
in Sec. 2.2.1. We present recent breakthroughs in network-based approaches in
third-person vision in Sec. 2.2.2 and associate them with their equivalents in first-
person video recognition (Sec. 2.2.3). Furthermore, we focus on the effects of hand
and object detection for egocentric actions (Sec. 2.2.4). Multitask Learning and
Multi-dataset training for computer vision tasks are discussed in Sec. 2.2.5 and
2.2.6, respectively. Lastly, we present an overview of open egocentric video datasets
(Sec. 2.3) concentrating on the ones used in this dissertation.

2.1 Egocentric Location Classification

Recognition of locations, in terms of mapping the surrounding area with explicit
attributes or representative image features is actively under research in egocentric
vision. The main goals of location classification are localization of the camera wearer
with respect to their immediate environment [30, 81, 93], providing information
about it [2], facilitating execution of elaborate tasks [116] or as a supporting
mechanism that enhances understanding of actions [9]. In [9], scene illumination
and distinct location features were learned in an unsupervised way to enhance
the usability of wearable cameras for hand detection. Location recognition was
indirectly the task in [2] where images of the user’s field of view were captured with
a Google Glass device, which retrieved information about the buildings in sight. In
[81], the combination of a camera and a 2D laser scanner were applied to register
images, queried by users, into the real-world coordinate system. A multi-view indoor
localization system based on image features was proposed in [93]. It distinguished
indoor locations using self-similarity matrices across extracted images to correlate
among views of the scene from multiple perspectives. Afterwards, it learned the
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Chapter 2 Related Work

equation system through these features and when a new query image was given, it
provided the camera’s relative position in the scene and its orientation. Location
classification was described in [30]. Visual recognition was supported by low-level
features and semi-supervised training procedures to take advantage of sparsely
annotated data. The combination of wearable egocentric stereo cameras and inertial
sensors was considered in [116] to map an outdoor workspace with image features
and provide routing guidance for humans aiming to execute specific tasks in it.
These methods consider low-level image features to describe the scene. In contrast,
in Chapter 3 we use high-level features; the detected objects on every frame. We
do not depend on previous knowledge about the specific locations that users find
themselves into, but build our inference upon characteristic objects that are detected
in them.

Locations in egocentric videos are not a static quality of the scene, but change dy-
namically following user movements in the environment. In this context, the current
location can be modeled continuously while taking into account previously acquired
features and past locations, allowing for more robust detections. In [41], personal
locations of interest were highlighted by temporally segmenting egocentric videos
based on the user’s location. Location models were trained on user-provided frame
samples of locations, denoting those that captured user interest as positive ones.
Subsequently, the system learned to reject the frames that did not depict locations
significant to the user’s interest. User-specific locations were further analyzed in
[40] as part of a user’s daily routine. Classification of image sequences into locations
relied on either convolutional features or hand-crafted ones. In [158, 159], the
combined improvement of object detection and scene identification was investi-
gated. Initially, scene identification was performed using temporally associated
convolutional features. This location related information was used to improve object
detection performance, by linking objects to specific locations. This demonstrated
the concept of linking locations and objects in egocentric scenarios. Eventually,
they showed that by using LSTM networks to learn the temporal associations of the
detected objects directly, it was possible to further improve object detection perfor-
mance. Our work in Chapter 3 is the opposite of this concept. We use the object
detections to infer locations and activities. We exploit the associations between them
and show the effects of objects detected out of their spatial context. Finally, we show
that temporal modeling of objects improves location classification performance.
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2.2 Egocentric Activity and Action Recognition

Human action recognition from video is a computer vision task with multiple
challenges ranging from the innate difficulties of video analysis, such us illumination
changes and motion blur, to the adversities of activity recognition, including class
variability, viewpoint variation and scarcity of training data [113].

Even before the breakthrough of egocentric vision, the connection between objects,
hand movements, and human motion was studied to recognize human tasks [100]
in setups that differ from traditional third-person videos. Typically, the camera was
positioned on top of the human to ideally capture what was intuitively deemed
important for the attainment of actions (Fig. 2.1a). The egocentric vision paradigm
was more clearly established later [33, 65, 122, 123, 142], using wearable cameras
with the distinct characteristic of promoting a clear view of, most notably, the user’s
hands and the manipulated objects (Figs. 2.1b-c).

(a) Top view of the scene
from [100] ©1999 IEEE

(b) Head mounted egocentric
view rotated from [142]
©2009 IEEE.

(c) Head mounted egocentric view from
[33] ©2011 IEEE.

Fig. 2.1.: Progression of egocentric views.

2.2.1 Feature-based Egocentric Action Recognition

Egocentric action recognition has seen incremental improvements over the years
with the prominent works of [4, 25, 33, 38, 85, 86, 96, 110, 125]. Originally,
feature-based techniques [86, 140, 169, 174] were developed to explicitly model and
capitalize on the inherent characteristics of first-person videos such as motions [86,
125, 138, 140, 168, 174], ego-motion [86, 106, 169], human gaze [86, 98, 106, 168,
176], and the presence and movement of hands [33, 86, 98, 110, 169] and objects
[33, 86, 98, 110, 169]. Hands, objects, ego-motion, and their interrelationships have
been established as some of the most prominent characteristics for egocentric action
recognition [33, 65, 142]. In this observation lies the origin of the hand-crafted
feature approaches that prevail in earlier works in egocentric vision.
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The first works on egocentric activity understanding focused on the intrinsic infor-
mation that defines the egocentric vision paradigm, i.e., the visual characteristics of
hands and objects from the first-person perspective. Fathi et al. [33] modeled the
relationships between hands, objects, and actions using extracted visual features to
model activities. They showed through bottom-up and top-down models the mutual
improvements that these relationships offer towards improving the initial hand and
object detections. The importance of the detected objects and their interactions
for the detection of activities was highlighted in [110], where activity recognition
improved through additional information about objects that were either passive or
actively engaged with in the scene. In [34], the gaze of the camera wearer was
used to define the salient areas in first-person views, recognizing that egocentric
actions were further correlated with modalities that describe human attention in the
video. Throughout Chapter 4 we base our work on the concept that the relation-
ship between hands and objects is a fundamental aspect towards egocentric action
recognition and understanding.

Ego-motion is an additional source of information that describes egocentric actions.
It comprises the rapid motions of the video view due to the unstructured movements
of the camera wearer and the motions of the viewed objects. In [125], global
and local motions were considered as the basis of features to describe egocentric
actions. Motion-based features for egocentric action recognition were analyzed in
[86] where the importance of motion and object cues, hand and head movements as
well as gaze were evaluated in various combinations. Scene, object, hand, and head
movements were modeled with dense trajectories, color histograms and local binary
patterns and were used as inputs to Support Vector Machines for classification of
food preparation activities. The aim was to measure the individual effect of new
features on activity classification performance through gradual aggregation, based
on the idea that their contributions are complementary. For the interested reader, a
review of feature-based approaches in egocentric action recognition can be found in
[104].

2.2.2 Advances in Third-person Activity Recognition

Recent work in third-person vision [113, 144] follows the successful employment of
deep network approaches. Deep networks allow for the employment of millions of
parameters with the ability to identify subtle patterns in the input data, at multiple
levels of abstraction, facilitating recognition of actions and activities. The trade-off
is a requirement for large amounts of training data and annotations, which are not
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always available or accessible, or even compatible to the task that is being targeted.
Of the latter, we investigate the problem of data compatibility in Chapter 6.

Regarding deep networks, we highlight the work of Karpathy et al. [72] who used 2D-
CNN architectures to classify video frames and, in order to incorporate information
from multiple frames, explored various fusion schemes to enhance the classification
output. Other approaches include the use of attention mechanisms[43] and two-
stream networks [45, 133, 157, 160] that captured appearance and motion in images
with spatial and motion streams trained on single or multiple frames concurrently.

Further attempts to take advantage of the temporal information that reveals the
actions or activities in videos considered the use of recurrent units attached to frame-
wise feature-extracting CNNs [29, 87]. These recurrent units were usually applied
after the last convolutional layer in the form of a memory module that associated
features from past frames with those from the most recent one. We employ Long
Short-term Memory (LSTM) layers in Chapters 3 and 4 to integrate past and present
detections to recognize locations and actions. More recent approaches in video
activity recognition used 3D-CNNs [17, 20, 155, 156]. Here, video frames were
modeled as a result of convolutional kernels being learned not only on the spatial
dimension of images, but also on the changing pixel values in frame sequences. We
find that using a 3D-CNN to capture patterns in the temporal dimension also works
well for egocentric action recognition. We elaborate on the use of 3D-CNNs for
egocentric action recognition in Chapters 5 and 6.

Since the introduction of large-scale image [28] and video [72, 73] datasets, convo-
lutional neural networks (CNNs) have consistently produced state-of-the-art results
[17, 36, 49, 72, 87, 148, 155, 156, 160, 161] for third-person image and video
recognition tasks. Likewise, CNN-based approaches have been adopted and adapted
to tackle first-person video understanding [4, 7, 74, 86, 96, 130, 153].

2.2.3 Advances in First-person Activity Recognition

Spatial networks The widespread use of CNNs in third-person vision was followed
by their extensive application into egocentric action and activity recognition [3, 4, 7,
96, 112, 114]. Earlier approaches handled CNN features as an additional modality
to handcrafted ones [169] or for classification of feature-based region proposals
for object detection [3]. A convolutional feature extractor from images was used
to categorize egocentric actions in [126]. In [163], convolutional features from
video frames were used to produce embeddings that were semantically linked among
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videos and were used as the basis to model relationships between objects and actions
in order to classify them. The videos were mapped onto a semantic graph, with
nodes for each freely annotated object and action. The graph was trained on the
visual similarities between node features. Finally, the activities in unseen videos
were recognized as the probability distributions among the existing action labels.

Fully convolutional approaches view action recognition as a learning-based problem
with CNNs being used as appearance [67, 172] and motion [1] feature extractors.
More data hungry methods used multi-stream deep networks that utilized optical
flow along RGB images as input modalities [37, 61, 96, 112, 139] to be able to
focus on motion. A motion-based network that relied on optical flow as training
input is described in [112]. Each frame was divided into a set of grid cells and a
single sparse optical flow value was extracted for each cell per frame. These flow
values were then used as training data for a CNN and were classified into distinct
activity classes. In [31, 61] optical flow was employed to detect salient regions,
which were cropped from the original RGB frames and were given to the network as
a second, more focused RGB stream. In [96], a two-stream network was trained to
capture appearance and motion features. The appearance stream was pretrained for
the tasks of hand pose estimation and segmentation and was finetuned for object
localization, to find the regions of interest in images. The motion stream was trained
on optical flow to predict short-term actions. Finally, both feature representations
were combined with late fusion to predict short-term actions, objects, and activities.
In [134], a three-stream architecture trained on egocentric features from hand
masks, head motion, and saliency maps for the first stream, and raw RGB images
and optical flow maps for the other two was adapted to recognize actions. End-
to-end methods also include [4]. In order to recognize actions a CNN was trained
on pairs of frames and was jointly optimized for the training objectives of action
recognition, object segmentation and inter-frame object interactions. In Chapters 5
and 6 we further highlight the improvements from utilizing specific egocentric cues
such as hand movements and gaze-based visual saliency on top of image-based
features, but from a contrasting perspective. Instead of using them as input, we
consider them as additional learnable tasks with the advantage of not requiring the
extra information at test time.

A number of distinct input modalities have been employed to assist in egocentric
action recognition. These include depth [7, 151], egocentric cues comprising hand
[66, 129, 134] and object regions [66, 68, 164], head motions [134] and gaze-based
saliency maps [129, 134], sensor-based modalities [101, 114, 139] and sound [18,
74, 167]. Typically, these methods require specialized sensors such as depth cameras,
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eye trackers, accelerometers, or inertial measurement units for the additional inputs,
whereas sound is provided from the built-in microphones of the camera.

Spatio-temporal with recurrence Following the advances in third-person vision, a
number of egocentric methods have utilized recurrent modules to enhance inference
with information acquired from preceding frames. Typically, a 2D-CNN backbone
is used to capture appearance features from each frame in a frame sequence. Each
frame’s appearance features are further processed with recurrent layers in order
to additionally learn their temporal associations. A set of tasks that have been
addressed with this combination of network-based feature extractors and recurrent
networks include [54] for temporal action proposal generation, [159] for action
related scene identification and [80, 139] for action recognition.

Recurrent with attention The temporal aspect of videos has been further studied
with recurrent attention mechanisms [13, 39, 57, 85, 88, 94, 98, 129, 149, 150,
152, 164, 170, 176] that aim to find the most informative parts in images (spatial
attention) or the most informative frames throughout videos (temporal attention).
An encoder-decoder scheme was described in [13] for textual description of videos.
Here, the current event’s frames were encoded into convolutional features and
modeled temporally with LSTM. From the current and previous step’s embedding,
an attention mechanism selected the features to be decoded as the optimal textual
description of the current activity. The attention mechanism in [129] focused on
the frames that carry the action-specific information by learning the associations
between the input gaze, the detected objects, and the segmented hands. The
combined focus on these regions allowed the network to discard redundant frames
from the input video segment that would otherwise obfuscate the prediction task.
In [164], attention originated from video-specific spatial features (such as person
detections in third-person videos and objects with motion in egocentric videos),
which were calculated intermittently over the course of a video. These temporally
examined spatial features introduced past information to an attention mechanism
that effectively combined them with the present and selected the most relevant
features to represent the ongoing action. In [57, 85, 94, 129, 176], gaze supervision
was explicitly required to construct attention maps to weigh the last layer’s features
before classification.

Self-attention approaches do not require additional data but learn the spatial or
temporal importance of input video frames with carefully designed attention layers
[88, 149, 150, 170] or by dynamically weighing the usefulness of input modalities
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[39]. Spatial attention was considered in [150] where the important regions from
every frame were given as input to an LSTM for action recognition, whereas in [149]
spatial attention was further correlated sequentially through continuous frames. In
[39], the attention mechanism evaluated the importance of the input modalities
to select optimal features for action anticipation and recognition. In contrast to
explicit attention mechanisms, in Chapters 5 and 6 we are using the additional
supervisory tasks to enhance the representation in deeper layers by incorporating
information from all tasks and learning them together, thus inciting the network to
acquire universally useful features.

2.2.4 Hands and Objects for Egocentric Actions

The explicit exploration of hands and objects and their temporal associations has
seen a significant volume of work in the egocentric action recognition domain.
Initially, hand detection, segmentation, and identification techniques [8, 10, 84]
were developed as a preprocessing step for modeling actions or activities. One of
the first works that modeled objects in association with hands and the interactions
between them to infer activities and their associations was [33].

Egocentric hand-based activity recognition was the objective in [3]. Initially, an
egocentric hand detection and segmentation pipeline was established. The hand
detector consisted of a region proposal pipeline and a CNN for classification into
hands. The correct hand instances were turned into pixel-level segmentations,
which in turn were the input of a second CNN classifier that inferred the performed
activity. They showed early on the difference between relying on hand detection or
segmentation and using manual labels for activity classification.

Egocentric hand and object trajectories were considered for classification in [38, 42,
103]. In [38], computed trajectories of detected objects were classified as active or
passive based on hand manipulations towards them. In [42] the fingertip positions
were used as a means to identify human gestures with bidirectional LSTMs. The
sequences of fingertip coordinates were classified into a predefined set of gestures.
In contrast, in Chapter 4 we are interested in the whole hand and arm regions
and do not rely on a predefined set of trajectories but utilize tracking to produce
them. Egocentric hand-based activity recognition was considered in [103], where
the distance between detected hands or the distance between detected hands and
objects marked as active were the features for activity classification. The detection
and tracking methods are related to our scope in Chapter 4; however, we focus on
the particular objective of recognizing hand-based actions with the help of objects.
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In [7], a two-stream visual segmentation-based architecture was used to predict
the interaction areas between hands and objects in a video stream and model
them as actions. The concept of hand-object interactions was further explored in
[16] with the detection of grasps in relation to the shape of objects for modeling
actions. We also match the intuition that hands and objects are fundamental for
egocentric actions, but we rely on the explicit detection of hand and object regions
and their positions to recognize actions. In [4, 96] object and hand localization
and segmentation were intermediate learning steps that forced the network to focus
on important egocentric cues prior to action prediction. Their understanding that
hands and objects are fundamental for actions is similar to ours in Chapter 4, but
our pipeline is different in that we model the temporal associations of the tracked
hands and objects in the video instead of creating structured feature representations
of the raw image pixels with CNNs or other descriptors.

Activity recognition solely based on the detected objects in the scene was considered
in [147, 165]. In [165], object detection relied on video input to identify RFID tags
manually placed in the scene. In [147] a dynamic, feature prioritization policy was
developed to choose which single-class object detectors to promote. They processed
as few of them as possible, thus saving computations, while also maximizing the
classification accuracy on the subsequent frame. The aim was to take advantage of
the spatio-temporal correlations that occur during an activity and avoid extraction of
features that would provide unnecessary information to the recognition process. Our
method in Chapter 3 does not focus on single objects and their possible associations
through time during detection, but takes advantage of single-frame, multi-class
object detection to extract objects in real-time and uses LSTM to learn the temporal
associations.

2.2.5 Multitask Learning

Multitask Learning (MTL) is a machine learning technique for training models that
produce multiple outputs. The main benefit of MTL is the ability to reduce the
training requirements (number of models with respect to outputs, training time) by
reusing the parameters of a single model. This forces the network to learn features
that generalize not only across data, but also across tasks, potentially improving
performance.

Training a network for multiple tasks jointly has been shown to improve the perfor-
mance on all of them or at least the main task, as long as they share a conceptual
similarity [19] or are not competing [127]. Caruana [19] was one of the first to show
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the benefits of multitask learning by assigning multiple tasks to be solved jointly by
a single model. Among others, he demonstrated the use of MTL for classification of
medical indexes in pneumonia cases. He showed that prediction of mortality would
be improved when additional outputs such as the hematocrit and the white blood
cell count of the patients were jointly requested from a model, when compared to
predicting the mortality rate alone. Similarly, in vision tasks, e.g., human action
recognition, the action can be viewed as the combination of the foreground objects
in the scene, the background, and the movements of the person with respect to
their immediate environment. Explicitly requesting these outputs, affects the action
classification task by forcing the model to consider features it acquired for them in
the underlying shared representation. Otherwise, it might have missed task-specific
fine-grained features beneficial to the action classification task.

Recently, this concept has found successful application in image and video under-
standing tasks [48, 64, 76, 91, 95, 97, 99, 107, 127, 145, 173]. Misra et al. [99],
investigated the number of task-specific layers that should stem from the backbone
network to find the optimal setup to train task dualities, pairing segmentation with
surface normal prediction and object detection with attribute classification. In
[107], video captioning with action prediction and action performance quality were
combined as separate task outputs. In [64], a training scheme for joint object and
action detection was proposed where action labels were predicted for each detected
object in addition to the object class. In [48], the tasks were object detection and
segmentation. Furthermore, in [76] the combined tasks were boundary, surface
normal, and saliency estimation together with object segmentation and detection. In
[95], human pose was used prior to action recognition in an intermediate, secondary
task, where appearance features and pose predictions were the combined inputs
of the final action classification layer. Zamir et al. [173], modeled the relationship
between tasks in a latent space to transfer knowledge between them and reduce
the number of required training samples. In [127], the problem of loss function
weighing was analyzed, to train for multiple tasks efficiently through an optimization
scheme that searched for an optimal solution of network parameters to balance tasks.
In [145], network parameters were randomly selected to be either task-specific or
shared across tasks introducing parameter specialization during training. In [91],
an attention mechanism was applied to weigh each layer’s activations according to
the specified task and in [97] task-specific attention was modulated at the channel
level.

MTL in egocentric vision appears in [4, 57, 85, 96, 101, 149, 168]. Yan et al. [168]
considered the activities performed by each individual participant as separate tasks
where the objective was to cluster common activities among participants without
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supervision. In [4], from an RGB video input, multiple network branches learned
activities, object proposals, and segmentations, with large parts of the network
trained independently. In [96], an object and an action learning task were combined
to produce an activity prediction (as a combination of the two), with the network
consisting of two separate streams which contributed to the final prediction layer
and shared their parameters. In [85], the network learned a gaze map that was used
to pool from the activations of the final feature map for actions. Similarly, in [57],
a prior gaze estimation was used to influence the action prediction, which in turn
affected the final gaze prediction. Training took place jointly, but internally, each
network part was deployed for a specific task, without parameter sharing. Another
example of multitask learning in egocentric vision comes from [101] with joint
learning of activities and energy expenditure from video. The input to the network
was multimodal (video and accelerometer signals) and each stream was trained
individually with parameter sharing only during a late fusion stage. Lastly, in [149]
the action task was constructed with the addition of complementary verb and noun
learning tasks to bias the action classifier. In our work, in Chapters 5 and 6, all
task outputs are parallel and do not affect each other, besides sharing the backbone
network.

2.2.6 Multi-dataset Training

Multi-dataset or multi-domain learning is related to transfer learning in the sense
that we wish to utilize data from numerous sources in order to optimize the learning
process. Usually, this is unfeasible due to the lack of universally compatible annota-
tions that capture all tasks across datasets [26]. Thus, multi-dataset training refers
to the combination of diverse data sources concurrently during training to jointly
optimize the gradients of a multitask loss from the tasks of all datasets [62, 76].
Kokkinos [76] proposed UberNet to tackle the tasks of boundary, semantic bound-
ary, and saliency estimation, surface normal prediction, segmentation, and object
detection in a single network. The lack of a dataset with annotations for all tasks
led to a gradient accumulation update rule that only updated gradients for a task
when enough samples had been seen for it. However, it risked memory constraints
from maintaining task-specific gradients until the threshold was met. Additionally,
the gradient updates for the main block may not be representative of all the tasks in
each training step, affecting the statistics in the batch normalization layers [58]. To
alleviate this issue, [109] proposed training on interleaved mini-batches per dataset
and to use group normalization [166] to facilitate network convergence. The main
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difference in our approach in Chapter 6 is that we create mixed batches that enable
the network to grasp information across datasets on every training iteration.

Chong et al. [21] modeled human attention, with separate output layers for gaze
and saliency estimation. Each layer branched off from a single backbone that was
trained with mixed batches. There were as many backpropagation steps per batch
as the number of available output layers, which would negatively affect training of
the backbone as in [76]. Guo et al. [46] proposed several approaches to combine
datasets for human pose estimation including the unification of datasets towards
a single prediction task, transfer learning between datasets in a sequence, and a
multitask scheme to jointly supervise each dataset’s output poses. Of the latter,
outputs were eventually combined with a voting mechanism. This approach used
fully compatible datasets, from a task perspective, making task fusion feasible. We
also investigate mapping related tasks across datasets in Chapter 6.

A more related approach to ours [108] considered concatenating output layers for
cross-dataset classification, but without leveraging the possible class similarities
throughout tasks. Alternatively, [22] performed inter-dataset experiments on the
EPIC-Kitchens and EGTEA Gaze+ datasets, but only on the subset of common
classes. Our approach is different in that we construct a single model that fully
encapsulates both datasets. Lastly, [52] considered explicit task outputs for face
attribute classification, with mixed batches across datasets and masked losses, while
attempting to diversify the learned manifold by adding a domain adaptation output
to discriminate the datasets during training.

2.3 Egocentric Video Datasets

Scientific literature provides a plethora of egocentric video datasets [34, 35, 40,
41, 82, 101, 111]. The datasets of [40, 41] were created with the aim of detecting
locations and observing indoor and outdoor everyday scenes. The dataset of [111]
focused on activities that take place either indoors or outdoors, such as walking,
running and sitting, whereas [101] was enhanced with accelerometer and heart rate
data to infer the level of sedentariness in the performed activities. The dataset of [82]
included annotations and segmentations of the important objects that characterize
activities, with a large number of videos captured outdoors. Datasets from [34, 35,
85] consist of videos in a kitchen, in which the participants were asked to prepare
food according to predefined recipes. We summarize these datasets in Table 2.1.
In the remainder of this section, we provide a description of the egocentric video
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datasets most commonly used in the thesis: ADL [110], EPIC-Kitchens [24], and
EGTEA Gaze+ [85].

Tab. 2.1.: Egocentric Video Datasets (P: Participants, Acc: Accelerometer, HR: Heart Rate,
G: Gaze, HM: Hand Masks).

