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1 Introduction

Software is an integral part of our daily lives. Not anymore confined to computational
settings where it works in isolation, software is now often part of broader systems,
where continuous interaction between a multitude of interconnected entities takes
place. In a modern city, for example, software is embedded in speed cameras, traffic
lights, electronic signs and autonomous vehicles, and enables them to interact not only
with the surrounding environment, but also with each other, and with us. In a smart
home, cameras, light and temperature sensors, smart TVs and speakers, continuously
interact with human actors, with their operating environment, and with each other.

As systems become more interconnected and diverse, engineers are less able to
anticipate and model all possible interactions that will take place among components.
The term unknowns is sometimes used to refer to the boundaries of knowledge that is
available during system design [263]. Different types of unknowns include the known
unknowns, which concern properties that cannot be assessed during the system design,
but will need to be monitored during execution, or the unknown knowns, which refer
to tacit knowledge. The unknown unknowns, finally, concern situations that cannot
be even predicted to happen at some point in the future, so they are not considered
during the system design. Unknowns are common for modern software systems, which
operate in increasingly dynamic settings [258].

When unforeseen situations occur, assumptions made during the design of the
system may become invalid in the new operating context, thereby causing the system
to fail satisfying its requirements and meeting the system’s objectives [56].

Despite their dynamism and complexity, software systems are still expected to
perform optimally and to continuously maintain their fitness within a changing envi-
ronment [191]. In order to deal with changes, however, it is often unrealistic to con-
sider maintenance in a classical fashion, where, for example, the system is halted and
software engineers intervene to restore its compliance with the requirements [34, 196].
This is especially true for systems that continuously grow in size and complexity and
for which timely and decisive responses are expected.

In recent years, the concept of autonomic computing has gained growing attention
as a paradigm for coping with the high run-time uncertainty and unpredictability
of modern software systems [175]. The term refers to computing systems that can
manage themselves, given a specification of the system’s objectives. Autonomic com-
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INTRODUCTION 1.0

puting systems are endowed with self-configuring, self-optimizing, self-healing and
self-protecting run-time capabilities, that allow them to autonomously re-configure
their components and sub-systems; to continuously attempt to improve their perfor-
mance and efficiency; to automatically perform monitoring, diagnosis and reparation
of their components; and to try to anticipate and mitigate possible problems. These
capabilities are meant to guarantee that the software can autonomously adapt to the
evolving circumstances, without the need of continuous human intervention.

Several solutions have been proposed in the literature to provide software systems
with such capabilities. Most of them focus on self-adaptation aimed at restoring the
compliance of the system with its requirements [32, 113].

In highly dynamic contexts, however, the system’s requirements may themselves
result inadequate at run-time to guarantee the overall system objectives [15, 192].
For example, the enforcement of predefined speed limits on vehicles in a smart city
may not guarantee adequate traffic throughput or safety if the weather conditions
change, or if an increasing number of autonomous vehicles are introduced on the
roads. Moreover, since modern software systems are not isolated from the rest of
our society, they are also subject to the dynamics and continuous evolution of our
society [238]. The introduction of new government regulations about CO2 emissions
to cope with the global warming problem, for example, may affect the adequacy
of previously defined traffic regulations. The objectives of the system themselves
therefore can change, for new needs arise, others are dropped, the desired quality
requirements vary, and the relative priorities change over time [134, 309]. When
this happens, previously defined requirements may become inadequate to guarantee
the achievement of the new system’s objectives. Capabilities of adaptation at the
requirements level are paramount in modern software systems [133]. Such capabilities
define the broad scope of this thesis.

One of the distinguishing features of modern software systems is the complex inter-
play that takes place between the technical components and the human (social) actors.
Systems such as a smart city or a smart home are often referred to as Socio-Technical
Systems (STSs) [36]. STSs are heterogeneous systems, where the participants are
autonomous and linked via social dependencies, rather than through hardwired con-
nections. In STSs, the participants, think for example of self-driving cars in a smart
city, are themselves autonomous systems, i.e., systems that act independently of con-
tinuous and direct human control, and they are part of a larger system which they
may enter or leave at any time. This is one of the factors that contributes to make the
operational environment volatile and highly dynamic and makes it highly complex, if
not impossible, to anticipate and model all the possible states of the system [100]. The
autonomy of the involved entities, furthermore, makes them weakly controllable [81],
so that it is not always possible to anticipate their behaviors and to guarantee their
compliance with the system’s requirements [190, 294].

In designing these systems, not only the technical components need to be con-
sidered, but requirements shall also aim at regulating the behavior and interactions
of the social actors with the technical ones, and with each other. Such requirements
need to be an explicit part of the system, so that the involved actors can be aware of
them and react to their changes. Their satisfaction does not depend solely on a given
implementation, but also on the reaction to them from the social actors that operate
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in the system, and on their willingness to comply with them.

Inspired by our society, where norms play an essential role in coordinating the
behavior of individuals [130, 255], Multi-Agent Systems (MASs), and in particular
Normative MASs (NMASs), have been proposed as a computational abstraction for
dealing with (social) complex systems [279, 284] and STSs [256]. In a MAS, agents are
autonomous heterogeneous entities, typically assumed to act according to their own
preferences or goals, which reflect the goals of the users or owners they operate for in
the system [298]. Agents’ internals are typically unknown to other agents and to the
designer of the overall system. In order to guarantee that the objectives of the system
are achieved, norms and sanctions are typically used as a means to coordinate and
regulate agents’ behavior without over constraining their autonomy. From a system’s
perspective, norms in a MAS are enforced by a so-called institution, an exogenous
(to the agents) entity with the task of monitoring and enforcing norms to regulate
the behavior of the agents in order to guarantee, or improve, the achievement of the
system’s objectives.

In our attempt to develop adaptation mechanisms at the requirements level, in
this thesis we also consider NMASs as a computational model for complex modern
systems such as STSs. We focus on requirements aimed at regulating the behavior of
the autonomous agents in the system. In this dissertation, we identify such type of
requirements with norms, and we use the two terms interchangeably, unless specified
otherwise. We study how to endow a NMAS with a supervision mechanism that
allows an institution to autonomously revise, when necessary, the norms that are
being enforced on the autonomous agents. For example, we consider a NMAS such
as a smart road, where traffic rules (norms) regulate the behavior of self-driving cars
(autonomous systems). The supervision of the smart road consists of monitoring the
behavior of the self-driving cars in the system and automatically revising the enforced
traffic rules, when necessary.

1.1 Motivation and Research Objectives

When designing a software system, the requirements–i.e., what the system and its
components must do and what qualities they must have–are identified based on the
objectives of the different stakeholders (we call them system’s objectives) and on
assumptions which depend on the available domain knowledge. The requirements are
then reflected in a specification, which describes design decisions on how to satisfy the
requirements. Using Zave and Jackson’s traditional formulation of the requirements
problem [306], which they indicate as W,S $ R, the specification S, given some
assumptions W , must be sufficient to satisfy the requirements R.

Over the years a wide number of model checking and verification techniques have
been developed to formally verify and prove the correctness of a defined system’s
specification with respect to its requirements [35, 228] and to satisfy properties such
as liveness or safety properties [9, 109, 178].

Traditional software, confined to relatively static and well-defined domains, allows
to model all aspects of the system and to perform formal verification of its specification
with respect to the requirements. When dealing with the highly dynamic and ever-
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INTRODUCTION 1.1

evolving software systems that are embedded in our modern society, however, formally
proving that a specification satisfies the requirements, does not suffice anymore, on
its own, to guarantee that a system achieves its objectives (referred to as software
validation [60]).

In his seminal work [189], Lehman illustrates that for modern evolving software
systems, which he calls E-programs and classifies as part of a broader class of dynamic
programs called A-programs, the correctness of the implementation is only partially
relevant, because the validity and effectiveness of the system is not assessed anymore
solely with respect to its specification, but depends also on human satisfaction about
the overall behavior of the software. Quoting Lehman,

“Correctness and proof of correctness of the program as a whole are, in
general, irrelevant in that a program may be formally correct but useless,
or incorrect in that it does not satisfy some stated specification, yet quite
usable, even satisfactory. Formal techniques of representation and proof
have a place in the universe of A-programs but their role changes. It is
the detailed behavior of the program under operational conditions that is
of concern.”

Furthermore, the complexity and volatility of modern software systems and of the
environment in which they operate make it often too hard—or practically impossible—
to predict a priori (i.e., at design-time) the effectiveness and validity of specific require-
ments in all (possibly evolving) environmental conditions [15, 192]. System designers
inevitably have to rely on a number of assumptions about what is expected from
the operating environment, about the possible interactions that can happen between
different software components, or about the conditions when certain requirements
are satisfied. When the context changes at run-time, the design-time assumptions
may become invalid. Invalid design-time assumptions, have been identified among
the main risk factors for error and loss in software development [55].

The literature on self-adaptive systems offers good solutions to adapt a system
when their requirements are threatened [41, 113, 185]. Generally speaking, the lit-
erature so far mainly focused on how to respond to changes in the environment by
re-configuring the components and the architecture of the system, or, for security sys-
tems, by halting the system in case of noncompliance with the requirements [34, 196].
In a modern software system like a STS, however, control over all system’s compo-
nents is often impossible. The involved components, for example, may be services
which autonomously run in remote and belong to different stakeholders [33]. As a
result, if the requirements of the system are not met at run-time, altering its compo-
nents to restore the compliance with the requirements is not always an option [81].
Additionally, since the objectives of the stakeholders of the system may change over
time [134, 309], the previously defined requirements may become ineffective to guar-
antee the new objectives [15].

In these situations, run-time revision of requirements is one of the key factors to
build a versatile system capable of ensuring the stakeholders objectives [180]. Tem-
porarily relaxing a strict requirement in previously unpredicted operating conditions,
and learning under which conditions the requirements are more useful, may guarantee
the stability of the system without the need of an adaptation of its components. Revis-
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ing the requirements is justified if guided by the stakeholders objectives [21, 275, 303].
For example, in an urban transportation software system, the city council may have
the objective that every day, at most x car accidents should occur, possibly none, and
a requirement for the drivers may be that vehicles shall possess an automatic braking
system. But one may as well replace this requirement with vehicles shall possess a
cruise control system.

Motivated by early studies on requirements relaxation and approximation [10, 294],
we propose a framework for the supervision of software systems. Our framework aims
at providing a system with requirements level supervision capabilities, i.e., with the
capability of automatically revising its requirements (norms in NMAS terminology)
when, due to the evolution of its operating context, there is evidence that the cur-
rent requirements are not effective anymore in guaranteeing the system’s objectives.
In particular, we consider situations where a model of the system is not available,
and the evidence about the effectiveness of the requirements can be obtained only
at run-time and through learning from execution data [176]. The main focus and
contributions of this thesis, therefore, concern a data-driven run-time supervision
framework that continuously monitors the execution of software systems, evaluates
their behavior against the requirements and the system’s objectives, and intervenes
by deciding which requirements should be revised and how.

The main research objective that we aim to achieve is the following.

Research Objective. To design a data-driven run-time requirements re-
vision framework that ensures a sufficient achievement of the objectives of
software systems that operate in dynamic, evolving and weakly controllable
environments.

In the framework that we envision, which characterizes the main components and
features required for providing a system with run-time requirements revision capa-
bilities, a revision of the current requirements is identified at run-time whenever the
system’s objectives are not sufficiently met. The first step is to evaluate the design-
time assumptions to diagnose the current requirements and to identify the root causes
of the problem. Based on the results of the diagnosis, the framework should determine
how the requirements should be revised. For example, whether a requirement should
be relaxed, made more strict, or completely changed. In other words, the framework
should determine the direction, or type, of the revision of the requirements. In a
data-driven supervision framework that also intends to be transparent and explain-
able, the type of revision should be identified according to some given data-driven
policy or strategy. For example, a simple high-level data-driven policy could be to
relax a requirement R if, according to the data, the system’s objectives are more likely
to be achieved when R is violated. The current requirements should then be revised
in line with the policy. Revision operations should be performed on the current re-
quirements to obtain new requirements in line with the policy. The choice of the new
requirements determines the intensity of the revision. If more than one option is avail-
able for the new requirements, the selection should consider different criteria. These
criteria should include, for example, the expected improvement of the system objec-
tives’ achievement, or the similarity with the current requirements (choosing very
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R
R1

More relaxed than R

More strict than R

Alterations of R

Figure 1.1: A simplified illustration of a discrete space of possible revisions of a requirement
R. Each black dot is a possible revision of R, and belongs to one of three categories: More
relaxed than R, More strict than R, and Alterations of R. The arrow indicates the chosen
revision R1; its direction denotes the type of revision (More strict than R, in the figure);
its length denotes the intensity of the revision (the closest to R the lowest the intensity)
according to some given metric.

different requirements from the current ones may affect, for example, the stability of
the system). Fig. 1.1 provides a simplified illustration of the concepts described above.

In order to achieve our research objective, we identify four research questions.

RQ 1. How to validate at run-time the design-time assumptions that are reflected in
the requirements?

In designing a software system, engineers are forced to, explicitly or implicitly,
make assumptions that are then reflected in the system’s requirements and specifi-
cation [191]. Invalid design-time assumptions have been identified as one the main
causes for software evolution [15]. This is particularly true for complex modern sys-
tems, where the autonomy of the participating entities and the dynamic and ever-
evolving operating environment lead to heightened run-time uncertainty [16, 294].
Assessing at run-time the validity of the design-time assumptions is crucial to diag-
nose the requirements and to establish the need for their revision [15]. We study how
to validate with run-time data a variety of design-time assumptions that are reflected
in the defined requirements.

RQ 2. Which are possible data-driven requirements revision policies?

Requirements revision policies should indicate which type of revision of the re-
quirements is needed, and in which cases. In our framework, we are interested in
data-driven policies, i.e., policies that make use of data about the run-time satisfac-
tion of the requirements and the achievement of the system’s objectives in the different
operating contexts. Based on the acquired execution data, the policies should deter-
mine whether the requirements should be relaxed, made more strict, or if they require
a more general alteration (one of the three areas in Fig. 1.1). Bayesian Networks [240]
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1
have been widely used for performing diagnosis and automated decision making in a
transparent and explainable way in different fields, ranging from medicine to forensic
to software engineering [141, 147]. In this thesis, we make use of such graphical prob-
abilistic model to collect and reason about run-time data, and we study a number
of general and domain-independent policies that are based on probabilistic diagnosis
and inference.

RQ 3. Which are possible operations to revise requirements at run-time?

The envisioned framework should be able to automatically perform operations of
revision of the system requirements when necessary, i.e., it should be able to determine
a new requirement in the chosen area in Fig. 1.1. As we will detail in Sec. 2.3, in the
requirements engineering literature, requirements models, have been widely employed
to represent the requirements of a system and to organize them in hierarchical struc-
tures [271]. We study possible run-time operations for revising a requirements model
at run-time into more relaxed, more strict or simply different variations of the original
one. We also consider the revision of specific requirements besides them being part
of a requirements model. In doing so, we use norms and the normative concepts of
sanctions and rewards to define requirements for the behavior of autonomous agents.
Norms with sanctions permit to achieve a weak notion of control [50] of the weakly
controllable (social) agents that are involved in complex modern systems [36, 258].
In the NMAS research literature, conditional norms, which include conditional pro-
hibitions and conditional obligations, are commonly used to regulate the behavior of
the autonomous agents [10]. We study which are possible run-time operations for
revising the components of conditional norms, i.e., the condition of applicability of
the norm, the main content of the norm, and its deadline, as well as how to determine
opportune sanctions at run-time.

RQ 4. How well does the proposed run-time requirements revision framework per-
form?

To evaluate our framework we shall assess its effectiveness in determining at run-
time new requirements that ensure the achievement of the system’s objectives. We will
evaluate our framework, and the proposed data-driven requirements revision policies
and revision operations, in terms of a variety of criteria. These will include the degree
of achievement of the system’s objectives with the identified requirements; the speed
in identifying requirements that ensure a sufficient achievement of the objectives; the
stability of the system when subject to the revisions; the alignment of the requirements
with the system’s objectives, and the resilience to noise in the monitored data. We will
conduct extensive experimental evaluations of our framework by means of simulation,
a powerful tool for evaluating prototypical novel solutions [149]. In particular we will
consider traffic simulation, since the state of the art solutions, such as the SUMO
open source simulator [184], provide realistic settings for smart road scenarios, which
are relevant for the scope of this thesis.
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vehicle entering 
the system

environmental and 
social factors

affecting the system

vehicle leaving
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heterogeneous types
of vehicles
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pedestrian,
crossings

speed cameras,
and sensors dynamic

traffic 
regulations

30

Figure 1.2: A sketch of the multitude of entities involved in a smart road. The red area
indicates the boundaries of the system being supervised. Vehicles are represented as black
boxes to emphasize that their internals are not known.

1.2 Smart Road Scenarios
The solutions proposed in this thesis are meant to be general and applicable to dif-
ferent types of systems. As we will see, the approach and strategies that we propose
are domain independent and do not rely on domain-specific knowledge. Throughout
this thesis, however, we are going to focus on the particular application area of smart
roads. We will make use of different illustrative case studies in such application area
as plausibility probe studies [193] for testing and refining our proposal. The reason
why we focus on this particular application area is threefold, as explained below.

Representativeness. Smart roads are an application scenario that exhibits the main
features of modern complex systems such as the STSs described in the introduction
of this thesis. Smart roads are complex systems where a multitude of autonomous
and heterogeneous entities continuously interact and operate in a shared environment
that is subject to continuous evolution. Fig. 1.2 provides an illustration of a sim-
plified smart road. Vehicles can be seen as the autonomous and weakly controllable
(software) agents, whose behavior we desire to regulate in order to achieve system’s
objectives such as desired road throughput, CO2 emissions, or safety levels. Each of
the agents can enter or leave the system at any moment, and it is characterized by
its own preferences, goals, and internals, which are not necessary aligned with, nor
known to, the other agents and the designer of the system (e.g., the city council).
The environment in which these agents operate involves not only the vehicles, but
also other technical and social entities such as pedestrian, bicycles, traffic lights, speed
cameras. Furthermore, the system is affected by natural events, such as storms, snow,
etc., as well as by social events, such as a football match, that affect the behavior of
all the involved agents. Adequately modeling such a complex system is not a trivial
task and requires many assumptions. The designed traffic regulations are therefore
necessarily prone to errors and need to be continuously reassessed as the operating
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1
context evolves. Consider, for example, the introduction of new regulations about
CO2 emissions in order to cope with the global warming problem. Previously de-
fined speed limitations, may not be in line with the new system’s objectives, and may
need to be changed. In March 2020, for example, the Dutch government reduced the
motorway speed limit from 120 km/h to 100 km/h as part of a package of measures
aimed at reducing nitrogen precipitation in nature [235]. Traffic regulations need to be
continuously evaluated at run-time, and possibly revised when they are not effective
in achieving the desired system’s objectives.

Relevance. As of today, the traffic problem is still an intolerable burden in many
contexts [219]. Current traffic control systems enforce traffic rules, such as speed lim-
itations, to regulate the behavior of drivers in order to achieve high throughput and
to maximize safety. In the near future, an increasing number of autonomous vehicles
(e.g., smart cars) are expected to populate our roads [2]. It is however unlikely that
the companies that produce such vehicles will be sharing or agree on a common source
code. Similarly to human drivers, no complete control will be possible over them, and
neither a reliable prediction of their behavior nor their compliance with traffic rules
could always be guaranteed. Differently from human drivers, however, autonomous
vehicles may be able to handle continuous and dynamic information regarding the
traffic regulations taking place. Smart roads represent a proposed infrastructural
solution to provide autonomous vehicles with continuous information and directives
so to achieve desirable system-level properties [280]. A smart road infrastructure,
having information about the global situation, can issue customised directives to the
autonomous vehicles, e.g., prescribing vehicles in a particular road to slow down, or
vehicles in another road to accelerate, in order to optimise traffic across the whole
network. Such directives, which may be enforced by means of sanctions on the au-
tonomous vehicles to guarantee a desired degree of obedience, shall be continuously
adapted to the evolving operating contexts, making smart roads infrastructures an
ideal application for the run-time revision mechanisms studied in this dissertation.

Evaluation. Any technical contribution needs evidence in order to be evaluated. In
our case, we aim at designing and developing solutions to change the requirements of
a system into new ones at run-time and based on data. We need to be able to evaluate
in some way the strategies that we propose to revise the requirements and the new
revised requirements. The traffic domain gives us the possibility to do so by means of
simulation. A number of traffic simulators have been developed in the years both for
research and industrial purposes and provide realistic vehicle’s models and complex
dynamics. The SUMO Traffic Simulator [184], for example, is one of them. SUMO
is an open source traffic simulator that is designed to handle large networks, and it
has been used in numerous real-world and research applications [46, 85, 86, 184]. In
the Software Engineering for Adaptive and Self-Managing Systems (SEAMS) research
community, SUMO has been used as a basis of an exemplar specifically proposed as a
case study for evaluating different self-adaptation techniques [245]. Moreover, SUMO
is a microscopic traffic simulator. A microscopic simulator permits to model and con-
sider the detailed behavior of each individual elements of a transportation system,
for example allowing to model norm-aware agents that autonomously react to the en-
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forcement of different norms and requirements. Microscopic approaches to simulation
are opposed to macroscopic ones, which are concerned with the general distribution
of vehicles, the density of traffic, and other macroscopic aspects of the system that
abstract from the detailed behavior of individual agents. In this dissertation, we will
make extensive use of traffic simulation in order to evaluate our proposals. Using
SUMO allows us to validate our hypotheses with microscopic simulations that are
realistic for smart roads scenarios involving autonomous vehicles.

1.3 Approach Overview and Contributions

The research method that we followed for this dissertation is based on the design
science research methodology [295]. The first step was the investigation of the most
common and relevant scenarios. We made use of the major case study of smart road
and traffic regulation for smart cities, where different autonomous vehicles coexist in
a shared environment and interact to perform their own tasks, and where revision of
the requirements is necessary to achieve system-level objectives, such as maximizing
road throughput, ensuring safety of drivers and pedestrians, or minimizing CO2 emis-
sions. After surveying the existing applicable state-of-art solutions in the literature,
the major existing problems and limitations were identified for the problem context,
and the research questions were defined. An artifact, the run-time data-driven su-
pervision framework, was therefore designed in order to overcome the existing gap,
by studying the relationship between the proposed solution and the context of the
problem. Both theoretical analysis and the described case studies were used to vali-
date the designed artifact and to trigger changes in areas that required improvements,
guided by the research questions. Finally, the framework was evaluated throughout
the whole process with the help of simulation.

We briefly outline the building blocks of our framework, thereby providing a con-
cise overview of how it contributes to the state of the art.

Fig. 1.3 provides an high-level architectural overview of our framework. In line
with the autonomic computing and self-adaptive systems literature [142], we make use
of a general architecture for system run-time self-adaptation described as a closed-loop
control system. In a control loop, data from sensors monitoring the system enters a
controller, which continuously compares the received data with some desired values
which reflect the system’s objectives. The controller generates then an output that is
aimed at reducing the difference between the monitored and the desired values.

In our framework, at design-time, the system designers define requirements based
on the objectives and values of the stakeholders of the system and on domain as-
sumptions. For instance, in a smart road scenario, the objectives of the city council,
the stakeholders of the smart road, may include to maximize throughput and safety
while minimizing CO2 emissions. Based on such objectives, requirements concerning
for example the speed of the vehicles on the road, their safety distance or the type of
vehicles allowed in the road, are designed.

The system, indicated in Fig. 1.3 by the red area, is built according to the de-
fined requirements and it is instrumented for their Monitoring and Enforcement. For
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Figure 1.3: An high-level architectural overview of our framework for the run-time data-
driven supervision of autonomous systems. The blue area indicates the Supervisor component
which is the main focus of this thesis. The red area indicates the system being supervised,
for example the smart road in Fig. 1.2.

instance, in the smart road scenario, the smart road infrastructure is equipped with
smart cameras, traffic lights, dynamic information panels, traffic enforcement cam-
eras, etc., as illustrated in Fig. 1.2.

At run-time, the Monitoring component of the system collects execution data
about three main elements: (i) the satisfaction or violation of the requirements, (ii)
the operating contexts in which they are evaluated (e.g., the hour of the day, or the
weather conditions), (iii) the achievement of the system’s objectives. Notice that we
make a key distinction between the requirements and the objectives of the system, as
we associate the latter to the raison d’être for the requirements [303]. Objectives of
the systems are not always computationally verifiable (e.g., if they require to assess
user satisfaction), and their evaluation may be obtained from the stakeholders in a
discontinuous way. However, we assume they are measurable. Data collected by the
monitoring component during system execution is stored into a knowledge base and
used for learning the correlation between the elements (i), (ii) and (iii) described
above. The Revision Engine component makes use of the information learnt in order
to evaluate the validity of the design-time assumptions, and to decide if and how
to revise the current requirements. A revision of the requirements is triggered when
the current requirements do not guarantee a sufficient achievement of the objectives
of the system. The supervision of the system consists of automatically revising the
requirements in order to re-align them with the system’s objectives, when deemed
necessary.

The contributions of this thesis to the state of the art concern the Supervisor
component in Fig. 1.3, and they can be summarized as follows. Fig. 1.4 relates the
contributions to the main elements of the supervisor and to the chapters of the thesis.

• Data-driven assumptions validation [RQ 1, Chapter 3]. We propose a run-time
approach to validate the assumptions made at design-time when engineering
the system’s requirements. In particular, we propose a mechanism that maps
automatically a requirements model to a probabilistic graphical model which
reflects the structure of the requirements model. The probabilistic graphical
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Figure 1.4: An overview of the main contributions of this thesis.

model (specifically, a Bayesian Network [240]) is used then at run-time to collect
data and to learn statistical relationships between the requirements and the
system’s objectives in different operating contexts, as per the knowledge base in
Fig. 1.3. We use the learned knowledge to provide a quantitative estimation of
the degree of validity of the design-time assumptions of a requirements model,
based on the acquired data. For example, in order to estimate the validity of the
assumption that the satisfaction of a requirement R positively contributes to
the achievement of a system’s objective O, we compare the learned probability
that O is achieved when R is satisfied, with the learned probability that O is
achieved when R is violated.

While early work characterized the design-time assumptions of a requirements
model [16], no practical run-time approach has been proposed to provide their
probabilistic evaluation. Bayesian Networks (BNs) have been widely employed
in Requirements Engineering for a variety of tasks [115], including the run-time
verification of requirements [141]. Wu et al. [299] propose a preliminary study
of the relationship between an iStar [101] requirements model and BNs in the
context of requirements elicitation. Inspired by such study, we propose a formal
and fully automated mapping, and an expressive type of BN which integrates
contextual information and the possibility of disabling nodes, enabling its run-
time use to validate design-time assumptions based on data.

• Requirements revision policies [RQ 2, Chapters 3-4]. We propose a variety of
novel policies (which sometimes we will call strategies) that, by analyzing the
statistical data acquired at run-time, diagnose the requirements and suggest
how to revise them.
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1
Most existing approaches to self-adaptation focus on reconfiguration of a sys-
tem so to restore its compliance with requirements, assuming their correctness
and effectiveness in achieving system’s objectives. Existing work concerning
requirements revision typically reassess the weights of non-functional require-
ments [17, 41]. We focus instead on strategies for the revision of requirements
(or norms) so to re-align them with the system’s objectives. We maintain at
run-time an explicit representation of the system’s objectives, characterizing
the rationale behind the enforced requirements. Requirements and norm revi-
sion are driven by the system’s objectives and they are based on the statistical
knowledge learned at run-time from system execution data. In our framework,
we do not assume correctness and effectiveness of requirements. In fact, data
could show us that certain requirements are noneffective, or even harmful, in
certain operating contexts for the achievement of the system’s objectives, and
need to be revised or ignored.

• Requirements revision operations [RQ 3, Chapters 3-5]. We propose algorithms
to revise requirements based on run-time execution data. In particular, we pro-
pose novel algorithms to automatically select or synthesise more relaxed, more
strict, or simply different variants of both requirements models and conditional
norms with deadlines and sanctions.

In the context of norm revision, we propose a novel approach to identify sanc-
tions that effectively motivate an adequate portion of the population of agents
to comply with the norms. In our approach, we make use of the relationship
between the preferences of rational agents, their run-time behavior, and the run-
time achievement of the system’s objectives. Furthermore, while early work on
the revision of conditional norms was presented in the literature in the context
of monitor synthesis [10], no concrete algorithms were available to revise such
norms in order to improve the norm alignment with system’s objectives based
on run-time execution data.

1.4 Thesis Outline
The thesis is structured as follows.

• Chapter 2 reviews the state of the art, including some background for the main
concepts used in the thesis. We introduce the general problem of software evo-
lution. We provide a background on MASs and NMASs. We review the models
and languages used in the areas of Requirements Engineering (RE) and NMAS
to represent requirements and norms and to support their run-time monitoring.
We outline the most common approaches and the core architectural choices for
self-adaptation. Finally, we discuss the problem of norm and requirements re-
vision and differentiate traditional model-driven approaches from data-driven
approaches.

• Chapter 3 presents our supervision framework. We apply the framework to
support the evolution (manual or automated) of requirements of socio-technical
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systems. We present our mechanism to validate with run-time data a variety
of assumptions that are made during the design of requirements models. We
show how the validity of the assumptions can be used to guide the revision
of requirements. In order to do so, we introduce the main component of our
framework: a feedback loop that continuously monitors, evaluates and revises
the requirements. We present some of the strategies that we propose for deciding
how to revise requirements and norms based on data, and we use them to
suggest and perform a revision of requirements models so to select appropriate
alternative configurations of requirements.

• Chapter 4 focuses on the run-time data-driven revision of the sanctions used to
enforce norms in a MAS. We leverage, in addition to run-time data about the
behavior of agents, also some knowledge about their preferences. We focus on
agents with rational preferences so to being able to effectively influence their
decisions by means of sanctioning [202]. We use the information about their
behavior and their preferences to determine, by means of a number of different
revision strategies, new sanctions that are expected to improve the achievement
of the system’s objectives, if used to enforce the norms.

• Chapter 5 discusses how to concretely revise the components of conditional
norms with deadlines. The revision that we study is based on a dataset of
execution traces describing the behavior of the agents in the MAS, and it aims
at improving the alignment between the norms and the system’s objectives with
respect to the dataset of traces.

• Chapter 6 draws the conclusions of the thesis and presents future directions.

Chapters 3-5 represent the technical contributions of the thesis. Each of them
corresponds to a work published, or currently under review for publication, in an
international journal in relation to this thesis. Since each of the publications is self-
standing and includes an experimental evaluation, they are reported only with minor
changes. For this reason, the reader may find some repetitions in the different chap-
ters.

1.5 Publications
We list here published work related to this thesis.

International Journals

1. Davide Dell’Anna, Fabiano Dalpiaz, and Mehdi Dastani. “Requirements-driven
evolution of sociotechnical systems via probabilistic reasoning and hill climbing”.
Automated Software Engineering, 26.3 (2019): 513-557.

2. Davide Dell’Anna, Mehdi Dastani, and Fabiano Dalpiaz. “Runtime revision of
sanctions in normative multi-agent systems”. Autonomous Agents and Multi-
Agent Systems, 34.2 (2020): 1-54.
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3. Davide Dell’Anna, Natasha Alechina, Brian Logan, Maarten Löffler, Fabiano

Dalpiaz, and Mehdi Dastani. “Data-Driven Revision of Conditional Norms in
Multi-Agent Systems”. [under review ]

International Conferences and Workshops

4. Davide Dell’Anna, Fabiano Dalpiaz, and Mehdi Dastani. “Reasoning about
norm revision”. In Preproceedings of the 29th Benelux Conference on Artificial
Intelligence, BNAIC 2017, pp. 281 to 290

5. Davide Dell’Anna. “Requirements-driven supervision of socio-technical sys-
tems”. In Joint Proceedings of REFSQ-2018 Workshops, Doctoral Symposium,
Live Studies Track, and Poster Track co-located with the 23rd International Con-
ference on Requirements Engineering: Foundation for Software Quality, REFSQ
2018.

6. Davide Dell’Anna, Fabiano Dalpiaz, and Mehdi Dastani. “Validating goal mod-
els via Bayesian networks”. In Proceedings of the 5th International Workshop
on Artificial Intelligence for Requirements Engineering, AIRE@RE 2018.
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sion using Bayesian networks”. In Proceedings of the 21st International Con-
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2 State of the Art

2.1 Introduction

Software systems are expected to operate in a constantly changing environment, and
in domains that are only partially understood [205]. Change in the applications and
in the domains in which they are applied is inevitable and constant. This follows
from the fact that real-world software, and the environment in which it operates,
have a potentially unbounded number of properties, forcing the system designer to
explicitly or implicitly make assumptions that are then reflected in the requirements
specification [191].

In his seminal work, Lehman [189] distinguishes three types of software, based
on the extent to which the software is intertwined with the environment in which it
operates, and therefore on the degree to which it is subject to change.

The type of software that is least subject to change is called S-type. The spec-
ification of S-type software is a formal definition of a problem for which there is a
desired and correct solution. For example, a program that determines the lowest com-
mon multiple of two integers is an S-type software. S-type software is not affected by
change in the environment, as its correctness and value only relate to its specification,
which does not change unless the problem statement itself changes.

P-type software is one whose problem statement (or its solution) cannot be pre-
cise, but approximates the real-world situation. An example of P-type software is a
chess game: due to the complexity of the problem, the software is forced to introduce
approximations in order to be practically used. The type of approximation is deter-
mined by the designer, and reflects to some extent the designer’s personal point of
view and available knowledge. P-type software is more subject to change than S-type
software. Even though the problem to be solved can be precisely defined, the value
of a solution depends on the real world context in which it is embedded. When the
context changes, the current solution to the problem may need to be changed as well.

Finally, E-type software is fully embedded in an environment, where it is expected
to perform human or societal activities. An E-type software, however, is not only part
of the environment it operates in, but it also actively affects it and influences it. A
traffic control system is an example of E-type software: the behavior of the system is
determined both by the software itself and by the way it is used by the user. Lehman
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writes,

“As they become familiar with a system whose design and attributes de-
pend at least in part on user attitudes and practice before system instal-
lation, users will modify their behavior to minimize effort or maximize
effectiveness. Inevitably this leads to pressure for system change.”

E-type is clearly the most complex type of software to design. In this category
fall a number of highly complex systems that we encounter in our daily lives. The
coalition of systems, as defined by Sommerville et al. [258], that led to the infamous
Flash Crash of 2010, when in about 10 minutes a number of stock indeces unexpect-
edly collapsed, causing the disappearance of trillions of dollars of market value, is
an example of such type of system. The already mentioned Socio-Technical Systems
(STSs) are another example of complex system falling in the E-type category. In a
STS, continuous interactions take place between humans, machines and environmen-
tal factors [36]. Examples of STSs are a smart home that helps patients carrying
out their daily activities; or a smart city [73]. These systems involve both technical
and social entities, continuously interacting according to complex and ever-changing
dynamics in a shared environment. Dynamism, uncertainty and change are main
features of such systems. Because of these features, the assumptions underlying the
design of an E-type software, are gradually invalidated in time, and this determines
the need for its continual change and evolution [190].

In the context of E-type software, the environment in which software operates and
the objectives and expectations of its users and stakeholders continuously co-evolve.
In response to change, not only the current software implementation shall be checked
against its requirements, but also the requirements themselves shall be evaluated, and
revised if necessary, by considering the global behavior of the system. Belady and
Lehman [37], as well as Harker [159], illustrate that changing requirements are more
common than stable ones in software development and that requirements typically
need to be redefined to new uses.

To design, maintain, and evolve the requirements of complex modern systems that
are embedded in our society, requires to consider not only the individual software
components, but also the interactions between its technical and social factors [36].
Traditional software and requirements engineering methods mainly focused on the
technical aspects of systems [81], which simply ruled out by the system’s specifica-
tion the possible illegal behaviors [206]. These approaches are not easily suitable to
describe and regulate the behavior of the social and weakly-controllable actors that
are at the core of complex modern systems [258].

Recent software system’s engineering approaches, however, have begun to move
towards so-called normative systems [151, 264]. One of the most important aspects of
normative systems, is that they allow to explicitly distinguish between the expected,
or ideal, behavior of the system and the actual exhibited behavior. Jones and Ser-
got [169] have illustrated that computer systems can be seen as instances of normative
systems, that is sets of interacting agents (human individuals, or computer systems,
or collections of either of them) whose behavior can be governed by norms, which pre-
scribe what agents should or can do. Chopra et al. employ norms (commitments) to
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specify the interactions of a Socio-Technical System [79]. They introduce the so-called
Interaction-Oriented Software Engineering (IOSE), a software engineering paradigm
which expressly aims at dealing the social aspects of STSs. In particular, IOSE, in-
stead of focusing on technical implementation, focuses on the engineering of social
protocols. Social protocols specify how (social) relationships among the participants
of the system by means of normative expectations such as commitments, authoriza-
tions, or prohibitions. In doing so, the IOSE paradigm promotes the openness of
software systems and the autonomy of its principals.

Multi-Agent Systems (MASs) are a choice for the realization of modern complex
systems that is aligned with the normative paradigm and has been proposed by several
authors in the literature [30, 231, 256]. MASs are a type of systems where agents
represent their stakeholders and autonomously act and interact on their behalf. This
is also our point of view. In this thesis, we employ multi-agent systems as a technology
for modeling, studying and supervising modern complex systems. In particular, in line
with the IOSE paradigm, we focus on normative multi-agent systems, where norms
are used as a means to coordinate the behavior of the agents in order to guarantee
desired properties of the whole system. In the rest of the thesis we will refer to
norms to talk about explicit requirements for the behavior of interacting agents in a
computer system, and we will often use interchangeably the two terms.

In Sec. 2.2, we provide some background on MASs and describe the principal
features of normative MASs. In Sec. 2.3 and 2.4, we overview the literature concerning
frameworks for the run-time adaptation of software systems. We examine the best
practices in the literature of self-adaptation at the requirements level, which identify
the need for requirements to be kept alive at run-time in order to successfully monitor
and analyze them, and employ feedback loop architectures to endow systems with
continuous adaptation capabilities. In Sec. 2.5, we outline the work related to the
revision of requirements or norms.

2.2 Multi-Agent Systems
In the field of Artificial Intelligence (AI), a Multi-Agent System (MAS) is a type of
system that consists of a number of agents interacting with each other in a shared
environment. Agents in MASs are computer systems characterized by their autonomy,
that is, their ability to independently reason and take decisions about what to do in
order to satisfy their design objectives [297]. Generally speaking, agents are self-
interested components and base their decisions on their own preferences or desires,
which typically reflect the preferences and objectives of the user they operate for [278].
Agent preferences are often associated to utility functions, so that they can be used as
a rational criterion to choose between different alternatives, based on their expected
outcomes [202, 286].

Different characterizations of agents have been proposed. Agents are typically
characterized by the following properties [298], which aim at distinguishing them
from classical programs:

• autonomy : their ability to operate without direct intervention of humans, having
some control over their actions and internal state;
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• social ability : their ability to interact with other agents or humans;

• reactivity : their ability to perceive the environment in which they operate so to
timely react to the changes that occur in it;

• pro-activeness: their ability to take the initiative and exhibit behavior that is
driven by their own goals and not only to respond to the environment.

Agents are often modeled and implemented by making use of intentional no-
tions [108, 297]. The belief-desire-intention (BDI) model [62], for example, attributes
to agents mental states such as beliefs, desires, intentions, and characterizes the agents
deliberation and reasoning in terms of these mentalistic notions [253]. This model,
whose underlying ideas have roots in philosophy [122], has been widely accepted and
employed in AI and MASs to describe and guide the implementation of intelligent
agents in a human-like fashion. IRMA (Intelligent Resource-Bounded Machine Archi-
tecture) [63] and PRS (Procedural Reasoning System) [150] are two notorious exam-
ples of BDI-based agent architectures. A variety of languages for programming BDI
agents has also been proposed over the years, following the Agent Oriented Program-
ming (AOP) paradigm introduced by Shoham [253]. Examples of such languages in-
clude AGENT-0, presented by Shoham himself, AgentSpeak(L) [233], 3APL [162], Ja-
son [57], Jadex [230], GOAL [112], 2APL [104] and the 2APL Java-based library [105].

Thanks to their properties of concurrency and independence of their components,
as well as their affinity with real-world and human aspects, MAS have been used both
in academic research and in industry in various domain, including distributed systems,
transportation, logistics, smart grid, as well as in the context of smart cities [70, 174,
219, 237].

In a MAS, successful interaction between agents depends on their ability to in-
teract with each other and with the environment where they operate. The internals
of an agent (e.g., their preferences, beliefs, or goals), however, are typically unknown
to, and often not aligned with the ones of, other agents. In fact, agents in a MAS
can be engineered by different organizations or parties with different design objec-
tives so that, generally speaking, no common goal between different agents can be
assumed [297]. Agents developed by different parties may be written in different
programming languages and based on different architectures. This is often the case
in the so called open MASs. As described by Davidson [111], in contrast to closed
MASs, where the participating agents are known beforehand (i.e., when the system
is being designed), in an open MAS different agents can enter or leave the system as
they please, and therefore the agents participating into the system cannot be known
beforehand, nor their interactions can be always fully predicted. Artikis and Pitt [22]
identify as one of the fundamental properties of an open MAS its neutrality w.r.t. the
internal architecture of their members, which need therefore to be treated as black
boxes. Open MASs are particularly suitable to characterize and deal with the com-
plexity of modern socio-technical systems, similarly involving a multitude of entities,
including humans, whose internals are not fully known nor controllable.

Since the agents in an open MAS need to be treated as autonomous black boxes,
leaving the agents interacting freely without any form of external control makes it
hard to predict and steer the emergent behavior of the system, and may lead to
undesired behaviors [139, 166].
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2.2.1 Normative Multi-Agent Systems
Inspired by society, where interactions are affected and regulated by our social abil-
ities, researchers have adopted normative and organizational approaches to MASs.
This led to the Normative Multi-Agent Systems (NMASs), where agents must take
into account social aspects, such as roles or norms, when interacting with each
other [75, 283]. These approaches are suitable for systems that need to support
real-world organizations (e.g., an online auction system, or a conference management
system), since the organizational structure can be reflected in the system itself thereby
reducing the conceptual distance between the software and the real-world [305]. More-
over, NMASs are considered promising models also for dealing with the complexity
and dynamics of complex systems [50]. An extensive and detailed overview of the
variegate research that is being conducted in NMASs can be found in the Handbook
of Normative Multi-Agent Systems [78].

Balke et al. [31] define a normative multi-agent system as follows.

“A normative multi-agent system is a multi-agent system organized by
means of mechanisms to represent, communicate, distribute, detect, cre-
ate, modify, and enforce norms, and mechanisms to deliberate about
norms and detect norm violation and fulfilment.”

Norms and their classifications

Norms are of central importance in normative multi-agent systems. Norms have
been studied in a variety of different fields besides computer science, including sociol-
ogy [130, 153], philosophy [173, 287], economics [131, 218], as they are a fundamental
technique in our society for coordinating the activities of individuals [194]. Due to
their multi-disciplinary nature, there is no standard definition of norms and differ-
ent classifications have been proposed [20]. Gibbs [153] identifies in the sociology
literature nineteen types of norms and provides the following general description of
norm.

“A norm in the generic sense involves: (1) a collective evaluation of be-
havior in terms of what it ought to be; (2) a collective expectation as to
what behavior will be; and/or (3) particular reactions to behavior, includ-
ing attempts to apply sanctions or otherwise induce a particular kind of
conduct.”

We consider here three particular classifications that will help us characterizing
the types of norms that we will consider in the following chapters.

Starting from Searle’s theory of the construction of social reality [247], one clas-
sification of norms is provided by Boella and van der Torre [49], and distinguishes
regulative and constitutive norms.

• Regulative norms describe the behavior that is expected from agents. Typically
they are described via deontic statements of obligation, prohibition and permis-
sion that regulate the possible actions and behaviors of the agents in certain
operating conditions. An example of regulative norm is a norm cars are obliged
to have a speed below 80 km/h.
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• Constitutive norms are the rules that determine what count as what, in a given
society. They are meant to create institutional facts, i.e., facts that give a
meaning to brute facts in the context of a normative system [247]. An example
of constitutive norm is raising a hand during an auction counts as making a bid,
which states that raising a hand, a brute fact, has the meaning of making a bid,
an institutional fact, if done during an auction.

In this work, we focus on regulative norms and we assume norms to be formal spec-
ifications of deontic statements that impose prohibitions, obligations, or permissions
on the behavior of agents.

A different classification of norms is provided by Coleman [91] with respect to the
way the norms emerge and are enforced. Coleman distinguishes conventions from
essential norms.

• Conventions are norms that emerge naturally within a population of individ-
uals without an explicit enforcement system. Conventions are associated to
the so-called social norms, or s-norms [270], and are seen as regularities of be-
havior that spontaneously emerge from the mutual beliefs and expectations of
agents [194]. A classical example of convention is the agreement of driving on the
right-side of the road. Social norms relate to an interactionist view on norma-
tive multi-agent systems, i.e., a bottom-up view where norms are not enforced
by an authority (or institution), but agents are discouraged from violating them
by the possibility of social blame or exclusion from the group of agents they are
part of, or with whom they share similar values [45].

• Essential norms, conversely, are associated to rules, or regulative norms (r-
norms). They are created and enforced by an authority with the purpose of
controlling and coordinating the behavior of the agents when there is a conflict
between the individual goals of self-interested agents and the global goals of
the system. Regulative norms relate to a legalistic (sometimes essential norms
are called legal norms) view on normative multi-agent systems, i.e., a top-down
view where the normative system is meant to regulate the emerging behavior of
(possibly open) systems without over-constraining the autonomy of the partic-
ipating agents. In such a view, norms are sometimes associated also to explicit
sanctions, which are measures (e.g., a fine) that discourage agents from violat-
ing them. A speed limit (regulative) norm, for example, may be enforced by an
institution in order to improve the safety of the road. Sanctions make sure that
selfish agents obey the norm.

In this dissertation, we adopt an exogenous approach for the coordination of agents
in a MAS [68]. As opposed to an endogenous approach that assumes that norms are
internalized by the agents, an exogenous approach is agnostic about norm internaliza-
tion. The focus of this dissertation is on mechanisms aimed at regulating the behavior
of heterogeneous agents that do not necessary share the same objectives with other
agents and with the system designers and stakeholders, and whose internals may be
unknown. With respect to Coleman’s classification, we focus on essential norms that
are enforced by an institution.
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The main focus of this work, therefore, is on an external authority (institution) in
a MAS that is aimed at enforcing norms in order to coordinate the behavior of the
agents. Engineering such coordination mechanisms by means of an external authority
also supports the general principle of ’separation of concerns’, and supports open MAS
as it does not over-constraints the implementation of the participating agents [304].

Observe that an exogenous approach does not imply that agents do not internalize
norms, nor that new norms cannot emerge within a society of agents. Similarly to
human society, norms that are enforced by an exogenous authority may be internalized
by agents and become part of their beliefs and internals (e.g., stopping at a red
light). Vice-versa, norms that emerge from the behavior of the agents may become
laws and be enforced by an institution if detected, and their explicit regulation may
improve the compliance and their effectiveness (e.g., driving on the right) [221]. In
this dissertation, while we adopt a top-down approach, focusing on an institution
that aims at enforcing norms, we support, but we do not explicitly focus on, the
internalization of norms and their emergence in the population [5, 95, 242]. Moreover,
in our framework, the institution makes extensive use of execution data, obtained from
the exhibited behavior of the agents, in order to critically evaluate and decide how
to revise the enforced norms. Analyzing behavioral data allows the institution to
take into account the agents’ preferences and choices in its decision mechanisms. To
give an example, in our framework, if some agents decide to violate a norm, and the
violations appear not to be harmful for the system-level objectives, our institution
will tend to accommodate such violations by switching to less restrictive norms.

Finally, a third classification of norms is that recently provided by Alechina et
al. [12]. This classification is based on whether norms and their violations are specified
in terms of states, actions, or behaviors.

• State-based norms specify (properties of) states of the system that are prohib-
ited or required. A state typically characterizes a state of affair of the system.
For example a state-based norm is a car is obliged to have an insurance.

• Action-based norms (also called transition-based, or event-based, norms) specify
prohibited or required transitions between states of the system, that can be due
to actions performed by individual agents, but also actions performed by groups
of agents. An example of action-based norm is it is prohibited to enter the road.

• Behavior-based norms (also called path-based norms) specify prohibited or re-
quired behaviors (i.e., temporal patterns of states) of the agents or of the system
as a whole. Among this class of norms, we find conditional norms with dead-
lines, which express states that are prohibited, or required, between states where
a condition holds and states where a deadline holds. An example of this type
of norm is after entering the city center the car is prohibited to speed over 50
km/h until it exits the city center.

In this dissertation, we will first devise general strategies that suggest a type of
revision required of a norm based on data acquired during the execution of the system
(for example we will devise strategies that suggest to relax, or weaken, a norm, when
it appears from data that the norm is too restrictive). In discussing those strategies,
for example in Chapter 3, we will abstract from the specific type of norm, as we
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consider the suggestion independent from the type of norm. In Chapter 4, we will
focus on sanctions, which can be used as an enforcing mechanism for different types
of norms. In Chapter 5, instead, we will focus on how to specifically revise a norm,
given a type of suggestion. In that case we will consider behavior-based norms, and
in particular conditional norms with deadlines.

Norm-aware agents

In order for agents in a MAS to be able to choose whether to obey to norms or not,
agents should have an explicit knowledge of the norms and should be able to reason
about them. Conte et al. [75] describe requirements for an agent to be considered
norm-autonomous (sometimes referred to as norm-aware or normative). A norm-
aware agent, among other things, is able to recognise that a norm exists; it is able
to accept it, i.e., to determine if a norm concerns its case or not; and it is able to
deliberately follow it or violate it.

Many architectures and solutions for norm-aware agents have been proposed in the
literature to represent, reason and make decisions about norms. Deontic logic [287]
has been commonly used to represent and reason about obligations, prohibitions and
permissions [93], and it has been extended in several ways to support for example
the specification of deadlines [124] or to express the actors who initiate actions or
choices [296].

Following the success of the BDI model, BDI-based architectures have been pro-
posed to embed concepts such as norms and regulations in the deliberation process of
agents [67]. For example, Castelfranchi [74] represents norms as mental objects en-
tering the mental processing, that interact with beliefs, goals and plans. Norms have
impact on goals generation and goal selection, but also on plan generation and plan
selection. Dignum et al. [125] discuss how to integrate deontic events as normative
beliefs in the original BDI framework in the context of social agents.

The BOID (Beliefs-Obligations-Intentions-Desires) architecture [65, 106] intro-
duces a normative aspect to the BDI architecture, allowing agents to choose to comply
with obligations. Different types of agents are defined, based on their preference re-
lation over their components. For instance, a selfish agent gives priority to its desires
over obligations; a simple-minded agent priorities intentions over desires and obliga-
tions; and a social agent gives more priority to obligations than desires. Preferences
allow agents to solve the conflicts that are intrinsically carried by the introduction of
norms in agents’ reasoning [66, 183]. Kollingbaum et al. [183] describe different levels
of inconsistency that can occur during the adoption of a norm from an agent. They
discuss conflicts between norms in the context of the Normative Agent Architecture
(NoA) [182], where norms are used as a filter to remove plans that would result in
violation.

Preference ordering over goals and norms are common to different architecture as
a means to solve conflicts between them. In N-2APL [8], agents associate an ordinal
number to goals and sanctions (that would result from the violations of norms) that
represents the importance of achieving a goal and avoiding a sanction respectively.
The importance is then used by the agent to decide whether or not to drop a goal or
incur in a sanction.
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A number of programming languages for normative agents have been proposed
that extend the languages for non-normative agents. N-2APL [8] and N-Jason [188]
are two of them that follow the AOP approach.

In this dissertation, we focus on an exogenous institution which has the task of
enforcing norms and monitoring and handling their violations. We will abstract from
the specific underlying reasoning schemes of individual agents, which, in line with the
fundamental property of neutrality of an open MAS, we will assume not to be known
to the institution. We will assume, however, that agents are norm-aware, in the sense
that they respond to the enforcement of a norm. In Chapter 4, we will consider a case
where agents act rationally according to their preferences and the institution has some
knowledge about such preferences. As the focus of this thesis is mainly on mechanisms
of revision of the norms, we also do not explicitly consider the roles that agents can
have within an organization, and the aspects that organization-aware agents shall take
into account when making decisions [279]. Limitations concerning these assumptions
will be discussed in the corresponding chapters and in the conclusions of this thesis.

2.2.2 Norm Enforcement and Monitoring
Being able to adopt norms in a MAS requires an implementation of a mechanism of
norm enforcement and monitoring that is responsible for detecting violations of the
norms and handling these violations [301].

The enforcement of a norm depends on the level of control that the institution
has over the agents and the verifiability of the content of the norms [282].

Vasquez et al. [282] provide an orthogonal classification of norm to the ones illus-
trated in Sec. 2.2.1, and identify three types of norms with respect to their verifiability.

• Computationally verifiable norms: they can be verified at any moment by the
institution enforcing it. An example of this type of norm is no car shall enter
the road.

• Non-computationally verifiable norms: they can be verified by the institution
but it is computationally hard to do so, or additional human intervention is
required. For example a norm that prohibits to publish fake news in a social
network may be hard to verify from an institution.

• Non-verifiable norms: they cannot be verified by the institution because they
are not observable. For example an institution cannot verify if an agent has
certain beliefs.

In this thesis, we will mostly focus on computationally verifiable norms. We will
also consider, however, system’s objectives which concern what the stakeholders of
the system (represented by the institution) desires to achieve by means of enforcing
(computationally verifiable) norms on the agents. In this sense, some of such system-
level objectives could be associated to non-computationally verifiable (higher level)
norms. For example if one of the system’s objectives is to guarantee the satisfaction
of the (human) users of the system, such objective is non-computationally verifiable,
as it needs a human feedback concerning their satisfaction. We distinguish therefore
(computational) verifiability, which we assume for the norms, from the notion of
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measurability (i.e., the capability of obtaining a quantitative measure of a variable,
either computationally or non-computationally), which instead we assume for system’s
objectives.

Besides their verifiability, an institution also needs to enforce in some way the
norms on the agents. Two ways of enforcing a norm are mainly distinguished in the
literature: regimentation and sanctioning [109].

• Regimentation is based on the idea of preventing violations to occur. For exam-
ple, in a smart traffic system, a regimentation strategy could be to close a road
to prevent cars from entering the road. Regimentation assumes that the system
can somehow annul a violating action before it actually takes place. This does
not assume control over the internals of the agents: the agent can still decide
and try to perform a certain action, but the result will simply not be executed
by the environment.

• Sanctioning, instead, is based on the idea of reacting to the violation of the
norms. An agent’s decision to obey or violate a norm, is motivated, or discour-
aged, by certain rewards or sanctions. Even though also regimentation could
be considered as a sort of punishment (i.e., sanction), sanctioning is considered
granting more autonomy to the agents, as agents technically can still perform
the actions [7]. In the smart traffic system example, a sanctioning strategy could
be to impose fines on cars that do enter the road.

In this thesis, we investigate both regimentation and sanctioning, and we will
propose techniques to revise both the norms and their sanctions. We do not explicitly
focus on rewards, or incentives, for the agents to perform a certain behavior [123]. We
note, however, that sanctions can be also seen as a positive incentive to motivate the
agents to comply with the norms, when compared to the negative reward the agent
would receive if violating the norm. This is also in line with the idea of sanctions as
a deterrence to discourage agents to perform illegal behaviors [7].

Practical implementations of norms and norm enforcement

Several practical implementation of norms and their enforcement have appeared in
the literature in recent years, often adopting the so-called Organisation Oriented Pro-
gramming (OOP) approach that aims at implementing an exogenous organization
aimed at constraining, by means of norms, the behavior of the agents participating
in the system. One of such approaches is ISLANDER/AMELI [135, 136], which
combines ISLANDER, a modelling language for specifying institutions in terms of
rules and norms, with AMELI, a platform that implements the infrastructure that
allows agents to interact and communicate, and the institution to enforce the norms.
In ISLANDER/AMELI, norms are regimented and action-based. Another related
framework is Moise` [163], which allows to specify multi-agent systems distinguish-
ing the structural, functional, and deontic organisational dimensions of the system.
The deontic dimension, in particular, concerns concepts such as obligations and pro-
hibitions and it is the dimension that we mainly consider in this thesis. In the exten-
sion S´Moise` [164], agents are given access to the current state of the organization
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and they are allowed to change the organization and its structure, as long as (regi-
mented) norms prescribing prohibited or required states are not violated. Tinnemeier
et al. [267] present a norm-based programming language aimed at implementing exoge-
nous institutions that control the behavior of agents by means of (state-based) norms.
An associated interpreter, called 2OPL [109], has the task of monitoring the behavior
of the agents and enforcing the norms when necessary. Norms, in such framework,
can be either regimented or enforced by means of sanctioning and they come with an
operational semantics, so that verification techniques can be used to verify executions
against these norms. Finally, some frameworks combine different approaches. For
example, in JaCaMo [54] an organisational artifact is implemented with the Moise`

specification, and norms are enforced by means of sanctioning, which is delegated to
organizational agents.

2.3 Designing Software Systems
In designing a software system, the process consisting in the elicitation, specifica-
tion, verification and validation, and management of the requirements of the system
is called requirements engineering. The purpose of requirements engineering is to
acquire sufficient knowledge about the problem domain, and to elicit requirements
from which to derive a specification that will meet the needs of the stakeholders [275].
Requirements are of foremost importance in software engineering, for they are the
design artifact that will drive the software implementation by carrying information
about what are the objectives of the software [134]. Zave and Jackson [306] first
formulated the requirements problem as follows.

Requirements Problem. Given the requirements R (optative statements of
desire) and the domain knowledge W (properties and assumptions about
the world the software must operate in), find a specification S such that
W,S $ R.

Given the domain knowledge W , the specification S of the system is expected to
completely cover the system’s requirements R and to be correct and consistent in its
technical definition. The specification is then used to guide the implementation of
the software.

Such formulation of the requirements problem was later revised and extended
by Jureta et al. [170] to overcome some of its limitations when applied in practice.
Jureta and colleagues propose a new core ontology, whose concepts are mapped to
the DOLCE foundational ontology [203]. They associate the Zave and Jackson’s
domain assumption, requirement, and specification concepts to propositional atti-
tudes, i.e., belief, desires, and intentions, respectively. They characterize Functional
Requirements (FR), which describe what the system must do, and Non Functional
Requirements (NFR) [216], which describe desired qualities of the system and their
desired values1, with the notions of goals and quality constraints, respectively. They
also characterize more abstract NFR, which refer to desired non-verifiable qualities,

1This is in line with the recent Requirements Engineering research literature, where NFRs are
seen as requirements over qualities [155, 195].
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such as “high convenience”, with the notion of soft-goals. In order to obtain an
evaluation of soft-goals in practice, the referred quality can be approximated with a
quality of a quality constraint. Because of this approximation, the authors use of a
non-monotonic operator p„, instead of $, to describe the satisfaction relation in the
requirements problem. The specification, finally, is characterized with the notion of
plans, whose execution is supposed to bring about states of the world in which the
goals and all quality constraints (including those that approximate the soft-goals) are
satisfied.

In the context of enterprise architectures, Greefhorst and Proper [157] introduce
the concept of architecture principles as means for the system’s stakeholders to express
a vision of the system’s objectives. They notice how architecture principles can be seen
as credos, normative principles (declarative statements that normatively prescribe
properties of the system) expressing a fundamental desired belief. Similarly to Jureta’s
concept of soft-goals, credos are not yet specific enough to actually be concretely
enforced. In order to use these principle to guide the design of the system, they need
to be made more specific, so that it is possible to assess their compliance. Greefhorst
and Proper claim that once credos have been reformulated specifically enough to be
measurable, they can be referred as norms.

In this thesis, we make use of the concepts introduced by Jureta et al., and take
a similar perspective to Greefhorst and Proper. In particular, we focus on the re-
vision of computationally verifiable (as per Sec. 2.2.2) requirements, which we asso-
ciate with goals and quality constraints. We associate system’s objectives, i.e., non-
computationally verifiable higher level requirements, with soft-goals. Since we con-
sider requirements as norms aimed at regulating the behavior of autonomous weakly
controllable components of the system (agents) whose internals are unknown, we will
not assume that the intentions of such agents, i.e., their plans, will be in line with the
system’s requirements, nor that they will aim at satisfying the requirements.

2.3.1 Design-Time Engineering of Requirements and Norms

In the framework proposed in this dissertation, we consider the output of a design-
time phase as (part of) the input for the revision process, which we see as a run-time
phase. To make it possible, or to facilitate, the run-time revision of the requirements
of a system, however, the prospect that requirements could be revised at run-time
must be at least partly taken into account already at design-time, for example by
choosing appropriate languages or models to represent requirements or norms.

Ernst and colleagues [134], for example, illustrate the importance of well-structured
tangible requirement artifacts that represent all the aspects of the requirements prob-
lem and capture stakeholders’ objectives, domain assumptions and implementation
options. This is particularly true for systems that are characterized by their con-
tinuous evolution, such as E-type software. The reason is that, in the context of
requirements evolution, the availability of such artifacts (or models) allows for their
monitoring and for reasoning about them at run-time.

We discuss here design-time approaches for the engineering of norms and require-
ments. Then, we point out some limitations and extensions of these approaches for
supporting the run-time evolution of software systems.
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Requirements engineering methodologies and requirements modeling languages

From a software engineering perspective, in the last years, requirements engineer-
ing approaches, and especially those aimed at supporting the run-time analysis and
evolution of requirements, started representing requirements via requirements mod-
els [40]. Requirements models [271] can be created with different purposes, including
specifying a system, supporting testing, or simply for increasing clarity about the
system. Depending on the purpose, the analysts may decide to represent different as-
pects of the system under development and its environment, such as the information
structure, scenarios, goals, objectives, or requirements. Requirements models, and in
particular hierarchical requirements models, organize the requirements for a system
as refinement trees, where high-level objectives are refined in terms of more specific
requirements and system functions.

Within the landscape of requirements modeling languages, goal models have been
widely used in the literature [101, 275, 303]. The term Goal-Oriented Requirements
Engineering (GORE) describes an approach to requirements engineering where the
needs of the stakeholders of a system are represented as goals, in line with the ontology
proposed by Jureta et al.. Goal models are graphs where each node can represent a
goal, an action, an agent, an entity, or an event, and edges represent semantic links
between such elements. In goal models, goals are typically organized in hierarchies via
AND- and OR-decomposition links. Sub-goals of a goal are assumed to be necessary
in order to satisfy the main goal. Goals can have positive or negative impact on
soft-goals, non-functional requirements whose satisfaction does not depend on a clear
cut criteria, e.g., minimize CO2 emissions.

The concept of goal model is considered central in the KAOS (Knowledge Ac-
quisition in autOmated Specification) methodology [102], which is meant to support
the requirements acquisition phase, where designers try to understand which are the
requirements of the system to-be.

Goals are used also in the agent-oriented modelling framework iStar (or i*), first
introduced by Yu [302], and later consolidated by Dalpiaz et al. [101], which is used
in requirements engineering and organizational modelling to model the stakeholders
of the system and their objectives and relationships, and to evaluate alternative ways
to construct the new system. A crucial concept in iStar, is the one of actors, which
can represent concrete agents with specific capabilities, but also more abstract agents
representing roles and responsibilities, or even positions in the organization. Actors
in iStar have goals that aim to achieve, and depend on each other for the fulfilment
of such goals. Along the same lines, agent-oriented software engineering (AOSE)
methodologies such as Tropos [64] have been proposed in the literature. Tropos, for
instance, imposes some additional constraint to iStar so to employ mentalistic notions
such as goals, plans and tasks through five phases of software engineering, i.e., from
the early requirements analysis to the implementation.

Formal approaches

A number of complementary approaches, based on formal methods, have been pro-
posed alongside the requirements (and software) engineering methodologies outlined
above. Formal approaches are used to formally model the systems under development,
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so to provide formal guarantees about their behavior and their properties when satis-
fying the given requirements. The requirements of the system in these approaches are
typically represented in some form of logic, such as propositional logic [277], propo-
sitional dynamic logic [109], temporal logic [35, 252, 278], or simply by means of a
set of states or actions that are considered undesired and should not occur. A formal
model that describes all possible aspects of the system is then checked to prove that
the requirements are satisfied.

Classical formal methods employ transition systems (directed graphs, whose nodes
represent states of the system and edges represent state transitions) or automata to
model the possible behaviors of a system. Model checking techniques [84] are employed
to verify that the model satisfies certain properties that can be defined for example
in Computational Tree Logic (CTL) [83]. If that is not the case (for example if
the transition system contains some paths that lead to undesired system states) the
model needs to be changed (for example by removing or preventing certain transitions
between states) until a satisfactory solution is found.

Concurrent Game Structures (CGS) have been considered to deal with open sys-
tems, whose behavior depends both on the system and on the environment in which
it operates. In a CGS, the state transitions result from a profile of choices of actions,
one for each agent in the system, including also the environment. In these cases
properties to be checked are typically expressed in Alternating-time Temporal Logic
(ATL) [19].

Formal approaches are particularly commonly used in the (normative) MAS re-
search community, often taking into account game theoretical concepts in order to
study the properties of a MAS and to design opportune norms. Agotnes et al. [4],
for example, represent multi-agent systems as Kripke structures, a variation of (la-
belled) transition systems where labels are given to states instead of transitions, and
describe a normative system as a subset of such structure. Introducing a norm in a
multi-agent system, corresponds therefore to removing some (bad) transitions from
the Kripke structure. They represent agents’ goals as ordered lists of CTL formulae
and show that the utility of agents is higher when they decide to comply with the
norms. Bulling et al. [68] apply methods from mechanism design to determine and
verify if in a MAS, described as a CGS, a set of norms and sanctions is sufficient to
motivate agents to act in the way desired by the system’s designer, given the rational
behavior of agents based on their preferences.

Onn and Tennenholts [220] represent a MAS as a graph, and reduce the problem of
designing social laws to a graph routing problem. They use graph theoretic methods
to automatically compute a subgraph that will guarantee agents to achieve their goals
regardless of the behavior of other agents. Along the same lines, Christelis et al. [82]
propose a mechanism to synthesize norms that prohibit access to a set of predefined
undesirable states. They employ local search algorithm to travers the state space
and to identify so-called conflict free runs that are then used to produce action-based
norms that prohibit to perform actions that lead to conflicting states.