Dataset Modalities #P Mount Annotations Classes Location
Furnari et al. [41] Video 1 Head Personal Locations 11 In/Outdoors
Furnari et al. [40] Video 1 Head Personal Locations 9 In/Outdoors
Stanford ECM [101] Video/Acc/HR 10 Chest Activities 24 In/Outdoors
UT-EGO [82] Video 4 Head Summarization - In/Outdoors
ADL [110] Video 20 Chest Activities 32 Indoors
Poleg et al. [111] Video 13 Head Activities/G 7 Outdoors
GTEA [35] Video 4 Head Actions/HM 71 Kitchens
GTEA Gaze [34] Video/G 14 Head Actions 94 Kitchens
GTEA Gaze+ [34] Video/G/Audio 10 Head Activities/Actions 7/25 Kitchens
EGTEA Gaze+ [85] Video/G 32 Head Actions/HM 106 Kitchens
EPIC-Kitchens [24] Video/Audio 32 Head Actions/Objects 2513/352 Kitchens

2.3.1 Activities of Daily Living

In Chapters 3 and 6 we make use of the Activities of Daily Living (ADL) dataset [110].
It consists of 20 videos captured from a first-person perspective of people performing
activities occurring indoors. The camera was mounted on the participants’ chests.
Each video is a record of the subject’s choice of activities from a predefined set,
performed in an unscripted manner. In every video, the person is different and
operates in their own house, thus providing considerable variations in locations
and activities throughout the dataset. In total, there are approximately 10 hours
of egocentric videos, equivalent to more than one million frames. The videos
are annotated with 32 activity labels with start/end times, 48 object classes with
bounding box instances, object tracks and human-object interactions. Example
frames from the ADL dataset are shown in Fig. 2.2.

2.3.2 EPIC-Kitchens

The EPIC-Kitchens dataset [24] comprises a set of 432 egocentric videos recorded
by 32 participants in their kitchens at 60fps with a front-facing head-mounted
camera. There is no guiding script for the participants who freely perform activities
in kitchens related to cooking, food preparation, or washing up. Example frames are
showcased in Fig. 2.3. Each video is split into short action segments (mean duration
is 3.7s) with specific start and end times and a verb and noun annotation describing
the action, (e.g., ‘open fridge’). The verb classes are 125 and the noun classes 352,
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Fig. 2.2.: Example frames (©2012 IEEE) from the ADL dataset. Notice the position of the
objects and the hands with respect to the chest view of the scene.
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the valid combinations of which are 2,521 actions. The dataset is divided into one
train and two test splits. For both test splits, the verb and noun annotations are
not openly available, hence we focus our work on the fully annotated train set. It
consists of 272 videos by 28 participants (28,470 action segments). We experiment
with EPIC-Kitchens in Chapters 4, 5, and 6.

2.3.3 EGTEA Gaze+

EGTEA Gaze+ [85] consists of 86 videos of 32 people in seven scenarios of food
preparation activities in kitchens. The videos are cropped into 10,321 clips based
on action segment annotations. The dataset comes with three predefined train and
test splits, with the first comprising 8,299 and 2,022 clips, respectively. Each clip is
labeled from 19 verbs and 53 nouns and their 106 valid action combinations in the
dataset. In addition, the dataset is complemented with a gaze annotation for every
video frame, which consists of an (x, y) coordinate and its type (fixation, saccade, or
unknown). Example frames from the EGTEA Gaze+ dataset are shown in Fig. 2.4.
We utilize EGTEA Gaze+ in our experiments in Chapters 5 and 6.
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Fig. 2.3.: Frames from EPIC-Kitchens. The images comprise almost a top view with respect
to the areas of interest where the actions take place. (Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Springer Nature, Scaling
Egocentric Vision: The Dataset by Dima Damen, Hazel Doughty, Giovanni Maria
Farinella et al. ©2018)
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Fig. 2.4.: Frames from EGTEA Gaze+. (Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, In the Eye of Beholder: Joint
Learning of Gaze and Actions in First-Person Video by Yin Li, Miao Liu, James M.
Rehg et al. ©2018)
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Object-based Location and
Activity Classification

3

3.1 Introduction

In this chapter, we focus on indoor location and activity detection from egocentric
videos, with typical applications in Ambient Assisted Living (AAL) [104]. An example
can be non-intrusive status updates to healthcare professionals about the locations
and actions of people suffering from limited vision or dementia. Activities of daily
living are also of interest in the case of patient rehabilitation after serious illness.
Normally, this process would take place in a protected environment, far from the
person’s home. The possibility of continuous and real-time monitoring offered by
egocentric cameras allows for non-invasive and personalized care. Reusability of
the equipment by other patients at the end of the recovery period is an additional
incentive towards adoption by nursing homes. Moreover, enhancement with intelli-
gent detection mechanisms will promote privacy, since only information relevant
to the rehabilitation will need to be communicated to third parties and not the
actual video stream. An example use-case is that of dementia patients who require
constant monitoring and professional care [71]. Egocentric vision is able to provide
the indoor location [70], the duration of physical exercises [154] or any performed
activity, upon request or in a continuous mode.

To produce an inference on an image or video frame, one could calculate image-
descriptive features [23, 92] stack them in vectors and classify, using machine
learning models in a supervised fashion. In recent years, feature extraction and
classification tend to merge into end-to-end deep networks, providing promising
results. In this chapter, we take a step back and consider a different type of input.
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Chapter 3 Object-based Location and Activity Classification

We abstract away the detection of low-level visual features and consider high-level
information to be the input to our location and activity classification pipelines.

(a) Location ‘kitchen’. The oven and the microwave dominate the scene.

(b) For activity ‘watching TV’ the television and the remote controller are indicative
of the performed activity.

Fig. 3.1.: Detected objects for video segments from the ADL [110] dataset.

Our key idea is to use the detected objects in a video frame as cues to recognize
the indoor location or an ongoing activity [60]. Initially, we build on the idea that
rooms can be characterized by the presence of specific, distinctive objects. Contrary
to [60], we use a small set of objects, closely affiliated with the indoor videos of
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ADL [110]. This consistency can be translated into associations between objects
and locations. For example, consider Fig. 3.1a which shows the detected objects of
an egocentric video segment from a kitchen. If we categorize the objects based on
their mobility we may group them into a) those that can be thought of as movable,
but bear meaning for understanding the scene, such as the soap, the mug, and the
dish and b) those that are unmovable, but (i) distinctive to this particular location,
such as the stove, the microwave, or the fridge and (ii) those that can be found
in multiple locations, for example the tap, which could also appear in a bathroom.
Similarly, we claim that the activity of the egocentric protagonist can be inferred
from the detected objects, considering Fig. 3.1b which shows a TV and a remote
controller for most of the duration of a video segment for activity ‘watching TV’.

These observations motivate us to perform an analysis on the videos of the Activities
of Daily Living (ADL) dataset [110] to discover associations between objects and
locations and objects and activities. For the object-location associations, we train
classifiers with Artificial Neural Networks (ANN) and Long Short-Term Memory
networks (LSTM) [51] to experiment with per-frame classification and utilization of
the temporal structure of the data, respectively. Conceptually, an individual frame
of a scene might include only partial information about the objects, as not all that
are detectable may fit in view. Furthermore, there might be missing or false-positive
detections on a single frame. However, using LSTM we can encode a more complete
view of the room by combining the detections from multiple frames over time. This
can potentially enhance the knowledge about objects and alleviate the effects of
noisy detections. Eventually, we compare the performance of classifiers from both
types of models, trained either on object labels or detections, from detectors trained
on object categories from different datasets.

For the object-activity associations we rely on object detections enhanced with
information about the appearance of the objects. Apart from the presence of objects
(binary), we measure the bounding box sizes and their positions in the frames. We
aim to investigate if this additional information modifies the status of an object as
participating in the ongoing activity. For example, a pan observed from a distance
(smaller) or at the edge of the view would indicate that a kitchen related activity
other than frying is performed, such as eating or cleaning. Fig. 3.2 outlines our
approaches. The contributions of this chapter can be summarized as:

• the development of a method to analyze object associations towards 1) loca-
tions and 2) activities in egocentric videos,

• the binary object presence feature, which despite its simplicity, demonstrates
acceptable performance,
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Chapter 3 Object-based Location and Activity Classification

• the description of location classification results for diverse object sets and
detection thresholds with and without temporal information,

• the demonstration that laborious object annotations are not required for
location classification, given that our system performs equally well using only
automatic detections, and

• the analysis of object-activity associations in the context of daily living and the
effect that object sizes and positions have to the activity recognition results.

In Sec. 3.2 we describe the object detection pipeline and the methodology for the
location classification and activity recognition tasks. In Sec. 3.3 we present our
results and we provide a discussion in Sec. 3.4.
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Fig. 3.2.: Three pipelines for location and activity recognition. We extract objects from
images using an object detector (YOLO [119]). The detections for a frame are
turned into binary object presence vectors (BPV). This representation is the input
to ANNs (left) which produce one location per frame. BPV sequences are the
input to an LSTM (middle) which generates one location for the entire sequence.
For activity classification (right) we consider two additional features that describe
the bounding box sizes and positions and classify them with an LSTM.
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3.2 Methodology

In this section, we analyze in depth the Activities of Daily Living (ADL) egocentric
video dataset in terms of objects, locations, and activities (Sec. 3.2.1). We also select
the object detection framework to perform our tests on (Sec. 3.2.2). Finally, we study
the parameters of the location (Sec. 3.2.3) and activity (Sec. 3.2.4) classification
tasks.

3.2.1 Activities of Daily Living Dataset

A description of the ADL dataset [110] is given in Sec. 2.3.1. The dataset contains
annotations for 48 object classes. For the object detectors we either use the whole
set of 48 classes or a subset of 20. We elaborate on object detection in Sec. 3.2.2. A
list of the object classes together with their occurrences in the ADL dataset appears
in Table 3.1. Train and test splits are provided by the authors; videos 1 through 6
are considered training data and the remaining 14 comprise the test set. For our
experiments we use the same splits.

Tab. 3.1.: The 48 object classes of the ADL dataset and the number of occurrences per class.
In the third column the instances in the train set. In bold, the classes of the
ADL20 subset.

Class Total Train Class Total Train Class Total Train
person 4650 2424 food/snack 3876 741 shoes 3248 735
door 7903 2019 kettle 1239 464 tea bag 359 177
fridge 1999 301 mug/cup 11050 2766 laptop 7027 2183

microwave 2369 527 soap liquid 8375 2658 cell phone 653 271
bottle 10310 1705 pills 394 148 cell 571 238

tap 7826 3252 basket 1588 35 thermostat 332 137
oven/stove 3196 1007 towel 4480 1961 book 4770 445

pan 3156 1026 tooth brush 1795 819 dental floss 547 385
trash can 2075 486 tooth paste 1746 492 vacuum 519 116

dish 8216 2274 electric keys 1570 417 electric keys 2 118 118
cloth 3077 78 TV 5600 2033 pitcher 1208 277

knife/spoon/fork 4843 1893 remote 2813 1253 detergent 1105 297
bed 783 228 container 5685 3821 washer/dryer 3362 954

large container 558 6 shoe 694 300 milk/juice 366 0
monitor 316 287 blanket 85 31 mop 403 0
keyboard 107 102 comb 307 51 perfume 550 0

In Sec. 3.2.3 we are interested in the analysis of locations and we extend the dataset
with location annotations from [159]. For every 30 video frames, one out of eight
possible locations are annotated, namely, kitchen, bedroom, bathroom, living room,
laundry room, corridor, outdoor, and undefined (Table 3.2). Class ‘undefined’ occurs
in blurred frames or non-identifiable locations. We do not use these frames for
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training or testing the location classification models. Hence, the location classes are
seven in our experiments.

Tab. 3.2.: Sampled frames per location. Class ‘undefined’ is not used for training and
testing.

Location Kitchen Bedroom Bathroom Living room Laundry room Corridor Outdoor Undefined
Train 3414 1821 2307 2606 815 45 143 492
Test 6850 3966 2285 5045 1097 133 906 737
Total 10264 2285 4592 7651 1912 178 1049 1229

In Sec. 3.2.4 we focus on activity classification and make use of the existing activity
annotations in the ADL dataset. We transform the labels from describing video
segments with specific start and end times, to one activity per frame. The activities
are shown in Table 3.3. In [110], only 18 activities are considered due to scarcity of
samples, whereas the dataset contains labels for 32. We consider all 32 activities
plus a background class in our experiments.

Tab. 3.3.: The 32 activity classes in the ADL dataset, plus the background class (35906,
85801). In parentheses the number of train and test frames per class, respectively.

1:combing hair 2:wearing make up 3:brushing teeth 4:using dental floss
(3539, 6267) (8363, 3926) (22729, 26117) (8543, 2127)

5:washing hands/face 6:drying hands/face 7:entering/leaving room 8:adjusting thermostat
(15050, 17270) (4014, 6743) (0,0) (1110, 2459)
9:doing laundry 10:washing dishes 11:moving dishes 12:making tea
(28812, 46101) (21249, 45807) (9984, 0) (15679, 27265)

13:making coffee 14:drinking water/bottle 15:drinking water/tap 16:making hot food
(6774, 18974) (6565, 12328) (0, 540) (8872, 38619)

17:making cold food/snack 18:eating food/snack 19:mopping in kitchen 20:vacuuming
(14268, 11546) (6686, 32180) (1020, 8933) (3657, 9864)
21:taking pills 22:watching TV 23:using computer 24:using cell
(3237, 4409) (37769, 78086) (20445, 57125) (5817, 10435)

25:making bed 26:cleaning house 27:reading book 28:using mouth wash
(0, 6055) (11360, 12655) (20350, 18016) (420, 570)
29:writing 30:putting on shoes 31:drinking coffee/tea 32:grabbing tap water
(0, 3628) (5668, 450) (15226, 33778) (599, 1170)

3.2.2 Object Detection

We use Darknet1 for object detection. The detector is YOLOv2 (short for You Only
Look Once) [118, 119]. It is a real-time object detection system that operates on
input images of various sizes. YOLOv2 is based on the Darknet-19 architecture
[119] and consists of 19 convolutional and 5 max-pooling layers. It is pretrained on
ImageNet [28] for 1,000 classes, for 160 epochs. From this pretrained model, we
develop three separate detectors, one for every object dataset we consider.

1https://pjreddie.com/darknet/
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Our first YOLOv2-based detector is finetuned on the 80 classes of the MS COCO
dataset [89] and the weights are provided by the authors of [119]. We call this
detector ‘COCO’ for short. We train two additional models with this architecture
for the object classes of the ADL dataset: (1) ‘ADL48’, on all the classes in Table 3.1
and (2) ‘ADL20’, on the 20 in bold. The selection of classes for ‘ADL20’ follows
[159], where they select only classes for which their detector achieves more than
5% Average Precision (AP).

The reason for the diversification of detectors is that MS COCO and ADL consist
of different sets of classes. ADL comprises objects found in homes (Table 3.1),
whereas MS COCO is more generic in its categories (Table 3.4). The split between
‘ADL20’ and ‘ADL48’ is an attempt to produce a detector focused on classes with
more samples in the training dataset, thus excluding harder to detect classes. We
expect this to improve performance of the bounding box classifier for the ADL20
subset due to the increased available capacity of the network.

For both ‘ADL20’ and ‘ADL48’ we finetune the ImageNet weights for 35k iterations,
(i.e., batches). During training, the input dimensions of the detectors change
together with the image sizes. This allows the network to learn the object features in
various sizes. The training hyperparameters are the same as in [119]. The ‘ADL20’
detector achieves 29.84% mAP (mean Average Precision) and the ‘ADL48’ 11.15%.
In Table 3.5, we report the average precision per class for our detectors. In total,
the mAP for ‘ADL20’ is 29.80% and for [159] is 23.35%. Furthermore, the YOLOv2-
based ‘ADL20’ is a more successful detector for the majority of the considered object
classes of the ADL dataset than Fast R-CNN [44] from [159].

Tab. 3.4.: The 80 object classes of MS COCO [89].

person bicycle car motorcycle airplane bus
train truck boat traffic light fire hydrant stop sign

parking meter bench bird cat dog horse
sheep cow elephant bear zebra giraffe

backpack umbrella handbag tie suitcase frisbee
skis snowboard sports ball kite baseball bat baseball glove

skateboard surfboard tennis racket bottle wine-glass cup
fork knife spoon bowl banana apple

sandwich orange broccoli carrot hot dog pizza
doughnut cake chair sofa potted plant bed

dinning table toilet TV laptop mouse remote
keyboard cell phone microwave oven toaster sink

refrigerator book clock vase scissors teddy bear
hair dryer toothbrush
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Tab. 3.5.: Per-class average precision (%) of ‘ADL20’ and ‘ADL48’ object detectors, trained
with YOLOv2. Certain classes are particularly challenging. In bold, the classes
that improve in the ADL20 subset. Comparison with [159] using Fast R-CNN for
the 20-class subset of the ADL dataset. With italics the object classes that are
better in [159].

Objects [110] ADL20 ADL48 [159] Objects (ctnd.) ADL20 ADL48 [159]
person 69.00 59.49 25.74 container - 5.25
door 23.20 17.72 5.59 shoes - 0.72
fridge 22.75 12.85 24.95 tea bag - 0.68

microwave 37.80 24.81 32.35 laptop 44.40 41.04 37.46
bottle 10.02 4.59 11.28 cell phone - 10.91 8.65

tap 59.27 51.18 39.55 cell 0.89 0.65
oven/stove 44.48 28.15 43.02 thermostat 24.88 3.89 9.01

pan 16.88 12.46 10.99 book 16.39 18.04 12.83
trash can - 9.61 dental floss - 0.92

dish 14.21 6.22 11.19 vacuum - 0.66
cloth - 4.55 elec keys - 0.00

knife/spoon/fork - 4.80 pitcher - 3.13
food/snack - 9.65 detergent 9.90 9.76 9.13

kettle 22.54 8.68 23.83 washer/dryer 37.96 25.58 38.86
mug/cup 15.92 15.69 13.24 bed - 0.21

soap liquid 21.76 31.59 18.77 large container - 0.00
pills - 0.14 monitor - 0.00

basket - 0.00 keyboard - 0.00
towel - 9.38 shoe - 0.15

tooth brush - 9.78 blanket - 0.00
tooth paste - 11.67 comb - 0.10
electric keys - 0.73 perfume - 0.00

TV 52.07 49.57 57.58 milk/juice - 0.00
remote 52.49 30.36 32.88 mop - 0.00

3.2.3 Locations

We model the relationship between the objects in a frame or in a series of frames to
recognize the location. Applying object detection on the videos of the ADL dataset
leads to a binary presence vector (BPV) of zeros and ones for every video frame,
with length equal to the number of output classes of a detector, i.e., 80 for ‘COCO’,
48 for ‘ADL48’ and 20 for ‘ADL20’. In BPV we only consider whether an object is
present in a scene or not, regardless of the times it is found. We also experimented
with keeping the counts of multiple detections of the same object in a frame using
a multiple presence vector (MPV), but without consistent improvements. Location
labels exist once every 30 frames (1 second) [159] and only these frames are used
for classification, without augmentation for the ones in between.

We train two types of classifiers. The first is a fully-connected neural network
(Artificial Neural Network, ANN) with input one BPV per used frame. The second is
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a Long Short-Term Memory (LSTM) network which is used to examine the temporal
structure of the data by being trained on BPV sequences. For both ANN and LSTM
classifiers we parametrize our experiments with respect to the object datasets. They
are categorized based on:

• the dataset combinations for training and evaluating the location classifier,

• the object detector classes, and

• the object detection thresholds.

We categorize as such after considering our objective, i.e., to assess whether an object
detector can be used as the first step in an indoor location recognition pipeline. In
this context, we experiment with using either object annotations or detections to
model the locations. At test time, we compare against object detections in order
to examine the modeling capabilities of either train set. Hence, the dataset combi-
nations comprise the scenarios that affect the composition of a location classifier’s
dataset. The first combination is ‘Labels to Detections’ (L2D) where we use the object
annotations for training and the detections for testing. The second is ‘Detections to
Detections’ (D2D) which contains only detections for both train and test splits. We
also consider ‘Labels to Labels’ (L2L) which consists of the object annotations for
both splits, i.e., the object detections are not used. The latter is used for comparison
purposes to measure the possible performance drops from using only detections,
which can be expected to contain noise.

The object detector class variations were discussed in Sec. 3.2.2. Using this as a
parameter means that we vary the object detector that produces the object dataset.
As a result, different object classes are learned. In turn, this leads to generating
object vectors (BPV) of different lengths. The available object classes appear to
affect performance on certain object-depended locations as shown in Sec. 3.3.1.2.

Finally, the detection acceptance threshold creates a trade-off between the confidence
and the number of detections. Higher thresholds lead to fewer but more accurate
detections. Lower thresholds provide more objects, but with higher numbers of
false-positives. In the D2D experiments we always use detections with the same
acceptance threshold for both training and testing.

3.2.4 Activities

For activity detection we also rely on object detections from Darknet. We use the set
of 20 object classes of ‘ADL20’ as described in Sec. 3.2.1 (Table 3.1), enhanced with
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object-related information. Specifically, for every video frame, we extract objects
along with their size and position in the frame. As features, we consider the BPVs as
described in Sec. 3.2.3, along with the bounding box positions and the centrality.

The bounding box position (BB) constitutes a 4-vector per object containing the
(x, y, width, height) parameters that characterize a bounding box. The values are
normalized to the width and height of the frame to fall into the [0-1] range. For
the 20 object classes the BB feature has length 80, i.e., four values per object class.
The centrality feature (CF) signifies that a larger object area or a bounding box
which is closer to the center of the image is more important for the detection of an
activity. It constitutes a 2D Gaussian (µ = 0.5, σ = 0.1) (in terms of normalized
image coordinates) to produce a weight distribution that focuses its importance on
bounding boxes found closer to the center of the frame. As a result, bigger boxes
gain importance because they aggregate values over a larger area. Our intuition is
that significant objects for human activities will be detected near the center of the
scene or due to their size, they will draw attention to themselves [7]. An illustration
of the centrality feature’s estimation is provided in Fig. 3.3.

Fig. 3.3.: Estimation of the centrality feature for three boxes. Box 1: 0.196, Box 2: 0.244,
Box 3: 0.059. As boxes become smaller or move away from the center the value
of the centrality feature decreases.
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3.3 Experiments

In this section, we delineate our experiments. Location classification is presented in
Sec. 3.3.1 and activity recognition in Sec. 3.3.2.

3.3.1 Location Classification

We divide the experiments for location classification into ANN- and LSTM-based
architectures in Sec. 3.3.1.1 and 3.3.1.3 respectively. In Sec. 3.3.1.2 we perform a
per-class examination for certain ANN cases.

3.3.1.1. ANN Classification

Our Artificial Neural Network models consist of five fully connected layers, with
Rectified Linear Unit (ReLU) activations for the neurons of the input and the three
hidden layers that follow. The neurons per layer are 64, 256, 128, 64 and 7 (for the
output), respectively. We do not apply dropout, following preliminary tests where we
experience slightly worse performance. We use categorical cross entropy to calculate
the loss and Stochastic Gradient Descent (SGD) for optimization. All models are
trained for 150 epochs. We set the starting learning rate at 10−2 and divide by 10
every 50 epochs. The batch size is set to 64.

We implement experiments for the L2L, L2D and D2D cases of Sec. 3.2.3 with
detection confidence threshold in the L2D and D2D cases ranging from 30% to 70%.
The object sets vary between ADL20, ADL48, and MS COCO, with the latter only
supporting the D2D case due to the lack of annotations for its object classes in the
ADL dataset. The classifiers for each object set only differ on the input feature size
which ranges between 20, 48 and 80 respectively. The models’ trainable parameters
with respect to the input feature size are 59,591, 61,383, and 63,431. In Tables 3.6
and 3.7 we present results in terms of overall Top1 accuracy and averaged F1-score
over the seven locations in the test set, respectively.

When considering the dataset combinations, the highest classification accuracy is
found in the L2L scenarios. They outperform the variants that depend on object
detectors. This is expected since the object annotations do not contain detector-
induced noise, so the train and test sets are clean with no objects out of place.
When detectors are used, the D2D classifiers tend to outperform the L2D for the
same object sets, even though they are trained on noisier samples. This observation
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provides insights about the way the ANN classifier handles noise. It may be confused
by unexpected objects at test time, but if the noisy detections are part of the training
set it will deal with them more successfully at test time.

Tab. 3.6.: ANN Top1 accuracy (%) for location classification – averages of the best five
models of each experiment. Comparisons between L2L, L2D, and D2D for the
various detector cases and detection thresholds. L2L outperforms the variants
that depend on object detectors. Decreasing the object detection threshold
improves location classification accuracy for every object set.

L2L Conf.
(%)

L2D D2D
ADL20 ADL48 ADL20 ADL48 ADL20 ADL48 COCO

77.700 77.045

30 59.684 54.802 62.951 56.469 64.356
40 58.113 48.157 60.744 55.860 62.876
50 56.645 47.667 58.734 55.111 60.839
60 55.001 39.368 55.766 52.056 57.801
70 47.611 38.953 51.654 48.662 51.717

Tab. 3.7.: ANN F1-scores averaged over the seven location classes for the best performing
model in Top1 accuracy. Comparison between L2L, L2D, and D2D for the various
detector cases and detection thresholds. Certain locations (corridor, outdoor) are
almost undetectable, negatively affecting the average score.

L2L Conf.
(%)

L2D D2D
ADL20 ADL48 ADL20 ADL48 ADL20 ADL48 COCO

58.474 57.738

30 45.982 41.562 47.441 41.338 43.167
40 42.633 39.211 45.181 40.247 39.484
50 42.875 37.010 42.608 38.696 36.785
60 39.210 29.674 39.043 34.866 34.758
70 34.151 22.252 34.261 31.882 30.261

Varying the object detector affects the classification results significantly. In Tables 3.6
and 3.7, ADL20 L2D and D2D outperform their ADL48 L2D and D2D counterparts
and COCO D2D performs better than both. When comparing ADL20 L2D with ADL48
L2D it is important to consider the detection datasets. The test set of ADL20 consists
of 67,906 ground truth boxes and that of ADL48 of 95,845 (TP+FN in Table 3.8).
The additional 28k boxes of ADL48 belong to the harder to detect classes that are
discarded from ADL20. The low average precision for these classes (Table 3.5)
indicates that most of their instances are not detected. This suggests a harder task
for ‘ADL48’ to produce the “Detections” datasets for any confidence threshold. For
example, at 50% confidence it has less TP but more FP and FN (Table 3.8). These
can be interpreted as increased noise (FP) and reduced detection quality (FN) when
compared to ‘ADL20’.

In terms of location classification accuracy, ADL20 L2D 50% is almost 9% better
from ADL48 L2D 50% and ADL20 D2D 50% is 3.6% better from ADL48 D2D 50%.
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Finally, ‘COCO’, due to the higher number of training samples for each object class
(over 5k [89]) and despite consisting of 80 classes, seems more robust in its object
detections and the resulting location classifiers perform better. Interestingly, in the
L2L case the ‘ADL48’ variant is on par with ‘ADL20’, meaning that the additional
object classes, when not burdened by noise, do not harm location classification. The
fact that ‘COCO’ outperforms all other detector-based location classifiers adds to this,
showing that quality detections without as many false-positives (resembling L2L as
much as possible) even for classes from a more general context, are useful. Notably,
MS COCO contains a number of classes that are irrelevant to indoor activities of
daily living, such as elephant and airplane (Table 3.4). However, in spite of any
false-positive detections of these, the detection-based locations classifiers based on
‘COCO’ are the best performing ones.

Finally, we vary the detection threshold from 30% to 70% with a step of 10%. Our
results suggest that as it increases, location classification performance drops. Lower
thresholds lead to more available true-positive object detections. This allows the lo-
cation classifiers to identify uncertain locations easier, showing that they are resistant
to noise. On the other hand, higher thresholds result in fewer detections with higher
confidence on average and fewer false-positives, but they are not as adequate for
inferring the location. All in all, decreasing the object detection threshold improves
location classification accuracy for every object set. The significant variance in the
number and quality of detections as a result of modifying the confidence threshold
for ‘ADL20’ and ‘ADL48’ is shown in Table 3.8 where we report the object detection
results on the ADL test videos.

Table 3.7 shows the average F1-score of the seven location classes for the best
performing model in Top1 accuracy. The drop in performance when compared to
the Top1 accuracy is attributed to the difficulty in detecting locations corridor and
outdoor. These locations usually lack characterizing objects, e.g., corridors usually
consist of poorly illuminated walls. Finally, corridor and outdoor are the most
sparsely annotated classes (Table 3.2), which naturally impairs performance.

3.3.1.2. Examination Per Class

In Fig. 3.4 we compare the per-class F1-scores for selected ANN classifiers to ex-
amine easier and harder to detect locations. No classifier is universally better, but
superiority of certain classifiers can be observed for individual locations.

ADL20 outperforms ADL48 for all locations in both the L2D and the D2D cases. Sim-
ilarly, the D2D cases outperform their L2D counterparts per class in most situations.
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Tab. 3.8.: ADL20/48 object detector results. True-positives decrease along with the false-
positives as the confidence threshold increases, complicating the classification
task.

Detector ADL20 ADL48
Thresh. (%) TP FP FN TP FP FN

30 14,777 12,025 53,129 12,619 24,166 83,226
40 13,277 8,231 54,629 10,509 13,800 85,336
50 11,762 5,744 56,144 8,493 8,051 87,352
60 9,951 3,784 57,955 6,532 4,558 89,313
70 7,621 2,262 60,285 4,417 2,209 91,428

COCO D2D performs best for ‘kitchen’, ‘bedroom’, and ‘living room’ due to its ability
to detect additional objects such as ‘fork’, ‘sofa’, ‘chair’, and ‘bed’. However, it under-
performs for ‘laundry room’ because it misses a location specific object class related
to the ‘washer/dryer’ from ADL20/48. Locations ‘outdoor’ and ‘corridor’ generally
suffer due to the scarcity of training samples and relevant objects (Table 3.2).

Fig. 3.4.: The per class F1-scores at detection threshold 0.3 for five ANN classifiers. (Better
seen in color - the order of names in the legend identifies their order in the graph.)

3.3.1.3. LSTM Classification

In this section, we are interested in studying the objects in video segments instead
of single frames. In Fig. 3.1a the ‘kitchen’ scene lasts for 1,260 consecutive frames
(42 seconds) and the detected objects are not consistent throughout the segment. In
certain views of the scene, the output of object detection are Binary Presence Vectors
(BPVs) that cannot be associated with the ongoing location, for instance when no
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objects have been detected. Classifying one such BPV with an ANN classifier, (e.g.,
ADL20 D2D 30%) produces the mistaken prediction ‘laundry room’, in between
correct predictions of ‘kitchen’ for surrounding frames that have sufficient detections.
These frames include objects such as ‘fridge’ or ‘oven’, but the frame in question does
not. This observation drives our LSTM experiments in order to investigate how the
temporal coherence of the detected objects can improve location classification.

To test our hypothesis, we train an LSTM with the dataset of ADL20 D2D 30%. For
training, we set the sequence size to 20 frames without augmenting the dataset
with overlapping sequences, so each frame’s detections are seen once per epoch as
part of a single sequence. When testing the previously misclassified frame – now
being part of a sequence – we find that the resulting location does not change from
‘kitchen’. Another interesting remark from this example is the ability of the LSTM
to revert the prediction back to ‘kitchen’ if it misclassifies certain frames of the
sequence. Given a slice of three BPVs with only the ‘tap’ object and having from
previous frames an ongoing location prediction of ‘kitchen’ with 52% probability,
we classify the first BPV. It is classified as ‘kitchen’, but its probability drops to 49%.
The following ‘tap’-BPV modifies the prediction to ‘bathroom’ with probability 50%
and ‘kitchen’ drops further to 47%. This pattern continues for the third ‘tap’-BPV.
However, given a vector that includes ‘fridge’, the ‘kitchen’ prediction returns with
increasing confidence, demonstrating the ability of the LSTM to recover from false
intermittent predictions. In order to test whether the LSTMs are also quantifiably
better than ANNs we repeat the dataset parametrization experiments from Sec. 3.2.3.
We expect higher Top1 accuracies, as well as to confirm the relative associations
between L2L, L2D, D2D, the object detector datasets, and the detection thresholds.

For our experiments we use two stacked LSTM layers and a fully connected layer,
attached at the last sequence step of the second layer to produce the output. We
vary the feature size between 20, 48, and 80 following the BPV requirements. We
set the number of hidden units per layer to double the feature size. The numbers
of trainable parameters for each input size is 23,327, 131,239, and 362,087, re-
spectively. Following the ANN training scheme, we use categorical cross entropy to
calculate the loss and SGD for optimization. All models are trained for 150 epochs
with 10−2 starting learning rate divided by 10 every 50 epochs. The sequence size
is set to 20 which corresponds to a video duration of 20 seconds, (i.e., 20 frames
sampled at 1fps). The batch size is set to 16 sequences.

At training time, we use a single label to describe a sequence. To produce it, we
perform majority voting on all location labels in the sequence and use that as the
ground truth. Thus, the classifier is trained to produce one prediction per sequence.
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At test time, we want to evaluate every frame in the test set. To that end, we clone
the prediction to the sequence length and evaluate all labels one-by-one.

In Table 3.9 we report Top1 accuracies. For every task the LSTM model surpasses
its ANN equivalent. Except for the L2L combinations where it is relatively close
(2-4% difference), LSTM shows significant improvement, especially at the hardest
cases, e.g., ADL48 L2D 60% (+20.8%) and ADL48 L2D 70% (+16.5%). The same
conclusion can be drawn from Table 3.10 where we present F1-scores. As expected,
the absolute values are lower compared to Top1, due to the class imbalance.

Tab. 3.9.: LSTM Top1 location accuracy (%) – averages of the best five models of each
experiment. In parentheses, the difference to the corresponding ANN result.

L2L Conf.
(%)

L2D D2D
ADL20 ADL48 ADL20 ADL48 ADL20 ADL48 COCO

80.238
(+2.54)

80.632
(+3.59)

30
70.699

(+11.01)
63.815
(+9.01)

70.107
(+7.16)

65.072
(+8.60)

75.491
(+11.13)

40
66.832
(+8.72)

63.834
(+15.68)

69.104
(+8.36)

62.655
(+6.79)

73.932
(+11.06)

50
68.831

(+12.19)
61.484

(+13.82)
67.189
(+8.46)

59.752
(+4.64)

73.111
(+12.27)

60
63.431
(+8.43)

60.165
(+20.80)

62.840
(+7.07)

59.315
(+7.26)

72.370
(+14.57)

70
61.732

(+14.12)
55.445

(+16.49)
61.857

(+10.20)
56.731
(+8.03)

67.069
(+15.35)

Tab. 3.10.: LSTM F1-scores averaged over seven locations for the best performing model in
Top1 accuracy. In parentheses, the difference to the corresponding ANN result.

L2L Conf.
(%)

L2D D2D
ADL20 ADL48 ADL20 ADL48 ADL20 ADL48 COCO

63.793
(+5.32)

58.923
(+1.19)

30
54.099
(+8.12)

54.154
(+12.60)

52.607
(+5.17)

51.421
(+10.03)

53.543
(+10.38)

40
52.259
(+9.67)

48.385
(+9.17)

53.782
(+8.60)

49.091
(+8.84)

51.45
(+11.97)

50
52.587
(+9.71)

47.171
(+4.16)

49.434
(+6.83)

46.28
(+7.28)

50.864
(+14.08)

60
42.147
(+2.94)

45.754
(+16.08)

46.914
(+7.87)

45.57
(+10.7)

50.065
(+15.31)

70
46.012

(+11.86)
39.938

(+17.69)
47.002

(+12.74)
41.196
(+9.31)

45.776
(+15.52)

3.3.2 Activity Classification

In Sec. 3.3.2.1 we present the results of the activity classification scheme and in
Sec. 3.3.2.2 an analysis of the class confusions. All our tests consider the detections
to detections (D2D) dataset combination introduced in Sec. 3.2.3, where both train
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and test splits are built from the output of an object detector. This provides a more
realistic scenario for smart-home application development compared to the label
to label (L2L) combination which assumes ideal object detections. Despite recent
improvements in object detectors [48, 120, 121], perfect detections are not yet
feasible and flawless annotations in unseen environments require significant human
labeling effort.

3.3.2.1. LSTM Classification

For the activity classification experiments, we train an LSTM network for the se-
quences of each feature combination of Sec. 3.2.4 targeting the 33 activity classes of
the ADL dataset (Table 3.3). We prefer LSTM over Artificial Neural Networks for
their ability to incorporate temporal changes, compared to per-frame classification
schemes that do not consider objects seen in the past. We train a single layer LSTM
with 80 hidden units with a fully connected layer for the output. We set the sequence
size to 150 frames and batch size to 64. We apply 15% dropout with 10−4 starting
learning rate with polynomial decay down to 10−6 in 1000 training iterations. We
finish training after 1500 iterations.

We report Top1 accuracies and F1-scores in Table 3.11. The best performing individ-
ual feature is the binary presence vector (BPV). Adding the bounding box coordinates
hurts results but adding the centrality feature leads to the best performance overall.
The high number of classes adds complexity to the classification task when compared
to locations and leads to lower results overall.

Tab. 3.11.: LSTM Top1 accuracies (%) and averaged F1-scores for all 33 classes for the
proposed feature combinations.

Feature BPV BB CF BPV+BB BPV+CF BB+CF BPV+BB+CF
Top1 32.16 26.66 23.38 29.21 32.84 31.06 33.97
F1 10.51 9.07 6.69 11.11 10.89 10.83 12.40

3.3.2.2. Class Confusions

The confusion matrix in Fig. 3.5 shows a specific trend. It suggests strong preference
to certain activities, including 0: ‘background’, 3: ‘brushing teeth’, 9: ‘doing laundry’,
10: ‘washing dishes’, 12: ‘making tea’, 17: ‘making cold food/snack’, 22: ‘watching
TV’, 23: ‘using computer’, 27: ‘reading book’. Beside their true-positives, these
classes attract false-positives from conceptually relevant activities that rely on the
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same objects for recognition, but have fewer instances associated with them at
training time (Table 3.3).

Class 17: ‘making cold/food snack’ contains false assignments from classes 16:
‘making hot food’ and 18: ‘eating food/snack’. These activities rely on similar
kitchen objects such as ‘dish’, ‘mug/cup’ and ‘tap’, but the classifier assigns them
to the class with the most instances during training. Similarly, instances from 29:
‘writing’ are assigned to 27: ‘reading book’ based on ‘book’ as the detected object.
Further confusions that regard semantic relevance include classes 1: ‘combing hair’,
2: ‘wearing make up’, and 4: ‘using dental floss’ with 9: ‘doing laundry’; class 28:
‘using mouth wash’ with 3: ‘brushing teeth’ and class 32: ‘grabbing tap water’ with
10: ‘washing dishes’.

Fig. 3.5.: Confusion matrix for BPV + BB + CF. Some activities can be assigned to semantic
super sets. Class 0 is the background class. The 32 activities are listed in Table 3.3.

3.4 Discussion

We envision a system that recognizes activities and locations based on detected
objects in a real setting. We structure the task in a very simple way, i.e., to solely rely
on the presence of objects in the scene for inference. This is a source of confusion
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even with the assumption of perfect detections, considering that objects are naturally
found in multiple locations (‘door’) or are movable (‘cup’). We work with these
limitations and explore ways to address them by relying on the temporal associations
of objects to learn an improved representation of a scene or an activity.

Using the L2L combination for the location classifiers is not a pragmatic approach
mostly due to the difficulties in data collection that is the human effort in annotating
customized home environments. To mitigate this, we make use of automatic object
detectors, pretrained on specific sets of object classes. Initially, this leads us to
evaluate the L2D scenario, where we train on generic room representations, e.g.,
a common kitchen has a fridge, an oven, and a tap which are expected to be
found in the test environment. However, the D2D classifiers perform better and
show increased resilience to noisy detections at test time. Additionally, they are
more convenient from an installation perspective, since they abolish the necessity
for labeling locations with objects. Thus, having minimized the required human
labelling effort, it becomes easier to learn new representations of existing places (for
example, with a specialized detector that was previously unavailable), but also of
unseen locations not included in the original categories.

Our purpose is to evaluate the applicability of the detectors in terms of object
variability and acceptable accuracy in activity and location classification. The L2L
experiments have the highest location classification performance and establish the
idea that the presence of noise in the object detections (in this case, the lack thereof)
can influence results. A second significant outcome is that the variability of available
objects can enhance the ability of a classifier to detect a location accurately. This is
observed from ADL48 L2L which outperforms ADL20 L2L in Top1 accuracy in the
LSTM tests. However, when the objects contain noise, less is more, i.e., in L2D and
D2D, ADL48 does not outperform ADL20 in any (LSTM or ANN) experiment.

To enhance our original objective into activity classification, we consider a scenario
with detections of house-related objects with additional object appearance features
that are dynamic in time. We examine them with LSTM and find that this more
complicated scenario cannot be sufficiently tackled with object-based features. While
seven locations have been distinguished with up to 70% accuracy (LSTM ADL20
D2D 30%), the 33 activities reach 34%, with multiple intra-class similarities being
observed and misclassified as such. The additional information about the object
detections, i.e., the bounding box location and its centrality contribute to improved
performance. However, acquiring fine-grained associations between the object type
and its position in the scene would require a much larger training set and a larger
network that is better equipped to handle the additional information. The current
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setup is incomplete in this effect and cannot fully address the elaborate task of
analyzing semantically similar activities and counter the bias towards classes with
higher prior probability.

To our knowledge there is no related work that tackles location classification in
the ADL dataset. For the task of activity classification, related work does exist;
however, the evaluation metrics and the regarded activity sets do not allow for a fair
comparison. For example in [103] the authors report 26.3% average accuracy for
the subset of 18 activities of the ADL dataset.
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Hand- and Object-based
Action Classification

4

4.1 Introduction

The prominent characteristic of egocentric vision is that it provides a first-person
perspective of the scene by placing a forward-facing wearable camera on the chest or
head of a human. This provides a unique view that is person-centric and optimally set
to capture information that is arguably relevant to the camera wearer [65]. Naturally,
this refers to the surrounding area and its contents, usually consisting of objects,
hands, other people, and the scene background. Being able to examine a perspective
of the scene that accumulates this information with clarity allows for improved
inference of higher level cues such as the quantification of interactions between
hands based on their proximity [103], object-activity relations from associated
movements [7], and location identification from the presence of distinctive objects
[68, 70] as shown in Chapter 3.

Egocentric vision is a strongly application-oriented field of computer vision. Research
is not only focused on developing algorithms to tackle traditional computer vision
tasks such as object detection and activity recognition but also considers them from
the perspective of applicability [114]. Egocentric vision utilizes mobile devices for
image and video capturing for storing, transmitting, or in situ data processing. These
operations can suffer from restraints in processing power, energy usage, transmission
bandwidth, or lack of a dedicated storage space. Such issues should be considered
when designing an egocentric vision-based solution. In this chapter, we consider
these limitations by reducing the amount of information used as input for human
action recognition from videos.

Understanding of visual content in human intelligible terms remains challenging
despite being facilitated from the egocentric perspective. That is, recognition of a
specific area in view as the ‘hand’ or as a specific object class which may or may

Published as:
G. Kapidis, R. Poppe, E. Van Dam, L. P. J. J. Noldus, and R. C. Veltkamp. “Egocentric Hand Track
and Object-Based Human Action Recognition”. 19th IEEE Conference on Ubiquitous Intelligence
and Computing (UIC). Leicester, UK, 2019, pp. 922–929
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Fig. 4.1.: Output from a single-frame hand detector on two consecutive frames of the
EPIC-Kitchens dataset [24].

not be under manipulation, will always deteriorate due to inter-object and object-
hand occlusions. In the video domain, the recognition task can become particularly
challenging in the egocentric setup, due to motion introduced by rapid movements
of the camera or the objects seen from this perspective. In Fig. 4.1 we illustrate an
example where a slight motion of the left hand causes motion blur and a subsequent
missed detection.

The intricacies of egocentric vision pose a challenge for algorithms developed in the
context of third-person vision in terms of their applicability to first-person views.
We argue that methods yielding cues towards human-like understanding of a scene
from one domain can be compatible with egocentric vision given a certain amount
of finetuning. The scope of this chapter is to assess up to what point existing object
detection and tracking schemes can produce valuable information for egocentric
action recognition. Our idea relates to methods that reduce RGB images to trajectories
or poses of hands or objects in the scene and use this contextual information alone
for human action recognition [5, 103] or a related task such as prediction [38].
Our objective is to investigate the information encoded in the movements of hands
and objects in contrast to the currently predominant approach of using the visual
information directly [17]. Are the motion sequences alone sufficient to model
actions? We test the limits of object detection and tracking methods in their ability
to produce usable data towards higher-level inference.

Initially, we focus on distinguishing the action-specific cues that can be acquired
solely from hand movements. Instinctively, human hand movements are expected to
carry much of the spirit of actions that are explicitly named after the actual motion
itself, e.g., ‘put’, ‘take’, ‘stir’, ‘open’, ‘close’ to name a few. We strive to exploit the clear
view of the hands and their movements in egocentric videos and study them closely
towards identifying associated actions, facilitated by detection and tracking of hand
regions. We consider hand regions to be containing the hand and possibly the wrist
and the lower arm, depending on the output of the hand detector. Furthermore, we
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examine the structure of actions which are generally not only associated with the
hand movements but also related to objects of interest arising from the context of
the scene. For example, the action ‘wash dishes’ in Fig. 4.1 consists of the moving
hands manipulating kitchenware and a sponge, while there is a sink and running
water.

This chapter is directly associated with the production of hand trajectories. The
prelude is that an object detector is applied on egocentic videos to accurately detect
the hands, thus substituting the arduous task of manually labelling hand regions
with an automated process. Subsequently, tracking is applied to temporally associate
the detections into meaningful sequences. These are processed to clear overlapping
misdetections and are then attributed to the left or the right hand. Finally, the hand
trajectories are augmented with the detection of objects and used as input for action
classification. We focus on action classification by incorporating the binary presence
vector introduced in Chapter 3 to a hand tracking pipeline. Fig. 4.2 illustrates our
approach.

The contributions of this chapter are threefold:

• A hand detection, tracking, and identification pipeline that extracts hand
motions from egocentric videos, structured to provide the hand positions in
every frame including their distinction into left and right hands.

• The assessment of the capability of hand tracks alone for egocentric action
recognition and the effects of temporal sampling in the representative ability
of hand motions.

• The inclusion of object presence and position to capitalize on the limited set of
specific actions that an object can be associated with.

In Sec. 4.2 we describe our hand detection, tracking, and identification pipeline and
in Sec. 4.3 the temporal classification problem for action recognition. In Sec. 4.4 we
delineate our experiments and results. Finally, in Sec. 4.5 we discuss our findings
and conclude this chapter.

4.2 Hand Track Dataset

In this section, we describe the process to produce a hand track dataset from the
raw frames of EPIC-Kitchens [24].

51



Chapter 4 Hand- and Object-based Action Classification
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Fig. 4.2.: Our pipeline for action recognition. Hands are detected with YOLOv3 [120] in
EPIC-Kitchens [24] and tracked by detection using SORT [11]. We remove track
overlaps and identify left and right hands from their position in the frame. For the
objects we also rely on YOLOv3 with a second model trained on the noun classes
of EPIC-Kitchens. Binary presence vectors are propagating the object knowledge
per frame. Finally, hand and object information is used as input to an LSTM to
classify actions.
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4.2.1 EPIC-Kitchens

We partition the train set of EPIC-Kitchens into custom train and validation splits
based on the participant identities to avoid videos from the same person appearing
in both splits. Videos from participants 1-8, 10, 12-17, 19-24 comprise the train set
and videos from 25-31 the validation set. Videos from participants 9, 11, 18, and
32 are reserved for a hidden test set which can be evaluated online through the
authors’ website1. Additionally, almost 300k object bounding boxes are provided
for the videos of the original train set which we utilize to train an object detector
(Sec. 4.2.4).

The structure of the hand track dataset follows the action annotation format of
EPIC-Kitchens. Based on the annotations, the videos are split into short video
segments, each comprising an action with a specific verb and noun label, start and
end frames and times. Our aim is to document the position of each of the two (at
most) visible hands (those of the camera wearer) in view as an (x, y) coordinate
pair for each frame. The coordinate pair signifies the center of the bounding box
of a detected hand, without considering the size of the detection. In the remainder
of this chapter, our subset of EPIC-Kitchens is referred to as EPIC-Kitchens, unless
stated otherwise.

4.2.2 Hand Detection with YOLO

In order to acquire hand regions from EPIC-Kitchens we train a hand detector with
YOLOv3 [120] on the combination of a collection of egocentric hand datasets.