Agotnes et al. [3] model the problem of designing a social law as a multi-objectives
optimisation problem, and formulate the problem as an integer linear program. Sim-
ilarly, Lopez-Sanchez et al. [197] show how to encode the problem of deciding which
norms to enforce from a set of existing possible ones as a linear optimization con-
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straint problem. They define a problem called Maximum Norm System Problem with
Limited Budget which determines which subset of a predefined set of norms should be
enforced. They encode in the problem definition also the cost of enforcing a norm and
the relationships that may exist between them, such as exclusivity or substitutability.

2.3.2 Design-Time Assumptions

Traditionally, the development of software systems clearly distinguished the design
phase and the run-time execution of the system. Design-time approaches like the
ones described above, however, inevitably rely on a number of assumptions about the
correctness of the requirements, about the system, and about the agents operating
therein. For instance, formal approaches assume that all possible interactions that
can occur between agents are known and can be taken into account in the model at
design-time; or that once a norm is proven to guarantee the desired properties, that
will be the case also once the system is put in place.

Boness et al. [55, 56] identify assumptions–in particular, assumptions regarding
what is expected from the environment in which the system will operate–as one of
four risk factors characterizing the potential for error and loss in software develop-
ment that is acquired during the requirements engineering phase. They propose to
explicitly represent assumptions when defining requirements within a goal oriented
framework. They use the concept of assumption to help the system designers to as-
sess, during requirement analysis, the confidence in (and the risk due to) the set of
elicited requirements.

Ali et al. [15], identify a set of assumptions that are made by the requirement
engineers based on their beliefs and knowledge about the system under design and
its environment, and that are implicitly contained in the structure of requirements
model. Some examples of such assumptions include:

• Activation assumptions, concerning the assumption that the description of the
context in which a certain requirement should be activated (e.g., a requirement
“the product shall be promoted to the customer” should be activated when “the
customer is in the product area”) are sufficient to cover all and only the cases
when the requirement should be activated. For instance, if the customer has
already entered the product area twice, wouldn’t promoting the product every
time risk to lead to a negative customer reaction?

• Adoptability assumptions, concerning the assumption that a certain software
implementation guarantees the achievement of a requirement. For instance, is
it always true that sending a message to the customer showing the features
of a product guarantees the achievement of the requirement in the previous
example?

• Requirements achievement assumptions, concerning the assumption that when
given conditions are met, a certain requirement is satisfied. Is it sufficient for
the customer to investigate the product to consider the requirement in the above
example met?
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Invalid design-time assumptions have been identified as one the main causes for
software evolution [15, 191]. This is particularly true for complex modern systems,
where the autonomy of the participating entities and the volatility of the environment
and of the operating context lead to high run-time uncertainty [16, 294]. The notion
of context becomes of foremost importance for this type of systems, as the context
heavily influences the requirements, and changes in the context affect the validity of
the assumptions.

Several works have discussed the importance of keeping track of the relationship
between context and requirements at run-time [16, 144], as well as the need to ex-
plicitly consider assumptions made at design-time and continuously monitor them at
run-time to being able to have requirements and software that reflect the reality.

In this dissertation, and in particular in Chapter 3, we propose strategies to use
run-time data to statistically validate a variety of assumptions in a requirements model
(including the ones presented by Ali et al. [15]) in different operating contexts.

2.3.3 Requirements and Assumptions at Run-time
In recent years, it has been shown that requirements and requirements models, tradi-
tionally used for design, implementation and verification purposes, can (and should)
be used also at run-time to monitor and analyze the behavior of the system [48].
Doing so enables the collection of system execution data and its analysis, providing
the essential inputs for detecting whether and when design-time assumptions become
invalid [15] and to support system evolution or self-adaptation [243]. Baresi and
Ghezzi [33] discuss the need of breaking the boundary between design-time and run-
time. They illustrate that models used during software development should continue
to live at run-time in order to cope, and evolve together, with the continuous evolution
of the system operating environment.

Bencomo et al. [43] write,

“Software models also have the potential to be used at runtime, to mon-
itor and verify particular aspects of runtime behavior, and to implement
self-* capabilities (e.g., adaptation technologies used in self-healing, self-
managing, self-optimizing systems). A key benefit of using models at run-
time is that they can provide a richer semantic base for runtime decision-
making related to runtime system concerns associated with autonomic and
adaptive systems.”

The idea of endowing systems with self-* capabilities, comes from the fact that,
especially in modern software systems such as the Internet of Things (IoT) or cloud
computing, halting the system to maintain it in case of non-compliance with the
requirements, or in case the assumptions made at design-time become invalid, is
hardly an option, and often too costly [34, 196].

A core issue for the run-time maintenance of requirements, as we will see in Sec. 2.4,
is that of monitoring. Requirements should be monitorable and verifiable during the
system’s execution. This is in line with the type of norms identified by Vasquez as
computationally verifiable norms, as reported in Sec. 2.2.2. Doing so allows their run-
time analysis and it allows to verify with execution data whether the assumptions

32



2.3 DESIGNING SOFTWARE SYSTEMS

2Cars receive routes to 
reach their destinations 

(NSD)

Cars respect the 
received routes (RS)

Routes are received 
from an adaptive navigation 

service (ANS)

Routes are received 
from a static navigation 

service (SNS)

Low traffic load 
(ATO)

SuccessRate(10%)

Cars use the CNS 
(NS)

SuccessRate(80%)
Few complaints 

(C)

Avg. Trip Overhead below 250%

Less than 30/week

+

+

Legend

Goal

Contribution

Soft-Goal

Quality Constraint

Self-awareness 
requirement

Decomposition

AND

OR

Figure 2.1: Illustrative simplified goal model with awareness requirements.

made at design-time are valid, and to possibly trigger a revision of both requirements
and assumptions.

Goal and requirements models at run-time

Over the years, goal and requirements models have been extended in a number of
ways to support their runtime monitoring. Dalpiaz et al. [99], for example, introduce
Run-time Goal Models (RGM), a refinement of (Design-Time) Goal Models that
introduces additional behavioral constraints about how goals are to be achieved (e.g.,
constraints on the ordering for pursuing sub-goals of a goal). They propose RGMs
as an artifact to determine at run-time whether system operations are in accordance
with its requirements.

Ali et al. [13, 14], describe Contextual Goal Models, which allow to specify a
reference context to different elements of the a goal model. This allows to consider
at run-time opportune parts of a goal model based on the current operating context.
In a later work [15] they show how to use such contextual goal model at run-time to
collect experience about the effectiveness of requirements and about the validity of
the assumptions in different contexts.

Souza et al. [260] introduced the concept of awareness requirements (AwReqs) as
meta-requirements that can be used to guide the run-time adaptation of systems.
Awareness requirements are requirements about the run-time success or failure of
other requirements, but also about the truth or falsity of (design-time) domain as-
sumptions. AwReqs represent a type of annotation that helps qualifying the sat-
isfaction of different criteria allowing for runtime monitoring of requirements (and
assumptions).

To clarify these concepts, Fig. 2.1 shows an illustrative example of a simplified
goal model, integrated with some awareness requirements. The goal model refers to a
scenario where the city council of a smart city aims at improving the urban traffic by
offering a Central Navigation Service (CNS ). A major goal is identified: at least 10%
of the cars in the city shall always use the offered CNS (NS ). To satisfy this goal,
two sub-goals are assumed to be necessary: whenever a car starts a trip toward a
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destination, the car shall receive a route from the Central Navigation Service (NSD)
and at least 80% of all the route suggestions given by the CNS is respected by all the
cars equipped with the CNS (RS ). The NSD goal can be met by either employing a
dynamic navigation service (ANS ) (for example a navigation service that adapts its
suggestions to the traffic load and learns from its experience) or a static navigation
service (SNS ). In other words, whenever a car equipped with the CNS starts a trip
toward a destination, the car shall receive a route from an adaptive (static) navigation
service. These goals are assumed to help achieve two soft-goals concerning the global
traffic load in the city (evaluated in terms of cars’ average trip overhead) and the
satisfaction of the users when using the navigation service (evaluated in terms of
number of complaints).

Note that goals, as mentioned earlier, are organized in hierarchies via AND- and
OR-decomposition links. For example, to achieve the goal NS, both goals NSD and
RS shall be satisfied. OR-decompositions describe possible exclusive ways to achieve
a goal. The expected positive or negative impact of goals on soft-goals is represented
via contribution links, shown as dashed directed arrows. Goals that are not associated
to an AwReq in Fig. 2.1 are required to be satisfied by every instance of the referred
goal (e.g., an instance of goal ANS is created at run-time every time a car equipped
with the CNS starts a trip, and such instance is satisfied if the car receives a route
from an adaptive navigation service). These requirements are called regular AwReqs
by Souza et al. [260]. Requirements like SuccessRate, instead, are called aggregate
AwReqs: the satisfaction of the associated goal is determined in terms of groups of
instances of the goal (e.g. an instance of the goal NS is created and evaluated for ev-
ery car driving in the city, NS however is achieved if 10% of such instances is satisfied).

Goal models have been proposed as run-time artifacts also in the context of multi-
agent systems. For example, Morandini et al. [214] describe an operational semantics
of goals in goal models at run-time. This allows to use goal models also in more
formal agent-oriented programming settings.

Requirements languages for run-time system adaptation

Besides requirements models, also languages for specific requirements have been pro-
posed in light of a run-time system adaptation.

RELAX [294], for example, is a fuzzy logic-based requirements language for self-
adaptive systems that allows to specify, with adequate operators, relaxed versions
of a requirement during the requirement elicitation phase. The language is useful to
specify requirements, and their possible variations, so to facilitate run-time approaches
to their adaptation. For example, an AS EARLY AS POSSIBLE operator allows to
specify a relaxed version of a requirement which can be enabled at run-time to provide
the system with less strict (and fuzzy) constraints about when the requirement must
be met.

In the normative MAS research community, conditional norms with sanctions and
deadlines have been commonly used to express desired behavioral properties [9, 267].
A conditional norm is a tuple pc, Zpφq, d , sq, where c, φ and d are boolean combina-
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tions of propositional variables from a propositional language L, s is a propositional
atom, and Z can be either O (indicating an obligation) or P (indicating a prohibition).
c represents the condition that must be satisfied in a state in order to detach the norm.
A detached norm persists as long as it is not obeyed or violated or the deadline d is
not reached (a state where d holds is encountered). If the norm is violated, a sanction
s is associated to the violation. Alechina et al. [10] show that one of the advantages
of this type of norms is to provide a reasonable compromise between expressiveness
and ease of reasoning. In particular they show that the semantics of the violation
of conditional norms can be expressed in Propositional Linear-time Temporal Logic
(PLTL), which is a known fragment of LTL, and they illustrate that the runtime
monitoring for violations of conditional norms requires time linear in the size of the
trace and constant space.

In this dissertation, we will make use of both run-time requirements models, and
conditional norms with sanctions and deadlines. Both run-time requirements models
and conditional norms are characterized by features that make them suitable and
interesting for their run-time revision. In particular they both are tractable, in the
sense that, as we have shown, they can be easily kept alive and monitored at run-time.
They are expressive, as they allow a hierarchical composition and the characterization
of relatively complex behaviors, and at the same time conceptually they are also
relatively easy to understand. Conditional norms, for example, allow to express a
variety of temporal patterns of behaviors, but they are also often encountered in our
daily life. Think for example of a norm after entering the city center, cars are obliged
to have a speed below 50 km/h, until they exit the city center. Finally, they are both
formal, so that they can be interpreted and automatically revised mechanically, but
they also allow to express properties with a certain degree of flexibility, typical of
many real-world software engineering applications.

Concerning requirements models, we will not focus on a particular modeling lan-
guage. We will consider, instead, a general notation of hierarchical requirements
models extended with awareness requirements such as the one illustrated in Fig. 2.1,
that will allow us to organize the requirements for a system as refinement trees, and
to monitor their satisfaction at run-time. We will study then how to validate, at
run-time and by means of a statistical analysis of execution data, the assumptions
that underlay the structure of the model and its requirements, so to trigger a revi-
sion of the requirements, when needed. We will devise a number of strategies that
suggest types of revisions of requirements based on the outcome of the assumption
validation, and use these suggestions to perform a revision of the requirements. We
will show how to apply the suggestions directly to revising the requirements model, in
particular to selecting a new variant of the model that satisfies the given suggestions.
Moreover, we will also consider specific conditional norms and we will show how to
revise all their components (i.e., condition, regulated state φ, deadline, and sanction)
so to synthesize new norms that are in line with the suggested revision.
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self-adaptive software systems, matching the various phases
of software development with the relevant background and
techniques from Control Theory. For space limitations we
restrict this paper to time-based controllers. Other paradigms,
e.g. event-based controllers [18, 19], allow achieving similar
or complementary results for specific control problems. The
goal is to bootstrap the design of mathematically grounded
controllers, sensors, and actuators for self-adaptive software
systems, providing formally provable effectiveness, efficiency,
and robustness.

II. ADAPTATION IN SOFTWARE AND CONTROL
ENGINEERING

The word “adaptation” means two different things to soft-
ware and control engineers. For a software engineer, adaptive
software reacts to changing environmental and contextual
conditions by changing its behavior or structure. Adaptation,
however, is only one of the software designer’s concerns. For
a control engineer, controlling a system is the only concern
– adaptive control just adds another degree of flexibility,
where the controller may change its own control policies as
well. Even the simplest controller (e.g., one that maintains
room temperature by turning a heater on and off) makes the
system adaptive according to the definition understood by a
software engineer. To avoid misunderstandings, this section
discusses more precisely the meaning of adaptation in the
two communities and subsequently analyzes how the two
viewpoints can be reconciled.

From a software engineering perspective, a system is
adaptive when it allows for modifying its structure or behavior
at runtime; i.e. without interrupting its service. An adaptive
system can be coupled with an adaptation manager to make it
continuously satisfy its requirements. A requirement violation
may occur during runtime due to changes in execution envi-
ronment including user interaction, the behavior of third-party
components, or because the requirements themselves change.
Coupling the system with its adaptation manager creates what
is called a self-adaptive system.

Self-adaptive systems have been an aim of Software Engi-
neering for about two decades. However, general frameworks
have been proposed only since the late 90s, both in the
Software Engineering community and on the new field of
Autonomic Computing [40, 41, 55, 62]. While each framework
is unique, all of them share a closed-loop structure where the
software monitors requirements violations, plans counterac-
tions, and enforces them.

To ground the concepts, we take as reference the most
popular self-adaptive design framework: the Monitor-Analyze-
Plan-Execute (MAPE) feedback loop (Figure 1) [41]. The
adaptive system operates in a changing environment, affecting
its ability to satisfy the requirements. The adaptation manager
detects the changes, analyzes their impact, and, if needed,
plans and executes actions in response to the changes. All
phases can be supported by additional knowledge about the
system; e.g., suitable models kept updated at runtime.
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Fig. 1: Adaptive system: the software engineering perspective.
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Fig. 2: Adaptive system: the control perspective.

From the control engineering perspective, an adaptive
system consists of a control loop (Figure 2 shows an exam-
ple) [3, 35]. A closed loop system consists of a controller
and a plant denoted as C and P , respectively. The time is
assumed to be discretized and y(k) represents the value of
the signal y at time instant k. The controller’s input is the
error e(k) between the goals ȳ(k) and the measured value
of the outputs y(k) – where input and output are measurable
quantities1. The controller’s output u(k) is a vector of values
for the configurable parameters of the plant, often called knobs
or actuators. All inputs and outputs can be vectors, meaning
that the measured output of the closed loop system can be,
for example, a two-dimensional vector whose elements are
reliability and response times. The number of goals ȳ(k)
should be equal to the number of measured outputs, while
the number of knobs for which the controller should compute
a value can differ from the dimensionality of the output.
When control is applied to software systems, the plant is
usually identified with the adaptive software system under
control, but it can also contain additional information about the
execution environment and platform. A plant receives as input
the knob configurations and produces as output some measures
of quantities y(k) upon which the user sets the control goals.
There are other entities that act on the behavior of the plant,
other than the control variables u(k). For example, if y(k) is
the execution speed of a loop in the software, the sudden start
of the garbage collector can slow down the computation or
a sudden lack of memory can stall instructions. Equivalently,
if Turbo Boost is turned on by the hardware, computation

1The output signals of the plant are usually the values of measurable goals,
while the input signals of the plant can be the configuration of the plant itself
– e.g., a vector composed of elements like the algorithm used to solve a
specific problem, the amount of resource allocated to a running application,
the length of a queue, and much more.
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Figure 2.2: The MAPE control loop (a) and an example of control loop from control theory
(b). Figures reprinted from [142], Copyright © 2015, IEEE.

2.4 Run-Time Supervision and Adaptation

Several approaches have been proposed in the literature for supporting the autonomic
evolution of software. Numerous research areas have witnessed increasing interest in
these issues. These include, among others, the Self-Adaptive Software, the Software
Evolution, the Software and Requirements Engineering, the Autonomic Computing
and the Multi-Agent Systems communities. The common goal is that of constructing
software that monitors and modifies its own behavior in order to meet its high-level
objectives despite possible changes in the operating environment. A self-adaptive
system is intended as a system that is coupled with a so-called adaptation manager,
which is in charge to modify the structure or the behavior of the system at run-time
without interrupting its service [113].

Control theory and the MAPE feedback loop framework

Despite the many solutions proposed in the literature to make software systems self-
adaptive, the vast majority of the frameworks share a closed-loop structure, where
the software monitors requirements violations, plans counteractions if they are needed
and enforces them [142].

Filieri et al. [142] identify a strict relationship between self-adaptive systems as
intended from a software engineering point of view, and controlled systems, as per
Control Theory, the study of mathematically grounded techniques for adaptation. In
particular, the authors identify the MAPE (Monitor-Analyze-Plan-Execute) feedback
loop [175], as the most popular framework in the literature for designing self-adaptive
systems, and show the evident similarities between this framework and the control
loop, which characterizes adaptive systems from a control perspective. Fig. 2.2,
reprinted from [142], illustrates the two paradigms.

In the MAPE feedback loop in Fig. 2.2a, the Adaptive System operates in an
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Environment which, as we have discussed earlier, can be dynamic and evolving on its
own, thereby affecting the capabilities of the adaptive system to achieve its objectives.
An Adaptation Manager, through its four main steps, monitors the system’s behavior
and collects data to detect changes (Monitor), analyzes data to assess the impact
of changes and to determine if some reaction is required (Analyze) and, if needed,
plans and executes actions in response to the changes (Plan and Execute). Similarly,
a control loop like the one in Fig. 2.2b, mainly consists of a Plant and a Controller.
The Plant, which can be associated to the Adaptive System of the MAPE feedback
loop, determines an output ypkq (indicating the value of the signal y generated at time
instant k). The behavior of the Plant can be disturbed by disturbances dpkq, which
may contribute to dis-align the behavior of the system from the desired behavior.
The output ypkq is compared with a desired output ypkq representing the objectives
of the system, and an error epkq is determined, characterizing the distance between
the actual and the desired behavior of the system. The error epkq is the input of
the Controller, which has the task to determine new values upkq for configurable
parameters, often called knobs, of the Plant.

It is not hard to see the parallelism between the two paradigms. Not surprisingly,
Patikirikorala et al. [225], in line with Filieri et al. [142], identify an increasing trend
in the usage of such type of solutions in self-adaptive systems.

Wang et al. [289], for example, propose a framework for the self-reparation of a
system through reconfiguration. Their proposed architecture is composed by four
components, which the authors associate to the main components of the MAPE feed-
back loop. The Monitoring component monitors the system’s execution to detect pos-
sible failures, in terms of requirements satisfaction, and generates a log data. When
failure occurs, the Diagnosis component tries to determine the causes of the failure,
identifying the problematic entities of the system. The Reconfiguration component
generates a number of possible system reconfigurations that are free of failures and
select the best one among them, i.e., the one that contributes most positively to the
NFRs of the system. Finally, the Execution component performs compensation ac-
tions to restore the system to a consistent state and reconfigures the system according
to the selected reconfiguration.

Similarly, Dalpiaz et al. [100] introduce an architecture for adaptive Socio-Technical
Systems that allows to switch between different requirements configurations at run-
time when needed. The authors describe a Monitor-Diagnose-Reconcile-Compensate
(MDRC) cycle, which: monitors and collects data about the behavior of actors in the
STS and about the state of the environment; interprets data w.r.t. a given require-
ments model, diagnosing the causes of failure or under-performance if the requirements
are not satisfied; searches for possible alternative configurations of requirements to
deal with the problem; and performs compensating actions so to reconcile the actual
and desired behavior of the system.

Almeida et al. [17] present a dynamic decision-making infrastructure that allows
to monitor and reason about NFRs at run-time and to continuously select the features
that compose a system configuration. They focus on Software Product Lines, which
are represented by means of feature models [229] and permit to create a family of
similar products (called product line) based on commonalities between members of
the family. They extend feature models with properties that allow to specify, by means
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of a language called DynamicNFR and inspired by RELAX, NFRs in such a way that
they can be monitored at run-time. The architecture makes use of a monitoring
system called QoMonitor, which retrieves data at run-time about the satisfaction
of the NFRs. A FMHandler component analyzes the specification of the extended
feature model given as input, and generates, by means of a genetic algorithm, the
space of possible new system configurations. A decision algorithm, finally, selects a
new configuration to adopt by maximizing an objective function generated from the
NFRs.

Control theoretical concepts have been explored also in the MAS research commu-
nity. Dastani et al. [110], for example, study normative multi-agent systems from a
supervisory control theory perspective. In particular, they describe norm enforcement
as a controllability problem. They interpret a multi-agent system as a Plant (as per
above), whose behaviors are generated by a finite state automaton. The Controller,
called supervisor, restricts the behavior of the multi-agent system by means of norms,
which determine violating or compliant behaviors (words generated by the Plant).
They distinguish controllable and uncontrollable events that can be generated by the
Plant and in this setting, they describe the properties of three types of supervisors
for a multi-agent system: regimented-based, sanction-based and repair-based super-
visor. A regimented-based supervisor is a supervisor that prevents all controllable
events that can make a behavior (sequence of events) norm-violating. A norm, then
is regimentable if there are no uncontrollable events (i.e., events that cannot be con-
trolled by the supervisor) that can make a behavior norm-violating. A sanction-based
supervisor, instead, is a supervisor that allows violating behaviors to take place but
imposes sanctions to punish violations. Imposing sanctions means to introduce ad-
ditional sanction events to the sequence of events. To do so, they employ a virtual
Plant, so to avoid the possibility of causing violations by means of introducing events
in the original (not virtual) sequence of events. Similarly to the case of regimenta-
tion, a norm is sanctionable if there are no uncrontrolled events that can make the
behavior norm-violating. Analogous concepts are presented also for reparation-based
supervisor, where they consider so-called repairing events, that can follow a poten-
tially violating behavior to make it non-violating.

In this dissertation, we follow the MAPE paradigm. In the examples of frame-
works reported above, the focus is on adapting the configuration of the system in
order to restore, as much as possible, its compliance with the requirements defined
at design-time. Differently, in this dissertation we tackle settings in which this is not
possible, or it would be more expensive than changing the requirements themselves.
The supervision of the system that we consider is at the requirements level. In our
framework, outlined in Fig. 1.3 and Fig. 1.4, we consider as goals of the feedback
loop that determines if and how the behavior exhibited by the system deviates from
the desired one, an explicit representation of the system’s objectives, which we will
sometimes call system-level objectives, or system’s objectives. The Plant, or Adap-
tive System, under control corresponds to the target System, which is a normative
multi-agent system whose behavior is constrained by a set of requirements (norms).
The Monitoring component monitors the violations of the requirements, but also
the achievement of the system’s objectives, distinguishing data in different operating
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contexts. The Supervisor corresponds to the Controller, or Adaptation Manager. Its
Assumptions Validation component in the Revision Engine, similarly to the Analyze
component of the MAPE control loop, performs a diagnosis of the norms when the
objectives are not (fully) achieved, i.e., it detects if some of the design-time assump-
tions related to the requirements are, or became, invalid. For example, the component
determines whether the requirements are satisfied in certain contexts, or if their sat-
isfaction is beneficial or harmful for the system’s objectives, and what is the most
likely explanation for the system’s objectives not being achieved. The Revision Pol-
icy Application and Revision Operations components then, similarly to the Plan and
Execute components of the MAPE control loop, try to determine new requirements
for the system, by first suggesting types of revisions needed (for example whether
a requirement should be weakened, or made more strict) and then by finding new
requirements that fit the suggestions as much as possible. In a first step, in Chap-
ter 3, we focus on the validation of the design-time assumptions and propose novel
algorithms to suggest different types of revisions for the current requirements based
on the run-time validity of the assumptions. Given the suggested revision we search
a space of possible predefined alternative configurations of requirements to find the
ones that are most aligned with the suggestions. Later, in Chapters 4 and 5, we will
make a step forward and we will study how to synthesize new requirements based on
the given suggestion.

In the following, we provide some further details on the state-of-the art concerning
the different steps performed in the MAPE loop.

2.4.1 Monitor

In formal settings, the typical approach to check at run-time if a system satisfies
certain properties is runtime verification [35]. Runtime verification typically consists
of automatically translating a property, expressed in a formal language, into a so-
called monitor. The monitor is then deployed and used at run-time to verify if the
execution of the system, typically represented as one or more traces (sequences of the
states of the system), complies with the property being verified.

The type of monitor that is synthesized for a certain property strictly depends on
the language in which the property is expressed. Several works have studied properties
expressed in Linear-time Temporal Logic (LTL) or some of its extensions such as past
time LTL, or Timed LTL [35, 161, 307]. Some monitors employ formula rewriting
or formula progression techniques [28], a process that, without going into the details
here, iteratively consumes states from a trace and generates a new formula from the
original one that must be satisfied by the following states. If a state that does not
satisfy the formula before it is completely consumed is encountered, a violation of the
property is detected. Other approaches translate the original property into efficient
dynamic programming algorithms (the monitors), while others translate the property
into finite-state automata, or construct so-called testers [228].

The main advantage of runtime verification is that monitors are typically tractable
and allow to verify properties in linear or polynomial time w.r.t. to the size of of the
original formula [161]. Runtime verification, therefore, enables the runtime monitoring
of properties and mitigates the issue of an exhaustive verification at design-time,
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intractable for complex systems. Furthermore, runtime verification provides good-
enough solutions for dynamic systems where the context changes at run-time and
unforeseen situations may happen, as it does not require a complete representation
of all aspects of the system.

To briefly give a more concrete idea of a simple monitor, we report in Algorithm 1
the monitor to detect violations of the conditional prohibitions described in Sec. 2.3.
The algorithm, taken from Alechina et al. [10], returns true if a conditional prohibition
n is violated in a state tris at position i on the trace t, and false otherwise. Note how
the state of the norm (in particular the fact that the norm is detached) is maintained
while the trace is sequentially analyzed. If a state where the prohibited state is
encountered after the norm has been detached and before a state where the deadline
holds, then a violation is detected. A similar monitor for conditional obligations can
be found in [10].

Algorithm 1 Violation of a Conditional Prohibition [10]

Input: finite trace t; norm n “ pc, P pφq, dq
Output: true if t violates n, false otherwise

detached Ð false
for i P r1, t.lengths do

if tris � c then
detached Ð true

if detached then
if tris � φ^ tris 2 d then

return true
else if tris � d then

detached Ð false

return false

Among others, in the context of normative agents, a study of how to specify norm
monitors is provided by Bulling et al. [69]. They provide a logical and computational
framework to specify various types of norm monitors. They represent norms in LTL
and analyze a number of LTL-based monitors, formally studying the relations between
monitors and norms and the computational complexity of the monitors.

Requirements monitoring frameworks

Numerous requirements monitoring frameworks can be found in the literature as well.
Two seminal work about requirement monitoring in relation to assumptions validation
are the ones of Fickas and Cohen. Fickas et al. [140] describe a process where they
subdivide top-level soft requirements into pieces. This enables the identification of
the assumptions underlying each of those pieces and to associate remedial actions to
apply when the assumptions are violated. This process is shown as crucial in order
to determine what to monitor. Monitoring the assumptions allows them to trigger
the predefined adaptation that can be done by the system itself or suggested to the
designer. Cohen et al. [88], instead, describe a prototype monitoring system called
AMOS (Assumption Monitoring System), where a compiler automatically converts
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expressions written in a language called FLEA (Formal Language for Expressing
Assumptions), into runtime monitoring code that observes the behavior of the system
and of the environment w.r.t. the expressed assumptions.

More recently, Robinson et al. [236], presented ReqMon, a requirements monitor-
ing framework for enterprise software. The framework allows to monitor requirements
expressed in KAOS, extended with aggregate functions that permit for example to
evaluate temporal requirements. In ReqMon, KAOS requirements are mapped to
observable events. Requirements are then evaluated incrementally as the events ar-
rive, by using four possible states of an evaluation of a property: undefined, satisfied,
violated and partial.

Wang at el. [290] present a framework that allows to monitor (and diagnose)
requirements expressed by means of goal models. They annotate a goal model by
associating each goal/task with preconditions and effects and a switch that enables or
disables the monitoring. At design-time the software is instrumented according to the
annotated goal model so to enable the runtime monitoring. At run-time, the program
generates log data, which is collected and can then be analyzed and diagnosed. The
actual analysis is performed offline. The annotated goal model is translated into a
propositional logic formula which is then fed, together with the log data, to a SAT
solver that determines if the traces in the logged data do not satisfy the requirements.

Filieri et al. [143] describe the WM framework for efficiently conducting proba-
bilistic model checking at run-time. While traditional model checking approaches are
typically not applicable at run-time, here the authors propose a precomputation step
that simplifies the work that needs to be done at run-time. They focus on NFRs such
as reliability or performance requirements, expressed as PTL (in particular PCTL),
which they check against a markov model (in particular DTMC). The design-time
precomputation determines a set of symbolic expressions that depend on variables
whose values can be binded only at run-time. They propose two possible approaches
to compute such expressions: a matrix-based approach, useful for large systems with
few parameters, and an equation-based aproach, useful for cases with many param-
eters and for non-parallel problems. At run-time then the system has only to bind
the value of such variables and verify their validity. In order to make this possible,
a number of assumptions are made, such as the possibility to anticipate potential
changes so to restrict them to a subset of environment parameters that can modeled
as variables.

Runtime monitoring in this dissertation

In this thesis, we use runtime monitoring to collect data about the behavior of the
system in terms of satisfaction of requirements (or violation of norms) and achieve-
ment of system’s objectives in different operating contexts. We distinguish between
three main elements that we will monitor.

• Context. We will assume that a number of contextual properties concerning
measurable environmental factors are determined to be monitored. Examples
are the time of the day, or the type of weather. These properties will have
different possible values according to their domain, for example day or night,
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or rain or sun. We will call operating context a combination of values of these
properties.

• Requirements (or norms). We consider computationally verifiable requirements
and norms, as per Sec. 2.2, and we will monitor their satisfaction or viola-
tion. For example we will consider norms regulating the maximum speed or the
minimum safety distance that vehicles should maintain when driving on a smart
road. Vehicles will autonomously decide whether to comply or violate with such
norms, taking into account the consequences of a violation. In most of the cases
we will assume that perfect monitoring is available and that any violation of the
norms can be detected when it occurs. In some of our experiments, however,
we will also consider imperfect monitors which can misdetect some violations.

• System’s objectives. We will consider an explicit representation of the objectives
of the system that are desired to be achieved by means of enforcing norms. For
example a possible objective may concern user satisfaction about the system,
or no traffic jams in the city. We distinguish these from requirements as we
associate them to the raison d’être for the requirements [303]. Furthermore,
even though for the sake of our simulations we will consider computationally
verifiable objectives, we support also non-computationally verifiable ones (for
instance the user satisfaction cannot be verified computationally, unless humans
provide an input). To give a practical example, if we are considering an airport
software system, and the objectives of the stakeholders include the satisfaction
of the customers, we envision that an evaluation of customer satisfaction could
be obtained by means of the notorious HappyOrNot feedback terminals that
can be positioned in the airport for measuring customer satisfaction.

One the one hand, therefore, we employ runtime monitoring to measure the oper-
ating context and the achievement system’s objectives. On the other hand, we employ
it to verify the requirements. We use then the collected run-time data to analyze and
diagnose the requirements and to guide their revision when needed.

2.4.2 Analyze and Diagnose

Once run-time data is collected through monitoring, it needs to be analyzed to de-
termine if some adaptation is required and possibly to understand what are the root
causes of the detected problems.

Wang at el. [290], in the framework earlier illustrated, perform an offline SAT-
based diagnosis of the annotated goal model. This is made possible by a translation
of the goal model into propositional logic so that a series of axioms of deniability of
goals, tasks, decompositions and contribution links of the goal model, i.e., axioms that
describe when these elements are made invalid, can be checked with data collected at
run-time.

Viana et al. [285] present a prototypical framework called MaCoRe SoS (Manag-
ing Conflicting Requirements in Systems of Systems): following the MAPE paradigm,
MaCoRe SoS aims at identifying, diagnosing and resolving conflicts between require-
ments in a SoS. To express the requirements (which are maintained at run-time) they
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use an extension of the RELAX language in which they introduce concepts concerning
resources affected by the requirements and events that can violate the requirements.
During the diagnosis phase, they focus on the identification of conflicts. In particular,
when an event notification is received at run-time, the requirements related to the
event are checked in order to detect the affected resources and, if some of the asser-
tions generated at design-time starting from the original requirements is violated, a
conflict is reported.

Work related to the analysis of requirement assumptions is mainly proposed by
Ali et al. [15, 16]. In [15], the authors describe a mechanism for analyzing the validity
of design-time assumptions in order to support autonomic evolution of requirements.
In particular, data collected at run-time is used to determine which of two possible
software variants, assumed at design-time to be equally able to meet a certain re-
quirement, succeeds more often in its intent. In [16], the authors develop a set of
automated analysis mechanisms to support the requirements engineers in detecting
and analyzing possible modelling errors in contextual requirements models. They
propose two automated reasoning mechanisms to detect two kind of modelling errors:
inconsistent specification of contexts in a goal model, and conflicts between tasks.

Bayesian Networks

Tools for diagnosis and for reasoning under uncertainty are many, and variegate. The
literature spaces from Fault Tree Analysis [132], to logical approaches, via rule-based
ones, via solutions that consider ignorance as opposed to uncertainty for performing
inference, such as the Dempster–Shafer theory [250], via fuzzy approaches that allow
for more “vague” inferences than more classical probabilistic approaches, by consid-
ering that a proposition can be “sort of” true [240]. One particular tool that has been
widely used to perform diagnosis and for the intelligent analysis of probabilistic distri-
butions is Bayesian Networks. Bayesian Networks have been extensively used in many
fields (ranging from medicine to forensics) as knowledge representation structures for
learning and reasoning about the inter-dependencies between their variables [240].

In this thesis we also choose to use Bayesian Networks for a number of reasons.
They are a well established and powerful models, which allow for expressing any
possible full joint probability distribution. They are general enough to be used for
probabilistic reasoning both in static contexts, and in dynamic ones, for example via
Dynamic Bayesian Networks, which encompass other dynamic models such as Hidden
Markov models and Kalman filters [240]. While other powerful tools for reasoning
about causality have been presented in the literature, e.g., models of concurrent non-
deterministic computations, such as Petri Nets, or Causal Nets [227, 273], these are
often used to analyze or discover processes at a more fine-grained level of detail, rather
than at the requirements-level, which is the scope of this thesis. Nonetheless, several
works have shown the several similarities and analogies between these causal models
and Bayesian Networks, also proposing mappings between the two structures [171,
187]. Moreover, given their simplicity, flexibility, and popularity, tools and libraries
supporting Bayesian Networks are widely available and well supported (e.g., among
others, the bnlearn R library, or the bayespy Python library), alongside with graphical
tools to visually explore and interact with the network such as the Netica tool [1].
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Finally, thanks to the possibility of handling missing data, to incorporate expert
knowledge with historical data, and to their intuitive and graphical representation,
in the Software Engineering literature Bayesian Networks have already been adopted
as a support tool for diagnosis and decision making. Such models have been used,
for example, to evaluate software reliability [127], to estimate software effort [204],
for software maintenance [114] or for defect prediction [138]. Furthermore, they have
been employed also for the runtime verification and diagnosis of requirements and to
perform or support autonomic decision making at run-time [141, 226].

Despite their wide adoption, Bayesian Networks haven’t been used to reason about
validity of assumptions expressed in requirements models. In this dissertation, we
propose to use Bayesian Networks as a run-time counterpart to requirements model
and we use them to collect statistical information about the behavior of the system (in
terms of the three main elements described above), to automatically evaluate a wide
range of design-time assumptions that are made by the designer of the system, and
to inform and guide automated strategies to revise the current requirements. For this
reason, we provide here some background about Bayesian Networks. The comparison
of our approach that employs Bayesian Networks with other approaches is left for
future work.

A Bayesian Network [240] is a data structure that graphically and quantitatively
represents the (probabilistic) dependencies among variables. In particular a Bayesian
Network (Fig. 2.3 provides an example) is a directed acyclic graph (DAG) where:

• Each node represents a random variable in probability theory, each of them with
a domain (i.e., the set of possible values it can take). For example, the domain
of a random variable Weather could be tsun, rain, cloudyu, or the domain of a
random variable SpeedLim, representing a requirement, could be tsat, violu.

• A set of directed arrows connects pairs of nodes. If there is an arrow from node
X to node Y , X is called parent of Y . In a Bayesian Network there are no
cycles. The nodes and arrows of a Bayesian Network, together, are called the
structure of the Bayesian Network.

• Each node X is annotated with a conditional probability table (CPT). Each
row in a CPT contains the conditional probability of each node value for a so-
called conditioning case (i.e., a possible combination of values for the parent
nodes). A conditional probability, sometimes called posterior probability, is
the probability that an event happens (i.e., that a random variable assumes
a given value in its domain) given some other revealed piece of information,
called evidence (it is given the value for some other random variable). For
example P pSpeedLimsat | Weather sunq indicates the (conditional) probability
that requirement SpeedLim is satisfied given that the weather is sunny. Such
probability is 0.8 in Fig. 2.3, and is indicated in the top left cell of the CPT of
node SpeedLim.

Conditional probability is distinguished from unconditional, or prior, proba-
bilities as the latter refer to the degree of belief in a certain event in absence
of any other information. For example P pSpeedLimsatq indicates the (prior)
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Throughput

SpeedLim

Weather

Weather SpeedLim P(Throughput = true) P(Throughput = false)

sun sat 0.98 0.02

sun viol 0.85 0.15

rain sat 0.55 0.45

rain viol 0.05 0.95

cloudy sat 0.95 0.05

cloudy viol 0.7 0.3

P(Weather = sun) 0.5

P(Weather = rain) 0.2

P(Weather = cloudy) 0.3

Weather P(SpeedLim = sat) P(SpeedLim = viol)

sun 0.8 0.2

rain 0.95 0.05

cloudy 0.85 0.15

Figure 2.3: An example of Bayesian Network.

probability that SpeedLim is satisfied, regardless of the weather conditions, or
P pWeather sunq indicates the (prior) probability that the weather is sunny.

Each row of the CPT sums to 1, as the entries represent the exhaustive set
of cases for the values of variable, given a combination of values of the parent
variables. The entire CPT of a node X represents the conditional probability
distribution P pX | Parents(X)), which quantifies the effect of the parents on
the node.

The conditional probability values are the parameters of the network. These
parameters can be provided manually by domain experts, learned from data, or
a combination of both.

2.4.3 Plan and Execute

The knowledge acquired and diagnosed at run-time can be leveraged to trigger and
perform an adaptation of the system. Most of the existing frameworks focus on auto-
matically restoring the compliance of the system with the already defined requirements
by searching for a new system configuration that is expected to outperform the cur-
rent one in achieving the requirements, or on selecting more appropriate requirements
variants [32, 185].

Non-functional requirements (NFRs) have been mainly used to trigger and guide
self-adaptation. For example, Salehie et al. [241] describe an automated decision-
making mechanism for run-time selection of adaptation actions. NFRs, which are
used as the objectives of the adaptation, drive the selection. The adaptation actions
selection mechanism that they propose is modeled as a game between goals, in which
each goal aims at selecting its preferred adaptation action (a preference list is given
for each goal). A voting mechanism is then employed to weight the votes from the
goals that are activated (i.e., denied) at run-time.

In the reconfiguration components of their framework, Dalpiaz et al. [100] search
for the alternative system configurations that maximize the satisfaction of the NFR,
based on the contribution links expressed in a goal model.

45



STATE OF THE ART 2.5

Bencomo et al. [42] propose the use of Decision Networks (an extension of Bayesian
Networks including decision nodes) to automatically choose between different system’s
configurations, based on NFRs. They model uncertainty associated with the satis-
ficement of NFRs by using probability distributions conditioned by the possible con-
figurations of the system. Decision nodes in the network are associated to the choice
between different system configurations. The expected utility of taking a decision is
computed by making use of weights associated to NFRs. Evidence in the network
is associated with claims which represent assumptions made at design-time, whose
validity is monitored at run-time, and with environmental properties representing
uncertainty factors (e.g. a failure of a system component).

In a similar fashion, Paucar et al. [226] propose techniques to reassess at run-
time the assumptions made at design-time about the weights of NFRs. Given data
collected at run-time, they employ Dynamic Decision Networks to revise the weights
of the NFRs.

Serral et al. [249], propose run-time algorithms for the selection of optimal tasks
when adaptation is triggered by changes in user preferences, by faults in the execution
of some tasks, by plan failures or by context evolution. In order to select the best set
of subtasks, they evaluate the contribution of the possibilities to the NFRs.

Some, even though not many, approaches, deal with the adaptation of the system
at the requirements-level, i.e., they tackle the problem of revising the requirements
of the software, instead of adapting the software to restore its compliance with the
requirements. As adaptation at the requirements-level is also the main scope of this
thesis, we overview requirements (and norms) revision more in detail in the next
section.

2.5 From Model-Driven to Data-Driven Revision

Historically, a formal account to the problem of revising a system, its requirements,
and its norms, has roots in the context of theory and belief change, that is the study
of how to correctly change a representation of knowledge. Alchourron, Gardenfors,
and Makinson [6, 148], in their seminal work on the subject, define a framework
which is now known as AGM, from their names. They describe the main aspects of
theory change, and in particular three principal forms of change: expansion, i.e., the
introduction in the current theory of a new formula that is consistent with the theory;
contraction, i.e., the removal of a formula from the current theory; and revision, i.e.,
the introduction in the current theory of a new formula that is not consistent with the
theory. They illustrate that, while expansion operations are typically not problematic,
contraction and revision operations are less trivial. This is because when introducing
a new formula that is inconsistent with the current theory (or removing an existing
one), in order to obtain a new theory that is consistent, we must also remove some of
the existing parts of the theory. The main question becomes then how to define the
operations of contraction and revision so that appropriate formulae are chosen to be
removed from the current theory.

The AGM framework inspired, more or less explicitly, a number of works on the
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revision of rules, requirements, and norms aimed at governing software. In particular
it influenced a number of model-driven revision approaches, which rely on a model or
on a theory of the system and of its operating environment to formally characterize
and reason about change. While the focus of this thesis is on data-driven revision
of norms and requirements, and we do not assume that a model or a theory of the
system is explicitly available, we briefly report here also on some model-driven revision
approaches, so to provide a comprehensive review of the literature.

2.5.1 Model-Driven Revision

MacNish et al. [199] were among the first to describe how theory change could be use-
fully applied to revising requirements, modeled by means of hierarchical goal struc-
tures. In about the same years, also Zowghi and Offen [310] presented a logical
framework where they used the theory of belief revision to model and reason about
the evolution of requirements. They argue that software engineering is concerned with
building and managing theories, and that requirements evolution consists of mapping
one theory to another.

In the context of normative systems and artificial societies, Shoham et al. [254],
in presenting results about the problem of synthesising social laws that guarantee
the achievement of system objectives, introduce the idea of more restrictive social
laws. A social law (a set of constraints that prohibit agents to perform actions in
states that satisfy certain conditions) sl1 is more restrictive than a social law sl2 if for
every constraint in sl2 there is a constraint in sl1 that prohibits the same action but
in states that satisfy less specific conditions. While the idea does not directly refer
to revision operations, it describes a relationship between two social laws, one more
restrictive than the other, which relates to the ideas of contracting or expanding a
law. More explicitly related to norm revision, Boella et al. [53] present a framework
for normative change. Taking input/output logic [201] as a starting point, they define
norms as pairs of (propositional) formulae pa, xq, to be read if a then x is obliged, and
they map the AGM operations to corresponding operations on norms.

In the context of requirements analysis, Lamsweerde et al. [276] propose a num-
ber of techniques to resolve conflicts and divergences from the specification of re-
quirements, represented as goals within the KAOS framework. Divergences (logical
inconsistencies) are resolved by introducing new goals or by transforming the specifi-
cations of the goals towards a conflict-free one. Logical inconsistencies between goals
often derive from so-called boundary conditions: situations where particular circum-
stances make goals conflicting. In order to avoid or deal with boundary conditions,
Lamsweerde et al describe formal strategies such as the following.

• Avoiding Boundary Conditions: logically derive, from the available domain the-
ory and from the logical model used to represent the system, a new goal that
will prevent the boundary condition to happen.

• Goal Restoration: when boundary conditions cannot be avoided (e.g., when
they involve entities out of the control of the system), introduce a new goal
that states that if the boundary condition occurs then the goal will become
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true again in the (reasonably near) future. In other words, goal restoration
temporary disables a goal.

• Goal Weakening : make a goal more liberal so that the boundary conditions are
accepted. This can be done by using syntactic generalization operators, such as
adding a disjunct, removing a conjunct, or adding a conjunct in the antecedent
of an implication, in the same fashion of theory revison.

• Alternative Goal Refinement : obtain alternative sub-goals which are not diver-
gent, or whose divergence can be resolved by using some strategy.

Jiang et al. [167], instead, discuss the contextualization of norms. They study
how to refine norms to make them suitable for specific contexts. They explicitly
represent the context of application of a norm and they introduce contextual refine-
ment normative structures, which are used to organize and refine the norms. Norms
are expressed according to the ADICO syntax [222] (e.g., for regulative norms: [AT-
TRIBUTES] [DEONTIC] [AIM] [CONDITIONS] [OR ELSE]). Contextualization is
described as a relationship between two norm sets such that the new set elaborates
the old with refined normative components; the new set adds new norms; the new
set removes some of the norms; or the new set elaborates the interrelations between
norms. Each norm set, then, can be associated to a certain context. The authors also
present a mechanism that translates the hierarchy of norms into Colored Petri Nets,
so that properties such as reachability and liveness can be verified.

The operations proposed by Lamsweerde, Jiang, et al. inspire our work. In their
work, such strategies are applied at design-time, they rely on the available domain
knowledge which is characterized in a formal model, and they are employed to perform
conflict resolution or to guarantee formal reachability and liveness properties of the
system. In our framework, we will adopt somewhat similar strategies but at run-
time, based on statistical execution data, and with the explicit goal of improving the
alignment of the requirements with the explicitly represented system’s objectives.

Alechina et al. [9] describe an operation called normative update as the operation
of introducing a norm set in a MAS represented as a transition system. In particular,
the update is performed by modifying the transition system. A regimented norm,
for example, is introduced by removing paths or transitions from the system. A
sanctioned norm, instead, is introduced adding a proposition san in the states reached
by violating the norm.

Similarly, Knobbout et al. [179] describe how to update a normative system when
adding or removing action-based norms called to-do norms. These are norms that
ensure that after the execution of a certain prohibited action in specified states, some
normative facts indicating the violation become true until a repair action is per-
formed. The authors represent the normative system as a pointed labelled transition
system and the normative update is an operation on such system, such as duplicating
states and adding or removing propositional symbols indicating the violations in the
opportune states, similarly to [9]. In a follow-up work [180], the authors extend the
framework to support also state-based norms called to-be norms. In addition, they
define a dynamic logic with a norm update operator that describes the operation of
adding a norm.
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Alechina et al. [10] take also another point of view to norm revision and they
introduce the concept of norms approximation with respect to a monitor. An ap-
proximated norm is synthesized from an original norm to maximize the number of
violations that an imperfect monitor can detect.

All the approaches mentioned above, describe techniques that rely on a model or a
theory of the system. As we have discussed, however, in complex modern systems, it
is often the case that the available information is only partial or imprecise. In highly
dynamic environments, furthermore, the available model may become outdated very
quickly once the system is deployed, and these techniques are not sufficient anymore to
deal with the continuous evolution of software systems. For this reason, more data-
driven approaches have started appearing for the run-time revision of norms and
requirements, also allowing their integration within self-adaptation frameworks. This
is also the scope of this thesis. We overview here a number of approaches specifically
focused on the revision of norms and requirements driven by data.

Since the two communities of requirements engineering and normative multi-agent
systems, despite their similarities and commonalities, have been conducting work in
a relatively separate fashion, we distinguish, for simplicity, approaches to the revision
of requirements, and approaches to the revision of norms. Some approaches, however,
such as the ones using Inductive Logic Programming (ILP) [129], or work on the
contextualization of properties, have been studied in both communities.

2.5.2 Data-Driven Requirements Revision

Several existing approaches to data-driven revision of requirements in the literature
mainly focus on non-functional requirements [17, 41].

Bencomo et al. [41], for example, employ Dynamic Decision Networks (DDNs),
an extension of Dynamic Bayesian Network to support decision-making, to suggest a
revision of the priorities associated to non-functional requirements, based on a degree
of uncertainty of events in the environment. They model the uncertainty about the
satisfaction of NFRs by means of probability distributions conditioned by a given
configuration of the system (pre-established design alternatives). In the DDN, decision
nodes are meant to determine one of the possible configurations of the system and the
utility of each configuration is the expected utility of assigning certain weights (the
priorities) to the NFRs. They also provide evidence (run-time data) to the network
in the form of claims about the current run-time validity of assumptions made at
design-time. This allows the DDNs to be employed as a run-time tool to continuously
adjust the priorities given to the NFRs, when the validity of the assumptions change.

In a later work [39], the authors introduce the concept of surprise–a considerable
divergence between the belief distribution in the DDN prior and posterior to the
occurrence of an event–as a measure for the quantitative analysis of uncertainty and
deviation of a system from its normal behavior. They argue that small surprise could
be used as a suggestion that a set of NFR can be RELAXed temporarily (i.e., in terms
of revision, replaced with another pre-defined RELAXed NFR) in order to tolerate
unanticipated, but transient environmental conditions. This could potentially avoid
unnecessary further more costly adaptations of the system.
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Building up on Bencomo et al.’s work, Ramirez et al. [232] propose AutoRELAX,
an approach to RELAX goal models to address adverse environmental conditions. In
particular they consider a KAOS goal model of the functional requirements of the
system, where each goal is designated as either invariant (cannot be revised) or non-
invariant. Starting from this model, they generate a solution space comprising all
possible RELAXed goal models and they explore it by using a genetic algorithm (a
stochastic search-based heuristic for efficiently solving optimization problems, where a
fitness function is used to evaluate the quality of each possible solution and guide the
search process towards promising areas–i.e., areas where the solutions are expected
to have high quality–in the solution space). The requirements engineer associates to
each non-invariant goal, which is mapped to a gene for the genetic algorithm, a utility
function that can represent the degree of satisfaction of the goal. The utility functions
are then used by AutoRELAX to evaluate, during a number of simulations performed
by the genetic algorithm while exploring the space, how goal RELAXations will affect
the behavior of the system in response to possible sources of uncertainty. Such possi-
ble sources of uncertainty are defined by the engineer in terms of their likelihood and
causal relation with the goals, to which the system may be exposed. In AutoRELAX,
therefore, data is obtained by means of simulations and requirements revision is in-
terpreted as goal model revision, and in particular goal model RELAXation, which
practically means replacement of the current goal model with a new RELAXed one.

In this dissertation, and in particular in Chapter 3, we adopt an analogous strat-
egy to Ramirez et al. Instead of using genetic algorithms, however, we will propose
the use of hill-climbing optimization techniques to quickly search the space. This
provides a strategy to explore the space of possible system’s configurations that can
be directly applied at run-time without relying on simulation, even though supporting
it if desired. Furthermore, instead of using a fitness function defined by the system’s
designer for evaluating the quality of possible solutions, we adopt a probabilistic
approach where the probability distributions are automatically learned at run-time
based on execution data. Finally, in Chapters 4 and 5, we will make an additional step
forward and we will study some strategies to synthesize new requirements at run-time
based on data, without relying on a predefined fully specified set of alternatives.

Knauss et al. [177] discuss the use of data-mining to deal with run-time uncer-
tainty and to determine adequate contexts where to apply requirements. They present
an approach, called ACon (Adaptation of Contextual requirements), that uses a feed-
back loop that maintains contextual requirements up-to-date based on run-time data.
Practically, their approach (re-)operationalizes the applicability contexts of contex-
tual requirements based on run-time data. This approach is similar to the one we
adopt in this dissertation. We also use data to select and determine appropriate re-
quirements for each of them. In addition to the requirements contextualization, in
this dissertation we will also focus on validating the assumptions in different operating
contexts, and on revising not only the applicability context of the requirements but
also their content.

Recently, Bennaceur et al. [44] proposed a resource-driven requirements adaptation
approach. They describe a framework where three steps of adaptation are performed
if some of the current requirements are not satisfied. In the first step, the require-
ments are not revised, but the system tries to find, by means of a multi-objective
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constrained optimization problem, a subset of the available resources that will satisfy
the requirements. If that is not possible, the system attempts to replace some of the
resources with alternative ones that are semantically equivalent. This is done by using
a similarity relationship between the different resources. If no replacement is found,
finally, the system adapts the requirements by selecting a subset of them that can
be satisfied using the available resources. Data, therefore, consists of the run-time
available resources, and the adaptation of the requirements amounts to finding an
alternative subset of requirements from the set of all possible requirements that can
be satisfied by the available resources.

This approach is somewhat analogous to the approach of Ramirez et al. [232], as
they also search for an alternative subset of predefined requirements. Both approaches
mainly focus on relaxing (or weakening) the requirements when it is not possible
to satisfy them. In this dissertation, we will not limit ourselves to relaxation of
predefined requirements, but we will propose mechanisms that support their general
revision, detecting when it is necessary to relax them, but also when it is necessary
to strengthen them or to synthesize new ones. Furthermore, we will also consider
the revision of sanctions used to enforce the requirements. This is an alternative
strategy to revise requirements when they cannot be satisfied, especially suitable for
weakly controllable systems like Socio-Technical Systems: if agents do not obey our
requirements, we can increase the sanctions to motivate them to obey.

Closer to the concepts of agents, Dalpiaz et al. [98] describe a number of strategies
that agents in open systems can employ to adapt their behavior in response to some
external trigger. They focus on open systems characterized by the interactions, mod-
eled in terms of social commitments, among autonomous and heterogeneous agents.
Agents’ goals are represented by means of hierarchical goal models. These models,
since characterized by AND-OR decompositions, determine a number of possible al-
ternative variants of the model (roughly a subset of goals in a goal model) that can be
selected in different situations in order to satisfy a target goal. The authors describe
adaptation operations such as: choosing a different variant to satisfy a target goal, if
the agent believes that the current strategy will not succeed because the fulfilment of
a commitment made by another agent, necessary to support the current strategy, is
threatened; selecting a different variant that includes redundant ways to satisfy a goal
to reduce the risk of not achieving critical goals; taking more commitments in case
of low trust in the other agents; etc. Their work focuses on the goals of individual
agents, and not on the goals of an institution. The adaptation operations, practically
consist of switching to alternative commitments, or selecting an alternative variant of
the goal model when the current one appears to the agent to be risky or threatened
(these run-time beliefs of agents can be seen as the run-time data).

2.5.3 Data-Driven Norm Revision
Agent-focused revision approaches

In the context of MASs, run-time data-driven approaches to the revision of norms have
mostly focused on social norms and took the point of view of individual agents. This
is due to a shift of interest in the recent years from a legal to an interactionist point
of view on normative multi-agent systems. This shift was also observed by Boella
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et al. [52]. In this sense, norms are typically considered as patterns of behaviors
that emerge within a population of agents. A norm is assumed to have emerged if a
significant part of the population adheres to a certain behavior, without an explicit
external authority enforcing such behavior. In order for norms to emerge, agents are
endowed with capabilities that allow them to sense, recognise and reason about the
behavior of other agents (data from the point of view of the agents) and to react to
it, for example imitating the behavior and adjusting to the observation their beliefs
about the norms holding in the system., e.g., by replacing the current beliefs of norms
being in place with new ones.

Norm revision in this context is related to norm emergence, learning or identi-
fication by the agents in a population. Some approaches to norm emergence use
ideas from evolutionary game theory to propagate over time norms through a soci-
ety [26, 213]. In these approaches, norm revision can be seen as the replacement of a
norm with another from the point of view of the agents, and it is based on the norms
that the majority of the agents in the society selects (the data). Other approaches
endow agents with learning capabilities that allow them to learn which (social) norms,
or conventions, are present in a system or are better to achieve their goals [5, 254].
Cranefield et al. [95], for instance, present a Bayesian approach to norm identifica-
tion. They show that agents can internalize norms that are already present in an
environment, by learning from both norm compliant and norm violating behaviors.
Agents have knowledge (in the form of a directed graph) about all possible actions
other agents can perform in certain states, and norms are state-based norms extended
with temporal operators. Mahmoud et al. [200] focus on agents joining an open MAS
who have to learn the unstated norms and propose an algorithm for mining regu-
lative norms that identifies recommendations, obligations, and prohibitions (in the
form of action-based norms) by analyzing events, corresponding to actions of agents,
that trigger rewards and penalties. In these approaches, data provided to the agents
corresponds to execution traces representing the behavior exhibited by other agents,
which is labeled as either obeying or violating by means of sanctions. The revision
of the norms, even though it is not explicit, can be seen as the process of identifying
and learning the norms that are more likely to exist in the system, given the data.
In a similar way, several works have been presented in the context of negotiation and
argumentation, where agents are enriched with negotiation capabilities and through
a negotiation process agree on which norms to adhere to at run-time [23, 51].

Institution-focused revision approaches

All the agent-focused approaches mentioned above require, or rely on, a number of
capabilities of the agents participating in the system and focus on social norms. As
we have seen, however, one of the main characteristics of modern software systems is
that its components are heterogeneous, as they represent (and can be implemented
by) different parties, and their internals, in line with the fundamental principle of
neutrality of open systems, may be only partly known to the system designer. A
small part of the literature also explored data-driven approaches concerning regulative
norms, instead of social norms. This is also the scope of this dissertation.

Bou et al. [59], for example, address a problem related to ours, where they intend
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to devise an Autonomic Electronic Institution (analogous to an adaptive normative
MAS) that is able to revise the norms that regulate agents behavior in order to achieve
some overall objective. They use expressions of the form A causes F if P1, . . . , Pn to
define regulative prohibitions. In order to revise the norms, they associate to each
of them numerical parameters, which can be related to sanctions, and they adapt
these parameters by means of genetic algorithms. Starting with an initial set of
norms and applying evolutionary learning, they learn a function, called normative
transition function, that determines optimal parameters of the norms that maximize
an objective function characterizing the objectives of the system (e.g., minimize the
number of accidents in a city). This learning step (optimization of the sanctions) is
performed at design-time, and the authors argue that at run-time it is then possible
to use case based reasoning to choose (the revision) which norm set is better for the
actual population of agents (the run-time data) by checking the similarity with the
populations used during the learning process at design-time. In a traffic regulation
experiment, they learn the optimal sanctions and number of necessary police agents
for enforcing a predefined right-priority norm with different populations.

Bou et al.’s research is mostly related to our proposal to sanctions revision dis-
cussed in Chapter 4. Unlike them, however, we apply our learning and adaptation
mechanism directly at run-time. While to help directing the revision we make use of
some knowledge that the system designer can have, or obtain from data, about agents’
preferences, we do not rely on design-time simulation, which requires to model the
dynamics of the system.

In a similar fashion, Cardoso et al. [72] present an approach to adapt at run-time
deterrence sanctions (fines) in a normative MAS. They obtain run-time data by mea-
suring how often an obligation is used and how often it is violated, and they determine
the strength of a fine as directly proportional to its application frequency. In particu-
lar, they define a threshold for the tolerated number of violations. Fines of obligations
are continuously changed at run-time so that if the number of violations goes below
the threshold, the sanctions are decreased, otherwise they are increased. Differently
from this approach, our revision of the sanctions is driven by the achievement of the
system’s objectives. This is a crucial difference as it relaxes the assumptions made by
Cardoso et al. that the enforced norms are effective for the achievement of the sys-
tem’s objectives. In our case, we increase sanctions only if it is confirmed at run-time
that it is important for the system’s objectives that the norms are obeyed (and they
are not already sufficiently obeyed), while we decrease them if it is not necessary that
all agents obey the norms to achieve the system’s objectives.

Miralles et al. [208] study how an organisation can adapt MAS regulations at run-
time. They present an abstract distributed architecture called 2-LAMA (Two Level
Assisted MAS Architecture) to endow an organisation with adaptation capabilities.
In particular the architecture has two levels: a meta-level, where assistant agents
(agents that determine how to adapt the regulations) are located, and a domain-
level, the actual level where normal agents conduct their activities. They represent
norms (if-then rules) via norm patterns, a specification that allows for dynamic run-
time parametrization, and describe an adaptation mechanism based on case-based
reasoning to learn from the behavior of agents. Adaptation is performed at run-time
in two phases. In the first phase, each assistant agent individually performs a norm
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adaptation. The decision on how to adapt norms is taken by each agent based on
similar previously seen cases, using case-based reasoning (CBR), a machine learning
approach based on the assumption that similar problems have similar solutions and
thus similar states require similar regulations. Cases represent an abstraction of a
concrete problem situation and can be seen as run-time data. In particular a state is
composed by: the problem, a set of attributes describing the state of the system; the
solution, a set of attributes describing the solution previously used in the problem,
i.e., the parameters of the norms; and an evaluation representing how well the solution
of the case was evaluated in the case. The norm revision corresponds to selecting for
the current problem new norms. In the second phase, finally, the norms adapted by
each assistant agent are collected and, via a voting mechanism, a final adaptation is
approved. Once the new norms are enforced, they are monitored and the new cases
are updated, by also taking into account the previous knowledge.

The approach presented by Miralles et al. [208] is conceptually close to some of
the solutions proposed in this thesis. One of the major differences is that, instead of
using CBR, we make use of a probabilistic (graphical) model (Bayesian Networks) to
guide the revision. The graphical feature of a Bayesian Network allows us to use it as
a run-time tool for maintaining alive requirements models, and therefore to explicitly
validate their structural assumptions. Moreover, Bayesian Networks are considered
transparent tools to inspection, falling under the umbrella of Explainable AI [58], and
they facilitate requirements engineers in understanding the erroneous assumptions
made at design-time. Another major difference is that, in particular in Chapter 5, we
focus on conditional norms with deadlines, instead of if-then rules. While the latter
allow to express either state-based or action-based norms, the former allow to express
a broader set of behavioral rules.

Morales et al. [210, 211] present algorithms to synthesize more liberal and compact
norms based on the behavior of the agents monitored at run-time. Lion [210], for
example, is an algorithm for the synthesis of liberal normative systems, i.e., that sets
as few constraints as possible on the agents’ actions. A graph structure called norma-
tive network is used to characterize the generalization relationship between different
norms, in a similar fashion to a requirements model. The synthesis is guided by run-
time data in terms of statistical evidence about the relationships between norms. For
instance, data concerns whether two concurrently applicable norms are substitutable
(if no conflict is monitored whenever one of them is fulfilled), or whether they are
complementary (if some conflict is monitored whenever one of them is violated). The
norm revision is then performed, based on such data and on the normative network,
in order to obtain new norms that achieve properties of the normative systems such as
its liberality or compactness. Similarly to Miralles et al. [208], the norms considered
are state-based and action-based norms.

The concept of generalization of a norm described by Morales et al. relates with
some of the norm revision operations that we propose in this dissertation (namely,
weakening and strengthening). Weakening a norm generates more general norms,
while strengthening generates more specialized ones. As we have seen earlier, similar
operations have been described also in the software and requirements engineering lit-
erature, for example by Lamsweerde et al. [276] or by Kafali et al. [172], who define
design patterns for the iterative revision and verification of a specification. In this
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dissertation, revision is meant to align the enforced norms with the system’s objec-
tives, which are properties that are desired from the behavior of the whole system.
Liberality and compactness aspects of the norms, which are not directly related to the
behavior of the system, can be seen as a complementary extension of our proposals.

Corapi [94] and Athakravi [24] discuss the application of ILP to norm revision. In
their work, the system designer describes desired properties of the the system through
use cases (event traces associated to a desired outcome state), and they use ILP to
revise the predefined norms so to satisfy the use-cases. In a similar way, Alrajeh et
al. [18] propose to use ILP to infer requirements from a set of scenarios (the run-time
data) that are obtained from the stakeholders of the system and describe desirable and
undesirable behaviors of the system, and an initial (incomplete) requirements speci-
fication. To do so, they translate the available specification and the scenarios into an
event-based logic programming formalism and use ILP to learn a set of missing event
preconditions. Approaches using ILP to norm and requirements revision are related
mainly to Chapter 5 of this dissertation, where we discuss how to revise conditional
norms with respect to a given set of execution traces. ILP-based approaches and our
proposal represent different trade-offs between the amount of background knowledge
assumed about the possible causes of norm violations, and the guarantees that can be
given regarding a particular (candidate) revision. In ILP-based approaches, the norms
and the desired outcome of execution traces are expressed in the same language. This
allows to directly modify the norms based on the desired outcomes (e.g., introduc-
ing a missing condition in the requirement). In our proposal, instead, we consider
a type of desired objectives that cannot be directly enforced (e.g., it is not possible
to directly enforce safety on vehicles: “no accidents should occur” is not directly en-
forceable on drivers). In this sense, we relax the assumption of being explicitly given
with the causal relation between the norms and the system’s objectives, which makes
ILP-based approaches usable to generate provably correct norm revisions. Instead,
we use statistical analysis to drive the revision of norms.

2.6 Discussion
In this chapter, we have discussed the key aspects concerning the run-time supervision
of autonomous software systems executing in dynamic and weakly controllable settings
with evolving objectives. We summarize here the major limitations that we identified
in the state of the art, and that motivate the research questions outlined in Chapter 1
and the contributions of the following chapters.

• Several works have discussed the importance of explicitly considering assump-
tions made at design-time and of continuously monitoring them at run-time to
assess their validity [15, 56, 191]. Only initial work, however, exists that charac-
terizes the design-time assumptions reflected in the structure of a requirements
model [16], a design artifact often used in self-adaptation contexts for keeping
the requirements of the system alive at run-time [40, 271]. No run-time ap-
proach has been proposed to support the automatic probabilistic evaluation of
assumptions in requirements models by means of execution data, and to use
such evaluation for informing an automatic revision of requirements.