4.2.2.1. Dataset Collection

We utilize hand annotations from existing egocentric datasets, namely EgoHands
[3], EGTEA Gaze+ [85, 86], CMU EDSH [84], and THU-READ [151]. We start
with the EgoHands [3] dataset. It consists of 48 videos with 100 labeled images for
each, totalling 4,800 frames with 15,053 annotated hand masks. The dataset depicts
dynamic interactions such as playing chess or cards, hence the high number of hand
instances per image. Additionally, we consider EGTEA Gaze+ [85, 86] with the
hand annotations consisting of 15,176 masks from 13,847 images. EGTEA Gaze+ is
relevant to our task because it considers cooking activities, similar to EPIC-Kitchens.
Further hand masks are acquired from the CMU EDSH dataset [84] which consists

1https://epic-kitchens.github.io/2020-55.html
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Tab. 4.1.: Collection of hand annotations from egocentric datasets.

Dataset Hand view Images Masks Train Test
EgoHands [3] camera wearer/other 4,800 14,884 11,440 3,444
Egtea Gaze+ [85] camera wearer 13,847 15,258 14,295 963
CMU EDSH [84] camera wearer 743 1,394 1,186 208
THU-READ[151] camera wearer 652 1,331 1,252 79
IEORD[123] - 11,683 0 - -
Combined 31,725 32,867 28,173 4,694

of 743 frame level masks in total, labeling one or two hands for each. The same
annotation format is used in the THU-READ [151] dataset for 652 frames.

Since we are interested in detection and not segmentation we only keep the bounding
rectangle of a hand mask and use it as the ground truth for a hand region. Next,
we augment the dataset with negative samples, i.e., frames that do not contain
visible hands or annotations, in order to punish the objectness learning part of the
network and produce fewer false proposals, ultimately reducing false-positive hand
detections. We manually annotate 11,683 such frames from the Intel Egocentric
Object Recognition Dataset (IEORD) [123]. The number of hand annotations and
the size of the train and test splits per dataset are detailed in Table 4.1.

4.2.2.2. Training

We perform various experiments to train the hand detectors to determine the optimal
dataset combination that supports generalization, since our eventual task is to
apply the detector on an unseen dataset for extraction. We train a detector for
each available hand dataset (except IEORD) and one for the combined train sets
(including IEORD). All detectors are trained for a single target class ‘hand’ without
distinguishing between ‘left’ and ‘right’. We set the batch size to 64, starting learning
rate is 10−3, momentum 0.9, and weight decay 5 × 10−4. To initialize the hand
detector we use weights that are pretrained on ImageNet [28] and then on MS
COCO [89]. We do not recalculate box anchors for our datasets after preliminary
tests suggesting minor performance decline. Training takes place for multiple input
detector dimensions starting from 416 × 416 to enhance the detection of objects
with different sizes. We evaluate every detector on every test set using Average
Precision for 50% Intersection over Union-IoU (AP50) and False Detection Rate2

(FDR = 1-Precision). The acceptance threshold for detections in set to 25%.

2Since we plan to use the detections as a preamble for tracking, the frequency of false-positive
detections is an important metric to consider.
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Tab. 4.2.: Average Precision (%) with 50% IoU threshold. Row-wise the dataset used for
training and column-wise the dataset used for testing. In parentheses the False
Detection Rates for each test set. (For IEORD we only report the absolute number
of false-positive detections.)

IEORD
[123]

EDSH
[84]

EgoHands
[3]

EGTEA+
[85]

THU-READ
[151]

Combined
Test

EDSH 71 100.00 (0.00) 17.00 (0.49) 72.50 (0.21) 86.17 (0.09) 31.98 (0.34)
EgoHands 15 26.09 (0.53) 90.58 (0.02) 43.42 (0.39) 17.15 (0.79) 77.29 (0.13)
EGTEA+ 37 89.91 (0.04) 20.51 (0.51) 89.65 (0.05) 74.58 (0.07) 41.05 (0.32)
THU-READ 191 90.62 (0.01) 19.24 (0.50) 65.85 (0.19) 100.00 (0.00) 33.07 (0.38)
Comb. Train 18 100.00 (0.00) 90.53 (0.03) 89.38 (0.07) 90.05 (0.05) 90.42 (0.04)

In Table 4.2 we illustrate the best performing weights of each detector, based on the
two metrics. In total, each detector is able to perform well on its individual test set.
We notice performance drops when a detector is applied on a different test set. The
detectors from EGTEA, EDSH, and THU-READ are somewhat more compatible with
each other. The duality in the viewing perspectives of hands in EgoHands introduces
a failing testing scenario for the detectors that have not seen EgoHands data in their
training set. EgoHands appears to be the best single-dataset training set for a more
general application. Finally, we show that in terms of both AP and FDR, the detector
based on the dataset combination performs best on the combined test set and is on
par with every single-dataset detector on its individual test set.

4.2.2.3. Detection on EPIC-Kitchens

We apply the combined hand detector on the EPIC-Kitchens dataset to extract hand
instances using the same acceptance threshold. In Figs. 4.1 and 4.3 (column 1) we
show that the detector generalizes in unseen images, but slight visual changes due
to hand movements, strong ego-motion, changing illumination, or occlusions can
cause missed detections. Finally, we address the issue of overlapping detections for
the same hand region in Sec. 4.2.3.2.

4.2.3 Hand Tracking with SORT

The continuity of visual information in video streams enables the use of tracking
methods to replace missing detections. The object detector operates per frame,
whereas tracking by detection combines information from multiple frames. We
utilize Simple Online and Real-time Tracking (SORT) [11] for this task. It associates
detections over the course of a video with threshold-based tolerance to missed ones.
Bounding boxes are associated through frames and identified as belonging to a track
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with a certain identity. SORT uses the Kalman filter [63] to predict the coordinates of
what would likely be the next bounding box of an existing track and the Hungarian
algorithm [79] to assign the detections from subsequent frames to existing tracks or
new ones. Tracking with SORT is controlled by three parameters:

• IoUmin is the minimum required overlap between a new detection and the
predicted target from a track that leads to the detection’s assignment to it,

• TLOST defines the number of frames that a track can survive for before being
finalized, without being assigned a detection,

• Tmin is the minimum number of consecutive detections required to instantiate
new tracks or recover them after encountering frames without assignment.

We set IoUmin to 10% to promote track continuity against strong ego or hand motions.
In practice, frames that include quickly moving hands can be incomprehensible to the
detector and detection will fail. Once the motion weakens, the hand may be detected
in a slightly different location. If IoUmin is too strict it will not be possible to resume
the track, leading to inconsistent single-frame tracks, as well as the simultaneous
presence of multiple tracks for the detections of consecutive frames that could not
be merged to a single track. TLOST equals to 10 frames without detections to allow
for sufficient time, (i.e., 167 milliseconds in the 60fps videos of EPIC-Kitchens) to
re-establish a track. Finally, Tmin is set to one detection, in order to create or revive
a track instantly. In column 2 of Fig. 4.3 we show the instantiated tracks as points in
the centers of bounding boxes.

4.2.3.1. Track interpolation

We introduce the concept of intermediate frames. We define them as the video frames
that are implicitly included in a track by means of previous and future frames that
contain a detection for them. Intermediate frames do not hold a detection for the
track. However, we assume that the hands do exist in these frames but are missed
from the object detector. That is, due to the inherent continuity of information in
sequential video frames and the short time span we allow for a track to be kept alive
without a detection. To augment the tracks for the intermediate frames, we apply
linear interpolation on the box centers starting from the last frame with an assigned
value for the track until the latest one. The number of interpolated frames is bound
to the value of TLOST. In column 3 of Fig. 4.3 we showcase this for frames 2-4 being
assigned with interpolated coordinates for the right hand.
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4.2.3.2. Track elimination

In the videos of EPIC-Kitchens the participants undertake kitchen activities alone.
This limits the maximum number of co-occurring hand tracks at any given moment
to two, one for each hand. Particularly, we assign each track to the left or the right
hand of the participant based on the location of the center of the first detection of
an assumed track. Overlapping tracks for the same image region that have been
associated with the same hand are removed and the longest track survives. An
example is shown in Fig. 4.3 frame 9 with the elimination of a superfluous track
for the right hand. Finally, for the frames with no available detection and track
information we assume a hand position below the field of view of the camera.
Potential downsides of our hand coordinate detection method are discussed in
Sec. 4.5.

4.2.4 Noun Object Detector

To study the hand-object relationships we rely on information about object presence.
EPIC-Kitchens includes object labels for the majority of its noun classes. These object
annotations amount to 326, 388 bounding boxes. We utilize them to train an object
detector using YOLOv3 with the same parameters as those in Sec. 4.2.2.2 with the
exception of the base network dimensions which are increased to 608× 608 and the
introduction of Sparse Pyramid Pooling [50] in the model structure to enhance the
detector’s ability to find smaller objects. We train for 50k iterations (almost 11.5
epochs) after which the average loss is stabilized. We apply the detector on all the
frames of EPIC-Kitchens and accept detections with confidence greater than 25%.

4.3 Motions to Actions

We aim to develop a frame-wise correspondence between every image of EPIC-
Kitchens and the hand detection tracks in order to exchange the visual information
with our representation. The pipeline of Sec. 4.2 contributes knowledge about the
hand locations whether they have been detected in a given image or not. This
continuous evolution of positions leads to a sequence of coordinates, which in the
temporal dimension capture the motions of the hands. To gain knowledge about
these motions we formulate the problem of hand track classification as a sequence
learning problem. Long Short-term Memory (LSTM) networks [51] have shown
ability to model long-term dependencies in sequences of arbitrary sizes of coordinate
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Chapter 4 Hand- and Object-based Action Classification

Fig. 4.3.: Hand tracking and track augmentation on a 10-frame sequence (rows). Each
column showcases a step. Column 1 visualizes the detections (rectangles). In
column 2, SORT associates them to distinct tracks (points and lines). A track for
each hand spans the frame sequence. Frames 2-4 and 7 are still not assigned with
a coordinate for the right hand. For these frames we interpolate between the last
available coordinate and the latest as shown in column 3. The right hand track is
augmented in these frames and the missing detections are covered. In column 4
we show the final tracks for both hands. A case of removing a redundant right
hand track is shown for frame 9.
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[42, 103] or object presence [70] data and we employ them for their classification
into actions.

4.4 Experiments

We construct a series of experiments to investigate the ability of the hand track and
object presence information to substitute the visual information of raw RGB frames
for detecting hand related actions from the egocentric perspective.

For our experiments we use LSTMs with a Fully Connected layer attached to the
last hidden state of the final LSTM layer to obtain a class prediction for an action
segment. To train the models we use cyclical learning rate (CLR) [136, 137] with a
triangular policy that fluctuates between the base and the maximum learning rate in
20 epochs. Batch size is set to 128. We train our models for 1,000 epochs capitalizing
on the ability of the triangular CLR policy to move weights out of local minima in
search of better configurations. We use categorical cross entropy to calculate the
loss and Stochastic Gradient Descent for optimization. Our learning scheme targets
the 125 verb classes of the EPIC-Kitchens dataset. For the LSTM experiments we
consider the following features:

• The concatenated Left/Right hand coordinates (LR) of the center of each
hand, normalized to the image size. The values are in the [0-1] range when
there is a hand present. Alternatively, the (x, y) coordinate is set to (0.25, 1.5)
to declare that the left hand is out of view and correspondingly to (0.75, 1.5)
for the right hand. Feature size is 4.

• The Binary Presence Vector (BPV) of objects [68, 70] from Chapter 3.2.3
consisting of zeros and ones with length equal to the number of noun classes
of EPIC-Kitchens (352). The BPVs are concatenated to the hand coordinates
for every frame and the feature size increases to 356 (352 + 4).

• The tracked object coordinates (Obj) instead of the objects’ BPV in a video
frame. This increases the feature length to 708 (352*2 + 4). In case of
multiple instances of an object in a frame we only consider its longest running
occurrence following the tracking scheme of Sec. 4.2.3. When an object is not
present on a frame its coordinates are set to (0,0).

Our motivation for the x hand coordinate when the hand is not in view is based on
the expected resting position of the hands on their respective side of the body. For
the y value we consider that since no part of the hand is detected it must be resting

59



Chapter 4 Hand- and Object-based Action Classification

below the image frame. On the contrary, we cannot assume a location for every
missing object. Thus, we provide a zero value to nullify the effect of the feature
when training the action recognition model.

We report classification results for our validation set in Table 4.3 in terms of overall
Top1 and Top5 accuracy. Following the evaluation scheme of EPIC-Kitchens we
additionally report mean per-class precision and recall for verb classes with more
than 100 samples during training, which in our splits are 24.

Tab. 4.3.: Verb classification results on EPIC-Kitchens using different feature sets, model
sizes, and length of feature sequences for the LSTM models and frames for the
vision models. We compare against vision-based 2D-CNNs using RGB and optical
flow (TSN) [160] and 3D-CNNs [20].

Model Parameters Accuracy % Average %

# Model Feature
Hidden/
Layers

Seq.
Length Top-1 Top-5

Cls
Precision

Cls
Recall

1 LSTM LRa 32/2 Full 31.10 74.12 11.02 10.46
2 LSTM LR 16/2 32 31.01 73.15 10.38 8.46
3 LSTM LR+BPVb 32/2 Full 34.97 76.08 15.08 12.00
4 LSTM LR+BPV 16/2 32 34.05 75.36 17.64 10.83
5 LSTM LR+Trc BPV 16/2 32 34.05 75.29 19.08 11.51
6 LSTM LR +Objc 16/2 32 32.81 73.70 12.84 10.41

7
TSN
[160] RGB stream - 25 36.98 77.89 20.28 13.12

8
TSN
[160] Flow stream - 25 37.99 76.45 23.14 14.06

9
MFNet
[20] RGB-3DConv - 16 44.31 79.10 29.46 21.37

aLeft/Right normalized hand coordinates (x, y)
bBinary Presence Vector of detected objects
cNormalized detected object coordinates (x, y)

4.4.1 LSTM Results

Initially, we test the ability of the LSTM to model the hand track sequences in full
length using the LR feature. This is no straightforward task since the durations of
action segments vary significantly from 0.5 seconds to 3.5 minutes which translates
from 30 to as many as 12,000 frames. In our first experiment, we train using the
full hand coordinate sequences. For the LSTM to support training in batches with
variable sequence sizes we zero-pad the shorter sequences to the size of the longest
one in the batch. For the shorter sequences we use the last hidden state before
zero-padding as input to the Fully Connected layer and calculate the loss on this
prediction. The Top1 accuracy is 31.10% and the Top5 74.12%.
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In an effort to simplify and speed-up the learning task, instead of smoothing the
coordinates as in [42], we downsample the action segments into shorter lengths.
We are inspired by the concept used to train 3D-CNNs, which aim to capture the
temporal structure of videos, but due to computational restrictions are unable to
process the full frame sequences to represent them [155].

In the second experiment, we sample the coordinate sequences down to 32 steps
and use these as input to LSTM. In Fig. 4.4 we visualize the difference between a full
and a sampled sequence for the proposed sequence size. Furthermore, we reduce
the number of hidden units per layer to avoid overfitting, since the input is reduced
significantly. Top1 performance drops ~0.9% compared to the first experiment which
can be attributed to the exclusion of temporal structure (we discuss this effect in
Sec. 4.5).

(a) Original length (b) Sampled to 32 steps

Fig. 4.4.: Left (cyan) and right (purple) hand motion patterns extracted from a 2.7s se-
quence (161 frames) for action ‘clean lid’. (a) The final view of the full sequence
including all 161 steps. (b) The same sequence sampled to 32 steps. Zoom-in for
best view.

For experiments #3-5, we enhance the LR feature vector with object BPVs by
appending them to the hand coordinates for every sequence step. For the ‘LR+BPV’
experiments we incorporate the detected objects directly and for ‘LR+Trc BPV’ we
track the objects following the interpolation scheme of Sec. 4.2.3.1, in order to gain
object presence knowledge for as many frames as possible. In experiment #3 we
use the complete motion sequences (following experiment one) and improve Top1
classification accuracy by 3.8% to 34.97%. In experiment #4 we repeat the feature
setup of experiment three with sampled sequences. The addition of the BPV feature
improves Top1 accuracy in the sampled sequences as well by 3% to 34.05% showing
that the improvement from objects is consistent. Tracking the objects in experiment
#5 again reaches 34.05% without introducing further improvements.

In the sixth experiment, we use the tracked object coordinates to enhance the
LR feature (LR+Obj) instead of the BPV. Again, we notice an improvement over
having no object presence (Table 4.3); however, it is not as strong as the BPV-
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based experiments. We attribute the smaller increase to the added uncertainty from
location information of objects that may be false-positives. The LSTM seems to be
able to more adequately reduce the importance of a falsely detected BPV rather than
that of a coordinate that is propagated to the whole sequence.

4.4.2 Comparison with Video-based Methods

We perform experiments #7-9 to compare against state-of-the-art video-based meth-
ods, Temporal Segment Networks [160] (TSN) and Multi-Fiber Networks [20]
(MFNet) that utilize Convolutional Neural Networks as feature extractors for two
[160] or three dimensional [20] inputs. In the 2D case, TSN extracts convolutional
features from multiple stacks of either images (RGB stream - #7) or pairs of horizon-
tal and vertical optical flow values (Flow stream - #8) that capture the perceived
motion through series of images [171]. MFNet (#9) utilizes a set of 16 frames
sampled from the sequence of video frames to represent the segment. Both networks
utilize only the video (or flow) information without any contextual information
about the scene.

In terms of overall Top1 accuracy on the test set, the results are highest (44.30%)
when using 3D convolutions. Our methods remain close to TSN, but are still ~2%
lower. In Table 4.4 we perform a class-wise comparison for the 10 most common
verb classes in our train set, following the analysis in [24]. We see that recall
and precision are comparable between our methods and both TSN streams (#1-
4 and #7, #8) for classes ‘put’, ‘take’, ‘wash’, ‘close’, ‘mix’, ‘pour’, and ‘turn-on’.
Against MFNet we are close for actions ‘take’, ‘wash’, and ‘pour’. The relatively
small gap in performance indicates an expressive quality in our data that can lead to
action comprehension comparative to more elaborate methods by using only object
detection and tracking as the means to deliver the input.

Tab. 4.4.: Comparison for the 10 most frequent verb classes in our training split. Showing
per-class Recall and Precision, results in %. The experiment identities (#)
correspond to the experiment identities in Table 4.3.

# put take wash open close cut mix pour move turn-on
R P R P R P R P R P R P R P R P R P R P

1 42.36 33.29 48.55 28.16 63.09 36.78 11.85 26.50 12.90 19.13 24.35 45.16 13.07 30.30 33.82 18.85 0.00 0.00 0.00 0.00
2 64.53 28.89 40.57 29.10 52.89 39.60 2.87 55.56 0.00 0.00 14.78 47.89 27.45 25.61 0.00 0.00 0.00 0.00 0.00 0.00
3 42.05 34.78 56.61 31.57 68.32 43.62 18.93 39.92 16.72 27.40 28.26 34.03 43.14 38.60 8.82 13.64 0.00 0.00 2.20 50.00
4 34.53 34.48 68.58 28.66 62.55 44.42 17.02 37.87 12.90 36.67 20.87 47.06 28.10 55.13 1.47 4.55 0.00 0.00 1.10 12.50
7 57.24 29.89 43.19 29.80 58.93 60.3 43.21 51.36 12.61 39.45 54.35 67.57 30.72 51.09 10.29 26.92 0.00 0.00 2.20 20.00
8 31.87 38.95 81.81 29.90 37.05 56.33 58.51 58.40 24.34 62.88 23.91 60.44 41.18 70.00 32.35 28.57 0.00 0.00 0.00 0.00
9 52.62 39.55 60.88 37.47 62.01 63.20 55.64 53.49 26.39 54.88 60.43 64.35 53.59 61.19 26.47 36.73 0.00 0.00 24.18 31.43
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4.5 Discussion

In this section, we developed a pipeline to capture the motions of regions of interest,
in order to model the underlying human actions, from an egocentric perspective.
This process is in close relation to the information it aims to comprehend and
addresses specific issues that stem from detection and tracking in an egocentric
setup. For example, in Fig. 4.1 we demonstrate a persistent complication with the
hand detections that is successfully solved with tracking.

An issue that may be introducing inconsistency to the hand tracks is the detection
of both hands as one region of interest (~2.5% of detections). This leads to the
assignment of the detection in either the left or the right hand track and momentarily
produces an outlier coordinate (since the center of the detection is abruptly found
elsewhere - see Fig. 4.5). A way to suppress this could be to add a third ‘dual hand’
track, (e.g., LR+D as a feature) that captures these sequences and incorporates them
in the final model as such; a promising direction for future work.

The contextual information added from the detection of objects, other than hands,
contributes to the knowledge about actions; however, we argue that there are
potential improvements with more accurate object detections. Our findings in
Chapter 3 about the effect of using object annotations over detections also support
this claim.

We view the process of standardizing all sequences to a certain length in experi-
ments 2,4,5,6 as a manipulation of their temporal structure. After sampling, the
temporal distance between consecutive steps is not fixed to 16.7 milliseconds (see
also Sec. 4.2.3) but becomes a function of the sequence length and the sampling
rate, which in turn originates from the volume of samples in the learning phase and
is not fixed for any two sequences. In essence, we sacrifice part of the information
related to the precise duration of each tiny motion step. The trade-off to the reduced
performance in these experiments is the significantly shorter training times per
mini-batch (0.321s to 0.025s) and epoch (57.2s to 4.4s) in our setup with a 1080Ti
GPU. An additional interesting direction for future work is the investigation of spatial

Fig. 4.5.: A double hand detection finds its way into the right hand track.
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Fig. 4.6.: Confusion matrices for experiments one and three for the 10 most frequent verb
classes in our training split. The similarity of the motions leads to a high number
of predictions being associated to a different class. The presence of objects
alleviates this issue for most classes.

smoothing techniques, (e.g., as in [42]) instead of temporal to simplify the motions,
which could ultimately correlate coherent gestures to specific actions. A potential
disadvantage of temporal subsampling is loss of prediction accuracy in an online
classification setting. A solution to this would be reducing sampling on the input
stream to match the subsampling step of the model.

Hand tracks are our primary means for distinguishing human actions. Due to the
high representative ability of human hands and their multipurposeness, the same
motion can be expected to be part of multiple actions. For example, ‘pull’ and ‘take’
are conceptually alike, hence the related hand motions are also expected to be similar.
We showcase this confusion in Fig. 4.6a. This introduces an additional burden to
our representation which we enhance using the objects in the scene (Fig. 4.6b).
Investigating other sources of contextual information, such as the explicit duration of
hand and object movements with an emphasis on hand-object interactions, together
with improving existing sources through the removal of ego-motion from the hand
tracks and the enhancement of object detection are additional directions for future
work.
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Multitask Learning to
Recognize Egocentric Actions

5

5.1 Introduction

Human activity recognition from video is a growing field of computer vision that
promises real-time and large-scale behavior recognition and automated analysis.
Activity recognition applies to both the third- and first-person vision domains, incor-
porating the distinct visual characteristics of each case. Third-person videos tend
to capture the full range of motions of the human body from a static point of view.
The viewing angle in egocentric videos matches that of the human performing the
activity, providing a unique, moving perspective of the scene [65]. At the same
time egocentric videos usually offer a clear view of the camera wearer’s hands [33],
which in many cases are essential for the execution of an activity. An outlook of the
objects manipulated by human hands promises additional cues about the performed
activity, culminating to improved recognition performance [4, 33, 86].

In order to expand the feature space, a network can be augmented with additional
data modalities such as optical flow [133], depth [151], or segmentation masks
around interesting areas [157]. The additional information aims to guide the
network towards learning more activity-specific features that it might otherwise
have missed. In order to incorporate the supplementary inputs, networks comprise
multiple streams and their results are combined at a later stage. The multi-stream
approach is associated with the combination of the individual feature sets towards an
extended and more expressive representation from which the structure of activities
is inferred.

A related but fundamentally different concept that we employ in this chapter is
that of Multitask Learning (MTL) [19]. The idea behind MTL is to train a neural
network with multiple related objectives (tasks) while sharing as much as possible
of a common network structure [19]. Branch diversification occurs only for the

Published as:
G. Kapidis, R. Poppe, E. van Dam, L. P. J. J. Noldus, and R. C. Veltkamp. “Multitask Learning
to Improve Egocentric Action Recognition”. IEEE International Conference on Computer Vision
Workshops (ICCVW). 2019, pp. 4396–4405
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task-specific output layers and there are as many output layers (branches) as there
are learnable tasks spawning from the main network block (Fig. 5.1).

Task	specific	outputs	and	lossesInput	RGB	Frames

Last	conv
layer

Classification	task	1

Classification	task	N

Coord.	regression	task	1

Coord.	regression	task	N

cls
1

cls
�

coord
1

coord
�

Shared	network	block

Fig. 5.1.: MTL Network Structure. The shared network block can be any convolutional
network that extracts features from the input. Each task-specific output layer is
plugged to the ‘last conv layer’. They are independent from the others and their
parameters are trained individually. However, all output layers use the feature
representation produced by the shared part of the network as input.

MTL is conceptually the opposite from multi-stream approaches, since the additional
information is not used as input, but is expressed as the output of the network and
is only required for supervision. The significant merit of MTL over multi-stream
methods is that the additional information is only needed during training and what
would otherwise come from the additional input modalities is already incorporated
in the network weights at test time. For example, in the video domain, the input of
a network remains the same set of RGB images regardless of the number of tasks.

The premise of MTL is that by combining the objectives of related tasks in the
same network, we can benefit from their structural commonalities. This is the case
because the weights of the shared network block aim to jointly encapsulate each
task’s representation requirements. When these are complementary, they enhance
the inputs of the task-specific output layers. Then, inference can be improved for
all or some of them or just the one that we focus on the most, by using the best
performing weights of the task [19].

In this chapter, we utilize MTL to improve action classification performance in
egocentric videos. We are motivated from the idea that we developed in Chapter 4
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Fig. 5.2.: Visualizing the class activation maps [143] for an instance of class ‘open’ from
EPIC-Kitchens [24]. Top: Multi-Fiber Network (MFNet) [20] trained end-to-end
for the single task of classifying short clips into actions. Bottom: MFNet trained to
additionally predict one (x,y) coordinate for each hand. Training with the hand
coordinates as the extra task leads to a greater inclusion of the right hand area
into the class activation map.

that hands are critical for the comprehension of egocentric actions, while remaining
difficult for networks to capture this delicate motion information. In Fig. 5.2, we
show that by having the network learn hand regions explicitly as an extra task
in addition to the actions, we steer it to produce activation maps that cover the
corresponding hand areas to a greater extent. Eventually, incorporating these areas
also improves the action classification results.

We experiment with egocentric video datasets EPIC-Kitchens [24] and EGTEA Gaze+
[85] by explicitly utilizing the location of hands, gaze, and other signals towards
actions. We leverage the motion and visual attention information that is present in
the hand movements and the gaze of the camera wearer, respectively, which have
proven descriptive for predicting egocentric actions on their own [33, 66, 86]. In
addition, we show that when complementary classification tasks are added during
training, performance improves further.

The contributions of this chapter are the following:

• We introduce a Multitask Learning scheme that extends 3D-CNNs [20] and
functions with an arbitrary number of output tasks.

• We perform experiments demonstrating that MTL improves on egocentric
action classification over singe-task learning (STL) baselines without requiring
any additional information at test time, other than the input video.

• We demonstrate with experiments generalization of our MTL scheme to a
number of related classification and coordinate estimation tasks that improve
egocentric action classification.

In Sec. 5.2 we develop our MTL pipeline for an arbitrary number of tasks. In Sec. 5.3
we document our experiments on two egocentric video datasets. Finally, in Sec. 5.4
we discuss our findings from this chapter.
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5.2 Methodology

In Sec. 5.2.1, we detail the process of adapting a network from single to multitask and
in Sec. 5.2.2 we describe the output layers with their individual loss functions for the
tasks we consider. In Sec. 5.2.3, we discuss the details of the coordinate prediction
layer and its application in 3D-CNNs to model the progression of movements through
time.

5.2.1 Multitask Network Structure

In Fig. 5.1 we visualize our network architecture for multitask learning. The back-
bone of the network is a feature extractor (the shared network block), upon which
the task-specific output layers are attached. We represent the feature extracting
network block with g(x; θ), where x is an input data point from input space X and θ
are the parameters of g. For each task t, we define an output function ft(g(x); θt),
where θt are the parameters of the task-specific layer and t ∈ T , with T being the set
of tasks. For this work, function g is approximated with a 3D Convolutional Neural
Network and the input space X is defined as a set of RGB images sampled from a
video clip.

5.2.2 Task-specific Output Layers

In order to train the network, we formulate the loss function based on the number
and types of tasks it encapsulates. We perform MTL with two types of tasks: classifi-
cation and coordinate regression. For a classification task i, Lclsi

is the categorical
cross-entropy loss. For a coordinate regression task j, Lcoordj

is defined as the
Differentiable Spatial to Numerical Transform (DSNT) loss from [105], explained in
Sec. 5.2.3. The full loss function L is defined as

L =
∑

i

Lclsi
+

∑
j

Lcoordj
. (5.1)

During training the value of L is not propagated through each task-specific layer,
but each task layer t produces gradients with respect to its individual loss, hence its
parameters θt are not affected by the remaining tasks. Finally, the gradients from
all the output layers are summed and backpropagated through g. This assumes a
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relationship between the tasks and the network input, in the sense that it is possible
to acquire an output value from every output layer given the same input signal.

5.2.3 Coordinate prediction

Our approach for predicting coordinates stems from the numerical coordinate regres-
sion layer introduced in [105]. It enables a 2D-CNN to output an (x, y) coordinate
without using a fully connected layer, thus ensuring spatial invariance in the pre-
dicted coordinate [105]. Instead, it relies on an additional convolutional layer
that predicts a heatmap Z of shape m × n. The softmax activation is applied on
Z, such that Ẑ = σ(Z), to create a 2D probability distribution, which is passed
through the Differentiable Spatial to Numerical Transform (DSNT) layer to become
a coordinate.

In DSNT, Ẑ is discretized by calculating its Frobenius inner product for each dimen-
sion, against two uniformly distributed vectors with values in [-1, 1], shaped m× 1
and 1× n respectively and copied over their singular dimension (n and m times) to
become matrices the shape of Ẑ. The output value of the Frobenious inner product
for each matrix is the respective coordinate value with sub-pixel precision in the
range [-1, 1]. This process preserves differentiability through the layer and allows
gradient flow from a loss function directly associated with the error in coordinate
space instead of the error in heatmap space.

The coordinate loss Lcoord is the Euclidean distance between the predicted (cp) and
the expected (cgt) coordinate with an added regularization factor λ = 0.5 to smooth
the gradients around the prediction, i.e.,

Lcoord = λLeuc(cp, cgt) + (1− λ)Lreg(Ẑ), (5.2)

where the Euclidean loss is
Leuc = ‖(cp, cgt)‖2 (5.3)

with cp = DSNT (Ẑ) and the regularization loss is

Lreg(Ẑ) = LJS(Ẑ, cgt) = JS(Ẑ ‖ N (cgt, σ
2)) (5.4)

based on the Jensen-Shannon divergence.

In order to successfully apply this coordinate regression layer in our setup, we need
to account for the output dimensions of the last convolutional layer of the 3D-CNN.
In the 2D case that is B × C ×m× n where B is the batch size and C the channel
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dimension. In the 3D case the output shape extends to B ×C × l×m× n with l the
added temporal dimension due to the 3-dimensional input. This leads to having l
heatmaps Z as well as l coordinate losses (instead of 1) for an RGB clip. These losses
are averaged over the temporal dimension to prevent propagating huge gradients to
the rest of the network and introducing bias from the coordinate regression tasks.

5.3 Experiments

We use EPIC-Kitchens [24] and EGTEA Gaze+ [85] for our experiments. Similar to
our work in Sec. 4.2.1 we partition the fully annotated training split into custom
training and validation splits. Videos from participants 1-29 are used for training
(26,375 clips) and 30-31 for validation (2,095 clips). For EGTEA Gaze+ we use
the first split as defined by the authors [85] to train and evaluate at the clip level.
Further details about the datasets are given in Sec. 2.3.2 and 2.3.3.

Hand locations One of the tasks we consider for MTL is hand coordinate prediction.
Similar to using gaze annotations for the gaze estimation task, this task requires
a supervision signal for the hand locations on each frame. To accommodate our
experiments we use the egocentric hand detection, tracking, and identification
algorithm from Chapter 4 to produce hand location information for every video
frame. It uses [120] to detect hand bounding boxes, [11] to track them through
time, and hand-crafted priors to remove false-positives and identify between left
and right hands. We further modify that workflow to track the top right area of the
left hand bounding box and the top left area of the right hand to acquire coordinates
that more accurately pinpoint the hands instead of the forearms.

5.3.1 Training and Evaluation

For the shared network block of Fig. 5.1 we employ the Multi-Fiber Network (MFNet)
[20]. Its architecture contains 3D convolutional layers to capture spatio-temporal
information from frame sequences, while using a relatively low number of param-
eters (10M) and computational resources (11.1 GFLOPS), leading to an efficient
training scheme for large video datasets. For all our experiments we use weights
pretrained on Kinetics-400 [17] and retrain the full network structure end-to-end
on the respective dataset.
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We train with a triangular cyclical learning rate (CLR) [136] policy that shifts
learning rate from 5× 10−4 to 5× 10−3 and back in 20 epochs. For optimization we
use Stochastic Gradient Descent with Nesterov momentum (0.9) and weight decay
(5 × 10−4). We input a sequence of 16 frames, randomly scaled to 256 × 256 and
cropped to 224× 224. The frames are uniformly sampled from a 32-frame window
that starts at a random point of an action video segment and does not exceed its last
frame. The batch size is 32 for our setup with two Nvidia 1080Ti GPUs, training
lasts for 60 epochs and results are reported for the best performing epoch for the
main task (early stopping). To evaluate, we sample uniformly 16 frames from a
window of 32, centered around the temporal center of an action segment. We resize
them to 256× 256 and use the 224× 224 center crop as the network input.

5.3.2 Results on EPIC-Kitchens

Our results on EPIC-Kitchens are summarized in Table 5.1. Initially, we train the
single-task learning (STL) baseline for the verb task and later combine verbs with
nouns and hands as separate tasks. Training for verbs together with hands (V+H)
increases Top1 accuracy on verbs to 49.31% (+0.75%) compared to training for
verbs alone. Adding nouns (V+N+H) harms verb Top1 accuracy by 1.1% but
produces our best performing noun classifier.

In the EPIC-Kitchens literature [24] verb and noun predictions are combined fol-
lowing their individual inference stages and are later synthesized into an action
prediction. In our MTL scheme we train for the action task explicitly, i.e., the 2,521
valid verb and noun combinations. Having actions, verbs, and hands for supervi-
sion (A+V+H) leads to 49.05% for verbs, improving on the verb STL baseline by
0.48% and additionally using the nouns (A+V+N+H) still improves from verb STL
(+0.33%). However, both cases do not improve as much as with only the hands,
implying a conflict between the extra tasks. On the other hand, if we consider
actions as the main task, the addition of verb, noun, and hand learning tasks will
always improve on the action STL baseline reaching 19.29% (+0.81% from A and
+0.71% from A+V+H).

5.3.3 Results on EGTEA Gaze+

In Table 5.2 we delineate our results as the network moves from one to multiple
tasks in the EGTEA Gaze+ dataset. We establish the action STL baseline (A) at
63.75% Top1 accuracy. Next, we train using additional supervision from verbs and
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Tab. 5.1.: Multitask learning results on EPIC-Kitchens. The first column shows the trained
tasks for a model: Actions (A), Verbs (V), Nouns (N), and Hands (H). We report
Top1 and Top5 accuracy on our validation set. Average class precision and recall
are reported for many-hot verbs, nouns, and actions. Many-hot verbs and nouns
are the ones having more than 100 instances in our training set. Many-hot
actions are the valid combinations of many-hot verbs and nouns with at least
one instance in the training set, following [24].

Top1 Acc. (%) Top5 Acc. (%) Avg class Prec. (%) Avg class Rec. (%)
Tasks Actions Verbs Nouns Actions Verbs Nouns Actions Verbs Nouns Actions Verbs Nouns
V - 48.57 - - 78.32 - - 34.39 - - 25.29 -
V + H - 49.31 - - 78.80 - - 29.85 - - 25.68 -
V + N + H - 47.47 27.60 - 78.37 51.19 - 27.80 21.43 - 23.61 18.80
A 18.48 - - 36.20 - - 2.76 - - 2.67 - -
A + V + H 18.58 49.05 - 38.82 78.75 - 2.89 28.43 - 2.87 23.23 -
A + V + N + H 19.29 48.90 27.27 35.91 78.18 47.85 3.25 29.31 22.68 3.04 24.03 17.84

nouns (A+V) and (A+V+N) and reach 67.80% (+4.05%) and 68.00% (+4.25%),
respectively. For further experiments we utilize coordinate regression layers to train
on gaze points and hand tracks. We see that with either task we improve in both
Top1 and mean class accuracy over STL; A+G is 66.59% (+2.84%) and A+H is
67.46% (+3.71%). Further improvements stem from training for all classification
tasks together with gaze estimation or hand prediction. A+V+N+G reaches Top1
68.74% (+4.99%) and A+V+N+H is 68.20% (+4.45%). The attempt to combine
gaze and hand coordinate regression tasks only with actions shows that the two
coordinate tasks are competing to influence the shared representation and have
the smallest improvement over the STL baseline with A+G+H Top1 at 66.12%
(+2.37%). However, when all the classification and coordinate prediction tasks
are present in one model (A+V+N+G+H), we achieve our best Top1 accuracy at
68.99% (+5.24%) and our best mean class accuracy at 61.40% (+6.05% from STL
at 55.35%).

Tab. 5.2.: Multitask learning results on EGTEA Gaze+. The first column shows the names
of the supervised tasks: Actions (A), Verbs (V), Nouns (N), Gaze (G), and Hands
(H). We report Top1, Top5 and mean class accuracy on the first split of the EGTEA
Gaze+ test set.

Top1 Acc. (%) Top5 Acc. (%) Mean Cls Acc. (%)
Tasks Actions Verbs Nouns Actions Verbs Nouns Actions Verbs Nouns
A 63.75 - - 91.05 - - 55.35 - -
A + V 67.80 79.03 - 91.89 99.41 - 59.15 79.44 -
A + V + N 68.00 78.98 78.93 91.94 99.31 96.24 59.67 78.24 72.06
A + G 66.59 - - 91.54 - - 59.44 - -
A + H 67.46 - - 91.99 - - 59.78 - -
A + G + H 66.12 - - 90.54 - - 58.91 - -
A + V + N + G 68.74 78.14 79.13 91.59 99.41 96.54 60.34 79.29 72.03
A + V + N + H 68.20 79.18 77.94 92.24 99.51 96.34 60.13 79.34 71.1
A + V + N + H + G 68.99 79.08 79.03 91.74 99.26 96.39 61.40 77.40 72.49

72



5.3 Experiments

5.3.4 State-of-the-art Comparison

In Tables 5.3 and 5.4 we compare with the state-of-the-art in action recognition for
EPIC-Kitchens and EGTEA Gaze+, respectively. For EPIC, we demonstrate slightly
lower but comparable performance to the top methods for the seen (s1) and unseen
(s2) test splits, by requiring only a fraction of the input. For example [39] requires
RGB and flow at test time and [164] utilizes knowledge from past video segments,
in effect having a larger temporal view of the action. However, we still outperform
the attention mechanism of [149]. For EGTEA, we test against several methods,
for different metrics. Top1 recognition accuracy for the first split at the clip level is
reported in [57] (55.63%) and in [150] (62.17%) where we improve by 13.36%
and 6.82% respectively. Li et al. [85] report 47.71% mean class accuracy on the
first split at the clip level (and 53.30% on the video level1). Our method depending
on the task combination reaches 58.91% up to 61.40% (+11.20% to +13.69%
respectively).

For a more elaborate comparison on EGTEA Gaze+, we train the A+V+N+G+H
model for splits 2 and 3 and average the Top1 accuracy over all splits. We achieve
65.70% Top1 accuracy which is the highest among the reported values by a margin
of 3.84%. For future reference we also report the mean class accuracy averaged over
the three splits (57.60%).

Tab. 5.3.: Comparison on action recognition against state-of-the-art methods on EPIC-
Kitchens. Our method is consistently close to the best performing, while requiring
less information at test time.

Top1 Acc. (%) Top5 Acc. (%)
Method Actions Verbs Nouns Actions Verbs Nouns
Test s1 (Seen kitchens)
TSN [24] 20.54 48.23 36.71 39.79 84.09 62.32
LSTA [149] 30.33 59.55 38.35 49.97 85.77 61.49
Ours (all tasks) 29.73 56.00 40.15 50.95 87.06 64.07
RU [39] 33.06 56.93 43.05 55.32 85.68 67.12
LFB [164] 32.70 60.00 45.00 55.30 88.40 71.80
Test s2 (Unseen kitchens)
TSN [24] 10.89 39.40 22.70 25.26 74.29 45.72
LSTA [149] 16.63 47.32 22.16 30.39 77.02 43.15
Ours (all tasks) 17.86 45.99 26.25 35.68 77.98 50.19
RU [39] 19.49 43.67 26.77 37.15 73.30 48.28
LFB [164] 21.20 50.90 31.50 39.40 77.60 57.80

1For video level validation the authors split each action segment into equally sized clips and average
the action scores for the final prediction.
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Tab. 5.4.: Action recognition comparison on EGTEA Gaze+. We compare against the
available metrics from each work.

Split 1 Avg. Splits 1-3
Method Top1 Mean Cls Top1 Mean Cls
Li et al. [85] - 47.71 - -
MCN [57] 55.63 - - -
RU [39] - - 60.20 -
EGO-RNN [150] 62.17 - 60.76 -
LSTA [149] - - 61.86 -
Ours (all tasks) 68.99 61.40 65.70 57.60

An additional interesting scope from EGTEA is gaze estimation. Since a number of
our models are able to predict gaze on the input frames, we proceed to evaluate
the task with two standard metrics in the literature: Average Angle Error in degrees
(AAE) and Area Under the Curve (AUC) [124] following [57]. For evaluation we
use only the frames from the clips of the first test split for which after resizing and
cropping to 224× 224 there is a valid ground truth gaze point in this area, regardless
of the gaze type. This leads to the evaluation of 177,292/206,649 (85.79%) frames
from 2,022 clips (the remaining frames are not considered). The results are shown in
Table 5.5. We discover that gaze estimation techniques which are explicitly designed
to model gaze through elaborate attention mechanisms such as [57] achieve lower
angular error (-3.11°) although our model (A+G+H) improves over [55] and is very
close to [85]. Furthermore, considering AUC, our model is second best to [57] with
a -0.06 margin (with the following two methods also being close). The two metrics
imply that our method is able to produce gaze predictions that lie in the vicinity of
the ground truth (high AUC) but with an angular offset with respect to the exact
ground truth gaze position. In Fig. 5.3 we show and qualitatively assess gaze and
hand predictions. The images show both the predicted saliency in heatmap form as
well as its transformation into a single point per frame for the gaze and each hand
coordinate.

Tab. 5.5.: Gaze estimation comparison on EGTEA Gaze+ split 1. AAE lower is better, AUC
higher is better. SALICON [55], Li et al. [85], DFG [175], and Huang et al. [56]
are reported from [57].

Method AAE AUC
SALICON [55] 11.17 0.881
Ours (A+G+H) 8.90 0.926
Li et al. [85] 8.58 0.87
DFG [175] 6.30 0.923
Huang et al. [56] 6.25 0.925
MCN [57] 5.79 0.932
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5.4 Discussion

Our initial objective with MTL is to drive the focus of the network’s activation maps
towards hand regions and their movements. By training for the hand coordinate
task we imply greater importance to these regions and introduce this as a training
requirement to the weights of the shared network block via gradient descent. An
example of the expected behavior of the network is in Fig. 5.2, where the class
activation maps after the last convolutional layer cover a larger area of the visible
hands.

The task of gaze prediction is similar to hand detection in that it expects the network
to focus on specific regions of the input frames. The difference is that these regions
do not necessarily contain the well-structured form of hands, but the salient areas
of a scene, which are not predetermined. This limits the ability of region-specific
features to become significant making it a dataset- and class-specific quality.

In both datasets, we observe almost consistent improvements over STL with the
introduction of hands and other tasks in the training scheme. However, the choice of
tasks involves a significant amount of intuition as well as weighing their importance
in the loss function. In this work, we use a naive weighing mechanism and consider
all tasks equal regardless of the loss they incur. When training multitask models for
EPIC-Kitchens we notice high values of loss in the classification tasks, which stem
from the class imbalance and the large number of action, verb, and noun classes.
These losses initially affect their individual layers, but the backpropagated gradients
to the shared weights are also higher, affecting the representation in an unbalanced
way. In the EPIC-Kitchens results we see that by adding classification tasks with more
classes (such as N at V+N+H, or A at A+V+N+H), we get a worse verb classifier.
This is caused by the high losses incurred from the added tasks. In certain cases,
they act as regularization but when losses are too high they can increase the training
time and even prevent convergence. We believe further research is needed in MTL
for video recognition to establish weighing mechanisms such as [127] to obtain a
more optimized shared parameter space. For example, our work might benefit from
a scheme to balance the losses of the classification tasks, minimizing the impact of
the relatively larger losses incurred by the action task.

On the other hand, on EGTEA Gaze+, MTL consistently outperforms STL for every
task combination. This shows that carefully designing the classification tasks, (e.g.,
fewer classes, balanced dataset) can be mutually beneficial to all and specifically to
the action task we are most interested in. Incorporating hands in training confirms
our initial intuition that motions create a fitting side-task to actions, improving
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performance. A possible reason for the larger improvement due to hands on EGTEA
compared to EPIC is the presence of hand annotations from the former in the training
set of the hand detector of Chapter 4. This would result in a more accurate synthetic
hand dataset for EGTEA and higher quality hand supervision. Finally, improvements
due to gaze validate the connection between actions and gaze [57, 85] also from
the perspective of MTL.

A possible pitfall of MTL is the competition among tasks which leads to negative
effects on performance. This is possible if certain tasks are incompatible or if the net-
work is not large enough to create a representation that engulfs the different aspects
of information required for each one. The former regards a (lack of) conceptual rele-
vance, for example verbs and nouns on EPIC, or structural, for example classification
layers operating differently from coordinate regression ones and possibly requiring
a distinct representation in earlier layers. The concept of task compatibility has been
studied for other domains in [19] concluding that the degree of assistance from an
extra task in learning another cannot be fully clear a priori without experimentation.
However, the hypotheses of what might help are usually straightforward and the
selection of trainable tasks can be treated as an additional hyperparameter.

An example of task incompatibility with respect to actions is when both gaze and
hands are used for action recognition (A+G+H) but lead to worse performance
than training individually (A+G, A+H). Adding a task may not improve as much as
another combination, but it can also reduce the expected baseline performance. In
this case, the trade-off is that actions and hands contribute towards an optimal gaze
detector (Fig. 5.3). Most importantly, MTL is a straightforward way to enhance the
reusability of a model for multiple tasks.
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(a) (b) (c)

Fig. 5.3.: (a) Gaze, (b) left hand, (c) right hand coordinates from the A+G+H model.
Green circles represent ground truth coordinates and red circles the predicted
coordinates. The underlying heatmap shows the 2D probability distribution Ẑ.
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Multi-dataset Multitask
Learning to Recognize
Egocentric Actions

6

6.1 Introduction

Classification models for egocentric vision tasks such as action recognition are
predominantly trained using supervised learning schemes. While action recognition
from first-person and third-person videos can be assumed to have a comparable
complexity, labeled datasets for the third-person perspective, (e.g., [14, 72, 73, 78,
132, 141]) are typically orders of magnitude larger than egocentric datasets, (e.g.,
[3, 6, 24, 59, 82, 83, 84, 85, 101, 110, 122, 131, 146, 151]).