55



STATE OF THE ART 2.6

In Chapter 3, we address these limitations, and we propose the use of Bayesian
Networks (BN) [240] as a run-time counterpart of a requirements model. While
BNs have been widely employed in several fields for a variety of diagnostic and
predictive tasks [115, 141, 147], no formal mapping with requirements models
has been proposed before in the literature. We introduce an expressive type of
BN and discuss its adoption to validate design-time assumptions, and to inform
the automatic revision of requirements.

• The literature lacks of adaptation frameworks that are able to (provide sug-
gestions to) revise the requirements. Most of the approaches that emerged in
the context of self-adaptive systems and autonomic computing concern self-
reconfiguration capabilities [142, 185, 289], including dynamic services compo-
sition [32]. A small part of the literature focused on self-adaptation at the
requirements level by providing solutions for reassessing the priorities of re-
quirements [40] and for selecting appropriate subsets of the requirements at
run-time [44, 98]. The great majority of these solutions aims at guaranteeing an
adequate compliance of the system with the given requirements. In these ap-
proaches, however, requirements are not questioned and the system’s objectives
are assumed to be achieved when the requirements are satisfied.

Such a limitation is one of the major motivations of the work presented in
this dissertation. For this reason, we present a run-time framework that uses
data to continuously assess the effectiveness and usefulness of requirements in
different operating contexts, and to revise the requirements when necessary.
In Chapter 3, we focus on revising requirements models by selecting the most
promising requirements variants. In Chapter 4, we extend the framework to
support also the revision of sanctions associated to requirements’ violation. In
Chapter 5, we make a step further and we study how to automatically synthesize
new requirements instead of relying on predefined ones.

• The great majority of the existing requirements and norms revision approaches
relies on given domain knowledge, such as given utility functions [17, 41], or
models of the system and of the agents that allow to evaluate possible alter-
native solutions (e.g., by means of model checking or via simulation) before
putting them in place [59, 232]. When dealing, like in our case, with autonomous
agents from the point of view of an exogenous institution, knowledge about the
internals of the agents cannot be assumed. Also, estimating utilities for evolv-
ing objectives requires expensive, time-consuming human intervention. Explicit
knowledge about the causal relation between requirements and system’s objec-
tives, like in the case of ILP-based approaches [94], is often not available.

In the following chapters, we propose a number of domain-independent strate-
gies for suggesting and performing automatic requirements revision. The pro-
posed strategies are data-driven in the sense that they are based only on an
explainable statistical analysis of data that is acquired during the execution of
the system. By combining such strategies with an hill-climbing optimization ap-
proach, they can be directly applied at run-time and do not require additional
domain knowledge, nor a model of the system or of the agents.
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• Different approaches to the run-time revision of sanctions have been proposed
over the years. The existing approaches, however, either rely on a model of the
agents so that their behavior can be analyzed (e.g., via simulation) prior exe-
cution to determine optimal norms and sanctions [59], or they are based on the
assumption of correct and effective norms, for example in cases where sanctions
are determined proportionally to the number of run-time violations [72].

In Chapter 4, we propose an alternative approach that does not rely on knowl-
edge of the internals of the agents, opaque to our revision mechanism. Instead,
we combine execution data with an estimation of the preferences of the agents,
which can be obtained by observing the agents. Preferences in MASs have been
used as a way for the agents to choose between different plans or actions to
execute [103, 168, 223, 286], or within game theoretical frameworks, e.g., in
the context of mechanism design [68]. We investigate the relationship between
the estimation of the agents’ preferences and their run-time behavior to effec-
tively and quickly determine optimal sanctions in MASs. Furthermore, we relax
the assumption that norm violation is detrimental, and we accommodate it by
reducing the sanctions if data provides opposite evidence.

• The literature lacks approaches for the run-time synthesis of norms and require-
ments based on data. The few proposed approaches (i) are limited to state-based
or action-based norms [207, 210]; (ii) they make strong assumptions if consid-
ered in the context of complex, weakly controllable, and evolving systems, e.g.,
ILP-based approaches assume that the desired outcomes of executions can be
directly enforced via requirements and that the causal relation between the
norms and the outcomes is given [24, 94]; (iii) they are concerned with goals
which are not explicitly meant to guarantee system-level objectives, such as
resolving conflicts between norms [213] or learning or identifying norms [95].

In Chapter 5, we make a step to bridge this gap in the literature. We focus in
particular on conditional norms (e.g., conditional obligations and prohibitions),
a type of norms that aims at regulating patterns of behaviors instead of specific
actions or states. Early work on approximation of conditional norms have been
conducted in the context of monitor synthesis [10]. No approach, however, has
been proposed to revise and synthesise conditional norms based on execution
traces in order to align them with the system’s objectives. In the chapter we
contribute to the literature with theoretical results concerning the complexity
of the problem, and with a novel approach for its approximate solution.
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3 A Framework for the
Supervision of

Autonomous Systems

Complex modern systems such as Socio-Technical systems (STSs) are defined by the
interaction between technical systems, like software and machines, and social entities,
like humans and organizations. The entities within an STS are autonomous, thus
weakly controllable, and the environment where the STS operates is highly dynamic.
As a result, the designed requirements may end up being invalid and ineffective to guar-
antee the intended system’s objectives when the system operates, for the autonomous
entities do not comply with them, or the environment changes. In this chapter, we
introduce a framework for the run-time validation and revision of the requirements of
a software system. This chapter aims at bridging the gaps in the literature concerning
(i) the lack of probabilistic mechanisms for the run-time validation of the assumptions
expressed in requirements models, and (ii) the lack of a practical run-time supervi-
sion framework that continuously analyses and diagnoses the validity of requirements
for STSs, and automatically suggests how to revise the requirements when there is
evidence from data of their ineffectiveness. We use a Bayesian Network to collect
run-time data and to learn the probability of achieving the system’s objectives with
different requirements in different operating contexts. We leverage the learned knowl-
edge to determine which assumptions in a requirements model, a design artifact that
represents the requirements of the system, are invalid, and to devise heuristic strate-
gies for suggesting how to revise the requirements (i.e., whether to relax, strengthen
or alter them). We evaluate the effectiveness of the supervision mechanism in select-
ing appropriate alternative configurations of requirements on a smart traffic scenario.
The results show that our heuristics, informed by run-time execution data, outperform
standard uninformed heuristics, in terms of convergence speed, solution quality, and
stability. Moreover, the algorithms show good resilience to noise introduced into the
execution data.

This chapter has been published in:

• Dell’Anna, Davide, Fabiano Dalpiaz, and Mehdi Dastani. “Requirements-driven
evolution of sociotechnical systems via probabilistic reasoning and hill climbing”.
Automated Software Engineering, 26.3 (2019): 513-557.
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We emphasise that in the context of this dissertation we interpret requirements as
norms for a Normative Multi-Agent System. In this chapter, we refer to requirements
as norms that are regimented, rather than enforced by means of sanctions. We leave
considerations about sanction-based enforcement mechanisms for Chapter 4. Here, we
study the effect of imposing different norms (requirements) on a Multi-Agent System
(STS), their validity and relationship with the system’s objectives in different contexts
and the possible strategies to revise requirements when they are not effective. This
chapter answers research question RQ 1 from Chapter 1 and provides an answer to
RQ 2-4 in the context of revision of requirements models for STSs.

A preliminary version of this chapter has been published, in the context of Multi-
Agent Systems, in:

• Dell’Anna, Davide, Mehdi Dastani, and Fabiano Dalpiaz. “Runtime norm re-
vision using Bayesian networks”. International Conference on Principles and
Practice of Multi-Agent Systems. Springer, Cham, 2018.

Algorithms 2 and 3 in Sec. 3.6.2 of this chapter, have been included, with their
description, from the above work for completeness.

3.1 Introduction

For over forty years, researchers and practitioners in software and requirements en-
gineering (RE) have proposed and experimented methods and tools to specify and
evolve the requirements of software systems [191, 276]. However, the increasing em-
bedding of cyber-physical and socio-technical systems (STSs) [81, 100, 258] in our
lives poses new challenges for the RE discipline.

A smart city, for example, is an STS that includes heterogeneous entities such
as pedestrians, drivers, vehicles, bicycles, traffic lights and signs, speed cameras, and
road regulations. This STS is governed by the city council that can alter the road
regulations and control artifacts such as traffic lights to best achieve the system’s
objectives (e.g., to reduce jams). However, many entities (humans and vehicles) are
autonomous and therefore weakly controllable [81].

The autonomy of the participating entities and the dynamic, open nature of
STSs [100, 258] entail that anticipating all the possible states of the system and
transitions between them is not an option [190, 294] and the compliance of the sys-
tem with its requirements cannot be guaranteed. Run-time requirements monitoring
and diagnosis are therefore essential activities to determine system compliance with
its requirements, which may eventually trigger evolution or adaptation mechanisms.

Several frameworks [140, 236, 290] have been proposed to support run-time re-
quirement monitoring and diagnosis. Many of such approaches represent require-
ments via requirements models [40, 290], and analyze system execution data in terms
of requirements satisfaction.

The self-adaptive systems literature goes beyond diagnosis, and proposes solutions
to adapt a system when their requirements are threatened [41, 113, 185]. Self-adaptive
systems search for a new system configuration that is expected to outperform the
current one in achieving the system requirements.
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Unfortunately, state-of-the-art approaches implicitly rely on the correctness of the
requirements model. When designing a system, however, requirements engineers make
assumptions about requirements, their satisfaction conditions, and the environment
in which the requirements should be satisfied [15, 55, 56, 190, 191]. This is even more
true for STSs, due to the autonomy of the participating entities and the volatility of
the environment.

In this chapter, we propose a framework (see Fig. 3.1) for the adaptation and
evolution of STSs that challenges the validity of the assumptions in a requirements
model. We use Bayesian Networks to learn the relationship between the satisfaction
of requirements and system’s objectives. Based on such information, the framework
can be used to (i) validate the assumptions in the model and let the analyst manually
evolve the system or its model; and (ii) automatically revise the requirements model
by determining the most appropriate requirements for the achievement of the system’s
objectives.

Requirements 
model

Requirements 
Bayesian Network

encoded into

  Req. assump- 
tions Validator

guides the evolution of

STS Supervisor

Sociotechnical
System

STS Log

produces

populatesabstracts

Ctx1: r1, r23, ...
Ctx2: r1, r2, ...
Ctx3: r2, r22, ...

STS Configuration

instantiates
specifies

automatically revises

 §3  §4  §5

 §6-7

 §4

informs

Figure 3.1: Overview of the framework for STS evolution

Specifically, we make the following contributions to the literature:

• We propose Requirement Bayesian Networks (RBN ) as the run-time counter-
part of the requirements models created at design-time; an RBN is populated
with execution logs and apprehends the causal relationships between require-
ments and system’s objectives in the different operating contexts;

• We explain how a human analyst can validate the design-time assumptions in
a requirements model through the use of an RBN ;
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• We present an automated requirements revision mechanism that can be used
for the system to identify sets of requirements that maximize the achievement
of the system’s objectives in each operating context. A first version of our
heuristics was presented in [117], with a focus on identifying optimal norms to
govern the behavior of a multi-agent system. The approach employs a vari-
ant of the hill climbing optimization technique to iteratively revise the norms
based on their effectiveness in achieving the system’s objectives. In this chap-
ter, we extend this work along three dimensions: (i) we apply our heuristics to
the case of hierarchical requirements models, as opposed to flat norm sets; (ii)
we formally define the concepts of requirement variant, system configuration,
and requirement revision; and (iii) we present a substantial evaluation of our
algorithms;

• Via a smart traffic simulation applied to a mid-sized city, we evaluate how
effective our revision mechanisms are at finding good-enough requirements.

Organization. Sec. 3.2 presents our research background. Sec. 3.3 introduces the
smart traffic working example that we use throughout the chapter. Sec. 3.4 defines
RBNs and shows how to map requirements models to them. Sec. 3.5 presents differ-
ent types of design-time assumptions and describes how to validate them based on
RBN information. Sec. 3.6 elaborates on our framework for automatic requirements
revision. Sec. 3.7 reports on our evaluation using a smart traffic simulator. Sec. 3.8
reports on related work. Sec. 3.9 discusses our work and sketches future work.

3.2 Background
We present the key background for this chapter: (i) requirements models; and (ii)
Bayesian Networks for representing and learning knowledge.

3.2.1 Requirements Models

Requirements models have been used and studied extensively in RE. As pointed out
by the IREB handbook of requirements modeling [97], such models can be created
with different purposes, including specifying a system, supporting testing, and in-
creasing clarity. Depending on the purpose, the analysts may decide to represent the
information structure, scenarios, goals and objectives, or other aspects of the system
under development and its environment.

Here, we focus on hierarchical requirements models, that organize the requirements
for a system as refinement trees, where high-level objectives—explaining the raison
d’être for the requirements [303]—are specified in terms of more specific requirements
and system functions. In particular, we take inspiration from the rich literature on
goal models [101, 275, 303], but choose a general notation that does not commit to a
specific modeling language.

A small requirements model for a car wash service is shown in Fig. 3.2. We
distinguish between requirements and objectives. Requirements (rounded rectangles)
define the behavior that the designer expects the entities within the STS to perform.
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For example, having cars cleaned, or doing so via a fully automated wash. Objectives
(targets with an arrow) express the conditions that denote stakeholder statisfaction
with the system; for example, Customer retention rate over 80% per year indicates
that the car wash owners do not simply want cars to be cleaned, but they aim at
retaining most customers to sustain their business.

We organize requirements in hierarchies via AND- and XOR-refinements. For an
AND-refined requirement to be satisfied, all of its sub-requirements need to be sat-
isfied. For example, in order to have cars cleaned, both the interior and the exterior
of cars should be cleaned, and positive opinions should be reported by the drivers. A
XOR-refined requirement describes possible mutually exclusive ways for its achieve-
ment. For example, exterior cleaning can be done either via a fully automated wash
or through a manual wash.

Legend

Cars cleaned

<5% customers 
complain each month

Customer retention 
rate over 80% 

per year

Interior washed Exterior cleaned

Requirement

ObjectiveIndicator

aims at

AND-refinement OR-refinement

Indicator-based 
satisfaction

Optional
Requirement

Fully automated 
wash

Manual wash

Positive opinion 
reported

Figure 3.2: A small requirements model for a car wash service.

The expected impact of requirements on objectives is represented via aims at
links, which denote positive contributions from requirements to objectives [154]. In
Fig. 3.2, the designer expects that washing the car interior will support achieving an
80% customer retention rate.

We use indicators to qualify the satisfaction of requirements. Requirements that
are not associated with an indicator (called regular requirements) are required to be
satisfied by every instance of the said requirement. For example, manual wash is
satisfied when all cars starting a manual wash are actually washed. Conversely, the
satisfaction of requirements that are associated with an indicator (called aggregate
requirements) is determined by aggregating a number of instances of that requirement.
For example, positive opinion reported is satisfied when less than 5% of the customers
complain. The analyst should specify the frequency for evaluating the indicator (e.g.,
monthly).

Finally, requirements can be optional (dotted border), indicating that they can
either be selected or not selected. For example, interior washed is not necessary for
having cars cleaned.
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We formalize our requirements model in Def. 1, which is used in Sec. 3.4 to explain
how requirements models are mapped to Bayesian Networks.

Definition 1 (requirements model). A requirements model is a tuple
RM “ xpR, ch, dq,O,SC, cl, type, sc, opty, where

• pR, ch, dq is an AND-OR tree, where R “ tR1, ..., Rnu is a set of requirements,
ch : R Ñ 2R is a function that returns the children of a requirement, and
d : R Ñ tAND,XORu is partial function that determines the type of refinement
of a requirement with children;

• O “ tO1, ...,Omu is a set of objectives;

• SC “ tSC1, ..., SCn`mu is a set of satisfaction conditions for requirements,
objectives, and indicators (see for instance Table 3.2);

• cl : RÑ 2O is a function that maps requirements to the objectives that they aim
at;

• type : R Ñ tagg,regu is a function determining whether a requirement is
aggregate or regular (all instances should be achieved);

• sc : R Y O Ñ SC is a function that determines the satisfaction condition of
requirements and objectives; and

• opt : R Ñ ttrue,falseu is a function determining whether or not a require-
ment is optional.

The requirements model in Fig. 3.2 can therefore be expressed according to Def. 1.
A partial formalization is the following:

• R “ tcars cleaned, . . . , positive opinion reportedu

• chpcars cleanedq “ tinterior washed, exterior cleaned, positive opinion
reportedu, chpexterior cleanedq “ tfully automated wash, manual washu

• dpcars cleanedq “ AND, dpexterior cleanedq “ XOR

• O “ tcustomer retention rate over 80% per yearu

• clpinterior washedq “ tcustomer retention rate over 80% per yearu

• optpinterior washedq “ true, . . .

3.2.2 Bayesian Networks
Bayesian Networks have been widely used in many fields, ranging from medicine to
forensics, as knowledge representation structures for learning and reasoning about the
inter-dependencies between their nodes [240].

In software engineering, their applications include evaluating software reliabil-
ity [127], estimating software effort [204], modeling software quality [209], and defect
prediction [138]. In RE, Bayesian Networks have been employed both for the run-time
verification of requirements [141] and for decision making [41].
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Definition 2 (Bayesian Network). A Bayesian network [240] B “ pX ,A,Pq is a
directed acyclic graph, where:

• X is the set of all nodes, each corresponding to a random variable in probability
theory with a discrete or continuous domain (i.e., the set of possible values the
node can take).

• A is the set of directed links (arrows) connecting pairs of nodes. If there is an
arrow from node X to node Y , X is said to be a parent of Y . The set of parents
of a node Y is denoted as Parents(Y).

• P is a set of |X | conditional probability distributions. Each node X P X is asso-
ciated with a conditional probability distribution PpX|Parents(X)q that quan-
tifies the effect of the parents on the node.

Note that in the context of Bayesian Networks we use the notation shown in
Table 3.1. The pair pX ,Aq is called the structure of the Bayesian Network pX ,A,Pq.
An evidence e is a revealed (observed) assignment of values for some or all of the
random variables in the Bayesian Network, i.e., e “ tXv|X P Xu with X Ď X and v
a possible value in the domain of the variables.

Table 3.1: A summary of the notation used for Bayesian Networks.

Notation Description

X, Y , ... Random variables (italic uppercase)

X, Y, ... Set of random variables (bold uppercase)

v1, v2, ... Value in the domain of a random variable (italic lowercase)

x, y, ... Assignment of values to a set of nodes (bold lowercase)

Xv pX “ vq, assignment of value v to a random variable X

Xv Assignment of value v to all nodes in X Ď X
Xact  Xdis “  pX “ disabledq, the fact: X is not disabled

P Probability distribution

P Single probability

Given the set X of all the nodes in a Bayesian Network B and a (possibly empty)
evidence e, reasoning with B generally means to determine the distribution PpX|eq,
with X Ď X a set of nodes of which we want to discover the probability distribution
(e.g., PpX|Yvq is the probability distribution of the values of the random variable X,
given that value v is observed for variable Y ).

3.3 The CrowdNavExt Smart Traffic Simulator
In this chapter, we study the evolution of an STS through computer simulation, a
powerful tool for testing alternative configurations prior to changing the real environ-
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ment, which is particularly adequate to analyze the behavior of autonomous agents
in a large-scale real setting [198, 268, 300].

We start from the CrowdNav smart traffic simulator, an exemplar from the self-
adaptive systems literature [245] that simulates traffic scenarios in the middle-sized
city of Eichstädt, in Germany, with 450 streets and 1,200 intersections. We propose
CrowdNavExt1, which introduces multiple types of navigation services as well as dif-
ferent ways of managing junctions, in line with the requirements model of Fig. 3.3,
described in the following.

The city council of Eichstädt aims at improving the traffic by achieving two sys-
tem’s objectives: ensuring an average trip overhead below 250% compared to the
theoretical traveling time without traffic, and guaranteeing less than 4 accidents per
day. To achieve such objectives, the city council plans to opportunely manage junc-
tions in the city and to offer to the cars a Centralized Navigation Service (CNS) in
addition to the cars’ personal navigation system. Due to the highly dynamic nature
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Figure 3.3: A requirements model for the smart traffic simulation.

of the city, drivers and vehicles can behave differenlty in different contexts. In this
chapter, we consider two contextual properties (Time and Weather), that can assume
two values each: Time can either take day or night, while Weather can either be
normal or extreme.

Two top-level requirements, set by the city council to achieve the objectives, are
the following: at least 10% of the cars in the city shall always use the offered CNS

1CrowdNavExt’s code repository: https://bitbucket.org/dellannadavide/crowdnavext.

66

https://bitbucket.org/dellannadavide/crowdnavext


3.4 FROM REQUIREMENTS MODELS TO BAYESIAN NETWORKS

3

(the requirement NS in Fig. 3.3 and the associated indicator), and every junction in
the city is opportunely managed (requirement J ).

To satisfy the requirement NS, two sub-requirements are assumed to be necessary:
whenever a car starts a trip toward a destination, the car shall receive a route from the
Central Navigation Service (NSD) and at least 80% of all the route suggestions given
by the CNS are respected by the cars equipped with the CNS (RS ). NSD can be met by
either employing a self-adaptive navigation service (ANS ) [245] or a static navigation
service (SNS ). In our simulator, each car relies on a navigation service to determine
its route from origin to destination: 90% of the vehicles use their personal navigation
service (the default routing algorithm of the simulator), while the remaining 10% are
smart cars that can use a centralized navigation service. When smart cars do not use
the centralized navigation service, they use their own navigator as normal cars.

The NSD requirement is assumed to help achieve three additional objectives con-
cerning the satisfaction of the users of the navigation service: less than 21 complaints
per week (C ); less than 7 dropouts per week (D), i.e., cars that decide to stop using
the CNS; and average trip overhead cars using CNS below 250% (T), for some cars
using the CNS will be suggested paths to explore in order for the CNS to identify
optimal paths.

To satisfy the requirement J, two sub-requirements are assumed to be necessary:
every junction that is equipped with smart panels (called smart junctions) shall display
on the panel the prescribed traffic rule (SJ ), and every car shall respect the traffic rules
prescribed by the junctions in the city (TR). SJ can be met by either displaying on
the panels traffic lights that adapt their timing according to the traffic (ATL), or
by displaying regular traffic lights (STL), or by displaying which of the lanes in the
junctions has priority (P). When no management is prescribed for smart junctions,
the vehicles approaching the junctions follow the default priority-to-the-right rule.

Table 3.2 describes precisely the conditions for requirement monitors to determine
requirements and objectives satisfaction.

3.4 From Requirements Models to Bayesian Networks

In this section, we define the type of Bayesian Network (called Requirement Bayesian
Network, or RBN ) that we use for supporting requirements evolution, and we explain
how to automatically generate the structure of an RBN from requirements models as
presented in Def. 1.

3.4.1 Requirement Bayesian Network

Let CP “ tCPi, ..., CPku be a set of monitorable contextual properties of the STS sys-
tem (i.e., monitorable environmental variables that determine the operating context
of the system, e.g., Time, Weather), each associated with a domain of values (e.g.,
Weather can be either normal or extreme).

Definition 3 (Requirement Bayesian Network). A Requirement Bayesian Network

RBN “ pX ,A,Pq is a Bayesian Network where:
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Table 3.2: Satisfaction conditions of the requirements and objectives in our scenario.

Var Satisfied Eval. every
NS ą 10% vehicles in the city is using the CNS time instant

NSD
every time a CNS-equipped car starts a trip, it re-
ceives a route from the CNS

trip

ANS
every time a CNS-equipped car starts a trip, it re-
ceives a route from an ANS

trip

SNS
every time a CNS-equipped car starts a trip, it re-
ceives a route from a SNS

trip

RS ą 80% of all CNS suggestions has been accepted week
J all sub-requirements are satisfied time instant

SJ
every smart junction displays the traffic rules on its
panel

time instant

ATL every smart junction displays adaptive traffic lights time instant
STL every smart junction displays regular traffic lights time instant
P every smart junction displays priority lanes signs time instant

TR
every time a car crosses a junction, it satisfies the
displayed traffic rule

car at junction

ATO
the average trip overhead of all the vehicles has been
below 250%

week

A the number of accidents is below 28 week
C the number of complaints received is below 30 week
D the number of dropouts is below 7 week

T
the average trip overhead of vehicles using the CNS
has been below 250%

week

• X “ RYOYC is a set of nodes, representing random variables in probability
theory. The sets R, O and C are disjoint.

– R consists of requirement nodes. Each node R P R corresponds to a re-
quirement and has a discrete domain of 3 possible values: obeyed, violated
and disabled.

– O consists of objective nodes. Each node O P O corresponds to a boolean
objective and has a discrete domain of 2 values: true and false.

– C consists of context nodes. Each node C P C corresponds to a contextual
property CPi P CP and can have discrete or continuous domain.

• A Ď pRˆRq Y pCˆRq Y pCˆOq Y pRˆOq is the set of arrows connecting
pairs of nodes. If there is an arrow from node X to node Y , X is said to be a
parent of Y .

• P is a set of conditional probability distributions, each one associated with a
node in X and quantifying the effect of the parents on the node.

An evidence c for all the context nodes C is an observation for a certain context
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(e.g., Time has value day and Weather has value normal). For simplicity, we call
context also the associated evidence in the RBN.

Note that when we refer to nodes of a specific type, unless otherwise specified, we
use the corresponding notation convention, e.g., R refers to a node in R, c refers to
an assignment of values of nodes in C, Rviol refers to an assignment of value violated
to a set of requirement nodes R, etc..

3.4.2 From Requirements Models to Requirement Bayesian Net-
works

We introduce the function RM2BNS that generates the structure of an RBN (Def. 3)
from a requirements model RM (Def. 1). RM2BNS maps a requirements model RM
and a set of contextual properties CP to an RBN structure pX ,Aq. Note that the
probability distributions P of an RBN do not depend on the source requirements
model, but are populated from the system’s execution log at run-time. Therefore, P
will not be considered in this section.

As a preliminary notion, we denote the set of requirements contributing to (aiming
at) an objective O in RM as cont descpOq. A requirement R contributes to an
objective O if R is a descendant of O and it is either a leaf requirement, or it is of
type aggregate but has no ancestor of type aggregate:

cont descpOq “

pdescpOq z tR1|R1 P descpRq, R P descpOq, typepRq “ agguq z

tR|chpRq ‰ H, typepRq ‰ aggu

(3.1)

where descpRq is the set the descendant of R (similar for O). For instance, in the
requirements model of Fig. 3.3, cont descpDq “ tANS,SNSu.

Definition 4 (RM2BNS). Given a requirements model RM “ xpR, ch, dq, O,
SC, cl, type, sc, opty and a set of contextual properties CP, the function RM2BNS re-
turns the structure of a Requirement Bayesian Network; formally, RM2BNSpRM, CPq “
pX ,Aq, where

• X “ RYO Y CP
• A “ tpR,Oq | R P cont descpOqu Y

tpR1, R2q | R1 P chpR2qu Y

tpC,Rq | C P CP, R P R, ptypepRq “ agg_ chpRq “ H qu Y

tpC,Oq | C P CP, O P Ou
Intuitively, A contains (i) an arrow from a requirement node R to an objective O if

R is a contributing descendant of O (see function cont desc above), (ii) an arrow from
a sub-requirement R1 to its parent requirement R2, (iii) an arrow from a context node
C to each requirement node R that represents either a leaf requirement (chpRq “ H)
or a requirement with an indicator, and (iv) an arrow from each context node C to
each objective O.

Fig. 3.4 reports the structure of the RBN that is generated by applying Def. 4 to
the requirements model of Fig. 3.3.
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Figure 3.4: The RBN structure defined by RM2BNS applied to the requirements model of
Fig. 3.3.

Besides reflecting the requirements model’s topology, the network also introduces
the context variables. The resulting structure of the Requirement Bayesian Network,
which consists of requirement, objective and context nodes, allows to analyze the as-
sumptions in different operating contexts (see Sec. 3.5). In an RBN , every context
node is parent of all the objective nodes. This indicates that the achievement of ob-
jectives is not only due to the satisfaction (or presence) of requirements, but also to
events that occur in the environment. Context nodes are also parents of all the re-
quirement nodes whose satisfaction is not exclusively determined by their hierarchical
structure in the AND/OR tree, but can also be affected by the context in which they
are applied.

We choose a three-values discrete domain for the requirement nodes to make the
network more versatile: while the obeyed and violated values allow to evaluate as-
sumptions about the satisfaction or violation of requirements (e.g., the requirement
satisfiability assumption in Sec. 3.5), the disabled value supports XOR-refined require-
ments. To update the conditional probability distribution of a node, it is necessary
to provide evidence for both the node and all of its parents. In case of a XOR-refined
requirement, we obtain evidence only for one of the parents (sub-requirements) at a
time. The disabled value allows therefore to perform the update also in such case.

3.4.3 Populating the RBN: Data collection

Table 3.3 reports a sample dataset that can be obtained from monitoring the require-
ment and objective satisfaction from the log for the working example of Sec. 3.3.
The values that each of the variables assumes belongs to its domain as specified in
Sec. 3.4.1 (e.g., obeyed, violated, disabled for requirement nodes, true or false for ob-
jective nodes). Such dataset can be used to train the RBN of Fig. 3.4 and learn the
set of conditional probability distributions P.
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Table 3.3: Part of the dataset used to train the BN of Fig. 3.4 and obtained from monitoring
the execution of the system in Sec. 3.3.

Weather Time NS NSD ANS SNS RS J SJ ATL STL P TR ATO A C D T
norm night viol ob dis ob viol viol viol dis dis viol ob T T T T F
norm day ob ob ob dis ob ob ob ob dis dis ob F F T F T
norm day ob ob viol dis viol viol dis viol dis viol ob F F T F F
extr night viol ob dis ob ob viol viol dis viol dis ob T T T T F
extr day ob dis dis dis dis ob ob ob dis dis ob T F T T F
extr day ob ob dis ob viol viol viol dis dis viol ob T F T T T
...

A discussion of learning techniques (e.g., classical Bayesian learning) is out of the
scope of this chapter; we refer the interested reader to the existing literature [240, 261].
Also, we do not analyze requirements monitoring mechanisms (e.g., EEAT [236]). In
the following, we assume to have a trained RBN.

3.5 Design-Time Assumptions and Their Validation
Requirements models contain assumptions that might be, or become, invalid in prac-
tice [15, 190, 191]. In this section, we describe six types of assumptions made by the
designer of a system during the definition of a requirements model (as per Def. 1),
and we propose a mechanism to determine the validity of such assumptions by using
an RBN trained with system execution data. As shown in Fig. 3.1, this information
can be used by the analysts to guide the evolution of an STS.

We introduce the notion of degree of validity (δ in the following) for an assumption
as a real number in the range r´1,`1s. δ “ `1 denotes a fully valid assumption,
δ “ ´1 indicates a fully incorrect assumption, and the intermediate values describe
an assumption with partial validity.

δ is computed as a difference between two probabilities, representing the collected
positive and negative evidence for the validity of that assumption, respectively. Thus,
if the collected positive evidence is close to 1 and the negative evidence is close to 0,
δ will be close to +1. Values around 0 show that the assumption is only partly valid
since the positive and negative evidences for the validity have similar strength.

3.5.1 Types of design-time assumptions
We take as a baseline the types of assumptions by Ali et al. [15] and extend the list to
support the structure of our requirements models. Note that the assumptions defined
below are made implicitly by defining the structure of a requirements model. There-
fore, even though they can be associated with a certain element of the requirements
model (e.g., with an arrow or a node of the model), they are not explicitly represented
in the model (unlike, e.g., the work by Boness and colleagues [56]).

Requirement satisfiability assumption. The hypothesis that in a specific operating
context, a requirement is satisfied (e.g., in context day-extreme, the requirement RS
is satisfied). Fig. 3.3 contains 11 requirement satisfiability assumptions (each one
associated with a requirement) for each of the four possible operating contexts.
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Given a context c and a requirement nodeR, the degree of validity of the associated
requirement satisfiability assumption in context c is

δSpR, cq “ P pRob | cq ´ P pRviol | cq (3.2)

Objective achievement assumption. The hypothesis that in a specific operating
context, an objective is achieved (e.g., in context day-extreme, the objective ATO is
achieved). Fig. 3.3 contains 5 objective achievement assumptions (each one associated
with an objective) for each of the four possible operating contexts.

Given a context c and an objective node O, the degree of validity of the associated
objective achievement assumption in context c is

δOpO, cq “ P pOtrue | cq ´ P pOfalse | cq (3.3)

Contribution assumption. The hypothesis that in a specific operating context,
there is a positive synergy between the satisfaction of a requirement and the achieve-
ment of an objective connected via an aims at link (e.g., in context day-extreme, there
is a positive synergy between the satisfaction of requirement NS and the achievement of
the objective ATO). Fig. 3.3 contains 6 contribution assumptions (each one associated
with an aims at link) for each operating context.

Given a context c, a requirement node R and an objective node O, the degree of
validity of a contribution assumption is:

δCpO,R, cq “ P pOtrue | Rob ^ cq ´ P pOtrue | Rviol ^ cq (3.4)

Notice that the degree of validity of negative contribution assumptions, if considered
in the requirements model (omitted in this chapter), due to the boolean nature of the
objective nodes, can be calculated as ´δC .

Refinement assumption. The hypothesis that in a specific operating context, the
satisfaction of an AND-refined requirement depends on the satisfaction of all its sub-
requirements (e.g.,in context day-extreme, to satisfy the requirement NS both the re-
quirements NSD and RS shall be satisfied), and a XOR-refined requirement is satisfied
only when one and only one of its sub-requirements is satisfied (e.g.,in context day-
extreme, the requirement NSD is satisfied when either ANS or SNS are satisfied).
Fig. 3.3 contains 2 AND-refinement assumptions and 2 XOR-refinement assumptions
(each one associated with a refinement) for each of the 4 operating contexts.

Given a context c, a requirement node R and the set R’ P R of its requirement
nodes parents, let r be the disjunction of all possible assignments of values to variables
in R’ excluding the assignment R’ob, let r1ob be the disjunction of all possible
assignments of values to variables in R’ such that only one variable takes value obeyed,
and let ro be the disjunction of all possible assignments of values to variables in R’
excluding the assignments in r1ob.

δANDpR, cq “ P pRob | R’ob ^ cq ´ P pRob | r^ cq (3.5)

δXORpR, cq “ P pRob | r1ob^ cq ´ P pRob | ro^ cq (3.6)
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For example, the degree of validity of the AND-refinement assumption of the
requirement NS in Fig. 3.3 unfolds as follows:

δANDpNS, cq “ P pNSob | NSDob ^RSob ^ cq ´

P pNSob |  pNSDob ^RSobq ^ cq
(3.7)

Adoptability assumption. The hypothesis that in a specific operating context, there
is a positive synergy between the satisfaction of a requirement and the satisfaction of
each one of its sub-requirements separately (e.g., in context day-extreme, there is a
positive synergy between the satisfaction of the requirement SNS and the satisfaction
of the requirement NSD). Fig. 3.3 contains 9 adoptability assumptions (each one as-
sociated with a link between a sub-requirement and a requirement) for each operating
context.

Notice that, while refinement assumptions concern one-to-many relationships (i.e.,
between one requirement and all of its children), adoptability assumptions concern
one-to-one relationships (i.e., between a requirement and each of its sub-requirements
separately).

Given a context c and two requirement nodes R and R1 such that R1 is parent of
R, the degree of validity of the associated adoptability assumption in context c is

δADpR,R
1, cq “ P pRob | R

1
ob ^ cq ´ P pRob | R

1
viol ^ cq (3.8)

Requirement necessity assumption. The hypothesis that in a specific operating
context, the activation of a specific requirement is necessary condition for achieving
all the objectives (e.g., in context day-extreme, to achieve the five objectives ATO,
A, C, D, T together, the requirement ANS must be activated). Fig. 3.3 contains 11
requirement necessity assumptions (each one associated with a requirement) for each
operating context.

This assumption concerns the activation of a requirement, regardless of its satis-
faction; i.e., it is the hypothesis that, in order to achieve the objectives, it is better
to keep active a requirement rather than disabling it.

Given a context c, a requirement node R and a set of objective nodes O, the
degree of validity of the associated requirement necessity assumption in context c is

δN pR,O, cq “ P pOtrue | Ract ^ cq ´ P pOtrue | Rdis ^ cq (3.9)

3.5.2 Validating assumptions

The requirements model of Fig. 3.3, despite its simplicity, contains 184 assumptions
(46 for each operating context, as described above) that the requirements engineer
who constructed it has implicitly made. This calls for automated mechanisms that
assist requirements engineers in validating such many assumptions.

Table 3.4 reports an evaluation of the validity of the assumptions for the require-
ments model of Fig. 3.3 when executing the simulator of Sec. 3.3. Specifically, we
ran the simulator in all the operating contexts and we collected from the simulation
logs a dataset of about 4.6 millions rows, part of which is reported in Table 3.3. We
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created an RBN for our scenario using the mapping function RM2BNS ; this led to
the network shown in Fig. 3.4. Then, we trained such network using the dataset
obtained from the smart traffic simulation. For the learning, we relied on the func-
tionality offered by the bnlearn R package [246]. At this stage, we could evaluate the
assumptions.

The calculated degree of validity of the assumptions underlying the requirements
model can be used by the designer of the system as a support to determine how to
evolve the STS. We provide some examples from Table 3.4.

The objective ATO is hardly achieved in context day-normal, i.e., the degree of
validity of the objective achievement assumption δOpATO,dnq is below 0 (´0.273).
This happens because of the higher number of vehicles driving during the day. The
designer may therefore introduce different requirements to help achieve the objec-
tive, for instance, replacing the current centralized navigation service with a more
intelligent one, or by changing the environment, e.g., by closing some roads to traffic.

Also, requirement ANS is harmful in context night-normal : the degree of valid-
ity of the requirement necessity assumption δN pANS,O,nnq is ´0.7867, indicating
that using ANS is detrimental to satisfying the objectives, which are quite positively
satisfied when ANS is not employed. In the simulator, this happens for the adaptive
navigation service uses some vehicles as “explorers” to find less congested roads [245].
This strategy appears to be harmful during the night since less vehicles drive in the
city and roads are not congested. The designer may therefore disable the navigation
service in such context.

The degrees of validity listed in the table can be also visualized directly on the
original requirements model using a color overlay (see [118] for an example of such
visualization). This may help the designer to quickly analyze the behavior of the
system and to determine whether an intervention is required.

3.6 Automated Requirements Revision

In Sec. 3.5, we have described mechanisms for analysts to determine—assisted by an
RBN that is populated with system execution logs— the validity of the assumptions
that a requirements model implicitly contains. Such techniques help the analysts
identify systems’ behaviors that are not aligned with expectations, so that human
evolution of the system requirements can be made.

Here, we present a control loop for the automated adaptation of an STS (Sec. 3.6.2),
which leverages the information concerning assumptions validity learned at run-time,
in order to revise the STS requirements aiming to maximize the system’s objectives
achievement. Prior to explaining the control loop, we define in Sec. 3.6.1 some key
terms that concern our conceptual framework.

3.6.1 Requirement Variant, System Configuration, and Requirement
Revision

The adaptation mechanisms presented in this section require the introduction of three
basic notions: those of a requirement variant (Def. 5), system configuration (Def. 6)
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Table 3.4: The degree of validity of the assumptions made in Fig. 3.3 in the four differ-
ent operating contexts day-normal weather (dn), day-extreme weather (de), night-normal
weather (nn), night-extreme weather (ne).

Assumption c “ dn c “ de c “ nn c “ ne
δSpNS, cq 0.0580 0.1073 0.0473 0.0676
δSpNSD, cq 0.1007 0.0983 0.0988 0.0946
δSpANS, cq 0 0 0 -0.0001
δSpSNS, cq 0.1003 0.0980 0.0989 0.0940
δSpRS, cq 0.0596 0.0598 0.0582 0.0581
δSpJ, cq 0 0 0 0
δSpSJ, cq 0 0 0 0
δSpATL, cq 0 0 0 0
δSpSTL, cq 0 0 0 0
δSpP, cq 0 0 0 0
δSpTR, cq 0 0 0 0
δOpATO, cq -0.2730 0.6591 0.9998 0.9999
δOpA, cq 0.1119 -0.0379 0.8374 0.8181
δOpC, cq 0.5079 0.5954 0.9605 0.9998
δOpD, cq 0.9933 1 0.9998 0.9998
δOpT, cq 0.3155 0.5604 0.7472 0.9737
δCpATO,NS, cq -0.0744 -0.2470 0.0002 0
δCpATO, J, cq 0 0 0 0
δCpA, J, cq 0 0 0 0
δCpC,NSD, cq -0.0137 0.3960 0.5105 0.4777
δCpD,NSD, cq 0.4337 0.5454 0.5383 0.4998
δCpT,NSD, cq 0.0704 0.3773 0.2412 0.5180
δANDpNS, cq 0.0187 0.0226 0.0362 -0.0376
δANDpJ, cq 0 0 0 0
δXORpNSD, cq 0.1003 0.0980 0.0988 0.0940
δXORpSJ, cq 0 0 0 0
δADpNS,NSD, cq -0.1008 -0.1033 -0.1008 -0.0019
δADpNS,RS, cq 0.0025 0.0043 0.0025 0.0025
δADpNSD,ANS, cq 0.3542 -0.1548 0.3542 -0.0253
δADpNSD,SNS, cq 1 1 1 0.6684
δADpJ, SJ, cq 0 0 0 0
δADpJ, TR, cq 0 0 0 0
δADpSJ,ATL, cq 0 0 0 0
δADpSJ, STL, cq 0 0 0 0
δADpSJ, P, cq 0 0 0 0
δN pNS,O, cq -0.0068 -0.0029 -0.0022 0
δN pNSD,O, cq -0.0040 -0.0056 0.0017 0.0029
δN pANS,O, cq -0.1003 -0.2498 -0.7867 -0.7336
δN pSNS,O, cq -0.0033 -0.0036 -0.0005 0.0024
δN pRS,O, cq -0.0018 0.0075 0.0018 -0.0015
δN pJ,O, cq 0.1006 0.2502 0.7870 0.8967
δN pSJ,O, cq -0.0005 -0.0008 0 0.0005
δN pATL,O, cq 0.0093 -0.2501 -0.7865 -0.8968
δN pSTL,O, cq 0.0004 0.0003 0 0.0003
δN pP,O, cq 0.0005 0.0013 -0.7864 0.0001
δN pTR,O, cq 0.1003 0.2501 0.7867 0.6191

75



A FRAMEWORK FOR THE SUPERVISION OF AUTONOMOUS SYSTEMS 3.6

and requirement revision (Def. 7).

Definition 5 (requirement variant). Consider a set O of stakeholders objectives in
a requirements model RM, and a set C of all possible contexts in which the system
operates. We call requirement variant V a sub-graph of RM that is defined by pruning
RM as follows:

1. for every XOR-refined requirement in RM, V contains exactly one sub-requirement;

2. for every optional requirement in RM, that requirement can either be included
in or excluded from V .

3. if a requirement in RM is excluded from V through clauses 1. or 2., then all
the descendants of that requirement are also pruned.

The requirements model of Fig. 3.3 results in a set V of twelve requirement variants
(listed in Table 3.5) that satisfy the top-level requirement, computed by activating
or disabling the optional requirements NS and SJ, and by making choices for the
XOR-refined requirements NSD and SJ. Fig. 3.5 and Fig. 3.6 report, as an example,
a graphical representation of variants V3 and V4.

Table 3.5: The 12 requirement variants of the smart traffic scenario.

Var. Description Requirements

V1
Static navigation system and
static traffic lights

NS, NSD, SNS, RS, J, SJ, STL, TR

V2
Adaptive navigation system
and static traffic lights

NS, NSD, ANS, RS, J, SJ, STL, TR

V3 Only static traffic lights J, SJ, STL, TR

V4 Only priority lanes signs J, SJ, P, TR

V5 All panels disabled J, TR

V6 Only static navigation system NS, NSD, SNS, RS, J, TR

V7
Only adaptive navigation sys-
tem

NS, NSD, ANS, RS, J, TR

V8
Static navigation system and
adaptive traffic lights

NS, NSD, SNS, RS, J, SJ, ATL, TR

V9
Adaptive navigation system
and adaptive traffic lights

NS, NSD, ANS, RS, J, SJ, ATL, TR

V10 Only adaptive traffic lights J, SJ, ATL, TR

V11
Static navigation system and
priority lanes signs

NS, NSD, SNS, RS, J, SJ, P, TR

V12
Adaptive navigation system
and priority lanes signs

NS, NSD, ANS, RS, J, SJ, P, TR
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Figure 3.5: A graphical representation
of the requirement variant V3.
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Figure 3.6: A graphical representation
of the requirement variant V4.

Definition 6 (system configuration). Given the set of requirement variants V and
the set of operating contexts C “ tC1, . . . , Cmu, a system configuration assigns a re-
quirement variant to each operating context. Formally, a system configuration is a
set of pairs txC1,Viy, . . . , xCj ,Vky, . . . , xCm,Vpyu such that Vi,Vk, . . . ,Vp P V.

Given the four possible contexts day-normal, day-extreme, night-normal, night-
extreme, and given the set V of possible requirement variants, an example of system
configuration is txday-normal, V3y, xday-extreme, V4y, xnight-normal,
V5y, xnight-extreme, V10yu.

A certain requirement R is said to be active in a context Ci if xCi,Vjy is in the
system configuration and R P Vj . Otherwise R is said disabled.

The concepts of requirement variant and system configuration are essential for us
to define the notions of requirement revision, which is the basic action that the STS
Supervisor performs when adapting the STS, on the basis of the learned run-time
information concerning assumptions validity.

Definition 7 (requirement revision). Given a requirements model RM, and a re-
quirement variant Vi of RM, a revision of a requirement R with respect to Vi is an
operation that returns a different variant Vj of RM with i ‰ j. We distinguish the
following types of revisions of a requirement R:

• Disabling R P Vi returns a Vj that does not contain R 2.

• Activating R R Vi returns a Vj that contains R.

• Relaxing R P Vi returns a Vj such that, given the set D of descendants of R in
Vi, the set of descendants of R in Vj is D1 Ă D.

• Strengthening R P Vi returns a Vj such that, given the set D of descendants of
R in Vi, the set of descendants of R in Vj is D1 Ą D.

2Clause 3 of Def. 5 ensures that all the descendants of R in RM are also not in Vj
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• Altering R P Vi return a Vj such that, given the set D of descendants of R in
Vi, the set of descendants of R in Vj is D1 such that D1 ‰ D and D1 XD ‰ H.

Table 3.6 shows the revisions applied to each of the requirements (NS, NSD,
etc.) in the requirements model of Fig. 3.3, in order to obtain the twelve possible
requirement variants starting from V1. For example, the requirement variant V3 (see
Table 3.5) is obtained from V1 by disabling the requirement NS and by consequence
also all of its descendants. On the other hand, the requirement variant V2 is obtained
from V1 by altering NS by replacing the descendant requirement SNS with ANS.
In requirement variant V5, the requirement J is relaxed w.r.t. variant V1, for its
descendants SJ and STL are in V1 but not in V5. Notice that if we had started
from V5 instead (not shown in the table), the same requirement J would have been
strengthened in variant V1. Finally, requirement P is activated in V4, for it was not
present in V1.

Table 3.6: Revisions of the requirements in Fig. 3.3 that are performed from requirement
variant V1 to the other eleven requirement variants. The requirements whose nodes are in
V1 are underlined. The last row describes the variant revision type from V1 to the other
requirement variants. Value “-” indicates that no revision is applied.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

NS - alt dis dis dis - alt - alt dis - alt
NSD - alt dis dis dis - alt - alt dis - alt
SNS - dis dis dis dis - dis - dis dis - dis
ANS - act - - - - act - act - - act
RS - - dis dis dis - - - - dis - -
J - - - alt rel rel rel alt alt alt alt alt
SJ - - - alt dis dis dis alt alt alt alt alt
STL - - - dis dis dis dis dis dis dis dis dis
ATL - - - - - - - act act act - -
P - - - act - - - - - - act act
TR - - - - - - - - - - - -
V1 - alt rel alt rel rel alt alt alt alt alt alt

Def. 8 lifts the notion of revision from an individual requirement (Def. 7) to an
entire requirement variant.

Definition 8 (requirement variant revision). Given a requirements model RM, and
given two requirement variants Vi,Vj of RM, Vj is a revision of Vi if and only if
Vj ‰ Vi. A requirement variant revision can be of three types:

• Relaxation: for each requirement R in RM, either R is not revised between Vi
and Vj, or it is relaxed or disabled;

• Strengthening: for each requirement R in RM, either R is not revised between
Vi and Vj, or it is strengthened or activated;

• Alteration: when Vj is neither a relaxation or a strengthening of Vi.
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The last line of Table 3.6 determines the type of variant revision based on the
individual requirements revisions. For example, V3 is a relaxation of V1, for the only
requirement revision type that is applied is disabling (NS, NSD, SNS, and RS ). V2 is
instead an alteration of V1, for the applied requirement revisions do not define neither
a relaxation nor a strengthening.

3.6.2 The STS Supervisor Control Loop
The notions introduced in Def. 5–8 are used to explain the STS Supervisor (first
mentioned in Fig. 3.1) that guides the adaptation of an STS. The control loop of the
STS Supervisor is shown in Fig. 3.7 and described in the following.

revised
configuration

used by

STS log

Revision Engine

    Diagnoser

     Revision
selector

      Revision
actuator

-
Revision 
Trigger

Requirement
Bayesian
Network

unsat objectives

Monitoring
System 

Configuration

input for

Figure 3.7: The main components of the STS Supervisor.

At design-time, an initial system configuration (as per Def. 6) is selected by the
analyst according to the available domain knowledge, and it is stored in the System
Configuration component.

At run-time, the Monitoring component collects information about the satisfaction
or violation of the requirements and about the operating contexts in which they are
evaluated. The system’s objectives are also evaluated, typically with lower frequency
and relying on aggregate information. This knowledge (the STS log) is used to learn,
by means of a Requirement Bayesian Network (described in Sec. 3.2.2), correlations
between the satisfaction of the requirements and the achievement of the objectives in
the different contexts.

A Revision Trigger component (Sec. 3.6.2) uses the learned knowledge to de-
termine whether some requirements should be revised. The requirements revision
process is executed by the Revision Engine component that generates as output a
(possibly) new system configuration, replacing the current one in the System Con-
figuration component. The sub-components of the Revision Engine are detailed in
Sec. 3.6.2–3.6.2.

The STS Supervisor control loop implements a variant of the hill climbing opti-
mization algorithm. A system configuration is treated as a solution in the space of all
possible solutions. We say that the hill climbing optimization process (Supervisor’s
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control loop) performs a step every time a requirement revision process is triggered by
the Revision Trigger. A new solution (system configuration) is then selected among
the solutions in the neighborhood of the current system configuration. The neigh-
borhood of a system configuration is defined by our Revision Engine component by
making use of the requirements model’s structure and of the RBN. In particular, in
Sec. 3.6.2 we describe two different algorithms for the selection of a requirements’ re-
vision that can be used as informed heuristics for the definition of a neighborhood of
a system configuration. In Sec. 3.7 we will then evaluate such heuristics by comparing
them with uninformed ones that do not leverage run-time execution data about the
validity of the assumptions underlying a requirements model.

Revision Trigger

The Revision Trigger determines if a requirements revision is necessary. If so, the
Diagnoser (Sec. 3.6.2) is invoked; otherwise, no revision of requirements is triggered.

Let e be an event representing network stability: changes in the probability dis-
tributions in the Requirement Bayesian Network are not significant anymore (i.e.,
the variations in the distribution when a new sample is given are below a specified
threshold). Assuming a consistent behavior of the system, such event will occur after
some time.

Let toa be a threshold defining the minimum objectives achievement joint prob-
ability (i.e., the probability oa that all the objectives are achieved together) desired
by the system designer. A revision (i.e., a new step of the hill climbing procedure) is
triggered every time e occurs and toa is not met with the current system configura-
tion (i.e., oa ă toa with the current system configuration). For example, oa ě 0.95
indicates a threshold toa of 95% for the objectives achievement joint probability.

Revisions are triggered based on an analysis of the objective achievement assump-
tions. The revision trigger calculates the joint degree of validity of the objective
achievement assumption for all the objectives. A revision is triggered when such
value is below toa ´ p1´ toaq.

Please note that, as described above, at any time instant a certain system con-
figuration Ci is chosen. The objectives achievement joint probability oa, therefore,
depends on the chosen configuration. For instance, for the running example, if
Ci “ txday-normal, V3y, xday-extreme, V4y, xnight-normal,
V5y, xnight-extreme, V10yu, then oa needs to be calculated as follows:

oa “ P pOtrue| dn ^ v3qP pdnq ` P pOtrue| de ^ v4qP pdeq`

P pOtrue| nn ^ v5qP pnnq ` P pOtrue| ne ^ v10qP pneq
(3.10)

with dn,de,nn,ne evidences for the contexts day-normal, day-extreme, night-normal,
night-extreme, respectively (e.g., dn “ pTimeday^Weathernormalq), and v3,v4,v5,v10
evidences for the values of the requirements in the requirement variants V3, V4, V5,
V10, respectively (e.g., v3 “ pJact ^ SJact ^ STLact ^ TRact ^V3Ddisq, where V3D
is the set of remaining requirement nodes disabled in V3).

Analogously, any probability that needs to be calculated on the Requirement
Bayesian Network w.r.t. a certain context should take into account the currently
chosen system configuration. In order to ease the reading, however, in the rest of the
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chapter we do not explicitly represent (unless differently specified) the evidence for
the requirement nodes. We implicitly assume, instead, that in a certain context c the
given evidence informs also about the active/disabled requirements in the require-
ment variant currently chosen for context c. For instance, if V3 is currently chosen
for context c, and we want to calculate the objectives achievement joint probability
in such context c, instead of writing P pOtrue| c^ v3q (with v3 defined as above) we
simply write P pOtrue| cq.

Diagnoser

When a revision is triggered, the Diagnoser component is invoked to determine the
reasons why the objectives are not achieved. To do so, it uses the Requirement
Bayesian Network to determine the most problematic operating context in which the
objectives are not achieved.

Let all be the set of all possible assignments of a value to each of the context vari-
ables in the Bayesian Network (e.g., for the Bayesian Network reported in Fig. 3.4,
all “ ttTimeday,Weathernormalu, ..., tTimenight,Weatherextremeuu). The most prob-
lematic context (denoted with mpc) is the assignment resulting from Equation 3.11.

mpc “ argmaxcPallP pOfalse | cq (3.11)

Revision Selector

Let Vmpc be the requirement variant assigned to the most problematic context mpc
in the current system configuration. The Revision Selector determines the most ad-
equate requirements revisions to perform to requirements in Vmpc so to increase
P pOtrue | mpcq. Our framework includes two heuristic algorithms: pureBN (PB)
and stateBased (SB).

PB and SB first identify the relationship between the requirement and the ob-
jective nodes in the Bayesian Network by performing an analysis of some of the
design-time assumptions described in Sec. 3.5.

Requirements can be either useful for the achievement of the system’s objectives
or harmful. Useful requirements can be further divided into requirements that are
more useful when obeyed and requirements that are more useful when violated. Useful
requirements can also be either often obeyed when the objectives are not achieved or
often violated.

Let us formalize this classification in terms of probability theory. Let R be the
set of all requirement nodes in a Requirement Bayesian Network. In the rest of this
section, for simplicity, let R “ tX,Y, Zu.

Harmful requirements. The set of requirements such that, when all disabled, guar-
antee a better objectives achievement joint probability than when at least one of
them is activated. Let da be the set of all possible assignments of values in the set
tdis, actu to all nodes R (e.g., given R “ tX,Y, Zu, then da “ ttXdis, Ydis, Zdisu, . . . ,
tXact, Yact, Yactuu).
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Let h be the assignment of Equation 3.12 (e.g., h “ tXdis, Yact, Zactu).

h “ argmaxrPda P pOtrue |r ^mpcq (3.12)

Let D Ď R be the set of nodes that have value dis in h, and A be the set RzD
(e.g., D “ tXu and A “ tY,Zu). Harmful requirements are all the requirements such
that the corresponding nodes in the Bayesian Network are in D. Useful requirements
are instead all the requirements such that the corresponding nodes in the Bayesian
Network are in A.

Note that an harmful (useful) requirement is one whose associated requirement
necessity assumption is negative (positive).

Requirements that are more useful when obeyed (violated). The set of require-
ments that are most useful for the objectives achievement joint probability when
active, either when obeyed or violated.

Let ov be the set of all possible assignments of values in the set tob, violu to
all nodes in the set of useful requirements A (e.g., given A “ tY,Zu, then ov “

ttYob, Zobu, tYob, Zviolu, tYviol, Zobu, tYviol, Zvioluu). Let u be the assignment resulting
from Equation 3.13 (e.g., u “ tYob, Zviolu).

u “ argmaxrPov P pOtrue |r ^mpc^Ddisq (3.13)

Requirements that are more useful when obeyed (violated) are all the requirements
whose nodes in the Bayesian Network have value ob (viol) in u (e.g., Y is more useful
when obeyed, while Z is more useful when violated).

Determining whether a requirement is useful when obeyed or when violated cor-
responds to evaluate if the associated contribution assumption is positive or negative.
When a requirement has no aims at link to an objective in RM, we are evaluating a
hypothetical link between the two elements.

Useful requirements often obeyed (violated) when Ofalse. The set of useful re-
quirements that are most likely to be obeyed (violated) when the objectives are not
achieved. Let mle be the assignment of Equation 3.14 (e.g., mle “ tYob, Zobu). We
call such assignment most likely explanation for Ofalse in mpc.

mle “ argmaxrPov P pr |Ofalse ^mpc^Ddisq (3.14)

Useful requirements that are often obeyed (violated) when Ofalse are those whose
corresponding nodes in the Requirement Bayesian Network have value ob (viol) in
mle (e.g., both nodes Y and Z are often obeyed when Ofalse).

The most likely explanation mle for Ofalse in mpc is determined by computing
the most likely degree of validity of the requirement satisfiability assumptions of the
requirements that are not harmful. The most likely value of a requirement R is obeyed
if the most likely degree of validity δSpR, pmpc,Ofalseqq is positive, otherwise the most
likely value is violated.
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Algorithm PB. After identifying the relationship between requirements and sys-
tem’s objectives, as just described, this algorithm applies the following procedure,
also illustrated by the decision tree of Fig. 3.8:

1. Disable/Relax harmful requirements.

2. Relax useful requirements that are more useful when violated.

3. Strengthen/Alter useful requirements that are more useful when obeyed but
they are often violated when Ofalse.

4. Keep all other requirements unrevised, or strengthen them.

For example, given R as described above, PB suggests to disable/relax X, to relax
Z and to either leave unaltered Y or to strengthen it.

argmaxrPdaP pOtrue |r ^mpcq

disable or relax

dis

argmaxrPovP pOtrue |r ^mpc^Ddisq

argmaxrPovP pr |Ofalse ^ c^Ddisq

strengthen or alter

viol

no revision or strengthen

ob

ob

relax

viol

act

Figure 3.8: Decision tree used by algorithm PB for determining a suitable type of revision.

Algorithm 2 reports the pseudocode for PB. Line 2 determines, based on the top

Algorithm 2 The PB algorithm for revision selection

1: function PB(mpc)
2: R1

Ð getBestReq(mpc) Ź obtain A1 and D1

3: if p|A| ą 0q &&  allTried(mpc) then
4: mle Ð getMLE(Ofalse, mpc)
5: for all reqs R P A1 do
6: u Ð getUsefulVal(R, mpc)
7: setSugg(tRu, getSugg(R, mle, u))

return R1

decision node of Fig. 3.8, the set of requirements R1 that has the highest probability
to satisfy the objectives. If the current requirement variant R has some active require-
ments, and not all requirement variants have been attempted in the most problematic
context yet (line 3), the most likely explanation mle for not fulfilling the objectives is
determined (line 4). Then, for each active requirement in the new set of requirements
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R1 (line 5), the algorithm determines the “useful” state, i.e., whether requirements
is more useful when obeyed or violated (line 6). Finally, in line 7, the suggestion for
the examined requirement is determined based on the decision tree of Fig. 3.8. If no
requirements are active or all possible variants have already been tried, PB returns
R1: the best possible requirement variant for the most problematic context (skipping
lines 4–7).

Algorithm SB. This algorithm implements a different strategy for the revision se-
lection, for it analyzes the relationship between the average requirements satisfaction
(calculated as the mean) and the objectives achievement joint probability of the cur-
rent system configuration. Fig. 3.9 plots five examples of system configurations in
four states with respect to the average requirements satisfaction and the objectives
achievement joint probability.
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Figure 3.9: Plotting system configurations (points) in four states (A–D) according to the
average requirements satisfaction and objectives achievement joint probability. trs and toa

denote the desired average requirements satisfaction and objectives achievement joint proba-
bilities, respectively.

Configurations in state A sufficiently satisfy the requirements, but this does not lead
to sufficient objectives achievement. State B has insufficient requirements satisfaction
and objectives achievement. State C indicates that the objectives are achieved even
though the requirements are not satisfied. State D is the ideal area: the requirements
are satisfied and the objectives are achieved. Algorithm SB aims to revise the system
configuration and move the system into state D by applying the following procedure:

1. Calculate average requirements satisfaction probability.

2. Calculate objectives achievement joint probability.

3. Disable harmful requirements, if any. Else, go to point 4.

4. If the system configuration is in state A: Relax useful requirements that are
more useful when violated but often obeyed when Ofalse, if any. Otherwise,
Strengthen/Alter all useful requirements.
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5. If the system configuration is in state B: Strengthen/Alter useful requirements
that are more useful when obeyed but often violated when Ofalse and Relax
useful requirements that are more useful when violated.

6. If the system configuration is in state C: Relax useful requirements that are
more useful when violated and often violated when Ofalse, if any. Otherwise,
Strengthen/Alter useful requirements that are more useful when obeyed but
often violated when Ofalse.

For example, given R as described above, SB only suggests to disable X, for such
requirement is harmful.

Algorithm 3, reports the pseudocode for SB. SB first determines the average
requirements satisfaction and objectives achievement based on the evidence from the
active requirements in the most problematic context (lines 2). Like in PB, the best
possible requirement variant in the most problematic context is generated (line 3). If
there are currently no active requirements or R1 contains at least one suggestion of
type disable, the function returns immediately (line 4).

Three empty sets of requirements are defined in line 5: requirements that are
often obeyed but they are better (i.e., useful) when violated obbv, requirements that
are often violated and they are also better when violated vabv, and requirements
that are often violated but they are better when obeyed vbbo. After determining

Algorithm 3 The SB algorithm for revision selection

1: function SB(mpc)
2: rsÐ avgReqSat(A); oaÐ avgObjAch(A)
3: R1

Ð getBestReq(mpc) Ź obtain A1 and D1

4: if p|A| “ 0q || hasDis(R1)q then return R1

5: obbv Ð vabv Ð vbboÐ tu

6: mle Ð getMLE(Ofalse, mpc)
7: u Ð getUsefulVal(A1, mpc)
8: determineTYPE(A1, mle, u, obbv, vabv, vbbo)
9: if rs ě trs && oa ă toa then

10: if |obbv| ą 0 then setSugg(obbv, relax)
11: else setSugg(A, alter _ strengthen)

12: else if rs ă trs && oa ă toa then
13: setSugg(oobv Y vabv, relax); setSugg(vbbo, alter _ strengthen)
14: else if rs ă trs && oa ě toa then
15: if |vabv| ą 0 then setSugg(vabv, relax)
16: else if |vbbo| ą 0 then setSugg(vbbo, alter _ strengthen)

return R1

the most likely explanation mle (line 6), the algorithm determines (line 7) for all
active requirements of the new requirement variant whether they are more useful
when obeyed or violated. Using mle (obeyed / violated) and the useful value (obeyed
/ violated), the requirements are added to the corresponding sets obbv, vavb, and vbbo
(line 8).
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Lines 9–16 compare the state of the current requirement variant (rs and oa) against
the thresholds trs and toa. If the requirement variant is in state A (lines 9–11), if obbv
contains requirements, the suggestion is to relax them; if obbv is empty, a suggestion
to alter or strengthen is given for the active requirements (the active requirements
behave as expected but the objectives are not achieved). In state B (lines 12-13),
a relaxation of the requirements that are useful when violated is suggested, and an
alteration or strengthening is suggested for the requirements that are useful if obeyed.
In state C (lines 14–16), if there are violated requirements that are better if violated,
it is suggested that they are relaxed; if, instead, there are violated requirements that
are better if obeyed, the suggestion is to either alter or strengthen them.

PB and SB adopt different strategies for the revision of requirements. While PB
determines for all the requirements the most opportune revision to perform (if any),
SB considers the global state of the system and suggests to revise only a certain type
of requirements at every iteration. This difference leads to a different definition of the
neighborhoods of the configurations during the hill climbing process (see Sec. 3.6.2),
and this leads to different results (as will be visible in Sec. 3.7).

Revision Actuator

This component adopts a new requirement variant in the mpc. Given a list of sug-
gested revisions for requirements in the requirement variant Vmpc currently assigned
to context mpc in the system configuration, the Revision Actuator selects a require-
ment variant Vj that is as much aligned as possible with the direction provided by
the suggestion.

For example, consider V1, and assume the Revision Selector suggests to alter the
requirement NS. Then, the Revision Actuator has to find other requirement variants
where NS is altered from V1 (e.g., V2, V7, V9 or V12, see Table 3.6). The obtained set
of variants defines the neighborhood of the current system configuration in the hill
climbing optimization process.

If the neighborhood contains multiple variants, different distance metrics can be
defined, e.g., the similarity with the current variant, or the sensitivity of the objectives
to the change of the selected requirements. Here, we adopt the number of revisions
of requirements needed to obtain Vj from Vmpc. For instance, four revisions are
necessary to obtain V2 from V1, seven revisions are necessary to obtain V7 from V1,
etc.

After selecting the new requirement variant Vj , the current system configuration
is updated to map the context mpc to the new Vj instead of Vmpc.

If there is no new variant that is aligned with the provided suggestion (i.e., the
neighborhood is empty or it contains only already-attempted variants), the Revision
Actuator randomly selects a system configuration never tried before, if any. This
makes our implementation of hill climbing different from traditional ones, and guar-
antees convergence to an optimal solution.
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3.7 Evaluation
We report on an evaluation of the proposed supervision mechanism; in particular, we
conduct an experiment that investigates the process through which the Supervisor’s
control loop identifies an optimal system configuration.