While more general egocentric video datasets exist, (e.g., [101, 112, 131, 151]),
they focus on longer-term activities such as walking [101], socializing [3, 82, 146],
or doing sports [6]. Activities and actions differ in their duration and complexity. An
activity’s duration is typically in the range of tens of seconds or even minutes and it
considers a complex scenario that comprises several actions. The distinction between
activities and actions becomes straightforward with an example from the ADL dataset
[110] (Table 3.3). Activity ‘making coffee’ may consist of a sequence of actions
such as ‘pick-up cup’, ‘move cup’, ‘pick-up kettle’, ‘pour coffee’ etc. Recognizing
this activity is the combination of detecting the relevant objects, the hand-object
interactions and the order they occurred over the course of the video, i.e., a high-
level analysis is mandatory, besides the visual features that characterize the scene.
Actions on the other hand can be much shorter (as mentioned in Sec. 2.3.2 the
mean duration of actions in EPIC-Kitchens is 3.7s, and their recognition requires a
more granular analysis over shorter-term video fragments. Egocentric video datasets
that address such action recognition tasks are homogeneous in terms of the action
domain, the recording environment, and the recorded actors. While there is a steady

Published as:
G. Kapidis, R. Poppe, and R. C. Veltkamp. “Multi-Dataset, Multitask Learning of Egocentric Vision
Tasks”. IEEE Transactions on Pattern Analysis and Machine Intelligence, Special Issue on Egocentric
Perception (2021)
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progression in the variation within the datasets that have been introduced over the
years, each dataset has a focus on a specific task or application.

ADL was one of the first egocentric video datasets that focused on human activities
in indoor environments. Participants performed daily activities such as cooking and
cleaning in their homes with annotations of the temporal range of activities, objects
used, and the locations in the house [159]. To increase granularity and specialization
in cooking activity recognition, the EGTEA datasets were introduced [34, 85] where
participants followed narrated recipes for meal preparation in their kitchens. To
scale up the dataset size and remove the use of scripts, the EPIC-Kitchens dataset
[24] introduced a culturally diverse set of videos with a large variety of actions
and interactions with cooking ingredients and kitchen-related objects. Additional
modalities such as object presence are predominantly used both during training and
at test time. While the performance of some detection tasks such as object detection
is impressive, the requirement of additional inputs for testing is a limiting factor.

Obtaining egocentric videos with relevant labels for various tasks is labor-intensive,
and there is the need for learning schemes that can reduce overfitting of trained
models without requiring more annotated data. In this chapter, we introduce such
a scheme that uses annotations from both related tasks and related datasets. We
extend the multitask learning (MTL) scheme introduced in Chapter 5 to exploit
annotations of related tasks during training, while only video data are required at
test time. We base our work on ideas developed in [67], where joint training with
related video recognition tasks such as object, hand, and gaze detection have been
shown to improve action recognition performance. We investigate the concept of
task relatedness [19]. Our premise is that common actions in different datasets
such as ‘cut’ and ‘open’ are associated by the network and the same neural pathways
are reused, producing efficient and robust multi-purpose models. This provides an
effective and efficient way to utilize additional training data from diverse sources.
We allow for video data from other datasets to be used in the training process and
treat the issue of different label sets as extra tasks. Our novel learning scheme is
termed Multi-Dataset, Multitask Learning (MD-MTL).

To demonstrate the benefits of our approach, we adapt a 3D-convolutional neural
network [20] to include additional task-specific output layers [67] for the tasks of
other datasets. In MD-MTL, each epoch consists of the data of the combined training
sets, while each batch comprises data randomly chosen out of all datasets, to allow
for batch loss calculation that represents the full spectre of available domains. We
also experiment with other batch division strategies.
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We experiment with combinations of data from EPIC-Kitchens [24], EGTEA Gaze+
[85], and ADL [110] to demonstrate the effectiveness of our multi-dataset, multitask
training scheme for egocentric action recognition. Specifically, regarding ADL
we investigate the potential improvements on longer term activity recognition
performance by utilizing the short-term actions from EPIC and EGTEA. Lastly, we
use Charades-EGO [131] to investigate the benefits from associated third-person
videos in egocentric action recognition.

The contributions of this chapter are the following:

• We extend Multitask Learning (MTL) to include training data from multiple
datasets (MD-MTL) with a simple but effective network modification.

• We introduce a batch formation scheme for on-the-fly association of dataset-
specific samples to dataset-specific tasks.

• We demonstrate the improvements of MD-MTL in classification performance
for the main action recognition tasks. We also highlight the reuse of the same
pathways for related classes across datasets.

In Sec. 6.2 we introduce MD-MTL. In Sec. 6.3 we describe our experiments and
in Sec. 6.4 we provide an extended analysis of the task outputs for each dataset.
Finally, in Sec. 6.5 we delve into a discussion on the findings of this chapter.

6.2 Methodology

In this section, we describe the extension of a single task network to multitask (MTL)
(Sec. 6.2.1), and subsequently describe our process to adapt it to multiple datasets
(MD-MTL) (Sec. 6.2.2).

6.2.1 Multitask Network Structure

We adopt the multitask network with task-specific output layers (MTL) from Chap-
ter 5. It comprises a 3D-CNN backbone feature extractor [20] that receives a short
video clip and outputs spatio-temporal features after the last convolutional layer.
We prefer 3D-CNNs because they can handle motion information from the temporal
structure of the video without requiring an additional optical flow input. Recent ap-
proaches to capture motion from RGB, e.g., [36, 167], are promising developments
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to further acquire temporal motion features but these are out of scope for this work.
Fig. 6.1a shows the MTL network with task-specific layers.

Following Chapter 5, in our MTL setting we define a set of tasks T with a distinct
task-specific output layer for their respective results. Formally, for each task t ∈ T
we define an output function ft(g(x); θt), with g(x; θs) the shared block, θt the task-
specific parameters, θs the shared parameters from g and x the network input. Each
task-specific layer comprises a distinct loss function designed to accommodate the
type of task it represents. In line with Chapter 5, We use classification and coordinate
regression tasks. Classification tasks are modeled with a fully connected layer. Their
inputs are the activations of g(x), followed by an average pooling operation to
reduce the temporal dimension, and their outputs are the per-class probabilities. To
train classification tasks we use the categorical cross-entropy loss.

We use coordinate regression tasks in our experiments (see Sec. 6.3) to find egocen-
tric hand positions and gaze estimates. These are implemented with the numerical
coordinate regression layer, introduced in [105], to predict a coordinate for every
two input frames and extended in Chapter 5 to handle 3D feature volumes as input.
The coordinate regression layer begins with a 3D convolution. The 3D output is
split along the temporal dimension with each slice Z being passed to a Differential
Spatial to Numerical Transform (DSNT) layer [105] to produce a coordinate for
each. In the DSNT layer, each slice is passed through a softmax activation to produce
a 2D probability distribution Ẑ that represents the abstract location. The final (x, y)
coordinate is taken as the probability distribution’s expectation for each dimension.
Following Chapter 5, to train the coordinate regression layer we utilize the DSNT
loss which is defined as the Euclidean distance between the predicted (cp) and the
ground truth (cgt) coordinate regularized with the Jensen-Shannon divergence to
smooth the gradients around the prediction with a factor λ = 0.5. Analytically, the
DSNT loss function is given in Equation 6.1:

Lcoord = λLeuc(cp, cgt) + (1− λ)JS(Ẑ ‖ N (cgt, σ
2)). (6.1)

6.2.2 Multi-dataset Network Adaptation

Our extension from single- to multi-dataset training (MD-MTL) requires two modi-
fications. The first is to append task-specific layers for the tasks of the additional
datasets and the second is to adapt the training process to accommodate for the
induced variation in the mixed training batches.
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(a) Multitask network with task-specific output layers (* accumulating gradients from all tasks).
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(b) Multitask network adapted for multiple datasets (* accumulating gradients from all tasks across
datasets within a single batch.

Fig. 6.1.: We adapt the MTL network structure from Chapter 5 to accommodate the tasks
from a range of datasets within a single network. In (a) the network combines
task-specific output layers by aggregating the gradients from each output. In (b)
we extend the structure by further attaching task-specific layers for the additional
tasks in the new datasets.
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We handle the additional tasks in the way we would treat any added task from
the initial dataset, i.e., we add task-specific layers to the shared network block that
produce a distinct output, independent of the other tasks. Similar to the single-
dataset MTL network, each output layer in MD-MTL utilizes its own loss function
for training. A visualization of this extension is given in Fig. 6.1b.

Dataset	task	loss
calculation

Mixed	batch
size	B

a	 	B≤ b	 	B≤ c	 	B≤ a+b+c=	B

∇(∑ /�)ta ∇(∑ /�)tc
∇(∑ /�)t

b

⊕

Backpropagation

Initial	batch	B

Effective
batch

Fig. 6.2.: Mixed-batch loss approximation. A batch is subsampled for each task. The loss
from each task layer is averaged over its dataset’s samples. Task-specific losses
are passed through their respective layer.

We need to accommodate for the fact that no samples within a mixed batch have
labels associated with all the available tasks, since each subset corresponds to
a distinct dataset. Our strategy is to leverage the process of averaging the loss
across a batch, which is commonly employed when training neural networks with
mini-batches.

The premise is that for a batch of size B the loss is calculated B times and averaged
to provide an approximation of a B-sized mini-batch. Loss averaging is not possible
when batches assimilate different datasets and tasks. In this case, we subsample
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each batch based on its origin dataset i and produce an effective batch per dataset of
size bi. Then, we calculate each task’s loss for the appropriate samples only, zeroing
out those that were forwarded through a task-specific layer for which there is no
available label. The losses are then averaged over the size of the effective batch and
gradients for each task-specific layer are calculated with respect to the dataset tasks’
losses. Once the per-task gradient approximation is handled, they are accumulated
before being backpropagated through g. Consequently, all tasks are contributing
into training the shared network block regardless of the number of samples that
were taken from each dataset. We visualize this process in Fig. 6.2.

Multi-dataset training with mixed batches (instead of interleaved batches or alter-
nating datasets sequentially) allows the network to gather gradients from samples
representing the full range of available datasets in a single training step. Hence,
the direction of the gradient will not be representative of one dataset as in single
dataset training. Instead, it will be biased by all datasets in a ratio defined by the
sampling process during batch formulation. We permute all datasets and allow the
imbalance to be induced in the network. Due to the similarities of datasets in our
experiments, we expect mixed batches to contain complementary information and
prevent divergence in training. Indeed, we see in Sec. 6.3.1 evidence of improved
performance when the datasets are related and deterioration when they represent
a different domain. In Sec. 6.4.1 we visualize and discuss the progression of the
training losses.

6.3 Experiments

First, we discuss the datasets we experimented with and the training and evaluation
settings. In Sec. 6.3.1 we analyze the experiments with egocentric datasets and in
Sec. 6.3.3 we delve into a task mapping scheme to capitalize on the semantic class
relationships. In Sec. 6.3.2 and 6.3.4 we analyze the mechanics of MD-MTL models
to demonstrate the correlations across tasks from different datasets and in Sec. 6.3.5
we focus on the extension for datasets between first- and third-person vision. In
Sec. 6.3.6 we experiment with alternative batch formation strategies. Finally, in
Sec. 6.3.7 we provide a comparison with the state-of-the-art on EPIC-Kitchens and
EGTEA Gaze+.

Datasets We design multi-dataset experiments on egocentric video datasets EPIC-
Kitchens [24], EGTEA Gaze+ [85], and ADL [110], all of which capture actions
or activities performed in homes from the first-person perspective. EGTEA Gaze+
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consists of scripted meal preparation activities, whereas EPIC promotes action
variability by encouraging participants to behave consistently to their routines.
Videos from both datasets take place in kitchens, ensuring homogeneous locations
and both consist of specialized and related sets of short duration actions such
as ‘open’, ‘close’, and ‘cut’. ADL is less specific in terms of environments and
actions, capturing a predefined set of daily living activities occurring throughout
the participants’ homes, performed in an unscripted manner. These annotations
represent temporally longer activities such as ‘washing dishes’ or ‘watching tv’, which
makes it harder to represent the whole activity in the short video segments that are
used as input to the network. Hence, content-wise, EPIC and EGTEA are suitable
candidates for our task- and dataset-relatedness experiments in order to estimate
the possible benefits of joint training. On the other hand, the more varied context of
ADL allows us to investigate whether our multi-dataset training approach can adapt
to a more diverse domain within a single model.

Furthermore, we perform experiments on the Charades-EGO [131] dataset. It
comprises a joint collection of first- and third-person videos. For each third-person
video there is an associated egocentric one, recorded by the same participant for the
same activities and environment. This allows researchers to model the association
between the two video perspectives. Our aim is not to capture the inter-video
associations but to examine if a model trained on contrasting perspectives can be
efficiently applied to both, simultaneously. Table 6.1 lists the datasets and their
characteristics.

Tab. 6.1.: List of datasets and their characteristics. We emphasize on the sizes of the
classification tasks (fpv: first-person videos, 3rd: third-person videos).

Name ADL EGTEA Gaze+ EPIC-Kitchens Charades-EGO
Videos fpv fpv fpv fpv/3rd
#Participants 20 32 32 112
Scripted partially yes no yes
Labels
#Actions 18 106 2513 157
#Verbs - 19 125 33
#Nouns - 53 352 38
#Locations 8 [159] kitchen kitchen 16

Other objects
gaze, recipes, hand objects,

narrations
segmentations narrations

Following Chapter 5 we also leverage hand location predictions. They have been
found to improve classification performance when included as additional tasks in a
multitask setting, due to the implicit focus on the salient regions. For the annota-
tions, we synthesize the left and right hand location coordinates for each frame of
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ADL, EGTEA, and EPIC-Kitchens using the hand detection algorithm presented in
Chapter 4.

Training and evaluation settings For all experiments we use a Multi-Fiber Network
(MFNet) [20] pretrained on Kinetics-400 [73] as the backbone feature extractor.
It acts as the initial structure upon which task-specific layers are attached. Our
choice is justified by the fact that it comprises a 3D-CNN structure, able to capture
spatio-temporal information without the need for an optical flow stream, with a
significantly lower number of parameters (∼8M), for depth similar to a 3D ResNet-
50 (∼47M). We train all models with triangular cyclical learning rate (CLR) [136]
oscillating from 0.0005 to 0.005 and back within 20 epochs. Our training cycle is
repeated three times, (i.e., 60 epochs) unless otherwise stated. We use stochastic
gradient descent for optimization, with Nesterov momentum (0.9) and weight decay
(0.0005). The input for training is a sequence of 16 frames uniformly sampled from
a 32-frame window randomly chosen to represent the action segment for an epoch.
The selected frames are scaled to 256 × 256 and randomly cropped to 224 × 224.
Additionally, we perform color augmentations and flip the sequence horizontally
with a 50% chance. Even though it is counter-intuitive to train a hand detector that
identifies left and right hands with random video flipping, early experiments showed
that it does not affect hand estimation. Lastly, we use a batch size of 32 for both
single and multi-dataset experiments, for comparison purposes.

To evaluate an action segment, we select 16 frames from a 32-frame window around
the clip’s temporal center. We resize to 256× 256 and use the 224× 224 center crop.
The indicated performances are derived from the best performing weights for the
action task, acquired with early stopping.

6.3.1 Multi-dataset Experiments on EPIC, EGTEA, and ADL

Single dataset baselines In the single dataset (SD) setup in Chapter 5 the trainable
tasks for EPIC are action, verb, and noun classification and left/right hand location
prediction (EALL). For EGTEA, gaze estimation is added to the set of trainable tasks
(GALL). ADL annotations describe long-term activities with the addition of indoor
locations from [159] (AALL). For EPIC, training and validation are performed on
the custom train/val splits from Chapter 5, namely 26,375 action segments from
participants 1-29 are used for training and the remaining 2,095 for validation, with
the exception of videos withheld by the dataset authors for testing. The latter
denote scenarios on seen (S1) and unseen (S2) kitchens. S1 consists of videos from
participants that also have a number of videos in the training set, whereas in S2 all
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participant videos are excluded from the training set. S1 and S2 are evaluated on
the EPIC-Kitchens server. On EGTEA we use the first split provided by the dataset
authors which consists of 8,299 training and 2,022 validation segments and for ADL
we train on the videos of participants 1-6 (111 clips) and validate for participants
7-20 (198 clips). We report the SD baselines in Table 6.2.

Tab. 6.2.: SD-MTL Top1/Top5 accuracy (%) for actions (A), verbs (V) and nouns (N) for
EPIC and EGTEA (reported from Chapter 5) and for activities (A) and locations
(L) for ADL for the best performing weights on (A).

Model Top1 (A-V-N/A-L) Top5 (A-V-N/A-L)
EALL (EPIC) 19.29 48.90 27.27 35.39 78.18 47.85
GALL (EGTEA) 68.99 79.08 79.03 91.74 99.26 96.39
AALL (ADL) 64.65 72.22 88.38 96.97

6.3.1.1. EPIC-Kitchens Analysis

We now turn to multi-dataset learning (MD-MTL). We incrementally add new
datasets and their tasks to be trained alongside EPIC. The multi-dataset (MD)
experiments are named after the included tasks, so EALL+GALL contains all tasks
of the SD EPIC experiment (EALL) and all tasks from the SD EGTEA experiment
(GALL). We also perform an MD experiment only on the action tasks for the two
datasets (EA+GA) to show the effect of the missing classification and coordinate
regression tasks in the MD-MTL setting. In Table 6.3 we compare models containing
EPIC-Kitchens in the training set.

Tab. 6.3.: EPIC-Kitchens, EGTEA Gaze+, and ADL task combinations. For EPIC, We report
Top1/Top5 (%) action classification performance on the validation set and Top1
on the S1 and S2 test sets.

Tasks Top1 Top5 Top1 S1 Top1 S2
EALL 19.29 35.91 29.73 17.86
EA+GA 18.15 35.93 24.35 17.04
EALL+GALL 19.69 36.68 26.69 17.17
EALL+GALL+AALL 18.29 34.15 24.17 15.84

EA + GA For this experiment we trained only on the 2,513 and 125 action classes of
EPIC and EGTEA, respectively. We achieve a similar level of overfit on the validation
set (18.15%) but results on both test sets are below the SD baselines (-5.38% and
-0.82%), especially for S1. This highlights the importance of the additional tasks to
regularize training and enhance the information acquired by the network when they
are present, verifying our findings from Chapter 5 about the usefulness of MTL, also
in the MD setting.
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EALL + GALL We proceed to integrate actions, verbs, nouns, and hands from EPIC
and actions, verbs, nouns, hands, and gaze from EGTEA. The additional tasks offer a
noticeable improvement on action classification for EPIC over the SD baseline on the
validation set (+0.40%). This shows that the network is able to fit both training sets
simultaneously and that there is potential benefit from our approach if applied on a
larger scale. However, we also observe a decline in test set S1 performance (-3.04%).
We highlight that performance on S2 is not as affected as in S1 (-0.69%). The reason
is that the additional tasks from EGTEA prohibit the network from overfitting on
EPIC, resulting in a larger performance drop on the seen kitchens. The model’s
generalization capability to unseen data is less affected, manifesting relatively robust
results on S2.

EALL + GALL + AALL With the addition of the ADL action and location tasks
we reach the limit of the learning capability of our model. The domain shift that
occurs from the long unstructured activity videos prohibits convergence to the same
minimum for EPIC (-1.00%). Thus, test performance also drops.

6.3.1.2. EGTEA Gaze+ Analysis

We now evaluate the EGTEA tasks of the previous models. Table 6.4 summarizes the
results on the action task.

Tab. 6.4.: EPIC-Kitchens, EGTEA Gaze+, and ADL task combinations. For EGTEA, we report
Top1/Top5 (%) and mean class accuracy (%) for tha action classification task on
test split 1.

Tasks Top1 Top5 Mean cls acc.
GALL 68.99 91.74 61.40
EA+GA 69.78 93.37 62.31
EALL+GALL 70.38 93.08 62.61
EALL+GALL+AALL 69.34 92.63 60.87

EA + GA In this experiment we train only on the EGTEA and EPIC action tasks.
Performance improves from the SD baseline (+0.79% Top1, +0.91% mean class
accuracy). This already shows the benefit of using MD-MTL. We are improving on
EGTEA without adding data specifically for it, but only train jointly with a task from
a different dataset.

EALL + GALL Similar to EPIC, using all available classification tasks, together with
the coordinate regression layers further improves performance. It is +1.39% in
Top1 and +1.21% in mean class accuracy up from the SD baseline and +0.60% and
+0.29%, respectively, from EA+GA. This is another demonstration of the benefits
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from using MTL to utilize not only the additional relevant data, but all the learnable
tasks.

EALL + GALL + AALL Adding data and tasks from the ADL dataset worsens action
classification performance on the EGTEA tasks. Since EGTEA has greater room for
improvement, the decline due to ADL is not as strong as for the EPIC tasks and the
SD baseline is still surpassed (+0.35% Top1). However, the effects of the domain
shift are evident. The training loss for the action task is higher (Fig. 6.5b) illustrating
the difficulty to assimilate actions from the highly variable locations of ADL with the
kitchen environments of EGTEA.

6.3.1.3. ADL Analysis

To train on ADL (EALL+GALL+AALL) we add one more learning cycle to the model
and train for 80 epochs, to accommodate for the diverse distribution of the ADL
dataset. Results on ADL are presented in Table 6.5.

Tab. 6.5.: EPIC-Kitchens, EGTEA Gaze+, and ADL task combinations. For ADL, we report
Top1/Top5 (%) and mean class accuracy for the activity classification perfor-
mance on the validation set.

Tasks Top1 Top5 Mean cls acc.
AALL 64.65 88.38 56.10
EALL+GALL+AALL 58.08 86.87 43.61

EALL + GALL + AALL Following the results on EPIC and EGTEA, the three-dataset
model is unable to reach the single dataset baseline of ADL. This result verifies the
previous conclusion that additional datasets without a related data distribution can
hurt performance. Further analysis of the ADL results is provided in Sec. 6.4.4.

6.3.2 Weight Correlations

In this section, we analyze the learned classification weights in MD networks. We
measure the correlations between weights for the task pairs of actions, verbs, and
nouns. We find that positive correlations arise in the classification weights across
tasks for classes with similar semantic interpretations. This is an important find that
demonstrates the ability of the network to capitalize on the relationships of the data
without additional supervision. We highlight some examples in Fig. 6.3. We show
correlations for classes with the same name, e.g., ‘take’ in EGTEA with ‘take’ in EPIC
(r = 0.52), but also on classes with similar semantic meaning, e.g., ‘tomato’ in EGTEA
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Fig. 6.3.: Correlations for classification weights across tasks in multi-dataset model
EALL+GALL. Zoom-in for best view.

correlates with ‘heart’ in EPIC (r = 0.43) which refers to a tomato’s interior, with
second best the correlation with the actual ‘tomato’ class (r = 0.38). Correlation
values are higher across action tasks, possibly due to their stricter nature in having
to associate both the correct verb and the correct noun class. For example, the verb
and noun constituents for ‘divide/pull apart onion’ of EGTEA correlate with ‘peel’
and ‘onion’ in EPIC with r = 0.26 and 0.37 respectively, whereas the correlation with
action ‘peel onion’ is r = 0.50. This means that the model is more certain about the
combination of features it requires when classifying a full action class instead of
having to assess it as the union of a verb and a noun. In the following section, we
investigate a way to further exploit the associative ability of the network by mapping
these classes into the same task.
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6.3.3 EPIC & EGTEA with Task Mapping

In many cases, the datasets have partly overlapping label sets for some tasks. In this
experiment we reduce the output layers of the network by mapping similar tasks
across datasets. We combine the verb and noun classification tasks of EPIC and
EGTEA and the hand coordinate layers. We leave the action layers and the gaze
unchanged. Our aim is to connect the verb and noun tasks as much as possible while
training the action tasks independently. This effort resembles the merged labels
technique in [108]. Our approach differs in that we manually map the semantically
similar verb and noun classes of EGTEA to EPIC since the majority of its labels are
identical or synonyms. There are rare cases where an EPIC label needs to be assigned
to multiple EGTEA labels. For example, verb classes ‘wash’ and ‘clean/wipe’ are both
assigned to EPIC’s ‘wash’ and noun classes that represent containers such as ‘tomato
container’ and ‘bread container’ are assigned to ‘package’. This task combination
scheme is less naive compared to our earlier MD approach. The downsides are that
we are not able to properly evaluate the verb and noun tasks of EGTEA due to the
many-to-one class assignments and that an almost direct mapping across tasks is not
always feasible. The task mapping model is trained for 80 epochs (referred to as
Verb-Noun Mapping - VN Mapping).

Verb-Noun Mapping results for EPIC are presented in Table 6.6. Action recognition
performance is similar to the naive MD approach but with a significant increase in
verb and noun classification as well as in Top1 on the EPIC test sets. In fact, with
task mapping, the model is able to generalize as well as with the SD model on the
S2 test set. This improvement shows that MD-MTL has an even greater potential
when secondary tasks of the datasets can be combined explicitly.

Tab. 6.6.: Mapping EGTEA verb-noun tasks on EPIC. For EPIC, we report Top1 (%) action
(A), verb (V), and noun (N) accuracy on the validation set and Top1 for actions
on the S1-S2 test sets.

Model A V N S1 A S2 A
EALL+GALL 19.69 45.99 25.65 26.69 17.17
Verb-Noun Mapping 19.68 48.33 28.32 28.10 17.86

Task mapping also proves beneficial for the action recognition task of EGTEA
as shown in Table 6.7. Verb-Noun Mapping is +0.99% from the previous best
(EALL+GALL: 70.38%) and +2.38% from the SD baseline (GALL: 68.99%).

Next, we present an additional experiment using transfer learning for SD EGTEA.
We use the weights from the SD EPIC model EALL for the pretrained network state.
It improves +1.09% from the SD model pretrained on Kinetics-400, but is still lower
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than both naive MD (-0.30%) and MD with task mapping (-1.29%). This shows
that MD-MTL networks can capitalize on the additional data advantageously over
transfer learning, while being able to keep the tasks from the initial dataset and
improve their performance.

Tab. 6.7.: Mapping EGTEA verb-noun tasks on EPIC. For EGTEA, we report Top1/Top5 and
mean class accuracy (%) for actions on test split 1.

Model Top1 Top5 Mean cls acc.
GALL 68.99 91.74 61.40
GALL pretrained on EPIC 70.08 92.63 62.66
EALL+GALL 70.38 93.08 62.61
Verb-Noun Mapping 71.37 92.78 62.23

6.3.4 Task Affinities

The task mapping approach from Sec. 6.3.3 enhances the correlations across actions,
while fixing some inaccurate cases of the previous model. For example, correlation
for the ‘cut carrot’ action increases from r = 0.56 to r = 0.66 and for ‘peel onion’
from r = 0.50 to r = 0.54. Notably, for the latter, the second best correlated action
to ‘divide/pull apart onion’ from the first model is ‘peel potato’ with r = 0.44 which
drops to r = 0.37. This suggests that the model is now better able to tell apart the
two objects.

To further demonstrate the correlated outputs we compare the performance of the
EGTEA SD model (GALL) against the EGTEA verb and noun tasks of theEALL+GALL

MD model on the EPIC validation split for the samples that comprise mapped classes.
This corresponds to 1,677 samples for verbs and 1,107 for nouns. Table 6.8 shows
Top1 and mean class accuracy for the mapped verbs and nouns. The improvement
of the MD model is consistent over SD, achieving +12.46% and +7.16% on the
two metrics for verbs and +16.35% and +5.98% for nouns. This increase further
establishes the generalization ability of MD-MTL for samples that do not belong in
the data distribution for which the tasks are trained for.

Finally, in Fig. 6.4 we visualize the normalized confusion matrices for these experi-
ments. In Fig. 6.4a we observe fewer errors for verbs such as ‘turn on’ and ‘turn off’
and the performance of highly represented classes such as ‘cut’, ‘open’ and ‘close’
increases. Similarly for nouns, in Fig. 6.4b, we see that the SD model (left) tends to
classify a number of samples as ‘condiment container’ which is largely fixed in the
MD case (right). Generally, most noun classes have significant improvements.
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Tab. 6.8.: Comparison between SD and MD-MTL on the mapped verbs and nouns. Evaluat-
ing the EGTEA tasks on the EPIC validation split.

Mapped Verbs Mapped Nouns
Model Top1 (%) Mean cls acc. (%) Top1 (%) Mean cls acc. (%)
GALL 32.68 13.98 9.40 6.86
EALL+GALL 45.14 21.14 25.75 12.84
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(a) Mapped verb confusion matrices; left EGTEA SD, right EGTEA MD.
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(b) Mapped noun confusion matrices; left EGTEA SD, right EGTEA MD.

Fig. 6.4.: Confusion matrices for mapped verbs (a) and mapped nouns (b) from the EGTEA
tasks on the EPIC validation split. Zoom-in for best view.
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6.3.5 Multi-dataset Experiments on Charades-EGO

We perform experiments on Charades-EGO to explore the associative ability of tasks
when applied to data from different viewing perspectives and the potential for
performance improvements owing to the MD-MTL setting. We split the dataset
into its first- and third-person constituents and treat them as two separate datasets.
Consequently, we have two sub-datasets, CHAREGO1 and CHAREGO3, with the same
classification tasks. We produce action segments from the video level annotations.
This results in 33,099/9,148 action segments for CHAREGO1 and 34,269/9,386 for
CHAREGO3 for training and validation, respectively. In Table 6.9 we report video
level mean Average Precision (mAP) following [131] and Top1/Top5 accuracy for the
action recognition task. We train three models in total. An SD model for CHAREGO1
for actions, verbs, and nouns (C1ALL), an SD model for CHAREGO3 for the same
tasks (C3ALL), and the MD combination with both sets of tasks (C1ALL+C3ALL).

Tab. 6.9.: Action recognition performance on CHAREGO1 and CHAREGO3, the first- and
third-person splits of Charades-EGO, respectively. SD models are trained on all
tasks (actions, verbs, nouns) of their splits. The MD model is trained on the
combination of the tasks of both splits. Results in %.

Validation on charego1 Validation on charego3
Model Top1 Top5 mAP Top1 Top5 mAP
C1ALL (SD) 7.05 24.21 21.90 3.55 14.70 12.30
C3ALL (SD) 3.61 15.40 14.70 8.15 27.02 20.40
C1ALL (MD) 7.01 24.69 22.10 6.79 22.85 18.20
C3ALL (MD) 5.81 21.75 20.10 8.12 26.04 20.00

Validation on CHAREGO1 shows that MD training provides a marginal improvement
over the SD baseline on the video level mAP. This shows the benefit to the first-
person tasks when using the third-person videos to train their distinct tasks in the
MD setting. An interesting insight arises from evaluating on the first-person data
using the respective C3ALL tasks of the MD model. Recognition performance is
worse when compared to the egocentric tasks; however, it is significantly higher
from the CHAREGO3 SD model. This shows that it learns to associate the internal
representations of classes that co-exist in different tasks and reuses them across
perspectives (confirming the findings of Sec. 6.3.2 and 6.3.4 also in this setting).

Similar insights can be inferred from the results of the third-person video split of
Charades-EGO. In this experiment, the SD model exhibits marginally better mAP
than the MD model, but the correlation property across tasks of different perspectives
is still present. The first-person tasks of C1ALL+C3ALL have +5.9% higher mAP
from the SD C1ALL model when evaluated on CHAREGO3.
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6.3.6 Batch Formation Strategies

The mixed batch (MB) formation strategy described in Sec. 6.2.2 is not the only way
to present data to the MD-MTL network. To further demonstrate the ability of our
batch formation strategy to allow optimal generalization across datasets, we compare
against two alternative strategies: interleaved batches (IB) and interleaved datasets
(ID). In interleaved batches, in every iteration a dataset is selected at random and the
input to the network consists of data only from this dataset. In interleaved datasets,
batch composition is the same, but each dataset’s training set is fully processed
before data from the remaining datasets are seen. In either case, the network
sees the complete training set of every dataset per epoch. We experiment on the
EALL+GALL tasks for every batch strategy, using the same training hyperparameters
defined in Sec. 6.3. In Table 6.10 we summarize our results.

Tab. 6.10.: Comparison across batch formation strategies mixed (MB), interleaved batches
(IB), and interleaved datasets (ID) on the task combinations of EPIC and EGTEA.

(a) Results on EPIC-Kitchens.

Top1 (%) Top5 (%)
Strategy Actions Verbs Nouns Actions Verbs Nouns
MB 19.69 45.99 25.65 36.68 78.37 50.67
IB 20.11 47.76 29.99 37.78 78.84 51.24
ID 17.91 48.42 23.26 33.57 78.18 45.94

(b) Results on EGTEA Gaze+.

Top1 (%) Mean cls acc. (%)
Strategy Actions Verbs Nouns Actions Verbs Nouns
MB 70.38 80.57 79.03 62.61 80.02 73.55
IB 65.43 79.72 74.83 55.31 77.21 65.95
ID 69.68 80.86 78.64 61.31 81.59 72.13

The three strategies have different effects on performance. Interleaved batches
outperform mixed batches on EPIC, albeit with a strong performance drop for
EGTEA. A possible reason is that the size difference of the datasets (the training set
of EPIC is almost three times larger than that of EGTEA) does not allow the network
to equally capture fine-grained features from EGTEA. When using the interleaved
datasets strategy, we see a significant performance drop for EPIC, with EGTEA being
more robust. This is the result of the order with which datasets are seen on every
epoch. In our ID experiment, the training set of EPIC is always seen first and EGTEA
follows in every epoch. Information that is acquired in the beginning of an epoch
is partly "unlearned" when the second dataset is seen. Mixed batches (MB) appear
to perform somewhat more consistently. However, the modest differences between
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the strategies suggest that MD-MTL performs favorably over single-dataset MTL,
independent of the choice of batch formation strategy.

6.3.7 State-of-the-art Comparison

EPIC-Kitchens In Table 6.11 we compare against the state-of-the-art on the S1 and
S2 test sets of EPIC-Kitchens. Our method has competitive performance; however,
a number of methods have improved accuracy. One reason is the additional input
data that most of these methods employ. For example, the top performing approach
[26] utilizes a much larger network (118M parameters) and is pretrained on a video
dataset about 3k times larger than Kinetics-400 (IG-Kinetics-65M). Interestingly,
with Kinetics-400 pretraining on a network eight times larger than ours (R(2+1)D-
34, 64M parameters) they perform -1.30% lower on S1 and -1.06% on S2 Top1
actions. Furthermore, a number of methods include optical flow, object and audio
input streams which tend to leverage separate networks for each modality. We
highlight the work of Kazakos et al. [74] which outperforms us with their full model
but when only the RGB stream is utilized we show a +7.75% improvement. The
remaining approaches do not offer an ablation with only the RGB stream therefore
we cannot compare directly. We note the Gate-Shift Networks introduced in [148]
that only use RGB input and are +2.32% better on S2. They utilize feature gating
to encode temporal information forward and backward in time on a 2D network
backbone. Applying this to our 3D network would be an interesting direction for
future work.

Tab. 6.11.: State-of-the-art comparison on EPIC-Kitchens. A = Actions, V = Verbs, N
= Nouns, F = optical flow, AU = audio, O = objects/object features, TO =
object features at various temporal locations, ED = Pretraining on very large
scale external datasets, VN Mapping = Verb-Noun Mapping; values with ‘-’ not
reported by the authors.

Test S1 (Seen kitchens) Test S2 (Unseen kitchens)
Top1 (%) Top5 (%) Top1 (%) Top5 (%)

Method Modalities Params A V N A V N A V N A V N
TSN [24] RGB+F 20.2M 20.54 48.23 36.71 39.79 84.09 62.32 10.89 39.40 22.70 25.26 74.29 45.72
EF [74] RGB 11M 19.86 45.68 36.80 41.89 85.56 64.19 10.11 34.89 21.82 25.33 74.56 45.34
R(2+1)D-34 [26] RGB 64M 26.80 59.10 38.00 46.10 87.40 62.70 16.80 48.40 26.60 31.20 77.20 50.40
LSTA [149] RGB+F 82M 30.33 59.55 38.35 49.97 85.77 61.49 16.63 47.32 22.16 30.39 77.02 43.15
VN Mapping RGB 10M 28.10 55.62 38.04 49.38 86.39 62.69 17.86 46.57 25.74 36.26 77.60 51.86
MTL [67] RGB 10M 29.73 56.00 40.15 50.95 87.06 64.07 17.86 45.99 26.25 35.68 77.98 50.19
VFS [18] RGB+F+AU 218M 29.13 44.64 30.64 49.71 76.41 59.39 18.40 38.37 15.23 35.64 75.15 39.84
RU [39] RGB+F+O 52.6M 33.06 56.93 43.05 55.32 85.68 67.12 19.49 43.67 26.77 37.15 73.30 48.28
GSM [148] RGB 13M 33.45 59.41 41.83 - - - 20.18 48.28 26.15 - - -
EF [74] RGB+F+A 32.6M 36.66 66.10 47.89 58.62 91.28 72.80 20.97 54.46 30.39 39.40 81.23 55.69
LFB [164] RGB+TO 201.2M 32.70 60.00 45.00 55.30 88.40 71.80 21.20 50.90 31.50 39.40 77.60 57.80
SAP [162] RGB+O 198.6M 34.80 63.20 48.30 55.90 86.10 71.50 23.90 53.20 33.00 40.50 78.20 58.00
AV-SF [167] RGB+SF+AU 38.5M 35.90 65.70 46.40 57.80 89.50 71.70 24.00 55.80 32.70 43.20 81.70 58.90
R(2+1)D [26] RGB+ED 118M 34.50 65.20 45.10 53.80 87.40 67.80 25.60 57.30 35.70 42.70 81.10 58.70
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EGTEA Gaze+ Only a number of the aforementioned works provide action recogni-
tion results on EGTEA Gaze+. We compare against methods that utilize RGB and
optical flow in Table 6.12. Despite the absence of optical flow in our method, we are
able to outperform all of them with significant margins. The previous state-of-the-art
on split 1 of EGTEA Gaze+ [67] achieves 68.99% Top1 and 61.40% mean class
accuracy, which we surpass by 1.39% and 1.21% with MD-MTL and by 2.38% and
0.83% with MD-MTL with task mapping, respectively. Furthermore, using MD-MTL
the performance on the average of the three splits of EGTEA Gaze+ improves from
[94] by 2.47% on Top1 and 2.88% on mean class accuracy.

Tab. 6.12.: Action recognition accuracy on EGTEA Gaze+. Refer to Table 6.11 for the used
abbreviations.

Split 1 Avg. Splits 1-3
Method Modalities Top1 Mean cls Top1 Mean cls
Li et al. [85] RGB+F - 47.71 - -
MCN [57] RGB+F 55.63 - - -
RU [39] RGB+F+O - - 60.20 -
EGO-RNN [150] RGB+F 62.17 - 60.76 -
LSTA [149] RGB+F - - 61.86 -
SAP [162] RGB+F+O 64.10 - 62.70 -
STAM [94] RGB+F 68.60 60.54 65.97 57.02
MTL RGB 68.99 61.40 65.70 57.60
MD-MTL RGB 70.38 62.61 68.44 59.90
Verb-Noun Mapping RGB 71.37 62.23 - -

6.4 Supplementary analysis

In this section we provide an analysis of the training process and its effects on results
(Sec. 6.4.1). Furthermore, we delineate the complete results of the EPIC-Kitchens
(Sec. 6.4.2), EGTEA Gaze+ (Sec. 6.4.3), ADL (Sec. 6.4.4), and Charades-EGO
(Sec. 6.4.5) models. Finally, in Sec. 6.4.6 we provide a qualitative evaluation of the
hand detection tasks for EPIC and EGTEA.

6.4.1 Analysis of Training Losses

In Fig. 6.5 we visualize the training losses for the action tasks of EPIC and EGTEA
across a number of SD and MD models. Our aim is to show that the level of overfit on
the training set is not necessarily an indicator of the performance on the validation
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set. From Fig. 6.5a we observe that the training loss for the SD model EALL (blue
line) is the lowest after the first few epochs and continues to be so after each learning
rate cycle (20 epochs) [136]. This is expected, since the model is better able to fit
the training set. Evidently, our best performance on EPIC is achieved on epoch 60 for
the MD model EALL+GALL with training loss almost +1 compared to EALL at the
same epoch. This promotes the fact that the losses acquired from the extra tasks do
not necessarily affect (negatively) the performance of the action task. On the other
hand, when the number of tasks increases significantly and the dataset domains
expand in EALL+GALL+AALL (purple line) the model experiences underfitting, as
witnessed by the higher training loss and the lower validation performance.

Similar observations can be made from Fig. 6.5b with regard to the training losses
on the EGTEA action task. The SD models (blue and brown lines) have lower losses
than the MD ones without consistent improvements in validation performance. On
the contrary, when having three datasets in the training set, the model underfits for
the EGTEA action task. In between the two scenarios, the MD EALL+GALL models
perform optimally. In fact, because our best performing weights are on epoch 78
(71.37%) we also highlight that the second best performance is found on epoch 38
(70.72%) which is still better than all the other models.
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Fig. 6.5.: Training losses for the action tasks across models. We highlight the best action
performance on the validation sets of each dataset. (Best seen in color.)

6.4.2 Extended Results on EPIC-Kitchens

A complete comparison for the action, verb, and noun tasks for EPIC-Kitchens
appears in Table 6.13. Mean class precision and recall are provided for the classes

99



Chapter 6 Multi-dataset Multitask Learning to Recognize Egocentric Actions

that have more than 100 samples in our training set. Besides the action task, we show
that improvements from MD training are also achieved in the additional classification
tasks, even without considering their best performing weights (we consider the best
action weights in all scenarios). For example, Top1 noun performance increases by
1.05% in the task mapping experiment over the SD baseline and Top5 is improved
for verbs and nouns for both two-dataset experiments.

Tab. 6.13.: Extended results on EPIC-Kitchens. For the verb and noun recognition tasks we
report Top1/Top5 (%) accuracy, as well as mean class precision and recall for
the classes with more than 100 samples in the training set. Model names follow
Sec. 6.3.1.

Tasks
Top1 (%) Top5 (%) Top1 (%)

Actions Verbs Nouns Actions Verbs Nouns S1 Act. S2 Act.
EALL 19.29 48.90 27.27 35.91 78.18 47.85 29.73 17.86
EA+GA 18.15 - - 35.93 - - 24.35 17.04
EALL+GALL 19.69 45.99 25.65 36.68 78.37 50.67 26.69 17.17
Verb-Noun Mapping 19.68 48.33 28.32 38.68 78.99 53.44 28.10 17.86
EALL+GALL+AALL 18.29 46.13 25.22 34.15 77.08 48.23 24.17 15.84

Mean cls Precision / Recall (%)
Actions Verbs Nouns

EALL 3.25 3.04 29.31 24.03 22.68 17.84
EA+GA 2.67 2.64 - - - -
EALL+GALL 3.32 3.18 24.80 22.18 19.45 17.15
Verb-Noun Mapping 3.44 3.35 28.13 24.56 24.50 20.05
EALL+GALL+AALL 2.65 2.87 32.28 24.69 17.38 15.67

In Tables 6.17a and 6.17b we show per-class f-scores for verbs and nouns where
either the SD or MD model is better. We highlight that the MD task mapping model
shows improvements on few-shot classes, (i.e., classes with fewer than 100 samples
in the training set) without necessarily having additional data from the other dataset.
This is an indication that this type of training also reduces overfitting on classes
with more training samples. Perhaps, a mapping mechanism that relies on the word
vector associations across sample narrations is able to further capitalize on the added
data by introducing more robust class associations.

6.4.3 Extended Results on EGTEA Gaze+

Extended results for the verb and noun tasks of EGTEA Gaze+ are provided in
Table 6.14. Interestingly, the MD experiments improve over the SD baseline and
even the harder case ofEALL+GALL+AALL also performs better in Top1 actions and
verbs and Top5 actions, verbs, and nouns. In general, the highest Top1 performance
is achieved with the task mapping model for all three classification tasks. However,
the mean class accuracy for actions and verbs is best for the SD experiment with
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EPIC-Kitchens pretraining. A simple explanation could be that due to the smaller
size of the EGTEA tasks and the smaller training losses (Fig. 6.5b) the SD model
may be able to better fit the classes with fewer training samples.

Tab. 6.14.: Extended results on EGTEA Gaze+. For the verb and noun recognition tasks
we report Top1/Top5 (%) and mean class accuracy (%). Model names follow
Sec. 6.3.1.

Tasks Top1 (%) A-V-N Top5 (%) A-V-N Mean cls acc. (%) A-V-N
GALL 68.99 79.08 79.03 91.74 99.26 96.39 61.40 77.40 72.49
GALL (pt. on EPIC) 70.08 80.91 79.03 91.99 99.36 96.24 62.66 80.86 72.97
EA+GA 69.78 - - 93.37 - - 62.31 - -
EALL+GALL 70.38 80.57 79.03 93.08 99.70 97.23 62.61 80.02 73.55
Verb-Noun Mapping 71.37 81.85 80.61 92.78 99.46 97.08 62.23 - -
EALL+GALL+AALL 69.34 80.42 78.19 92.63 99.41 96.79 60.88 80.19 71.18

6.4.4 Training Settings and Extended Results on ADL

The training and test sets of ADL consist of a relatively low number of action
segments. The segments themselves consist of a large number of frames so a
sampled short clip is not necessarily representative of the entire segment. A problem
that stems from the small training set (111 clips) is that, with a batch size of 32, the
network receives very few updates in an epoch (111/32 = 3.47 ≈ 4), hence making
it more difficult to train a network with SGD. Additionally, we found empirically
that the cyclical learning rate schedule is more effective with more training steps
in an epoch, because more intermediate learning rate values are used, enhancing
regularization. To accommodate these issues, we enlarged the training set by copying
it over 10 times, essentially prolonging each epoch 10-fold. Furthermore, to train
EALL+GALL+AALL we added one more learning cycle to the model and trained
for 80 epochs. Since we use random sampling to create a clip from a segment, the
network still does not overfit to the training set. In Table 6.15 we present a full
comparison of the models with the ADL tasks.

Tab. 6.15.: Extended results on ADL. We report Top1/Top5 (%) and mean class accuracy
for the activity and location classification tasks for single- and multi-dataset
models. Results in parentheses use the original (small) training set.

Tasks Top1 (%) A-L Top5 (%) A-L Mean cls acc. (%)

AALL
64.65 72.72 88.38 96.97 56.10 43.83

(62.61) (77.27) (89.39) (96.97) (48.10) (40.47)

EALL+GALL+AALL
58.08 71.72 86.87 96.47 43.61 39.91

(54.55) (72.73) (84.34) (96.46) (45.90) (40.96)

From both experiments we notice an improvement in the activity recognition task
when using the enhanced training set, but reduced performance for the location task.
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This is possible due to overfitting on the activity task, because of the larger losses
incurred during training. As expected, the MD case does not improve performance
on the ADL tasks. Notably, the location task is not significantly affected by MD
training.

6.4.5 Extended Results on Charades-EGO

In Table 6.16 we present a complete performance comparison on Charades-EGO
for the tasks of action, verb, and noun classification. We find that when evaluating
on CHAREGO1 the mAP is higher in the MD model for verbs and nouns by 0.50%
and 1.30%, respectively from SD C1ALL. The C3ALL weights of the MD model
outperform the C3ALL SD model, again showing the ability of MD-MTL models
to effectively reuse the shared feature space. This indicates that egocentric action
recognition can benefit from the use of third-person videos in an MD-MTL setting.
Finally, from evaluating on CHAREGO3 we see that mAP is higher in the MD model
for the verbs (+0.30%) but drops for actions (-0.40%) and nouns (-0.60%) compared
to the SD model.

An interesting insight arises from the results of the verb task. On CHAREGO1,
the C3ALL SD model is -1.93% from the best Top1 accuracy, but this decrease
(11.14%) is much smaller compared to the decrease in actions (48.79%) and nouns
(38.43%). Based on this and from the fact that on CHAREGO3 the C3ALL MD model
is consistently improved on the verb task we can conclude that the learned features
that define verbs are closely related regardless of the viewing perspective.

Tab. 6.16.: Extended results on Charades-EGO.

Tasks Top1 (%) A-V-N Top5 (%) A-V-N mAP (%) A-V-N
Validation on charego1
C1ALL (SD) 7.05 16.82 20.07 24.21 61.04 52.53 21.90 36.50 34.80
C3ALL (SD) 3.61 15.70 13.09 15.40 55.67 41.16 14.70 30.60 26.30
C1ALL (MD) 7.01 17.67 21.26 24.69 61.64 53.47 22.10 37.00 36.10
C3ALL (MD) 5.81 17.30 18.38 21.75 59.85 50.92 20.10 35.50 33.10
Validation on charego3
C1ALL (SD) 3.55 15.40 11.48 14.70 53.58 38.99 12.30 28.20 23.20
C3ALL (SD) 8.15 19.41 20.15 27.02 63.51 53.39 20.40 37.70 35.10
C1ALL (MD) 6.79 18.11 17.77 22.85 61.67 50.10 18.20 35.00 32.30
C3ALL (MD) 8.12 20.04 19.82 26.04 64.03 53.11 20.00 38.00 34.50
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6.4.6 Hand Prediction

In Fig. 6.6 we visualize a series of hand predictions to showcase the effect of multi-
dataset training on hand location prediction. We visualize the output heatmaps
and the resulting coordinates from the hand coordinate layers. Figs. 6.6a and 6.6b
represent the SD EPIC (EALL) and SD EGTEA (GALL) model outputs. Figs. 6.6c
and 6.6d show the dataset-specific hand task outputs from the EALL+GALL model
and Fig. 6.6e shows the output from the combined hand prediction task in the task
mapping model. The first row of each model contains a segment from test split 1
of EGTEA Gaze+ and the second row a segment from our validation split on EPIC.
This diversification is important since the coordinate regression layers experience
overfitting on each dataset’s visual variations, such as camera position and distance,
size and visibility of hands. The ground truth coordinate is given with a green
circle and the predicted coordinate with a red circle. We only provide an empirical
assessment on hand detection because the original ground truths are synthesized
and contain inaccuracies, which would make evaluation inconsistent.