3.7.1 Scope, Context, and Hypotheses
The object of our study consists of the requirement revision heuristics. We compare
two sets of dependent variables:

i. Informed heuristics: the two algorithms PB and SB described in Sec. 3.6.2
implemented in our Revision Engine; and

ii. Uninformed heuristics: three baseline algorithms that do not leverage knowl-
edge about the validity of the design-time assumptions:

1. Maximum distance 8 (D8) defines a neighbourhood composed of all the sys-
tem configurations that are obtained by revising at most 8 requirements3;

2. Maximum size 10 (S10) defines a neighborhood composed of the 10 closest
system configurations to the current one;

3. Maximum size 20 (S20) defines a neighborhood composed of the 20 closest
system configurations to the current one.

We identify four independent variables for studying the process through which the
Supervisor’s control loop identifies an optimal system configuration:

1. Convergence speed : the number of steps (i.e., revisions triggered by the Revision
Trigger, as described in Sec. 3.6.2) and the number of explored system configu-
rations that the Supervisor’s control loop requires before it identifies an optimal
system configuration;

2. Quality : the probability that the system configurations explored satisfy the
system’s objectives;

3. Stability : the number of requirements revisions that are performed while iden-
tifying an optimal system configuration.

Furthermore, for the informed algorithms alone, we evaluate 4. Noise tolerance:
the degree to which the amount of noisy input data (imperfect monitors) affects
convergence speed, quality, and stability. Noise tolerance does not affect uninformed
algorithms, for they do not take into account any information about requirements
satisfaction.

Our experiment is run through CrowdNavExt, the simulation environment that
instantiates the smart traffic example presented in Sec. 3.3. Within the context of
such simulation environment, we formulate the following hypotheses:

3The value of 8 was chosen via experimentation with CrowdNav. Revising one requirement leads
to a distance of 4–5 from the original system configuration, and each system configuration has 10%–
20% of all system configurations in its neighborhood.
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• H1: our informed heuristics provide a higher convergence speed than the unin-
formed heuristics;

• H2: our informed heuristics allow to higher-quality system configurations than
the uninformed heuristics;

• H3: our informed heuristics allow to perform less revisions than the uninformed
heuristics while finding an optimal system configuration;

• H4: noisy input data has a marginal effect on convergence speed, quality, and
stability of the Supervisor’s control loop when using our informed heuristics.

3.7.2 Design and Instrumentation

SASS (Supervisor of Autonomous Software Systems)4 is our implementation of the
Supervisor’s control loop described in Sec. 3.6 as a modified version of hill climbing.
The supervisor performs a local search and stops when either (i) all the system config-
urations have been tried; or (ii) a local optimum (system configuration) is found that
has objectives achievement joint probability oa above the desired threshold toa. This
probability is determined from simulation data (see Sec. 3.6.2) as the joint probabil-
ity of achievement of all the objectives, given the chosen system configuration. We
call optimal the last system configuration chosen, since either it is above the desired
threshold or there is no other better configuration.

CrowdNavExt has 124 “ 20, 736 possible system configurations, i.e., assignments
of one of the twelve variants to each of the four contexts (see Def. 6). To keep our
simulation time manageable, we chose 81 system configurations via test case gener-
ation techniques. We first applied pairwise testing : for each pair of variables, we
obtained all their possible discrete combinations. Our variables are: time of the
day (day, night), weather (normal, extreme), the alternative requirements for the
navigation service (none, adaptive, static), and the alternatives for managing smart
junctions (none, adaptive lights, static lights, priority lanes). This led to 3 different
variants for each of the 4 operating contexts, using pairwise testing. We generated all
combinations of the four groups of variants (each system configuration includes four
variants, one per each operating context). Finally, we introduced three additional
system configurations more distant from the others (in terms of number of required
revisions, as described in Sec. 3.6.2). Two of them are the best-scoring system config-
urations. Therefore, in our experiments, we study 84 system configurations (reported
in Table 3.7).

Table 3.8 describes all the simulation parameters of our experiments. We run
simulations with three possible values of toa: 0.35, 0.3, and 0.25. These values have
been determined manually, based on the objectives achievement joint probability oa
of the 84 system configurations (shown in Fig. 3.10), so that the three different values
determine, as also reported in Table 3.8, three levels of difficulty for the search of
an optimal configuration in terms of percentage of system configurations above the
threshold.

4SASS’ code repository: https://bitbucket.org/dellannadavide/sass.
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Table 3.7: The 84 system configurations employed for the experiments. nn,dn,ne,de
respectively represent the contexts night-normal, day-normal, night-extreme and day-extreme.

conf nn dn ne de conf nn dn ne de conf nn dn ne de
1 V7 V11 V12 V8 29 V2 V11 V12 V1 57 V6 V11 V12 V5

2 V7 V11 V12 V1 30 V2 V11 V12 V5 58 V6 V11 V10 V8

3 V7 V11 V12 V5 31 V2 V11 V10 V8 59 V6 V11 V10 V1

4 V7 V11 V10 V8 32 V2 V11 V10 V1 60 V6 V11 V10 V5

5 V7 V11 V10 V1 33 V2 V11 V10 V5 61 V6 V11 V4 V8

6 V7 V11 V10 V5 34 V2 V11 V4 V8 62 V6 V11 V4 V1

7 V7 V11 V4 V8 35 V2 V11 V4 V1 63 V6 V11 V4 V5

8 V7 V11 V4 V1 36 V2 V11 V4 V5 64 V6 V9 V12 V8

9 V7 V11 V4 V5 37 V2 V9 V12 V8 65 V6 V9 V12 V1

10 V7 V9 V12 V8 38 V2 V9 V12 V1 66 V6 V9 V12 V5

11 V7 V9 V12 V1 39 V2 V9 V12 V5 67 V6 V9 V10 V8

12 V7 V9 V12 V5 40 V2 V9 V10 V8 68 V6 V9 V10 V1

13 V7 V9 V10 V8 41 V2 V9 V10 V1 69 V6 V9 V10 V5

14 V7 V9 V10 V1 42 V2 V9 V10 V5 70 V6 V9 V4 V8

15 V7 V9 V10 V5 43 V2 V9 V4 V8 71 V6 V9 V4 V1

16 V7 V9 V4 V8 44 V2 V9 V4 V1 72 V6 V9 V4 V5

17 V7 V9 V4 V1 45 V2 V9 V4 V5 73 V6 V3 V12 V8

18 V7 V9 V4 V5 46 V2 V3 V12 V8 74 V6 V3 V12 V1

19 V7 V3 V12 V8 47 V2 V3 V12 V1 75 V6 V3 V12 V5

20 V7 V3 V12 V1 48 V2 V3 V12 V5 76 V6 V3 V10 V8

21 V7 V3 V12 V5 49 V2 V3 V10 V8 77 V6 V3 V10 V1

22 V7 V3 V10 V8 50 V2 V3 V10 V1 78 V6 V3 V10 V5

23 V7 V3 V10 V1 51 V2 V3 V10 V5 79 V6 V3 V4 V8

24 V7 V3 V10 V5 52 V2 V3 V4 V8 80 V6 V3 V4 V1

25 V7 V3 V4 V8 53 V2 V3 V4 V1 81 V6 V3 V4 V5

26 V7 V3 V4 V1 54 V2 V3 V4 V5 82 V1 V3 V5 V8

27 V7 V3 V4 V5 55 V6 V11 V12 V8 83 V3 V2 V5 V8

28 V2 V11 V12 V8 56 V6 V11 V12 V1 84 V11 V4 V6 V3

0 10 20 30 40 50 60 70 80 90

0

0.2

0.4
oa ě 0.35

0.3 ď oa ă 0.35

0.25 ď oa ă 0.3

oa ă 0.25

Figure 3.10: Objectives achievement joint probability (y-axis) for all the 84 system config-
urations (x-axis).

We test SASS with the two informed algorithms described in Sec. 3.6 (PB and
SB) as heuristics for defining the neighborhood of a system configuration, i.e., the
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set of all the other system configurations that satisfy the suggestions provided by the
suggestion selector with the help of the trained Bayesian Network. Moreover, we test
the three additional uninformed heuristics D8, S20, S20 described above for use as
baseline. Note that, in terms of Supervisor’s control loop, the uninformed heuristics
differ from the informed ones in that they do not use the Revision Engine to select
a new system configuration. Since the rest of the control loop is common, for the
sake of readability, we mention a certain heuristic algorithm (e.g., SB) to refer to the
version of the Supervisor’s control loop that uses such algorithm (e.g., the Supervisor’s
control loop with the SB heuristic).

Table 3.8: Simulation parameters for our experiment with CrowdNavExt

Parameter Value Description

Time
day 600 vehicles in the city
night 300 vehicles in the city

Weather
normal speed limits as per CrowdNav
extreme speed limits reduced by 25%

Objectives’
achievement

threshold

0.35 3.5% system configurations above the threshold
0.3 7% system configurations above the threshold
0.25 17.8% system configurations above the threshold

Hill climbing
heuristic

D8 Uninformed, neighbors max 8 revised revisions
S10 Uninformed, up to 10 neighbors
S20 Uninformed, up to 20 neighbors
PB Informed, pureBN
SB Informed, stateBased

In order to obtain significant data, due to the stochastic nature of the simulation
data, SASS has been executed starting from all of the 84 possible system configura-
tions with all the five tested heuristics.

We use the following metrics to determine whether our hypotheses hold:

• Convergence speed (H1, detailed in Sec. 3.7.3)

1. Number of steps: the average number of steps that an algorithm attempts
before stopping (i.e., before finding a configuration above the desired thresh-
old toa).

2. Number of explored configurations: the average percentage of system con-
figurations that an algorithm attempts before stopping.

• Quality (H2, detailed in Sec. 3.7.3)

1. Final conf : the average objectives achievement joint probability (i.e., the
average oa) of the final solutions determined by an algorithm.

2. oaA: the average oa of all the configurations tried by an algorithm A before
stopping.
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3. oaA,last : the average oa of all the configurations tried by an algorithm A
until all algorithms terminate all the 84 executions. Note that, if A ter-
minates before other algorithms, the average will count, for the remaining
steps, the oa of the last (optimal) configuration found.

4. oaA,first : the average oa of all the configurations tried by an algorithm A
until the fastest algorithm terminates all the 84 executions (note that A is
not necessary the fastest algorithm).

5. oaA,thres : the average oa of all the configurations tried by an algorithm A
until the fastest algorithm reaches the threshold toa (note that this does not
necessary mean that the fastest algorithm has terminated all its executions,
nor that algorithm A has reached the threshold).

• Stability (H3, detailed in Sec. 3.7.3)

1. Revisions per step: the average number of requirements revisions per-
formed by an algorithm at each step before to reach the final solution.

2. Total revs: the average total number of revisions performed for a given
algorithm to reach the final solution.

• Noise tolerance (H4, only for PB and SB and detailed in Sec. 3.7.4): the vari-
ation in performance (speed, quality, stability) when noisy data concerning re-
quirements satisfaction are used to train the Requirement Bayesian Network.

In the rest of the section, we present and discuss the results obtained in our
experimentation w.r.t. the metrics and hypotheses described above.

3.7.3 Informed vs. uninformed heuristics: speed, quality, and sta-
bility

Table 3.9 summarizes the results concerning H1–H3 obtained with the five tested
heuristics. The table presents the results for the three tested thresholds of toa and
reports the values (average and standard deviation) obtained from the 84 simulation
runs for each of the metrics described in the previous section. As stated earlier, the
baseline uninformed heuristics are denoted as D8, S10 and S20, while our informed
heuristics are denoted as PB and SB.

Convergence speed (H1)

Number of steps. With all the thresholds, our informed heuristics consistently out-
perform the uninformed algorithms in terms of number of steps: see the # steps
column of Table 3.9 and the bar chart of Fig. 3.11, both reporting the average num-
ber of steps that each algorithm attempted before stopping.

With toa “ 0.35, the three uninformed heuristics D8, S10, S20 take on average
67.8 steps. Our PB and SB heuristics, instead, explore on average only 43.05 system
configurations. In this scenario, the few (3 out of 84) optimal system configurations
are slightly more distant (in terms of number of necessary revisions) from the non-
optimal ones: while the average distance between the 81 system configurations is 16,
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Figure 3.11: Average number of steps (y-axis) required to find an optimal solution for each
of the 3 tested thresholds (x-axis).

that with the remaining 3 is 20. This affects the number of steps required to find one
of them, for all the algorithms give priority to the closest system configurations in the
neighborhood. Despite this difficulty, however, PB and SB deliver an improvements
of 36.5% “ 1´p43.05{67.8q over the uninformed heuristics in terms of required steps.

With toa “ 0.3, the improvement over uninformed heuristics is even higher:
55.7% “ 1 ´ p13.4{30.27q, and the efficiency gain increases further with toa “ 0.25:
75.5% “ 1 ´ p3.69{15.09q. Notably, with this last threshold, SB requires on average
only 1.77 steps, i.e., it finds an optimal system configuration after only one or two
revisions.

In Fig.3.12, we show the percentage of steps required by the algorithms in order to
terminate the first, second and third quartiles (respectively 25, 50 and 75%) of the 84
execution and the first 95% of them. It is worth noting that, in the case of toa “ 0.35
(and similarly for the other thresholds), SB terminates the 95% of all the executions
before any other uninformed heuristic terminates the first quartile.

When we compare our two informed heuristics, SB outperforms PB. PB suggests
different revision types for different requirements. The selection of a requirement vari-
ant that satisfies the given suggestions, however, depends on the number of available
variants (only 12 in our working example). The suggestions of SB affect, instead,
requirements in the same quadrant of Fig. 3.9, thereby moving the current system
configuration step-by-step toward the high requirements satisfaction and high objec-
tive achievement area. This strategy, which in almost all cases proved to be very
efficient, may however result less appropriate when bigger variations in the full set
of requirements are needed. For instance, Fig.3.12 shows that, in case of toa “ 0.35,
SB could not find the optimal solution for two particular executions without trying
almost all the possible system configurations (see SB in Fig.3.12a between 0.95 and
1).

Configurations exploration. In terms of the percentage of explored system config-
urations (reported in the % explored config column of Table 3.9), the results show
that the informed strategies explore a smaller portion of the possible system con-
figurations than the informed strategies. Notably, in case of toa “ 0.35, SB results
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Figure 3.12: The number of steps (y-axis) required by the tested heuristics to terminate the
first (0.25), second (0.5), third (0.75) quartiles and the 95% (0.95 in the plot) of all the 84
executions (x-axis).

in a 39% improvement over the best uninformed strategy (S10). For toa “ 0.25,
such improvement increases to 78% over S10. In other terms, in order to find one of
the 17.8% optimal solutions, SB needs to explore, on average, only about 3% of the
system configurations.

Interpretation. The results of our simulations support H1: the informed heuristics
converge quicker than uninformed heuristics, both in terms of number of steps and
percentage of explored system configurations. This entails that probabilistic reasoning
about monitored requirements seems to deliver an added value over the uninformed
distance-based heuristics, in terms of convergence speed.
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Quality (H2)

Quality of the final solution. All the tested algorithms stop searching for new sys-
tem configurations when a system configuration that meets the desired threshold is
identified. As such, the average objectives achievement joint probability of the final
solution is always above the threshold toa. All tested heuristics provide on average
similar results in terms of average objectives achievement joint probability of the final
solution; the Final conf column of Table 3.9 reports such value. For toa “ 0.35, all
algorithms provide an average value of the final solution that is close to the overall
best possible solution: the quality of the final solution is, on average, 0.49, which
is 0.14 higher than the threshold. The average quality of the identified solutions
decreases with the lower values for toa, and we do not see differences between the
algorithms. This is an expected behavior, for hill climbing algorithms employ local
search techniques that stop as soon as an optimal solution is found.

Quality throughout the process. As described at the beginning of the section, we
use different metrics for the analysis of the quality of the heuristics throughout the
process of finding an optimal solution.

Fig. 3.13 illustrates the trend of the average objectives achievement during the
optimization process, until all algorithms terminated all the 84 executions. A value
in the plots for an algorithm A at step i represents the average value (w.r.t. all the
84 executions) of the objectives achievement joint probability oa of the configurations
tried at step i.

If we consider metric oaA (i.e., the average quality of the solutions tried by an
heuristic A before stopping, reported in column oaA of Table 3.9), the best heuristic
is PB, which in all cases provides on average better solutions throughout the process
(see also the red line in Fig. 3.13. When we consider, instead, the initial phases of
the optimization process (the first 5-6 steps in the three sub-figures), we see that SB
outperforms PB, selecting higher-quality solutions. This, as seen in Sec. 3.7.3 in the
case of toa “ 0.25, allows to find a solution above the threshold in very few steps. Due
to this behavior, SB is always the fastest heuristics at reaching the desired threshold,
outperforming the other strategies (and in particular the uninformed ones) also in
terms of oaA,thres (reported in column oaA,thres of Table 3.9).

Fig. 3.14 reports the average avgni“1pAi, where pAi “ avg84
i“1oaAi is the average

objectives achievement joint probability for the configurations tried by algorithm A
at simulation step i, and n is defined as follows:

• Fig. 3.14a: the step when all algorithms terminate all executions: 92 for toa “

0.35, 59 for toa “ 0.30, 37 for toa “ 0.25.

• Fig. 3.14b: the step when the first algorithm ends all its executions, i.e., 75 for
toa “ 0.35, 23 for toa “ 0.30, and 7 for toa “ 0.25.

• Fig. 3.14c: the step when the first algorithm meets the threshold i.e., 34 for
toa “ 0.35, 19 for toa “ 0.30, and 3 for toa “ 0.25.

The bar charts in Fig. 3.14 confirm the superiority of the informed algorithms when
considering the average objective satisfaction rate throughout the process. The im-
provements are visible in all conditions, and become manifest if we consider the step
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when the first algorithm ends (metric oaA,first, illustrated in Fig. 3.14b and reported
in column oaA,first of Table 3.9): for toa “ 0.35, the informed algorithms provide a
gain of about 37-50% over the non-informed algorithms, and for toa “ 0.25, the gain
delivered by SB over the average of the uninformed algorithms is about 88%.

Concerning oaA,last (Fig. 3.14a and column oaA,last of Table 3.9), since SB ter-
minates the majority of the solutions early in the optimization process, its value of
oaA,last (which includes in the average also the oa of the executions already termi-
nated) is generally higher than other metrics. However, due to the overall high quality
of the solutions explored by PB, in some cases its performance is slightly better than
SB. In general, Fig. 3.13 highlights that PB exhibits a more stable behavior in terms
of quality of explored system configuration, if compared to SB.

Interpretation. The results of our simulations partially support H2: while the qual-
ity of the final solution is not affected greatly by the algorithm, the informed heuristics
show a higher objectives achievement joint probability throughout the process of find-
ing an optimal system configuration.

Stability (H3)

As reported in Sec. 3.7.3, despite SB and PB are comparable when it comes to
the average objectives achievement joint probability, PB exhibits a more consistent
behavior than SB, which instead leads to more intense oscillations, due to the more
heterogeneous definition of the neighborhood.

To better understand these differences and similarities, we focus on stability met-
rics in terms of the number of performed requirement revisions. This metric matters,
for each revision may incur some costs (e.g., to deploy the necessary sensors for
monitoring requirements compliance), which the system designer wants to minimize.
Fig. 3.15 reports the trend of the average number of revision performed at each step
of the optimization process. Note that the lines for an individual algorithm end when
all the 84 executions of that algorithm terminate. The figure reports, at a given step i,
the average number of revisions performed w.r.t. the executions that are still running
at step i. Conversely, the executions that already terminated are not considered when
computing the average. An approximation of the number of executions still running
at a certain step i can be seen in Fig.3.12.

The total number of revisions for SB to find an optimal solution is lower than
the other algorithms in all cases (see the Total revs column of Table 3.9). This is
particularly evident with the lowest threshold toa “ 0.25, since SB finds a solution in
very few steps, leading to an average total number of revisions of 9.05.

Concerning the average number of revisions performed at each step (column Revi-
sions per step in Table 3.9), note that all algorithms are comparable with thresholds
toa “ 0.35 and toa “ 0.3, which require more steps than toa “ 0.25. However, in the
initial phases of the optimization process (first steps), SB performs an higher number
of revisions per step, compared to the other algorithms. This explains why, with
toa “ 0.25, it reaches an optimal solution faster than the others.

Interpretation. The results of our simulations support H3: the total number of
revisions that informed heuristics make is lower than the number for uninformed
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Figure 3.13: The trend of the average objectives achievement joint probability (y-axis) of
the solutions selected during the optimization process. The x-axis indicates the steps made
by the hill climbing algorithm.

heuristics. However, to do so, the informed algorithms make—in some cases—more
revisions per step than the uninformed heuristics.
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Figure 3.14: Average objectives achievement joint probability (y-axis) throughout the pro-
cess of finding an optimal solution, for all the 3 tested thresholds (x-axis).

3.7.4 Noise tolerance for the informed algorithms (H4)

The performance of the informed heuristics depends on the quality of the data anal-
ysed. So far, we assumed our system can monitor the satisfaction of the requirements
perfectly. We now relax this assumption to analyze how the algorithms perform in
the presence of noisy data about requirements satisfaction.

We compare the performance when a certain percentage p of the information
acquired from the Monitoring component is incorrect. In particular we analyze results
with p “5%, 10%, and 20%. To do so, we modified our dataset by uniformly altering
p% of the data concerning active requirements satisfaction. Specifically, we changed,
with probability p, every value obeyed and violated in Table 3.3, respectively into
violated and obeyed.

Fig. 3.16 reports the results for the variation of the percentage of explored system
configurations by the two informed heuristics PB and SB when introducing noise.
Even with 20% of noise, with toa “ 0.30 and toa “ 0.25, the algorithms presents
almost no difference in the system configurations selected. In case of toa “ 0.35, when
more system configurations need to be explored, the maximum detected variation is
of about the 1% in terms of system configurations explored, when perturbing 20% of
the input data.

Fig. 3.17 shows the impact of noise on the average objectives achievement joint
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Figure 3.15: Average number of revisions (y-axis) performed at each step (x-axis) of the
optimization process.

probability over the steps of the optimization process in case of toa “ 0.35, the only
threshold level at which the introduced noise had some noticeable impact. The figure
shows no impact during the early phases of the optimization process, while the effect
is visible after several steps of optimization, due to the presence of an increasing
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Figure 3.16: The variation of the percentage of system configurations explored (y-axis)
when introducing 5%, 10% and 20% of noise in the input data (respectively identified with
PB5 and SB5, PB10 and SB10 and PB20 and SB20), for each of the 3 tested thresholds
(x-axis).

quantity of noisy data. The effects, however, are within the 2% range. The line chart
also helps understand why the algorithms are not impacted with lower thresholds:
the effect of noise occurs after multiple steps, while our algorithms return before such
effects are visible.
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Figure 3.17: The trend of the variation of the average objectives achievement joint proba-
bility (y-axis) over the steps of the optimization process (x-axis) in case of toa “ 0.35 when
noise is introduced.

Interpretation. The results of our simulations support H4: the informed heuristics
seem to have high tolerance to degrees of noise up to 20%. However, it must be noted
that data was perturbated in a uniform manner, and this may have positively affected
the ability to tolerate noise.
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3.7.5 Threats to Validity

The implementation of the prototype of the control loop described in Sec. 3.6.2 could
be incorrect, which would render the results invalid. We reduced the potential im-
pact of this threat by performing an extensive testing of the implementation and by
applying it to different problems.

The chosen topology of the Requirement Bayesian Network, reflecting the struc-
ture of a requirements model, may influence the conclusions drawn via probabilistic
inference. The choice of such topology is a threat to construct validity. For exam-
ple, we do not capture causal relationships between sibling requirements or between
objectives, which may help better explain when and why the requirements and the
objectives are achieved. Different mappings between a requirements model may be
tried to overcome this limitation.

The interpretation of the results is subject to the size and type of the set of system
configurations tested. To mitigate this threat, we paid attention to our interpretation
and the wording of the implications, and we deliberately omitted tests for statistical
significance due to the use of a single case.

The notion of degree of validity is based on the assumption that the collected
positive and negative evidence have the same statistical significance. The choice
of such method to evaluate the assumptions affects construct validity. Additional
probabilistic learning techniques should be explored and tested.

Finally, our conclusions have only limited generalizability. It is possible that the
proposed algorithms behaves differently on different problems. This threat to con-
clusion validity is partly mitigated by our previous work [117], where we applied the
same approach to a different problem, obtaining analogous results.

3.8 Related Work

The intrinsic dynamism of modern software systems leads to high run-time uncer-
tainty [190, 294], which makes adaptation a necessity. Researchers argue for the
necessity of evaluating the assumptions made during the design of a system in or-
der to support software evolution. In their seminal works [190, 191], Lehman et al.,
identify invalid assumptions as one the main causes for software evolution. They
highlight how the—implicit or explicit—presence of assumptions in (E-type) software
is inevitable and follows from the fact that real-world software and the environment
in which it operates have a potentially unbounded number of properties.

Several approaches for the evaluation of assumptions have been proposed over
the years. Boness et al. [55, 56] explicitly represent assumptions when defining
requirements within a goal oriented framework. They use such concept to help the
system designers to assess, during requirement analysis, the confidence in (and the
risk due to) the set of elicited requirements. In order to do so they integrate expert
knowledge, argumentation techniques and propagation of confidence values through
the goal graph. In our work, we consider assumptions that are implicit in the structure
of a requirements model (rather than explicitly represented as in [56]) and we calculate
(and make use of) their degree of validity at run-time by means of probabilistic
reasoning on a Bayesian Network trained with data obtained during the execution.
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The availability of a requirements model during execution [40, 48] is crucial to
build a framework that supports the run-time evolution of the system requirements.
Several frameworks exist that use such models to support the monitoring and diag-
nosis of requirements [140, 236, 290]. Such approaches are powerful and allow the
identification of deviations from the requirements. However, they do not challenge
the validity of the requirements (models) themselves.

Ali et al. [15] illustrate the advantages of monitoring requirements at run-time
to detect when design-time assumptions concerning requirements satisfaction become
invalid. They also discuss the importance of keeping track of the relationship between
context and requirements at run-time [16]. Paucar et al. [226] propose techniques to
reassess the assumptions about the priority of non-functional requirements.

Models at run-time are often used for guiding the adaptation of the system.
Souza et al. [260] define awareness requirements as meta-requirements to drive adap-
tations. Non-functional requirements (NFRs) have been used to trigger and guide
self-adaptation; for example, contributions to objectives can help identify those sys-
tem configurations that maximize NFR satisfaction [100, 241].

These approaches constitute our baseline: our framework uses requirements mod-
els at run-time [40, 48], can rely on existing monitoring frameworks [236, 290], and
implements the idea of reconsidering design assumptions at run-time [15]. The dis-
tinguishing features of our approach are the focus on socio-technical systems, the use
of Bayesian learning, and the employment of an hill climbing approach to identify an
optimal system configuration.

In order to support the automated requirements evolution, Whittle et al. [294]
propose the notion of requirements revision. They present a requirements language
for self-adaptive systems (RELAX) that allows to specify relaxed versions of a require-
ment during the elicitation phase. Existing requirements revision approaches mainly
focus on re-assessing the weights of non-functional requirements [17, 39]. Knauss et
al. [177] discuss the mining of optimal contexts for previously defined contextual re-
quirements, and propose a revision of the contextual condition of applicability of the
requirements.

The normative multi-agent systems (NMAS) literature offers techniques for the
dynamic update of norms that regulate a multi-agent systems. Aucher et al. [25]
introduce a dynamic context logic that describes the operations of contraction and
expansion of theories by introducing or removing new rules. Governatori et al. [156]
investigate the legal consequences of applying theory revision to reason about legal
abrogations and annulments. Alechina et al. [10] show how to formally obtain an
approximated version of a norm to cope with imperfect monitors for the original
norm. Since norms are an important type of requirements for STSs [81, 256], NMAS
research is a rich cross-fertilization tool for the RE discipline.

In previous work [118], we proposed Bayesian Networks as a tool to learn, from run-
time data, the correlation between the satisfaction of requirements and the achieve-
ment of the system’s objectives in different operating contexts. In [118], we show that
such information can be used to validate some assumptions made in a goal model. In
this chapter, we embedded our requirements assumptions validation technique within
a holistic framework for the evolution of STSs; in particular, the validity of the as-
sumption is used by our heuristic algorithms that perform run-time requirements
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revision.

Cailliau et al. [71] present a technique for the quantitative assessment of requirements-
related risks. Their framework uses KAOS goal models extended with a probabilistic
layer to evaluate the consequences of explicit obstacles on the satisfaction of goals.
The concept of obstacles is similar to the concept of harmful requirements presented in
this chapter; however, we do not consider requirements that are known to be harmful
a priori. We focus, instead, on techniques for discovering at run-time whether some
requirements are useful or not and in which contexts.

Our requirements revision types (relaxation, strengthening, disabling, etc.) are
similar to the strategies presented by Lamsweerde et al. [276] to resolve goal conflicts.
In their work, such strategies are applied in the early stages of requirements elicitation
(at design time) and they rely on the available domain knowledge. Our framework
focuses on the run-time analysis of the requirements and of the assumptions made at
design time. A deeper study of the relationship of our work with run-time conflict
resolution techniques is left for future work.

3.9 Discussion and Future Work

We introduced a novel framework for guiding the evolution of Socio-Technical Sys-
tems. Our approach uses requirements models to represent system’s objectives, re-
quirements, and their relationships. The framework supports both the manual evolu-
tion of the STS, by revealing the validity of the assumptions in a requirements model,
and the automated adaptation, by revising the requirements in order to quickly iden-
tify an optimal system configuration.

This work employs two techniques from artificial intelligence: (i) Bayesian Net-
works as a tool to learn and reason about the relationship between contexts, require-
ments and objectives based on evidence from system execution; and (ii) hill climbing
algorithms as a technique to explore the space of alternative configurations of the STS
and identify optimal configurations that maximize the satisfaction of the objectives.

Our experiments with a smart traffic simulator show promising results for our
automated requirements revision algorithms. Both the PB and SB heuristics that we
propose outperform uninformed hill climbing heuristics. The requirement revisions
are guided, in our algorithms, by the information retrieved from run-time execution
data about the validity of the assumptions made in a requirements model. The
results show that using that information allows to accelerate convergence to an optimal
configuration by guiding the requirement revision process. Our heuristics provided, in
certain cases (see Sec. 3.7.3), an efficiency gain of about 75% compared to uninformed
heuristics, in terms of number of the explored configurations of requirements. The
heuristic SB was able to terminate 95% of all its executions before all the baseline
uninformed heuristics could reach their first quartile. In one experimental setting, SB
was able to find, on average, an optimal configuration in less than 2 steps, exploring
about 3% of possible configurations of requirements in order to find one of the 17.8%
optimal ones.

The results revealed that our informed algorithms positively affect the quality of
the attempted system configurations. When considering the average stakeholders’ ob-

103



A FRAMEWORK FOR THE SUPERVISION OF AUTONOMOUS SYSTEMS 3.9

jective satisfaction rate throughout the optimization process, our informed heuristics
provided an improvement, compared to uninformed ones, ranging from 37% to 88%
(see Sec. 3.7.3 for more details).

Our analysis of the stability of the algorithms, in terms of number of revisions,
showed also that our informed heuristic SB suits well those problems for which an
optimal solution needs to be found quickly with a small total number of revisions along
the process. Compared to the other tested algorithms, however, SB includes steps in
which it performs a high absolute number of revisions (see, for instance, the initial
peaks in Fig. 3.15). Should there be a limit on the maximum number of acceptable
requirement revisions, other heuristics could be preferable. A possible reason why
this factor may matter is that revising requirements may pose some challenges for
humans to adapt to the new requirements (e.g., think of revising the speed limits of
all streets at the same time).

Finally, our proposed algorithms exhibited a high tolerance to possible noise in
the data used to train the Bayesian Network: a uniform perturbation of 20% of
the input data by introducing erroneous information about requirements satisfaction
lead only to a variation of about 1% in terms of number of system’s configurations
explored during the optimization process and impacted less than 2% on the average
stakeholders’ objectives satisfaction.

Limitations and Future work. A thorough evaluation of the scalability, usefulness
and generality of our proposal is imperative. So far, we have focused on smart traf-
fic simulations because this is an example of an STS that has numerous simulator
frameworks. Our current Bayesian Network assumes a consistent behavior of the STS
population over time. Dynamic Bayesian Networks [240] should be considered to sup-
port more dynamic STSs, in which we cannot make such assumption. Furthermore,
the two revision algorithms that we introduced do not store any information concern-
ing the effects of the requirement revisions applied. Refined revision algorithms shall
be developed with a larger memory than just the current configuration; possible tech-
niques include Q-Learning [239] and Dynamic Decision Networks [240]. Moreover, we
plan to develop algorithms that can guide software evolution by providing additional
information on the most critical and significant assumptions. To do so, we plan to
employ other analysis techniques for Bayesian Networks, such as sensitivity analy-
sis [274] or qualitative reasoning [292]. In Chapter 4, for example, we use sensitivity
analysis to provide a quantitative estimation of the required strength of the sanctions
needed to motivate the agents to comply with the norms. Visualization tools, which
are missing in this chapter, are necessary to support human analysts in visualizing
the validity of the assumptions in a requirements model, as discussed in [234], and to
help them in deciding about the manual evolution of an STS. A starting point could
be the visualization we developed in earlier work [118]. Finally, while this chapter
focuses on the revision of requirements by exploring the space of alternatives within
a model, in the next chapters, and in particular in Chapter 5, we will explore the
possibility to synthesize new requirements that are not included in the given model.
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4 Data-Driven Run-Time
Revision of Sanctions

One way to achieve the system-level objectives of a multi-agent system without lim-
iting the autonomy of the individual agents is to control their behavior by enforcing
norms by means of sanctions. The dynamicity and unpredictability of the agents’ in-
teractions in uncertain environments, however, make it hard for designers to specify
norms and sanctions that will guarantee the achievement of the system-level objectives
in every operating context. In this chapter, we extend the supervision mechanism for
the run-time revision of norms presented in the previous chapter, to support also the
revision of the sanctions of the norms. This chapter aims at tackling some limitations
in the research literature of run-time sanctions revision and concerning in particular
with the lack of run-time approaches that do not rely on knowledge of the internals
of the agents and that, in determining optimal sanctions, do not assume a priori that
violations are detrimental for the system-level objectives. As in Chapter 3, we use a
Bayesian Network to learn from system execution data the relationship between the
obedience/violation of the norms and the achievement of the system-level objectives.
In addition to run-time data about the behavior of agents, we leverage here also some
knowledge about the preferences of rational agents. We devise heuristic strategies that
combine the knowledge acquired at run-time with an estimation of the preferences of
rational agents to automatically determine new sanctions that are expected to improve
the achievement of the system’s objectives. We evaluate our heuristics using a traffic
simulator and we show that our mechanism is able to quickly identify optimal revi-
sions of the initially enforced norms.

This chapter has been published in:

• Dell’Anna, Davide, Mehdi Dastani, and Fabiano Dalpiaz. “Runtime revision of
sanctions in normative multi-agent systems”. Autonomous Agents and Multi-
Agent Systems, 34.2 (2020): 1-54.

This chapter provides an answer to research questions RQ 2-4 from Chapter 1 in
the context of revision of sanctions in MASs.

Acknowledgement. We thank Dr. S. Renooij for her advice and support on the
issues in this chapter related to sensitivity analysis.
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4.1 Introduction

Multi-Agent Systems (MASs) comprise autonomous agents that interact in a shared
environment [297]. To achieve the system-level objectives of a MAS, the behavior
of the autonomous agents should be controlled and coordinated [68]. For example, a
smart traffic system is a MAS that includes autonomous agents like cars, traffic lights,
etc. The objectives of the system include avoiding the occurrence of traffic jams as
well as minimizing the number of accidents.

One way to control the behavior of the agents in a MAS without limiting their
autonomy is norm enforcement [11, 265]. Norm enforcement via sanctions is tradition-
ally contrasted with norm regimentation; the latter alternative prevents the agents
from reaching certain states of affairs. For example, in a smart traffic system, a reg-
imentation strategy is to close a road to prevent cars from entering that road, while
a sanctioning strategy is to impose sanctions on cars that drive through the road.

Due to the dynamicity and unpredictability of the behaviors of interacting agents
in uncertain environments, it is difficult for the designers who engineer a MAS to
specify norms that, when enforced, will guarantee the achievement of system-level
objectives in every operating context. To cope with this issue, the enforced norms
need to be revised at run-time. Existing research has investigated the offline revision
of the enforced norms[10], proposed logics that support norm change [25, 179, 180],
and examined the legal effects of norm change [156].

In [117], we proposed a framework for engineering normative MASs that, using
observed data from MAS execution, revises the norms in the MAS at run-time to
maximize the achievement of the system’s objectives. In that work, we made the
simplistic assumption that norms are regimented and we introduced algorithms for
switching among alternative predefined norms. In [119], we extended the framework
to support the revision of norm enforced via sanctioning. In addition to observed data
from MAS execution, we used an estimation of the preferences of the agents to guide
the run-time norm revision. However, we considered MASs where only one norm at
a time was enforced.

In this chapter, we significantly extend our previous work by supporting MASs
where multiple norms are enforced. We formalize different types of rational agents
that behave according to their preferences and we disccus their properties. We use
Bayesian Networks to learn the norm effectiveness from data observed from MAS exe-
cution and to inform the run-time norm revision mechanism that revises the sanctions
of multiple norms.

The contributions of this chapter are as follows:

• We provide a formal definition of different types of rational preferences of agents,
specified in terms of desired states of affairs and the maximum payment that
the agent is willing to make to achieve such states of affairs. We prove that such
preferences satisfy the basic rationality requirements [202].

• We build on and extend the general architecture proposed in [117, 119], and
study in detail the relationships between estimated agents’ preferences, sanc-
tions, and system-level objectives. We use a framework where the normative
MAS is flanked by a norm monitoring and enforcement component, and we
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introduce a norm revision component that uses observed data from MAS ex-
ecution and an estimation of agents’ preferences to modify norm sanctions at
run-time.

• We propose six heuristic strategies for the revision of multiple norms that lever-
age probabilistic information learned from observed data from MAS execution
and an estimation of the preferences of agents.

• We report on an evaluation through a traffic simulator that shows the effective-
ness and efficiency of our revision strategies in identifying optimal sanctions for
multiple norms.

Organization. Sec. 4.2 reports on related work. Sec. 4.3 presents our framework
to characterize norms and agents’ preferences. Sec. 4.4 explains the overall approach
for the supervision of normative MAS based on probabilistic reasoning over norm
effectiveness and agents’ preferences. Sec. 4.5 introduces six strategies for revising
norms by combining agents’ preferences with the achievement of the system-level
objectives. Sec. 4.6 evaluates our work through simulation experiments. Sec. 4.7
discusses the results and the assumptions, limitations and future directions of our
work. Sec. 4.8 presents our conclusions.

4.2 Related Work

In the MAS literature, norms have been proposed as a way to regulate the behavior of
the agents in order to achieve system-level properties without limiting the autonomy
of the agents [11, 265, 284].

Many approaches focus on the design-time construction of robust normative MASs.
Several techniques enable proving the correctness of normative systems through the
model checking of formulas that describe liveness or safety properties [9, 109, 178].
These works are useful for the initial design of a MAS, but they cannot cope with
the run-time unpredictability of the system that stems from the autonomy and het-
erogeneity of the agents.

In order to successfully supervise and regulate dynamic MASs, researchers have
studied the revision of norms. Some frameworks formalize norm dynamics thereby
allowing the assessment of the impact of norms on the specification of a MAS, i.e.,
whether the designed MAS will be norm compliant. Aucher et al. [25] introduce
a dynamic context logic to describe the operations of contraction and expansion of
theories that occur when removing or adding new norms. Governatori et al. [156]
investigate how the application of theory revision leads to legal abrogations and an-
nulments. Knobbout et al. [180] propose a dynamic logic to characterize the dynamics
of state-based and action-based norms. Both in Knobbout’s work [179, 180] and in
Alechina et al.’s approach [9], norm change is restricted to norm addition. This family
of approaches focus on the impact of revising a norm on an existing normative system.
In this chapter, instead we study the relationship at run-time between the enforced
norms and the achievement of system-level objectives, and suggest mechanisms to
determine how to revise the (sanctions of the) current norms.

107



DATA-DRIVEN RUN-TIME REVISION OF SANCTIONS 4.2

Jiang et al. [167] discuss the contextualization of norms. They explicitly represent
the context of application of a norm and they use such context to organize norms
during the design of a MAS. In our work, we also enforce different norms in differ-
ent contexts. Unlike them, however, we determine the most appropriate context for
different norm sets at run-time and based on observed data from MAS execution.

Miralles et al. [208] present a framework for the adaptation of MAS regulations
at run-time. Their approach is complementary to ours. They represent conditional
norms via norm patterns and describe an adaptation mechanism based on case-based
reasoning. Adaptation is performed at run-time individually by a number of assistant
agents and then, via a voting mechanism, a final adaptation is approved. The decision
on how to adapt norms is taken based on similar previously seen cases. In their work,
however, they do not consider sanctions. In our work, we focus on the revision of
sanctions, we perform norm revision through a centralized component, and we make
use of an estimation of agents’ preferences to guide norm revision.

Cardoso et al. [72] present a framework for the run-time adaptation of sanctions
associated with obligations. In their work, they assume that norm violations are bad
for the system-level objectives. In our work, we relax such assumption, as agents
ability to violate norms can be useful [75]. We evaluate the effectiveness of a norm at
run-time based on observed data from MAS execution. Furthermore, they assume that
the strength of a sanction should be directly proportional to its application frequency,
and they constantly try to lower sanctions in order to give agents maximum autonomy.
In our work, we base the revision of norms on an estimation of the preferences of
the agents, and we determine the appropriate value of their sanctions based on the
relationship between obedience of norms and achievement of system-level objectives
determined at run-time.

In MASs, agents’ preferences have been mainly used as a way to choose at run-
time between different plans or actions to execute [103, 168, 223, 286]. Preferences
are usually interpreted as constraints that, if satisfied by a certain plan (or action),
increase the desirability of executing such plan (or action). Formal languages have
been proposed and used for expressing preferences (e.g., LPP [29, 47] or LTL [68]). In
this chapter, we focus on strategies for sanctions’ revision. For this reason, we make
use of a high-level representation of preferences, without restricting ourselves to, but
supporting, any specific language. In particular, we consider preferences that satisfy
the basic rationality requirements [202] and order different alternative states of affairs
that agents may desire to achieve. Our agents are rational and norm-aware [279],
in the sense that they always try to aim at the most preferred state of affairs for
which they have enough budget, taking also into account the possible sanctions they
would incur when violating some of the enforced norms. Furthermore, our agents are
autonomous, in the sense that they are able to make decisions without the intervention
of human users but in line with their preferences [27, 107]. As we aim to investigate
the process of norm revision, we assume that we have an accurate estimation of the
agents’ preferences. In future work, we can relax this assumption and investigate
norm revision based on inaccurate estimations of the agents’ preferences.

Chopra et al. [80] study how agents’ preferences—expressed in terms of goals—
interact with norms—represented as commitments. In particular, they propose a
framework for the agents to adapt their behavior. We take an orthogonal approach,
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for we study how to change the norms without altering the agent construction. In
particular, we study how to alter the sanctions used to enforce the norms on the
agents, so to guarantee at run-time the system-level objectives. Our proposed mech-
anisms, therefore, relate also to the idea of adjustable autonomy [215]. The proposed
run-time mechanism of revision of the sanctions of the norms can be seen as an au-
tomated mechanism to adjust the decisions’ options of the agents (thus their degree
of autonomy) so to maximize the objectives of the system and its operators.

Cranefield et al. [95] present a Bayesian approach to norm identification. They
show that agents can internalize norms that exist in an environment, by learning from
the behavior that complies with or violates certain norms. This work is a valuable
addition to ours, for it shows that it is possible for agents to learn norms even when
they are not explicitly communicated to them.

Tumer et al. [269] use multi-agent reinforcement learning in a smart traffic simu-
lation to determine the behavior of the car agents that maximizes the utility of the
city designer and of the individual agents. Their interesting work focuses on regimen-
tation; instead, we focus on enforcement that does not violate agents’ autonomy.

4.3 Normative Multi-Agent Systems
This section presents a generic framework for specifying normative multi-agent sys-
tems in which the agents behave in line with their preferences while norms are enforced
on them via sanctions. This framework allows us to analyze the interplay between
norms and agents’ preferences in normative multi-agent systems.

4.3.1 Illustrative example
Consider the two-lanes ring road depicted in Fig. 4.1. In a ring road, a population of
vehicles moves continuously in a circle. Every vehicle is autonomous and acts accord-
ing to its own preferences. For example, vehicles have preferences about, among other
things, their speed, based on which they determine their willingness to risk sanctions
for violating traffic norms. Such preferences and their corresponding willingness to
risk sanctions allow the vehicles to autonomously decide when and how to accelerate
or decelerate or to change lane. If a fast vehicle is using the outer line and a slower
vehicle blocks its way, the fast vehicle may move to the inner line to overtake the slow
vehicle. Since all vehicles share the same environment, their local decisions have an
effect on the (emergent) system-level behavior of the vehicles driving on the ring road
[262]. For example, based on contextual factors such as the density of vehicles on
the ring road, the vehicles’ behavior may provoke traffic jams and the average speed
may vary, as well as the average time to complete a loop of the ring road. The ring
road is a simple example of a MAS. Although far from realistic traffic situations, the
ring road illustrates the fundamental phenomena of emergent system-level properties,
caused by the local decisions of individual agents, and the importance of mechanisms
to control and steer such system-level behaviors.

We assume that the main stakeholder of the ring road (the city council) has
two system-level objectives: to minimize the average time to complete a loop of the
ring road and to minimize the number of halted cars. Despite interdependence, the
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Figure 4.1: Two lanes ring road. Rectangles are vehicles, moving in counter clockwise
direction.

stakeholder desires to evaluate the two objectives independently due to their distinct
nature. We consider two contextual variables that may influence the achievement
of the system-level objectives, together with the vehicles’ behavior: the density of
vehicles and the presence of an obstacle on the ring road. The higher is the density of
the vehicles on the ring road, the higher is the risk of traffic waves and slowdowns. The
presence of an obstacle may force vehicles to halt and wait for an adequate moment
to take over the obstacle. If the density of vehicles on the ring road is high enough,
this may also cause queues after the obstacle. To achieve the objectives, the behavior
of the agents is regulated by enforcing norms concerning (i) the speed limit, such as
the norm every vehicle on the ring road shall not exceed a speed of 50km/h, otherwise
it will receive a sanction of 100€, and (ii) the minimum safety distance between cars,
such as the norm every vehicle on the ring road shall keep a minimum distance of 2m,
otherwise it will receive a sanction of 20€. Regulating speed and safety distance of the
cars on the ring road is expected to help achieving the system-level objectives in the
traffic contexts represented by the contextual variables. A car that keeps a sufficient
safety distance from the car ahead, is less likely affected by sudden deceleration of
the car ahead. More space between cars may also favour surpasses of slow cars when
necessary. An opportune safety distance, together with opportune cars speed, may
reduce jams in the presence of obstacles or the effect of traffic waves.

The ring road described above is a normative MAS. Vehicles are autonomous
agents, each acting according to their own preferences. Each agent belongs to an agent
type that can be characterized by the agent’s preferences. For instance a cautious
agent is a type of agent that prefers to go slow rather than fast on the ring road
and prefers to maintain the appropriate safety distance. A brave agent is a type of
agent that prefers to go fast rather than slow, and to approach cars closer than the
minimum safety distance, even if it has to pay some money to do so.

4.3.2 Norms

The focus of this chapter is the run-time revision of the sanctions of the norms enforced
in the MAS. In order to focus on this aspect, we propose a simple but extensible
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language for norms. Consider a set of propositional atoms L “ tp1, . . . , pku, each
representing a fact that can hold or not in a system state1 (e.g., propositional atom
sp100 indicates that the speed of a vehicle on the ring road is ď 100 km{h).

Let AL “ pL1, ..., Lnq be an ordered list of n disjoint subsets of L, s.t. Li contains
atoms related to an aspect i of the system2 (e.g., Li “ tsp100, sp50u, in the ring road
scenario, contains atoms related to the speed of the cars).

We consider a norm as a pair N “ pp, sq, where p P L and s P N, indicating that p
should hold in the current system state for all agents, otherwise sanction s will incur.
For instance, a norm N “ psp50, 100q indicates that every vehicle on the ring road
shall not exceed a speed of 50km/h, otherwise it will receive a sanction of 100€.

In the following we consider an ordered set of norms N “ xN1, N2, . . . , Nny and
assume that (i) norms are non-conflicting, i.e., obeying a norm Ni does not prevent
an agent from obeying or violating any other norm in N ; and (ii) each norm regulates
a different aspect of the system, so that the i-th norm Ni “ pp, sq in N is a pair
where p P Li (with Li i-th set in AL) and s P N. For instance, if AL “ pL1, L2q,
L1 “ tsp50, sp100u and L2 “ tdist1, dist2u, then N1 “ psp50, 100q is a norm concerning
the speed limit and N2 “ pdist2, 100q is a norm concerning the minimum safety
distance.

Note that, despite these assumptions, norms can still influence each others by
means of the behavior that they cause on the agents. For instance, if the density of
vehicles on the ring road is high, in order to obey a norm concerning the minimum
safety distance from the car ahead, an agent may need to decrease its speed, therefore
obeying also a norm concerning the maximum speed limit. We distinguish, however,
such influence from the concept of conflict, in the sense that the norm concerning the
minimum safety distance does not prevent, a priori, an agent to either obey or violate
the norm concerning the maximum speed limit, and vice-versa.

4.3.3 Rational Agents and Their Preferences

In MASs, agents are often assumed to be autonomous and possibly heterogeneous.
Moreover, it is common to assume that the internal states of the agents such as their
beliefs, preferences, and decision making mechanisms are unknown or partly known to
other agents or to the institutions that regulate their behavior. In line with the theory
of economic rationality [202], in this chapter we consider rational agents that behave
according to their rational preferences, which determine an ordering between different
alternative states of affairs (simply alternatives in the following). A rational agent
aims to achieve its most preferred states of affairs: when a rational agent believes it
is possible to achieve a certain state of affairs s, the agent will never aim to achieve
states of affairs that are less preferred than s. For example, a cautious agent that
prefers to go slow on the ring road and maintain appropriate safety distance, may be
less prone to surpass other cars or to change lane, and may exhibit more moderate

1A system state is assumed to consist of the state of individual cars (e.g., speed and position of
the cars) as well as the state of the environment (e.g., density of vehicles in the ring road).

2We use the term aspect to indicate any particular characteristics of the behavior of the agents,
such as the speed of the cars, that is both monitorable by an organization that enforces norms in
the MAS, and over which agents have control.
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acceleration or deceleration than less cautious agents. The behavior of such a cautious
agent, however, can vary significantly, based on contextual conditions. For example,
a sudden break from the car ahead may force also the cautious agent to brusquely
decelerate.

In this chapter, we assume we have an estimation of the preferences of the agents
concerning the n different aspects of the system that we aim to regulate by a norm,
as per Sec. 4.3.2. In the rest of the chapter, when we refer to the preferences of the
agents, we refer therefore to such an estimation of their preferences. We do not as-
sume access to the agents’ internals such as their beliefs or their preferences regarding
other aspects of the system (e.g., information about fuel reserve or the preference on
road types). Having an estimation of the preferences of the agents should not be seen
as a violation of the autonomy of agents or access to their internals. Having some
knowledge of agents’ preferences is realistic in most MAS settings. For example, in
some cooperative settings, agents may be requested to declare their true preferences
prior entering the system and agents can autonomously decide whether to join or
not, while in other settings the preference of agents can be learned from their behav-
iors [38]. Note that we do not focus on the process of preference elicitation, which
is essential for deriving and formulating agents’ preferences, but beyond the scope of
this chapter. Several techniques for the elicitation of preferences have been proposed
in the literature, including both automated methods and methods that directly in-
volve the end-user (see for example [61, 77, 248]). Here, we rely on such techniques
and we just assume that some relevant part of agents’ preferences is already given or
estimated.

We represent the alternatives over which the agents have preferences as lists of
pairs such as pxp1, b1y, . . . , xpn, bnyq, indicating that for a state of affairs where p1, ...,
and pn hold, the agent is willing to spend, if necessary, a budget b1 to achieve p1, a
budget b2 to achieve p2, etc. We focus on finite preferences, therefore we constrain
the budgets expressed in the alternatives to be member of a budget set B Ă N.

We denote by Pref paq “ pA,ľq the preference of an agent a P Ag , where Ag “
ta1, . . . , anu is a set of agents, A is a set of alternatives defined as per Def. 9, and ľ is
a partial order on A. We write x ľ y to denote the fact that the agent either prefers
alternative x to alternative y or is indifferent between x and y.

Definition 9 (Preference Alternatives). Let AL “ pL1, . . . , Lnq be a list as per
Sec. 4.3.2. Given a set of budget lists BL Ď Bn (with Bn the n-ary Cartesian power of
B), the set of alternatives A is the set t pxp1, b1y, . . . , xpn, bnyq | pi P Li & pb1, . . . , bnq P
BL u.

Notation. Before continuing, we provide here a summary of the notation that we
will use in the rest of the chapter in the context of preferences. Given a preference
Pref paq “ pA,ľq, an alternative x “ pxp1, b1y, . . . , xpn, bnyq P A, and a set of budget
lists BL Ď Bn, we call:

• proppxq “ pp1, ..., pnq, the list of propositional atoms in x

• budpxq “ pb1, ..., bnq P BL, the list of budgets associated to each propositional
atom in x.
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• req budpxq “
ř

bPbudpxq b the budget required by alternative x (required budget,

in the following), i.e., the sum of all budgets in x.

• xrB1s a new alternative x1 “ pxp1, b
1
1y, ..., xpn, b

1
nyq with same propositional

atoms as x, but using budgets B1 “ pb11, . . . , b
1
nq P BL instead of budgets

B “ pb1, . . . , bnq.

Furthermore, in the rest of the chapter, unless specified otherwise, when we pro-
vide an example concerning preferences or norms, we make use of L defined as
the set tsp50, sp100, dist1, dist2u with AL “ pL1, L2q and L1 “ tsp50, sp100u and
L2 “ tdist1, dist2u so that N “ xN1, N2y with L1 related to N1 (norm concern-
ing speed limit) and L2 related to N2 (norm concerning safety distance), and we use
n to indicate the number of norms in N .

In the following we define the types of preferences that we consider in this chapter.
We first define two basic types of preferences. Then, after providing some examples
of such preferences, we define more complex preferences that combine the two basic
types.

Basic Preferences

We define here two types of basic preferences. The first kind of preference orders
the alternatives based on their budgets, while the second type orders the alternatives
based on the propositional atoms (i.e., states).

Definition 10 (Basic Preference). Given a list AL “ pL1, ..., Lnq and a set BL Ď Bn,
an agent is said to have a basic preference pA,ľq when for all alternatives x and y
in A, the partial order ľ satisfies one of the following two clauses:

a. x ľ y iff
req budpxq ď req budpyq &
@v, w P A,@B,B1 P BL : vrBs ą wrBs ñ vrB1s ą wrB1s

b. x ľ y iff
if proppxq “ proppyq then req budpxq ď req budpyq
else @B,B1 P BL : xrBs ľ yrB1s

In the rest of the chapter, we write x „ y when x ľ y and y ľ x. We write x ą y
when x ľ y but not y ľ x.

If an agent’s preference adheres to Def. 10a, then the required budget determines
the order of the alternatives. In particular, Def. 10a determines a preference where
alternatives that require a lower budget are preferred to alternatives that require
higher budget (first condition of Def. 10a) and the relative order between two alter-
natives with different propositional atoms is the same for all possible budgets (second
condition of Def. 10a). Note that in a basic preference that adheres to Def. 10a, two
alternatives x and y such that req budpxq ą req budpyq cannot be equally preferred.
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In fact, if x „ y we have that req budpxq ď req budpyq and req budpyq ď req budpxq.
As a consequence, all alternatives with required budget 0 are strictly preferred to
all the other alternatives, and all alternatives with same required budget are equally
preferred.

If an agent’s preference adheres to Def. 10b, then the propositional atoms deter-
mine the order of the pairs. If a set of propositional atoms is preferred to another,
then it is preferred regardless of the required budget. In a preference that adheres to
Def. 10b though, the alternatives with required budget 0 are strictly preferred to all
the other alternatives with same propositional atoms.

We would like to emphasize that the basic preferences as we defined here are
different than lexicographic ordering [145]. An agent’s preference, as per Def. 10,
satisfies, instead, the basic rationality requirements [202], as per Prop. 1.

Proposition 1. A basic preference Pref paq “ pA,ľq for an agent a P Ag is

• transitive: @x, y, z P A if x ľ y and y ľ z then x ľ z; and

• complete: @x, y P A either x ľ y or y ľ x or x „ y.

Proof. See Appendix A.

Examples of Basic Preferences

Given B “ t0, 1u and BL “ B2, an example of basic preference defined according to
Def. 10a is the following.

pxsp100 , 0y, xdist1 , 0yq ľ pxsp100 , 0y, xdist2 , 0yq ľ

pxsp50 , 0y, xdist1 , 0yq ľ pxsp50 , 0y, xdist2 , 0yq ą

pxsp100 , 0y, xdist1 , 1yq ľ pxsp100 , 1y, xdist1 , 0yq ľ

pxsp100 , 0y, xdist2 , 1yq ľ pxsp100 , 1y, xdist2 , 0yq ľ

pxsp50 , 0y, xdist1 , 1yq ľ pxsp50 , 1y, xdist1 , 0yq ľ

pxsp50 , 0y, xdist2 , 1yq ľ pxsp50 , 1y, xdist2 , 0yq ą

pxsp100 , 1y, xdist1 , 1yq ľ pxsp100 , 1y, xdist2 , 1yq ľ

pxsp50 , 1y, xdist1 , 1yq ľ pxsp50 , 1y, xdist2 , 1yq

(4.1)

Note that in preference (4.1), alternatives with lower required budget are preferred
over alternatives with higher required budget and the agents’ prefers sp100 over sp50

for every safety distance, and dist1 over dist2 for every speed.

Given B “ t0, 1u and BL “ B2, an example of basic preference defined according
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to Def. 10b is the following.

pxsp100 , 0y, xdist1 , 0yq ą pxsp100 , 0y, xdist1 , 1yq ľ

pxsp100 , 1y, xdist1 , 0yq ą pxsp100 , 1y, xdist1 , 1yq ą

pxsp50 , 0y, xdist1 , 0yq ą pxsp50 , 0y, xdist1 , 1yq ľ

pxsp50 , 1y, xdist1 , 0yq ą pxsp50 , 1y, xdist1 , 1yq ą

pxsp100 , 0y, xdist2 , 0yq ą pxsp100 , 0y, xdist2 , 1yq ľ

pxsp100 , 1y, xdist2 , 0yq ą pxsp100 , 1y, xdist2 , 1yq ą

pxsp50 , 0y, xdist2 , 0yq ą pxsp50 , 0y, xdist2 , 1yq ľ

pxsp50 , 1y, xdist2 , 0yq ą pxsp50 , 1y, xdist2 , 1yq

(4.2)

Notice that in preference (4.2) states of affairs where sp100 and dist1 hold are pre-
ferred over states of affairs where sp50 and dist1 hold, regardless of the budget.
Analogously, regardless of the budget, states of affairs where sp50 and dist1 hold are
preferred over states of affair where sp100 and dist2 hold, which, in turn, are pre-
ferred over states of affair where sp50 and dist2 hold. Such preference describes an
agent type that prefers to drive fast rather than slow and that prefers to have a short
safety distance rather than high, for whom maximizing speed and minimizing safety
distance have priority over minimizing the budget to be spent, and, finally, who gives
more importance to having a short safety distance rather than driving fast.

Finally, an example of a preference that does not satisfy Def. 10 is the following:
pxsp50, 1y, xdist1, 1yq ą pxsp50, 0y, xdist1, 0yq ą . . . . This is because the first two alter-
natives share the same propositional atoms but the alternative with higher required
budget is preferred to the alternative with lower required budget.

Preferences

The basic preference as defined in Def. 10 may not be expressive enough to capture
some realistic cases. In order to cover more cases and to make our approach appli-
cable to model more realistic scenarios, we consider more complex types of agents’
preferences that combines the two basic types of preferences (defined in Def. 10a and
Def. 10b).

Intuitively, a rational agent may exhibit different preferences when the required
budget increases. For example, consider a brave agent that prefers to drive fast
and to keep a short safety distance rather than long, e.g., as per preference (4.2).
Suppose, however, that such an agent is ready to pay only up to 1€ for driving
fast and for keeping short safety distance. In such case, the agent would prefer
to drive fast and to keep a short safety distance, compared to other alternatives
(e.g., to drive slow and keep a long safety distance), if the required budget is lower
than 1€. For example, in preference (4.2), ordered according to Def. 10b, we have
pxsp100, 1y, xdist1, 1yq ą pxsp50, 0y, xdist1, 0yq. If the required budget for either driving
fast or keeping a short safety distance is higher than 1, however, the agent may instead
give priority to spending the least possible. For example, pxsp50, 0y, xdist1, 2yq, not
reported in preference (4.2), would be preferred to pxsp100, 1y, xdist1, 2yq, adhering
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to Def. 10a instead of Def. 10b. In other words, a rational agent may use different
criteria to order the alternatives in a preference depending on the required budget.

We formalize this intuition by defining a type of preference pA,ľq that is a se-
quence of k basic preferences, with 1 ď k ď |B|. We call such a complex prefer-
ence simply preference. Each of the k basic preferences adhere to either Def. 10a
or Def. 10b, and the alternatives in the different basic preferences have increasing
budgets. In particular, the set of possible budget lists BLi Ď Bn for an alternative in
the i-th basic preference pAi,ľiq, for i ď k, is determined as per Def. 11.

Definition 11 (Budget Lists of the i-th Basic Preference). Consider a set B Ă N, and
k disjoint subsets of B, i.e., B1, . . . ,Bk, such that each element of Bi is bigger than
each element of Bj, for j ă i ď k. In a preference composed by k basic preferences,
the set of possible budget lists for the alternatives in the i-th basic preference pAi,ľiq,
for i ď k, is BLi “ p

Ť

jďi Bjqnz
Ť

jăiBLj

For instance, given the set B “ t0, 1, 2u and k “ 2 two possible subsets of B
as per Def. 11 are B1 “ t0, 1u and B2 “ t2u. The possible budget lists for the
alternatives of 2 basic preferences are therefore BL1 “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu
and BL2 “ tp0, 2q, p1, 2q, p2, 0q, p2, 1q, p2, 2qu. In other words, the budgets in the
alternatives of the i-th basic preference are always lower or equal to max pBiq. This
means that the required budget of every alternative in Ai is always lower or equal to
n ¨ max pBiq, while the required budget of every alternative in Ai`1 is always higher
or equal to n ¨max pBiq.

Definition 12 (Preference). Let pA1,ľ1q, . . . , pAk,ľkq be k basic preferences as per
Def. 10, such that alternatives in Ai are defined with respect to a set of budget lists
BLi as per Def. 11. An agent is said to have a preference pA,ľq, iff A “

Ťk
i“1Ai

and ľ“
Ťk
i“1 ľi Ytpx, yq | x P Aj & y P Ai & 1 ď j ă i ď k u.

Note that a preference pA,ľq that is composed by only one basic preference
pA1,ľ1q so that A “ A1 for BL1 Ď Bn, and ľ“ľ1, is a basic preference. If a
preference is composed by more than one basic preference, every basic preference
pAi,ľiq composing the preference adheres to either Def. 10a or Def. 10b, and for
every pair of alternatives x, y P A such that x P Ai, y P Aj and i ă j, it holds that
req budpxq ď req budpyq. Furthermore, notice that the sets A1, . . . , Ak of alternatives
of the k basic preferences composing a preference pA,ľq are disjoint subsets of A,
since the possible budget lists of the k basic preferences are disjoint subsets of Bn.

Again, we note that a preference as per Def. 12 is transitive and complete.

Proposition 2. A preference Pref paq “ pA,ľq for an agent a P Ag is

• transitive: @x, y, z P A if x ľ y and y ľ z then x ľ z; and

• complete: @x, y P A either x ľ y or y ľ x or x „ y.

Proof. See Appendix A.
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Examples of Preferences

An example of a preference composed by two basic preferences pA1,ľ1q and pA2,ľ2q

is given in Eq. 4.3, given B “ t0, 1, 2u.

#from here ordered by Def. 10b

pxsp100 , 0y, xdist1 , 0yq ą pxsp100 , 0y, xdist1 , 1yq ľ

pxsp100 , 1y, xdist1 , 0yq ą pxsp100 , 1y, xdist1 , 1yq ą

pxsp50 , 0y, xdist1 , 0yq ą ... ą pxsp50 , 1y, xdist1 , 1yq ą ... ą

pxsp50 , 1y, xdist2 , 1yq ą

#from here ordered by Def. 10a

pxsp100 , 0y, xdist1 , 2yq ľ pxsp100 , 2y, xdist1 , 0yq ľ ... ą

pxsp100 , 2y, xdist1 , 2yq ą pxsp50 , 0y, xdist1 , 2yq ľ ... ľ

pxsp50 , 2y, xdist2 , 2yq

(4.3)

In such preference, the budget lists of the alternatives in A1 are elements of BL1 “

tp0, 0q, p0, 1q, p1, 0q, p1, 1qu for B1 “ t0, 1u, and the alternatives are ordered by Def. 10b.
The budget lists of the alternatives in A2, instead, are elements of the set BL2 “

tp0, 2q, p1, 2q, p2, 0q, p2, 1q, p2, 2qu, for B2 “ t2u, and they are ordered by Def. 10a. The
required budget of every alternative in A1 is lower or equal to 2, while the required
budget of every alternative in A2 is higher or equal to 2 and lower or equal to 4.

Consistent Preferences

The preferences above described allow to express a multitude of possible orderings
between different states of affairs. In the following we define an additional property
that a preference can exhibit. We call such property consistency [160].

Intuitively a preference is consistent if when a state of affairs where a propositional
atom p holds is preferred to a state of affair where q holds, then states of affairs where
p holds are preferred to states of affairs where q holds also when a third atom r is
considered. For instance, if pxp, b1y, xx, b2yq ľ pxq, b1y, xx, b2yq, then in a consistent
preference this holds for every propositional atom x.

Notice that preferences as per Def. 12 are not necessarily consistent. An example
of a preference that is not consistent (i.e., does no exhibit the consistency property)
is the following:

pxsp100, 0y, xdist1, 0yq ą pxsp80, 0y, xdist1, 0yq ą pxsp80, 0y, xdist2, 0yq ą

pxsp50, 0y, xdist1, 0yq ą pxsp50, 0y, xdist2, 0yq ą pxsp100, 0y, xdist2, 0yq ą ...

Notice that, given dist1, sp100 is preferred to sp80, but given dist2, sp80 is preferred
to sp100.

We define consistent preferences by means of an enumeration condition over the
propositional atoms of the alternatives. In particular, if two alternatives x and y with
same budget lists differ exactly for one propositional atom, then if x is preferred to y,
this has to hold also for all other pairs of alternatives with same budget lists differing
exactly for the same propositional atoms as x and y. Intuitively the enumeration
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condition imposes an ordering on the alternatives that corresponds to an ordering
that can be obtained by systematically enumerating the possible combinations of
propositional atoms. For instance, if, given dist1, the proposition sp100 from the
set tsp100, sp50u is enumerated before proposition sp50 (i.e, pxdist1, b1y, xsp100, b2yq ą

pxdist1, b1y, xsp50, b2yq), then in a consistent preference sp100 is enumerated before
sp50 also given dist2 (i.e, pxdist2, b1y, xsp100, b2yq ą pxdist2, b1y, xsp50, b2yq).

Definition 13. A preference Pref paq “ pA,ľq is consistent if and only if for all
alternatives x, y in A s.t. their lists of propositional atoms differ exactly for one
element, the following enumeration condition holds.
Let ˛ P tą,„u.
x ˛ y ñ

@v, w P A | proppvq “ pp1, .., pnq & proppwq “ pp11, .., p
1
nq

if pi ‰ p1i & @kPt1,...,nu|k‰ipk “ p1k & budpvq “ budpwq
then v ˛ w

4.3.4 Norms and Agents’ Preferences

As mentioned above, in this chapter we assume that norms and agents’ preferences
are comparable. Consider AL “ pL1, . . . , Lnq and a norm set N “ xN1, . . . , Nny as
per Sec. 4.3.2. Given an alternative pxp1, b1y, ..., xpn, bnyq in an agent’s preference, we
have that both the proposition pi of i-th pair xpi, biy and the proposition p of the i-th
norm Ni “ pp, sq in N belong to Li. Furthermore, since both the sanctions of the
norms and the agents’ budgets of agent’s preferences are natural numbers, they also
are commensurable. This makes it possible to analyze an agent’s preference in the
context of a norm to determine whether the preference motivates an agent to comply
with a norm or to violate it.

Intuitively, in the context of a set of enforced norms, an agent that follows its
preference aims at realizing a state of affairs that can be compliant with some of
the enforced norms and violating other norms for which he is willing to pay the
corresponding sanctions.

Given a set N of n norms and a preference pA,ľq, we say that an alternative
x P A such that x “ pxp1, b1y, . . . , xpi, biy, . . . , xpn, bnyq is a violating alternative w.r.t.
the i-th norm Ni “ pp, sq in N , and we write violpx,Niq, if and only if pi (e.g., sp100)
excludes3 p (e.g., sp50); otherwise x is said to be a complying alternative w.r.t. norm
Ni. An alternative that is compliant w.r.t. all norms in N is said fully compliant.
Note that any rational preference, due to its completeness property as per Prop. 2,
always contains at least one fully compliant alternative. This means that agents
always have a choice to aim at a state of affairs that does not violate any norm.

Definition 14 (Most Preferred Alternatives to Act Upon). Given a preference pA,ľq
and a set N of n norms, a subset A1 Ď A of alternatives is called the set of most
preferred alternatives to act upon in the context of N if and only if for all alternatives

3In this chapter, we assume that information about exclusion between propositional atoms (e.g., in
the sense of material implication) is given as background knowledge. A formal definition of violation
of a norm depends on the specific language used to specify the norms and is out of the scope of the
chapter.
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x P AzA1 it holds that for all alternatives y P A1 either y ą x or x ľ y and there
exists a norm Nj “ pp, sq in N s.t. violpx,Njq & bj ă s (with bj budget of the j-th
pair in x).

The set of most preferred alternatives to act upon in the context of N is the set
of alternatives A1 Ď A such that every other alternative x P AzA1 is either strictly
less preferred (i.e., y ą x @y P A1), or is an alternative that violates at least a norm
Nj but the budget is not enough to pay the sanction (i.e., violpx,Njq & bj ă s).
This means that the alternatives in A1 are either fully compliant or they violate some
norms and the budget is enough to pay the sanction, and there is no other alternative
that satisfies such conditions that is strictly preferred to them.

A rational agent always acts upon one of its most preferred alternatives. We say
that an agent a has a reason to violate a norm N whenever the agent’s preference
Pref paq is so that, among the set of most preferred alternatives, there is at least one
alternative x such that violpx,Nq. When different alternatives are equally preferred
by an agent, the agent can freely choose to aim at any of them. This means that an
agent that has a reason to violate a norm will not necessary aim to violate it: if another
alternative is equally preferred to the violating state of affairs, the agent may decide to
aim to the obeying state of affairs, despite it has a reason to violate the norm. Consider
for example an agent type characterized by the preference in Eq. 4.1 and a norm N “

psp50 , 0q that prohibits agents to drive faster than 50km{h. Given N , the agents’ most
preferred alternatives to act upon are pxsp100 , 0y, xdist1 , 0yq, pxsp100 , 0y, xdist2 , 0yq,
pxsp50 , 0y, xdist1 , 0yq and pxsp50 , 0y, xdist2 , 0yq. Some of these alternatives violate
the norm N (e.g., pxsp100 , 0y, xdist1 , 0yq), therefore the agent has a reason to violate
N . However, some of the other most preferred alternatives are compliant with the
norm (e.g., pxsp50 , 0y, xdist2 , 0yq). Since all most preferred alternatives are equally
preferred, the agent may rationally decide to aim at any of them.

We introduce the notion of maximum budget for norm violation as the maximal
payment that an agent is willing to pay for violating a given norm according to its
preference. Let Ni “ pp, sq be the i-th norm in N , and let Pref paq “ pA,ľq be
the preference of agent a. Let x P A be the agent’s most preferred fully compliant
alternative, and A1 “ ty P A | y ľ xu be the set of alternatives in A that are (equally)
preferred to x. The maximum budget that a is willing to pay for the violation of
Ni, denoted as maxBpa,Niq, is the highest budget b that occurs in the i-th pair of
the alternatives in A1. Note that if the maximum budget for violating a norm is
lower than the sanction of norm Ni, then the most preferred alternatives to act upon
are necessarily alternatives compliant w.r.t. Ni. For instance if N “ psp50 , 3q and
an agent a has maxBpa,Nq “ 2, then all alternatives x in the set of most preferred
alternatives are compliant to N , i.e., violpx,Nq does not hold, and it does not exists
a pair xp, by P x with b ě 3, since b ď maxBpa,Nq ă 3.

Finally, it is worth noting that in case of preference composed by more than one
basic preference as per Def. 12, it is always the case that if the first basic preference is
strictly preferred to the remaining ones then the set of most preferred alternatives to
act upon in the context of N never contains any alternatives from any basic preference
apart from the first one. This is because the first basic preference necessarily contains
an alternative that is fully compliant (due to completeness of every basic preference
pAi,ľiq w.r.t. AL and BLi for 1 ď i ď k and k number of basic preferences composing
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the preference), and such alternative is strictly preferred to any other alternative that
belongs to the remaining basic preferences.

4.4 Norm-based Supervision

In this section, we present the key concepts of a norm-based supervision of a multi-
agent system. We build on the run-time norm-based supervision mechanism for multi-
agent systems as proposed in [117] and sketched in Fig. 4.2. Such mechanism cor-
responds to a control loop that continuously monitors the behavior of a multi-agent
system, evaluates the enforcement of the norms w.r.t. the system-level objectives,
and, when needed, intervenes by revising the norms.

MAS

Monitoring
and

Sanctioning

Norm Revision

(Bayesian Network
+

Agent Preferences)

TripDur
(true, false)

Halted
(true, false)

Vehicle
Density

(low, high)
Obstacle

(true, false)

SafDst
(ob, viol)

SpdLim
(ob, viol)

Norms

Statistical data

Figure 4.2: Illustration of the MAS supervision mechanism.

Consider an ordered set N “ xN1, ..., Nny of norms and a set C of all possible
operating contexts of the multi-agent system (e.g, a context c P C in the ring road
scenario could be “low vehicle density and no obstacle”). We call system configuration
an assignment of a sanction s P N to each norms in N in each of the MAS operating
contexts.

For example, given two possible operating contexts c1 and c2, and given a norm set
N “ tN1, N2u, a possible system configuration is tpc1, pN1, 1q, pN2, 0qq, pc2, pN1, 0q, pN2, 1qqu,
meaning that in context c1 norms N1 and N2 are enforced respectively with sanctions
1 and 0, while in context c2 they are enforced respectively with sanctions 0 and 1.

The control loop of the supervision mechanism sketched in Fig. 4.2 starts with an
initial system configuration. A Monitoring and Sanctioning component collects, at
run-time, perfect information about the obedience or violation of the norms in the
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contexts in which they are evaluated and sanctions agents that violate the norms.
Such component also provides a Boolean evaluation of the system-level objectives
(e.g., whether the number of halted cars is below a certain threshold or not, in the
ring road scenario).

The collected information is used to automatically train a Bayesian Network called
Norm Bayesian Network (described in Sec. 4.4.1) that is used to learn and reason at
run-time about the correlation between norm obedience or violation and the achieve-
ment of the system-level objectives. For example, the Norm Bayesian Network helps
answering questions like how well, and in which contexts, does the norm psp50 , 100q
help achieve the objective of avoiding halted cars?

A Norm Revision component makes use of the learned knowledge, encoded in the
Bayesian Network, to determine whether some norms should be revised and how.
Revising a norm N “ pp, sq means modifying either the proposition p or the sanction
s, or both. In this chapter, we focus on the revision of the sanctions of the norms.
The norm revision process generates as output a (possibly) new system configuration,
replacing the current one.

In previous work [117], we proposed an implementation of the control loop de-
scribed above as a variation of the hill climbing optimization technique. In this
chapter, we follow the same approach. We consider the system configurations as pos-
sible solutions to explore in order to find an optimal one. The quality of a solution is
determined, by means of the observed data from MAS execution, as the probability
of achieving the system-level objectives. Instead of terminating the exploration of the
space when a local optimum is found, as in traditional hill climbing, we use as stop-
ping criterion a constraint defined by the system designer that determines whether
or not the current solution is acceptable. In particular we use, as stopping criterion,
a minimum desired value of the probability of achieving the system-level objectives.
We call such value toa. We use the Norm Revision component to determine the next
solution to try, when the current one is not acceptable.

In [117] we proposed heuristic algorithms for suggesting norm revisions that alter
the regimented norms. In this chapter, differently from the earlier work, we make
use of some additional information concerning the preferences of the agents in order
to determine how to revise the norms, and we focus on the revision of sanctions. In
[119], we used the same framework of [117] to revise the way one norm is enforced
by modifying its sanction. In this chapter, we significantly extend our previous work
by devising several new strategies for the revision of the sanctions of multiple norms
enforced at the same time.

In the rest of the section we first provide some background concerning the Norm
Bayesian Network, then we analyze some properties of the relationships between
norms, agents’ preferences and system-level objectives.

4.4.1 Norm Bayesian Network

Consider some monitorable environmental properties such as the density of vehicles
or the presence of an obstacle on the ring road. Each of these properties is called
contextual variable, and is associated to a domain of values. For example, Vehicles
density can be either low or high, while Obstacle can be true or false. Given a set
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of contextual variables, a context assigns a value to each contextual variable. For
instance, given Vehicles density and Obstacle, four possible contexts exist: high-true,
high-false, low -true, low -false.

A Norm Bayesian Network NBN “ pX ,A,Pq [117] is a Bayesian Network where:

• X “ N Y O Y C are nodes that represent random variables in probability
theory. N, O and C are disjoint sets. N consists of norm nodes; each node
N P N corrensponds to a norm and has a discrete domain of 3 possible values:
obeyed, violated and disabled. O consists of objective nodes; each node O P O
corresponds to a Boolean objective and has a discrete domain of 2 values: true
and false. Finally, C consists of context nodes; each node C P C corresponds to
a contextual variable and can have a discrete or continuous domain of values.

• A Ď pC ˆNq Y pC ˆOq Y pN ˆOq is the set of arrows that connect pairs
of nodes. If there is an arrow from node X to node Y , X is called parent of Y .

• P is a set of conditional probability distributions. These are encoded into con-
ditional probability tables (CPTs), each one associated with a node in X and
quantifying the effect of the parents on the node. The conditional probability
values in the CPT of a node are the parameters of the network. These parame-
ters are automatically learned from observed data from MAS execution through
classic Bayesian learning.

Notation. In the rest of the chapter, we use the following notation for Bayesian
Networks. Italic uppercase (X, Y , . . .) for random variables; bold uppercase (X, Y,
. . .) for sets of random variables; italic lowercase (v1, v2, . . .) for values in the domain
of a random variable; Nv abbreviates pN “ vq, i.e., an assignment of value v to a
norm variable N ; Ov denotes an assignment of value v to all nodes in O; P denotes
a single probability. An evidence e is an observed assignment of values for some or
all of the random variables in the network. An evidence c for all the context nodes
C is an observation for a certain context; for example, Vehicles density has value low
and Obstacle has value false. For simplicity, we use the term context also to refer to
the associated evidence in the Bayesian Network.

Fig. 4.3 reports an example of a Norm Bayesian Network for the running example
of the ring road.

Since we focus on revising the sanctions that enforce norms, norms are never
disabled, therefore in the following we ignore the disabled value of the nodes in the
Bayesian Network. Despite we do not explicitly disable a norm, we consider enforcing
a norm with a sanction of 0 as equivalent to disabling the norm, assuming that an
agent that violates a norm with sanction of 0 does not incur in any other kind of
sanctions (e.g., consequences in the relation between the individual and the other
agents due to shared (moral) values [31]).

Finally, the construction and training of the Norm Bayesian Network is a fully
automated process. In particular, the structure of the network can be trivially ob-
tained from the the definition of X and A. The conditional probability distributions
P (i.e., the parameters of the network), instead, are automatically learned through
classical Bayesian learning using data collected from MAS execution. Without going
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Figure 4.3: A Norm Bayesian Network for the ring road.

into the details of the Monitoring and Sanctioning component, which are out of the
scope of this chapter, Table 4.1 reports a sample dataset that can be obtained from
monitoring norms and objectives for the running example of the ring road. The val-
ues that each of the variables assumes belongs to its domain as above specified (e.g.,
obeyed, violated, for norm nodes, true or false for objective nodes). Such dataset can
be used to automatically train the Norm Bayesian Network of Fig. 4.3 and learn the
set of conditional probability distributions P. As in this work we assume that the
population of agents do not change over time and that the behavior of agents is con-
sistent over time, the CPTs of the Norm Bayesian Network stabilize after receiving
a sufficient number of evidences.

Table 4.1: Example of part of a dataset used to train the Norm Bayesian Network of Fig. 4.3
and obtained from monitoring the execution of the MAS.

VehicleDensity Obstacle SpdLim SafDst TripDur Halted
low true viol ob true false
low false ob viol false false
high true viol ob true false
high false ob ob true true
...

4.4.2 Norms, Agents’ Preferences and System-level Objectives

Consider a set of agent types T “ tt1, . . . , tku, each type corresponding to a prefer-
ence as per Sec. 4.3. In order to focus on the revision of the norms’ sanctions, we
assume that we possess a correct estimation of the preferences of agents concerning
the aspects of the system we aim to regulate. Additionally, we assume that the agents’
preferences do not change in different contexts. As we will see in the following, an
accurate estimation of agents’ preferences is helpful for improving the effectiveness of
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our heuristics. Our technique, however can be extended to support partial or inaccu-
rate estimations of the agents’ preferences. In Section 4.7.1, we sketch some directions
for future work to support these aspects.

Take a set of agents Ag “ ta1, . . . , anu, each with a specific type from T . We
use Pref paq P T to indicate that agent a P Ag behaves according to a type from T .
For simplicity we assume that the behaviors exhibited in the multi-agent system are
uniformly distributed over all the agents: at every time instant every agent either
violates or obeys each of the enforced norms.

Given these assumptions and a set of norms N , we say that a norm N in N is well
defined in the context of N (simply well defined, for brevity) if the probability that
N is violated, denoted as P pNviolq, is never higher than the percentage of agents in
the MAS with a reason to violate N in the context of N .4 In other words, the upper
bound of the probability P pNviolq in the context of N (denoted as UBpNviol ,N q) is
the percentage of the agents with a reason to violate N in the context of N .

Let N be a norm in N , and let δ “ pd1, ..., dkq be a distribution over the agent
types T “ tt1, . . . , tku, where di P r0, 1s is the percentage of population of agents

of type ti, with
řk
i“1 di “ 1. The percentage of agents with a reason to violate

N (as per Sec. 4.3.4) in the context of N is
řk
i“1pdi ¨ hasReasonpi,N,N qq, with

hasReasonpi,N,N q “ 1 if agent type ti has a reason to violate N in the context of
N , 0 otherwise.

Consider, as an example, a norm set N “ xN1, N2y, with N1 “ psp50, s1q and
N2 “ pdist2, s2q and B “ t0, 1u. Consider the two types of agents t1 and t2 as per
Eq. 4.1 and Eq. 4.2, respectively. Assuming a uniform distribution of agents between
the two types, Fig. 4.4 reports the upper bound of the probability of violating N1 and
N2 for this example with different sanctions (i.e., different values of s1 and s2).

The upper bound of P pNviolq describes a worst-case hypothetical situation where
all agents behave according to their preferences, and if they have reason to violate
a norm they are assumed to violate it, no contextual factor influences agent behav-
ior, and interactions among agents do not prevent them to act according to their
preferences. This would happen, for example, when a single car drives on an empty
highway with perfect road and car conditions. Note, however, that the actual prob-
ability to violate a norm is affected by the agents’ decisions, their interactions and
by the MAS environment, and it is assumed to be unknown a priori. Even if all
agents have a reason to violate a norm, due to their interaction or to environmental
circumstances (e.g., large number of cars on the ring-road), none of them may end up
violating it. Furthermore, as explained in Sec. 4.3.4, if an agent equally prefers two
states of affairs, one violating a norm, and another obeying the norm, the agent, since
autonomous, may decide to obey the norm even if it has a reason to violate it. We

4Consider a norm N “ every vehicle on the ring road shall always exceed 70km/h, a type of
norm employed in our society, for instance, to prevent vehicles to have negative impact on road
throughput and safety. Our framework supports such type of norm if it is well-defined. Suppose that
in our running example no agent has reason to violate N . If N was well-defined we would expect
P pNviol q “ 0. However, in our running example, such norm is not well-defined, for in case of high
density, for example, the agents may be forced to slow down below the minimum speed, therefore
violating the norm and exhibiting P pNviol q ą 0. A well-defined norm guarantees agents that have
no reason to violate the norm (i.e., their preferred alternatives are compliant with the norm) to be
able to obey such norm.
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Figure 4.4: Upper bound of the probability of violating norms N1 “ psp50, s1q (in red) and
N2 “ pdist2, s2q (in black) with the two types of agents t1 and t2 as per Eq. 4.1 and Eq. 4.2,
respectively, uniformly distributed.

call, therefore, the monitored probability of violating (obeying) a norm exhibited norm
violation (obedience). We do not assume any prior knowledge about such probability.

Note that, since we consider agent types with rational preferences as per Sec. 4.3.3,
increasing the sanction s of a norm N “ pp, sq, without changing the sanctions of
other norms, does not increase the percentage of agents with a reason to violate N .
Therefore, given k agent types and maxBpT , Nq as the maximum budget among all
agent types to violate a well-defined norm N “ pp, sq, the percentage of agents with
a reason to violate a well-defined norm N 1 “ pp,maxBpT , Nq ` 1q in the context of
N is 0. This is to say that increasing the sanction of a norm above the maximum
budget that any agent is willing to pay causes all agents to comply with the norm.
Consequently, given two well-defined norms N “ pp, s1q and N 1 “ pp, s2q such that
s2 ą s1, and assuming no change in other norms of N , the upper bound of the
probability P pN 1violq is never bigger than the upper bound of the probability P pNviolq.

Furthermore, it is possible to prove that, if all agents in the MAS have a consistent
preference (as per Def. 13), then given a set of norms N “ xN1, ..., Nny, increasing
the sanction of a norm Nj in N without changing the sanctions of other norms, does
not increase the upper bound of the probability P pNviolq for every N in N .

Proposition 3. Given an ordered set of norms N “ xN1, ..., Nny, and a set of t agent
types T , each type corresponding to a consistent preference (as per Def. 13), increasing
the sanction of a norm Nj in N without changing the sanctions of other norms, does
not increase the upper bound of the probability P pNviolq, i.e., UBpNviol ,N q, for all
N in N .

Proof. See Appendix A.

The concept of well-defined norm as described above, concerns the relationship
between a norm and the preferences of the agents. In a multi-agent system, norms
are enforced in order to achieve some system-level objectives. Although setting the
sanction of all norms in N above maxpBq makes all the agents fully compliant (i.e.,
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P pNviolq “ 0 and P pNobq “ 1 for all N P N), this does not necessarily guarantee the
achievement of the system-level objectives, as norms can be ineffective, or even harm-
ful, when obeyed by all agents [117]. Having an estimation of the agents’ preferences
on its own is therefore not sufficient for an effective supervision of a MAS.

We describe here two properties that, instead, relate a norm with the system-level
objectives: the concept of synergy between a norm and the system-level objectives,
and the concept of effectiveness of a norm set.

We say that there is a positive synergy between a norm and the system-level
objectives if it is more likely to achieve the system-level objectives when the norm is
obeyed than when it is violated. A positive synergy between a norm N and a set of
Boolean objectives O exists if P pOtrue|Nobq ą P pOtrue|Nviolq. We say that there is
a negative synergy between N and O if P pOtrue|Nobq ă P pOtrue|Nviolq. Finally, we
say that there is no synergy between N and O if P pOtrue|Nobq “ P pOtrue|Nviolq.

We say, instead, that a norm set N is effective if, when norms in N are enforced,
N guarantees the desired achievement level toa of the system-level objectives, i.e.,
when P pOtrueq ě toa. Conversely, if, when enforcing a norm set N , we have that
P pOtrueq ă toa, we say that N is ineffective.

Information such as the exhibited norm obedience, the synergy and the effective-
ness described above, are hard to determine while designing a MAS. This is due to
several factors, including the complexity of the system, the interaction between au-
tonomous agents, the lack of complete knowledge of the agents’ internals, and the
uncertainty of the environment. However, they can be learned at run-time by moni-
toring the MAS execution. In this chapter, we learn such properties by means of the
Norm Bayesian Network and, in Sec. 4.5, we propose different strategies to combine
these properties with the agents’ preferences, in order to revise the sanctions of an
ineffective norm set N .

4.5 Norm Revision

In this section, we propose different heuristic strategies for the revision of the sanc-
tions of a set of norms whose enforcement is currently ineffective (as per Sec. 4.4.2).
Opportune sanctioning of agents is a well-known mechanism to achieve the system-
level objectives in MASs [68, 72]. Our strategies leverage the knowledge learned at
run-time about norm effectiveness and an estimation of the preferences of the agents
in the system, and determine a new set of sanctions to use to enforce the norms.

Take the Norm Bayesian Network in Fig. 4.3. By analyzing the CPTs of the
objectives nodes O “ tTripDur,Haltedu, we can determine whether a norm set N
is effective or not in a context c. If N is not effective (i.e., P pOtrue|cq ă toa), a
norm revision process is triggered. In such case, in this chapter we aim to revise the
sanctions of the norms in N . For example, if the two norms psp50, 1q and pdist1, 1q are
ineffective when on the ring road there is an obstacle and high vehicle density, we aim
to identify another set of values for their sanctions. Given a norm set N consisting of
n norms, a set of agent types T and the maximum possible budget max pBq among all
agent types in T , the possible sets of sanctions that can be used to enforce norms in
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N is S “Śn
i“1ts P N | s ď max pBq ` 1u. When a norm is enforced with a sanction

0, agent’s decisions are not affected by the norm, since every agent can always afford
to violate (if preferred) a norm with sanction 0. When a norm is enforced with a
sanction max pBq ` 1, instead, no agent can violate such norm, since no agent can
afford to pay such sanction, for the maximum possible budget among all agent types
is max pBq.

The set S is the search space within which our heuristic strategies for norm revision
search for new sanctions.

In Sec. 4.5.1, we describe six strategies for the suggestion of a revision of the
sanctions of a norm set. Such strategies extend and adapt heuristics presented in
previous work [117, 119] by supporting the revision of sanctions of multiple norms.
Each strategy suggests how the behavior of agents w.r.t. the aspects of the system
regulated by norms should change in order to improve the probability of achieving the
system-level objectives. For example, given two norms, one strategy could suggest to
reduce the violations of one norm and to increase the violations of the second norm.
Based on the upper bound of the violation of norms obtained from agents’ preferences
(Sec. 4.4.2), we provide then in Sec. 4.5.2 an algorithm to explore the search space
S in order to identify a new set of sanctions that satisfies (as much as possible) the
suggestions provided by the revision strategies.

It is worth noting that we do not claim that modifying sanctions is always enough
in order to achieve the system’s objectives. As shown in previous work [117], some-
times the enforced norms (and not their enforcement) need to be revised. In this
chapter, however, we focus on mechanisms for the revision of the sanctions associated
to the norms (i.e., the way norms are enforced). The combination of the mechanisms
proposed here with the revision of the content of the norms is left for future work.

4.5.1 Norm Revision Strategies

We propose six strategies for the suggestion of norm revisions. Each strategy de-
termines a list of n suggestions (one per each norm in N ). We present three types
of strategies: synergy-based strategies, sensitivity-based strategies, and category-based
strategies.

Each strategy is applied to a context mpc that, in our framework, corresponds to
the most problematic context in which the objectives are not achieved. In particular,
mpc “ argmaxcPallpcqP pOfalse | cq, where allpcq is the set of all possible contexts
(assignments of a value to each of the context nodes in NBN ). For simplicity, in the
rest of the section, we call such context simply c.

Synergy-based strategies

Synergy-based strategies are based on the concept of norm-objectives synergy de-
scribed in Sec. 4.4.2. The idea is that, if there is a positive synergy between a norm
N and the objectives O in c, the objectives O are more likely to be achieved when
N is obeyed. In this case, by reducing the violations of N , we expect to increase
P pOtrue|cq. If there is a negative synergy between N and O in c, instead, we expect
that increasing the violations of N , and P pOtrue|cq would increase. We present two

127



DATA-DRIVEN RUN-TIME REVISION OF SANCTIONS 4.5

strategies of this type (Naive synergy and Combined synergy), which differ in the way
they determine the synergy between norms and objectives.

Naive synergy. Consider, for each norm N P N, its synergy with the objectives O:

argmaxvPtob,violuP pOtrue |Nv ^ cq (4.4)

For instance, for a norm node SpdLim in the Bayesian Network of Fig. 4.3, where
O “ tTripDur ,Haltedu, we have that

P pOtrue | Nv^cq “ P pTripDur true ,Halted true | SpdLimv^c^SafDstobq¨P pSafDstob |

cq ` P pTripDur true ,Halted true | SpdLimv ^ c^ SafDstviolq ¨ P pSafDstviol | cq

To determine the argmax of Eq. 4.4 means therefore to determine if SpdLimob is
better than SpdLimviol for the achievement of the objectives TripDur and Halted .

Naive synergy calculates such argmax for each norm node and suggests to decrease
violations of norms such that v “ ob in Eq. 4.4, and to increase violations of norms
where v “ viol in Eq. 4.4. For instance, given N “ xN1, N2y, if v “ ob for N1 and
v “ viol for N2, then naive synergy suggests to decrease violations of norm N1 and
to increase violations of norm N2.

Combined synergy. Determine which combination of values obeyed and violated for
each norm is the best for the achievement of the objectives O.
Let ov be the set of all possible assignments of values in the set tob, violu to all norm
nodes in N (e.g., given N “ tN1, N2u, then ov “ ttN1ob, N2obu, tN1ob, N2violu,
tN1viol, N2obu, tN1viol, N2violuu). Determine:

nd “ argmaxnPovP pOtrue |n^ cq (4.5)

This strategy suggests to decrease violations of norms with value ob in nd and to in-
crease violations of norms with value viol in nd. For instance if nd “ tN1ob, N2violu,
then combined synergy suggests to increase violations of norm N1 and to decrease
violations of norm N2.

It is worth noting that Combined synergy purely determines the best combination
of values for the norms, according to the observed data from MAS execution, without
considering the prior probability of observing those values (in practice, Combined
synergy only compares, one by one, the rows of the CPT of the objective nodes). Naive
synergy, instead, when comparing different combinations of values for the norms, takes
also into account the probability to observe those values (Naive synergy compares
sums of different rows of the CPT of the objectives nodes, multiplied by the prior
probability of observing the corresponding values for the norm nodes). Adopting the
Naive synergy strategy may have the advantage of providing more precise suggestion
w.r.t. the data acquired so far during the system execution. Considering only the
CPT of the objective nodes, as per Combined synergy, may help instead determining
the actual best combination of values of obedience of the norms for the system-level
objectives, without being biased by the current probabilities of violating the norms,
which will be modified after the sanctions revision.
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Sensitivity-based strategies

Sensitivity-based strategies are based on the sensitivity analysis technique from prob-
abilistic reasoning [76]. Such strategies do not only determine the direction of the
revision—i.e., increasing or decreasing the probability of violating a norm, as in the
case of synergy-based strategies—, but also estimate the required change in such
probability in order to make the entire norm set effective in context c. In particular,
given a norm node N , the probability P pNviol|cq is a parameter θNviol|c

of the Norm
Bayesian Network. Sensitivity-based strategies try to identify possible changes to the
parameter θNviol|c

that can ensure the satisfaction of the constraint P pOtrue|cq ě toa.
We call required revision strength (RRS ) for a norm set N “ xN1, ...Nny, the set of
desired changes t∆θN1viol|c

, ...,∆θNnviol|c
u in the parameters θNviol|c

of each N in N that
ensure the satisfaction of the constraint P pOtrue|cq ě toa. We present two strategies
of this type (Naive sensitivity analysis and n-CPT sensitivity analysis), which differ
in the way they determine such set of desired changes for each norm in N .

Naive sensitivity analysis. Determine, for each norm N , the required revision
strength (RRS ) ∆θNviol

by solving equation 4.6.

P pOtrue|cq `
δP pOtrue|cq

δθNviol|c

¨∆θNviol|c
ě toa (4.6)

Consider the topology of a Norm Bayesian Network. Following Chan et al. [76], the

derivative δP pOtrue|cq
δθNviol|c

for a norm node N in N can be computed as follows.

δP pOtrue|cq

δθNviol|c

“
P pOtrue, Nviol|cq

P pNviol|cq
´ P pOtrue|Nob, cq (4.7)

For instance, for a norm node SpdLim in the Bayesian Network of Fig. 4.3, where
O “ tTripDur ,Haltedu, the left member of the difference in Eq. 4.7 is

P pOtrue,Nviol|cq
P pNviol|cq

“
P pTripDur true,Halted true,SpdLimviol|cq

P pSpdLimviol|cq
“

“
P pTripDur true,Halted true|SpdLimviol,cq ¨ P pSpdLimviol|cq

P pSpdLimviol|cq
“

P pTripDur true|SpdLimviol, cq ¨ P pHalted true|SpdLimviol, cq “
“ P pTripDur true | SpdLimviol ,SafDstviol , cq ¨ P pHalted true |

SpdLimviol ,SafDstviol , cq ¨ P pSafDstviol | cq `
P pTripDur true | SpdLimviol ,SafDstob , cq ¨ P pHalted true |

SpdLimviol ,SafDstob , cq ¨ P pSafDstob | cq

while the right member of the difference in Eq. 4.7 is

P pOtrue|Nob, cq “ P pTripDur true,Halted true|SpdLimob, cq “
P pTripDur true | SpdLimob ,SafDstviol , cq ¨ P pHalted true |

SpdLimob ,SafDstviol , cq ¨ P pSafDstviol | cq `
P pTripDur true | SpdLimob ,SafDstob , cq ¨ P pHalted true |

SpdLimob ,SafDstob , cq ¨ P pSafDstob | cq
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Therefore the derivative of Eq. 4.7 for a norm node SpdLim in the Bayesian Network
of Fig. 4.3 can be computed as:

P pTripDur true | SpdLimviol ,SafDstviol , cq ¨ P pHalted true |

SpdLimviol ,SafDstviol , cq ¨ P pSafDstviol | cq `
P pTripDur true | SpdLimviol ,SafDstob , cq ¨ P pHalted true |

SpdLimviol ,SafDstob , cq ¨ P pSafDstob | cq ´
P pTripDur true | SpdLimob ,SafDstviol , cq ¨ P pHalted true |

SpdLimob ,SafDstviol , cq ¨ P pSafDstviol | cq ´
P pTripDur true | SpdLimob ,SafDstob , cq ¨ P pHalted true |

SpdLimob ,SafDstob , cq ¨ P pSafDstob | cq

The RRS for a norm N determines the change in P pNviol|cq that is estimated,
based on observed data from MAS execution, to be required in order to make the
norm set N effective.

Naive sensitivity analysis suggests to change (increase or decrease) the violations
of norms of the amount determined by the corresponding RRS s. The sign of the
required revision strength determines whether it is required to reduce (negative RRS )
or to increase (positive RRS ) violations of a norm, i.e., it determines the direction of
the required revision. The value of the RRS determines the intensity of the required
change. For instance if ∆θN1viol|c

“ `0.2 and ∆θN2viol|c
“ ´0.5, then the suggestion

is to increase P pN1violq of 0.2 and to decrease P pN2violq of 0.5.
This strategy computes the RRS for a norm, without considering that a change

could be applied, at the same time, also to other norms. In other words, the RRS
for a norm N is computed as if no change in the probability of violating any other
norm could happen (from this the term naive). However, when determining the RRS
for a norm, Naive sensitiity analysis considers all possible values of the other norms.
Therefore, this strategy may result robust to unexpected changes in the probability
of violating other norms when changing the sanctions.

n-CPT sensitivity analysis. Determine the required revision strength for all norms
together, by solving, following Chan et al. [76], equation 4.8 for the n parameters
∆θN1viol

, ...,∆θNnviol
. Let copN, iq be the set of all possible combinations of i norm

nodes from the set N, and, given a set M “ tN1, ..., Nmu Ď N of norm nodes, let
δi

δθMviol|c
be the Leibniz’s notation for the i-th partial derivative δi

δθN1 viol|c...δθNmviol|c

for Nj P M.

P pOtrue|cq `
n
ÿ

i“1

»

–

ÿ

MPcopN,iq

˜

δiP pOtrue|cq

δθMviol|c
¨
ź

NPM

∆θNviol|c

¸

fi

fl ě toa (4.8)

Solving equation 4.8 means to determine a list of n values ∆θNviol
, one for each norm

node N P N. To do so, first of all it is required to compute: the n first partial

derivatives δP pOtrue|cq
δθNviol|c

(one for each norm N P N); the second partial derivatives for

the
`

n
2

˘

possible combinations of two norm nodes from N; the third partial derivatives

for the
`

n
3

˘

possible combinations of three norm nodes from N; and so on until the

n-th partial derivative δnP pOtrue|cq
δθN1viol|c

...δθNnviol|c

.
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For instance, in the case of N “ tN1, N2u, we have that n “ 2, copN, 1q “
ttN1u, tN2uu, and copN, 2q “ ttN1, N2uu, and inequality 4.8 corresponds to in-
equality 4.9.

P pOtrue|cq `

δP pOtrue|cq

δθN1viol|c

¨∆θN1 viol|c
`
δP pOtrue|cq

δθN2viol|c

¨∆θN2 viol|c
`

δ2P pOtrue|cq

δθN1 viol|c
δθN2 viol|c

¨∆θN1 viol|c
∆θN2 viol|c

ě toa

(4.9)

The first partial derivatives in Eq. 4.8 can be computed as per Eq. 4.7, while
the second partial derivative, in the case of two norms (as it is in Eq. 4.9), can be
computed as per Eq 4.10.

δ2P pOtrue|cq

δθN1 viol|c
δθN2 viol|c

“

P pOtrue|N1 viol,N2 viol, cq ` P pOtrue|N1 ob,N2 ob, cq ´

P pOtrue|N1 viol,N2 ob, cq ´ P pOtrue|N1 ob,N2 viol, cq

(4.10)

If we consider the running example from Fig. 4.3, the derivative in Eq. 4.10 can
be computed as follows.

P pTripDur true | SpdLimviol ,SafDstviol , cq ¨ P pHalted true |

SpdLimviol ,SafDstviol , cq `
P pTripDur true | SpdLimob ,SafDstob , cq ¨ P pHalted true | SpdLimob ,SafDstob , cq ´
P pTripDur true | SpdLimviol ,SafDstob , cq ¨ P pHalted true | SpdLimviol ,SafDstob , cq ´
P pTripDur true | SpdLimob ,SafDstviol , cq ¨ P pHalted true | SpdLimob ,SafDstviol , cq.

After determining the values of the opportune derivatives, as above reported,
inequality 4.8 can be solved by solving the following optimization problem.

minimize
xPRn

fpxq

subject to: toa ´ fpxq ď 0
(4.11)

where x “ px1, ..., xnq is a vector of real values, such that xi is a possible value for
∆θNiviol|c

and fpxq is the left member of inequality 4.8. Notice that the constraint
to which the optimization problem is subject to corresponds to the canonical form
of Eq. 4.8. Solving the optimization problem 4.11 means to determine the minimum
values for the n parameters ∆θN1viol|c

, ...,∆θNnviol|c
that satisfy the desired constraint

of inequality 4.8 (i.e., the probability of achieving the objectives, after applying the
required change in the probability of violating the enforced norms, is above the desired
threshold toa).

Analogously to naive sensitivity analysis, n-CPT sensitivity analysis suggests to
change (increase or decrease) the violations of norms of the amount of the corre-
sponding RRS s determined by solving inequality 4.8. For instance, in the case of two
norms, if ∆θN1viol|c

“ `0.2 and ∆θN2viol|c
“ ´0.5, then the suggestion is to increase
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P pN1violq of 0.2 and to decrease P pN2violq of 0.5. Differently from the previous strat-
egy, however, such values are obtained taking into account the change applied at the
same time to the probability of violating all norms (instead of applying a change only
one norm at a time).

Category-based strategies

Category-based strategies classify norms into different categories, based on their ex-
hibited norm violation and on their relationship with the system-level objectives dis-
covered at run-time, and determine an adequate revision for each norm based on
their category. We present two strategies of this type (Synergy+MLE and State-
based), based on the two heuristic strategies presented in Chapter 3, and used to
suggest a revision of requirements. In this chapter, we adapt them to support the
revision of sanctions.

Synergy+MLE. This strategy is based on the pureBN strategy presented in Chap-
ter 3. We distinguish between norms that are more useful when obeyed (useful-ob for
brevity) or more useful when violated (useful-viol). Furthermore, norms can also be
either most likely obeyed when the objectives are not achieved (likely-ob for brevity) or
most likely violated (likely-viol). In order to distinguish between useful-ob and useful-
viol we calculate the combined synergy nd (as per Eq. 4.5). Norms with value ob in
nd are useful-ob, norms with value viol in nd are useful-viol. In order to distinguish
between likely-ob and likely-viol, instead, we determine the most likely explanation
[186] mle for Ofalse in context c, as follows (with ov defined as per Eq. 4.5).

mle “ argmaxnPov P pn |Ofalse ^ cq (4.12)

Norms with value ob in mle are likely-ob, norms with value viol in mle are likely-viol.

Synergy+MLE suggests to increase violations of norms belonging to category
useful-viol (more useful when violated); to reduce violations of norms belonging to
both categories useful-ob and likely-viol (norms that are more useful when obeyed,
but most likely violated when the objectives are not achieved); and to do nothing
for, or reduce violations of, norms belonging to both categories useful-ob and likely-ob
(norms that are more useful when obeyed, and most likely obeyed when the objectives
are not achieved).

The original pureBN strategy [117] included the concept of harmful norm: a
norm that is better when disabled. The suggestion of pureBN for harmful norms is
to disable them. In this chapter, we only consider active norms and we focus on the
sanction revision, thereby omitting specific suggestions for harmful norms. However, a
suggestion of increasing violation of a norm N , may lead to enforce N with a sanction
equals to 0. In this chapter, enforcing a norm N with a sanction of 0 corresponds to
disabling N .

Finally, note that Synergy+MLE is a refinement of Combined synergy strategy. In
addition to the combined synergy, this strategy also takes into account the most likely
explanation for the objectives being not achieved, in terms of obedience or violation
of norms.
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State-based. This strategy, based on the stateBased strategy presented in Chap-
ter 3, considers, in addition to the classification of norms described for strategy
Synergy+MLE, information about the system state in context c. In particular, as
illustrated in Fig. 4.5, the system can be in four states with respect to the average
norm obedience, calculated as the mean ns “ meanNPNP pNob |cq, and the objectives
achievement probability oa “ P pOtrue | cq.

• In state A, norms are sufficiently obeyed, but this does not lead to sufficient
objectives achievement (i.e., ns ě tns and oa ă toa for some given tns and toa).

• In state B, norms are not sufficiently obeyed and also objectives are not achieved
(i.e., ns ă tns and oa ă toa).

• In state C, the objectives are achieved even though the norms are not obeyed
(i.e., ns ă tns and oa ě toa).

• In state D, (the desired state of the system) the norms are satisfied and the
objectives are achieved (i.e., ns ě tns and oa ě toa).
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Figure 4.5: System states (points) in four states (A-D) w.r.t. average norm obedience and
objectives achievement probability.

If the system is in state A, State-based suggests to increase violations of norms
belonging to both categories useful-viol and likely-ob, i.e., norms that are more useful
when violated but most likely obeyed when the objectives are not achieved, if any.
Otherwise, State-based suggests to do nothing for (or to reduce violations of) the
current norm set. In this case, there is probably some aspect of the system that has
not been considered during its design, for the current norms are mostly obeyed and
they are most useful when obeyed, but the system-level objectives are not achieved as
desired. If the system is in state B, State-based suggests to reduce violations of norms
belonging to both categories useful-ob and likely-viol, i.e., norms that are more useful
when obeyed but most likely violated when the objectives are not achieved. It also
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suggests to increase violations of norms belonging to category useful-viol, i.e., norms
that are more useful when violated. If the system is in state C, finally, State-based
suggests to increase violations of norms belonging to both categories useful-viol and
likely-viol, if any. Otherwise it suggests to decrease violations of norms belonging to
both categories useful-ob and likely-viol.

While Synergy+MLE suggests for all the norms in N the most adequate revision
to perform, State-based considers the global state of the system and suggests to revise
only a specific category of norms at every iteration (for the norms that do not belong
to the category mentioned above it is suggested to do nothing). In case of high number
of norms enforced, this strategy may significantly reduce the number of revisions that
need to be performed at every step.

4.5.2 Sanctions Revision

Consider a norm N “ pp, sq and a revision of it N 1 “ pp, s1q, with s1 ‰ s. Let
P pNviol|cq be N ’s exhibited norm violation (i.e., the probability of violating N mon-
itored during system’s execution) in context c. We call applied revision strength the
difference UBpN 1viol,N q´P pNviol|cq between the upper bound UB for violation of N 1

(as per Sec. 4.4.2) and the N ’s exhibited norm violation. For instance, in the example
reported in Fig. 4.4, supposing that when enforcing N1 “ psp50, 1q and N2 “ pdist2, 0q
the exhibited norm violation of N1 is 0.3, the applied revision strength when revising
N1 into N 11 “ psp50, 2q is 0 ´ 0.3 “ ´0.3, while the applied revision strength when
revising N1 into N 11 “ psp50, 0q is 1´ 0.3 “ 0.7.

The strategies described in Sec. 4.5.1, provide, for each norm N in N , a suggestion
such as reduce/increase violations ofN , do nothing withN , reduce/increase violations
of N of a certain amount RRS (as per Sec. 4.5.1). Given these suggestions, and all
possible sets of sanctions S that can be used to enforce norms in N , we need to find
a new set of sanctions such that the applied revision strength satisfies (as much as
possible) the given suggestions.

A trivial solution is to systematically go through all elements in S until the desired
sanction set (if it exists) is found. Such solution is however computationally expensive,
as the number of possible sanction sets is pmaxpBq ` 2qn, with maxpBq ` 2 maximum
budget among all agent types (maxpBq) plus sanction 0 and sanction maxpBq`1, and
n number of norms.

In the following, we propose a simple alternative way to explore the search space S
that can be used in case of a population of consistent agent types as per Def. 13. With
a population of consistent agent types, according to Prop. 3, the upper bound of the
probability of violating norms decreases monotonically when any sanction increases.
This means that given a sanction set, and the exhibited norm violation for each
enforced norm, if we desire to apply a negative revision strength, we need to move
towards higher values of sanctions. To apply a positive revision strength, instead, we
could change in any way the sanctions (even though typically we should move towards
lower values of sanctions), since the currently exhibited norm violation could be lower
than the upper bound of norm violation with an higher sanction.

Under the assumption of consistent agent types, we can reduce therefore the ex-
ploration of S by directing the search towards the desired values of sanctions. For
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instance, suppose to have two norms N1 “ pp1, s1q and N2 “ pp2, s2q, and a list of
suggestions sugg “ preduce, increaseq for a context c (i.e., it is suggested to reduce vi-
olations of norm N1 and to increase violations of norm N2 in context c). Given sugg ,
we need to look for a new sanction set ts11, s

1
2u such that UBpN11viol,N 1q ă P pN1viol|cq

and UBpN21viol,N q ą P pN2viol|cq, with N 1 “ xN11, N21y. We can therefore reduce
the search space to the subset of S such that s11 ě s1 and s12 ‰ s2.

Algorithm 4 reports the pseudo-code of a procedure to perform such search.

Notice that if preferences are not consistent, we have no guarantees that by moving
towards higher values of sanctions we will not increase violations of norms, since
Prop. 3 does not hold in the general case (i.e., for preferences that are not consistent).
Despite this, one may still heuristically explore S by using Algorithm 4, also when
not all preferences are consistent.

Algorithm 4 is invoked when a suggestion of norm revision has been determined
with one of the strategies of Sec. 4.5.1 after a norm revision is triggered, and there
is at least one sanction set that has not been tried previously in context c. If a
sanction set has already been tried, we know it is not effective (otherwise no further
norm revision would have been triggered). If all possible sanction sets have been
already tried (omitted from Algorithm 4), then the sanction set that, when enforced,
maximizes P pOtrue | cq is selected.

The algorithm takes as input: the list of currently enforced sanctions cs; the
exhibited violation of the enforced norms E; the list sugg of suggestions obtained
with one of the strategies of Sec. 4.5.1 (a value reduce (or increase, or nothing) in
suggris corresponds to a suggestion to reduce (increase, or do nothing with) violations
of the i-th norm); a matrix UB containing the upper bounds for norms violations as
per Fig. 4.4; a list RRS of required revision strengths (empty if no sensitivity-based
strategy is used); and the context c. As output, Algorithm 4 returns a (possibly new)
list of sanctions to use to enforce norms in context c.

The algorithm explores the possible sanction sets starting from the current sanc-
tion set cs. The first step is to determine the subset of S to explore. Notice that, if a
reduce suggestion has been given for norm i (i.e., suggris “ reduce), the new sanction
for norm i must be greater of equal than the current one (i.e., nsris ě csris). This
means that nsris has to be equal to csris ` ch, with ch ě 0 amount of change. Con-
versely, if suggris “ increase, nsris has to be equal to either csris`ch or csris´ch. If we
put these cases together (line 6 of Algorithm 4), nsris has to be equal to csris`oris¨ch,
with oris P t0, 1u if suggris “ reduce, and oris P t0,´1, 1u if suggris “ increase, and
ch ą 0 amount of change.

Variable comb (line 3) is a set of all possible combinations of operators oris for each
norm i, obtained from their suggestion suggris (see oprsuggriss, which retrieves from
the labeled set op declared at line 2, the opportune list of operators given suggestion
suggris). For instance, supposing to have two norms N1 “ pp1, s1q and N2 “ pp2, s2q,
and a list of suggestions sugg “ preduce, increaseq, we have that oprsuggr1ss “ r0, 1s
and oprsuggr2ss “ r0,´1, 1s and comb is the set of all possible combinations of oper-
ators in oprsuggr1ss and oprsuggr21ss, i.e., tp0, 0q, p0,´1q, p0, 1q, p1, 0q, p1,´1q, p1, 1qu,
such that given a certain element o P comb, oris is the operator to apply to the change
of sanction csris.

The algorithm iterates through all possible changes that can be applied to sanc-
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tions (line 4). For each possible change, the algorithm iterates through all possible
new sanction sets that can be obtained with the combinations of operators in comb
(lines 5-6). Notice that, by iteratively increasing the change, we explore the search
space at increasing distance from the current sanction set. This means that if the
algorithm finds a new (function isNewSanctionSet at line 7) sanction set ns that
satisfies the given suggestions (function suggSat at line 8), such sanction set is also
the closest possible to the current one.

Finally, if no new sanction set satisfying the suggestions is found, the current
sanction set is returned. In this case, in our framework a random sanction set never
tried before is enforced in context c.

Notice also that function suggSat (line 8), whose purpose is to verify that a
proposed sanction set satisfies the given suggestions, does not need to require that all
suggestions are perfectly satisfied. In particular, especially when suggestions include
also a required revision strength (i.e., when using sensitivity-based strategies), it
may be more useful to search for a good-enough sanction set. For our experiments,
described in Sec. 4.6, when list RRS is not empty, we keep track of the best new
sanction set found so far (if not all suggestions are satisfied) and for every new sanction
set tested we require at least 80% of suggestions to be satisfied. Furthermore in case of
suggestion nothing, since unlikely, in our experiments, that the exhibited probability of
a norm exactly corresponds to a value on its upper bound, we accept also a reduction
of the probability of violating the norm of a small ε (we used ε “ 0.1).

Algorithm 4 The algorithm for the selection of a new sanction set

Input: cs the current sanction set,
E the norms’ exhibited violation,
sugg the n suggestions,
UB the upper bound matrix
RRS a (possibly empty) list of required revision strengths
c the context
Output: a new sanction set sugg to enforce in c

1: function getSanctionSet(cs, E, sugg , UB, RRS, c)
2: op Ð treduce : r0, 1s, increase : r0,´1, 1s,nothing : r0, 1su
3: comb Ð

Śn
i“1 oprsuggriss

4: for all ch P r1,maxpBqs do
5: for all o P comb do
6: nsÐ rcsris ` oris ¨ ch | @i P r1, nss
7: if isNewSanctionSet(ns,c) then
8: if suggSat(cs, ns, sugg , UB , E , RRS , c) then
9: return ns

return cs

After enforcing the new norm set N 1, obtained by revising the sanctions of norms
in N according to the new sanction set obtained from Algorithm 4, we monitor the new
behavior of the agents and detect the new exhibited norm violation P pN 1viol|cq, for each
norm N 1 P N 1. We call actual revision strength the difference P pN 1viol|cq´P pNviol|cq
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between the exhibited norm violation of N 1 and N , with N 1 “ pp, s1qand N “ pp, sq.

4.6 Experimentation
We report on an experiment that investigates the process through which the norm-
based supervision mechanism of Sec. 4.4 identifies an optimal system configuration.
The object of our study consists of the strategies for norm revision proposed in Sec. 4.5.
In particular, we study the process through which the norm-based supervision mech-
anism identifies an optimal system configuration when employing each of the six
proposed strategies as possible informed heuristics for defining the neighborhood of
a configuration, i.e., the configurations where the sanctions of the enforced norms are
revised as suggested by the heuristics.

We compare the results in terms of convergence speed. The convergence speed mea-
sures the number of steps (i.e., revisions of the sanctions of norms triggered) required
by the heuristic strategies to make the norms effective in achieving the system-level
objectives. This allows us to study the time efficiency of the norm revision strategies
in refining sub-optimal norms at run-time.

4.6.1 Experimental Setting

Our experiment is run through a simulation5 of the ring road scenario described in
Sec. 4.3. Our implementation of the norm-based supervision mechanism of Sec. 4.4,
as a modified version of hill climbing, is called SASS (Supervisor of Autonomous Soft-
ware Systems)6. The supervisor performs a local search and stops when either (i) all
the system configurations have been tried; or (ii) a local optimum (system config-
uration) is found that has objectives achievement probability oa “ P pOtrueq above
the desired threshold toa. The objectives achievement probability of a certain sys-
tem configuration is not known to SASS before the configuration is actually enforced.
Such probability is determined at run-time from simulation data, given the chosen
system configuration. In this experimental setting, the last system configuration that
is selected before stopping is called optimal, since either the objectives achievement
is above the desired threshold or there is no other better configuration.

In the ring road scenario, we consider the two contextual variables Vehicle density,
which can be low (40 cars on the ring road) or high (80 cars)7; and Obstacle, which
is true when an obstacle is placed on the outer lane of the ring road. Each car in the
simulation is an agent that acts according to its specific characteristics, beliefs and
preferences. At each simulation step, every agent also deliberates about a number
of things, including its desired speed and the minimum safety distance, whether and
how much to accelerate or decelerate, whether to change lane to surpass or to move
back to the outer lane, whether to activate the turn signals. Agents’ decisions are
based on their own internals, which are specific for each agent and unknown to the
norm revision mechanism. In our simulations, when an agent equally prefers two

5For our experiment, we used the SUMO traffic simulator [184] and CrowdNav+RTX [245]
6The source code and the material for experiments’ replication can be found in [120].
7The density values have been determined empirically based on the size of the ringroad used for

the experiments.
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alternatives x and y concerning the speed and safety distance (i.e., x „ y), the agent
applies a deterministic choice to determine what state of affair to pursue (i.e., simply
the first one in the representation of the alternatives), instead of random choice.

In order to define norms and agents’ preferences, we consider the set of proposi-
tional atoms L “ tsp15 , sp8 , sp3 , dist0 .5 , dist1 , sp2 u, with AL “ pL1, L2q and L1 “

tsp15 , sp8 , sp3 , u and L2 “ tdist0 .5 , dist1 , dist2 u. Each element in L1 represents a
speed in m/s and each element in L2 represents a safety distance in meters. Fur-
thermore, we consider a language B “ t0, 1, 2u for defining budgets and a language
S “ t0, 1, 2, 3u for defining sanctions of norms.

Agent Types

We experiment with four types of rational agents with consistent preferences (as per
Def. 13). In the following we briefly describe such types, and we report in Appendix B
the full preferences.

• BraveRich is a consistent basic preference that adheres to Def. 10b, i.e., where
alternatives are ordered by propositional atom. It describes an agent type with
a maximum budget of 4, that prefers to drive fast and to keep a short safety
distance, and that gives priority to the short safety distance rather than to
driving fast.

• BraveMiddleClass is a consistent preference composed by two basic preferences.
The first basic preference pA1,ľ1q adheres to Def. 10b. The alternatives in A1

are such that A1 “ tpxp1, b1y, . . . , xpn, bnyq | pi P Li & pb1, . . . , bnq P BL1u, with
BL1 “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu. The second basic preference pA2,ľ2q adheres
to Def. 10a. The alternatives in A2 are such that A2 “ tpxp1, b1y, . . . , xpn, bnyq |
pi P Li & pb1, . . . , bnq P BL2u, with BL2 “ tp0, 2q, p1, 2q, p2, 2q, p2, 1q, p2, 0qu.
BraveMiddleClass describes an agent type similar to BraveRich, but that is
willing to pay no more than 2 for a certain state of affairs. The alternatives in
A2 are ordered by required budget and, for consistency, they maintain the same
relative order as in A1.

• BravePoor is a consistent basic preference ordered by required budget, as per
Def. 10a. It describes an agent type that equally prefers to drive fast or slow
and to keep a short or long safety distance, but is not willing to pay anything
to reach any state of affairs.

• Cautious is a consistent basic preference ordered by required budget, as per
Def. 10a. It describes an agent type that equally prefers to drive slow or fast
and to keep a long or short safety distance, and is not willing to pay anything to
reach any state of affairs. Notice that this preference is equivalent to BravePoor,
however due to the deterministic mechanism of choice of an alternative that our
agents employ (i.e., the first one in the representation of the alternatives), these
two agent types will exhibit different behaviors at run-time. For instance, even
though states of affairs where sp15 and dist0 .5 hold are equally preferred to
state of affairs where sp3 and dist0 .5 hold, in both preferences, and they could
both be chosen in the case of random choice, in our simulation, given enough
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budget, BravePoor will aim at a state of affair where sp15 and dist0 .5 hold,
while Cautious will aim at a state of affair where sp3 and dist0 .5 hold.

We consider three distributions of types of agents:

• uniform, the entire population of agents is uniformly distributed across the four
types described above.

• mostly compliant, 75% of agents belongs to type Cautious and the rest is uni-
formly distributed across the remaining types.

• mostly violating, 75% of agents belongs to type BraveRich and the rest is uni-
formly distributed across the remaining types.

Note that despite our estimation of the preferences of the agents concerning speed
and safety distance, we do not have any control on the exact speed or safety distance
of the agents, which is internally and opaquely set by the agents, together with the
rest of their behaviors.

Norms

We consider the following four ordered norm sets: N31 “ xSpdLim3 ,SafDst1 y, N32 “

xSpdLim3 ,SafDst2 y, N81 “ xSpdLim8 ,SafDst1 y, N82 “ xSpdLim8 ,SafDst2 y, with
SpdLimx “ pspx , s1q, SafDsty “ pdisty , s2q, x P t3, 8u, y P t1, 2u and s1 and s2

sanctions in S.

Fig. 4.6 illustrates the upper bounds of the probability of violating the two norms
SpdLimx and SafDsty defined above (as per Sec. 4.4.2) for the three agent type
distributions. Notice that the reported upper bounds hold for all combinations of the
values x and y above defined (i.e., values of speed limit and minimum safety distance).
This is due to the types of agents that we considered for our experiments. BraveRich
prefers to keep a speed of 15 m/s by maintaining a short safety distance and it is
willing to pay a sanction of 2 for each of these aspects. When the sanction of a norm
is above 2 this agent is compliant with the norm, regardless of the value of the speed
limit, because the agent has no budget for violating the norm. BraveMiddleClass is
analogous to BraveRich but with a maximum budget of 1 for the violation of a norm:
up to sanction 1 BraveMiddleClass has reason to violate a norm (it also prefers to
go at a speed of 15 m/s by maintaining a short safety distance), while when the
sanction of a norm is above 1 BraveMiddleClass is compliant. Finally BravePoor and
Cautious have reason to violate the norms only when their sanctions is 0. With higher
sanctions, these agent types are compliant.

Furthermore notice that, since all the agent types that we considered are consistent
as per Def. 13, the upper bounds reported in Fig. 4.6 satisfy Prop. 3: when increasing
the sanction of only one norm the upper bound of violating the other norm never
increases. This allows us to take advantage, in our experiments, of Algorithm 4 for
the selection of a new sanction set.
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Figure 4.6: Upper bound of the probability of violating norms SpdLimx “ pspx, s1q (red)
and SafDsty “ pdisty, s2q (black) with different agent type distributions. In each subfigure the
x-axis represents the sanction s1 of norm SpdLimx, while the y-axis represents the sanction
s2 of norm SafDsty.
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4.6.2 Experiments

By combining the three distributions of agents of Sec. 4.6.1 with the four norm sets of
Sec. 4.6.1, we derived 12 different experiments. We ran a simulation of the ring road
for each of the 12 experiments and we collected data about norm obedience and ob-
jective achievement in the four different operating contexts c1 “ VehicleDensity low ^

Obstaclefalse , c2 “ VehicleDensity low ^ Obstacletrue , c3 “ VehicleDensityhigh ^

Obstaclefalse , c4 “ VehicleDensityhigh ^ Obstacletrue . This means that during a
simulation, the contexts in which the cars on the ring road operate changes three
times (for a total of fours different operating contexts in each simulation). During
the simulations, we monitored the behavior of the cars and sanctioned each car that
violated one of the enforced norms. A car sanctioned for the violation of a norm N
was not sanctioned anymore for violations of norm N until it completed a full loop of
the ring road. The Boolean value of the system-level objectives was measured every
25 simulation steps. The objective TripDur was considered achieved if, on average in
the 25 steps, the cars on the ring road took less than 2.5 times the theoretical average
trip time8 to complete a loop of the ring road. The objective Halted was considered
achieved if, on average in the 25 steps, less than x% of cars were halted on the ring
road, with x “ 25 if the density of vehicles on the ring road is high, and x “ 5 if the
density of vehicles is low9. A car in SUMO is considered halted if its speed is below
0.1m{s. Cars could be halted on the ring road for several reasons. For example, the
presence of an obstacle may force them to stop and wait for the right moment to sur-
pass the obstacle or traffic waves may force cars to temporary slow down significantly
to avoid collisions.

In every experiment that we perform, the system has nm possible configurations,
with n possible sanction sets and m different operating contexts. Since the speed
of convergence to an optimal solution depends on the initial system configuration
(i.e., a different amount of revisions may be required starting from different initial
configurations), we execute each strategy starting from each possible configuration
and we calculate statistics information (i.e., median, maximum, mean and standard
deviation) concerning the convergence speed in the different executions. To keep our
experimentation’s time manageable, in our experiments we considered only 2 of the
4 operating contexts: c2 and c3. This allowed us to reduce the number of possible
configurations from 164 to 162 “ 256: 16 possible sanction sets for the enforced norms
in any of the 2 contexts.

Fig. 4.7 shows the probability P pOtrueq obtained with the 256 configurations in
each of the 12 experiments and highlights the optimal configurations (the configu-
rations s.t. P pOtrueq ě toa). Every dot in Fig. 4.7 represents the probability of
achieving the objectives during a simulation with a certain system configuration (i.e.,
P pOtrueq), considering both the contexts c2 and c3. In each sub-figure (one per
experiment) we see therefore 256 dots, one per system configuration. Notice that in
the 12 experiments, the distribution of the 256 configurations w.r.t. the probability

8The theoretical trip time is
ř

tiPT di ˆ ti,N , with T being the set of agent types, di being the
percentage of agents of type ti, and ti,N being the theoretical time needed by ti to complete a loop
in case of free ring road when norm set N is enforced.

9Values for the evaluation of the objectives were determined based on some preliminary experi-
mentation with the ring road simulation in order to retrieve a variegate set of experiments.
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of achieving the system-level objectives is different. In other words, a certain sys-
tem configuration c (i.e., enforcing norms with certain sanctions in the two contexts
c2 and c3) can be effective in an experiment but ineffective in another experiment.
This makes the 12 experiments independent, thereby increasing the generality of our
results.

For each of the 12 experiments, we defined a different toa as indicated in Table 4.2,
which summarizes the entire experimental setting. The different thresholds allow
us to test our strategies with different degrees of difficulty (i.e., number of optimal
configurations to be found).

Exp. ID Agents distribution Norm set Contexts toa Optimal
1 DUN31 uniform N31 c2, c3 0.99 84/256 (32.8%)
2 DUN32 uniform N32 c2, c3 0.99 48/256 (18.7%)
3 DUN81 uniform N81 c2, c3 0.9 6/256 (2.3%)
4 DUN82 uniform N82 c2, c3 0.7 8/256 (3.1%)
5 DCN31 mostly compliant N31 c2, c3 0.99 72/256 (28.1%)
6 DCN32 mostly compliant N32 c2, c3 0.99 60/256 (23.4%)
7 DCN81 mostly compliant N81 c2, c3 0.79 4/256 (1.6%)
8 DCN82 mostly compliant N82 c2, c3 0.5 17/256 (6.6%)
9 DVN31 mostly violating N31 c2, c3 0.99 24/256 (9.4%)
10 DVN32 mostly violating N32 c2, c3 0.9 96/256 (37.5%)
11 DVN81 mostly violating N81 c2, c3 0.6 18/256 (7%)
12 DVN82 mostly violating N82 c2, c3 0.8 3/256 (1.2%)

Table 4.2: The setting of the 12 experiments.

4.6.3 Analysis of the Results

Table 4.3 reports the results concerning the steps required by the supervision mecha-
nism to find an optimal configuration in the 12 experiments when employing each of
the six proposed revision strategies. In particular, we report the median, the maxi-
mum, the average, and the standard deviation of the number of steps. We highlight
the best performing strategies in each experiment.

On average, all the strategies required a limited number of steps to find an optimal
configuration in almost all experiments. In the 12 experiments, while the number of
optimal configurations to be found ranges from 3 to 96 out of 256 configurations,
on average the strategies never required more than 52 steps to find one of those
configurations (see columns Avg (σ) in Table 4.3, where σ is the standard deviation),
with a minimum of 0 for all strategies (trivially in the cases the initial configuration is
optimal, not reported in Table 4.3), a maximum of 218 in the most difficult scenario
(see columns Max of experiment DVN82 ), and a median value never above 35 steps.

If we look at the average values, the strategy that performed less well in the 12 ex-
periments is Naive sensitivity analysis, which, in order to find an optimal configuration
among the 256 possible configurations, required an average number of steps between 1
and 52. The strategy that, on average, performed best, instead, is n-CPT sensitivity
analysis, requiring an average number of steps between 2 and 12. In particular, these
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results show that when using n-CPT sensitivity analysis, on average, about 6 norm
revisions were triggered by the norm-based supervision mechanism before finding a
configuration where the system-level objectives were achieved as desired.

Despite n-CPT sensitivity analysis performed, on average, better than the other
strategies in the 12 experiments, the results show that using that strategy was mostly
advantageous when very few configurations were optimal among all the possible ones.
In particular, n-CPT sensitivity analysis appeared to be more effective than the other
strategies when the number of optimal configurations was lower than 2% of all the
configurations. For instance, in experiment DCN81 (1.6% of configuration are opti-
mal), never more than 13 steps were required to find an optimal configuration when
employing n-CPT sensitivity analysis, while the other strategies required a maximum
number of steps between 104 and 216. Furthermore, while the median number of
step is 9 with n-CPT sensitivity analysis, the median number of steps with the other
strategies is more than twice. One exception is State-based, which in such experiment
required an average number of steps similar to n-CPT sensitivity analysis and an even
lower median. State-based, however, exhibited an higher variance, requiring in some
executions up to 104 steps. In experiment DVN82 (1.2% of configuration are opti-
mal), while all other strategies (including State-based) required an average number of
steps between 20 and 52, n-CPT sensitivity analysis was able to find on average an
optimal configuration in about 12 steps.