In Figs. 6.6a and 6.6b we see that each model only creates accurate predictions
for the sample that originates from its own dataset. For example, in Fig. 6.6a the
prediction for both hands is lost in the third column of the EGTEA sample, whereas
for the EPIC sample the predictions are consistently in the vicinity of the ground
truth. Similarly in Fig. 6.6b, the hands in the EGTEA sample are more accurately
localized, but the left hand in the EPIC sample is somewhat missed. The same can
be inferred for the MD model with two hand coordinate outputs per hand. We only
notice small visual improvements when the hand task of one dataset is applied on
the other. Finally, in Fig. 6.6e, mapping all hand outputs together in two coordinate
layers (one per hand) has the desired effect of obtaining accurate hand coordinates
regardless of the originating dataset, using a single model.

6.5 Discussion

In this chapter, we introduced an effective batch scheme that comprises samples from
multiple datasets and associates them with their respective tasks during training.
This approach manifests a trade-off between acquiring the optimal estimation of
the gradient direction from a batch from a single data distribution and the need
to accommodate the presence of samples from multiple datasets in every training
iteration. Essentially, we expect the network to find a minimum along a variety of
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manifolds which can be costly for optimization, and even not possible if the dataset
distributions are incompatible.

We found that EPIC and EGTEA had improved results in their validation sets which
indicates that multi-dataset training is potentially beneficial when semantically
related datasets are combined. At the same time, MD-MTL has the practical benefit
of producing outputs that reflect tasks from multiple domains within a single model,
without necessarily sacrificing accuracy. However, the inclusion of ADL showcases
the possible pitfalls of adding a dissimilar dataset. Mainly, the fact that the activities
of ADL are annotated with less granularity than the actions of EPIC and EGTEA
and the variety of locations, compared to purely kitchens, introduces significant
scene variations that complicate the learning task. On the contrary, we observed
performance improvements when applying the multi-dataset training scheme on
a combination of first- and third-person videos on Charades-EGO. This shows that
a difference in video perspectives does not prohibit the network from learning a
shared representation when other aspects of the datasets such as the environment
and the performed actions are related.

In Sec. 6.3.3 we trained an SD model on EGTEA where we used weights pretrained
on EPIC for initialization. Even though EPIC-Kitchens is not as large as the third-
person video datasets that are usually employed for pretraining video recognition
models, (e.g., [72, 73]) we expected that the similarity between the source and
the target domain would prove beneficial, and it did. We also showed that our
multi-dataset approach outperforms, in our case, pretraining, while retaining all
tasks.

We showed in Sec. 6.3.2 and 6.3.4 that MD training drives classification layers to
reuse feature sets for similar classes across tasks. This is an important element of
these models, as it occurs without additional supervision, i.e., we do not specify
which labels across datasets are related. However, our experiments show that this is
a regular phenomenon in MD-MTL. It also reinforces the basic concept of multitask
learning that related tasks, even from varied sources, support each other by affecting
the shared parameters.

However, class correlations are not so strong to suggest full reuse of features for
the same classes. This leads to two distinct observations. First, the capacity of a
network when trained for a single dataset is not fully utilized. We showed that the
underlying weights can be adapted to accommodate additional information. Hence,
whatever minimum is reached with SD training does not necessarily correspond to
an optimal exploitation of the millions of parameters of modern neural network
architectures. Instead, our experiments show that their capacity is larger than SD
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fitting initially suggests. Second, adaptive training mechanisms that substitute hard
parameter sharing, such as explicit task-attention mechanisms [91, 97] or implicit
weight assignment to tasks [145] are simulating larger network capacity not by
inducing better associations among the shared weights, which MD-MTL seems to
be achieving, but by establishing mechanisms to mask noisy features that otherwise
find their way to the task-specific prediction layers. We believe a soft parameter
sharing mechanism is a promising way forward for MD-MTL as the two concepts are
complementary.
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(a) Left - right hand estimation for single dataset EPIC model EALL.
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(b) Left - right hand estimation for single dataset EGTEA model GALL.
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(c) Left - right hand estimation for the hand task of EPIC from the multi-dataset model EALL+GALL.
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(d) Left - right hand estimation for the hand task of EGTEA from the multi-dataset model EALL+GALL.
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(e) Left - right hand estimation for the combined hand task of the multi-dataset EALL+GALL task
mapping model.

Fig. 6.6.: Hand heatmaps and coordinates. We visualize the left and right hand predicitons
on their respective sides in the figure.
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Tab. 6.17.: Per-class F-scores on EPIC-Kitchens verbs and nouns. Bold for classes that have
additional data from mapping. In the top blocks SD is better and in the bottom
blocks task mapping is better (fs = few-shot: < 100 samples in training, VN =
Verb-Noun mapping).

(a) Selection for EPIC-Kitchens verbs

Verb (cls id) fs EALL EALL+GALL VN
take (0) no 24.52 22.30 23.76
put (1) no 21.89 21.07 21.34
wash (4) no 36.28 34.51 34.65
mix (6) no 36.07 33.82 33.86
pour (7) no 34.25 25.93 28.73
remove (10) no 8.48 0.00 0.00
sweep (75) yes 26.31 13.33 0.00
open (2) no 30.93 30.00 31.66
close (3) no 25.82 24.45 27.40
cut (5) no 39.02 36.41 39.08
dry (11) no 21.21 23.53 27.93
turn-on (12) no 3.03 0.00 3.13
turn-off (15) no 3.33 0.00 3.71
adjust (17) no 17.39 9.52 26.92
fill (24) yes 0.00 0.00 4.35
apply (36) yes 0.00 0.00 33.33
set (41) yes 0.00 0.00 22.22

(b) Selection for EPIC-Kitchens nouns

Noun (cls id) fs EALL EALL+GALL VN
tap (3) no 25.00 24.06 22.06
spoon (7) yes 15.43 7.95 11.98
cupboard (8) no 30.85 29.35 26.77
drawer (9) no 29.59 22.52 29.46
fridge (10) no 29.91 28.68 29.01
water (17) no 22.86 11.94 10.77
bag (20) no 5.40 2.18 2.42
oil (24) no 15.38 13.46 14.28
sink (33) yes 22.22 10.00 10.00
food (37) yes 3.49 2.44 2.17
kettle (38) yes 23.08 11.43 18.92
box (39) yes 20.19 6.89 11.11
cheese (51) no 7.69 6.00 3.77
bread (52) no 3.03 0.00 2.86
top (78) no 21.80 23.17 20.99
paper (81) yes 14.29 0.00 0.00
wash. mach. (82) yes 13.64 0.00 7.69
floor (139) yes 44.44 0.00 0.00
pan (1) no 16.48 13.89 16.75
plate (4) no 27.75 24.00 28.91
knife (5) yes 11.60 12.42 13.28
bowl (6) no 5.21 4.76 12.63
lid (11) yes 9.17 5.68 9.68
hand (12) no 14.77 19.19 21.87
onion (13) no 16.67 9.68 19.78
fork (18) no 9.09 0.00 10.64
chop. board (19) no 19.30 23.46 21.15
sponge (21) no 16.30 16.42 17.53
cup (23) no 22.50 26.70 23.65
bin (25) yes 8.33 9.75 18.52
bottle (28) yes 0.00 10.35 3.57
carrot (40) no 1.33 28.04 32.14
rice (44) yes 4.45 0.00 4.77
garlic (45) yes 28.81 20.00 32.65
hob (47) no 16.67 23.34 23.81
salad (54) no 7.50 15.38 14.58
coffee (58) yes 0.00 4.00 4.17
jar (60) no 0.00 0.00 6.25
skin (68) yes 4.54 5.26 11.76
lettuce (73) no 6.25 9.09 6.66
cutlery (75) no 0.00 0.00 10.00
scissors (76) yes 0.00 0.00 8.33
cucumber (94) no 0.00 0.00 33.33
chilli (101) yes 0.00 9.52 5.26
sugar (103) yes 0.00 20.00 16.66
heat (106) yes 31.82 12.50 32.14
rubbish (108) no 0.00 8.82 3.03
stock (111) yes 0.00 10.71 5.26
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Conclusions 7
With this chapter we conclude the thesis. In Sec. 7.1, we provide a summary of
our contributions to egocentric vision and multitask learning. Sec. 7.2 comprises a
general discussion of our approach; its advantages, its limitations and our directions
for future research in the field.

7.1 Summary

In the following, we delineate our contributions per chapter.

7.1.1 Chapter 3: Object-based Location and Activity Classification

Throughout this chapter, we explored the recognition of indoor locations and hu-
man activities in egocentric videos. We utilized a state-of-the-art object detection
architecture which was trained on three separate object sets; ADL20 and ADL48
on annotations of the ADL dataset with objects relevant to indoor activities of daily
living and one on MS COCO [89] which consists of a more generic object set. We
applied object detection on egocentric videos to extract objects at various detection
thresholds and classified these detections with Artificial Neural Networks (ANN) and
Long Short-Term Memory (LSTM) networks to infer locations or activities.

We found that the selection of object set affects the relevance of the detections
towards the location classification task and the detection threshold their number and
quality. Using the Binary Presence Vector (BPV), we reached 75.50% Top1 accuracy
using only the detected objects. Using the object annotations for training and testing
increased Top1 location classification accuracy to 80.60%, leading to the conclusion
that the lack of object detection noise was preferable. Experimenting with the
detection threshold led to the discovery that if detection noise could not be avoided
the true-positive/false-negative trade-off favored the abundance of true-positive
detections even at the expense of having additional false-positives in the training set.
The comparison between ANN and LSTM promoted the incorporation of temporal
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structure in the BPVs (Tables 3.9, 3.10) in order to capitalize on the sequential
nature of the data and minimize the effects of erroneous detections.

We also found that the more complicated task of activity classification is more
difficult to tackle using object-based features alone. Our results showed that certain
activities were harder to recognize than others, mostly due to their lower prior in
the training set. We also found that activities which belong in semantic ‘super’ sets
tend to be learned as belonging to the one representative activity that has the most
instances in the training set.

7.1.2 Chapter 4: Hand- and Object-based Action Classification

In this chapter, we performed a study on the suitability of hand and object sequences
for human action recognition from the egocentric perspective. We focused on actions
performed in kitchen environments, utilizing the EPIC-Kitchens [24] egocentric
video dataset. State-of-the-art methods in activity recognition utilize end-to-end
video learning schemes with deep network structures. Alternatively, we explicitly
modeled the sequences of hand coordinates detected in the scene. To that end we
developed a hand detector better suited to handle egocentric videos. Our method
comprises a detection and tracking scheme for the acquisition of hand motions from
egocentric videos, which together with the detected objects in the scene are used to
recognize egocentric actions as a sequence learning problem.

Our results highlighted the ability to infer a set of hand-based human actions with
comparable accuracy to video-based methods, by only using a fraction of the input.
In addition, we showed that the inclusion of the presence of relevant detected objects
enhanced the feature set and improved performance.

This work is one of the few that comprehend that specialized hand movements
can be interpreted as actions without the need to specifically rely on learned visual
features for temporal modeling.

7.1.3 Chapter 5: Multitask Learning to Recognize Egocentric
Actions

In this chapter, we developed a Multitask Learning (MTL) scheme for egocentric
action recognition that supports a variable number of tasks. We trained for actions
together with related classification tasks, such as verbs and nouns, and showed
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that performance on one or all improves over the single-task baseline. We further
combined classification with coordinate regression tasks to learn the egocentric
left and right hand and gaze locations as coordinates. We predicted coordinate
sequences for video segments by exploiting the temporal dimension of 3D-CNNs.

We highlight that having a network estimate coordinates allows it to focus more
on areas with higher correspondence to the hands or other salient objects in the
original image.

Our tests on EPIC-Kitchens showed improvements on action recognition performance
over single-task learning. On EGTEA Gaze+ we achieved state-of-the-art perfor-
mance in Top1 action recognition reaching 65.70% surpassing the previous best
by more than 3.8%. Lastly, we showed that with our multitask learning setup we
can produce accurate hand detectors and gaze estimation models with performance
close to state-of-the-art.

7.1.4 Chapter 6: Multi-dataset Multitask Learning to Recognize
Egocentric Actions

In this chapter, we introduced a multi-dataset multitask learning (MD-MTL) scheme
that allows a single network to assimilate tasks from diverse datasets and tasks
simultaneously. By combining samples across datasets within every batch, we
effectively approximated having individual batches per dataset on every training
iteration.

We applied our scheme in the context of egocentric action and activity classification,
on EPIC-Kitchens, EGTEA Gaze+, and ADL datasets and the first- and third-person
splits of Charades-EGO. Our results showed that our training scheme offers consistent
improvements to classification tasks across datasets when the underlying data
distributions are related. Furthermore, we demonstrated that networks acquire
similar representations for semantically similar classification tasks without being
instructed to do so.

Results on EPIC-Kitchens showed that our method is able to compete with the state-
of-the-art. On EGTEA Gaze+ we outperformed more complex networks surpassing
our previous best by 2.47%. We highlight that MD-MTL is an efficient technique to
combine data from multiple sources without sacrificing the distinctive characteristics
of one dataset in order to classify on another.
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7.2 General Discussion

We now offer a general discussion about the applicability of our work in real-life
scenarios (Sec. 7.2.1). Consequently, we examine the limitations of our work in
Sec. 7.2.2. Finally, in Sec. 7.2.3 we present a series of proposals for future research
in the domains of egocentric object, location, and action recognition and multitask
learning.

7.2.1 Deployment

In this thesis, we embarked on a journey to develop lightweight methods to tackle
egocentric vision-related problems. The latest trends in computer vision mostly
involve deep network approaches that require large amounts of computational
power to train, but also to deploy the resulting models in production environments.
Especially in egocentric vision, an application oriented approach cannot depend
on the user being equipped with devices that have the ability to carry out intense
calculations, fast enough to be of use in realistic daily living scenarios.

Our work in Chapters 3 and 4 comprises uncomplicated feature-based approaches
towards recognition that support inference mechanisms with minimal inputs, small
amounts of computational requirements, and straightforward outputs. The bottle-
neck of our approach is the performance of the underlying object detection system,
in terms of both speed and accuracy. We argue that most recent object detectors,
such as YOLOv4 [12] and MobilenetsV3 [53] offer lightweight versions capable of
operating on mobile phone CPUs, even with improved accuracy compared to the
detectors used for this work. Our open-ended approach when utilizing an object
detector to acquire specific features for hands and objects aimed at exactly this
expectation; the development of more efficient devices and algorithms, better suited
to provide the features for our location and activity inference mechanisms.

In Chapters 5 and 6 we developed a vision-based approach supported by state-of-the-
art 3D Convolutional Neural Networks to ponder on the abilities of an end-to-end
network to solve egocentric vision tasks. Our methods are still more efficient than
the majority of action recognition models (see Table 6.11 for a comparison on model
parameters) and the incorporation of multitask learning allows for complicated
outputs to be acquired within a single application context. Arguably, computational
speed may still be a limiting factor, but the use of multitask learning positively
contributes to the trade-off of accuracy versus computational cost.
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7.2.2 Limitations

In this thesis, we addressed the problems of hand, location, action, and activity
recognition in egocentric videos. We considered handcrafted features in Chapters 3
and 4 and visual features acquired directly from RGB images using deep neural
networks in Chapters 5 and 6.

Binary Presence Vector Our handcrafted feature-based classification approaches
rely on the Binary Presence Vector (BPV), introduced in Chapter 3. Its size depends
on the number of classes of the object detector and it captures the information
regarding the found classes in a given image. Our considerations about BPV were its
resilience to noise and its descriptive ability towards locations and activities that are
relevant and would, by default, depend on similar inputs. We minimized the effects
of noise with temporal models that considered the BPV in sequences, downplaying
the significance of shortly occurring accidental detections and enhancing those
found regularly. On the contrary, we found that a number of related activities were
challenging to classify due to the reliance on similar objects and the lack of infor-
mation about the detection frequency of objects, user engagement, or information
associating the activity with the surrounding environment. Enhancing the BPV with
the bounding box sizes and positions in the image slightly improved performance,
but did not alleviate this problem because the training set was too small to provide
enough samples to allow relying on such detailed features. A related feature we
did not consider was the view of the detected objects. An object seen from its front
might indicate that its use is imminent, but a side or rear view would point to it
being ignored.

Hand-based action recognition In Chapter 4, we focused on the user’s hands to
capture the motion sequences that occurred during actions and the detected objects
for contextual scene information. We followed our approach from Chapter 3 by
modeling the objects as BPVs and the hands as coordinates, instead of using visual
features directly. By reducing the visual information into this minimalistic repre-
sentation, we created a lightweight system that classified egocentric actions with
comparable performance to image-based deep network approaches. The lack of a
more elaborate description of the scene that would be captured by a deep network is
the most straightforward limitation of this approach. This means that our classifier
does not have access to fine-grained motion descriptors. In this context, another
limitation is not considering the ego-motions during acquisition of the hand motion
sequences. Knowledge of ego-motion could reduce the negative effects from rapid
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camera movements that are unrelated to hand activities. Furthermore, the lack of a
direct connection between objects and hands would result in missing the interactions
between them, which are detrimental for distinguishing actions. A limitation of our
hand identification approach is the assumption that there at most two hands in view,
thus restricting this step to single-person egocentric videos.

Optical flow In Chapters 5 and 6, we utilized deep networks for action recognition
with RGB images directly as input. A relevant source of information that we did not
consider was optical flow. Our approach with 3D-CNNs was able to capture features
about the temporal changes of images throughout a video segment, but the use of
flow has shown to be a more straightforward, albeit computationally expensive way,
to reliably incorporate knowledge of motions in spatio-temporal networks.

Multitask Learning Regarding multitask learning, the lack of a direct way to mea-
sure the similarity of the output task distributions required extensive experimentation
to find appropriate task combinations. Additionally, our MTL network design used
a naive approach for the task combinations with the sole intention of implicitly
affecting tasks through joint training of the shared feature extractor. More direct
dependencies between tasks, such as using the gaze or hand posterior as input for
the action recognition task could improve performance. The MTL experiments did
not consider an object recognition task that would explicitly point the network to
the area of interest. Instead, the noun component of the action classes was used as
the indication for the object utilized for the action. Consequently, this led to the lack
of a direct way of focusing on hand-object interactions.

Class imbalance A general limitation of this work is the difficulty in handling class
imbalance for the tasks and datasets we considered. Especially in the earlier chapters
which consisted of simpler features, this issue negatively affected the recognition
of poorly represented classes in the datasets. Admittedly, class imbalance was a
limiting factor to our deep network approaches as well. Despite the size of the
datasets we experimented with, we found that only a small percentage of classes
would have enough samples to be learned robustly. Instead, intra-class variance for
classes with very few training instances was a debilitating factor which showed the
ineffectiveness of our models in tackling rare events.
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7.2.3 Future Research

We have developed a number of approaches to combine handcrafted and visual
features for egocentric video understanding. In this section, we will discuss possible
ways to further advance the field.

Handcrafted feature-based approaches have the advantage of low computational
requirements, but they lack in descriptive quality. Enhancing the BPV with location
priors would provide a clear cue for the distinction of similar activities that are
characterized by the same objects. Another approach for both locations and activities
is providing classification results from past segments into the current instance. This
requires treating the input as a stream instead of fixed-sized segments, unconnected
with each other. Handling the temporal classification problem in this fashion also
makes sense from a practical perspective, as it is expected that an application is
running without interruption and past information would be constantly available. In
this direction we highlight the approach of Possas et al. [114] who utilized motion
and visual inputs interchangeably for continuous activity recognition.

The output of our hand tracking method can be augmented further if we consider a
number of features such as the distances between hands in a frame and the distance
that has been traversed from hands in series of frames. Implicitly, this is what
we expect the network to learn. However, a more direct way of introducing this
information would be beneficial for the disambiguation of motions and subsequently
the recognition of actions. In this spirit, we refer to the work of Cai et al. [15] who
explicitly modeled the interactions between hand grasps and objects and associated
them with the performed actions. Smoothing the hand tracks, as in [42], would
further reduce the spatial noise in the hand input signal. Introducing hand poses
using a hand pose detector, (e.g., [75]), on top of our hand detector could add
significant detail to the hand motions and enhance action recognition. An example
of the benefit of hand poses of egocentric actions is in the work of Tekin et al. [153].
In recent years, interesting applications that depend on hand detection and tracking
have emerged in the domain of Virtual Reality [32, 47].

Our approach in multitask learning has been a naive one and mostly focused on
improving classification performance by choosing sensible additional tasks to expand
the output space. Recent approaches based on visual inputs consider attention mod-
els with task-specific layers that adapt specifically to individual tasks. For example,
in [97] a generic feature-extracting backbone is augmented by residual adapter
blocks [117] that capture task-specific features and are utilized to disentangle task-
specific information at test time, based on the single task output that is expected.
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Further improvements can be made with advanced training mechanisms for loss
and gradient balancing across tasks during training. We have identified this issue
when discussing the size of the training loss per task in our models in Chapters 5
and 6. In practice, more challenging tasks produce higher losses that influence the
network in their favor at the expense of the remaining tasks. Ways to mediate this
have been proposed in [97, 135] to reduce the effect of task-specific gradients in
training the shared parts of the network. They use an additional adversarial task
[90] as part of the multitask network which purpose is to disambiguate the tasks by
making their gradients statistically indistinguishable to the shared block. As a result,
this minimizes the effects of unbalanced tasks.

In terms of augmenting the space of learned visual features for recognition, we
address the works of [4] and [164]. Baradel et al. [4] use a distinct network
branch for the acquisition of object masks and additional branches for inter-object
associations and global visual features from the scene, which they model temporally
with Recurrent Networks. This provides detailed information about the object
relationships in the scene to helps distinguish them across actions. Another example
comes from [164] who again use object features from the scene to enhance the
action model, with the addition that these features stem not only from the current
segment, but from all the frames leading to it. Their approach requires a full pass
on the video to acquire the relevant features. However, we argue that incorporating
at least the past information in a streaming manner is a feasible approach that can
consistently improve egocentric action recognition.

Lastly, we can refer to some recent attempts to tackle few-shot and zero-shot learning
in videos. We believe that this domain offers potential solutions to address the
intra-class variance in classification tasks, especially when insufficient samples are
available in the training set. Shen et al. [128], devised a multitask network that
detects object and action regions with longer task-specific branches compared to
our work. This allows each task to make independent inferences and produce
accurate object-action pairs at test time that have not been part of the training set.
In [102], a Generative Adversarial Network (GAN) is used to produce video clips of
unseen actions. Even though the visual output is impressive we argue that the value
from this work can expand by incorporating the synthetic clips into the training set.
Generating clips for classes with few or no samples can potentially be a solution for
their recognition in unbalanced datasets. A similar approach was introduced in [115]
to learn zero-shot classes. The main difference was the use of augmentations at the
annotation level of existing video clips instead of GANs to produce new ones. These
label augmentations involved manipulation of the temporal structure of the video
clip by reversing the order of frames. This led to the introduction of unseen action
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instances in the training set which could effectively be used for data augmentation
and zero-shot learning.

We have advanced the field of egocentric video recognition by highlighting the
importance of egocentric objects and hands and by incorporating multitask learning
in an analytical way that clearly demonstrates its advantages, its disadvantages, and
its rooms for improvement. The modularity of our approaches allows for relatively
straightforward incorporation of elements from the aforementioned related works.
By building on top of our work, further great strides can be made to promote
egocentric vision into the foreground of daily-living assistive technologies.
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Appendix: Code Repositories A
The code for our experiments is open-sourced and publicly accessible online.

• Chapter 3:
https://github.com/georkap/object-based-location-classification

• Chapters 4 and 5:
https://github.com/georkap/hand_track_classification

• Chapter 6:
https://github.com/georkap/ego_md_mtl
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