If we consider, instead, simpler experiments (e.g., DUN31 or DCN31 ), n-CPT
sensitivity analysis did not outperform significantly the other strategies. In fact, if
we consider the average number of steps, among all the strategies, Naive synergy
outperformed (even though by few steps) all the others in 5 experiments, requiring
in all of them less then 6 steps to find an optimal configuration. Furthermore in 8
experiments the average number of steps required by Naive synergy was below the
average between the different algorithms. State-based had similar performances to
Naive synergy and, even though it was the absolute best strategy in only 3 experiments
in terms of average number of steps, in 8 experiments out of 12 it exhibited the lowest
median value.

Fig. 4.8 plots the percentage of configurations explored in the 12 experiments by
the six strategies before finding an optimal one. In most experiments, all algorithms
required to explore less than 10% of all configurations. The only cases that required
to explore more than 10% of configurations were experiments DCN81 and DVN82,
where the number of optimal configuration to be found was less than 2%. Fig. 4.8
emphasizes that all proposed strategies performed similarly, with the exception of
n-CPT sensitivity analysis, which did not show a degradation in the cases of very
few optimal configurations and required to explore a significantly lower number of
configurations.

The values in Table 4.3 and in Fig. 4.8 concern the absolute number of steps
required, and configurations explored, to find one of the optimal configurations among
the total amount of 256 configurations. They provide an overview of the behavior
of the strategies proposed in this chapter in problems of different difficulty with a
search space of 256 possible solutions. Fig. 4.9 compares the percentage of explored
configurations by the different strategies with the percentage of optimal configurations
to be found.
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Figure 4.8: Average percentage of explored configurations before finding an optimal one.

Note that, in problems with more than 6% of optimal configuration, the strate-
gies did not exhibit significant differences. In more difficult problems (less than 3%
of optimal configurations), the number of configurations to explore increased up to
20% with Synergy+MLE, Combined synergy and in particular with Naive sensitiv-
ity analysis. Naive synergy and State-based, instead, as reported above, exhibited a
similar behavior in most of the cases. In problems with less than 2% of optimal con-
figurations, however, they also required to explore a higher number (up to „15%) of
configurations. Finally, the figure shows the robustness of n-CPT sensitivity analysis:
despite performing slightly worse than other strategies in some experiments, n-CPT
sensitivity analysis never required to explore more than 5% of all configurations, even
in problems with about 1% of optimal configurations.
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Figure 4.9: Average percentage of explored configurations (y-axis) compared to the percent-
age of optimal configurations in the 12 different experiments (x-axis).

4.7 Discussion

The results reported in Sec. 4.6 show that our proposed strategies can be employed to
effectively revise at run-time the sanctions of the enforced norms to quickly improve
the performance of the system (in terms of achievement of the system-level objec-
tives). In particular, on 12 problems of different difficulty, our strategies reached
optimal system’s configurations after very few norm revisions. Starting with no ini-
tial knowledge about the effectiveness of the possible configurations, all the strategies
explored on average less than 10% of all possible configurations before finding an
optimal one. In the simplest experiment (DVN32 ), all strategies required to explore
on average less than 1% of all possible configurations. In the same experiment, an
uninformed strategy that does not consider run-time information and randomly tries
a new configuration when the current one is not optimal would explore, on average,
62.5% of the configurations. In the most difficult experiment (DVN82 ), while a ran-
dom strategy would explore on average 98.8% of the configurations to find one of the
1.2% optimal ones, our best performing strategy n-CPT sensitivity analysis explored,
on average, only 5% of all possible configurations.

Our experiments identified three best-performing strategies: Naive synergy, State-
based and n-CPT sensitivity analysis. We discuss each of these strategies and interpret
the results and the conditions for their applicability.

Naive synergy determines, for each of the enforced norms, what type of synergy
exists between the norm and the system-level objectives. Based on the identified syn-
ergy, Naive synergy increases or decreases the sanction for violating the norm. This
strategy suits well cases where the observed data from MAS execution clearly high-
lights that a norm is better when either obeyed or violated. In experiment DUN81,
for instance, in both contexts c2 and c3 the speed limit norm is effective only when
fully obeyed by all agents (i.e., system configurations where some agents violate the
speed limit are not optimal). In such experiment, and also in similar experiments
such as DUN82 and DCN82, the results confirmed that Naive synergy outperforms
the other strategies.
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The State-based strategy extends Combined synergy. Just like the latter, it con-
siders the synergy between norms and objectives. Unlike Combined synergy, it also
considers the most likely explanation for the objectives being not achieved. Further-
more, State-based takes also into account the global state of the system (the average
norm obedience and objectives achievement) and suggests to revise only a certain type
of norms at every iteration. This strategy is suitable for cases where many norms are
enforced and where the obedience of agents to a norm is likely to affect also the obe-
dience to other norms. In our experiments, State-based performed well in most of
the cases, with the exception of the most difficult ones DCN81 and DVN82, where,
similarly to Naive synergy it required a higher number of revisions.

Note that, in experiments DCN81 and DVN82, the optimal configurations are
only 4 and 3, respectively, out of 256. To find the few optimal configurations quickly,
it is necessary to have a strategy that precisely directs the norm revision. For this
reason, synergy-based or category-based strategies, which only provide a direction for
the revision (i.e., they simply suggest to either increase or decrease violations), were
not the best in these experiments.

n-CPT sensitivity analysis, instead, provides a quantitative measure of how much
change in the violations of each norm is required. This strategy is more precise, and,
although it performed slightly worse than other strategies in a few cases, it showed
a consistent convergence speed in all the experiments, including complex ones such
as DCN81 and DVN82. Thus, this strategy proved to be the most robust in terms
of convergence speed. It is worth noting, however, that in cases where the desired
achievement of the system-level objectives is not particularly restrictive and where
many norms are enforced, n-CPT sensitivity analysis may be less adequate due to the
higher computational effort it requires, especially if compared to simpler strategies
like Naive synergy.

The worst-performing strategy, on average, is Naive sensitivity analysis. This
strategy performed particularly bad (compared to the others) especially in the most
difficult experiments, where, as explained above, very few configurations were needed
to be found. This result, which may seem surprising since sensitivity-based strategies
are generally more precise than the others, can be explained by the naive approach
of the strategy in determining the amount of change in the violations of norms that is
required to achieve the system-level objectives. In doing so, unlike n-CPT sensitivity
analysis, this strategy considers the changes for only one norm at a time, assuming
that the other parameters of the Bayesian Network (i.e., the amount of violations of
other norms) would not change. After providing a suggestion, however, the strategy
applies a sanctions revision to all norms together (i.e., it changes all the parameters
of the network together), creating a discrepancy between the way the suggestions
are provided and the implementation of such suggestions. This discrepancy appears
evident in cases where the precision of the suggestions is essential to identify one of
the few optimal solutions (e.g., DCN81 and DVN82 ). Note, however, that all the
proposed strategies are heuristics. Therefore, there is no guarantee that one strategy
will always perform better or worse than the others. This is visible in the results: every
strategy that we proposed, including Naive sensitivity analysis, performed better than
the others in at least one experiment.
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4.7.1 Limitations and Possible Extensions

In the following, we provide a discussion of some of the limitations and assumptions
related to our framework and to the revision strategies that we proposed, outlining
some possible future directions.

Preferences Changing over Time and Context

We considered agents with same preferences in all operating contexts. This simplifi-
cation does not affect the generality of our approach. Our framework supports agents
with different preferences in multiple operating contexts. In Sec. 4.4.2, we have shown
how to use the estimation of the preferences of agents to determine an upper bound
of the probability of violating a norm. In Sec. 4.5, we used such upper bound to guide
the revision of the sanctions of the enforced norms in a certain operating context c. In
order to use different preferences in varying operating contexts, it is possible to explic-
itly model the different contexts (as proposed, for example, in context-aware systems
such as Ambient Intelligence systems [248]), and use an adequate upper bound in
each of them.

This is made possible by the assumption that the preferences of agents (and there-
fore our estimation) do not change over time, i.e., we assumed that the behavior of
the agent is consistent over time. We did not study the case of preferences chang-
ing over time. Preferences may change over time due to external factors inducing
changes in the end-user’s preferences, the introduction of new norms in the MAS, or
changes in agents’ own evaluation of states of affairs due to the acquisition of new
experience [217, 308].

To support preferences that change over time, our framework needs to be adapted
in a number of ways, briefly listed below. First, depending on the type of system,
mechanisms for the dynamic elicitation of preferences should be employed and the
estimation of the preferences should be dynamically replaced or updated (see, for
example, mechanisms to learn and update dynamic preferences [96, 272]). Given
the new preferences, the upper bound of the probability of violating a norm should
be recomputed. System configurations that are ineffective when certain behaviors
are exhibited by the agents, may be instead effective when different behaviors are
exhibited, and vice-versa. When the preferences of the agents are changed, therefore,
the knowledge acquired during the norm revision process about the effectiveness of the
norms and about the relationship between norm violation and system-level objectives
should be reconsidered and opportunely weighted. If the preferences of the agents
change very quickly and repeatedly over time, the use of a static Norm Bayesian
Network as the one described in Sec. 4.4 may be unfavourable and the use of different
more dynamic learning techniques, e.g., Dynamic Bayesian Networks [240], may be
necessary. Supporting partial and inaccurate preferences of agents, as briefly discussed
in Sec. 4.7.1, could also help to cope with preferences changing over time.

Partial or Inaccurate Information

When looking for a new sanction set, we assumed not to have any knowledge about
the norm violations that will be actually exhibited when a never-tried-before sanction
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set is used to enforce norms. To guide the norm revision, we used the upper bound
of a norm violation, a “safe” estimation of the actual norm violation that will be
exhibited by agents. To calculate such upper bound we assumed an accurate (i.e.,
perfect) estimation of the preferences of the agents concerning the aspects of the
system we aim to regulate.

The advantage of having an accurate estimation of the preferences of the agents
is that we can define an upper bound for the probability of violating a (well de-
fined) norm that is not too coarse-grained (e.g., a trivial upper bound is obviously
a probability of 1, but this provides little information). As shown in Sec. 4.6, such
an estimation, combined with our revision strategies, allows us to efficiently revise
ineffective norms.

In some MASs, however, it is not possible to ensure a correct estimation of the
agents’ preferences [137]. Extending our work to support partial and/or inaccurate
information about the agents’ preferences requires an in-depth investigation. Based
on the amount and type of information available, the accuracy and usefulness of the
upper bound could significantly change. For partial information (e.g., we know that an
agent type prefers a state of affairs over another, but we do not have information about
all possible comparisons of alternative states of affairs), it is still possible to estimate
a possibly more coarse-grained upper bound. For example, a trivial estimation could
be obtained by assuming that agents always prefer to violate the norms related to
aspects for which we do not have information. Less trivial estimations could be
obtained for example by approximating the complete preferences by expressing the
uncertain information as a belief function and leveraging the rationality principles
of the preferences [92]. The estimated upper bound could be then refined over time
by monitoring the behavior (i.e., the number of violations) of the agents. In case of
inaccurate information (e.g., some of the available information about the preferences
of agents is wrong, or the information available is only obtained from statistical data
about the behavior of typical agents, or by learning the preferences from observed
agents’ choices [137]), the estimation of the probability of violating a norm should be
treated more as a prediction, rather than an upper bound. In this case, techniques
such as Bayesian Optimization [257], which attempts to find the minimum value of
an unknown function, could be used for selecting new sanction sets and to refine over
time the current estimation.

Nevertheless, a correct estimation of the preferences of the agents, as used in this
chapter, does not imply perfect revision strategies. This is because the trend of the
upper bound may be different from the trend of the actual norm violation, which
is unknown a priori. The consequence of this can be illustrated on the example of
Fig. 4.10, which reports a comparison between an upper bound (red dashed line) of the
probability of violating a norm N , and N ’s exhibited violation (blue solid line), w.r.t.
the sanction associated to N . Suppose the current sanction for a norm N is 0, with an
exhibited norm violation P pNviolq “ 0.3, and the employed revision algorithm (e.g.,
Naive synergy) suggests to reduce violations of N . Here, the only possible choice for
Algorithm 4, which relies on the estimation of the upper bound of violating a norm,
is to select sanction 4 as new sanction, since for all other sanctions the upper bound
is higher than the currently exhibited norm violation. Although sanction 2 would
also satisfy the suggestion, this will remain unknown until such sanction is tried. If
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Figure 4.10: Comparison between the upper bound (red dashed line) of the probability
of violating a norm N , and N ’s exhibited violation (blue solid line), w.r.t. the sanction
associated to N .

the optimal value of P pNviolq for the achievement of the system-level objectives is,
for instance, around 0.1, our supervision framework will need to perform additional
revision steps to select sanction 2.

Complexity of Preferences Representation

In this chapter, we introduced several types of preferences of rational agents as lists
of tuples ordered according to different rational criteria. In our discussion and exper-
iments, we considered complete preferences, i.e., we explicitly represented all possible
alternative states of affairs. Such representation, however, grows exponentially with
the number of norms and budgets. In real world scenarios, doing so may be possible
only in restricted domains where the number of norms and the possible budgets of
the agents is limited. In the general case, however, representing the complete pref-
erences of agents may be infeasible. In this chapter, we attempted to lay down well
founded principles for understanding the interplay between norms and the preferences
of rational agents. For this reason, we provided a formal definition of different types
of rational agents and we studied the properties of their preferences in relation with
the chances to violate the enforced norms. We consider this as a necessary starting
point for approaches to the run-time supervision of normative multi-agent systems
involving rational agents. In Sec. 4.7.1, we outlined some guidelines for our frame-
work to support also partial (and inaccurate) preferences, which is one obvious way
to reduce the complexity of explicitly representing the complete preferences. We leave
this as future work, together with the integration of automated preferences elicitation
techniques within our framework.

Norms Importance

Our strategies do not make any distinction between norms: revisions are applied to all
the norms. This approach can be extended to support a selective revision that takes
into account of the importance of a certain norm for the achievement of the objectives.
Consider the derivative in Eq. 4.7, which describes the impact of changes in P pNviolq

on P pOtrueq in a context c. High values of such derivatives imply that changes in the
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violations of norm N have bigger impact on P pOtrueq. We call such derivative for a
norm N the importance [288] of norm N in context c. By computing the importance
of all norms, we obtain an ordering between norms w.r.t. the system-level objectives.
The strategies of Sec. 4.5.1 could be then applied to the k most important norms.
Although there is no guarantee that this approach will be more effective, it applies to
cases in which revising norms comes at a cost, and therefore minimizing the number
of revisions is important.

In addition to the importance of a norm, the observed data from MAS execution
allows to analyze the relationship between pairs of norms and to detect weather some
of the following properties hold.

Additive synergy between two norms. This property, based on the concept of
additive synergies in qualitative probabilistic networks [292], describes a situation
where it is more likely to achieve the objectives when two norms are either both
obeyed or both violated. Formally, two norms N1 and N2 exhibit an additive syn-
ergy when P pOtrue |N1obN2obq ` P pOtrue |N1violN2violq ě P pOtrue |N1obN2violq `

P pOtrue |N1violN2obq. The norms that exhibit an additive synergy with some of the
k most important ones, could also be considered among the norms to be revised.

Product synergy between two norms. This property, based on the concept of prod-
uct synergies in qualitative probabilistic networks [293], expresses how the value
of one norm (e.g., N1 obeyed) influences the probability of the values of another
norm (e.g., N2 obeyed), upon knowing the value for a common child (e.g., O true).
For instance a negative product synergy says that observing N1 obeyed makes less
likely to observe N2 being obeyed. Formally, two norms N1 and N2 exhibit a
negative product synergy when P pOtrue |N1obN2obq ¨ P pOtrue |N1violN2violq ě pď

qP pOtrue |N1obN2violq ¨ P pOtrue |N1violN2obq. This property can be used to choose
between two norms to revise: it is enough to revise one of them to obtain an effect
on the other.

Conflicting Norms

In this chapter, we assumed that the norms that are enforced are not conflicting, i.e.,
obeying a norm does not prevent a priori agents to obey other norms. This work
focuses on regulative norms: norms enforced by an institution in order to regulate the
behavior of the agents so to achieve desired system-level properties. In this context,
we believe that an institution should not enforce conflicting norms, and we rely on
normative conflict resolution mechanisms [281]. Despite this, our framework currently
supports conflicting norms as long as the agents are aware of such conflicts, i.e., as
long as the preferences of agents already take into account the conflicts. If two norms
N1 and N2 are conflicting, obeying N1 prevents the agents to obey N2 and vice-versa.
The preference of an agent that is aware of the conflict, determines whether the
agent prefers to obey N1 and pay a sanction for N2, or vice-versa. This information is
sufficient in our framework to estimate the upper bound for the violation of the norms
and revise the sanctions of the norms when needed. Additionally, the information of
the conflict could also be explicitly used to improve the performance of our revision
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strategies, similarly to the use of the product synergies described in Sec. 4.7.1: if
obeying a norm agents cannot obey another norm, then it is sufficient to revise one
sanction to obtain an effect also on the violation of the other norm.

Neighborhood Expansion

When a norm revision is triggered, our supervision mechanism searches for a new
sanction set that satisfies the suggestions provided by one of the heuristic strategies.
The neighborhood of a configuration, in the current hill climbing implementation of
the supervisor, is composed by exactly one sanction set (configuration): the one that
best satisfies the suggestions. An immediate extension of this approach is to expand
the neighborhood definition, by including not only the best satisfying configuration,
but also sub-optimal ones: those configurations that “almost” satisfy the suggestions
provided. This extension is easily supported by our supervisor, and it better fits the
typical usage of the hill climbing optimization technique. By expanding the neigh-
borhood, the number of revision steps required by the supervision mechanism to find
an optimal configuration could possibly further decrease. The challenge in expanding
the neighborhood is in appropriately defining almost-satisfying suggestions. Differ-
ent distance metrics and criteria could be considered in order to do so. Adopting a
neighborhood composed only by the best satisfying configuration allowed us, however,
to analyze the quality of the suggestions provided by our algorithms without further
overloading the experimentation with additional parameters. Experiments with dif-
ferent neighborhood definitions will be carried on in future work, considering also a
bigger case study.

4.8 Conclusions
In a MAS, the complexity and unpredictability of the agent interactions and of the
environment must be taken into account to maximize the achievement of the system-
level objectives. When engineering MASs, the available knowledge of these dynamics
is only partial and incomplete. As a consequence, MASs need to be supervised and
regulated at run-time.

In this chapter, we proposed a supervision mechanism that relies on norms with
sanction to influence agent behavior and regulate a MAS [68]. We considered MASs
where agents are rational, i.e., they always choose to achieve their most preferred state
of affairs. We characterized rational agents through their preferences and we made
use of an estimation of the agents’ preferences to guide the supervision of the MAS.
Our mechanism automatically revises the sanctions that are employed to enforce the
norms. To do so, it first interprets—through a Bayesian Network—observed data from
MAS execution in terms of how well certain norms contribute to the achievement of
the system-level objectives in different operating contexts. Then, it suggests how to
revise the sanctions based on the knowledge learned at run-time and on the agents’
preferences. We proposed six heuristics for the suggestion of sanction revisions.

An evaluation of the strategies through a traffic regulation simulation shows that
our heuristics quickly identify optimal norm sets. We performed 12 different experi-
ments on a ring-road traffic simulation, differing for the difficulty of the problem: the
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number of optimal norm sets to be found among all the possible ones ranged from
1.2% to 37.5%. All the proposed strategies explored a small number of norm sets
before finding an optimal one. In particular, the strategy n-CPT sensitivity analysis,
based on the sensitivity analysis technique from probabilistic reasoning [76], on aver-
age never required to explore more than 5% of all possible norm sets in order to find
one of the optimal ones.

This work paves the way for numerous future directions, some of which are sketched
in Sec. 4.7.1. An in-depth evaluation of the scalability and computational complexity
of the presented approach is necessary to assess its suitability for MASs with many
norms and sanctions. Our simple language for representing norms and agents’ prefer-
ences can be extended to consider complex norm types beyond atomic propositions.
Our agent population was defined according to specific types. Future work should
study the effect of agents that deviate from the prototypical agent types. Finally, in
addition to the revision of the sanctions, the strategies here presented could be applied
also to the revision of the norm proposition so to synthesize new norms. As a first
step in this direction, in Chapter 5 we study how to revise and synthesize conditional
norms based on execution data.
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5 Data-Driven Revision of
Conditional Norms with

Deadlines

In multi-agent systems, norm enforcement is a mechanism to steer the behavior of in-
dividual agents so to achieve desired system-level objectives. As discussed in the previ-
ous chapters, however, due to the dynamics of multi-agent systems it is hard to design
norms that guarantee the achievement of the system-level objectives in every operating
context. Moreover, these objectives may change over time, thereby making previously
defined norms ineffective. In this chapter, we investigate the use of system’s execu-
tion data to automatically synthesise and revise conditional norms with deadlines, a
type of behavior-based norms aimed at prohibiting or obliging agents to exhibit certain
patterns of behaviors. This chapter aims at bridging the gaps in the literature con-
cerning the lack of practical data-driven approaches for the synthesis and revision of
behavior-based norms. In particular focuses on the alignment of norms with system-
level objectives whose causal relation with the norms is not known and that are not
directly enforceable on autonomous agents, e.g., an objective “no accidents shall occur
in the highway”. We present theoretical results on the complexity of norm synthesis
and norm revision that call for approximate algorithms. We then propose an heuris-
tic approach that determines approximate norm revisions. The approach consists of
two steps: the synthesis step determines a set of possible revisions of the conditional
norms applying heuristic operations on their components (i.e., condition, prohibited
or obliged state, deadline); the selection step interprets norms as binary classifiers for
execution traces, and chooses the final revised norms (classifiers) that perform better
on the available execution traces. We evaluate our heuristics using a state-of-the-art,
off-the-shelf, urban traffic simulator. The results show that our approach synthesizes
revised norms that are significantly better aligned with the system-level objectives than
the original norms.

This chapter has been submitted for journal publication and is currently under
review as:

• Dell’Anna, Davide, Natasha Alechina, Brian Logan, Maarten Löffler, Fabiano
Dalpiaz, and Mehdi Dastani. “Data-Driven Revision of Conditional Norms in
Multi-Agent Systems”.
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This chapter provides an answer to research questions RQ 3-4 from Chapter 1 in
the context of synthesis and revision of conditional norms in MASs.

5.1 Introduction

In a multi-agent system (MAS), autonomous agents operate and interact in a shared
environment [297]. To ensure that the emergent MAS behavior is aligned with some
desired system-level objectives, the behavior of the agents should be monitored and
coordinated [68]. For example, take a smart highway where the agents are autonomous
vehicles whose speed and CO2 emissions are monitored by sensors. The objectives
of this smart highway may include ensuring safety, smooth traffic flow and low CO2

emissions. To fulfill system-level objectives that may not be directly observable and
controllable, without over-constraining the agents’ autonomy, norms and their en-
forcement are widely adopted mechanisms [11]. For example, agents can be coordi-
nated through traffic norms regarding maximum speed or minimum safety distance.

When designing a MAS, however, it is hard to specify norms that will guarantee
the achievement of the system-level objectives (MAS objectives, from now on) in every
operating context. Modeling all possible aspects of a MAS, including the dynamic
interactions among agents as well as between agents and complex environments, is
difficult if not impossible, unless one assumes that models of the agents and the
environment are available [121]. Moreover, the MAS objectives may change over
time, requiring also an adaptation of the norms that are enforced to guarantee such
objectives. To cope with this issue and to keep the norms effective in achieving the
MAS objectives, the enforced norms need to be continuously evaluated and possibly
revised.

Several formal contributions to norm revision have been proposed, including logics
for norm change [25, 180], design patterns for the iterative revision and verification of
a specification [172], automated refinement of normative specifications via inductive
logic programming [94], and runtime revision of sanctions based on agents’ prefer-
ences [121]. However, most of the literature on norm revision relies on the knowledge
of agents’ internals and makes assumptions about the relationship between agents
behavior, norms and MAS objectives in the operating environment.

In this chapter, we relax these assumptions. We treat agents as a black box, only
assuming that they are norm-aware in the sense that they respond to the enforcement
of a norm, and we consider the case when the knowledge about the relationship
between agents behavior, norms and MAS objectives, relies only on the monitored
system’s execution.

We propose a general mechanism for norm revision that solely relies on the sys-
tem’s execution data: execution traces that describe the behavior exhibited by the
agents and are labeled with a boolean evaluation of the MAS objectives. The pro-
posed revision mechanism, which we call DNR (from Data-driven Norm Revision),
is general in the sense that it does not rely on domain knowledge about the specific
MAS objectives, but only uses the given boolean labeling of the execution traces. The
labeling distinguishes two sets of execution traces: the positive traces set, including
finite execution traces labeled as true, expressing the fact that the traces satisfy the
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MAS objectives; and the negative traces set, including finite execution traces labeled
as false (the trace does not satisfy the MAS objectives).

We focus on the revision of conditional norms with deadlines, a type of norms
widely used in the normative MAS literature to express behavioral properties [10].
Conditional norms with deadlines are represented as tuples pφC , ZpφZq, φDq, where
Z P tP,Ou indicates whether the norm is a prohibition (P ) or an obligation (O) and
φZ characterizes a state that is prohibited (or obliged) to occur after a state where
the condition of the norm φC holds, and before a state where the deadline of the
norm φD holds. Conditional norms can be used to distinguish finite execution traces
as compliant or violating. The goal of our revision is to determine a set of norms that
is aligned with the MAS objectives, i.e., that prohibits all negative behaviors/traces
and permits all positive behaviors/traces.

The main contributions of this work are as follows.

• We formulate the revision of conditional norms with deadlines as a decision
problem and demonstrate that this problem is NP-complete.

• Motivated by the complexity results, we propose DNR: a heuristic approach to
obtain approximate revisions of the norms, i.e., revised norms that are not al-
ways perfectly aligned with the MAS objectives. DNR consists of two steps: the
synthesis step determines a set of possible revisions of the conditional norms;
the selection step chooses the final revised norms from the set of possible revi-
sions based on statistical measures to be computed on the available execution
traces.

• We report on the complexity of the approach and on its experimental evaluation
on an agent-based traffic simulation.

Organization. Sec. 5.2 discusses related work. Sec. 5.3 provides the necessary
background on normative MASs and conditional norms. Sec. 5.4 formalizes the no-
tion of norm revision and presents theoretical results on its complexity. Sec. 5.5
describes our heuristic approach to cope with the high computational complexity of
the problems. Sec. 5.6 reports our experimentation. Sec. 5.7 and Sec. 5.8 present
threats to validity, conclusions, and future work.

5.2 Related Work
The synthesis and revision of norms has been studied from multiple points of view.

Alechina et al. [10] introduce the concept of norms approximation in the context of
imperfect monitors. A norm is synthesized to approximate an original norm in order
to maximize the number of violations that an imperfect monitor can detect. Although
presented with a different goal in mind, this work inspires ours. We assume, however,
perfectly monitorable norms, and we aim at synthesizing norms that are better aligned
with the MAS objectives by using execution data.

Miralles et al. [208] present a framework for the adaptation of MAS regulations
at runtime. They represent conditional norms via norm patterns and describe an
adaptation mechanism based on case-based reasoning. Adaptation is performed at
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runtime individually by a number of assistant agents and then, via a voting mecha-
nism, a final adaptation is approved. The decision on how to adapt norms is taken
based on similar previously seen cases. Dell’Anna et al. [121] propose a framework
for the runtime selection of alternative norms based on runtime data and for the revi-
sion of the sanctions of norms based on the knowledge of agents preferences. Unlike
these approaches, we do not assume knowledge of the agents’ internals, e.g., their
preferences or their reasoning and communication capabilities.

Corapi et al. [94] and Athakravi et al. [24] discuss the application of Inductive
Logic Programming (ILP) [128] to norm synthesis and norm revision. In their work,
the desired properties of the the system are described through use cases (event traces
associated to a desired outcome state). Given the use cases, the authors propose to
use ILP to revise the current norms so to satisfy the use-cases. In such approach,
norms and desired outcome are strictly coupled: the desired outcomes of execution
traces are expressed in the same language of the norms and, therefore, are directly
enforceable. So-called mode declarations are used as heuristics to drive the revision.
In our approach we consider a type of desired MAS objectives that cannot be directly
enforced, and we use norms as a means to achieve such objectives (e.g., a speed limit
norm is a means to achieve vehicles’ safety, but it is not possible to directly enforce
safety on vehicles: “no accidents should occur” is not directly enforceable on drivers).
In our work, the only knowledge of the MAS objectives available to the revision
mechanism, is a given boolean labeling of the execution traces. The causal relation
between norms and MAS objectives is not given. Because we do not assume that the
underlying causal structure of the domain is known to our revision mechanism, we are
unable to generate provably correct norm revisions as in ILP-based approaches. This
is why we use statistical analysis to drive the revision of norms. ILP-based approaches
and our approach can therefore be seen as representing different trade-offs between
the amount of background knowledge assumed about the possible causes of norm
violations, and the guarantees that can be given regarding a particular (candidate)
revision.

Christelis et al. [82] devise algorithms that introduce prohibitions in a MAS by
setting preconditions to the actions the agents can perform in a regimentation setting.
In our work, we do not assume that regimentation is available.

Lion [210] is an algorithm for the synthesis of liberal normative systems, i.e.,
an algorithm that synthesises norms trying to set as few constraints as possible on
the agents’ actions. To guide the synthesis process, the authors make use of a nor-
mative network: a graph structure that characterizes the generalization relationship
between different norms. They use such graph to synthesize more general, that is
more liberal, norms when possible. The norms synthesized by Lion are so-called
action-based norms, which prohibit agents to perform actions in certain states [12].
In our work, we focus on the problem of revising conditional norms with deadlines,
which are behavior-based, or path-based, norms, prohibiting (or obliging) agents to
exhibit certain behaviors. Furthermore, differently from Lion, where the norms are
synthesized so to achieve certain properties of the normative systems (such as its
liberality), our norm revision is meant to align the enforced norms with MAS objec-
tives, which are properties that are desired from the behavior of the whole MAS. We
consider the liberality aspects of the norms an interesting possible extension of our
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work that could be integrated as a criterion when selecting a new norm among the
possible revisions in the selection step.

The concept of generalization of a norm described by Morales et al. [210] also
relates to our operations of weakening and strengthening of a norm. Weakening a
norm (referred to as relaxing a norm, in the previous chapters) generates more general
norms, while strengthening generates more specialized ones. Similar operations have
been described also in the software engineering literature, for example by Kafali et
al. [172], who define design patterns for the iterative revision and verification of a
specification. We propose an heuristic to perform such operations for conditional
norms with deadlines.

Game theoretic concepts have been employed to guide norm synthesis, e.g., in the
work by [212, 213]. Their control loop includes game recognition, payoff learning, and
norm replication. Unlike us, they focus on the goals of the individual agents, while
in our setting, we concentrate on MAS objectives. Furthermore, Bulling et al. [68]
have used concurrent game structures to illustrate how the enforcement of norms can
change agent behavior via regimentation and sanctions. Their work shows the high
computational complexity of reaching a Nash equilibrium mapping, thereby providing
evidence for our heuristic operations.

Mahmoud et al. [200] propose an algorithm for mining regulative norms that
identifies recommendations, obligations, and prohibitions by analyzing events that
trigger rewards and penalties. They focus on agents joining an open MAS who have
to learn the unstated norms; we, instead, study how to alter existing norms from the
point of view of a centralized authority.

Our work is influenced by research on norm change, including logics for norm
change [25, 180], the study of the legal effects of norm change, analyzed and formalized
by Governatori and Rotolo [156], and the contextualization of norms [167], which
studies how to refine norms to make them suitable for specific contexts. In our
framework, this corresponds to modifying the detachment condition and the deadline
of the norms.

5.3 Normative Multi-Agent Systems

Consider a 10 km long highway section. The traffic authority aims at reducing the
CO2 emissions generated by vehicles driving through that section below a threshold
value t. To do so, a norm has been defined and enforced: each vehicle entering the
2nd km of the highway is prohibited to drive faster than 70 km/h until it reaches
the 7th km. After monitoring the highway under the enforcement of such norm, the
traffic authority discovers that, although the CO2 emissions decreased, the highway
throughput was significantly reduced. The traffic authority would like a tool to auto-
matically revise the enforced norm so that the throughput of the highway is increased
as much as possible, while keeping CO2 emissions below t.

The highway segment is a simple example of a normative MAS. Vehicles are au-
tonomous agents, each instantiating a certain agent type that characterizes its be-
havior on the highway. For instance a car agent type can reach a maximum speed
of 200 km/h with a maximum acceleration of 2.9m{s2, while a truck agent type can
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drive up to 130 km/h, with a maximum acceleration of 1.3m{s2. To achieve the MAS
objectives of reducing CO2 emissions while maximizing highway throughput, agents’
behavior is regulated by enforcing norms concerning the speed limits.

5.3.1 Agent Behavior and Conditional Norms
We assume that the behavior exhibited by the agents in the MAS is represented by a
set of finite traces Γ, one trace per agent. Each trace consists of a finite sequence of
states, where each state is labelled with propositional variables from a propositional
language L. We further assume the existence of an initial set of norms1 to be revised:
we consider conditional prohibitions, and in the remainder of this chapter we use the
terms norm and prohibition interchangeably. We omit an analogous discussion also
for conditional obligations, and we report in the appendix the complexity results and
the heuristic operations for obligation.

Definition 15 (Conditional Prohibition). Let φC , φP and φD be boolean combina-
tions of propositional variables from a propositional language L. A conditional pro-
hibition is a tuple pφC , P pφP q, φDq. A conditional prohibition is violated on a trace
ps1, s2, . . . , smq if there are i, j with 1 ď i ď j ď m such that φC is true at si, φP is
true at sj, and there is no k with i ă k ă j such that φD is true at sk.

A conditional prohibition pφC , P pφP q, φDq is detached in a state where the con-
dition φC holds, and detachment persists until the norm is obeyed or violated. A
prohibition is obeyed on a trace if it is either not detached on the trace, or no state
satisfying φP is encountered before the execution reaches a state satisfying φD. A
prohibition is violated if it is detached and a state satisfying φP is encountered before
execution reaches a state satisfying φD. Conditional norms can be evaluated on finite
traces in linear time [10].

The norm each vehicle entering the 2nd km of the highway is prohibited from
driving faster than 70 km/h until it reaches the 7th km from the abovementioned
example, for instance, can be represented as a conditional prohibition pkm2 ^ pcar_
truckq, P psp70q, km7q. The components φC “ km2 ^ pcar _ truckq, φP “ sp70 and
φD “ km7 are boolean combinations of propositional variables from a propositional
language L “ VP Y VS Y VT , where VP “ tkm1, . . . , km10u is the subset of the
language referring to vehicle positions on the highway, VS “ tspx | 1 ď x ď 220 & x P
Nu denotes vehicle speeds in km{h, and VT “ ttruck , caru represents vehicle types.

We also assume a function that is able to label each trace with a single boolean
evaluation of the MAS objectives that the norms are intended to bring about. Such
function partitions the set Γ into ΓT (positive traces) and ΓF (negative traces), de-
pending on whether the traces are labeled as true (expressing the fact that they satisfy
the MAS objectives) or as false (they do not satisfy the MAS objectives), respectively.

In our example, traces are logs of car journeys from the beginning to the end
of the highway section, and the MAS objectives regard CO2 emissions and traffic

1We consider sets of norms that are conflict-free, in the sense that obeying one norm does not
prevent, a-priori, agents from obeying other norms. We focus on norms that are enforced by an
institution in order to regulate the behavior of the agents so to achieve the desired MAS objectives.
In this context, we believe that an institution should not enforce conflicting norms, and we assume
that normative conflict resolution mechanisms [281] are adopted.
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Table 5.1: Example of dataset Γ with one norm n.

Trace n Objectives Type
ρ1 obeyed true True Positive
ρ2 obeyed false False Positive
ρ3 violated true False Negative
ρ4 violated false True Negative

throughput. Norms could prohibit exceeding a speed limit or the use of certain types
of vehicles, while the MAS objectives could be evaluated based on the emissions
generated by the journey and the time taken, and classified as positive or negative.
A partial example of log is shown in Table 5.1 for the case of one norm.

We distinguish four cases as reported in the fourth column of Table 5.1.

• Trace ρ1 describes a behavior that is currently permitted by norm n (the trace
obeys n) and it is a positive trace according to the MAS objectives (it is labeled
true). Borrowing terminology from statistics, we call ρ1 a True Positive, to in-
dicate that the trace is correctly (w.r.t. the MAS objectives boolean evaluation)
permitted by n.

• Trace ρ2 describes a behavior that is currently permitted by norm n but should
be prohibited, since ρ2 is a negative trace according to the MAS objectives (label
false). We call ρ2 a False Positive, to indicate that the trace is erroneously
permitted by n.

• Trace ρ3 describes a behavior that is currently prohibited by n but should be
permitted, since ρ3 is a positive trace. We call ρ3 False Negative, to indicate
that the trace is erroneously prohibited by n.

• Finally, ρ4 describes a behavior that is currently prohibited by n and is a neg-
ative trace. We call ρ4 a True Negative, for the trace is correctly prohibited by
n.

In this work, we discuss the revision of a given set of norms so to align them with
the MAS objectives, or, in other words, so that false negative behaviors are no longer
prohibited and false positive ones are no longer allowed.

5.4 On the Complexity of Norm Revision
We start this section with describing the problem of synthesising a norm (prohibition
or obligation) given a set of traces, such that it is aligned with the MAS objectives.
We then establish the complexity of this problem and use it to obtain complexity
results for norm revision: modifying an existing conditional norm, and synthesising
or revising a set of conditional norms.

In the most general case, there is no conditional norm to start with, and we are
given a set of positive and negative (with respect to satisfying the system objective)
traces and need to synthesise the conditional norm. Clearly, this is not always possible;
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two sets of traces may not be distinguishable by a single conditional norm, or even
by a set of conditional norms. A simple abstract example is given below:

negative trace: ps1, s1, s2, s3q

positive trace: ps1, s2, s3q

The two traces above cannot be distinguished by a conditional norm (nor by a set of
conditional norms).

Next we define formally the decision problem we call prohibition synthesis.

Definition 16. The prohibition synthesis problem is the following decision problem:

Instance A finite set of observable properties of states p1, . . . , pn; a finite set Γ of
finite traces partitioned into ΓT (positive traces) and ΓF (negative traces), where
each trace is given as a sequence of state descriptions (conjunction of literals
built from p1, . . . , pn);

Question Are there three propositional formulas φC , φP , and φD built from p1, . . . , pn
such that

Neg every trace in ΓF violates pφC , P pφP q, φDq

Pos no trace in ΓT violates pφC , P pφP q, φDq

When generating formulas for components in the conditional norm, we can as-
sume that they are in disjunctive normal form (disjunctions of state descriptions).
A disjunction of state description corresponds to a set of states (states whose state
description is one of the disjuncts). A state satisfies a disjunction of state descrip-
tions if, and only if, its description is one of the disjuncts. If such a disjunction only
contains state descriptions occurring in the input, then the size of formulas is linear
in the size of the input.

Let S be the set of states occurring in Γ. Let for any φ built from p1, . . . , pn,
}φ} Ď S be the set of states where φ is true. Let ρris be the i-th state description
in a trace ρ. The considerations above allow us to restate the prohibition synthesis
problem as follows: given a set of positive traces ΓT and negative traces ΓF , find
three sets of states XC , XP , XD such that:

Neg For every trace ρ P ΓF , exist i and j with i ď j such that ρris P XC , ρrjs P XP ,
and there is no k with i ă k ă j such that ρrks P XD.

Pos For every trace ρ P ΓT , if for some i and j, i ď j, ρris P XC , ρrjs P XP , then
there exists k such that i ă k ă j and ρrks P XD.

Theorem 1. The prohibition synthesis problem is NP-complete.

Proof. The prohibition synthesis problem is clearly in NP (a non-deterministic Tur-
ing machine can guess the sets and check in polynomial time that they satisfy the
conditions). To prove that it is NP-hard, we reduce 3-SAT (satisfiability of a set of
clauses with 3 literals) to prohibition synthesis.

Suppose a set of clauses C1, . . . , Cn over variables x1, . . . , xm is given. We gen-
erate an instance of the prohibition synthesis problem such that it has a solution iff
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C1, . . . , Cn are satisfiable (each clause contains at least one true literal). The set of
states in the prohibition synthesis problem consists of two states s and t which are a
technical device, and for each variable xi, two states ui and vi, intuitively meaning
that xi is true (ui) or false (vi).

The set of negative traces ΓF contains:

• a two state trace ps, tq [together with s, t R XC XXP below, this forces s P XC

and t P XP ]

• for every variable xi in the input, a trace ps, vi, t, s, ui, tq [this ensures that either
vi or ui are not in XD]

The set of positive traces ΓT contains:

• a single state trace psq [so s cannot be in XC XXP ];

• ptq [so t cannot be in XC XXP ];

• for every variable xi in the input: ps, vi, ui, tq [this means that either vi or ui
are in XD]; pviq; puiq; pvi, tq; pui, tq; ps, viq; ps, uiq;

• for every pair of variables xi, xj in the input: pvi, ujq; puj , viq [the last eight
types of traces ensure that vi and ui are not in XC or XP ];

• for each clause C in the input over variables xj , xk, xl: ps, zj , zk, zl, tq where zi
is ui if xi occurs in C positively, and vi if it occurs negatively.

The reduction is polynomial in the number of variables (quadratic) and clauses
(linear). We claim that there exists an assignment f of 0, 1 to x1, . . . , xm satisfying
C1, . . . , Cn if, and only if, there is a solution to the prohibition synthesis problem
above where XC “ tsu, XP “ ttu, and for every i, ui P XD iff fpxiq “ 1 and vi P XD

iff fpxiq “ 0.
Assume an assignment f satisfying C1, . . . , Cn exists. Let XC “ tsu and XP “ ttu.

For every i, place ui in XD if fpxiq “ 1 and vi P Xd iff fpxiq “ 0. This produces
a solution because: s, t satisfies Neg; for every i, either ui or vi are not in XD, so
s, vi, t, s, ui, t satisfies Neg. Positive traces satisfy Pos: either s followed by t does
not occur on a trace, or ui, vi occur between s and t and one of them is in XD, or
(from the clause encoding) one of the literals in the clause is true, so for positive xi
it means that ui is in XD and Pos is satisfied, or for negative  xi it means that vi
is in XD and again Pos is satisfied.

Assume there is a solution to the prohibition synthesis problem. It is clear (see
the comments next to traces) that it has to be of the form XC “ tsu, XP “ ttu and
XD containing some uis and vis. In particular, since ps, vi, ui, tq is a positive trace,
for every i either ui or vi has to be not in XD. Set fpxiq to be 1 if ui in XD and
0 otherwise. Then each clause C “ t„ xj ,„ xk,„ xlu is satisfied by f since for
every clause there will be one literal which is true. This is because ps, zj , zk, zl, tq is a
positive trace, and either for some positive literal xi, ui is in XD, or for some negative
literal  xi, vi is in Xd, so ui is not in XD, so fp xiq “ 1.

The obligation synthesis problem can be stated similarly:
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Definition 17. The obligation synthesis problem is the following decision problem:

Instance A finite set of observable properties of states p1, . . . , pn; a finite set Γ of
finite traces partitioned into ΓT (positive) and ΓF (negative), where each trace
is given as a sequence of state descriptions (conjunction of literals built from
p1, . . . , pn);

Question Are there three propositional formulas φC , φO, and φD built from p1, . . . , pn
such that

Neg every trace in ΓF violates pφC , OpφOq, φDq

Pos no trace in ΓT violates pφC , OpφOq, φDq

Theorem 2. The obligation synthesis problem is NP-complete.

The proof is given in Appendix C.

Next we consider the problems of (minimally) revising, weakening or strengthening
conditional prohibitions (we omit the treatment of obligations, which is analogous).

Assume we are given a set of traces and a conditional prohibition pφC , P pφP q, φDq,
and need to revise it so that it classifies the traces correctly. By revising we mean
changing the original prohibition in a minimal way. The editing distance between
conditional prohibitions can be defined in various ways. For example, for formu-
las φC , φP , φD in disjunctive normal form, this could be the sum of the numbers of
added disjuncts and removed disjuncts for all three formulas. Or, we could repre-
sent each state description in each disjunct as a string of 0s and 1s and compare
the number of flipped values. Note however that the set of non-equivalent proposi-
tional formulas built from the set Q “ tp1, . . . , pnu is finite, and so is the number
of possible different conditional prohibitions (or obligations). Regardless of how the
distance between different conditional norms is defined, for a fixed set of proposi-
tional variables Q there is a maximal distance maxpQq between any two norms using
formulas built from Q. For example, let the distance between pφC , P pφP q, φDq and
pφ1C , P pφ

1
P q, φ

1
Dq be ΣXPtC,P,Dudiff pφX , φ

1
Xq, where diff pφX , φ

1
Xq is the number of dis-

juncts the two formulas differ on: diff ppφX , φ
1
Xq “ |disjunctspφXqzdisjunctspφ

1
Xq| `

|disjunctspφ1XqzdisjunctspφXq| (and disjunctspφq for a formula φ in disjunctive nor-
mal form is the set of disjuncts in φ). Then if |Q| “ n, the largest possible value for
diff pφX ´ φ

1
Xq is 2n, and the largest possible value for maxpQq is 3 ¨ 2n.

Below we state the decision problem for minimal revision (asking whether there is
a revision of distance less than m). It assumes some distance measure dist defined for
any two conditional prohibitions α1 and α2 built over the same set of propositional
variables Q.

Definition 18. The (decision form) of the minimal prohibition revision problem is
as follows:

Instance A number m; a finite set of observable properties of states p1, . . . , pn; a
finite set Γ of finite traces partitioned into ΓT (positive) and ΓF (negative); a
conditional prohibition pφC , P pφP q, φDq.
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Question Are there three propositional formulas φ1C , φ1P , and φ1D built from p1, . . . , pn
such that

Dist distppφC , P pφP q, φDq, pφ
1
C , P pφ

1
P q, φ

1
Dqq ď m

Neg every trace in ΓF violates pφ1C , P pφ
1
P q, φ

1
Dq

Pos no trace in ΓT violates pφ1C , P pφ
1
P q, φ

1
Dq

Theorem 3. Let distpα1, α2q be computable in time polynomial in the size of α1 and
α2, and the range of dist over norms built over propositions from Q be bounded by
maxpQq. Then the minimal prohibition revision problem is NP-complete.

Proof. The membership in NP follows from the fact that a solution can be guessed
and checked in polynomial time.

NP-hardness is by reduction from the prohibition synthesis problem. Note that if
a solution to the prohibition synthesis problem exists, it will be at most at distance
maxpQq from the input norm. So to solve the synthesis problem, we can ask for a
solution to the minimal prohibition revision problem with m “ maxpQq.

The decision problem for whether a prohibition can be weakened so that it no
longer applies to a set of ‘positive’ traces can be stated as in Def. 19. By weakening,
we mean that the prohibition is made less strict, that is, one or more of the following
hold: the detachment condition is made harder to satisfy, the prohibited state itself
is made harder to satisfy, the deadline is made easier to satisfy.

Definition 19 (Prohibition weakening problem). The prohibition weakening problem
is the following decision problem:

Instance A finite set of observable properties of states p1, . . . , pn; a finite set Γ of
finite traces partitioned in ΓF and ΓT , where each trace is given as a sequence
of state descriptions (conjunction of literals built from p1, . . . , pn); a conditional
prohibition pφC , P pφP q, φDq where φX , X P tC,P,Du, are propositional formu-
las built from p1, . . . , pn, and all of ΓF traces and some of ΓT traces violate
pφC , P pφP q, φDq.

Question Are there φ1C , φ1P , and φ1D built from p1, . . . , pn such that: φ1C |“ φC ,
φ1P |“ φP , φD |“ φ1D,

no ρ P ΓT violates pφ1C , P pφ
1
P q, φ

1
Dq

every ρ P ΓF violates pφ1C , P pφ
1
P q, φ

1
Dq;

Theorem 4. Prohibition weakening problem is NP-complete.

Proof. The membership in NP follows from the fact that a solution can be guessed
and checked in polynomial time.

NP-hardness can be shown by reducing the prohibition synthesis problem to the
prohibition weakening problem where the input norm is pJ, P pJq,Kq.
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In a similar way, the prohibition strengthening problem can be defined and shown
to be NP-complete.

Finally, we briefly state the multiple prohibitions weakening (MPW) problem:
given a set of conditional prohibitions n1, . . . , nm, and a set of traces partitioned in
ΓT and ΓF , where all traces in ΓF violate at least one of the norms, and some traces
in ΓT violate some of the norms, find weakened forms n11, . . . , n

1
m of n1, . . . , nm, such

that all traces in ΓF still violate one of the norms, but no trace in ΓT does.

Theorem 5. The MPW problem is NP-complete.

Proof. Membership of NP: a non-deterministic TM can guess n11, . . . , n
1
m and check

that they satisfy the conditions in polynomial time. To check that each trace in ΓF
violates at least one of n1i, for each n1i mark the traces in ΓF that violate it. If all
traces are marked, the condition holds. NP-hardness follows from NP-hardness for
the (single) prohibition weakening problem.

5.5 DNR: A Heuristic for Approximate Norm Revision
The results in Sec. 5.4 lead us to proposing DNR, a more practical approach to norm
revision. The approach aims at determining approximate revisions that are better,
even though not always perfectly, aligned with the MAS objectives. DNR consists of
two steps. Consider, for simplicity one norm n. In Sec. 5.5.4, we will show how the
approach generalizes to multiple norms.

• Synthesis step. This step aims at generating a set revisions of a norm n. We
discuss this step in Sections 5.5.1 and 5.5.2, where first we describe a number of
heuristic operations to revise the components of a conditional prohibition, and
then we show how to combine and use such operations to generate the set of
revised norms.

• Selection step. This step aims at selecting one norm from the set of revised
norms obtained in the synthesis step. We describe this step in Sections 5.5.3
and 5.5.3, where we characterize the concept of alignment of a norm with the
MAS objectives, by means of statistical metrics that can be calculated on the
dataset of traces Γ. The selected norm will be most aligned with the MAS
objectives.

In our examples, we consider conditional prohibitions pφC , P pφP q, φDq, such that
φC , φP and φD are boolean combinations of propositions from the languages LC “
VP Y VT , LP “ VS Y VT , and LD “ VP , respectively, with VP ,VT ,VS defined
as per Sec. 5.3.1. In order to illustrate our approach to norm revision, consider the
conditional prohibition n “ ppkm1 ^ truckq_ pkm2 ^ carq, P ppsp36 ^ truckq_ psp54 ^

carqq, pkm10 ^ truckq _ pkm10 ^ carqq, which forbids trucks to drive faster than 36
km/h throughout the highway section, and cars to drive faster than 54 km/h from
km2 to the end of the highway section.

The prohibition n is equivalent to the set of eight sub-norms reported in Table
5.2. A sub-norm is a norm such that each component is one of the disjuncts (i.e., a

166



5.5 DNR: A HEURISTIC FOR APPROXIMATE NORM REVISION

5

conjunction of literals) from the corresponding component of the original norm. A
prohibition n is violated by a trace ρ if and only if at least one sub-norm is violated
by ρ.

Table 5.2: The sub-norms of a conditional prohibition n “ ppkm1 ^ truckq _ pkm2 ^

carq, P ppsp36 ^ truckq _ psp54 ^ carqq, pkm10 ^ truckq _ pkm10 ^ carqq.

n1 pkm1 ^ truck , P psp36 ^ truckq, km10 ^ truckq
n2 pkm1 ^ truck , P psp36 ^ truckq, km10 ^ carq
n3 pkm1 ^ truck , P psp54 ^ carq, km10 ^ truckq
n4 pkm1 ^ truck , P psp54 ^ carq, km10 ^ carq
n5 pkm2 ^ car , P psp36 ^ truckq, km10 ^ truckq
n6 pkm2 ^ car , P psp36 ^ truckq, km10 ^ carq
n7 pkm2 ^ car , P psp54 ^ carq, km10 ^ truckq
n8 pkm2 ^ car , P psp54 ^ carq, km10 ^ carq

Some of the sub-norms of a norm, in a certain domain may be irrelevant, as they
may refer to situations that can never occur. For instance, in our running example,
neither the prohibition nor the deadline of sub-norm n5 in Table 5.2 can ever be
true after the sub-norm is detached, for they refer to states that can appear only on
execution traces of trucks, but the sub-norm can be detached only on execution traces
of cars.

Since in DNR the revision is based on the set of traces Γ, we do not need to generate
all the (exponentially many) sub-norms. We can instead generate, in polynomial time,
only the sub-norms that are relevant for the set of traces Γ. For each t P Γ, we can
determine the relevant sub-norms in linear time with respect to the size of the original
norm. In particular, we can read the trace state by state and keep track of one of
the disjuncts c in ΦC and one of the disjuncts p in ΦP that made the norm detached
and violated in t, respectively. Once we find a state where one of the disjuncts d in
ΦD holds, we generate the sub-norm pc, P ppq, dq; else, we ignore the trace. In doing
so we implicitly discard all possibly irrelevant sub-norms since, as mentioned above,
they refer to situations that can never occur.

Our approach for the synthesis step consists of revising the relevant sub-norms of
a norm. In order to revise a norm n so to permit a (sub)set of traces that n currently
erroneously prohibits (false negative traces, as per Sec. 5.3), we need to revise (some
of) the sub-norms of n that are currently violated by at least one of the traces in Γ.
Similarly, in order to revise a norm n so to prohibit a (sub)set of traces that currently
erroneously obey n (false positive), we need to revise at least one of its sub-norms so
that they prohibit the traces.

Notice that in the case of false negatives, completely removing the sub-norms (we
will refer later to this as disabling the sub-norm) is a possible, even though extreme,
type of revision, as it may lead to the undesired side effect of generating possibly
too many new false positives, as too many behaviors may be permitted. Analogously,
if we want to prohibit more traces, a trivial and extreme possibility is to revise a
sub-norm so that nothing is permitted anymore. This, may lead to the undesired side
effect of generating possibly too many new false negative, as too many behaviors may
be prohibited.
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In Sec. 5.5.1 we propose a number of heuristic operations that can be used to
revise the components of a sub-norm, based on the set of traces Γ. In Sec. 5.5.2 then,
we combine such operations to generate a set of new possible revised sub-norms. The
revised sub-norms will possibly contain, as special case, also the extreme revisions
above illustrated. In the following, for clarity, we focus on a single sub-norm, and, for
simplicity, from now on, we use the term norm instead of sub-norm.

5.5.1 Heuristic Revision Operations

We introduce a number of heuristic operations that can be used to revise the three
components of a prohibition with respect to a given dataset Γ.

As a running example, we use a conditional prohibition n1 “ pkm1 , P psp36 ^

truckq, km10 ^ truckq. We use φC , φP , φD to refer to the condition, prohibition and
deadline of n1, respectively. Each operation takes as input the current component of
the norm (e.g., its condition φC) and produces a set of revised components (e.g., a
set MSCpφCq of new conditions that are all more specific than the current condition
φC). In Sec. 5.5.2, we will see how to combine these operations to obtain different
types of revisions of a norm. In the following, we use proppxq to indicate a function
that returns the set of literals contained in its argument x.

Condition

Make condition φC more specific. This operation generates conditions more specific
than the current one, i.e., it determines a set MSCpφCq “ tφ

1
C | φ

1
C |“ φCu. With

a more specific condition, the norm can detach in fewer traces. Consider the set
Γn1

of traces in Γ violating norm n1. Each trace in Γn1
contains a non-empty set

of states where all literals in φC hold and are followed by at least a state where φP
holds; else, the trace would not have violated n1. Let CS be the union of such set of
states, for all traces in Γn1

. Let Φ be a set of possible conjunctions of literals from
pproppCSq X LCqzproppφCq with the size bounded by a polynomial in |proppCSq|.
The construction of Φ is domain-specific and is discussed in Sec. 5.5.1.

We make the condition more specific by adding a conjunct from Φ to φC , so
that φ1C “ φC ^ φ, with φ P Φ. MSCpφCq “ tφC ^ φ | φ P Φu is the set of all
possible conditions, more specific than φC , that can be obtained by means of the
above described operation w.r.t. Γ.

Example. Revising the condition φC “ pkm1q into φ1C “ pkm1q ^ truck , the new
norm will only apply to trucks.

Finally, note that a more specific condition than φC is φ1C “ K. A norm with
condition φ1C “ K can never be detached, and corresponds therefore to a disabled
norm.

Make condition φC less specific. This operation generates conditions less specific
than the current one, i.e., it determines a set LSCpφCq “ tφ

1
C | φC |“ φ1Cu. With a

less specific condition, the norm can detach in more traces. The idea is to make φ1C
hold in states that precede states in which the prohibition holds in the traces that
obey the current norm. Let Φ be a fixed size set of possible conjunctions of literals
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from proppOPSq XLC , with OPS set of states where φP holds in the traces obeying
n, if any. We make the condition less specific by adding a disjunct from Φ to φC ,
so that φ1C “ φC _ φ, with φ P Φ. LSCpφCq “ tφC _ φ | φ P Φu is the set of all
possible conditions, less specific than φC , that can be obtained by means of the above
described operation w.r.t. Γ.

Example. Revising φC “ km1^ truck into φ1C “ pkm1^ truckq_ pkm1^ carq, the
new norm will apply not only to trucks but also to cars.

Prohibited State

Make the prohibited state φP more specific. This operation generates prohibited
states more specific than the current one, i.e., it determines a set MSP pφP q “ tφ

1
P |

φ1P |“ φP u. With a more specific prohibited state, the norm can be violated by fewer
traces.

Each trace in Γn1
(i.e., traces from Γ which violate norm n1) contains a non-empty

set of states where all literals in φP hold. Let PS be the union of such states, for all
traces in Γn1 . We can apply the same strategy described for making the condition
more specific, adding a conjunct that restricts the set of states that violate the norm.

We make the prohibited state more specific by adding a conjunct from Φ to φP ,
so that φ1P “ φP ^φ, with φ P Φ, and Φ defined analogously to the case of conditions
but w.r.t. pproppPSq X LP qzproppφP q, and same considerations on the number of
conjunctions apply as above. MSP pφP q “ tφP ^ φ | φ P Φu is the set of all possible
prohibited states, more specific than φP , that can be obtained by means of the above
described operation w.r.t. Γ.

Example. Revising φP “ psp36 ^ truckq into φ1P “ psp36 ^ truckq ^ sp54, the new
norm prohibits trucks to go faster than 54 km/h instead of only 36 km/h.

Similarly to the case of condition, a norm with prohibition φ1P “ K corresponds
to a disabled norm, as it can never be violated in any trace.

Make the prohibited state φP less specific. This operation generates prohibited
states less specific than the current one, i.e., determines a set LSP pφP q “ tφ

1
P | φP |“

φ1P u. With a less specific prohibited state, the norm can be violated by more traces.
The idea is to make φ1P true in states that are after states where the condition holds.
Let Φ be a fixed size set of possible conjunctions of literals from pproppIPSq X LP q,
with IPS set of states that are in between states where the condition and the deadline
hold in the traces obeying n.

We make the prohibition less specific by adding a disjunct from Φ to φP , so that
φ1P “ φP _ φ, with φ P Φ. LSP pφP q “ tφP _ φ | φ P Φu is the set of all possible
prohibited states, less specific than φP , that can be obtained by means of the above
described operation w.r.t. Γ.

Example. Revising φP “ sp54 into φ1P “ sp54 _ sp36 “ sp36, the new norm
prohibits trucks to go faster than 36 km/h instead of 54 km/h.

Deadline

Make the deadline φD less specific. This operation generates deadlines less specific
than the current one, i.e., it determines a set LSDpφDq “ tφ

1
D | φD |“ φ1Du. With a
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less specific deadline, the norm can be violated by fewer traces. Since a conditional
prohibition can be violated by a trace even if the deadline is not reached, the idea is to
make φ1D true in more states that occur before states where the prohibited state holds
in the violating traces. Informally, we can say that we try to “insert” (when possible)
the deadline before the prohibition is violated. Let CPS be the set of states of the
traces in Γn1 that are in between states where the condition and the prohibition hold;
and CPSP the subset of CPS with states from the positive traces ΓT . If CPSP “ H,
no deadline revision can be applied. We can add to φD one (or more) disjuncts so
that the new deadline is true in (some) state of CPS.

We make the prohibition less specific by adding to φD a disjunct from Φ (a fixed
size set of possible conjunctions of literals from proppCPSq X LD and analogous
considerations on the number of disjunctions hold as above), so that φ1D “ φD _ φ,
with φ P Φ. LSDpφDq “ tφD _ φ | φ P Φu is the set of all possible deadlines, less
specific than φD, that can be obtained by means of the above described operation
w.r.t. Γ.

Example. Revising φD “ pkm10^truckq into φ1D “ pkm10^truckq_pkm9^truckq,
we prohibit trucks to drive faster than 36 km/h only until km9, instead of km10.

Make the deadline φD more specific. This operation generates deadlines more spe-
cific than the current one, i.e., it determines a set MSDpφDq “ tφ1D | φ1D |“ φDu.
With a more specific deadline, the norm can be violated by more traces. The idea
is to make φ1D true in fewer states that are before states where the prohibited state
holds. Let DS be the set of states DS where φD holds in the traces obeying n. Let
Φ be a set of possible conjunctions of literals from pproppDS q X LDqzproppφDq.

We make the deadline more specific by adding to φD a conjunct from Φ, so that
φ1D “ φD ^ φ, with φ P Φ. MSDpφDq “ tφD ^ φ | φ P Φu is the set of all possi-
ble deadlines, more specific than φD, that can be obtained by means of the above
described operation w.r.t. Γ.

Example. Revising φD “ ptruck ^ km9q into φ1D “ truck ^ km9 ^ km10, we pro-
hibit trucks to drive faster than 36 km/h for one more kilometer.

Table 5.3 summaries all the operations above described. Analogous operations
can be devised also for the components of an obligation. We do not discuss them in
details here, but we report their summary in Table 5.3.

The Set Φ

Several strategies could determine the set Φ, depending on available domain knowl-
edge, the language L, available computational power, and personal preferences. For
example, one may consider a criterion of minimality of the revision, that limits the
number of literals in the conjunctions composing Φ. This can help obtaining revised
components (and therefore norms) that are closer, so to say, to the current ones. Al-
ternatively, or additionally, one may fix the maximum number of conjuncts in order
to bound the computational time required to generate such set. In our experimen-
tation, we use some domain knowledge to select only a fixed number of literals. For
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instance, when we revise the speed limit, we consider only a fixed maximum number
of higher or lower limits (the domain knowledge provides us with the partial ordering
between the different literals representing the speed). This leads to a fixed number of
conjunctions and also to revised norms that are closer to the original ones.

5.5.2 Revising the Norm, the Synthesis Step

We show here how to combine the operations from Sec. 5.5.1 in the synthesis step
of our DNR approach to obtain different types of revised norms. Consider a norm
n “ pφC , P pφP q, φDq to be revised. The set of all possible revisions of n that can
be obtained by combining all the operations described above is the set Apnq defined
as per Eq. 5.1, where the sets MSxpφxq and LSxpφxq, for x P tC,P,Du, are as per
Sec. 5.5.1. Formally,

Apnq “ tn1 | n1 “ pφ1C , P pφ1P q, φ1Dq & φ1C PMSCpφCq Y LSCpφCq &

φ1P PMSP pφP q Y LSP pφP q & φ1D PMSDpφDq Y LSDpφDqu (5.1)

Such set is composed by norms whose components can be either more or less specific
than the corresponding components of the original norm. We call a norm belonging to
Apnq an alteration of the norm n. For example, an alteration of n may be a new norm
n1 “ pφ1C , P pφ

1
P q, φ

1
Dq such that φ1C is less specific than φC , while φ1P and φ1D are more

specific than φP and φD, respectively (i.e., such that φ1C P LSCpφCq, φ
1
P PMSP pφP q

and φ1D PMSDpφDq).

Alterations of a norm n prohibit a different set of behaviors than n. In the general
case, the prohibited behaviors are neither a subset nor a superset of the behaviors
prohibited by the original norm.

Different subsets of Apnq, characterize different types of revisions of a norm. We
consider two types of revisions: weakening and strengthening.

• Weakening a norm n generates n1, which prohibits a subset of the behaviors
prohibited by n. To weaken a norm, we can make the condition more specific,
the prohibited state more specific, or the deadline less specific. The subset of
Apnq that defines the set of all possible weaker versions of n is Wpnq, defined
as per Eq. 5.2, where the sets MSxpφxq and LSxpφxq, for x P tC,P,Du, are as
per above. Formally,

Wpnq “ tn1 | n1 “ pφ1C , P pφ1P q, φ1Dq & φ1C PMSCpφCq &

φ1P PMSP pφP q & φ1D P LSDpφDqu (5.2)

• Strengthening a norm n generates n1, which prohibits a superset of the behaviors
prohibited by n. To strengthen a norm, we can make the condition less specific,
the prohibited state less specific, or the deadline more specific. The subset of
Apnq that defines the set of all possible strengthening of n is Spnq, defined as
per Eq. 5.3, where the sets MSxpφxq and LSxpφxq, for x P tC,P,Du, are as per
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above. Formally,

Spnq “ tn1 | n1 “ pφ1C , P pφ1P q, φ1Dq & φ1C P LSCpφCq &

φ1P P LSP pφP q & φ1D PMSDpφDqu (5.3)

Note that some of the combinations of revised components in the norms in the
set (and subsets of) Apnq may not be relevant in the domain in which they need to
be used. For example, in our highway scenario, we do not consider, nor intend to
regulate, the behavior of the agents outside the highway section. Consider a norm
n1 “ pkm6 , P psp36 q, km4 q, which is detached at the 6-th km of the highway section,
and prohibits speeds higher than 36 km{h until the 4-th km of the highway is reached.
In our scenario, all vehicles that reach the 10-th km of the highway exit the simu-
lation; hence, the finite traces describing their behaviors will never contain a state
where km4 holds after the state where the norm is detached. This norm in this sce-
nario is therefore not relevant (even though valid, as practically analogous to a norm
n2 “ pkm6 , P psp36 q,Kq). Domain-specific constraints, if any, could be applied here to
remove, from the set of revised norms, the norms that are not relevant. This is not,
however, a required step, since the norms synthesized with our revision operations
are are all valid (also the ones that are not relevant in a certain domain) w.r.t. to the
language defined for their components.

On how to decide how to revise a norm. In some cases, one may want to constrain
the revision of the norms to a specific type, like the weakening and strengthening
types, or other possible subsets of Apnq. Based on the context of application, one
may devise strategies to decide what type of revision to perform. As a simple ex-
ample, one may decide to strengthen a norm in case the number of false positives is
higher than the number of false negatives, and to weaken the norm otherwise. Some
examples of strategies can be found in [121]. In our experiments in Sec. 5.6, we
show results by separately performing both alteration, weakening, and strengthening
of a norm, unconditionally (i.e., without applying any strategy to decide what type
of revision to perform) and we focus on the evaluation of the revised norms and on
their comparison with the original ones. In future work, we will integrate our revision
in a runtime context and use some of the above mentioned strategies.

5.5.3 Choosing The New Norm, the Selection Step
The synthesis step provides a set of new revised norms, which we call Rpnq (e.g.,
Rpnq “ Apnq, or Rpnq “ Wpnq). Rpnq defines the search space through which we
shall search for a new norm. In this section, we discuss the selection step that choose
the new norm from Rpnq.

Consider the confusion matrix reported in Fig. 5.1a, which describes the relation-
ship between the classification of traces according to a norm (i.e., whether a trace
obeys or violates the norm) and the correct classification of the traces according to
the MAS objectives labeling. Each cell pi, jq in the matrix contains the number of
traces in the dataset Γ that were classified as i by the MAS objectives and as j by
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the norm. For example, cell ptrue, obq contains the number of traces in Γ obeying the
norm and achieving the MAS objectives, i.e., the number of true positives (TP ). The
inner diagonal of the matrix (the diagonal from TP to TN), represents the number
of traces correctly classified by a norm. The outer diagonal, instead, represents the
number of errors, or misclassifications.

norm

ob viol
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false FP TN

(a)

norm

ob viol
»
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false 0 |Γ| ´ x

(b)

Figure 5.1: Confusion Matrix (a) and an example of confusion matrix with no misclassifi-
cations (b).

Given a dataset of traces Γ labeled according to some MAS objective, the confusion
matrix provides a compact representation of how well a norm is aligned with the MAS
objectives, as per Sec. 5.3.1. A perfectly aligned norm w.r.t. Γ corresponds to the
confusion matrix in Fig. 5.1b, where all traces are correctly classified and no trace
is misclassified. Less aligned norms, instead, correspond to a matrix where FP and
FN cells are non-zero integers. By analysing a confusion matrix, we can determine
how many errors a certain norm is making, what type of errors (i.e., whether negative
traces are considered positive more often than positive traces are considered negative),
and we can quantitatively determine whether a norm is better (aligned with the MAS
objectives) than another.

Confusion matrices are typically used in machine learning to evaluate classifiers.
In this work, we consider a norm as the model of a binary classifier that distinguishes
positive from negative traces. The literature proposes several metrics that combine the
elements in the confusion matrix in order to compare different classifiers by means of a
single value. One of such metrics is accuracy, defined as accpc,Γq “ TP`TN

|Γ| , with TP

and TN number of true positives and true negatives obtained with a classifier c on the
dataset of traces Γ. We can use accuracy to characterize the concept of alignment of
a norm with the MAS objectives. Given the set of revised norms Rpnq, we can choose
as a revision of n the norm with highest accuracy, i.e., n1 “ argmax rPRpnq accpr,Γq.

As an example, consider the three confusion matrices in Table 5.4, which are
determined by the norms in Rpnq “ tn1, n2, n3u obtained with the heuristic above
presented on a dataset Γ that consists of 12 traces, 6 of which are positive traces and 6
are negative. In the context of evaluating the alignment of a norm, we sometimes use
its corresponding confusion matrix since the confusion matrix represents the correct
and mistaken classifications of the norm. Norm n1 classifies correctly 75% of the
traces making few errors among the positive traces and slightly more errors among
the negative traces. Norm n2 classifies correctly only 50% of traces. n2 is weaker
than n1 and, thus, classifies many negative traces as positive. Finally, n3 classifies
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Table 5.4: Accuracy of three examples of norms.

n1 n2 n3
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»
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fi

fl

2 4

0 6

acc 0.75 0.5 0.66

correctly 66% of traces. The norm is stricter than the others, and it captures all
negative traces. This, however, comes at the cost of misclassifying many positive
traces. By using the accuracy to choose a norm in Rpnq we select then n1 since its
accuracy is the highest, as reported in Table 5.4.

Metrics for Norm Alignment with MAS objectives

Consider the three confusion matrices in column a of Table 5.5, obtained on a dataset
Γ composed by 12 traces, 6 of which are positive traces and 6 are negative. Suppose
the three matrices represent the alternative norms we have to choose from:

• The first norm is a very weak norm: every trace in Γ obeys the norm. Such norm
correctly classifies all the positive traces but misclassifies all negative traces.

• The second norm is a less weak norm: some traces in Γ violates the norm. Such
norm misclassifies traces in both classes, making slightly more errors among the
negative traces.

• The third norm is a more balanced norm: like all the other norms, it correctly
classifies half of the traces in Γ, however the errors are uniformly distributed
between positive and negative traces.

Such three norms are very different. Yet, the accuracy of all these norms is the same
(i.e., 0.5), as they all correctly classify half of the dataset. Which one shall we select
as a revision of the current norm?

Table 5.5: Comparison of accuracy with other metrics on different examples of norms.

a b
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acc 0.5 0.5 0.5 0.99 0.99

F1 0.6667 0.5714 0.5 0.995 0.9949
MCEN* 0.7143 0.1461 0.0943 0.9559 0.9493
Kappa 0 0 0 0 0.6622
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Take, as a different example, the two norms in column b of Table 5.5. This time,
the dataset Γ includes 100 traces, 99 of which are positive traces and only 1 is a
negative trace. Such Γ is an example of imbalanced dataset, where the vast majority
of traces belongs to one of the two classes. The first norm correctly classifies all
the positive traces, but misclassifies all negative traces (even if it’s only one). The
second norm, instead, classifies correctly the only negative trace, and almost all the
positive traces, misclassifying only one of them. Due to the imbalanced nature of
the dataset, however, the accuracy of both norms is the same, as 99% of traces are
correctly classified in both cases. Again, which norms shall we select?

Since in some contexts, false positives may be less important than false negatives,
or vice-versa, a number of metrics have been proposed as alternatives to accuracy
to assess the quality of a classifier. Some well-known metrics include the F-measure
(F1) [266], the Confusion Entropy [291], the Kappa coefficient [89]. Table 5.6 reports
their definition. Some of them deal better with imbalanced datasets. For example,
F1 is a measure that seeks a balance between precision and recall by considering the
class of positives as more important. Cohen’s Kappa is a measure which compares
the observed accuracy with the expected accuracy that can be reached by random
chance on the given dataset, and for this reason it is typically used on problems
involving imbalanced data. Other metrics are based on different principles. The
Modified Confusion Entropy mcen [116], for example, is a metric based on the concept
of Shannon’s Entropy [251], that measures the entropy generated from misclassified
cases. In doing so it considers both the cases where each class is misclassified into
other classes, and the cases where the other classes are misclassified as belonging to
the considered class. Generally speaking, higher accuracy tends to result in lower
Confusion Entropy. In order to ease the comparison, in the following we use the
inverse of mcen (i.e., mcen* “ p1 ´ mcenq) so that we have higher values for norms
that are considered better and lower values for norms that are considered worse.

Table 5.6: Examples of metrics for the evaluation of a binary classifier. S indicates the
size of the dataset Γ. acc is the accuracy; F1 is the F-measure, where Precision is defined
as TP

TP`FP
, and Recall as TP

TP`FN
; mcen is the Modified Confusion Entropy; kappa is the

Cohen’s Kappa, where expAcc “ ppTN`FP qpTN`FNqq`ppFN`TP qpFP`TP qq
S¨S

.

Metric Definition Scale

acc TP`TN
S r0, 1s

F1 2 ¨ Precision¨RecallPrecision`Recall r0, 1s

mcen 2pFN`FP qlogppS´TNqpS´TP qq
3¨S`FN`FP ´

4ppFN ¨logpFNqq`pFP ¨logpFP qqq
3¨S`FN`FP r0, 1s

kappa acc´expAcc
1´expAcc r´1, 1s

Compare these metrics with accuracy in Table 5.5. Unlike accuracy, F1 distin-
guishes all norms in the Table. According to F1, in both columns a and b of Table 5.5
the first norm is the best one. This occurs because more positive traces, the prioritized
class by F1, are correctly classified in both cases. The rankings of the norms given by
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mcen* is analogous to the ranking of F1 in the reported examples. Notice, however,
how in column a of Table 5.5, the first norm is considered significantly better than the
others. This happens because the traces are distributed only in two groups, thereby
exhibiting lower entropy. Finally, notice how kappa considers the second norm in col-
umn b of Table 5.5 significantly better than the first one2. This is because for the first
norm the expected accuracy expAcc is already 0.99, so reaching an accuracy of 0.99
corresponds to reaching the same agreement that could be obtained if both the norm
and the MAS objectives classified the traces as positive randomly (for this reason
kappa gets its middle value). For the second norm, the expected accuracy is instead
around 0.97, so reaching an accuracy of 0.99 provides a significant improvement over
the expected random agreement.

Without going into the details of each specific metric, beyond the scope of this
paper and extensively studied in the above mentioned works, we emphasize that that
we propose supports the use of any of the above described (or other) metrics to assess
the alignment of a norm in the selection step. In different contexts, therefore, DNR
can be tuned with the most opportune metric.

5.5.4 Multiple Norms

Revising a set of norms N generates a set of norms N 1 such that at least one of
the norms in N is revised. A set of norms N is weakened (strengthened) when only
weakening (strengthened) is applied, otherwise the set is altered. In Sec. 5.5.3, we
interpreted a norm as a binary classifier. We can generalize this concept to a set of
norms. We interpret the set of norms as a multi-label binary classifier, where multiple
binary labels can be assigned to each trace. Each norm assigns a different binary label
to a trace.

Consider, as an example, a set N “ tn1, n2u composed by two norms and a dataset
of traces Γ. A trace t P Γ can obey n1 and violate n2, thereby two labels n1ob and
n2viol are assigned to the trace t.

n1 ob n1 viol

n2 ob n2 viol n2 ob n2 viol
»

–

fi

fl

o
b

je
ct

iv
es

true PFC PPC1 PPC2 PFW

false NFW NPC2 NPC1 NFC

Figure 5.2: A confusion matrix for the case of two norms n1 and n2. PFC stands for
Positive Fully Correct (i.e., number of positive traces in a dataset Γ correctly classified by
both norms); PPC i stands for Positive Partly Correct, with i indicating the id of the norm
that classifies correctly; PFW for Positive Fully Wrong. NFW, NPC i and NFC are analogous
for the Negative traces.

2Note that the values of kappa range from -1 to 1, so value 0 is the middle value for the metric.
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Unlike the case of a single norm, where a trace could be either correctly or wrongly
classified, a trace can now be also partly correctly classified. This happens, for ex-
ample, if a trace is a positive trace and it obeys one norm but violates another norm.
Fig. 5.2 reports a representation of a confusion matrix for the case of two norms,
that illustrates this aspect. Suppose we aim to revise N by strengthening n1 and
weakening n2. One straightforward way to apply our approach is the following: order
the norms in some way and revise them one by one, performing independently for
each of them the synthesis and selection steps.

Revising each norm independently may lead to a set of new norms that, while each
is better aligned with the MAS objectives, their combination diminishes the number
of fully correct classifications compared to the original set. Fig. 5.3 shows an example
where a set of norms N “ tn1, n2u is revised by weakening n1 and strengthening
n2, obtaining a new set N 1. While the number of correctly classified traces by each
norm increases after the revision, the number of traces correctly classified by both of
them at the same time decreases after the revision, increasing instead the number of
partly correct classifications. Comparing the values inside and outside the brackets in
Fig. 5.3b, we notice that after the revision all traces are only partly correctly classified.

N N 1

Trace n1 n2 Objectives n1 n2

ρ1 viol viol true ob viol
ρ2 ob ob false ob viol
ρ3 viol ob true ob viol
ρ4 viol viol false ob viol

(a)

n1 ob n1 viol

n2 ob n2 viol n2 ob n2 viol
»

–

fi

fl

ob
je

ct
iv

es

true 0p0q 0p2q 1p0q 1p0q

false 1p0q 0p2q 0p0q 1p0q

(b)

Figure 5.3: Example of classification of four traces by a set of norms N and by its revision
N 1 (a) and the corresponding confusion matrix (b). The values in the matrix in between
brackets refer to the set N 1.

If having fully correctly classified traces is not important, for example if it is
sufficient for the MAS objectives to being achieved that one, or some, of the norms
is obeyed, then revising each of them individually may be a good strategy and the
alignment of the norm set can be determined as the average alignment of all the
norms. If, conversely, it is important to have fully correctly classified traces, instead
of revising each norm independently, we can search for a combination of norms that
minimizes the combined errors. Similarly to the case of one norm, we can look for the
set of norms that is most aligned with the MAS objectives. This time, however, the
alignment of the norm set must be determined w.r.t. the whole set of norms at once.
As per the single label case, the literature offers several metrics that can be used to
capture this notion for a multi-label classifiers [259].

A direct generalization of the accuracy to multi-label problems, sometimes called
Jaccard index [224], for example, is defined as the average across all traces of the
proportion of the predicted correct labels to the total number (predicted and actual)
of labels for each trace. Eq. 5.4 reports its formalization. Zi is the list of labels
predicted by the norms in N for a trace i, and Yi is the list of correct labels for trace
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i according to the MAS objectives.

ml-acc “
1

|Γ|

|Γ|
ÿ

i“1

|Yi X Zi|

|Yi Y Zi|
(5.4)

Other well-known metrics for assessing the quality of a multi-label classifier include
the Hamming Loss [244] or the Weighted Kappa [90]. We do not go into their details,
but we observe that, as per the case of a single norm, all these metrics (and other)
can be used in DNR to assess the alignment of a norm set with the MAS objectives.

5.5.5 On the Complexity of the Heuristic Revision
The complexity of the approach presented in this section depends on two factors: the
complexity of determining the alignment of a norm (set) with the MAS objectives,
and the size of the set of norms that are compared in the argmax operator. Using
a measure such as accuracy to calculate the norm alignment has a complexity that
is linear in the size of Γ. The size of the set of norms to be compared depends on
the number of components of a norm that are revised (in the worst case, 3: both
condition, prohibited state and deadline) and on the size of the set Φ of combinations
of propositions considered for the revisions of a component. If we bound the maximum
size of Φ to a polynomial in the number of propositions, the resulting complexity of
generating each set of revised components is polynomial in |Γ|. In the worst case, an
operation of strengthening or weakening, therefore, generates a number of new norms
to be compared bounded by a cubic polynomial. Finally, the number of comparisons
grows exponentially with the number of norms that cannot be revised independently.
This is because for each norm being revised, a set of possible new norms is generated.
The new possible norm sets to be compared, therefore, are obtained by combining
the norms from all such sets. Note, however, that if the number of norms is high,
different strategies could be adopted to bound the number of norm sets to compare,
analogously to the bounding of the set Φ.

5.6 Experimentation
We report on experimental results concerning DNR, presented in Sec. 5.5. Our ex-
periments aim to provide an empirical answer to the following questions:

Q1. To what extent is the synthesis step leading to norms that reduce the number of
classification errors?

Q2. How does the choice of a metric for norm-alignment affect the revision?

Q3. How does DNR affect the alignment between norms and MAS objectives?

Q4. How does DNR generalize to previously unseen traces?

To answer Q1-4, we make use of a traffic simulation of the highway scenario of
Sec. 5.3 implemented with the SUMO traffic simulator [184] and we set up our ex-
periments as follows. We consider a single conditional prohibition n, which regulates
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the maximum speed of the vehicles in the highways section. In particular, we focus
on a norm whose components consist of a single disjunct (i.e., the norm only has one
sub-norm). In Sec. 5.6.1, we will then report also on additional experimental results
explicitly concerning multiple norms and the use of multi-label metrics. Moreover, we
consider the two agent types (car and truck) described in Sec. 5.3. Both agent types
aim at driving through the highway section by maximizing their speed. At each simu-
lation step, every agent determines its desired speed according to its internals and to
the currently enforced norms. Every agent also exhibits a number of behaviors which
are not regulated by our norm and are therefore not monitored, such as overtaking
the vehicle ahead, signaling the overtaking, accelerating or braking, etc. We use a
population of agents (arbitrarily) uniformly distributed among cars and trucks, where
75% of the agents is always compliant with the enforced norms, while the remaining
25% will ignore them and focus on maximizing speed. This can be seen as enforcing
the norms by means of sanctions that can be afforded by 25% of agents. Note that,
while compliant agents always obey the norms, agents that ignore the norm do not
necessary violate it, as their ability to violate the speed limit depends both on their
type (i.e., the vehicle’s maximum speed) and on the surrounding environment (e.g.,
traffic jams will force agents to slow down, regardless of their preferences). Through-
out the simulations, we collect execution traces that describe the behavior of each
agent. An execution trace of an agent is composed of 10 different states, one per
each of the 10 kilometers of the highway section. The i-th state of a trace contains
information about: (i) the i-th km of the highway, (ii) the maximum speed the agent
reached in the i-th km of the highway, (iii) the type of agent. An example trace is
the following, describing the behavior of a car in the highway.

ptkm1, sp30, caru, tkm2, sp22, caru, tkm3, sp7, caru, tkm4, sp32, caru,

tkm5, sp7, caru, tkm6, sp18, caru, tkm7, sp32, caru,

tkm8, sp7, caru, tkm9, sp18, caru, tkm10, sp14, caruq (5.5)

Each trace is labeled w.r.t. the CO2 emitted by the vehicle on the highway and the
time needed to travel from the beginning to the end of the highway section. A trace is
labeled as positive if the maximum emission of the vehicle from the beginning to the
end of the highway section was below a threshold tco2 (in our experiments, we used
tco2 “ 100 g/s 3) and the travel time was below a threshold ttt (in our experiments
ttt “ 450s, the time it would take to drive for 10 km at 80 km{h), and negative
otherwise. We emphasise once more that DNR is agnostic of such underlying rules
for the labeling and it is exposed only to the given labeled traces.

In the following, when we report statistics, we use M, SD, SE, Min, Q1-Q3, and
Max to indicate mean, standard deviation, standard error, minimum value, the three
quartiles, and the maximum value, respectively.

3As a reference, the default truck model in the SUMO traffic simulator can reach up to 120 g/s
of CO2.
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Q1. To what extent is the synthesis step leading to norms that reduce the number
of classification errors?

We study the composition of the sets of norms generated during the synthesis step, as
per Sec. 5.5.2. We expect the set of altered norms Apnq, to be composed by norms with
higher number of TP and TN traces compared to the original norms, and that lower
number of FP and FN. Perfect alterations would neither reduce the number of TP
and TN, nor increase the number of FP and FN. An approximate approach like ours,
however, will likely exhibit a certain amount of undesired side effects (reducing in
some cases the TP and TN, and increasing the FP and FN). The better the heuristic,
the fewer side effects. With set Wpnq, we expect an higher number of obeying traces,
hopefully only TP, and a lower number of violating traces, hopefully only FN. Finally,
with set Spnq we expect an increase in the violating traces, hopefully only TN, and a
decrease in the obeying traces, hopefully only FP.

In order to answer the question, we adopt the following method.

1. We execute a simulation of the highway scenario where a norm n, randomly
selected from the set of all possible norms, is enforced.

2. The simulation runs until 1500 vehicles drive through the highway section. Since
the behavior of each vehicle corresponds to an execution trace, the simulation
generates a dataset Γ containing 1500 traces. The traces are labeled, as per
Table 5.1, w.r.t. the obedience of norm n and the achievement of the MAS
objectives above described.

3. Given Γ, the synthesis step is performed to generate a set of revised norms Rpnq.

4. The confusion matrices of the synthesized norms are compared with the con-
fusion matrix of the original norm n w.r.t. the same dataset4 Γ. To obtain a
reliable and statistically significant comparison, we repeat 100 times the steps
1-3, so that each time the simulation is run, a different norm is enforced. We
execute therefore 100 independent simulations, in each of which we enforce a
different norm so to obtain 100 different and independent dataset Γ1´100, which
we use to generate 100 different sets of revised norms. The results that we
report refer to such 100 repeated trials.

5. We repeat steps 3-4 for the three types of revision as per Sec. 5.5.2, synthesizing
in step 3 the sets Rpnq “ Wpnq, Rpnq “ Spnq and Rpnq “ Apnq, respectively
for weakening, strengthening and alteration.

Table 5.7 reports an overview, w.r.t. datasets Γ1´100, of the 100 norms that we
revise in our experiments. On average, the datasets are split relatively evenly among
positive and negative traces, while, on average, the violating traces are about the 7%
of the total. Note also that the enforced norms were generally too weak: while they
covered relatively well the positive traces (high values of TP), in many cases they
mis-classified a large part of the negative traces (high values of FP). This is reflected

4We emphasize again, for clarity, that in order to compare the original norm with the new norms
we study their confusion matrices w.r.t. the same set of traces Γ. We do not enforce in the system
the revised norms, as we focus here on the realignment of a norm with the MAS objectives w.r.t. Γ.
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Table 5.7: Statistics about the 100 original norms enforced in our simulations w.r.t.
datasets Γ1´100. Values for one norm ni are calculated w.r.t. Γi, composed by 1500 traces.

TP FP TN FN precision recall acc F1 mcen* kappa
M 0.485 0.443 0.043 0.028 0.511 0.878 0.528 0.602 0.623 -0.003
SD 0.271 0.234 0.063 0.0372 0.287 0.237 0.219 0.318 0.186 0.081
Min 0 0 0 0 0 0 0.100 0 0.280 -0.170
Q1 0.315 0.323 0 0 0.364 0.875 0.356 0.495 0.453 -0.009
Q2 0.621 0.374 0.0003 0.001 0.626 0.950 0.626 0.768 0.685 0
Q3 0.6262 0.5730 0.0558 0.0616 0.6493 1 0.626 0.770 0.687 0

Max 0.92 0.90 0.25 0.14 1 1 0.930 0.960 0.930 0.280

also in the relatively low value of the precision of the norms. Finally, the average
accuracy is about 53%, with a maximum value of 93% and a value below 63% for 75%
of the norms (see the third quartile Q3).

Table 5.8 reports, instead, an overview of the norms in the 100 different sets
generated by the synthesis step for the three types of revisions. In the following,
we study how the norms in these sets differ from the original norms described in
Table 5.7.

Fig. 5.4 reports three box plots illustrating the changes in the percentage of TP,
FP, TN, FN (e.g., for TP, the difference between the percentage of TP with a revised
norm and with the original norm). The box plots describe the changes for the norms
synthesized in the 100 repeated trials. Fig. 5.4d reports the detailed statistics of the
changes, together with the effect size dCohen . The effect size is a statistical measure
that describes the strength of a phenomenon, by computing the difference between
two groups of measurements in terms of their common standard deviation [87]. We
use dCohen to analyze the change in the percentage of TP, FP, TN and FN, and to
understand if the effect of such change has a statistically relevant magnitude.

In the case of weakening (Fig. 5.4a), we observe, as desired, a large5 reduction
of the number of FN traces. Notice how the reduction of FN corresponds to an
increase of TP, showing that those traces are now correctly permitted. The revision
also exhibits a large side effect of reducing TN with a corresponding increase of FP.
We do not see any negative change for the positive traces, nor any positive change for
the negative traces. This is not surprising and simply validates the correctness of the
heuristic operations: a weakening operation does not affect negatively the positive
traces, and a strengthening operation does not affect negatively the negative traces.

Analogously, in the case of strengthening (Fig. 5.4b), we see, as desired, a large
decrease in the number of FP traces. Also in this case the revision exhibits a large
side effect of reducing the number of TP traces. Note how the changes are bigger for
strengthening than for weakening. This, again, is because in the considered datasets
there are no more than 25% violating traces, while up to 100% obeying traces.

Since we performed weakening or strengthening revisions regardless of the actual
number of FP or FN traces, in some cases no revision was needed or possible (e.g.,
when FP or FN were 0). In our simulations, this was more common for weakening

5Please note that we use the terms small, intermediate and large according to the interpretation
of the effect size dCohen [87]. A change is considered having no effect if |dCohen | ă 0.2; small effect,
if 0.2 ď |dCohen | ă 0.5; intermediate effect, if 0.5 ď |dCohen | ă 0.8; and large, if |dCohen | ě 0.8.
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Table 5.8: Statistics about the size (a) and the 100 sets of synthesized norms (b).

(a)

Type of Revision Set M SD SE Tot. norms
Weakening Wpnq 35.67 67.87 6.79 3567

Strengthening Spnq 14.81 14.19 1.42 1481
Alteration Apnq 96.11 117.20 11.72 9611

(b)

TP FP TN FN precision recall acc F1 mcen* kappa

Wpnq

M 0.311 0.95 0.357 0.46 0.316 0.738 0.323 0.374 0.823 0.003
SD 0.341 0.123 0.385 0.36 0.347 0.41 0.335 0.392 0.174 0.066
Min 0 0.01 0 0 0 0 0 0 0.3 -0.15
Q1 0.001 0.959 0 0 0.001 0.667 0.005 0.001 0.675 -0.005
Q2 0.066 0.993 0.222 0.511 0.067 0.989 0.129 0.125 0.917 -0.001
Q3 0.636 0.998 0.75 0.8 0.646 1 0.643 0.778 0.984 0

Max 0.99 1 1 1 1 1 1 1 1 0.74

Spnq

M 0.153 0.077 0.466 0.957 0.855 0.251 0.515 0.257 0.667 0.108
SD 0.219 0.181 0.267 0.157 0.282 0.337 0.244 0.355 0.217 0.272
Min 0 0 0 0 0 0 0.01 0 0.02 -0.75
Q1 0 0 0.302 0.994 0.853 0 0.348 0 0.632 0
Q2 0 0 0.374 0.999 1 0 0.433 0 0.736 0
Q3 0.429 0.016 0.739 1 1 0.562 0.707 0.613 0.783 0.007

Max 0.92 1 1 1 1 1 1 1 1 0.77

Apnq

M 0.249 0.531 0.434 0.729 0.515 0.528 0.44 0.342 0.671 0.018
SD 0.29 0.424 0.36 0.354 0.4 0.42 0.297 0.364 0.27 0.223
Min 0 0 0 0 0 0 0 0 0.02 -0.75
Q1 0 0.008 0 0.52 0.005 0 0.171 0 0.56 -0.008
Q2 0.071 0.514 0.368 0.954 0.622 0.628 0.445 0.143 0.692 0
Q3 0.502 0.987 0.755 0.999 0.964 0.984 0.655 0.755 0.91 0

Max 0.99 1 1 1 1 1 1 1 1 0.77

operations (see the median values in Fig. 5.4a closer to 0). This happened, for in-
stance, when we enforced a very weak speed limit so that all exhibited behaviors were
permitted, or when, by enforcing a very strict speed limit norm, traffic jams were
generated by compliant agents that significantly slowed down, preventing also any
other agent behind them to violate the norm. Similarly, if the number of FP traces
was 0, no strengthening was possible/needed. This happened, for instance, when the
enforced speed limit was already relatively aligned with the MAS objectives, and it
was strict enough not to allow vehicles to speed too much, but not too strict to cause
jams as above described. When no revision was needed or possible, we did not revise
the original norm, resulting in no change in the classification of traces.

When performing an alteration (Fig. 5.4c), we are not limited anymore to revisions
concerning exclusively positive or negative traces, and the revision can affect all types
of traces. We can see this in Fig. 5.4c by noting both an increase and a decrease in
all types of traces. The sets of revised norms are more similar to the ones obtained
with strengthening (at least in terms of change in the values of the confusion matrix).
This shows that, in general, stricter norms were generated; this is in line with the fact
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Data-Driven Revision of Conditional Norms in Multi-Agent Systems

Table 8: Statistics about the size (number of norms synthesized) of the 100 sets generated
by the three types of revision.

Type of Revision Set M SD SE Tot. norms

Weakening W(n) 35.67 67.87 6.79 3567
Strengthening S(n) 14.81 14.19 1.42 1481

Alteration A(n) 96.11 117.20 11.72 9611

synthesised in the 100 repeated trials. The detailed statistics of the changes are reported
in Table 9, also reports the effect size dCohen . The effect size is a statistical measure that
describes the strength of a phenomenon, by computing the difference between two groups of
measurements in terms of their common standard deviation (Cohen, 2008). We use dCohen

to analyze the change in the percentage of TP, FP, TN and FN, and to understand if the
effect of such change has a statistically relevant magnitude.

∆TP ∆FP ∆TN ∆FN

−0.2

0

0.2

(a) (b)

(c)

Figure 4: The change of the % of TP, FP, TN, FN in the sets of norms obtained by
(a) weakening, (b) strengthening or (c) altering a norm. Values are obtained by revising
100 different norms in the highway scenario. The percentage of change for each norm is
calculated w.r.t. the total number of traces (i.e., 1500). DDA: I’m using images for now
because it takes too long to compile and overleaf crashes

In the case of weakening (Fig. 4a), we observe, as desired, a large6 reduction of the
number of FN (dCohen = 0.938.). Notice how the reduction of the FN corresponds to an
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M SD dCohen Interpretation

Wpnq
∆TP 0.0288 0.03742 0.088 no effect
∆FP 0.0989 0.08900 0.322 small
∆TN -0.0989 0.08900 -1.450 large
∆FN -0.0288 0.03742 -0.938 large

Spnq
∆TP -0.3897 0.25330 -1.750 large
∆FP -0.3291 0.19685 -1.948 large
∆TN 0.3291 0.19685 2.027 large
∆FN 0.3897 0.25330 2.030 large

Apnq
∆TP -0.1395 0.23643 -0.473 small
∆FP -0.1146 0.25589 -0.357 small
∆TN 0.1146 0.25589 0.617 intermediate
∆FN 0.1395 0.23643 0.780 intermediate

(d)

Figure 5.4: The change of the % of TP, FP, TN, FN in the sets of norms Wpnq, Spnq,
Apnq respectively obtained by (a) weakening, (b) strengthening or (c) altering a norm, with
their detailed statistics (d). Average values are obtained w.r.t. the 100 different sets of norms
obtained revising the 100 original norms in the highway scenario. The percentage of change
for each norm is calculated w.r.t. the total number of traces (i.e., 1500). dCohen and its
interpretation refer to the effect size as per [87].

that the original norms, as above described, were generally too weak. For this reason,
the revision mostly affected the traces that were wrongly permitted: the FPs in the
revised norms were reduced, even though with a small effect size. In some cases,
the revisions also had the undesired side effect of increasing the number of FN traces.
However, such effect was more marginal than with strengthening, indicating that when
a dataset of traces includes both FP and FN traces, alteration operations permit to
generate norms that are better aligned with the MAS objectives. In particular, the
size of the effect on the FN traces had a magnitude more than 2 times smaller than
that of the analogous effect for strengthening.

We conclude that the sets of synthesized norms are in line with the expectations
laid down earlier in the section. The results show that, among the generated norms,
some can have very significant side effects. This motivates us to propose the use of a
metric to select among the possible norms. In the following, we show that using an
appropriate metric is crucial to minimize the side effects of the revision.
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Q2. How does the choice of a metric for norm-alignment affect the revision?

Using one metric or another in the selection step affects the precision and the recall of
the resulting norms. We compare the precision and recall on the set of traces obtained
when using different metrics, and discuss the implications in terms of normative con-
cepts. We take the sets of norms Wpnq Spnq, Apnq generated for Q1, and study the
norms that are selected when the metrics are used in the selection step. In particular,
we analyze how the number of TP, TN, FP, and FN traces change w.r.t. the original
norms. We compare the metrics also against a baseline unbiased metric, which we
call random, that selects the new norm by randomly and uniformly sampling the sets
Wpnq, Spnq, Apnq.

Fig. 5.5 illustrates such comparison via box plots. The reported values show the
change of percentage of TP, TN, FP and FN traces with the 100 revised norms, ob-
tained in the 100 trials, w.r.t. the original norm. Table D.1 reports the detailed statis-
tics of the change illustrated in Fig. 5.5. In Tables D.2–D.4, instead, we provide the
detailed statistics about the selected norms, respectively for weakening, strengthening
and alteration. We include these tables in Appendix D for the sake of readability.

Consider the metric acc (second group of boxes in the plots). Compared to ran-
dom (first group of boxes in the plots), the side effects of the revision are significantly
reduced both for weakening and strengthening, and especially for alteration. For
weakening, while with random the percentage of TN traces decreased, on average, of
about 3.6%, with acc the reduction was significantly lower (about 0.8%, on average)6.
Additionally, acc also provided slightly, but not significantly, better norms in terms
of TP (the gained TP traces were about 2.5%, while with random they were 2.2%).
For alteration, acc significantly improved in all classes compared to random, selecting
norms with significantly (and with large effect size: dCohen “ 0.812) more TN traces
(and consequently less FP traces), and with a side effect on FN and TP which had
a size about 1.5 times smaller than the effect with random (acc: dCohen “ 0.571,
random: dCohen “ 0.812).

If we look at the changes in Fig. 5.5, and at Tables D.2–D.4, which report the aver-
age values of precision and recall of the selected norms, for weakening, strengthening
and alteration, respectively, we can observe some differences between the different
metrics.

Weakening. We aim at finding a new norm that is weaker than the original one, i.e.,
we aim at reducing the number of FN traces, hopefully without increasing too much
the number of FP traces. In other words, we look for a new norm that has higher
recall, without decreasing precision too much. We observe that:

• random, shows that the synthesized norms have, as desired, on average a higher
recall than the average recall of the original norms (compare the recall of the
new norms with the recall in Table 5.7), and a precision similar to the original
norms.

6By conducting an independent-samples t-test to compare the change of the percentage TN
traces with random (M=-0.0359, SD=0.05741) and with acc (M=-0.0077, SD=0.01514), we identify
a significant difference; t(198)=4.760, p=0.000, with an intermediate effect size dCohen “ 0.672
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Fig. 5 illustrates such comparison via box plots. The reported values describe how the
100 revised norms, obtained in the 100 trials, affected the percentage of TP, TN, FP and
FN traces w.r.t. the original norm. Table 11 reports the detailed statistics of the change
illustrated in Fig. 5. In Tables 12–14, instead, we provide the detailed statistics about the
selected norms, respectively for weakening, strengthening and alteration. We include these
tables in Appendix B for the sake of readability.
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Figure 5: Comparison of the change of the % of TP, FP, TN and FN after (a) weakening,
(b) strengthening or (c) altering a norm with our heuristic when selecting a new norm
according to different metrics.

Consider the metric acc (second group of boxes in the plots). Compared to random (first
group of boxes in the plots), the side effects of the revision are significantly reduced both

32

Figure 5.5: Comparison of the change of the % of TP, FP, TN and FN after (a) weaken-
ing, (b) strengthening or (c) altering a norm with our heuristic when selecting a new norm
according to different metrics.
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• acc selected norms that, in addition to having an high recall, about 92%, were
also more accurate than the original norms, showing that the average sum of
TP and TN increased as a whole compared to the original norms, hence the
gain of new TP traces was higher than the loss of TN traces.

• F1 selected norms that were weaker than acc (notice the higher recall around
98%). Note in Fig. 5.5a and Table D.1 how the decrease for the FN for acc and
F1 is similar, but the the increase for FP with F1 is higher.

• mcen* selected very weak norms. While providing a change for FN similar to
acc and F1, mcen* exhibited a more significant increase for FP, especially if
compared to acc. This is because, as mentioned in Sec. 5.5.3, mcen* tends to
prefer norms that group traces in fewer classes, thereby reducing the entropy in
the confusion matrix. Very weak norms (e.g., a norms whose condition is never
detached), are such that a bigger number of traces is considered compliant and
so traces are grouped in fewer classes. For this reason, we can see in Table D.2
that, among the tested metrics, mcen* shows the highest recall and the lowest
precision.

• kappa was the most balanced metric. On average, the selected norms had higher
precision, compared to the other metrics, and we can see a lower decrease for
FN.

Strengthening. We aim at finding a new norm that is stricter than the original one,
i.e., we aim at reducing the number of FP traces, hopefully without increasing too
much the number of FN traces. In other words, we look for a new norm that has
higher precision, without losing too much recall.

• random shows that, as desired, the synthesized norms have, on average, higher
precision than the average precision of the original norms, but also a very low
recall (about 30%).

• acc selected stricter norms than random (note the higher precision), which were
also more accurate and had an higher recall.

• F1 selected less strict norms, with a lower precision (about 68%), even though
it affected less significantly the FN (the average recall is about 64%; the highest
among the tested metrics).

• mcen*, for the reason explained above, was again the most “extreme” metric,
selecting very strict norms, with a precision of about 92%, and very low recall
(about 16%).

• kappa was again the most balanced metric, with values of precision and recall
in between the values obtained with acc and F1.

Alteration. When altering a norm, we aim at improving the general alignment of the
original norm with the MAS objectives, i.e., at both reducing the number of FP traces
and the number of FN traces. In other words, we look for a new norm that balances
precision with recall. Consider Table D.4.
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• random shows that, overall, the synthesized norms have higher precision than
the original ones, and lower recall. This illustrates that the revision operations
generated on average stricter norms. However, the alignment of the selected
norms did not significantly improve compared to the original norms. If we
compare the values with the values in Table 5.7 we see that both acc and F1
decreased, kappa slightly increased, and only mcen* increased.

• acc selected stricter norms than the original ones (note the higher precision
and lower recall) which were better aligned with the MAS objectives, with an
average accuracy of 82%, misclassifying on average, only about 13% of traces.

• F1 selected norms that were less strict than the ones selected by acc (see the
lower precision and higher recall), and, as desired, they had a better alignment
(in terms of F1 ) with the MAS objectives than the original norms.

• mcen* selected norms with high precision and low recall, which led to norms
that had very low entropy and therefore higher values of mcen* compared to
the original norms.

• kappa selected norms balancing precision and recall. Also in this case the average
value of kappa improved compared to the average kappa of the original norms.

The results show that in all cases the alignment of the norms with the MAS
objectives (defined by means of one of the metrics) improved after revising the norms.
The norms selected by mcen* were generally more “extreme”, in the sense that they
were either very weak or very strict, compared to the norms selected by the other
metrics. This is because such norms tend to cluster traces in fewer categories, thereby
reducing the entropy of the confusion matrix. This metric may be useful in cases where
a radical change of the original norm in a specific direction is required (e.g., weakening
a norm by completely disabling it). While mcen* produced norms with significantly
lower entropy, it did not select norms that balanced well precision and recall, and the
selected norms did not always reduce the number of FP and FN traces. Both acc, F1
and kappa, instead, provided less “extreme” revisions.

We illustrated some of the differences between the discussed metrics, which give
different values to the precision and recall of a norm. In all cases, as we have seen
comparing Fig. 5.5 with Fig. 5.4, the metrics provided a useful filter to select, from
the set of possible norms generated in the synthesis step, the ones better aligned with
the MAS objectives, discarding the ones with strong side effects.

Q3. How does DNR affect the alignment between norms and MAS objectives?

We now discuss the change in the alignment with the MAS objectives of the revised
norms. We want to determine if the revised norms are better aligned with the MAS
objectives. In Q2 we already observed that in all cases the alignment with the MAS
objectives improved when using the corresponding metric to select from the set of
synthesized norms. We focus on the case where the the two classes of positive and
negative traces are equally important, and we are concerned only with the absolute
number of correctly classified traces. For this reason, we consider only metric acc to

188



5.6 EXPERIMENTATION

5

select the new norm among the possible ones, and we use the norms selected by acc
in Q2 from the sets Wpnq,Spnq and Apnq in the 100 trials.
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Figure 5.6: The original accuracy (red), the accuracy change (blue on the left, ∆ on the
right) and the resulting accuracy after the revision (black on the left, Final on the right) with
the three types of revision. The revision is applied even if the new norm has lower accuracy
than the original one.

Fig. 5.6 compares the accuracy of the original norms with the accuracy of the re-
vised norms, and shows the accuracy change when performing a weakening, strength-
ening or alteration. As reported earlier in Table 5.7, the accuracy of the original
norms was, on average, about 53%, with 75% of the norms having an accuracy be-
low 63%, while the maximum accuracy was 93%. We see that both weakening and
strengthening operations in some cases affect the accuracy positively and in other
cases negatively. Due to the low number of negative traces, weakening operations
were not particularly useful and the final accuracy was not significantly different
than the original one (an independent-samples t-test to compare the accuracy of
the original norms (M=0.5284, SD=0.21915) with the accuracy of the new norms
(M=0.5455, SD=0.23710) does not identify a significant difference: t(198)=-0.527,
p=0.599). In the case of strengthening, instead, the average improvement of accu-
racy was around 20% and this led to new norms with a significantly higher accuracy
(independent-samples t-test; accuracy original norms (M=0.5284, SD=0.21915); ac-
curacy new norms (M=0.7476, SD=0.2191); t(198)=-7.526, p=0.000), with a large
effect size dCohen “ 1.065. Finally, with alteration, the average accuracy improved
even more, with a large improvement of around 29% (dCohen “ 1.59). Note that half
of the new norms had an accuracy higher than 86%, and 25% of the norms had an
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accuracy higher than 88%. These results show that the norms revised with DNR are
significantly better aligned with the MAS objectives on the given datasets than the
original ones. Note, finally, that, even though the accuracy improved significantly, it
was not perfect in all cases. We will discuss further this and other aspects in Sec. 5.6.1.

Q4. How does DNR generalize to previously unseen traces?

So far, we did not discuss the case when the dataset Γ is not a complete sample of
all possible traces. In case Γ is limited in representing all possible behaviors that
could be exhibited, overfitting issues may raise. Overfitting occurs when the model
that is used to represent some data (in our case the norm being synthesized) fits
too closely the data used to construct such model and fails in generalizing to new
data. In machine learning, in order to detect overfitting, different datasets are used
for training (in our case revising the norms) and testing the model (evaluating the
alignment of the revised norms with the MAS objectives). If no dataset other than
Γ is available, different techniques can be employed, such as splitting the data in two
parts for training and testing (called respectively training and test set).

To answer Q4 regarding generality, we perform two experiments. In the first
experiment (75-25 splitting), we use a standard splitting technique: we take the
datasets obtained for Q1 and we split them in a training and a test set, composed
by 75% and 25% of the traces in the dataset, respectively. In the second experiment
(Independent test set), we use the full datasets as training sets, and a new set of traces
(obtained by running the highway simulation with no norm enforced) as test set. In
both experiments, we apply then our approach for norm revision on the training set,
as done per Q3. This time, however, we compare the accuracy of the original norm
and the revised one on the test set. We focus only on alteration. Table 5.9 reports
the results for both experiments.

75-25% splitting. Note, first, that on the training set the revised norms have
significantly higher accuracy than the original ones, in line with the results obtained
for Q3 (compare the values here with the values for alteration in Fig. 5.6). Analogous
results are obtained also on the test set, composed by previously unseen traces: while
the original norms had an average accuracy of about 52.7%, the revised norms had an
accuracy of about 81.4%. Comparing the accuracy of the revised norms on the training
and test set, we notice that the accuracy is obviously higher on the training set, but the
change is minor (dCohen “ ´0.044) showing that the revised norm generalized well also
to previously unseen traces. Since we split the original datasets, however, the traces
composing the test sets, while they were unseen during the revision process, they are
not completely independent from the traces composing the training sets, as they were
both obtained by monitoring the behavior of the agents under the enforcement of the
same original norms.

Independent test set. Note again the expected improvement of the accuracy in
the training set with the revised norms, as per previous case. If we compare, instead,
the accuracy of the revised norms on the training and test set, we observe that this
time the accuracy is about 17% lower on the test set (dCohen “ ´0.845). This
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Table 5.9: Statistics about the accuracy of the original and revised (altered) norms on the
training and test sets. In 75-25 splitting, the training and test sets are composed, respectively,
by 75% and 25% of the traces in the original datasets. In Independent test set, the training
set is the full set of traces in the original datasets, and the test set is an independent set of
traces obtained running the simulaition with no norm enforced.

75-25 splitting Independent test set
Training set Test set Training set Test set

Norms Original Revised Original Revised Original Revised Original Revised
M 0.527 0.8196 0.5271 0.8136 0.526 0.8202 0.519 0.6537
SD 0.21893 0.13246 0.22012 0.13876 0.21842 0.13529 0.25968 0.2436
Min 0.11 0.55 0.09 0.54 0.1 0.55 0.11 0.11
Q1 0.3459 0.6983 0.3533 0.6853 0.3478 0.695 0.3762 0.3762
Q2 0.6192 0.865 0.616 0.8549 0.6238 0.8718 0.6238 0.6238
Q3 0.6368 0.8897 0.6467 0.9 0.6238 0.8862 0.6238 0.8862
Max 0.93 1 0.91 1 0.93 1 0.89 0.89

shows a certain, expected, degree of overfitting to the training set7. However, we
can note that the revised norms were better aligned than the original norms also on
the previously unseen traces composing the test set: while the original norms had an
average accuracy of about 52%, the accuracy of the revised norms was about 12.5%
higher (corresponding to an intermediate increase dCohen “ 0.535).

We conclude that the revised norms were better aligned with the MAS objectives
than the original norms, and they also generalized better than the original norms on
previously unseen traces.

5.6.1 Discussion

We discuss a number of aspects and some limitations of our proposal and the results
above described.

Perfect alignment

In some of our experiments, the norms that were synthesized were less aligned with
the MAS objectives than the original ones (e.g., a too weak new norm n1 was selected
so that, even though all FN traces were correctly classified as positive by n1, many bad
traces were misclassified as FP). In the experiments this happened in about 20% of
revisions for weakening and in about 25% of cases for strengthening (see in Fig. 5.6b
the lower quartiles Q1 of the accuracy change for weakening and strengthening, 0 for
weakening and negative for strengthening). In our experiments, it never happened,
instead, to have a negative change of accuracy with alteration (the min value for
accuracy change in Fig. 5.6 for alteration is 0). However, similarly to weakening and
strengthening, also alteration could exhibit strong side effects and a negative change
in some cases. To overcome this possible negative effect, when choosing the new

7We do not discuss them here, but in order to mitigate the effect of overfitting, different techniques,
such as cross-validation techniques [181], can be employed during the training of a model (in our
case, during the revision process).
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norm, one could apply additional (or different) criteria to the evaluation provided
by a metric like accuracy. A trivial example is discarding new norms that reduce
the alignment with the MAS objectives compared to the original norm, and leave
unchanged the original norm if none of the new norm is better aligned. Applying this
simple additional step to our approach, prevents to revise the original norm into new
norms that are less aligned with the MAS objectives8. Fig. 5.7 illustrates the effect
of adding this simple additional step. Compare the the blue boxes in the figure, with
the blue boxes in Fig. 5.6a. Note how now all changes are either positive or 0.
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Figure 5.7: The original accuracy (red), the accuracy change (blue) and the resulting ac-
curacy after the revision (black) with the three types of revision. The original norm is left
unchanged if no norm improves the accuracy.

However, even though the accuracy increased (compare the black boxes in Fig. 5.7
with those in Fig. 5.6), we still did not obtain a perfect accuracy in all cases. This is
due to two reasons: (i) the possibility to perfectly approximate the MAS objectives
by means of conditional norms, (ii) the types of norms that can be synthesizes by
means of our revision operations. We briefly discuss these two reasons.

As discussed in Sec. 5.4, a (set of) conditional norm(s), in some cases, may not be
expressive enough to perfectly represent the MAS objectives. In our simple highway
scenario, for example, we are trying to align as much as possible one norm concerning
the speed limit of the vehicles in the highway section, with MAS objectives concern-
ing travel time and CO2 emissions. Regulating only the speed of the cars (and doing

8We emphasize, however, that doing so may be harmful in case the dataset of traces used to
evaluate the norms is not a good sample of the set of all possible behaviors, as it may increase the
chances of overfitting, as discussed in Q4.
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it only with one norm), obviously, may not always be sufficient to achieve any pos-
sible objective. For example, the CO2 emitted by a vehicle does not only depend
on its speed but also on its acceleration. Norms regulating only the speed of the
vehicles, may not be sufficient, therefore, to fully characterize (and achieve) the MAS
objectives. In this chapter, we discussed how to revise a given set of norms w.r.t. a
certain dataset of traces. We did not discuss the need of more or different types of
norms when the considered norms are not enough expressive, as this goes beyond the
scope of this work. We briefly show here, however, that if the MAS objectives can
be expressed with a single conditional norm in the same language of the norm being
revised, our heuristic tends to perfect approximation when enough data is provided9.

Consider the 100 different datasets of traces from the earlier experiments. We re-
label the traces in the datasets. Instead of considering MAS objectives concerning the
CO2 emissions and the travel time of the vehicles, we consider a new MAS objective
that concerns the speed of cars and that can be expressed by a conditional prohibi-
tion. In particular, we re-label each trace as positive if the vehicle maintains a speed
below 70 km{h between the 3th and 9th km of the highway section, and as negative
otherwise. We revise then the enforced norm and analyze the change in accuracy
with the new norm like we did before. Fig. 5.8a shows the accuracy change when
performing one alteration of the norm. The accuracy of the original norms ranged
around 0.5. Notice how after one alteration the accuracy is already 1 in more than
75% of cases, while in Fig. 5.6 the accuracy is 1 only in one case. Even though we
significantly improved the alignment compared to the previous example, the norms
are still not perfectly aligned in all the cases: in about 25% of the cases the accuracy
is still lower than 0.76.

This brings us to the second reason why a perfect alignment is not always reached:
the types of norms that can be synthesized w.r.t. a given dataset. DNR determines
approximate norm revisions as a more practical solution than exhaustively searching
the space of all possible norms, which as shown is intractable. In order to do so, as
seen in Sec. 5.5, our heuristic revision operations rely on:

• The propositions that hold in the states of traces that are in the dataset. If the
dataset is not informative enough, for example if it contains very few negative
traces (e.g., if the dataset was obtained by enforcing a very strict norm, forcing
agents to go very slow and causing a jam), the set of revised norms that can be
obtained by applying our heuristic, which relies on the available data (i.e., on
the content of the states of the traces in the dataset), is limited, and may not
contain a new norm that is perfectly aligned with the MAS objectives.

• The set Φ. As mentioned in Sec. 5.5.1, in our experiments we only selected
a fixed number of propositions to be considered during the synthesis step. In

9Note that if MAS objectives and norms can be both expressed in the same language, the setting
is closer to the setting from Corapi et al. [94] where, as described in Sec. 5.2. Yet, the setting is
different. Even though we are now assuming that MAS objectives can be perfectly expressed by
means of conditional norms, we still do not have any knowledge about why a certain trace is positive
or negative (i.e., which parts of the states of a trace make the trace positive or negative), as it is the
case in the mentioned work. Instead, our revision mechanism still solely relies on the given boolean
labeling of the traces.
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Figure 5.8: The original accuracy (red), the accuracy change (blue) and the resulting accu-
racy of the revised norm (black) after one alteration (a) and after two and four alterations
(b). The change reported in blue refer to the accuracy of the original norm. Table (c) reports
the detailed statistics about the plots in (a) and (b). ∆ refers to the accuracy change, and
Final refers to the revised norms.

particular we selected up to eight10 higher or lower speeds for the prohibited
state, and positions for the condition and deadline. Consider, as an example, an
original norm prohibiting vehicles to have a speed higher than 10 km{h. When
generating more specific speed limits, we limited the maximum number of more
specific speed limits to 8 (for example the speeds 11, 15, 16, 20, . . . , 24). If
for instance the MAS objectives were not achieved when a vehicle was speeding
over 40 km{h, but they were achieved when a vehicle was having a speed of 30
km{h, due to the limitations imposed to the set Φ, we would not generate a
new norm that could perfectly distinguish the negative and positive traces. One
way to try to mitigate this effect is by revising a norm more than one time. By
revising again the new norm, we may be able to correct also some (possibly new,
in case of alteration) errors that could not be captured only with one revision,
like in the above example. Starting from an original norm n, we can alter it
into a new norm n1 and then we can alter n1 into a further alteration n2, etc..
Fig. 5.8b and the last column of Fig. 5.8c report the effect of doing so in our
simple example after two and four consequent alterations. After two alterations,
we further improved the accuracy of some of the resulting norms. Note that
this monotonic behavior is exhibited because when we are applying the revision
operations we are considering again the same dataset of traces Γ. With more
than 2 revisions, instead, we did not obtain any further change. Even though
more than 75% of traces had an accuracy higher than 86%, with an average of

10The value of this parameter was obtained empirically by running a number of preliminary exper-
iments in the highway scenario. Even though we did not notice particularly significant differences,
due to the simplicity of the domain, in our preliminary tests, values higher than 8 did not provide any
advantage, while with lower values the generated norms, due to their restricted number, provided in
some few cases lower improvements.
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90%, in about half of the cases the revised norms were still not perfectly aligned
with the MAS objectives.

Multiple Norms

As discussed in Sec. 5.5.4, DNR also supports the revision of multiple norms. We
briefly report some experiments performed on our highway scenario enforcing two
norms instead of one. Note that to do justice to the complexity of enforcing multiple
norms in a MAS, a number of additional aspects (e.g., the importance of the different
norms, their mutual constraints, their conflicts, properties, synergies, etc.) shall be
taken into account, considering also a complex enough case study. While these aspects
extend our work, they are out of the scope of this chapter. We leave for future work,
therefore, an in-depth evaluation of the multiple norms case. We limit ourselves
here to a preliminary experimentation, which, however, supports, experimentally, the
claims made in Sec. 5.5.4, and shows that DNR can effectively revise multiple norms
and improve their alignment with the MAS objectives.

Similarly to the case of one norm we adopt the following experimental method.

1. We execute a simulation of the highway scenario with two norms. In addition
to the norm ns concerning the speed limit, we now enforce also a norm that
regulates the minimum safety distance that vehicles shall maintain in the high-
way. The minimum safety distance prohibition nd “ pφC , P pφP q, φDq is such
that φC , φP , φD are boolean combinations of propositions from the languages
LC “ V P Y V T , LPdist “ V D Y V T and LD “ V P , respectively, with V P
and V T defined as per Sec. 5.3.1 and V D “ tdistx | 0 ď x ď 15 & x P Nu,
with literals distx denoting that vehicle’s distance from the vehicles ahead is
lower than x meters11. An example of minimum safety distance prohibition is
nd “ pkm2 ^ car , P pdist10 q, km7 q, which prohibits cars to maintain a distance
smaller than 10 meters from the vehicles ahead from km2 to km7 of the highway
section. As per ns, in each simulation, norm nd is randomly selected from the
set of norms defined by its language.

2. The simulation generates a dataset Γ containing 1500 traces labeled w.r.t. the
obedience of each norm and the achievement of the MAS objectives of the
running example. Note that the i-th state of a trace now, in addition to the
information described for Eq. 5.5, contains also information about the minimum
distance the agent maintained from any vehicles ahead in the i-th km of the
highway.

3. Given Γ, we perform the synthesis step. We focus only on alteration here for
brevity. We obtain, thus, for each norm, a set of revised norms: Apnsq and
Apndq.

4. We perform the selection step to select from Apnsq and Apndq the revised norms.
We repeat this step two times in two different experiments—the subject of our

11Note that, as they do for their speed, vehicles autonomously adjust also their distance from the
vehicle ahead based on their internals. We do not directly affect their decisions about the specific
safety distance to maintain. Instead we regulate the minimum safety distance.
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analysis—that use two different strategies to evaluate and select the norms: (in-
dependent) we select, by using the acc metric, each norm from its corresponding
set, independently form the other norm; (combined) we compare all combina-
tions of norms from the two sets, and we select the two revised norms by using
the multi-label accuracy metric ml-acc defined in Eq. 5.4.

5. We repeat 100 times the steps 1-4, to obtain a statistically significant compari-
son. The results that we report refer to such 100 repeated trials.

Table 5.10 reports a comparison of the original and revised norms, for the two ex-
periments of independent and combined revision of the norms. In column independent,
values concern the average acc of the norms, and in column combined, values concern
the value of ml-acc. By comparing the mean values of the original and revised norms,

Table 5.10: Statistics about the accuracy (acc) and multi-label accuracy (ml-acc) for the
original and revised (altered) norms in the cases of independent and combined selections.

Experiment independent combined

Metric acc ml-acc
Norms Original Revised Original Revised
M 0.5137 0.7543 0.4856 0.6608
SD 0.24513 0.10807 0.27458 0.16833
Min 0.03 0.51 0 0.04
Q1 0.3186 0.6891 0.2390 0.6166
Q2 0.6225 0.7512 0.6201 0.6416
Q3 0.6382 0.8035 0.6379 0.7523
Max 0.90 0.99 0.89 0.99

we observe that in both experiments the alignment with the MAS objectives (i.e., the
average accuracy of the two norms in independent, and the the multi-label accuracy
in combined) significantly12 improved after the revision of the norms. This effect was
large (dCohen “ 1.27) for the independent revision, and intermediate (dCohen “ 0.769)
for the combined revision.

In Sec. 5.5.4, we discussed the difference between an independent and a combined
revision of the norms in terms of partly and fully correctly classified traces. We argued
that independent revisions are more suitable for cases when it is less important for
the traces to be classified correctly by all norms, while combined revisions are more
suitable when it is important to have fully correct traces. We conclude this section
by briefly illustrating this concept in our experiment. Fig. 5.9 reports three confusion
matrices: (a) for the original norms of our experiment, (b) for the revised norms
obtained in the independent experiment, and (c) for the revised norms obtained in

12We conducted two independent-samples t-test to compare the change of the alignment of the
original and revised norms. For the independent revision we have: original norms (M=0.5137,
SD=0.24513), revised norms (M=0.7543, SD=0.10807), and we identify a significant differ-
ence; t(198)=-8.980, p=0.000. For the combined revision we have: original norms (M=0.4856,
SD=0.27458), revised norms (M=0.6608, SD=0.16833), and we identify a significant difference;
t(198)=-5.439, p=0.000.
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the combined experiment. Note that the values in the confusion matrices are the
mean values for the 100 different norms (e.g., the top left value in Fig. 5.9a, is the
mean number of Positive Fully Correct traces in the 100 original norms). For the sake
of readability, in this last informal discussion, we omit from the figure the standard
error of the mean values.
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Figure 5.9: Confusion matrices of the original norms (a), revised norms obtained in the
independent experiment (b), and revised norms obtained in the combined experiment (c).
Values in the matrices are the mean values for the 100 different norms.

Fig. 5.9a clearly highlights how the original norms, on average, fully correctly clas-
sified almost all the positive traces (top left value), while they fully wrongly classified
almost all the negative traces (bottom left value). This shows that the original norms
(both of them) were generally too weak and permitted too many negative behaviors.
Comparing matrices Fig. 5.9b and Fig. 5.9c, we find a confirmation of the above dis-
cussion. Both the independent and combined approaches improved the alignment of
the norms with the MAS objectives, reducing the fully wrongly classified negative
traces (bottom left value) and improving the fully correctly classified negative traces
(bottom right value). With the independent revision, we observe however also a lower
number of fully correctly classified positive traces (top left) and a higher number of
partly correctly classified traces (the four central values). With the combined revision,
instead, we can observe a higher number of fully correctly classified positive traces
(only slightly reduced compared to the original norms), and, while the number of fully
wrongly classified negative traces was higher than with the independent approach, the
revised norms had lower number of partly correctly classified traces (compare the four
central values of the two confusion matrices).

5.7 Threats to Validity
We discuss the main threats to the validity [295] of our work. We mostly focus on the
part concerning the heuristic and the experiments that we conducted. All the proofs
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have been double-checked by all authors.

Construct validity. The implementation of our heuristic operations and of the
highway scenario simulation could be incorrect, which would render the results invalid.
We reduced the potential impact of this threat by performing an extensive testing of
our implementation and by relying for the simulation engine on the SUMO traffic
simulator, a state-of-the-art simulator widely employed and tested independently by
different parties due to its open-source nature. Furthermore, to mitigate this threat,
in Sec. 5.6, among other things we analyzed the sets of norms synthesized by our
operations, explicitly discussing their characteristics w.r.t. the expectations from the
heuristic described in Sec. 5.5.

Internal validity. To minimize the threats to internal validity, all our experiments
were conducted on a set of datasets obtained by randomly sampling the space of all
possible norms. Furthermore, when we evaluated different metrics, we compared the
results with a control experimental condition in which we randomly choose the new
norm, instead of using a particular metric.

External validity. The reported experimental results are subject to the language
used for representing the norms and to the type of dataset obtained from the highway
scenario simulation. To mitigate this threat to the external validity, we paid attention
to our interpretation and the wording of the implications. We emphasize, however,
that the heuristic that we proposed is not derived from the highway scenario, which
was instead considered just as a use case to proof our concept. Different use cases
should be considered to further confirm our results. Furthermore, in Sec. 5.5.5, we
had shown that the number of comparisons that need to be performed to choose a
new set of norms, grows exponentially with the number of norms being revised, if the
norms are not independent. We did not provide an empirical evaluation for instances
of the problem of growing size, and this is a threat to the external validity. Further
experiments are clearly required in this sense. In order to mitigate this issue, however,
different strategies could be adopted. For example, when norms are inter-dependent,
it may be known how the obedience of a norm influence the obedience of another
norm. If this information is known or learned [293] it could be used to help choosing
between two norms to revise: it is enough to revise one of them to obtain an effect
on the other.

5.8 Conclusions

We investigated the problem of norm revision in contexts where agents’ internals are
unknown and where knowledge about the relationship between the enforced norms,
the agents’ behavior and the MAS objectives solely relies on the monitored system’s
execution. We presented results regarding the revision of conditional norms (prohi-
bitions and obligations) with deadlines w.r.t. a set of observed traces. The traces
are partitioned into positive and negative ones, depending on whether they help or
hurt MAS objectives which, besides their boolean evaluation, are opaque to the revi-
sion mechanisms. We demonstrated the NP-completeness of the problem of revising
(including alteration, weakening and strengthening) conditional norms. The results
motivated us to propose DNR (Data-driven Norm Revision): a more practical heuris-
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tic approach to obtain approximate revisions of the conditional norms.
DNR consists of two steps: the synthesis step and the selection step. The synthe-

sis step generates a set of candidate new norms by revising the original norms based
on the given dataset of execution traces. The selection step selects the final norms
from the synthesized set. In doing so, a norm is interpreted as a binary classifier
distinguishing obeying and violating execution traces. Statistical metrics, such as
accuracy or F-measure, are used to evaluate and select the best norm among the pos-
sible candidates w.r.t. the classification of the traces provided by the MAS objectives.
We applied DNR to a traffic simulation, and we studied the alignment of the revised
norms with the MAS objectives. Results show that the revised norms are significantly
better aligned with the MAS objectives than the original norms, exhibiting, in the
case of accuracy, an average improvement on the given dataset of traces of about 30%
and an average improvement of about 13% on previously unseen traces. We compared
the norms selected when using a number of different statistical metrics in the selection
step, showing for instance that some metrics (e.g., metrics based on the concept of
entropy) tend to select more “extreme”–i.e., very weak or very strict–revisions than
others, and we provided a comparison in terms of their precision and recall.

In addition to the future directions outlined in Sec. 5.6, we intend to embed DNR
in the run-time supervision framework presented in earlier chapters that continuously
monitors the system’s execution and, based on probabilistic strategies, suggests how
to revise the norms to continuously guarantee the achievement of the MAS objectives.
Incorporating a degree of norm violation, and altering the sanctions, is another way for
steering the MAS behavior. Experimentation on multiple cases in different domains is
also necessary to identify algorithms that perform well in different MAS types. Finally,
in defining the norm revision operations, we treated any state and any proposition
as equally important. In some cases, however, certain states or propositions may be
more important then other and, in revising norms, one would expect to be able to
consider such aspect. This is another future direction of our work.
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6 Conclusion

In this thesis, we presented a novel framework for the supervision of autonomous
software systems. Our framework aims at the supervision of modern complex systems
which operate in highly dynamic, ever-evolving and weakly controllable environments.
Examples of these systems include Socio-Technical Systems (STSs), heterogeneous
systems where the involved actors are both technical (software) and social (humans
and organizations). Smart roads, smart homes, or social media sites are examples of
STSs. Actors in a STS are autonomous, can enter or leave the system at any moment,
and continuously interact with each other according to their own preferences, and
influenced by their dynamic social relationships.

In a smart road, for instance, the behavior of autonomous vehicles depends on their
own preferences and goals, which reflect the preferences and goals of the stakeholders
and users they operate for. Their internals are not necessarily aligned with, nor known
to, the other actors in the system, like other vehicles, pedestrians, smart traffic lights,
speed cameras, nor to the designer of the system (e.g, the city council). The opacity
of their internals is what makes them weakly controllable. A smart road system,
moreover, is part of a broader dynamic and evolving environment, and its operations
are continuously affected by natural events, such as storms, snow, etc., but also by
social events, such as a football matches, rush hours, or changes in the national
regulations.

Despite their dynamism and complexity, software systems are expected to con-
tinuously ensure that the overall system’s objectives are met. For instance, a smart
road infrastructure is expected to guarantee adequate throughput and CO2 emissions.
During the design of a system, however, software engineers are forced to make assump-
tions, which may become invalid over time, due to the ever-evolving context in which
the system operates. Designed speed limitations in a road network, for example, may
become inappropriate if new national regulations about the maximum levels of CO2

emissions are put in place in order to cope with the global warming problem. When
design-time assumptions are invalidated, previously defined requirements may become
inadequate to guarantee the achievement of the (possibly new) system’s objectives,
and they need to be revised.

In this thesis, we proposed a framework that provides a system with the capability
of automatically revising its requirements at run-time without requiring continuous
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human intervention. In particular, our framework is data-driven, in the sense that it
continuously monitors the execution of the system, and intervenes by deciding which
requirements should be revised when there is evidence from data that the current
ones are not effective in ensuring the achievement of the system’s objectives.

This dissertation contributes to the disciplines of Artificial Intelligence and Soft-
ware Engineering. More specifically, the thesis contributes to the research areas of
(Normative) Multi-Agent Systems and Requirements Engineering, in the context of
autonomic computing.

Our work is characterized by three main pillars, which distinguish it from the
state-of-the-art literature.

• Requirements shall regulate the behavior and interactions of the (social) actors
in the system. Actors of modern software systems are autonomous agents, and
their internals are generally opaque to, and weakly controllable by, the system’s
designer, as they often belong to different stakeholders who have independent
control over them. In this dissertation, requirements are represented as norms
that, similarly to our society, coordinate and regulate the behavior of individuals
without over-constraining their autonomy.

• Valid and effective requirements and norms can be obtained only at run-time
and by using execution data. Formally proving at design-time the effectiveness
of predefined requirements in guaranteeing the system’s objectives in all possible
operating contexts, is often impossible in practice. Modeling all possible states
of complex and dynamic systems leads to the state explosion problem. The
openness of modern systems and the autonomy of the involved actors, moreover,
make it hard to predict and model at design-time all possible interactions among
the actors. In our proposal, the validity and effectiveness of requirements and
norms is assessed at run-time and with respect to execution data in different
operating contexts.

• Requirement and norm revision when adaptation of the system’s components
is not an option. Adaptation and re-configuration of the system’s components
to restore their compliance with the requirements is not always an option. In
addition to the lack of control over the internals of the agents, in dynamic
environments, the objectives of the system are subject to continuous change.
Compliance with static predefined requirements may not suffice to ensure the
new objectives. We consider the revision of requirements and norms when data
provides evidence that the current ones are not effective.

In the following, we revisit the research questions outlined in Chapter 1, and we
present our conclusions.
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6.1 Answering the Research Questions
RQ 1. How to validate at run-time the design-time assumptions that are reflected in
the requirements?

The requirements of software systems are often represented by means of require-
ments models [40, 271]. Requirements models organize the elicited requirements in
a hierarchical tree-like structure, where the high-level objectives of the system are
refined in terms of more specific requirements and system functions. When specify-
ing requirements and requirements models, engineers make both explicit and implicit
assumptions based on the available domain knowledge. Such assumptions, thus the
requirements, may become invalid at run-time when the system’s operating context
changes.

We answered RQ 1 in Chapter 3, where we studied how execution data can be
used to validate, at run-time and in different operating contexts, a variety of design-
time assumptions. We considered assumptions concerning the contextualization of
requirements, and the relationship and synergy between different requirements and
between requirements and the system’s objectives. For instance, we considered the
assumptions that requirements are satisfied in given contexts, that the satisfaction of
requirements depends on the satisfaction of their sub-requirements in the requirements
model, and that the system’s objectives are met when the requirements are satisfied.

To answer the research question, we proposed to use a probabilistic model (namely,
a Bayesian Network [240]). In particular, we formally discussed how to automatically
map a requirements model into a Bayesian Network, whose structure reflects the struc-
ture of the requirements model, and extends it with nodes concerning monitorable
environmental properties characterizing the system’s operating context. We discussed
how to use the Bayesian Network as a run-time counterpart to the requirements model.
We showed how to learn from system execution data statistical correlations between
the satisfaction of the requirements and the achievement of the system’s objectives
in different operating contexts. We discussed how to use the learned knowledge (i.e.,
the trained Bayesian Network), to provide a quantitative estimation of the degree
of validity of design-time assumptions. Finally, we showed that the trained Bayesian
Network can be used not only for informing the automated decision making, necessary
in our run-time requirements revision framework, but also to offer the possibility of
manual inspection and analysis of the assumptions by the practitioners, thanks to its
graphical nature which makes it transparent and explainable [58].

RQ 2. Which are possible data-driven requirements revision policies?

In a requirements revision framework, the revision should be guided by some
policy that indicates how the requirements should be revised, and in which cases.
In a data-driven framework, such a policy makes use of execution data to guide the
decisions.

We gave answers to RQ 2 in Chapters 3 and 4, where we proposed and com-
pared a variety of general and domain-independent data-driven requirements revision
policies. The proposed policies are driven by data in the sense that they rely on the
Bayesian Network mentioned above, which learns from execution data the statisti-
cal relationships between the different requirements and between the requirements
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and the system’s objectives in different operating contexts. We discussed which are
possible data-driven policies to suggest whether some of the requirements should be
relaxed, made more strict, or altered in another way, in order to re-align them with
the system’s objectives.

In our framework, we do not assume the requirements to be effective. In particular,
requirements are conceived as norms that the agents in the system autonomously
decide to obey or to violate. Data could show us that certain requirements are effective
when obeyed in some contexts, but ineffective, or even harmful, in others. The studied
policies distinguish between requirements that, according to execution data, are more
effective in certain operating contexts when obeyed, and requirements that are more
effective when violated. The general idea of our proposed policies is that, if data
shows that there is a positive synergy between the satisfaction of the requirements
and the achievement of the objectives (as typically desired), we expect to improve the
achievement of the system’s objectives by reducing the violations of the requirements
(e.g., by altering the requirements, or making their enforcement more strict). If,
conversely, data shows a negative synergy, we expect to improve the achievement
of the system’s objectives by increasing the violations of the requirements (e.g., by
relaxing or temporarily ignoring them).

In Chapter 3, we discussed revision policies in the context of the revision of re-
quirements models. In Chapter 4, we discussed additional data-driven policies that
can be used to determine the (positive or negative) change in the number of norm
violations estimated to be necessary to guarantee the achievement of the system’s
objectives. We showed that such policies can be used to effectively guide the revision
of sanctions when used as a means to enforce requirements on weakly controllable
agents.

RQ 3. Which are possible operations to revise requirements at run-time?

Our framework clearly separates between the policies that suggest what type of
revision is necessary for the requirements, and the revision operations. This separation
gives us the possibility to evaluate the two steps in separate phases, but also to support
the decomposition of the framework in modules which could be used separately. For
example the requirements revision policies could be independently used as a guideline
for the software engineers, in cases when automated revision is not possible, and
human intervention is required.

Since the main objective of this dissertation, however, is the automated revision of
the requirements, we also studied which are possible automatic operations to revise the
requirements (norms) based on the type of revision indicated by the revision policy.
We gave answers to RQ 3 in Chapters 3-5, where we proposed novel algorithms
to automatically revise both requirements models and specific norms based on the
direction provided by the revision policy.

In Chapter 3, we discussed possible operations to identify more relaxed, more
strict, or simply different requirements variants of the given requirements model.

In Chapter 4, we first studied what are the characteristics of the preferences of
different types of rational agents. We discussed how to combine the statistical in-
formation acquired at run-time with an estimation of the preferences of the agents
operating in the system to identify appropriate sanctions in line with the suggestion
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provided by the revision policies.
In Chapter 5, finally, we considered a type of norms, conditional norms with

deadlines, used in NMASs to characterize and regulate patterns of behaviors [10].
Conditional norms include conditional prohibitions and obligations, and they are
characterized by three components: a condition of applicability, the main content
of the norm, and a deadline. We provided a characterization of a norm as a binary
classifier [146]. A perfect classifier (norm) is one that classifies as violation all and
only the agent’s behaviors–execution traces–that are bad for the achievement of the
system’s objectives. We studied the complexity of the problem of revising conditional
norms in order to improve their alignment with the system’s objectives with respect
to a dataset of execution traces. We proposed then tractable algorithms to automat-
ically revise all the components of a norm. In the smart road scenario, our revision
operations could, for example, refine the given norms so that the new norms apply
only to specific types of vehicles, or they could extend the validity of a speed limit
for x additional kilometers, so to obtain new norms that are better aligned with the
system’s objectives and are expected to improve their achievement.

RQ 4. How well does the proposed run-time requirements revision framework per-
form?

We evaluated our framework, the proposed data-driven requirements revision poli-
cies, and the revision operations, to verify its effectiveness in determining at run-time
new requirements that ensure the achievement of the system’s objectives. We con-
ducted our experimentation by means of simulations in the traffic domain. We im-
plemented a prototype of our framework as a supervisor envisioned to be embedded
in a smart road infrastructure, aimed at determining adequate traffic rules (require-
ments) to be enforced in order to guarantee system-level objectives concerning the
throughput, the safety of the road, and the levels of CO2 emissions. We built on the
advanced state-of-the-art of traffic simulators such as SUMO [184]. Doing so allowed
us to validate the hypothesis of our experiments with simulations that are realistic
for smart roads scenarios involving autonomous vehicles.

To answer RQ 4, in all main chapters we considered multiple criteria for evalu-
ating our proposals, including the degree of achievement of the system’s objectives
with the identified requirements, the speed in identifying requirements that ensure
the achievement of the objectives, the stability of the system when subject to the
revisions, and the resilience to noise in the data coming from sensors. We compared
our algorithms with each other and with baseline algorithms not informed by data.

While a detailed evaluation can be found in each of the main chapters of this thesis,
the results generally show that our data-driven framework is able to identify effective
revisions of the requirements which improve the alignment of the requirements with
the objectives and ensure their achievement. The use of Bayesian Networks and of
general high-level revision policies, moreover, guarantees good resilience to noise in the
data. The revision of the sanctions based on some knowledge about the preferences
of the agents, allows to quickly identify effective sanctions that motivate an adequate
portion of the population of agents to comply with the norms.
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6.2 Future Directions

This thesis opens the doors to several research lines. Many of them, more specifically
related to possible refinements and improvements of our proposal, have been already
identified and discussed in details in Chapters 3-5. We outline here three main future
directions which relate to the thesis as a whole.

Continuous-control of autonomous systems

In this thesis, we employed Bayesian Networks as a probabilistic model to learn
from data and to guide the revision of norms and requirements. Our use of clas-
sical Bayesian Networks was based on the core assumption of consistent behavior of
the system over time, so that by monitoring the system for a sufficient amount of
time, regularities would emerge. An interesting future direction is to relax such an
assumption, and consider cases where the system does not exhibit regularities over
time, and its behavior is continuously subject to changes and fluctuations. Relaxing
such an assumption generates new challenges related to the continuous-control of the
system.

A starting point to extend our framework in this direction, could be the use
of Dynamic Bayesian Networks (DBNs) [240]. A DBN is a direct extension of a
Bayesian Network and allows to model how variables in the network influence each
other over time. DBNs generalize Hidden Markov Models and Kalman filters, proba-
bilistic models often used to continuously predict, optimize and control motions and
trajectories [152]. In a context of continuous-control, they could be used to continu-
ously predict over time short-term changes in the operating environment, and in the
behavior of the agents in the system, and to guide a continuous adjustment of the
requirements.

The policies and revision operations proposed in this dissertation, then, should
be re-evaluated and re-assessed under the different assumptions. Eventually, they
should be extended to take into account that the requirements revision should have
a more immediate effect on the behavior of the agents, or to consider the trends
identified in the fluctuations. Similarly, in case of irregular behaviors, the space of
possible alternative revised requirements at each time step may be different. The
hill-climbing approach and the statistical analysis of the execution traces that we
adopted in this thesis to guide the exploration of such space, may become inadequate.
More dynamic techniques, such as Entropy Regularization [158], or Dynamic Decision
Networks [240], could be considered in order to support more dynamic policies and
decisions over the revisions to perform.

Inclusion in a broader normative framework and social simulation

One interesting future direction is the inclusion of the proposed supervision framework
as part of a broader normative context, where the agents are not only norm-aware but
also organization-aware [279], and where also social norms [45] have a place in their
decision-making, and in the decision-making of the institution enforcing the regulative
norms.
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While our framework supports the specification of different norms for different
types of agents, we did not focus on the organizational structure of the system and
on the roles that agents can have within the organization. Furthermore, we did not
explicitly account for the presence of social norms within a population of agents, but
we assumed that social norms would be exhibited in the regularities of the behavior
of the agents.

In the area of MASs, the Multi-Agent-Based Simulation (MABS) community is an
active research community focused on the simulation of social and intelligent behav-
iors in complex social systems. Simulation is a powerful methodology for researchers
and practitioners for predicting and explaining behaviors, for exploring and testing
hypothesis, and for designing effective systems. The growing computational power of
modern computer systems, and the incredible availability of data that characterizes
our times, are finally making (social) simulation possible in large scale, and valuable
for our society. This is also shown by the growing attention given to computational
social science and computational social choice in analyzing and studying social phe-
nomena, including for instance epidemic spreading phenomena.

Despite simulation has been extensively used to study the dynamics of norms,
the focus has been primarily given to norm emergence, spreading, or recognition,
providing solutions for the evolutionary analysis of a society of agents. The use of
simulation to investigate norm revision from an institutional point of view, however,
is still extremely limited [78]. In this thesis we made a step in this direction. An
explicit study of the relationship between the enforcement and revision of regulative
norms, as per our framework, and the emergence and evolution of social norms in a
structured society of agents is an exciting future direction for this work.

How do agents with different roles within a society interpret and internalize the
norms enforced by the institution? Does this have an impact on the emergence of new
social norms, or on the evolution of existing ones? How can an institution aimed at
supervising software systems take into account the (possibly evolving) social norms
and the roles of agents when enforcing and revising regulative norms?

These are only few of the questions that need to be addressed in this direction.
Answering them requires to consider more complex models of agents and norms than
the ones considered in this dissertation, as well as refined norm revision policies and
algorithms, so to take into account the structure and values of the society of agents.
This future work, however, has potential interesting implications in areas such as
policy making [126], economics, epidemics, social coordination, or emerging fields like
the one of digitally assisted collective intelligence.

Application to real-world settings

In this dissertation, we focused on the traffic domain and we envisioned our supervi-
sion framework as part of a smart road infrastructure aimed at guaranteeing desired
system-level properties. Besides an experimentation on multiple cases in different
domains to assess the generality of our proposal and to identify which algorithms
perform better in different domains, an obvious future direction is the application of
our proposal in a real-world case study.

Application of our framework to real-world settings poses a number of additional
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challenges.
Research challenges. In this thesis we focused on general and domain-independent

solutions to drive the revision of the requirements. Our requirements revision policies
are based on analysis of the statistical correlation between the satisfaction of the re-
quirements and the achievement of high-level system’s objectives, and they abstract
away from the details and particular features of different requirements. The ISO/IEC
25010 [165], for example, describes different types of qualities (Non-Functional Re-
quirements) of software, including performance, reliability, security, maintainability,
usability requirements, each of them characterized by different peculiarities and pur-
poses. In a real-world setting, our framework should explicitly consider, through all
the steps of the revision process, the particular characteristics of different require-
ments, their relative priorities, and their relationships.

Technical challenges. In a realistic application of our framework, domain-specific
knowledge should be integrated and taken into account more explicitly. In Chapter 5,
for example, we proposed general operations to revise requirements purely based on
execution traces describing the behavior of the agents. We applied our techniques
to the revision of traffic rules regulating, for instance, the maximum speed of the
vehicles. In a real-world setting, one should not rely exclusively on the execution
traces, but should integrate in the revision process also domain-knowledge which
can be leveraged during the revision process. For example, information about the
maximum road capacity, or the available models of vehicle’s dynamics, should take
place within our framework. In a realistic application, architecture principles should
be explicitly taken into account to guide system’s evolution [157]. The impact of a
revision of a requirement on the rest of the system, for example, should be assessed
before the revision is actually put in place, in order to avoid safety issues and guarantee
reliability. The explicit account of architecture principles in the revision strategies
proposed in this dissertation is an interesting and motivating future direction to make
our proposal closer to real-world application.

Ethical challenges. Finally, this future direction poses also a number of ethical
challenges, which should be tackled. For example, are the revised requirements and
sanctions fair to all parties involved in the system? How to assess their fairness? Do
they guarantee the safety of the involved actors? In this thesis, we have shown that
the framework led to effective requirements in few revisions in a “safe” simulation
environment, where possibly poor choices of requirements wouldn’t be disastrous.
Who is accountable in case the autonomous revision framework makes poor decisions
and causes system’s failure?
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A Properties of Rational
Agents’ Preferences

We report here a formal definition of the properties of the rational agents’ preferences
described in Sec. 4.3.3 and Sec. 4.4.2.

Proposition 1. A basic preference Pref paq “ pA,ľq for an agent a P Ag is

• transitive: @x, y, z P A if x ľ y and y ľ z then x ľ z; and

• complete: @x, y P A either x ľ y or y ľ x or x „ y.

Proof. Consider a list AL “ pL1, ..., Lnq, a set B Ă N, a set BL Ď Bn and an
ordered set N of n norms. Let Pref paq “ pA,ľq be a basic preference and x, y, z be
alternatives in A.
(Transitivity) Assume that x ľ y and y ľ z. We prove the transitivity for two cases:
either the preference adheres to Def. 10a (case 1) or the preference adheres to Def. 10b
(case 2). For both cases, we show that x ľ z.

Case 1: we have that req budpxq ď req budpyq and req budpyq ď req budpzq.
By transitivity of ď, we have req budpxq ď req budpzq. Moreover, we have @k, l P
A,@B,B1 P BL : krBs ą lrBs ñ krB1s ą lrB1s for both x ľ y and y ľ z, such that
we have it also for x ľ z. Therefore, we conclude that x ľ z.

Case 2: we have either (i) proppxq “ proppyq “ proppzq or (ii) proppxq ‰ proppyq
and either proppyq “ proppzq or proppyq ‰ proppzq. In case (i), we have that
req budpxq ď req budpyq and req budpyq ď req budpzq, and, by transitivity of ď,
we have that the first condition of Def. 10b is also satisfied by x and z. In case (ii),
instead, we have that @B,B1 P BL : xrBs ľ yrB1s. If proppyq “ proppzq, we have
that proppxq ‰ proppzq and @B,B1 P BL : xrBs ľ zrB1s, so the second condition of
Def. 10b is satisfied also by x and z. If instead also proppyq ‰ proppzq, then we have
that @B,B1 P BL : xrBs ľ yrB1s and @B,B1 P BL : yrBs ľ zrB1s. Take three arbi-
trary alternatives xrBs, yrB1s, zrB2s. We have that xrBs ľ yrB1s and yrB1s ľ zrB2s.
Since the choice of B,B1 and B2 was arbitrary, this holds for any possible budget list.
Therefore there is no B,B2 P BL such that alternative zrB2s is strictly preferred to
an alternative xrBs, i.e., @B,B2 P BL : xrBs ľ zrB2s. Again the second condition of
Def. 10b is satisfied by x and z, such that x ľ z.
(Completeness) By definition of basic preference, every pair of alternatives x, y P A
has to satisfy either Def. 10a or Def. 10b. Notice that, given x and y, if it is not the
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case that x ľ y, then we have that y ą x, therefore for every pair of alternatives
x, y P A either x ľ y or y ą x.

Proposition 2. A preference Pref paq “ pA,ľq for an agent a P Ag is

• transitive: @x, y, z P A if x ľ y and y ľ z then x ľ z; and

• complete: @x, y P A either x ľ y or y ľ x or x „ y.

Proof. Consider a list AL “ pL1, ..., Lnq, a set B Ă N, a set BL Ď Bn and an ordered
set N of n norms. Let A “ tpxp1, b1y, ..., xpn, bnyq | pi P Li & pb1, . . . , bnq P BLu be
the set of alternatives over which agents have preferences. Let A1, ..., Ak be k disjoint
subsets of A as per Def. 12, and x, y, z be alternatives in A.
(Transitivity) Assume that x ľ y and y ľ z. If both x, y and z belong to the same
Ai for 1 ď i ď k then, by Prop.1, x ľ z. Otherwise, if x P Ai, y P Aj and z P Al with
i ă j ă l, then, by Def. 12, given i ă l, @v P Ai@w P Al : v ľ w, therefore x ľ z.
(Completeness) By Prop.1, for every pair of alternatives x, y P Ai for 1 ď i ď k,
either x ľi y or y ľi x. Furthermore, by definition of preference, for all x P Aj and
y P Ai, we have x ľ y, for 1 ď j ă i ď k. We have therefore that for every pair of
alternatives x, y P A either x ľ y or y ľ x.

Proposition 3. Given an ordered set of norms N “ xN1, ..., Nny, and a set of t agent
types T , each type corresponding to a consistent preference (as per Def. 13), increasing
the sanction of a norm Nj in N without changing the sanctions of other norms, does
not increase the upper bound of the probability P pNviolq, i.e., UBpNviol ,N q, for all
N in N .

Proof. In this work, the agent’s preferences are not affected by the preferences of
other agents. Since the upper bound UBpNviol ,N q of the probability of violating a
norm N in the context of a norm set N is determined by the number of agents with
reason to violate N , as per Sec.4.3.2, if Prop.3 holds for one agent type, then Prop.3
must hold also for all agent types. In the following we consider, therefore, one agent
type T . Furthermore we assume N composed by at least two different norms (if only
one norm is enforced, Prop.3 is trivially satisfied).

We prove Prop. 3 by contradiction.
Let M be the set of most preferred alternatives to act upon for agent type T

in the context of N “ xN1, . . . , Nj , . . . , Nny (as per Def. 14). Suppose we increase
the sanction of norm Nj “ ppj , sjq, obtaining N 1j “ ppj , s

1
j ą sjq. Let now M 1 be

the set of most preferred alternatives to act upon for agent type T in the context of
N 1 “ xN1, . . . , N

1
j , . . . , Nny.

Suppose, by contradiction, that UBpNviol ,N 1q ą UBpNviol ,N q for N “ pp, sq ‰
Nj , with p P Li and Li in AL. This means that, in the context of N , T has no reason
to violate N , while in the context of N 1, T has reason to violate N (i.e., there exists
no alternative c P M with violpc,Nq, while there exists an alternative c1 P M 1 such
that violpc1, Nq).

In order to modify the set of most preferred alternatives M when increasing the
sanction from sj to s1j , it must be the case that there exists at least one alternative
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A
c P M s.t. violpc,Njq and sj ď bj ă s1j (with bj budget of the j-th pair in c). If it
is not the case increasing sj to s1j does not affect T ’s most preferred alternatives and
thus the proposition holds.

Consider the alternative from M with highest budget bj in the j-th pair. Consider
also an i ‰ j. Let awxrBs “ pxp1, b1y, ..., xw, bwy, ..., xx, bxy, ..., xpn, bnyq be such
alternative, with w P Lj , x P Li and sj ď bw ă s1j . Let the alternative bzyrB1s “
pxp11, b

1
1y, ..., xz, bzy, ..., xy, byy, ..., xp

1
n, b

1
nyq be an alternative c1 P M 1 such that c1 R M

and violpc1, Nq with z P Lj , y P Li and bz ě s1j . Notice that awxrBs is compliant

w.r.t. N and bzyrB1s is not compliant w.r.t. N , hence y ‰ x. Notice also that
awxrBs ą bzyrB1s. This is because by Def. 14 we have that, since bzyrB1s R M ,
bzyrB1s ľ awxrBs iff bzyrB1s violates a norm Nk but the budget is not enough to
pay the sanction. Such Nk cannot be Nj , since bz ě s1j , and if it’s another Nk then

bzyrB1s cannot be also in M 1 because we only increased the sanction of norm Nj .
Therefore bzyrB1s must be strictly less preferred than awxrBs. Furthermore, let c be
a fully compliant alternative.1

We first consider the case of T “ pA,ľq basic preference as per Def. 10, which
can adhere to either Def. 10a or Def. 10b, then we uplift the proof to the preference
as per Def. 12.

Basic Preference.

(Case Def. 10a) Since awxrBs ą bzyrB1s, it holds that, due to Def. 10a, crBs ą

bzyrB1s for all alternatives c in A. This means that also a fully compliant alternative
crBs is such that crBs ą bzyrB1s. However, since s1j ą bw, after revising sj into
s1j , there is at least one alternative in M 1 (i.e., crBs) that is strictly preferred to

bzyrB1s, because already present in M , and that is compliant to N . Therefore, bzyrB1s
cannot be among the most preferred alternatives to act upon, i.e., bzyrB1s R M 1

(contradiction).

(Case Def. 10b) Since awxrBs P M ą bzyrB1s P M 1, by Def. 10b it holds that
awxrB1s ľ awxrBs ą bzyrB1s ľ bzyrBs for all B1 P BL, i.e., awx ą bzy regard-
less of the required budget, including the maximum possible budget in B, max pBq.
Therefore, since awx is the alternative in M with highest budget in the j-th pair,
we have that s1j ą max pBq, and no alternative that violates N 1j can be chosen in the

context of N 1. bzyrB1s is then compliant w.r.t. N 1j , hence z ‰ w. By Def. 10, T
contains at least another alternative awyrB1s. If awyrB1s ľ awxrB1s, then, accord-
ing to Def. 10b, awyrB1s ľ awxrB1s for all B1 P BL. But if this is the case, we
have that sj ą maxpBq (otherwise at least one alternative awy with bw “ maxpBq
is in M and, in contradiction with out hypothesis, T has reason to violate N since
violpy,Nq). But if sj ą maxpBq we have awxrBs R M (contradiction). If, instead,
awxrB1s ą awyrB1s then awx ą awy regardless of the budget. By consistency
(Def 13), then, we also have bzx ą bzy. We distinguish 2 cases: (a) awx ą bzx,
this implies awx ą bzx ą bzy, which contradicts bzyrB1s PM 1, since alternatives bzx
(compliant w.r.t N 1j) are strictly preferred to bzyrB1s; (b) bzx ą awx, this implies

that, since awxrBs P M and bzx is compliant w.r.t. both Lj and Li, then for ev-

1We call a and b the list of propositional atoms that are different from w, x, y, z respectively in
awx and bzy. Also, we use notation crBs to indicate an alternative c with list of budgets B, as
described in Sec.4.3.2.
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ery other norm violated by bzx, the sanction associated to such norm is bigger than
maxpBq (otherwise awx RM and at least one alternative bzx PM). But if this is the
case, also bzyrB1s R M 1, since the only sanction that we change is sj , and again we
have a contradiction.

Preference.
In the case of preference T “ pA,ľq, the k basic preferences composing A adhere

to either Def. 10a or Def. 10b. The only case non considered above is when awxrBs P
Ai, bzyrB

1s P Ap and it does not exists an alternative c P Ap s.t. awxrBs ą c, and
it does not exists an alternative c1 P Aq s.t. c1 ą bzyrB1s, for two basic preferences
Ap, Aq composing A, with 1 ď p ă q ď k. Since all alternatives in Ai have required
budget lower or equal than max pBiq, then, due to Def. 10, among Ap there is at
least one fully compliant alternative with required budget ď max pBiq. Therefore,
even if sanction for Nj is increased to a value s ą maxpBq, M 1 does not contain any
alternative from Aq that was not already in M , therefore bzyrB1s RM 1, and again we
have a contradiction.
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B Full Preferences of Four
Types of Agents

We report here the full preferences of the four types of agents considered in the ex-
perimentation of Chapter 4, described in Sec. 4.6.

• BraveRich:

pxsp15, 0y, xdist0.5, 0yq ą pxsp15, 0y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 0yq ą

pxsp15, 1y, xdist0.5, 1yq ľ pxsp15, 0y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 0yq ą

pxsp15, 1y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 1yq ą pxsp15, 2y, xdist0.5, 2yq ą

pxsp8, 0y, xdist0.5, 0yq ą pxsp8, 0y, xdist0.5, 1yq ľ pxsp8, 1y, xdist0.5, 0yq ą

pxsp8, 1y, xdist0.5, 1yq ľ pxsp8, 0y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 0yq ą

pxsp8, 1y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 1yq ą pxsp8, 2y, xdist0.5, 2yq ą

pxsp3, 0y, xdist0.5, 0yq ą pxsp3, 0y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 0yq ą

pxsp3, 1y, xdist0.5, 1yq ľ pxsp3, 0y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 0yq ą

pxsp3, 1y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 1yq ą pxsp3, 2y, xdist0.5, 2yq ą

pxsp15, 0y, xdist1, 0yq ą pxsp15, 0y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 0yq ą

pxsp15, 1y, xdist1, 1yq ľ pxsp15, 0y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 0yq ą

pxsp15, 1y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 1yq ą pxsp15, 2y, xdist1, 2yq ą

pxsp8, 0y, xdist1, 0yq ą pxsp8, 0y, xdist1, 1yq ľ pxsp8, 1y, xdist1, 0yq ą

pxsp8, 1y, xdist1, 1yq ľ pxsp8, 0y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 0yq ą

pxsp8, 1y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 1yq ą pxsp8, 2y, xdist1, 2yq ą

pxsp3, 0y, xdist1, 0yq ą pxsp3, 0y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 0yq ą

pxsp3, 1y, xdist1, 1yq ľ pxsp3, 0y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 0yq ą

pxsp3, 1y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 1yq ą pxsp3, 2y, xdist1, 2yq ą

pxsp15, 0y, xdist2, 0yq ą pxsp15, 0y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 0yq ą

pxsp15, 1y, xdist2, 1yq ľ pxsp15, 0y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 0yq ą

pxsp15, 1y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 1yq ą pxsp15, 2y, xdist2, 2yq ą

pxsp8, 0y, xdist2, 0yq ą pxsp8, 0y, xdist2, 1yq ľ pxsp8, 1y, xdist2, 0yq ą

pxsp8, 1y, xdist2, 1yq ľ pxsp8, 0y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 0yq ą

pxsp8, 1y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 1yq ą pxsp8, 2y, xdist2, 2yq ą

pxsp3, 0y, xdist2, 0yq ą pxsp3, 0y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 0yq ą

pxsp3, 1y, xdist2, 1yq ľ pxsp3, 0y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 0yq ą

pxsp3, 1y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 1yq ą pxsp3, 2y, xdist2, 2yq
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• BraveMiddleClass:

pxsp15, 0y, xdist0.5, 0yq ą pxsp15, 0y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 0yq ą

pxsp15, 1y, xdist0.5, 1yq ą pxsp8, 0y, xdist0.5, 0yq ą pxsp8, 0y, xdist0.5, 1yq ľ

pxsp8, 1y, xdist0.5, 0yq ą pxsp8, 1y, xdist0.5, 1yq ą pxsp3, 0y, xdist0.5, 0yq ą

pxsp3, 0y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 0yq ą pxsp3, 1y, xdist0.5, 1yq ą

pxsp15, 0y, xdist1, 0yq ą pxsp15, 0y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 0yq ą

pxsp15, 1y, xdist1, 1yq ą pxsp8, 0y, xdist1, 0yq ą pxsp8, 0y, xdist1, 1yq ľ

pxsp8, 1y, xdist1, 0yq ą pxsp8, 1y, xdist1, 1yq ą pxsp3, 0y, xdist1, 0yq ą

pxsp3, 0y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 0yq ą pxsp3, 1y, xdist1, 1yq ą

pxsp15, 0y, xdist2, 0yq ą pxsp15, 0y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 0yq ą

pxsp15, 1y, xdist2, 1yq ą pxsp8, 0y, xdist2, 0yq ą pxsp8, 0y, xdist2, 1yq ľ

pxsp8, 1y, xdist2, 0yq ą pxsp8, 1y, xdist2, 1yq ą pxsp3, 0y, xdist2, 0yq ą

pxsp3, 0y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 0yq ą pxsp3, 1y, xdist2, 1yq ą

# from here ordered by budget
pxsp15, 0y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 2yq ľ

pxsp8, 2y, xdist0.5, 0yq ľ pxsp3, 0y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 0yq ľ

pxsp15, 0y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 2yq ľ

pxsp8, 2y, xdist1, 0yq ľ pxsp3, 0y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 0yq ľ

pxsp15, 0y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 2yq ľ

pxsp8, 2y, xdist2, 0yq ľ pxsp3, 0y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 0yq ą

pxsp15, 1y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 1yq ľ pxsp8, 1y, xdist0.5, 2yq ľ

pxsp8, 2y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 1yq ľ

pxsp15, 1y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 1yq ľ pxsp8, 1y, xdist1, 2yq ľ

pxsp8, 2y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 1yq ľ

pxsp15, 1y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 1yq ľ pxsp8, 1y, xdist2, 2yq ľ

pxsp8, 2y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 1yq ą

pxsp15, 2y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 2yq ľ

pxsp15, 2y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 2yq ľ

pxsp15, 2y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 2yq

• BravePoor :

pxsp15, 0y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 0yq ľ pxsp3, 0y, xdist0.5, 0yq ľ

pxsp15, 0y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 0yq ľ pxsp3, 0y, xdist1, 0yq ľ

pxsp15, 0y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 0yq ľ pxsp3, 0y, xdist2, 0yq ą

pxsp15, 0y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 1yq ľ

pxsp8, 1y, xdist0.5, 0yq ľ pxsp3, 0y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 0yq ľ

pxsp15, 0y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 1yq ľ

pxsp8, 1y, xdist1, 0yq ľ pxsp3, 0y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 0yq ľ

pxsp15, 0y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 1yq ľ

pxsp8, 1y, xdist2, 0yq ľ pxsp3, 0y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 0yq ą

pxsp15, 1y, xdist0.5, 1yq ľ pxsp15, 0y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 0yq ľ

pxsp8, 1y, xdist0.5, 1yq ľ pxsp8, 0y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 0yq ľ

pxsp3, 1y, xdist0.5, 1yq ľ pxsp3, 0y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 0yq ľ

pxsp15, 1y, xdist1, 1yq ľ pxsp15, 0y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 0yq ľ
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pxsp8, 1y, xdist1, 1yq ľ pxsp8, 0y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 0yq ľ

pxsp3, 1y, xdist1, 1yq ľ pxsp3, 0y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 0yq ľ

pxsp15, 1y, xdist2, 1yq ľ pxsp15, 0y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 0yq ľ

pxsp8, 1y, xdist2, 1yq ľ pxsp8, 0y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 0yq ľ

pxsp3, 1y, xdist2, 1yq ľ pxsp3, 0y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 0yq ą

pxsp15, 1y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 1yq ľ pxsp8, 1y, xdist0.5, 2yq ľ

pxsp8, 2y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 1yq ľ

pxsp15, 1y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 1yq ľ pxsp8, 1y, xdist1, 2yq ľ

pxsp8, 2y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 1yq ľ

pxsp15, 1y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 1yq ľ pxsp8, 1y, xdist2, 2yq ľ

pxsp8, 2y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 1yq ą

pxsp15, 2y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 2yq ľ

pxsp15, 2y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 2yq ľ

pxsp15, 2y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 2yq

• Cautious:

pxsp3, 0y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 0yq ľ pxsp15, 0y, xdist2, 0yq ľ

pxsp3, 0y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 0yq ľ pxsp15, 0y, xdist1, 0yq ľ

pxsp3, 0y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 0yq ľ pxsp15, 0y, xdist0.5, 0yq ą

pxsp3, 0y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 1yq ľ

pxsp8, 1y, xdist2, 0yq ľ pxsp15, 0y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 0yq ľ

pxsp3, 0y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 1yq ľ

pxsp8, 1y, xdist1, 0yq ľ pxsp15, 0y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 0yq ľ

pxsp3, 0y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 1yq ľ

pxsp8, 1y, xdist0.5, 0yq ľ pxsp15, 0y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 0yq ą

pxsp3, 1y, xdist2, 1yq ľ pxsp3, 0y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 0yq ľ

pxsp8, 1y, xdist2, 1yq ľ pxsp8, 0y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 0yq ľ

pxsp15, 1y, xdist2, 1yq ľ pxsp15, 0y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 0yq ľ

pxsp3, 1y, xdist1, 1yq ľ pxsp3, 0y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 0yq ľ

pxsp8, 1y, xdist1, 1yq ľ pxsp8, 0y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 0yq ľ

pxsp15, 1y, xdist1, 1yq ľ pxsp15, 0y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 0yq ľ

pxsp3, 1y, xdist0.5, 1yq ľ pxsp3, 0y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 0yq ľ

pxsp8, 1y, xdist0.5, 1yq ľ pxsp8, 0y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 0yq ľ

pxsp15, 1y, xdist0.5, 1yq ľ pxsp15, 0y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 0yq ą

pxsp3, 1y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 1yq ľ pxsp8, 1y, xdist2, 2yq ľ

pxsp8, 2y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 1yq ľ

pxsp3, 1y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 1yq ľ pxsp8, 1y, xdist1, 2yq ľ

pxsp8, 2y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 1yq ľ

pxsp3, 1y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 1yq ľ pxsp8, 1y, xdist0.5, 2yq ľ

pxsp8, 2y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 1yq ą

pxsp3, 2y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 2yq ľ

pxsp3, 2y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 2yq ľ

pxsp3, 2y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 2yq
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C Obligation Synthesis is
NP-complete

The obligation synthesis problem can be equivalently restated as follows:

Instance: a finite set of traces (finite sequences of states) Γ partitioned into negative
traces ΓF and positive traces ΓT

Question: are there three sets of states XC (detachment condition), XO (obligation),
XD (deadline) such that:

Neg For every trace ρ P ΓF , there exist i and j with i ď j such that ρris P XC ,
ρrjs P XD, and there is no k with i ď k ď j such that ρrks P XO (there is
a detachment state ρris, deadline state ρrjs, and no obligation state ρrks
in between them)

Pos For every trace ρ P ΓT , if for some i and j, i ď j, ρris P XC , ρrjs P XD,
then there exists k such that i ď k ď j and ρrks P XO.

Theorem 6. The obligation synthesis problem is NP-complete.

Proof. The obligation synthesis problem is clearly in NP (guess the sets and check in
polynomial time that they satisfy the conditions). To prove that it is NP-hard, we
reduce the 3-SAT problem to it (satisfiability of a set of clauses with 3 literals).

Suppose a set of clauses C1, . . . , Cn over variables x1, . . . , xm is given. We gen-
erate an instance of the obligation synthesis problem such that it has a solution iff
C1, . . . , Cn are satisfiable (each clause contains at least one true literal).

The idea of the reduction is just like for prohibitions, but now instead of inserting
a deadline between s and t in positive traces, we insert an obligation.

We use two auxiliary states s and t, intuitively to serve as the detachment condition
and the deadline, and make sure that neither of them is also the obligation. We want
to make some subset of tvi : i P r1, ...msu Y tui : i P r1, ...msu to be the obligation
(XO), so that exactly one of vi, ui for each i is in XO. Then ui P XO can encode
that xi is true, and vi P XO that xi is false, and we can make the encoding work
by creating a positive trace corresponding to each clause so that at least one of the
literals in the clause should be true (corresponding value is in XO).

We use notation ps1, . . . , skq for a trace consisting of states s1, . . . , sk.
The set of negative traces contains:
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• a 2 state trace ps, tq [this forces either
s P XC XXD XXO, t P XD XXC XXO, or
s P XC XXD XXO, or
t P XC XXD XXO.

To rule out the latter two possibilities, we require below that s and t on their
own are positive traces.]

• for every variable xi in the input, a 6-state trace ps, vi, t, s, ui, tq [this means
that either vi or ui are not in XO, because there is one rs, ts interval that does
not contain a state from XO]

The set of positive traces contains:

• a one state trace psq [so s cannot be in XC XXD XXO]

• a one state trace ptq [so t cannot be in XC XXD XXO]

• for every variable xi in the input, a 4-state trace ps, vi, ui, tq [this means that
either vi or ui are in XO]

• for each clause C in the input over variables xj , xk, xl, a 5-state trace ps, zj , zk, zl, tq
where zi is ui if xi occurs in C positively, and vi if it occurs negatively.

The reduction is linear in the number of variables and clauses.
We claim that there exists an assignment f of 0, 1 to x1, . . . , xm satisfying C1, . . . , Cn

if, and only if, there is a solution to the obligation synthesis problem above where
s P XC , t P XD, and for every i, ui P XO iff fpxiq “ 1 and vi P XO iff fpxiq “ 0.

Assume an assignment f satisfying C1, . . . , Cn exists. LetXC “ tsu andXD “ ttu.
For every i, place ui in XO iff fpxiq “ 1 and vi P XO iff fpxiq “ 0. This produces
a solution because: ps, tq satisfies Neg; for every i, either ui or vi are not in XO, so
ps, vi, t, s, ui, tq satisfies Neg. Positive traces satisfy Pos: either s followed by t does
not occur, or there are ui, vi between them, and one of them is in XO, or (for the
clause encoding) one of the literals in the clause is true, so for positive xi it means
that ui is in XO and Pos is satisfied, or for negative  xi it means that vi is in XO

and again Pos is satisfied.
Assume there is a solution to the obligation synthesis problem. It is clear (see the

comments next to traces) that any solution should satisfy s P XC X XD X XO and
t P XDXXC XXO. Since ps, vi, t, s, ui, tq is a negative trace for every i, it means that
it contains an unsatisfied conditional obligation: either the one detached in the first
occurence of s, or the one detached in the second occurrence of s. Note that t R XC ,
so the last occurrence of t does not detach any obligation. This means that for every
i, either vi or ui is not in XO (or neither is in XO). (Assume by contradiction that vi
and ui are in XO, then vi satisfies an obligation detached in s; if it is also in XC and
detaches a new obligation, then that obligation is also immediately satisfied. If vi is
also in XD, it still satisfies any obligation detached earlier or in vi itself since it is in
XO. Similarly, ui satisfies any obligation detached after the first occurrence of t. )
For the assignment we are constructing, this ensures that a variable and its negation
cannot both be assigned 1.
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C

Since ps, vi, ui, tq is a positive trace, then in any solution, for every i, either ui or
vi has to be in XO. Together with the argument above, this gives us that exactly one
of ui, vi for every i is in XO. Hence we can use the membership in XO to produce a
boolean valuation of variables xi (1 if ui P XO, and 0 if vi P XO).

Since for every clause C “ t„ xj ,„ xk,„ xlu, the trace ps, zj , zk, zl, tq (where zi
is vi if „ xi “  xi, and ui if „ xi “ xi) is a positive trace, at least one of zi is in XO.
This means that the valuation based on the membership in XO, for any solution, will
also produce a valuation that satisfies all the clauses (since at least one literal in each
clause will evaluate to 1).
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D Conditional Norms
Revision Experimentation

Data

In the following are reported the detailed data about the experiments performed in
Sec. 5.6 of Chapter 5 for question Q2.

Table D.1: Statistics about the change of the % of TP, FP, TN, FN in the norms selected
according to the metrics of Sec. 5.5.3. Average values are obtained w.r.t. the 100 different
norms selected from the sets of possible norms.

metric weakening strengthening alteration
M SD M SD M SD

random

∆TP 0.022 0.03105 -0.3144 0.27213 -0.2184 0.26913
∆FP 0.0359 0.05741 -0.3577 0.23336 -0.1833 0.22449
∆TN -0.0359 0.05741 0.3577 0.23336 0.1833 0.22449
∆FN -0.022 0.03105 0.3144 0.27213 0.2184 0.26913

acc

∆TP 0.0247 0.03559 -0.1414 0.14539 -0.0481 0.08431
∆FP 0.0077 0.01514 -0.3605 0.28243 -0.3362 0.30323
∆TN -0.0077 0.01514 0.3605 0.28243 0.3362 0.30323
∆FN -0.0247 0.03559 0.1414 0.14539 0.0481 0.08431

F1

∆TP 0.026 0.03579 -0.1324 0.14009 -0.019 0.07818
∆FP 0.0241 0.0479 -0.2714 0.1874 -0.1532 0.19799
∆TN -0.0241 0.0479 0.2714 0.1874 0.1532 0.19799
∆FN -0.026 0.03579 0.1324 0.14009 0.019 0.07818

mcen

∆TP 0.0279 0.03708 -0.3912 0.30209 -0.3632 0.32715
∆FP 0.0426 0.06289 -0.3907 0.26829 -0.1558 0.22396
∆TN -0.0426 0.06289 0.3907 0.26829 0.1558 0.22396
∆FN -0.0279 0.03708 0.3912 0.30209 0.3632 0.32715

kappa

∆TP 0.0229 0.03408 -0.1894 0.20785 -0.1276 0.17602
∆FP 0.0223 0.04825 -0.3356 0.21074 -0.2744 0.20478
∆TN -0.0223 0.04825 0.3356 0.21074 0.2744 0.20478
∆FN -0.0229 0.03408 0.1894 0.20785 0.1276 0.17602
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Table D.2: Statistics about the 100 revised norms selected by different metrics in the case
of weakening. The values in the table average the 100 independent revisions. Values for
TP, FP, TN and FN are the percentage w.r.t. the total number of traces (i.e. 1500) in the
dataset.

metric TP FP TN FN precision recall acc F1 mcen* kappa

random

M 0.5075 0.4793 0.007 0.0061 0.5139 0.934 0.5146 0.6158 0.7261 0.0122
SD 0.28146 0 0.01926 0.01305 0.28632 0.20256 0.27692 0.32326 0.14848 0.07022
Min 0 0 0 0 0 0 0 0 0.38 -0.09
Q1 0.3679 0.3473 0 0 0.376 0.9748 0.3723 0.5405 0.6662 -0.0027
Q2 0.6262 0.3738 0 0.0007 0.6262 0.999 0.6262 0.7702 0.6854 0
Q3 0.6475 1 0.004 0.0038 0.6491 1 0.6475 0.786 0.8013 0

Max 0.99 1 0.13 0.08 1 1 0.99 1 1 0.51

acc

M 0.5101 0.451 0.0353 0.0035 0.5163 0.9185 0.5455 0.6189 0.7198 0.0265
SD 0.28462 0.23752 0.05991 0.00773 0.28757 0.23666 0.2371 0.32567 0.1092 0.08852
Min 0 0 0 0 0 0 0.05 0 0.49 -0.04
Q1 0 0.3234 0 0 0.3775 0.983 0.3901 0.5374 0.6841 0
Q2 1 0.3738 0 0 0.6262 1 0.6262 0.7702 0.6854 0
Q3 0.6424 0.5903 0.0475 0.0025 0.6598 1 0.6608 0.7903 0.7802 0.0009

Max 1 0.95 0.25 0.04 1 1 1 1 0.97 0.74

F1

M 0.5115 0.4675 0.0189 0.0022 0.5165 0.9836 0.5304 0.6198 0.7393 0.0258
SD 0.28367 0.26431 0.03818 0.0056 0.28683 0.07379 0.26297 0.32454 0.12533 0.08122
Min 0 0 0 0 0 0.33 0 0 0.5 -0.01
Q1 0.3806 0.3265 0 0 0.3806 0.9983 0.3806 0.5512 0.6845 0
Q2 0.6262 0.3738 0 0 0.6262 1 0.6262 0.7702 0.6854 0
Q3 0.6466 0.6194 0.01 0.0007 0.6576 1 0.6608 0.7903 0.837 0.0009

Max 0.99 1 0.15 0.03 1 1 1 1 1 0.67

mcen*

M 0.5134 0 0.0004 0.0003 0.5138 0.9883 0.5137 0.6188 0.7638 0.0089
SD 0.28469 0 0.00128 0.00088 0.28508 0.07168 0.28493 0.32419 0.12759 0.06801
Min 0 0 0 0 0 0.33 0 0 0.64 -0.01
Q1 0.3806 0.3473 0 0 0.3806 1 0.3806 0.5512 0.6854 0
Q2 0.6262 0 0 0 0.6262 1 0.6262 0.7702 0.6854 0
Q3 0.6493 1 0 0 0.6526 1 0.6525 0.7897 0.8387 0

Max 0.99 1 0.01 0 1 1 1 1 1 0.67

kappa

M 0.5084 0.4657 0.0207 0.0053 0.5175 0.9797 0.5291 0.6188 0.7257 0.0327
SD 0.28051 0.26632 0.03854 0.01277 0.28792 0.07442 0.26141 0.32364 0.13827 0.0946
Min 0 0 0 0 0 0.33 0 0 0.4 -0.01
Q1 0.3806 0 0 0 0.3806 0.9956 0.3806 0.5512 0.6831 0
Q2 0.6262 0.3738 0 0 0.6262 1 0.6262 0.7702 0.6854 0
Q3 0.6424 0.6194 0.0278 0.0012 0.6598 1 0.6608 0.7903 0.8345 0.0009

Max 0.99 1 0.15 0.07 1 1 1 1 1 0.7
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Table D.3: Statistics about the 100 revised norms selected by different metrics in the case
of strengthening. The values in the table average the 100 independent revisions. Values for
TP, FP, TN and FN are the percentage w.r.t. the total number of traces (i.e. 1500) in the
dataset.

metric TP FP TN FN precision recall acc F1 mcen* kappa

random

M 0.171 0.0856 0.4007 0.3426 0.8188 0.3028 0.5718 0.2774 0.7001 0.1047
SD 0.24836 0.16569 0.27568 0.28884 0.31974 0.39134 0.25751 0.37662 0.19619 0.28704
Min 0 0 0 0 0 0 0.02 0 0.02 -0.75
Q1 0 0 0.2693 0.0052 0.6499 0 0.3736 0 0.6474 0
Q2 0 0 0.3738 0.3221 1 0.0011 0.5341 0 0.708 0
Q3 0.4883 0.04 0.4438 0.6262 1 0.7819 0.8681 0.7659 0.7844 0.0073

Max 0.92 0.73 1 0.98 1 1 1 1 1 0.77

acc

M 0.3441 0.0828 0.4035 0.1696 0.8521 0.5371 0.7476 0.5502 0.6187 0.2538
SD 0.25011 0.13131 0.3316 0.1701 0.22326 0.3725 0.19165 0.36841 0.24033 0.32945
Min 0 0 0 0 0 0 0.37 0 0.09 -0.23
Q1 0 0 0.1642 0.004 0.6552 0.0161 0.6224 0 0.4852 0
Q2 0.4938 0 0.3738 0.1319 1 0.7156 0.7539 0.765 0.6474 0.0015
Q3 0.5012 0.1319 0.5738 0.2644 1 0.7894 0.8688 0.8823 0.6895 0.7369

Max 0.92 0.39 1 0.62 1 1 1 1 1 0.77

F1

M 0.3531 0.1719 0.3144 0.1606 0.6815 0.6379 0.6675 0.5627 0.5457 0.2472
SD 0.24004 0.19223 0.228 0.16351 0.3576 0.30946 0.18867 0.34467 0.22504 0.33727
Min 0 0 0 0 0 0 0.24 0 0.07 -0.27
Q1 0.0766 0 0.1537 0.0015 0.5316 0.4137 0.4995 0.2244 0.3816 -0.0009
Q2 0.4938 0.0679 0.3564 0 0.8076 0.7567 0.6529 0.7643 0.6474 0.0468
Q3 0.5012 0.3707 0.3807 0 1 0.8 0.8681 0.8823 0.6835 0.7368

Max 0.92 0.76 1 0.62 1 1 1 0.96 1 0.77

mcen*

M 0.0942 0.0527 0.4336 0.4194 0.9249 0.1629 0.5279 0.1279 0.8006 0.0091
SD 0.22804 0.1313 0.31776 0.31942 0.20434 0.36455 0.27403 0.29611 0.10896 0.07837
Min 0 0 0 0 0 0 0.02 0 0.42 -0.11
Q1 0 0 0.2538 0.004 1 0 0.3543 0 0.7615 0
Q2 0 0 0.3738 0.6262 1 0 0.3738 0 0.7672 0
Q3 0 0 0.5901 0.6457 1 0 0.6456 0 0.8546 0

Max 0.92 0.39 1 0.98 1 1 1 1 1 0.75

kappa

M 0.2961 0.1077 0.3786 0.2176 0.7942 0.5375 0.6747 0.4758 0.6525 0.2704
SD 0.26073 0.18551 0.25057 0.22894 0.32691 0.38473 0.21607 0.39982 0.177 0.31679
Min 0 0 0 0 0 0 0.02 0 0.18 -0.11
Q1 0.0008 0 0.24 0.004 0.6999 0.0041 0.4995 0.0041 0.646 0
Q2 0.4752 0.0007 0.3738 0.1319 0.999 0.7182 0.6949 0.7566 0.655 0.0958
Q3 0.4943 0.1174 0 0.3095 1 0.7894 0.8681 0.8823 0.7301 0.7369

Max 0.92 0.76 1 0.98 1 1 1 0.96 1 0.77
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Table D.4: Statistics about the 100 revised norms selected by different metrics in the case
of alteration. The values in the table average the 100 independent revisions. Values for
TP, FP, TN and FN are the percentage w.r.t. the total number of traces (i.e. 1500) in the
dataset.

metric TP FP TN FN precision recall acc F1 mcen* kappa

random

M 0.2671 0.26 0.2263 0.2466 0.6199 0.5303 0.4934 0.378 0.6586 0.0833
SD 0.29593 0.32215 0.2199 0.2779 0.39698 0.42853 0.27802 0.39086 0.23744 0.30645
Min 0 0 0 0 0 0 0 0 0.03 -0.72
Q1 0 0 0.0002 0.0015 0.2135 0 0.3399 0 0.6328 -0.0027
Q2 0.0833 0.0766 0.2412 0.1319 0.7099 0.7276 0.4862 0.2081 0.6854 0
Q3 0.5394 0.3738 0.3738 0.5975 1 0.9704 0.7087 0.785 0.7668 0.074

Max 0.98 1 1 0.98 1 1 1 0.99 1 0.77

acc

M 0.4374 0.1072 0.3792 0.0763 0.858 0.6702 0.8166 0.6414 0.6776 0.3041
SD 0.28307 0.14685 0.35122 0.08277 0.2149 0.38168 0.13299 0.36872 0.19817 0.33154
Min 0 0 0 0 0 0 0.55 0 0.16 -0.11
Q1 0.0662 0 0.0228 0.0007 0.7244 0.6535 0.695 0.589 0.6429 0
Q2 0.4943 0 0.3734 0.0486 1 0.7894 0.8681 0.8106 0.654 0.1846
Q3 0.6248 0.2243 0.5114 0.1319 1 0.9966 0.8822 0.8823 0.6965 0.7369

Max 0.99 0.4 1 0.41 1 1 1 1 1 0.77

F1

M 0.4665 0.2902 0.1962 0.0472 0.6415 0.904 0.6627 0.6598 0.6869 0.2798
SD 0.2725 0.28965 0.19609 0.06063 0.37048 0.11874 0.24913 0.34117 0.1249 0.33673
Min 0 0 0 0 0 0.33 0 0 0.24 -0.01
Q1 0.3481 0.0007 0 0 0.4099 0.7896 0.5592 0.5815 0.6474 0
Q2 0.495 0.2825 0.1142 0.002 0.7023 0.988 0.7016 0.8149 0.6753 0.0076
Q3 0.6317 0.4348 0.3738 0.1306 0.9987 1 0.8681 0.8823 0.6987 0.7368

Max 0.99 1 0.52 0.15 1 1 1 1 1 0.77

mcen*

M 0.1222 0.2876 0.1987 0.3914 0.7123 0.4053 0.321 0.1531 0.8231 0.008
SD 0.24839 0.40039 0.19016 0.34061 0.4005 0.48937 0.22127 0.29789 0.10373 0.06789
Min 0 0 0 0 0 0 0 0 0.68 0
Q1 0 0 0 0 0.4099 0 0.1727 0 0.7668 0
Q2 0 0 0.2334 0.6262 1 0 0.3651 0 0.7771 0
Q3 0.0057 0.5901 0.3738 0.6457 1 1 0.3738 0.0113 0.9017 0

Max 0.99 1 1 0.98 1 1 1 1 1 0.67

kappa

M 0.3579 0.1689 0.3174 0.1557 0.7358 0.7125 0.6753 0.5786 0.6259 0.3382
SD 0.25972 0.25346 0.21444 0.18561 0.3629 0.30471 0.23366 0.37738 0.19493 0.32041
Min 0 0 0 0 0 0 0 0 0.16 0
Q1 0.0118 0 0.1479 0.0015 0.6262 0.7057 0.5408 0.0941 0.6047 0.0013
Q2 0.4943 0.018 0.3663 0.1319 0.9479 0.7894 0.7169 0.7723 0.6474 0.3056
Q3 0.5097 0.3656 0.379 0.1749 1 0.9185 0.8681 0.8823 0.6974 0.7369

Max 0.99 1 1 0.98 1 1 1 1 1 0.77
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Mylopoulos, and Munindar P Singh. Protos: Foundations for engineering inno-
vative sociotechnical systems. In Proceedings of the 22nd IEEE International
Requirements Engineering Conference, pages 53–62, 2014.

[82] George Christelis and Michael Rovatsos. Automated norm synthesis in an agent-
based planning environment. In Proceedings of the 8th International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS 2009, Volume
1, pages 161–168, 2009.

[83] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Workshop on Logics
of Programs, pages 52–71, 1981.

[84] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and
Helmut Veith. Model checking. MIT press, 2018.
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[226] Luis Hernán Garćıa Paucar, Nelly Bencomo, and Kevin Kam Fung Yuen. Jug-
gling preferences in a world of uncertainty. In Proceedings of the 25th IEEE
International Requirements Engineering Conference, RE 2017, pages 430–435,
2017.

[227] James L Peterson. Petri nets. ACM Computing Surveys (CSUR), 9(3):223–252,
1977.

[228] Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification
via testers. In Proceedings of the 14th International Symposium on Formal
Methods, FM 2006, pages 573–586, 2006.
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[260] Vı́tor Estêvão Silva Souza, Alexei Lapouchnian, William N. Robinson, and John
Mylopoulos. Awareness requirements for adaptive systems. In Proceedings of the
2011 ICSE Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2011, pages 60–69, 2011.

[261] David J Spiegelhalter, A Philip Dawid, Steffen L Lauritzen, and Robert G
Cowell. Bayesian analysis in expert systems. Statistical science, pages 219–247,
1993.

[262] Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro
Nakayama, Katsuhiro Nishinari, Shin-ichi Tadaki, and Satoshi Yukawa. Traffic
jams without bottlenecks—experimental evidence for the physical mechanism
of the formation of a jam. New journal of physics, 10(3):033001, 2008.

246



BIBLIOGRAPHY

[263] Alistair Sutcliffe and Pete Sawyer. Requirements elicitation: Towards the un-
known unknowns. In Proceedings of the 21st IEEE International Requirements
Engineering Conference, RE 2013, pages 92–104, 2013.

[264] Alistair G Sutcliffe. Requirements analysis for socio-technical system design.
Information Systems, 25(3):213–233, 2000.

[265] Bas Testerink, Mehdi Dastani, and Nils Bulling. Distributed controllers for
norm enforcement. In Proceedings of the 22nd European Conference on Arti-
ficial Intelligence, ECAI 2016 - Including Prestigious Applications of Artificial
Intelligence PAIS 2016, pages 751–759, 2016.

[266] Alaa Tharwat. Classification assessment methods. Applied Computing and
Informatics, 2018.

[267] Nick A. M. Tinnemeier, Mehdi Dastani, John-Jules Ch. Meyer, and Leendert
W. N. van der Torre. Programming normative artifacts with declarative obliga-
tions and prohibitions. In Proceedings of the 2009 IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology, IAT 2009, pages 145–152,
2009.

[268] Maksim Tsvetovat and Kathleen M Carley. Modeling complex socio-technical
systems using multi-agent simulation methods. KI, 18(2):23–28, 2004.

[269] Kagan Tumer, Zachary T. Welch, and Adrian K. Agogino. Aligning social
welfare and agent preferences to alleviate traffic congestion. In Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2008), Volume 2, pages 655–662, 2008.

[270] Raimo Tuomela and Maj Bonnevier-Tuomela. Norms and agreement. Social
Ontology in the Making, page 283, 2020.

[271] Ed van Akkeren, Lars Baumann, Jan Jaap Cannegieter, Colin Hood, Peter
Hruschka, Matthias Lampe, Ellen Leutbecher, Hans van Loenhoud, Piet de Roo,
Stefan Staal, et al. Handbook of requirements modeling according to the ireb
standard. IREB International Requirements Engineering Board eV, 2016.

[272] Johan van Benthem and Fenrong Liu. Dynamic logic of preference upgrade.
Journal of Applied Non-Classical Logics, 17(2):157–182, 2007.

[273] Wil Van Der Aalst, Arya Adriansyah, and Boudewijn Van Dongen. Causal
nets: a modeling language tailored towards process discovery. In International
conference on concurrency theory, pages 28–42. Springer, 2011.

[274] Linda van der Gaag, Silja Renooij, and Veerle Coupé. Sensitivity analysis of
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1 Summary

Modern software systems execute in increasingly dynamic settings, and their ob-
jectives are in constant motion. In order to preserve their adequacy and effective-
ness within an evolving environment, software and its requirements need to adapt
to change. In this dissertation, we propose a data-driven supervision framework for
the automatic run-time revision of requirements, so to ensure the achievement of
system-level objectives in dynamic settings.

We focus on the supervision of multi-agent systems (MASs), collections of inter-
acting autonomous agents, such as autonomous cars on smart roads. In multi-agent
systems, agents’ internals are typically unknown to the other agents and to the MAS
designer. Norms are often employed as a means for controlling and coordinating the
agents’ behavior without over-constraining their autonomy. We use norms to charac-
terize requirements for the behavior of the agents in the system, and we use sanctions
as a deterrence mechanism to discourage agents from violations.

The proposed supervision framework employs a general architecture for system
self-adaptation, described as a closed control-loop. At run-time, the system is mon-
itored and execution data is collected in different operating contexts. The collected
data is used to learn statistical correlations between the achievement of the system’s
objectives and the satisfaction of the requirements in the different operating contexts.
The learnt information is applied to automatically assess the validity of the assump-
tions made at design-time, and to automatically synthesise new requirements and
sanctions when there is evidence that the current ones are not effective.
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1 Samenvatting

Moderne softwaresystemen opereren in steeds dynamischere contexten met constant
veranderende doelen. Om de effectiviteit te garanderen zouden zowel de eisen aan
de software als de software zelf in runtime aangepast moeten kunnen worden. Dit
proefschrift presenteert een raamwork voor datagestuurde supervisie van operationele
softwaresystemen. Het supervisiesysteem past softwaresystemen in runtime aan en
daarmee garandeert de realisatie van de systeemdoelen in dynamische contexten.

Wij richten ons op de supervisie van multi-agent systemen (MAS’en). De softw-
areagenten in multi-agent systemen, zoals zelfrijdende auto’s op slimme wegen, zijn
doorgaans onbekend voor andere softwareagenten en voor de ontwikkelteams van het
MAS. Normen worden vaak ingezet om het gedrag van agenten te observeren en te
coördineren zonder hun autonomie te beperken. Wij gebruiken normen om het ge-
wenste gedrag van de softwareagenten te karakteriseren en gebruiken sancties als een
mechanisme om softwareagenten te ontmoedigen deze normen te schenden.

Het supervisieraamwerk is gebaseerd op een generieke architectuur voor het aan-
passen van het systeem. Het operationele systeem wordt gemonitord en de obser-
vatiedata van verschillende actieve contexten worden verzameld. Deze data wordt
gebruikt om statistische correlaties tussen het bereiken van de systeemdoelen en de
mate waarin aan de eisen wordt voldaan in verschillende actieve contexten te leren.
Deze berekeningen maken het mogelijk om de validiteit van de ontwerpaannames te
testen en automatisch nieuwe eisen en sancties te genereren wanneer de huidige eisen
en sancties niet effectief lijken te zijn.
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03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with Au-

tonomous Products and Reconfigurable Manufacturing Machines
04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health Insurance Data

using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspective on Vari-

ation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter #anticipoint-

ment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees

264



SIKS DISSERTATION SERIES

13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social touch through
haptic technology

14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling Player Traits from
Video Game Behavior

15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Information Re-

trieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing: The Role of

Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming (A Play

on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines, with applications

to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond to human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social Robots: People’s

Preferences, Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Performance: A Moderated

Mediation Model of Social Innovation, and Enterprise Governance of IT”
30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation: A Model

of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-throughput

Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Framework that

Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and compressive

sensing methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human Control

in Relation to Emotions, Desires and Social Support For applications in human-aware support
systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental Processes and
a Smart Environment to Provide Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with applications on
ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics in Agile Re-

quirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling, Model-Driven

Development of Context-Aware Applications, and Behavior Prediction
04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in Data-Centric

Engineering Tasks
05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Information Seeking Pro-

cess
06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-Technical Sys-

tems
07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior change through

intelligent technology

265



SIKS DISSERTATION SERIES

11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collaborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and playing scenario-

based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the Spread of Behaviours,

Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous Telepresence

Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational Messages for

Behavior Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they make you

feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The ”K” in ”semantic web” stands for ”knowledge”: scaling semantics to the

web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A graph-based
approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for Assessing Class
Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases: Extracting Event
Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked Cultural Heritage

Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy efficiency in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behavioral Engage-

ment in MOOCs
12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior & Improving

Learning Outcomes in Massive Open Online Courses
15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Partially Observable

Environments
16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral Constraint (OCBC)

Models
17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts
18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human collective intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery and Design Pattern

Detection
22 Martin van den Berg (VU),Improving IT Decisions with Enterprise Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing Labeled Data for Natural

Language Processing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image description
26 Prince Singh (UT), An Integration Platform for Synchromodal Transport
27 Alessandra Antonaci (OUN), The Gamification Design Process applied to (Massive) Open

Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare airline pilots

for critical situations
29 Daniel Formolo (VU), Using virtual agents for simulation and training of social skills in safety-

critical circumstances

266



SIKS DISSERTATION SERIES

30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence in Games
33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artificial Neural Networks
34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network Features for Classifica-

tion of Epilepsy and PNES
35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning programming
36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OUN), Learning visually grounded and multilingual representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour
02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic Graphical

Models
03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language Understanding
04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Requirements Elicitation

- An Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for reusable game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital Humanities

Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMethods for Long-

Tail Entity Recognition Models
12 Ward van Breda (VU), Predictive Modeling in E-Mental Health: Exploring Applicability in

Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing Evolutionary

Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases
15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for Configurable Assessments

in Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feedback from Multimodal Expe-

riences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with Uncertainties:

Electricity Markets in Renewable Energy Systems
19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems
20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations
21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it could be
22 Maryam Masoud Khamis (RUN), Understanding complex systems implementation through a

modeling approach: the case of e-government in Zanzibar
23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to studying writing

processes using keystroke logging
24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling, human? Towards emotionally

supportive chatbots
25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based mixed-Integer

opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training complex skills

with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU), Learning better – From Baby to Better
32 Jason Rhuggenaath (TUE), Revenue management in online markets: pricing and online ad-

vertising
33 Rick Gilsing (TUE), Supporting service-dominant business model evaluation in the context of

business model innovation
34 Anna Bon (MU), Intervention or Collaboration? Redesigning Information and Communication

Technologies for Development

2021 01 Francisco Xavier Dos Santos Fonseca (TUD), Location-based Games for Social Interaction in
Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines:Integrating Social Practice Theory in
Agent-Based Models

267


	Introduction
	Motivation and Research Objectives
	Smart Road Scenarios
	Approach Overview and Contributions
	Thesis Outline
	Publications

	State of the Art
	Introduction
	Multi-Agent Systems
	Designing Software Systems
	Run-Time Supervision and Adaptation
	From Model-Driven to Data-Driven Revision
	Discussion

	A Framework for the Supervision of Autonomous Systems
	Introduction
	Background
	The CrowdNavExt Smart Traffic Simulator
	From Requirements Models to Bayesian Networks
	Design-Time Assumptions and Their Validation
	Automated Requirements Revision
	Evaluation
	Related Work
	Discussion and Future Work

	Data-Driven Run-Time Revision of Sanctions
	Introduction
	Related Work
	Normative Multi-Agent Systems
	Norm-based Supervision
	Norm Revision
	Experimentation
	Discussion
	Conclusions

	Data-Driven Revision of Conditional Norms with Deadlines
	Introduction
	Related Work
	Normative Multi-Agent Systems
	On the Complexity of Norm Revision
	DNR: A Heuristic for Approximate Norm Revision
	Experimentation
	Threats to Validity
	Conclusions

	Conclusion
	Answering the Research Questions
	Future Directions

	Properties of Rational Agents' Preferences
	Full Preferences of Four Types of Agents
	Obligation Synthesis is NP-complete
	Conditional Norms Revision Experimentation Data
	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae

