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Chapter 1

Introduction

1.1 Hypergeometric Functions

Hypergeometric functions appear as generalizations of classical func-
tions. Euler defined it as the following power series

2F1

(
a, b
c

z

)
=
∞∑
n=0

(a)n(b)n
(c)nn!

zn. (1.1)

Here (a)n = a · (a+ 1) · . . . · (a+n− 1) denoted the Pochhammer symbol.

It was noted by Euler that if we specialize the parameters a, b, c, we
can obtain elementary functions. For example, taking a = 1, b = 1, c = 1
in (1.1) gives us the standard geometric series

∑∞
n=0 z

n.

Taking a = 1, b = 1, c = 2 we see that the power series (1.1) is equal
to that of − ln(1 − z)/z. Taking other specializations, we can find many
more classical functions including sin, arcsin, arctan, . . ..

Gauss later published an article [Gau13] which studies the hypergeo-
metric power series in more detail. This is where he introduced the rank
2 differential equation

z(1− z)F ′′ + (c− (a+ b+ 1)z)F ′ + abF = 0. (1.2)

The hypergeometric function (1.1) is a solution to this differential equa-
tion. Due to the contributions of Gauss to hypergeometric functions, the
function (1.1) is often known as Gauss’ hypergeometric function.

Since then, mathematicians have studied several analogues and gener-
alizations of hypergeometric functions. These generalizations include the

1



2 Introduction

generalized hypergeometric functions of the type nFn−1, Appell’s hyper-
geometric functions F1, F2, F3, F4 [App80, App82], Horn’s hypergeomet-
ric functions G1, G2, G3, H1, H2, H3, H4, H5, H6, H7 [Hor89, Hor31] and
Lauricella’s hypergeometric functions FA, FB, FC , FD [Lau93].

As an example, the generalized hypergeometric function in one variable
takes the form

nFn−1

(
a1, . . . , an
b1, . . . , bn−1

z

)
=

∞∑
k=0

(a1)k(a2)k . . . (an)k
(b1)k(b2)k . . . (bn−1)kk!

zk. (1.3)

Appell’s hypergeometric functions and Horn’s hypergeometric func-
tions are two variable generalizations of (1.1). For example

F4

(
α, β
γ, γ′

x, y

)
=
∞∑
m=0

∞∑
n=0

(α)m+n(β)m+n

(γ)m(γ′)nm!n!
xmyn,

The Lauricella FC is a multivariable analogue of Appell’s F4 hypergeo-
metric function

FC

(
a, b

c1, . . . , cn
x1, . . . , xn

)
=

∞∑
m1=0

. . .

∞∑
mn=0

(a)m1+...+mn(b)m1+...+mnx
m1
1 . . . xmn

n

(c1)m1
. . . (cn)mn

m1! . . .mn!
.

Notice that taking n = 1 we simply obtain Gauss’ hypergeometric func-
tion, and taking n = 2 we get Appell’s F4.

All of these examples can be expressed in terms of A-hypergeometric
functions as introduced by Gelfand, Kapranov and Zelevinsky in a series
of papers [GGZ87, GKZ88, GKZ89, GKZ90]. This leads to a more general
framework for studying hypergeometric functions.

1.2 Monodromy

It was known to Gauss that hypergeometric functions are multival-
ued. This problem can now be described in terms of monodromy. Mono-
dromy describes the behaviour of solutions to linear differential equa-
tions under analytic continuation. In 1857, Riemann was the first to
fully determine the monodromy group for Gauss’ hypergeometric func-
tions [Rie57]. Over the years, many more monodromy groups have been
determined for generalizations of hypergeometric functions. The mono-
dromy of the one-variable case nFn−1 can be found through Barnes in-
tegrals as defined in [Bar07]. But an easier method to find its mono-
dromy is through Levelt’s theorem in [BH89]; Monodromy of the mul-
tivariable Appell’s F1 and its generalization Lauricella’s FD are found
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in [Pic81, Ter83, DM86, Sas77]; Appell’s F2 and its generalization Lauri-
cella’s FA in [Kat00, MY14]; Appell’s F4 and its generalization Lauricella’s
FC in [Tak80, Kan81, HU08, Got14]. At the time of writing, no general
approach to finding the full monodromy group of an A-hypergeometric
system is known.

In [Beu16], Beukers gives a method of finding a subgroup of the full
monodromy group of A-hypergeometric functions using Mellin-Barnes in-
tegral solutions of the associated differential system. This approach, how-
ever, only works under very restrictive conditions. These conditions are
necessary to find a Mellin-Barnes basis of solutions. It is with respect to
the basis of Mellin-Barnes solutions that we can find monodromy groups.
In Chapter 2, we will introduce A-hypergeometric functions and Beukers’
method to find monodromy groups.

The goal of Chapter 3 is to give an explicit construction of an invariant
Hermitian form over such groups. In particular, these groups are mono-
dromy groups with respect to a Mellin-Barnes basis constructed through
Beukers’ method. The main theorem of Chapter 3, Theorem 3.1.1, gives
an explicit construction of this Hermitian form.

The construction of this Hermitian matrix does not explicitly use
Mellin-Barnes integrals. This makes it possible to extend Beukers’ con-
struction without assuming the existence of Mellin-Barnes bases. Thus
we want to construct a matrix group that has an invariant Hermitian
form following the construction of Theorem 3.1.1. We call this invariant
Hermitian form the virtual Hermitian form. It is often the case that the
constructed matrix group, which we call the virtual monodromy group, is
a subgroup of the full monodromy group. In Chapter 4 we give conditions
and algorithms to determine whether such a virtual extension exists.

Chapter 5 is concerned with the signature of this Hermitian form. In
Beukers [Beu10] a combinatoric criterion is given to determine whether
all solutions of an A-hypergeometric system are algebraic. This criterion
is based on the properties of apexpoints. In Chapter 5 we connect this
criterion to the definiteness of the Hermitian form. The main theorem
of this chapter, Theorem 5.2.1, is purely combinatoric and only involves
apexpoints. Corollary 5.4.2 then gives a combinatoric criterion for the
definiteness of the Hermitian form.

1.3 Factorizations

In Chapter 6 we turn to relations between classical hypergeometric
functions. In 1933, Bailey [Bai33] published an identity where Appell’s
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F4 factors into two Gauss hypergeometric function.

F4

(
a, b

c, a+ b− c+ 1
x(1− y), y(1− x)

)
= 2F1

(
a, b
c

x

)
2F1

(
a, b

a+ b− c+ 1
y

)
.

A similar identity is known, where Appell’s F2 decomposes into two Gauss
hypergeometric functions [Zud19, Vid09]. It reads

F2

(
a + b− 1

2
, a, b

2a, 2b

4u(1− u)(1− 2v)

(1− 2uv)2
,

4v(1− v)(1− 2u)

(1− 2uv)2

)

= (1− 2uv)−1+2a+2b
2F1

(
a + b− 1

2
, a

2a
4u(1− u)

)
2F1

(
a + b− 1

2
, b

2b
4v(1− v)

)
.

Thus we can ask ourselves the following question. Given a solution H of
a rank 4 hypergeometric system of Horn type, can we find a specialization
of parameters and variables such that H factors into a product of two
Gauss hypergeometric functions? We show that if the monodromy group
of the hypergeometric system is a subgroup of the group of orthogonal
similitudes GO(4), then a Bailey-type factorization exists. We will give
an algorithm that tells us which specializations of the parameters have
this property. And for classical hypergeometric systems of rank 4, we give
a table of specializations for which the monodromy group is contained in
GO(4). After identifying these specializations, we will construct Bailey-
type factorizations for Horn’s hypergeometric functions H1, H4 and H5.

The first Horn function that we address is H4. We show that a two-
dimensional specialization of the parameters gives the following factoriz-
ation

H4

(
q0, q1

1 + q0 − q1, 2q1

(
s2 − 1

)(
t2 − 1

)
4 (st− 1)2 ,

2st

st− 1

)

= (1− st)q0 2F1

(
1
2q0 + 1

2 ,
1
2q0

q0 − q1 + 1
1− s2

)
2F1

(
1
2q0 + 1

2 ,
1
2q0

q1 + 1
2

t2
)
.

This is an identity as powerseries in (s, t) = (1, 0). We show that a one-
dimensional specialization of the parameters on the Horn function H1

gives the following Bailey-type factorization

H1

(
q0 − 1

2 , q0,
1
2

2q0
φ(−1 + 2uv, 1 + 2v)

)
=
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(1 + v − uv − 2uv2)2q0

(
1− u− 2uv

(1 + v)(1 + 2v + 2v2)

)2q0−1

× 2F1

(
1− q0,

3
4 − q0

2− 2q0
− 8v(1 + v)(1 + 2v + 2v2)

)
× 2F1

(
q0 − 1

4 , q0

2q0
8uv(1− uv)(1− 2uv + 2u2v2)

)
,

where

φ(s, t) =

(
(s4 − 1)(t4 − 1)

(s2t2 − 1)2
,

(
st+ 1

st− 1

)2
)
.

This is an identity in powerseries in (u, v) = (0, 0).
And finally, we show that under a one-dimensional specialization of

the parameters, the Horn function H5 factors as

H5

(
q, q − 1

2
2q

x(y − 1)2

4(3xy − 1)2
,
4(xy2 + 1)(x+ 1)y

(3xy − 1)(y − 1)2

)
=

(1−3xy)q(1−y)2q−1
2F1

(
3
2q −

1
2 ,

3
2q

q + 1
2

− xy2

)
2F1

(
1
2q,

1
2q + 1

2
3
2 − q

− x
)
.
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Chapter 2

Preliminaries

2.1 The A-hypergeometric system

In this section, we want to define A-hypergeometric functions. This
chapter will not give a thorough introduction into A-hypergeometric func-
tions. We will only discuss the aspects of A-hypergeometric functions that
are needed in the context of this thesis. For a more thorough introduc-
tion into A-hypergeometric functions we refer to the notes from Beukers
[Beu11], the notes from Stienstra [Sti07] or the original papers from Gel-
fand, Kapranov and Zelevinsky [GGZ87, GKZ88, GKZ89, GKZ90]. To
motivate the definition of an A-hypergeometric function, we shall first
start with an example.

Recall the classical Gauss hypergeometric function.

2F1

(
a, b
c

x

)
=

∞∑
n=0

(a)n(b)n
(c)nn!

xn. (2.1)

Here (a)n denotes the Pochhammer symbol, defined as

(a)n = a(a+ 1) . . . (a+ n− 1).

In terms of the Γ-function the Pochhammer symbol can be written as
(a)n = Γ(a+ n)/Γ(a). For reasons of convenience, we will assume a, b, c 6∈
Z. We can rewrite (2.1) as

2F1

(
a, b
c

x

)
=

Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(n+ 1)
xn. (2.2)

Recall Euler’s reflection formula

Γ(z)Γ(1− z) = sin(πz).

7



8 Preliminaries

Using Euler’s reflection formula we can now move the factor Γ(a+n) and
Γ(b+n) from the numerator to the denominator in (2.2). Because a, b 6∈ Z
this will not cause any problems. So we have the following proportionality
relation

2F1

(
a, b
c

x

)
∝
∞∑
n=0

xn

Γ(1− a− n)Γ(1− b− n)Γ(c+ n)Γ(n+ 1)
.

Here proportionality means that the left-hand side and right-hand side of
the equation differ by a constant, non-zero factor. Now replace x by z3z4

z1z2
.

We get

2F1

(
a, b
c

z3z4

z1z2

)
∝
∞∑
n=0

z−n1

Γ(1− a− n)
· z−n2

Γ(1− b− n)
· zn3
Γ(c+ n)

· zn4
Γ(n+ 1)

.

Now multiply the right hand side by z−a1 z−b2 zc−1
3 . We get

∞∑
n=0

z−a−n1

Γ(1− a− n)
· z−b−n2

Γ(1− b− n)
· z

c−1+n
3

Γ(c+ n)
· zn4

Γ(n+ 1)
. (2.3)

Consider the row vector γ = (−a,−b, c−1, 0) and consider the row vector
l = (−1,−1, 1, 1) then we can rewrite (2.3) as

∞∑
n=0

4∏
j=1

z
−γj+ljn
j

Γ(1− γj + ljn)
.

Since 1
Γ(n+1) is zero when n ∈ Z≤−1, we can extend this sum to a summa-

tion over the integer lattice L generated by the row vector (−1,−1, 1, 1).
We obtain ∑

l∈L

4∏
j=1

z
−γj+lj
j

Γ(1− γj + lj)
.

It is more or less clear how to generalize this series expansion. Fix a
positive integer N and let γ ∈ RN . Let L ⊂ ZN be a lattice of rank d
which satisfies the following conditions.

1. L is contained in the hyperplane
∑N

i=1 li = 0.

2. L is saturated, i.e (L⊗ R) ∩ ZN = L.

Now define

ΦL
γ :=

∑
l∈L

N∏
j=1

z
γj+lj
j

Γ(γj + lj + 1)
.
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For the moment this is a formal series expansion. Notice that ΦL
γ = ΦL

γ+l

for any l ∈ L. Let r = N − d and let A be an r ×N -matrix with integer
entries such that L is the integer kernel of A. In our example we can
choose

A =

−1 0 0 1
0 −1 0 1
0 0 1 −1

 .

It is this ”A” after which the A-hypergeometric functions are named.
Let us define α = Aγᵀ. Notice that A(γ + l)ᵀ = α for any l ∈ L ⊗ R.
In our example the parameter vector reads α = (a, b, c − 1)ᵀ. We call
this the parameter vector of the A-hypergeometric system we will define.
Because L is contained in the hyperplane

∑N
i=1 li = 0, there is a linear

form h : Rr → R where h(a) = 1 for all column vectors a of A.
In this thesis we will also speak about a B-matrix. This is simply an
integer d×N matrix whose rows form a Z-basis of L.
It turns out that ΦL

γ satisfies a system of partial differential equations.
First of all, let m = (m1, . . . ,mN ) be an integer row vector such that
m · l = 0 for all l ∈ L. Then, for any λ ∈ C∗, one easily sees that

ΦL
γ(λm1z1, . . . , λ

mN zN ) = λm·γΦL
γ(z1, . . . , zN ).

Take the derivate with respect to λ and set λ = 1. Then we see that ΦL
γ

is annihilated by the differential operator

m1z1∂z1 + · · ·+mNzN∂zN −m · γ.

In particular, if we let m be the i-th row of A = (Aij) we see that ΦL
γ is

annihilated by the Euler operator

Zi := Ai1z1∂z1 + · · ·+AiNzN∂zN − αi.

There is a second set of differential equations which arises from the obser-
vation

∂λ1z1 · · · ∂
λN
zN

ΦL
γ = ΦL

γ−λ

for any λ = (λ1, . . . , λN ) ∈ ZN≥0. Let now λ ∈ L and write λ = λ+ − λ−,
where λ± are integer vectors with non-negative entries. Then,

∂λ
+

ΦL
γ = ΦL

γ−λ+ = ΦL
γ−λ− = ∂λ

−
ΦL
γ .

We use the notation ∂λ = ∂λ1z1 · · · ∂
λN
zN

and the second step follows from
the invariance of ΦL

γ when γ is shifted over vectors in L. Thus we find
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that ΦL
γ is annihilated by the so-called box operators

�λ :=
∏
λi>0

∂λizi −
∏
λi<0

∂−λizi

for all λ ∈ L.
The A-hypergeometric system HA(α) is the system of differential

equations generated by

1. The Euler operators

Zj = Aj1∂z1 + · · ·+AjN∂zN − αj , j = 1, . . . , N − d. (2.4)

2. The box operators

�λ = ∂λ
+ − ∂λ− , λ ∈ L. (2.5)

An A-hypergeometric function is a holomorphic function in z1, . . . , zN
which satisfies the equations in the A-hypergeometric system.

Either A together with a parameter vector α or B with γ/L is enough
to encode all the information about the A-hypergeometric system. Some-
times we prefer to use A and sometimes we prefer its so called Gale dual
B. The columns of A are denoted by a1, . . . ,aN and the columns of B
are denoted by b1, . . . , bN .

Example 2.1.1. The hypergeometric function 2F1

(
a, b
c

z

)
can be ob-

tained from solutions of theA-hypergeometric system whereB = (1 1−1−1),
z = x1x2

x3x4
and parameter vector γ = (−a,−b, c−1, 0). To encode the same

A-hypergeometric system using the matrix A and parameter vector α we
can use

A =

−1 0 0 1
0 −1 0 1
0 0 1 −1

 , α = (a, b, c− 1)ᵀ.

Example 2.1.2. Appell’s F4 is the hypergeometric function defined by

F4

(
a, b
c, c′

x, y

)
=

∞∑
m=0

∞∑
n=0

(a)m+n(b)m+n

(c)m(c′)nm!n!
xmyn.

Write out the Pochhammer symbols and use Euler’s reflection formula on
the Γ-functions appearing in the numerator of each summand. Then up
to a constant factor we get

∞∑
m=0

∞∑
n=0

xmyn

Γ(1− a−m− n)Γ(1− b−m− n)Γ(c+m)Γ(c′ + n)Γ(m+ 1)Γ(n+ 1)
.
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Substitute x = z3z5
z1z2

and y = z4z6
z1z2

and premultiply with z−a1 z−b2 zc−1
3 zc

′−1
4

to get
∞∑

m=0

∞∑
n=0

z−a−m−n
1

Γ(1− a−m− n)
· z−b−m−n

2

Γ(1− b−m− n)
· z

c−1+m
3

Γ(c + m)
· z

c′−1+n
4

Γ(c′ + n)
· zm5
Γ(m + 1)

· zn6
Γ(n + 1)

.

Let L be the lattice generated by (−1,−1, 1, 0, 1, 0) and (−1,−1, 0, 1, 0, 1)
and let γ = (−a,−b, c− 1, c′ − 1, 0, 0) then this summation equals ΦL

γ . In

other words Appell’s hypergeometric function F4

(
a, b
c, c′

x, y

)
can be

obtained from the solutions of the A-hypergeometric system where

B =

(
−1 −1 1 0 1 0
−1 −1 0 1 0 1

)
,

γ = (−a,−b, c− 1, c′ − 1, 0, 0).

The A-hypergeometric systems we are interested in are those that are
irreducible and only depend on α modulo Z. We can achieve this by
assuming the system is non-resonant.

Definition 2.1.3. An A-hypergeometric system HA(α) is called non-
resonant if the boundary of the cone C(A) := 〈a1, . . . ,aN 〉R≥0

does not
intersect the translated lattice α+ Zr.

Theorem 2.1.4 ([GKZ90, Theorem 2.11]). A non-resonant A-hypergeomet-
ric system HA(α) is irreducible.

For reasons that will become clear in the next section we also want α
to be totally non-resonant.

Definition 2.1.5. An A-hypergeometric system HA(α) is called totally
non-resonant if for each r − 1-independent subset {aj1 , . . . ,ajr−1} of A
we have that 〈aj1 , . . . ,ajr−1〉R≥0

does not intersect the lattice α+ Zr.

We will always assume that α is chosen totally non-resonant in the
remainder of this thesis unless otherwise stated.

Theorem 2.1.6 ([Ado94, Corollary 5.20]). Let Q(A) be the convex hull
of the points a1, . . . ,aN . If the system HA(α) is non-resonant then the
holonomic rank of HA(α) is equal to Vol(Q(A)). Here the volume Vol is
normalized such that a r − 1-simplex has volume 1.

Let us denote by D the holonomic rank of the A-hypergeometric sys-
tem. Therefore when the system is non-resonant, then D = Vol(Q(A)).
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2.2 Power series solutions

Recall the formal powerseries expansion

ΦL
γ =

∑
l∈L

zγ+l

Γ(γ + l+ 1)
. (2.6)

Here and throughout this thesis we use the convention that for any vec-
tor v = (v1, . . . , vN ) the entity Γ(v) is written as

∏N
i=1 Γ(vi) and zv =∏N

i=1 z
vi
i . And here 1 is the ones-vector. For a scalar c and vector v we let

cv = (cv1 , . . . , cvN ). We have seen in the previous section that ΦL
γ satisfies

the A-hypergeometric system HA(α) with α = Aγᵀ. Notice that these
equations do not change if we shift γ by a vector from L⊗R. Hence we get
in principle an infinite dimensional space of formal solutions. However, we
shall only be interested in those shifts of γ that yield Puiseux series solu-
tions with a domain of convergence. They belong to the D-dimensional
solution space mentioned in Theorem 2.1.6.

The question is now how to determine these shifts. To answer this
question we will use that 1/Γ(x) is 0 if x ∈ Z≤0. Another observation
is that if we let a basis for L be l1, . . . , ld, then even though we have N
variables z1, . . . , zN , effectively we are only using x1 = zl1 , . . . , xd = zld .
In this way we can rewrite ΦL

γ as

Φγ = zγ
∑
k∈Zd

xk

Γ(γ + kB + 1)
,

where B is the d×N -matrix with li as its i-th row and k is considered a
row-vector.

To describe the shifts of γ we fix γ0 such that α = Aγᵀ0 and paramet-
rize all shifts by γ0 +µB, where µ ∈ Rd is considered as row vector. Since
Φγ+l = Φγ for all l ∈ L, we can restrict µ to the domain [0, 1)d. We can
now rewrite Φγ = zγ0Ψµ where

Ψµ =
∑
k∈Zd

xk+µ

Γ(γ0 + (k + µ)B + 1)
.

We denote the columns of B by b1, . . . , bN .
Fix I ⊂ {1, 2, . . . , N} with cardinality d and bi, i ∈ I linearly independent.
We call such a set a cotriangle, the reason being that the vectors ai, i ∈ Ic
span a simplex (triangle) in the set A. Then choose µ ∈ [0, 1)d such that
γ0 + µB has integer components at the indices i ∈ I. Let BI be the
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submatrix of B consisting of the columns bi, i ∈ I and let γ0I be the
sub-rowvector of γ0 consisting of the indices in I. Then we need to solve
γ0I + µBI ∈ Zd in µ ∈ [0, 1)d. This comes down to counting the number
of shifted integral points in the fundamental parallelogram spanned by
the rows of BI . Clearly the number of solutions is independent of this
shift and there are precisely ∆I solutions, where ∆I = | det(BI)|. Having
found such µ we note that the sum in the definition of Ψµ is restricted to
the domain γ0,i + (k + µ)bi ≥ 0, i ∈ I. This is because 1/Γ(x+ 1) = 0 if
x is a negative integer.
Choose a point ρ in the interior of the positive cone spanned by the bi, i ∈
I. Then Ψµ converges at the points x with |xi| = tρi for sufficiently small
t > 0. See [Beu11] for the necessary estimates. We call ρ a convergence
direction.
It is conceivable that besides I there is another index at which γ0 + µB
has an integer component. Since

α = Aγᵀ = Aγᵀ +ABᵀµᵀ,

this means that α can be written as a linear combination of the vectors ai
with fewer than r = N − d non-integral coordinates. By our assumption
of total non-resonance, see Definition 2.1.5, this situation cannot occur.
We conclude that I is uniquely determined by µ.

Definition 2.2.1. We call µ ∈ [0, 1)d a solution point and denote the
corresponding set I by I(µ). Its corresponding parameter vector is de-
noted by γµ := γ0 + µB.

Let us reverse the situation and start with a convergence direction
ρ ∈ Rd not in the hyperplane spanned by any d − 1 vectors bi. The set
of cotriangles I such that ρ is contained in the positive cone generated
by bi, i ∈ I is denoted by Iρ. Each cotriangle I contributes ∆I solution
points µ and so we find

∑
I∈Iρ ∆I Laurent series solutions that converge

around ρ. We call Iρ a cotriangulation of B.
From [JRS10, Section 5.4] it follows that cotriangulations of B are in
one-to-one correspondence with triangulations of A. The correspondence
is given by associating a cotriangle I with a triangle (simplex) spanned
by ai, i ∈ Ic. Furthermore, it follows from [Beu11, Lemma 14.2] that
∆I = | det(ai)i∈Ic |. Hence

∑
I∈Iρ ∆I equals Vol(Q(A)), which is precisely

the rank of our hypergeometric system HA(α). Thus the Laurent series
zγ0Ψµ with I(µ) ∈ Iρ forms a basis of solutions with a common domain
of convergence.
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Definition 2.2.2. A chamber is a fully dimensional cone constructed as
an intersection of the form Cρ :=

⋂
I∈Iρ CI , where CI is the cone generated

by the bi for i ∈ I. It has the property that for each convergence
direction ρ′ we pick in the interior of the chamber that Cρ′ = Cρ. In this
way cotriangulations and chambers are in one-to-one correspondence. A
wall is any face of a chamber that is of codimension 1. The polyhedral
complex ΣB generated by the chambers Cρ and all of their faces is called
the secondary fan ΣB.

2.3 Mellin-Barnes Integrals

Let notation be as above and choose a vector σ ∈ Rd. For any vector
s = (s1, . . . , sd) denote ds = ds1 ∧ ds2 ∧ . . . ∧ dsd. Then consider the
integral

M(z) = M(z1, . . . , zN ) :=

∫
σ+iRd

Γ(−γ0 − sB)zγ0+sBds.

This is a so-called Mellin-Barnes integral. When there is a basis of
solutions for an A-hypergeometric system in terms of Mellin-Barnes in-
tegrals, then this will help us to find the monodromy group for these
A-hypergeometric functions. A quick summary about Mellin Barnes in-
tegrals is given here, for a more thorough introduction see [Beu16].

Let us first introduce the variables x = zB and rewrite M(z) as
zγ0M̃(x), where

M̃(x) =

∫
σ+iRd

Γ(−γ0 − sB)xsds.

Theorem 2.3.1 ([Beu16, Theorem 3.1]). Suppose that γ0,i < −bi · σ for
i = 1, . . . , N and that M(z) converges. Then M(z) satisfies the differen-
tial system HA(α).

Now not all systems admit a choice for γ0 where γ0,i < −bi ·σ. Using
contiguity relations we can change α without affecting the monodromy
and we still have a freedom in σ. In [Beu16] it is shown that we can
choose σ and α such that γ0 satisfies the conditions of Theorem 2.3.1
without affecting monodromy.

For convergence of Mellin-Barnes solutions we will define the open
zonotope

Z◦B =

{
N∑
i=1

νibi | 0 < νi < 1

}
.
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Note that our definition of a zonotope is scaled with a factor two compared
to its definition in [Beu16].

Theorem 2.3.2 ([Beu16, Corollary 4.2]). Let τ = 1
2π Arg(x) be a component-

wise choice of argument of the vector x. Then M̃(x) converges absolutely
if τ ∈ 1

2Z
◦
B.

And lastly we quickly state how linearly independent solutions can be
found. And thus how we can find a basis of solutions using Mellin-Barnes
integrals. The following theorem tells us that choosing different τ ∈ 1

2Z
◦
B

we can obtain independent Mellin-Barnes solutions.

Theorem 2.3.3 ([Beu16, Proposition 4.6]). Let HA(α) be a non-resonant
A-hypergeometric system of rank D. Let τ1, . . . , τq ∈ 1

2Z
◦
B be points whose

coordinates differ by integers. Fix a point x0 ∈ (C×)d and choose for
each τi the Mellin-Barnes integral M̃i(x) with this argument choice for
x0. Then M̃1, . . . , M̃q are linearly independent in a neighbourhood of x0.

In particular this implies that if q = D, then we have a basis of solu-
tions of HA(α) given by Mellin-Barnes integrals.

2.4 Monodromy

Given an A-hypergeometric system with solution space V . Any non-zero
solution in V remains a non-zero solution if we analytically continue it
around some cycle. This means that analytic continuation along some
cycle c induces a linear map φc : V → V . All the possible elements φc
give the monodromy group. Seeing the elements φc as matrices, then the
monodromy group will depend on a choice of basis. In our case this basis
will be a space of Mellin-Barnes solutions.

Let n ∈ Zd be a column vector and let c(n) be the cycle

{(e2πin1tx1, . . . , e
2πindtxd) | t ∈ [0, 1]}.

Analytic continuation of the Laurent series solution Ψµ(x) along c(n)
gives e2πin·µΨµ(x). This means that, given a convergence direction ρ,
and its corresponding basis of local Laurent series solutions Ψµ1 , . . . ,ΨµD ,
the monodromy elements φc(n) can be written in matrix form as

χρ,n :=


e2πiµ1n 0 · · · 0

0 e2πiµ2n · · · 0
...

...
. . .

...
0 0 · · · e2πiµDn

 .



16 Preliminaries

This gives a commutative subgroup of the monodromy group which is
generated by the elements χρ,j := χρ,ej , j = 1, . . . , d.

Now suppose that HA(α) has a Mellin-Barnes basis of solutions and
therefore there exists a set τ1, . . . , τD such that τi ∈ 1

2Z
◦
B are distinct and

differ by integers. Denote the Mellin-Barnes integral corresponding to the
argument choice 2πτj by Mj .

Consider the Mellin-Barnes basis near a point x0. Analytic continu-
ation of M1 along the path c(τj −τ1) changes M1 into Mj . Note that this
is independent of the choice of x0. If we write a local series expansion
M̃1 =

∑D
k=1 λkΨµk

for some convergence direction ρ, then analytic con-

tinuation along c(τj − τ1) will result in M̃j =
∑D

k=1 λke
2πi(τj−τ1)·µkΨµk

.
If one of these λk’s is zero, we see that M̃1, . . . , M̃D spans a space of di-
mension strictly less than D, which is in contradiction with M̃1, . . . , M̃D

being linearly independent. Hence it must be that the λk’s are all non-
zero. We can then normalize the Ψµk

such that the λk’s are 1 and obtain
a transition matrix between Mellin-Barnes solutions to local power series
solutions.

Xρ =


1 1 · · · 1

e2πiµ1(τ2−τ1) e2πiµ2(τ2−τ1) · · · e2πiµD(τ2−τ1)

e2πiµ1(τ3−τ1) e2πiµ2(τ3−τ1) · · · e2πiµD(τ3−τ1)

...
...

. . .
...

e2πiµ1(τD−τ1) e2πiµ2(τD−τ1) · · · e2πiµD(τD−τ1)

 . (2.7)

Such that 
M̃1

M̃2

M̃3
...

MD

 = Xρ


Ψµ1

Ψµ2

Ψµ3

...
ΨµD

 .

This means that the monodromy subgroup generated by χρ,j with
respect to a basis of local series expansions, can be transformed through
Xρ into a monodromy subgroup with respect to a basis of Mellin-Barnes
solutions.

The matrices that generate this monodomy subgroup with respect to
a basis of Mellin-Barnes solutions are defined as

Mρ,j = Xρχρ,jX
−1
ρ .
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By changing the convergence direction ρ we will therefore obtain multiple
subgroups, which together will generate a larger subgroup of the mono-
dromy group M. Since it is unclear whether this generates the whole
monodromy group, we will define a subgroup of the monodromy.

Definition 2.4.1. The Mellin-Barnes groupMMB is the group generated
by the matrices Mρ,j for all j = 1, . . . , d and convergence directions ρ.

Remark 2.4.2. The Mellin-Barnes group corresponds to the power series
Ψµ, though we started out with the power series Φγ . These power series
differ by a monomial factor. Hence their corresponding monodromy groups
are the same upto multiplication by scalars.
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Part I

The Hermitian Form





Chapter 3

The Hermitian Form

3.1 The main theorem

In this chapter we adopt the notations from Chapter 2. In particular
Xρ are the transition matrices given in (2.7). Our goal is to prove the
following theorem.

Theorem 3.1.1. Let HA(α) be a totally non-resonant A-hypergeometric
system admitting a Mellin-Barnes basis of solutions. Then there exists a
non-trivial Hermitian form H which is invariant under the group MMB.
Furthermore given any convergence direction ρ, this Hermitian form can
be given explicitly as

H = (X̄ᵀρ)−1∆ρX
−1
ρ (3.1)

where ∆ρ is the diagonal matrix

Diag

∆Ik

∏
l∈Ik

(−1)γ
µk
l

∏
i 6∈Ik

sin(πγµk
i )


k=1,...,D

 (3.2)

and where µk runs over all solutions points with Ik := I(µk) ∈ Iρ.

3.2 Proof

Notation 3.2.1. Due to lack of space for certain formulas and equations,
we sometimes use a different notation for matrices. In our case for a M×N

21
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matrix where M and N are known we use the notation

{arc}r,c :=


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aM1 aM2 · · · aMN

 .

For diagonal matrices of fixed dimension N we may use the notation

{ar}rr :=


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · aN

 .

Proof. Fix a convergence direction ρ and consider Hρ = (X̄ᵀρ)−1∆ρX
−1
ρ

where Xρ is the transitition matrix given in (2.7) and ∆ρ is given in (3.2).
We show that Hρ is a Hermitian matrix for the monodromy matrices
Mρ,j = Xρχρ,jX

−1
ρ defined in Chapter 2. This comes down to showing

that:

(
Xρχρ,jX

−1
ρ

)ᵀ
(X̄ᵀρ)−1∆ρX

−1
ρ Xρχρ,jX

−1
ρ = (X̄ᵀρ)−1∆ρX

−1
ρ . (3.3)

This simplifies to

χρ,j
ᵀ∆ρχρ,j = ∆ρ.

As all of these matrices are diagonal, and χρ,j
ᵀ, χρ,j are each others inverse

we see that the equality is true.

The remainder of the proof consists of showing that Hρ is independent
of the choice of ρ. The resulting matrix H is then an invariant Hermitian
form for all local monodromy matrices Mρ,j .

As explained in Chapter 2 we associate to each convergence direction
a set of solution points µ1, . . . ,µD and cotriangles Ik := I(µk).

To prove the independence of Hρ, we calculate H−1
ρ , where we denote

τ̃l = τl − τ1.
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H−1
ρ = Xρ∆−1

ρ X̄ᵀρ

=
{
e2πiµcτ̃r

}
r,c

 1

∆Ir

∏
l∈Ir

(−1)γ
µr
l

∏
i 6∈Ir

csc(πγµr

i )


rr

{
e−2πiµr τ̃c

}
r,c

=

e2πiµcτ̃r

∆Ic

∏
l∈Ic

(−1)γ
µc
l

∏
i 6∈Ic

csc(πγµc

i )


r,c

{
e−2πiµr τ̃c

}
r,c

=

{
D∑
k=1

e2πiµk(τ̃r−τ̃c)
∏
l∈Ik(−1)γ

µk
l

∆Ik

∏
i 6∈Ik sin(πγµk

i )

}
r,c

= (2i)r


D∑
k=1

e2πiµk(τr−τc)

∆Ik

∏
l∈Ik

eπiγ
µk
l

∏
l 6∈Ik

1

eπiγ
µk
l − e−πiγ

µk
l


r,c

= (2i)r


D∑
k=1

e2πiµk(τr−τc)

∆Ik

N∏
l=1

eπiγ
µk
l

∏
l 6∈Ik

1

e2πiγ
µk
l − 1


r,c

= (2i)r
N∏
j=1

eπiγ0j


D∑
k=1

e2πiµk(τr−τc)

∆Ik

∏
l 6∈Ik

1

e2πiγ
µk
l − 1


r,c

.

Each component of the inner matrix will be linked to a sum of certain
residues, which can be seen from Lemma 3.3.1 below. Using this and using
τr−τc ∈ Z◦B it follows from Corollary 3.3.6 below that Hρ is independent
of the choice of ρ.

3.3 Residues

Define the following differential form

ω := ω(τ , z) =
zτ

(x1zb1 − 1)(x2zb2 − 1) . . . (xNzbN − 1)

dz

z
, (3.4)

where xj = e2πiγ0,j . Here dz
z is short for dz1

z1
∧ . . . ∧ dzd

zd
. And zb stands

for zb11 · · · z
bd
d . Certain residues of this form are special cases of so called

Binomial Residues ([CDS02]), we will use properties of these binomial
residues in Chapter 4. For any solution point µ, define the vector

ζµ := e2πiµ,



24 The Hermitian Form

where we use the notation e2πiv = (e2πiv1 , . . . , e2πivd).
Notice that

xi(ζ
µ)bi = e2πiγ0,ie2πiµbi = e2πiγµi = 1,

for all i ∈ I(µ) because γµi ∈ Z for all i ∈ I(µ). We thus see that ζµ is a
solution to the system of equations xiz

bi − 1 = 0, i ∈ I(µ) in z.
Let fi = xiz

bi − 1 for i = 1, . . . , N . Following [GH78, p. 650] we may
define the residue

Res
z=ζµ

ω = ± (ζµ)τ

JI(ζµ)
∏
j∈Ic fj(ζ

µ)
, (3.5)

where I = I(µ), where we choose the sign ± to be sign(det(BI)) and
where JI is the Jacobian determinant given by

JI =

∣∣∣∣∣
{
zr
∂fIc
∂zr

}
r,c

∣∣∣∣∣ .
Due to the simplicity of the functions fi we can easily show that

JI = det(BI)
∏
j∈I

xjz
bIj .

By definition of ζµ we get
∏
j∈I xj(ζ

µ)
bIj = 1, so as a consequence we get

Res
z=ζµ

ω =
(ζµ)τ

∆I
∏
j∈Ic fj(ζ

µ)
. (3.6)

Lemma 3.3.1 is now a direct consequence of 3.6.

Lemma 3.3.1. Let µ be a solution point then we have

Res
z=ζµ

ω(τ , z) =
e2πiµτ

∆I
∏
j∈Ic(e

2πiγµj − 1)
,

where I = I(µ).

Using these residues we can now write a typical entry of the matrix
H−1
ρ in the proof of Theorem 3.1.1 as∑

µ:I(µ)∈Iρ

Res
z=ζµ

ω(τr − τc, z).
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It would be tempting to prove that such an entry is independent of ρ, and
hence the corresponding cotriangulation I, by using general properties of
multidimensional residues. Unfortunately we have been unable to do so.
Instead we shall follow a local appoach where we show equality of these
sums for neighbouring cotriangulations. In doing so we shall make use of
residue calculus for one variable rational functions.

Recall Definition 2.2.2 of Chapter 2.

Definition 3.3.2. For any wall W of the chamber CI we denote by IW
all the cotriangles I ∈ I whose cones CI have W as a (sub)-face.

Definition 3.3.3. Two cotriangulations I and J are called adjacent if
their corresponding chambers share the same wall. We call this wall the
common wall between I and J .

Given adjacent triangulations I and J with common wall W then a
cotriangle I ∈ IW is characterized by having d− 1 indices i1, . . . , id−1 for
which the cone generated by bi1 , . . . , bid−1

contains W . The remaining
index of I corresponds to a bid being on either side of W . Conversely,
given indices i1, . . . , id−1 for which the corresponding cone generated by
bi1 , . . . , bid−1

contains W and given an index id for which the b-vector is
not on the hyperplane Hyp(W ). Then I = (i1, . . . , id) is either in IW or
JW , depending on which side of the wall bid lies.

Proposition 3.3.4. Let I and J be two adjacent cotriangulations with
common wall W and suppose τ ∈ Z◦B then∑

µ:I(µ)∈IW

Res
z=ζµ

ω(τ , z) =
∑

ν:I(ν)∈JW

Res
z=ζν

ω(τ , z).

Proof. Choose any i1, . . . , id−1 such that bi1 , . . . , bid−1
are linearly inde-

pendent and the cone spanned by them contains W . It suffices to prove
our lemma in case the sums run over all I ∈ IW , J ∈ JW which contain
i1, . . . , id−1. The full lemma then follows after summation over all sets
i1, . . . , id−1 such that the cone spanned by bi1 , . . . , bid−1

contains W .
Choose coordinates in Zd such that the d-th coordinates of bi1 , . . . , bid−1

are zero. In general we denote the d-th coordinate of bi by βi. Hence
βi = 0 for i = i1, . . . , id−1. Write zbi = Qi(z1, . . . , zd−1)zβid where Qi is
a monomial in z1, . . . , zd−1. Similarly we write zτ = Q0(z1, . . . , zd−1)zτdd .
Let δ be the determinant of

(
bi1 , . . . , bid−1

)
where we remove the last row,

which is zero. Then by construction we have that for any i the following
holds

det
(
bi1 , . . . , bid−1

, bi
)

= βiδ.
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The sign of βi determines on which side of W the vector bi lies. Choose
an index id with βid 6= 0 and let ζ be a point such that xjζ

bj = 1 for
j ∈ I := {i1, . . . , id}. Then Lemma 3.3.1 tells us that

Res
z=ζ

ω(τ , z) =
Q0(ζ1, . . . , ζd−1)ζτdd

∆I
∏
j 6∈{i1,...,id}

(
xjQj(ζ1, . . . , ζd−1)ζ

βj
d − 1

) . (3.7)

We like to write this as a one variable residue. The variable will be called
w. Consider

Ω(w) =
Q0(ζ1, . . . ζd−1)wτd∏

j 6∈{i1,...,id−1}
(
xjQj(ζ1, . . . , ζd−1)wβj − 1

) dw
w
.

Let w0 be a pole of Ω(w) which is 6= 0,∞. We associate the index i(w0)
such that w0 is a zero of xi(w0)Qi(w0)w

βi(w0) − 1 and we write I(w0) =
{i1, . . . , id−1, i(w0)}. Furthermore we let w0 = (ζ1, . . . , ζid , w0). Take the
residue at w = w0,

Q0(ζ1, . . . ζd−1)wτd0∏
j 6∈I(w0)

(
xjQj(ζ1, . . . , ζd−1)w

βj
0 − 1

) 1

βi(w0)
.

When w0 = ζd we see that this differs by a factor βid/∆I = sign(βid) from
(3.7). Suppose that sign(βi) > 0 if {i1, . . . , id, i} ∈ IW .
Let P be the set of poles 6= 0,∞ of Ω(w). We take the sum of the residues
of Ω(w) over all poles in P . We get∑

w0∈P
Res
w=w0

Ω(w) =
∑
w0∈P

sign(βi(w0)) Res
z=w0

ω(τ , z).

Without loss of generality we can assume for all i that sign(βi) > 0 if and
only if {i1, . . . , id−1, i} ∈ IW . Let K = {i1, . . . , id−1} and let IK = {I ∈
IW : K ⊂ I} and JK = {I ∈ JW : K ⊂ I}. Thus our summation becomes∑

µ:I(µ)∈IK

Res
z=ζµ

ω(τ , z)−
∑

ν:I(ν)∈JK

Res
z=ζν

ω(τ , z).

To complete our proof we need to show that
∑

w0∈P Resw=w0 Ω(w) = 0.
Since the sum of all residues of a one variable rational function is zero,
it suffices to show that Resw=0 Ω(w) + Resw=∞Ω(w) = 0. We prove that
both residues are 0. For the residue at w = 0 we expand Ω(w) in a Laurent
series in w times dw

w . The support of this series in contained in the set of
integers

≥ τd +
∑
j 6∈K

max(0,−βj) = τd −
∑
j:βj<0

βj .
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Since τ is in the interior of ZB we know that there exist λ1, . . . , λN ∈ (0, 1)
such that τ =

∑N
j=1 λjbj . Hence τd =

∑N
j=1 λjβj and

τd −
∑
j:βj<0

βj =
∑
j:βj>0

λjβj +
∑
j:βj<0

(λj − 1)βj .

All terms in this summation are positive, hence the Laurent series expan-
sion of Ω(w) is in fact a Taylor series with a zero constant term. Hence
Resw=0 Ω(w) = 0. We deal similarly with w =∞.

Lemma 3.3.5. Let I and J be two cotriangulations then there exists a
sequence of cotriangulations I1, . . . , IN such that I1 = I, IN = J and Ii
and Ii+1 are adjacent for all i = 1, . . . , N − 1.

Proof. Let Iρ correspond to the cotriangulation with convergence direc-
tion ρ and Iρ′ correspond to the cotriangulation with convergence direc-
tion ρ′. Then make a continuous path f : [0, 1]→ Rd such that f(0) = ρ
and f(1) = ρ′ which may only cross walls of the secondary fan in one
point. It cannot cross lower dimensional faces of the secondary polytope.
Consider the sequence 0 < t0 < . . . < tN < 1 which are all points such
that f(ti) is on a wall. And consider the sequence of cotriangulations

If(0), If
(

t0+t1
2

), I
f
(

t1+t2
2

), . . . , I
f
(

tN−1+tN
2

), If(1).

Then each consecutive cotriangulation is adjacent by definition of the
path.

Corollary 3.3.6. Let I and J be two different cotriangulations and sup-
pose τ ∈ Z◦B. Then∑

µ:I(µ)∈I

Res
z=ζµ

ω(τ , z) =
∑

ν:I(ν)∈J

Res
z=ζν

ω(τ , z).

Proof. Suppose I and J are adjacent cotriangulations with common wall
W . For the cotriangles I ∈ I such that I ∈ J , there is nothing to prove as
the summands on both side cancel each other out. So we are left with sums
over µ and ν for corresponding cotriangles in IW and JW respectively.
Now we simply apply Proposition 3.3.4.

Now suppose I and J are not adjacent cotriangulations. Then by
Lemma 3.3.5 there exists a sequence of adjacent cotriangulations between
I and J . We can now apply Proposition 3.3.4 to each pair of adjacent
contriangulations in the sequence.
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3.4 Remarks

Remark 3.4.1. Corollary 3.3.6 together with Lemma 3.3.1 gives the final
step in the proof of Theorem 3.1.1 which establishes the existence an
invariant Hermitian form with respect to MMB. The question remains
whether this Hermitian form is uniquely determined (up to a constant
factor). As we know this uniqueness is equivalent to the irreducibility of
the action of MMB. In all explicit examples we have seen so far, the
Hermitian form is indeed unique.

Remark 3.4.2. Recent work by Saiei Matsubara-Heo and Yoshiaki Goto
[GMH20, Theorem 3.3], confirms the signature computation of Theorem
3.1.1. Their work does not assume the existence of a Mellin-Barnes basis.
In [GMH20, Theorem 3.3] they claim that the signature of the invari-
ant Hermitian form for any A-hypergeometric function with totally non-
resonant parameter vector α with h(α) 6∈ Z is determined by the signature
of

sin

−π ∑
i 6∈I(µ)

γµi

 ∏
i 6∈I(µ)

sin(πγµi ), (µ : I(µ) ∈ I), (3.8)

In Theorem 3.1.1 we see that the signature corresponds to those of

∆I(µ)

∏
l∈I(µ)

(−1)γ
µ
l

∏
i 6∈I(µ)

sin(πγµi ), (µ : I(µ) ∈ I).

Since ∆I(µ) > 0 we can ignore ∆I(µ). Also note that

−
∑
i 6∈I

γµi = −
N∑
i=1

γ0i +
∑
i∈I

γµi .

When i ∈ I(µ) then γµi ∈ Z, hence these contribute to a sign change in
the leftmost sin function in (3.8). This sign change is exactly the product∏

l∈I(µ)

(−1)γ
µ
l .

So this means we can rewrite (3.8) to

sin

(
−π

N∑
i=1

γ0i

) ∏
l∈I(µ)

(−1)γ
µ
l

∏
i 6∈I(µ)

sin(πγµi ), (µ : I(µ) ∈ I). (3.9)

Note that the left-most factor equals sin(−πh(α)). So when h(α) 6∈ Z we
recover our result.



Chapter 4

The Virtual Hermitian Form

4.1 Introduction

In chapter 3 we have constructed a Hermitian form which is invariant
under the subgroup of the monodromy group generated by local mono-
dromy elements. For the construction we had assumed the existence of a
basis of solutions of the A-hypergeometric system given by Mellin-Barnes
integrals. Strictly speaking the proof of Theorem 3.1.1 does not explicitly
use the Mellin-Barnes integrals, but only the vectors τi ∈ Zd associated to
them. The key to the proof of Theorem 3.1.1 is that we show independ-
ence of the choice of the a local basis that we use for the construction of
the Hermitian matrix. In this chapter we extend this idea by choosing τi
not necessarily associated to Mellin-Barnes solutions and study to what
extent the Hermitian matrix constructed is independent of the choice of
local basis. If successful, we say that the τi correspond to virtual Mellin-
Barnes solutions and the Hermitian matrix a virtual Hermitian form. The
hope is that the corresponding virtual monodromy matrices correspond to
actual monodromy matrices without the knowledge of Mellin-Barnes solu-
tions.

In Chapter 3 we showed how the Hermitian form emerges from certain
residues of ω depending on a set of τ ’s chosen inside the zonotope. It was
defined as

ω(τ , z) :=
zτ

(x1zb1 − 1)(x2zb2 − 1) . . . (xnzbN − 1)

dz

z
. (4.1)

To define the virtual Hermitian form we will rely on these residues.
First of all H contains only information about the difference between the
τi’s that give Mellin-Barnes integrals. What we can do is forget about
these Mellin Barnes integrals and let τ ∈ Zd be a possible difference of

29
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two vectors. To ensure that H is well-defined, i.e. independent of the
cotriangulation we can use the following condition.

Definition 4.1.1. A vector τ ∈ Zd is called cotriangulation independ-
ent if for any two cotriangulations I and J we have∑

µ:I(µ)∈I

Res
z=ζµ

(ω(τ , z)) =
∑

ν:I(ν)∈J

Res
z=ζν

(ω(τ , z)). (4.2)

In Chapter 3 we have seen that we can restrict to adjacent cotriangu-
lations to verify condition 4.1.1.

Lemma 4.1.2. Let τ ∈ Zd. Then τ is cotriangulation independent if
and only if for any two adjacent cotriangulations I and J equation (4.2)
holds.

Proof.
⇒ . Trivial.
⇐ . By lemma 3.3.5, let I = I1, I2, . . . , IN = J be any sequence of

triangulations such that Ii and Ii+1 are adjacent for i = 1, . . . , N − 1.
Then equation (4.2) holds for I = I1 and J = IN .

Definition 4.1.3. The set of all cotriangulation independent τ ∈ Zd is
called the Frobenius Cavity and is denoted by FB. A cotriangulation
independent set or CI-set is a set T of D vectors in Rd whose difference
set T − T := {a− b | a, b ∈ T} is a subset of FB.

Given a CI-set then we can construct a matrix H like in Theorem
3.1.1. We do this by taking τ in this CI-set. In each component of H−1

we now get the same result for each choice of convergence direction as the
differences of these τ all give cotriangulation independent results. This
brings us to the following definition.

Definition 4.1.4. A totally non-resonant A-hypergeometric system of
holonomic rank D is said to admit a Virtual Hermitian Form or VHF
if its Frobenius cavity contains at least one CI-set. The Virtual Hermitian
Form corresponding to CI-set T is the matrix H̃T as constructed in The-
orem 3.1.1 by using elements in T as substitute for τ1, . . . , τD.

Example 4.1.5. If the A-hypergeometric system admits a Mellin-Barnes
basis of solutions then it admits a VHF one of which is H itself. This is
evident as every vector in Z◦B ∩Zd is cotriangulation independent and the
τ1, . . . , τD ∈ 1

2Z
◦
B that helped to create H will now form a CI-set.



Zonotopal Propagation 31

Example 4.1.6. The Appell system F4 does not allow a basis of Mellin-
Barnes solutions. However, with the choice of the points (0, 0), (1, 0), (0, 1),
(1, 1) as τi in formula (2.7) we get a Hermitian matrix through formula
(3.1). The Hermitian matrix turns out to be independent of the choice
of cotriangulation. Recall the matrices Mρ,j = Xρχρ,jX

−1
ρ defined in

Chapter 2. Using this choice of τi we find that these Mρ,j generate part
of the monodromy. See Example 4.4.5 for the complete example.

Our first goal is to give a characterization of FB. Unfortunately all we
have is a conjectural description which is explained in Conjecture 4.4.3.
In order to show that FB can be larger than Z◦B ∩ Zd at all we describe
two algorithms in the next section.

The first one shows how you can generate more points in FB using a
known subset of FB. The second one shows how you can generate more
points in its complement F c

B using a known subset of F c
B and FB.

We finally remark that in the many examples of FB that we have
computed a large proportion allows a choice of a CI-set, thus allowing a
virtual Mellin-Barnes basis. Unfortunately there also exist some exotic
cases where this is not possible, for instance in Example 4.4.7. In section
4.5 we try to shed some light on finding these CI-sets.

4.2 Zonotopal Propagation

The idea for this algorithm is that we start with a specific set of points
that we know are cotriangulation independent and then use those to gen-
erate others.

Algorithm 4.2.1 (Zonotopal Propagation). In this algorithm we start
with a subset U0 ⊂ FB as input. The algorithm produces a subset of FB

which is hopefully larger than U0.

Step 1 Given Uk we construct

T = {ζ ± b 6∈ Uk|ζ ∈ Uk, b column of B}.

Step 2 For each τ ∈ T we letB+
τ be the set of columns b such that τ+b ∈ Uk

and B−τ the set of columns b such that τ − b ∈ Uk. Finally we let
B0
τ be the set of columns of B which are neither in B+

τ nor in B−τ .
If B−τ and B+

τ have a vector in common, set τ ∈ Uk+1.

Step 3 Let Sτ be the Z-span of B0
τ . For each τ ∈ T check whether τ −∑

b∈B−τ b is in Sτ . If not then τ ∈ Uk+1.
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Step 4 If Uk = Uk+1 go to step 5, otherwise return to Step 1 after incre-
menting k.

Step 5 Output Uk.

In practice this algorithm will not give many new points if we take
U0 = Z◦B ∩ Zd. However, by explicitly testing the boundary points of ZB
for cotriangulation independence we can find FB ∩ ZB. We call this the
brute force method. We then conjecture

Conjecture 4.2.2. If we let U0 = FB ∩ ZB in Algorithm 4.2.1 then the
algorithm fully reconstructs FB.

We illustrate our algorithm in Example 4.2.3.
In Example 4.3.2 we will see how complex these pictures may get when

we iterate. In both examples we let U0 = FB∩ZB, obtained via our brute
force method.

Example 4.2.3. Consider the A-hypergeometric system where

B =

(
2 0 −7 5
0 3 4 −7

)
.

When starting with initial conditions U0 = FB ∩ ZB, we want to know
whether τ ∈ U1. Visually Algorithm 4.2.1 comes down to the following
steps.
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The first picture depicts the vectors bi, i = 1, . . . , 4. Then we choose
a point τ just above the zonotope in the second picture. In the following
steps we shall verify that τ ∈ U1. In the third picture we see that τ +b4 ∈
U0 and B+

τ = {b4}. In the fourth picture we see that τ − b2 ∈ U0 and
B−τ = {b2}.

The remaining bi-vectors yield B0
τ = {b1, b3}. They are shown to-

gether with their opposites in yellow in the fifth picture. Now Sτ is the
Z-span of B0

τ and we see in the last picture that τ −
∑
b∈B−τ b is not in

Sτ . So indeed τ ∈ U1.

Algorithm 4.2.1 is obtained by investigating the differential properties
of a binomial residue as defined in [CDS02]. We consider a specialization
of the binomial residue where we put the β-parameters as used in [CDS02]
equal to 1.

Choose a cotriangle I and let ΓI be the finite set of solutions (z1, . . . , zd)
to the equations xi + yiz

bi = 0, i ∈ I. Then define the differential form

ω̂(τ , z) =
zτ

(x1 + y1zb1)(x2 + y2zb2) . . . (xN + yNzbN )

dz

z
,

to define the binomial residue

RτΓI
(x,y) :=

∑
P∈ΓI

Res
z=P

ω̂(τ , z). (4.3)

Here Resz=P ω̂(τ , z) is defined as in (3.5), where we take fj = xi + yiz
bi .

For any formal linear combination Γ =
∑

I aIΓI we define by linear ex-
tension

RτΓ(x,y) =
∑
I

aIR
τ
ΓI

(x,y).

We shall be interested in Γ of the form
∑

I∈I ΓI −
∑

J∈J ΓJ , where I,J
are any two cotriangulations. Clearly we shall be interested in τ such that
RτΓ(x,y) = 0 for such Γ.

Theorem 4.2.4 ([CDS02]). The integral RτΓ(x,y) is a rational solution
to the BL-hypergeometric system HBL

(−1,−τ ), where 1 is the vector of
length N containing only ones and

BL :=

(
IdN IdN

0 B

)
.

In this setting BL is called the Lawrence lifting of B. This theorem
shows that RτΓ satisfies the following differential equations

(xi∂xi + yi∂yi + 1)RτΓ = 0, i = 1, . . . , N. (4.4)
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(
τj +

N∑
i=1

bi,jyi∂yi

)
RτΓ = 0, j = 1, . . . , d. (4.5)

Another property can be observed by differentiating with respect to
xi and yi, which comes down to shifting the parameter vector τ .

∂yiR
τ
Γ(x,y) = ∂xiR

τ+bi
Γ (x,y). (4.6)

See the proof of [CDS02, Lemma 3.4] for more information.

Correctness of Algorithm 4.2.1. Let U be a set of vectors such that RτΓ =
0 for all τ ∈ U and some choice of Γ. Then what can we say about
the values of RτΓ for other τ outside of U? We only use the differential
properties of RτΓ for this.

Let τ ∈ Zd \ U , then we want to know whether RτΓ = 0.

Denote the set of those bi-vectors such that τ − bi ∈ U by B− and
the set of those bi-vectors such that τ + bi ∈ U by B+ and the set of
remaining bi-vectors by B0. Now we can use (4.6). When bi ∈ B+ this
means ∂yiR

τ
Γ = 0 and when bi ∈ B− this means that by a shift of the

parameter that ∂xiR
τ
Γ = 0. Hence in the former RτΓ doesn’t depend on yi,

and in the latter RτΓ doesn’t depend on xi.

Now we use (4.4), hence in our case when bi ∈ B+ we have xi∂xiR
τ
Γ =

−RτΓ which means RτΓ = 1
xi
C where C doesn’t depend on xi or yi. Sim-

ilarly when bi ∈ B− then yi∂yiR
τ
Γ = −RτΓ and hence RτΓ = 1

yi
C where C

doesn’t depend on variables xi or yi. Note that as a consequence if B+

and B− have overlap, that automatically RτΓ = 0 and we are done.

Therefore we are left with RτΓ =
∏
bi∈B+

1
xi
·
∏
bi∈B−

1
yi
· C where C

only depends on xi and yi for those i that are indices of bi ∈ B0. Finally
we use (4.5) for j = 1, . . . , d, this will give us(

τj +
N∑
i=1

bi,jyi∂yi

)
RτΓ = 0

−
∑
bi∈B−

bi,jR
τ
Γ +

∑
bi∈B0

bi,jyi∂yiR
τ
Γ = −τjRτΓ

∑
bi∈B0

bi,jyi∂yiR
τ
Γ =

−τj +
∑
bi∈B−

bi,j

RτΓ. (4.7)

As RτΓ is rational we can write it as a multivariate Laurent series∑
v,w λv,wx

vyw where λv,w ∈ C and v,w ∈ ZN . Now we apply (4.7) to
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obtain∑
v,w

 ∑
bi∈B0

wibi,j

λv,wx
vyw =

∑
v,w

−τj +
∑
bi∈B−

bi,j

λv,wx
vyw.

To make both sides equal for all j = 1, . . . , d we get for each v,w ∈ ZN
seperately that

λv,w
∑
bi∈B0

wibi = λv,w

−τ +
∑
bi∈B−

bi

 .

This means that for RτΓ to be certainly zero, −τ +
∑
bi∈B− bi cannot be

in the Z-module generated by the vectors in B0. If this is the case, we
conclude RτΓ = 0.

4.3 Zonotopal Elimination

But there is more to this, given points not in FB we can also find more
points that are not in FB.

Theorem 4.3.1 (Zonotopal Elimination). Let τ ∈ Zd be such that RτΓ 6=
0. There exists a vector σ ∈ {±1}N such that Rτ+s

Γ 6= 0 for all s in the
semigroup S generated by {σibi}i=1,...,N .

Proof. For each i = 1, . . . , N we will find a possible σi separately. We say
that a function f(z) is polynomial in zi if it can be written in the form
f0 +f1zi+ . . .+fkz

k
i where fj are functions that do not depend on zi. We

call k the degree of f in terms of zi. The proof only uses equations (4.6)
and (4.4) and these will be recalled when needed. There are four cases to
consider

• RτΓ is not polynomial in yi, then by repeatedly applying ∂yi to RτΓ
we will never see it become 0. Hence by repeatedly applying the
differential equation

∂xiR
τ+bi
Γ = ∂yiR

τ
Γ.

We see that we can take σi = 1.

• RτΓ is not polynomial in xi, then by repeatedly applying ∂xi to RτΓ
we will never see it become 0. Hence by repeatedly applying the
differential equation

∂xiR
τ
Γ = ∂yiR

τ−bi
Γ .

We see that we can take σi = −1.
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• RτΓ is polynomial in yi, then after repeatedly applying

∂xiR
τ+bi
Γ = ∂yiR

τ
Γ

means that for some k > 0 the function Rτ+kbi
Γ does not depend

on yi, and hence either it already is 0 or it can be made zero by
applying the same procedure after we replace τ by τ + kbi and we
take a different bj as a generator. Therefore this is something that

we want to avoid. So pick σi = −1 then we have to show that Rτ−kbiΓ

depends on yi for all k > 0. Consider the differential equation

xi∂xiR
τ−kbi
Γ + yi∂yiR

τ−kbi
Γ +Rτ−kbiΓ = 0.

The part yi∂yiR
τ−kbi
Γ +Rτ−kbiΓ is non-zero and still polynomial in yi

with the same degree as Rτ−kbiΓ . Hence ∂xiR
τ−kbi
Γ is non-zero and

depends polynomially on yi. As a consequence

∂xiR
τ−kbi
Γ = ∂yiR

τ−(k+1)bi
Γ

simply tells us that R
τ−(k+1)bi
Γ is a nonzero polynomial in yi with

degree one more than Rτ−kbiΓ .

• RτΓ is polynomial in xi, then symmetrically to the previous case we
can show that σi = 1.

Now for s ∈ S we only have to keep track of the degrees of the xi and
yi which are polynomial in Rτ+s

Γ depending on whether we chose σi = 1,
respectively σi = −1. These degrees can only increase as we move further
away from τ by choice of σ. And in each move that we do, we can ensure
by the discussion above that Rτ+s

Γ 6= 0.

Together with Algorithm 4.2.1 this gives us a very effective toolbox
in generating FB. In most cases a handful of strategically picked τ have
to be checked by brute force to find FB. If we find that τ ∈ FB, use
Algorithm 4.2.1 and if not then use Theorem 4.3.1 try to find a shifted
semigroup of τ ’s not contained in FB. In many cases for τ ∈ F c

B the
semigroup S is easy to verify and follows straight from the combinatorics
of FB. Sometimes there are multiple possible choices for S for a given τ
and we have to take a closer look at RτΓ before we can assess which S can
be eliminated.
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Example 4.3.2. Consider the A-hypergeometric system where D = 49
and

B =

(
3 4 0 0 −7
0 0 3 4 −7

)
.

Then zonotopal propagation looks as follows. In the first picture we have
used brute force to verify the points on the boundary of ZB.

By zonotopal elimination we can show that this is exactly FB. The com-
plement of FB is the union of six shifted semigroups in this case, each
one starting from a vertex of ZB and the generating bi-vectors all pointing
outward of the zonotope. For each of these semigroups the generators are
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given by the arrows. More about this structure is explained in the next
section.

4.4 The Frobenius cavity

In this section we like to give a combinatorial description of the set FB.
This description is conjectural and given in Conjecture 4.4.3. The only
support we have for this conjecture is the many examples we tested and
a heuristic argument.

The approach to finding the structure of FB is to connect the definition
of cotriangulation independence to a condition on residues of ω(τ , z) at
points at 0 and ∞. The main idea was to use the following theorem

Theorem 4.4.1 (Gelfond-Khovanskii, [GK02, Theorem 2], [Kar18, The-
orem 3.1]).
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Let D1, . . . , Dd and D′1, . . . , D
′
d be two sets of divisors on a compact ana-

lytic d-dimensional manifold M , each having a 0-dimensional intersection.
Assume Di ∩ D′i = ∅ for every i and put Z =

⋃d
i=1Di ∪

⋃d
i=1D

′
i. Then

for any holomorphic ω ∈ Ωd(M \ Z) we have:∑
p∈D1∩...∩Dd

Resp ω = (−1)d
∑

q∈D′1∩...∩D′d

Resq ω.

If we take the sequence of divisors D′i = {z ∈ Pd1|zi = 0 or zi =∞} for
i = 1, . . . , d. We let T be the set of cotriangles and

V = {z ∈ Pd1| There exists I ∈ T such that xI1z
bI1 −1 = . . . = xIdz

bId −1 = 0}.

And then we have the set of divisors

Di = {z ∈ Pd1| There exists a v ∈ V such that vi = zi},

for i = 1, . . . , d. And in this way one checks that Di ∩D′i = ∅ and ω(τ , z)

is holomorphic over Pd1 \ Z, where Z =
⋃d
i=1Di ∪

⋃d
i=1D

′
i. In this way

Theorem 4.4.1 tells us that∑
I∈T

∑
t∈DI1

∩...∩DId

Res
z=t

ω(τ , z) = 0 (4.8)

if and only if ∑
t∈D′1∩...∩D′d

Res
z=t

ω(τ , z) = 0. (4.9)

The problem with this approach is that the relation (4.8) is not neces-
sarily a linear combination of the relations coming from cotriangulation
independence. Furthermore if (4.8) holds and it is a linear combination
of equations of the type (4.2) then it does not necessarily imply cotrian-
gulation independence. So we are stuck here. However we use it as an
indication on how the structure of FB looks like and as motivation for
Definition 4.4.2.

Definition 4.4.2. Let ρ ∈ Rd be a convergence direction then the Zono-
topal Boundary Point corresponding to ρ is

Pρ :=
N∑
i=1
bi·ρ>0

bi.
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The Zonotopal Semigroup corresponding to ρ is the semigroup gener-
ated by the bi in the following fashion:

Mρ := 〈{bi|bi · ρ ≥ 0} ∪ {−bi|bi · ρ < 0}〉 .

The Zonotopal Span of B, denoted by ZB is the union of translated
semigroups corresponding to B, i.e.

ZB :=
⋃

ρ∈Sd−1

Pρ +Mρ.

We denote by Z c
B its complement in Zd.

Supported by experimental data and an heuristic argument we get the
following conjecture.

Conjecture 4.4.3. The Frobenius Cavity is equal to the complement of
the Zonotopal span in Zd, i.e.

FB = Z c
B.

The definition of Z c
B is also the source of the name ”Frobenius cav-

ity” for F c
B. ZB is nothing more than a multidimensional analogue of a

numerical semigroup. In the complement of a numerical semigroup there
are points called gaps and Frobenius numbers being the largest of these
gaps. Also the Diophantine equation which determines whether a point
is inside the numerical semigroup is called a Frobenius equation. In our
case we have a union of multidimensional semigroups. When we take the
complement in Zd the points in the zonotope are always gaps. And we get
some more gaps coming from the dynamics of these semigroups. In the
experiments that we did we also obtain a union of semigroups by zonoto-
pal elimination. This union has always corresponded to ZB. In addition,
heuristically we can see that this happens. The following lemma shows
how Z c

B can be generated from ω̂(τ , z) by using certain residues around
points at 0 and ∞.

Lemma 4.4.4. Let Γρ be the cycle tρ1S1 × . . . × tρdS1 where t > 0 is
chosen small enough and let |xi/yi| 6= 1. Then 1

(2πi)d

∮
Γρ
ω̂(τ ) = 0 for all

real ρ ∈ Sd−1 if and only if τ ∈ Z c
B.

Proof. First assume 0 < |xi/yi| < 1.
Depending on whether bi · ρ > 0 or bi · ρ ≤ 0 we can do the following:

ω̂(τ , z) = zτ
∏
bi·ρ≥0

1/yi
zbi + xi/yi

∏
bi·ρ<0

z−bi/xi
yi/xi + z−bi

dz

z
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And this makes it possible to take a Laurent series expansion which con-
verges when we take |zρii | small enough and handle the case with bi ·ρ = 0
separately using |xi/yi| < 1.

ω̂(τ , z) = zτ
∏
bi·ρ>0

1

yi

∞∑
j=0

(−1)jzjbi

(xi/yi)j+1
·
∏
bi·ρ<0

1

xi

∞∑
j=0

(−1)j(xi/yi)
j+1

z(j+1)bi

·
∏
bi·ρ=0

1

yi

∞∑
j=0

(−1)j(xi/yi)
j

z(j+1)bi

dz

z

= zτ
N∏
i=1

1

xi
·
∏
bi·ρ>0

∞∑
j=0

(−1)jzjbi

(xi/yi)j
·
∏
bi·ρ≤0

∞∑
j=0

(−1)j(xi/yi)
j+1

z(j+1)bi

dz

z
.

Hence when we want to find its residue we are looking for the constant
term of the expression

zτ
N∏
i=1

1

xi
·
∏
bi·ρ>0

∞∑
j=0

(−1)jzjbi

(xi/yi)j
·
∏
bi·ρ≤0

∞∑
j=0

(−1)j(xi/yi)
j+1

z(j+1)bi
.

This constant term is non-zero if and only if for some j ∈ ZN≥0

τ +
∑
bi·ρ>0

jibi −
∑
bi·ρ≤0

(ji + 1)bi = 0.

Hence we get τ 6∈ P−ρ +M−ρ if and only if

1

(2πi)d

∮
Γρ

ω̂ = 0.

When |xi/yi| > 1, analogously to the above we get the symmetric
condition −τ 6∈ Pρ +Mρ.

If 1
(2πi)d

∮
Γρ
ω̂ = 0 for both |xi/yi| > 1 and 0 < |xi/yi| < 1 it will be

zero for |xi/yi| = 1 by analytic continuation. As this is true for all ρ, we
find that 1

(2πi)d

∮
Γρ
ω̂ = 0 for all ρ ∈ Cd \ {0} exactly when τ 6∈ ZB.

Example 4.4.5. Appell’s F4 system does not admit a Mellin-Barnes basis
of solutions, however it does admit a VHF. To see this we first construct
ZB, take its complement in Zd and then check whether we can find a CI-set
in this complement. One can check that any point Z c

B is cotriangulation
independent. A possible Gale dual for F4 is

B =

(
1 1 0 0 −1 −1
0 0 1 1 −1 −1

)
.
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Figure 4.1: ZB where B is a Gale dual belonging to F4. The gray area
is ZB, the arrows show the generators of Mρ starting at Pρ. Now in each
zonotopal semigroup we created an unique arc and color such that we
know which point belongs to which semigroup, note that some arcs will
overlap. The 13 black dots that do not belong to a zonotopal semigroup
represent FB.

From this information we can generate ZB as seen in Figure 4.1.

In this case by doing the calculations one can show that FB = Z c
B

and it contains 13 dots and we have D = 4. A possible CI-set would be
{(0, 0), (1, 0), (0, 1), (1, 1)}. Its difference set is inside FB and so we are
able to make a VHF H using this information.

Example 4.4.6. For examples of small dimension and small rank, it is
possible to make these Frobenius Cavities very easily with Z c

B. However,
as soon as we increase the dimension or increase the rank, things start
to get complex very fast. For example, take the system of rank D = 29
where

A =

(
1 1 1 1
0 29 15 21

)
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and has Gale dual

B =

(
2 0 −7 5
0 3 4 −7

)
.

In Figure 4.2 we show FB, as this is only 2 dimensions there are still
lots of restrictions on where the points can go. When d > 2 there will
be even more freedom and the process of creating ZB and then taking
a complement becomes inefficient. Similarly the figures in Example 4.3.2

Figure 4.2: FB and ZB of the system of rank 29 in Example 4.4.6

show a similar complex structure appearing.

Example 4.4.7. The A-hypergeometric system of holonomic rank 25
where

B =

(
1 0 1 1 2 2 −7
0 1 2 −2 1 −1 −1

)
,

is a case where Z c
B = ZB∩Zd. One can show that FB = ZB∩Zd and now

one checks that this system does not admit a Mellin-Barnes basis, hence
it contains no difference set of rank 25. Thus this is a case where we fail
to extend our set of τ ’s and we cannot find a CI-set either.

Theorem 4.4.8. Z c
B is a finite set

Proof. ZB is the union of semigroups Pρ + Mρ. Let Cρ denote the cone
starting at the origin with the same generators as Mρ. Now because the Z-
span of the bi’s is Zd we notice that there is a point Sρ ∈ Pρ+Mρ such that
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(Sρ+Cρ)∩Zd ⊂ Pρ+Mρ. Now pick a facet F of the zonotope ZB and let
ρ1, . . . ,ρk be all convergence directions such that Pρ1 , . . . , Pρk are on F .
And suppose there is a line L passing through F (or the hyperplane which
extends F ) which does not pass through (Sρ1 + Cρ1) ∪ . . . ∪ (Sρk + Cρk).

The zonotope is convex and Pρ +Cρ contains the cone Pρ + C̃ρ, which is
the cone where we extend the edges of the zonotope outwards from Pρ.
Hence the line L must be parallel to all facets adjacent to F for this line to
exist. This means that ZB is a parallelotope. The sum of columns of B is
0, so for every column vector of B there must be a parallel column vector
of B pointing in the other direction. Hence Cρ is a half space for any ρ.
So the line L must have intersection with (Sρ1 +Cρ1)∪ . . .∪ (Sρk +Cρk),
which is a contradiction.

As any line starting at 0 moving through a facet F eventually hits a
saturated cone and from there it stays inside that cone. Cones are given by
linear inequalities, so we see that the complement of

⋃
ρ∈Rd\{0}(Sρ1 +Cρ1)

in Rd is bounded. Hence the complement of
⋃
ρ∈Rd\{0}(Sρ1 +Cρ1 ∩Zd) in

Zd is finite.

Thus far finding a direct connection between Z c
B and FB seems to be

a hard task. Indirectly there is a vague connection found in the way we
calculate residues. And we see that both structures exclude certain shifted
semigroups. It becomes interesting when we try to see if Algorithm 4.2.1
is capable of finding Z c

B given a specific initial configuration.

Theorem 4.4.9. Algorithm 4.2.1 generates Z c
B when the starting config-

uration is U0 = Z c
B ∩ ZB.

Proof. We split the proof into two parts. The first part shows that the al-
gorithm produces points in Z c

B. The second part shows that the algorithm
fully reconstructs Z c

B.

Given a vector τ and set U ⊂ Zd denote the set of bi such that
τ − bi ∈ U by B− and the set of bi such that τ + bi ∈ U by B+ and the
set of remaining bi-vectors by B0.

For the first part of the proof we suppose that the algorithm produces
a point in ZB. Let τ be the first such point. Denote the set constructed
thus far by U . As τ is inside a zonotopal semigroup for some ρ, let
τ = Pρ +Bk for some k ∈ ZN .

Recall that Pρ =
∑
bi·ρ>0 bi and

Mρ := 〈{bi|bi · ρ ≥ 0} ∪ {−bi|bi · ρ < 0} ∪ {bi|bi · ρ = 0}〉 .
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If the i-th index of k is non-zero then both τ +bi and τ −bi are in ZB,
hence τ ±bi 6∈ U . Since τ was the first point to be found in the zonotopal
span, this contradicts bi ∈ B+ ∪B−. Hence bi ∈ B0 and τ − Pρ ∈ 〈B0〉Z.

If ρ · bi > 0 then τ + bi ∈ ZB so τ ∈ B0 ∩ B−. Similarly if ρ · bi = 0
then τ + bi ∈ ZB so τ ∈ B0 ∩ B−. Thus we see that all summands of
Pρ are in B0 ∪ B−. If ρ · bi < 0 then τ − bi ∈ ZB and so bi 6∈ B−. This
means none of the elements from B+ are in the summands of Pρ.

It thus follows from τ −Pρ ∈ 〈B0〉Z that τ −
∑
bi∈B− bi ∈ 〈B

0〉Z. This
contradicts the fact that τ is a newly found point by Algorithm 4.2.1,
which shows the first part of our proof.

Consider the sequence U0 ⊂ U1 ⊂ . . . ⊂ Un found by zonotopal
propagation and where the algorithm stops at Un. We will now show
that Z c

B ⊆ Un. First we need a notion of height on the lattice Zd. So
we define the height of a point ζ ∈ Zd by h(ζ) := minc∈R≥0

[ζ ∈ cZB].
The face Fζ is the face of minimal dimension of h(ζ)ZB that contains ζ.
Now note that this notion of height is also a notion of height for the cones
generated by Mρ, in the sense that h(ξ) = 0 for ξ ∈ Cone(Mρ) if and only
if ξ = 0.

Pick a τ ∈ Z c
B \ Un of minimal height, if there are more choices pick

the one whose face Fτ has the lowest dimension. We know for all the
points with h(τ ) ≤ 1 whether they are in ZB or not. Therefore we can
assume that h(τ ) > 1. Suppose bi is not parallel to the face Fτ . Then
one of τ ± bi has height less than h(τ ) or it must lie on a face containing
Fτ . For the former case let σ ∈ {±1} such that h(τ − σbi) < h(τ ). If
τ − σbi ∈ ZB then note that it is in a minimal shifted cone containing
Pρ + Mρ. The height function h works on this cone and either −bi or
bi. Any generator of this cone always moves outward from the zonotope.
Because h(τ − σbi) < h(τ ) this means that σbi is a generator. Hence
τ ∈ Pρ+Mρ which is a contradiction. Hence τ−σbi 6∈ ZB. By minimality
of τ , this τ − σbi ∈ Un, hence bi ∈ B− ∪B+.

As a consequenceB0 only contains vectors parallel to faces that contain
Fτ . Now suppose that one of τ ± bi has equal height and that bi is not
parallel to the face Fτ , but to a face that contains Fτ . Let σ ∈ {±1} be
such that h(τ − σbi) = h(τ ). So assume that τ − σbi ∈ ZB. In this case
h(τ + σbi) > h(τ ) because the face Fτ−σbi is of a higher dimension than
Fτ and so τ is an endpoint of the line segment in Fτ−σbi parallel to bi.
So if τ − σbi ∈ ZB then σbi points outward of the zonotope. Now note
that τ − σbi is contained in a shifted semigroup Pρ + Mρ. A generator
of this semigroup cannot point inward to the zonotope. As a consequence
τ ∈ ZB. This is a contradiction. So τ − σbi ∈ Z c

B, as our τ was chosen
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minimal and on a face of minimal dimension τ − σbi ∈ Un, which means
that bi ∈ B− ∪B+.

Finally this means that B0 can only contain vectors parallel to Fτ .
Hence S0 = 〈B0〉Z is parallel to Fτ as well. Therefore, for any s ∈ S0 we
see that h(τ + s) ≥ h(τ ). However, on the other hand, there is a k ∈ ZN
such that τ −

∑
b∈B− b + Bk = 0 for which ki = 0 if bi 6∈ B0. Hence

h(τ −
∑
b∈B− b+Bk) = 0 implies that h(τ +Bk) ≤ 1, which then implies

that h(τ ) ≤ 1. This contradicts our initial assumption that h(τ ) > 1.

Corollary 4.4.10. If FB ∩ ZB = Z c
B ∩ ZB then Z c

B ⊆ FB.

Proof. Apply Theorem 4.4.9 and Zonotopal Propagation (Algorithm 4.2.1)
to get Z c

B ⊆ FB.

Experimental data and the structure of ZB suggests that the converse
of Corollary 4.4.10 is also true. Namely if FB ∩ ZB = Z c

B ∩ ZB then
from the definition of ZB the points of ZB ∩ ZB contain all the points
Pρ. And of course Pρ +Mρ gives us a shifted semigroup and then we can
use Zonotopal Elimination (Theorem 4.3.1) to show that this semigroup
is in F c

B. The only problem with this approach is that the vector σ in the
statement of Theorem 4.3.1 is not always uniquely determined for these
points Pρ.

Example 4.4.11. In Figure 4.1 we see that Appell’s F4 satisfies FB ∩
ZB = Z c

B ∩ ZB. As a consequence Z c
B ⊆ FB. Also for each point

τ = Pρ there is exactly one vector σ in Theorem 4.3.1 that we can pick
for zonotopal elimination. Thus the shifted semigroups that we eliminate
have to be Pρ +Mρ. So we get FB = Z c

B.

4.5 Finding CI-sets

In this section we want to know how we can find CI-sets in Z c
B and

whether the size of difference sets in Z c
B can exceed the rank D of our

system. Experimental data suggest the following conjectures

Conjecture 4.5.1. Let U ⊂ Zd such that U − U ⊆ FB then #U ≤ D.

and its counterpart

Conjecture 4.5.2. Let U ⊂ Zd such that U − U ⊆ Z c
B then #U ≤ D.

We have algorithms to create FB and Z c
B and we want to focus on

finding CI-sets in these sets. For FB there is not much we can say but
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hope that it is contained in Z c
B. This is why we focus on finding CI-sets

in Z c
B instead. Of course one can try to do this the hard way by brute

forcing or backtracking. However this is totally unreasonable if there is
no smart trick to it. The first thing we can do is try to use algorithms
that are used in graph theory.

Definition 4.5.3. The covariograph GB is the graph whose vertices are
the points in Z c

B. And (v1, v2) is an edge in GB if and only if v2 ∈ {v1 +w :
w ∈ Z c

B} and v1 6= v2.

The name covariograph comes from the term covariogram, which is
the function gK(x) = |K ∩ (K + {x})| where K ⊂ Zd and x ∈ Zd.The
covariograph is the graph where x ∈ Z c

B has an edge with every point in
Z c
B ∩ (Z c

B + {x}), so the degree of x in GB is equal to gZ c
B

(x) − 1. This
difference of one is because we do not allow self-edges. The only difference
is that the domain of gK(x) covers all of Zd, where vertices of GB only
cover Z c

B.

Now the problem of finding a CI-set is equivalent to finding a clique of
size D inside GB. This is much more efficient than backtracking or brute
forcing, but it does not use any of the properties that Z c

B has.

For a ”better” algorithm we first give a heuristic that will find a CI-set
in many occasions.

Definition 4.5.4. Let S ⊂ Z c
B be any set of points and let v ∈ Z c

B \ S
then w ∈ Z c

B \ (S ∪ {v}) is a S-neighbor of v if the difference set of
S ∪ {v, w} is in the Frobenius cavity. The number of S-neighbors of v is
denoted by NS(v).

Heuristic 4.5.5.

initialize Start with the set S0 = {0} and k = 0 and an exclusion set X = ∅

Step 1 For each v ∈ Z c
B \ (Sk ∪X) calculate NSk

(v).

Step 2 If for some v the number NSk
(v) is smaller than D − 1 − #Sk we

can exclude it and add it to X.

Step 3 Pick a v where NSk
(v) is maximal and let Sk+1 = Sk ∪ {v} and

increment k, then go back to step 1. If this is not possible or k = D
(after incrementing) stop the algorithm. In the former case we failed
to find a CI-set in the latter case we found a CI-set.
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Now this Heuristic lends itself to a backtracking algorithm where at
each step we sort the vertices that we want to visit in order of the size of
NSk

(v). The problem is that if Z c
B does not have a CI-set this is just as

bad as an ordinary backtracking algorithm. Another thing we can do is
try this Heuristic probabilistically, vertices with high values of NSk

(v) will
then have high chances of being selected, this gives some randomization
to the process which may lead to an improvement. Still, the worst case is
just equal to doing a brute force if there is no CI-set at all.

Now one may also look at this problem from a geometrical perspective
to give an upper bound on the number of CI-sets in Z c

B. Which can also
be used to accelerate the above algorithms.

Theorem 4.5.6. Let L ⊂ Zd be a lattice such that L \ {0} is a subset of
ZB and consider the canonical module homomorphism mL : Zd → Zd/L
and let T ⊂ Zd be a CI-set. Then the restriction of mL to T is injective.

Proof. For any τ1, τ2 ∈ T we have τ1 − τ2 ∈ Z c
B, hence if τ1 − τ2 ∈ L

it must be that τ1 = τ2. As a consequence τ1 and τ2 have to be unique
upto translation by L. As a consequence the map mL restricted to T is
injective.

Let ΠL be the fundamental parallellogram of L. If we have a lattice L
as in Theorem 4.5.6 and the volume Vol(ΠL) is as small as possible, this
gives many constraints that will improve algorithms and it gives upper
bounds for the number of τ that can be in a CI-set.

Corollary 4.5.7. Let L ⊂ Zd be a lattice such that L \ {0} is a subset of
ZB and such that Vol(ΠL) = D then Conjecture 4.5.2 holds.

Corollary 4.5.8. If the A-hypergeometric system has a cotriangulation I
whose parallelograms {ΠI}I∈I are all equiangular, then Conjecture 4.5.2
holds.

Proof. The parallelograms {ΠI}I∈I can be stacked together to form a big
parallelogram Π of volume D, let L be the lattice with this fundamental
parallelotope. Then the points of L that intersect with Z c

B is the set
{0}.

Example 4.5.9 (Central Zonotopal Subdivisions). Finding a suitable lat-
tice L sometimes goes by trial and error. And in some cases it is possible
to use some structure that we see in ZB. For example one can decompose
ZB into smaller parallelotopes such as is done in [She74, Expression (56)]
and its corollary which is accredited to McMullen. It says that ZB attains
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a subdivision of parallelotopes such that each parallelotope corresponds
to a unique cotriangle I and vice versa. For d = 2 we can choose our
decomposition to start in the origin, this turns out to be a great source of
lattices L if they exist. And of course they create great pictures as well.

Definition 4.5.10. Given a convergence direction ρ and cotriangulation
Iρ and let ΠI denote the parallelogram generated by columns of BI where
I is a cotriangle and CI the cone generated by columns of BI . Moreover
let the operation X ⊕ Y be interpreted as ”parallelogram X is translated
by a vector Y ”. The scale Sρ is the union of the parallelograms

⋃
I∈Iρ

ΠI ⊕


∑
bi∈C◦I

bi +
∑
j∈I

∑
i<j

bi=kbj
k>0

bi



The union of all scales is called the Central Zonotopal Subdivision
which we denote by ΠB.

If a scale Sρ tiles the plane, then this tiling gives us a lattice L with
volume of the fundamental parallelogram exactly D. And the lattice has
all the right properties for Theorem 4.5.6. In simple examples scales like
this are often found. And these tell us that the number of points in a
CI-set is bounded above by D.

For example take the A-hypergeometric system of holonomic rank 25
where

B =

(
1 0 1 1 2 2 −7
0 1 2 −2 1 −1 −1

)
,

from Example 4.4.7. Let us color the secondary fan, depending on where
a chamber is located. A similar coloring is used to create ΠB. Note that
we have sorted the columns of B in clock-wise order.
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Now create scales for a ρ in each of these chambers. We draw the
zonotope around it to give some perspective.

And then we can merge it together to form ΠB
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Only three of the scales can be used to tile the plane. The other four
scales always overlap in some way or cannot tile the full plane. This is
illustrated by the following picture

If the scales do not give us a nice upper bound, then there are more tricks
that can help us by looking at these pictures. Namely, we may also tile
the plane using other shapes inside ΠB and try to see how this affects the
number points in a CI-set. Another way to represent these scales is as a
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Young-diagram. We do this by deforming the parallelograms into squares.
We keep the colors so you can compare them. On the right and bottom
of each diagram the corresponding b-vectors are given. If the diagram is
a rectangle then this means the corresponding scale tiles the plane.



Chapter 5

Apexpoints

5.1 Introduction

Determining whether A-hypergeometric functions are algebraic has been
a well studied problem. The first results on this problem for 2F1 are
given by Schwarz in [Sch73] where a list of parameter vectors α is given
such that every solution of the Gauss hypergeometric system is algebraic.
In a paper by Beukers and Heckman [BH89] this result is extended to
generalized hypergeometric functions nFn−1 using an interlacing condition
on its parameters as described in Theorem 5.1.2.

Definition 5.1.1. Two finite sets U = {u1, . . . , un} ⊂ [0, 1) and V =
{v1, . . . , vn} ⊂ [0, 1) are said to interlace, if U ∩V = ∅ and the increasing
sequence w1 < . . . < w2n, where wi ∈ U ∪ V , i = 1, . . . , 2n has the
property that either wj ∈ U and wj+1 ∈ V , or wj ∈ V and wj+1 ∈ U for
all j = 1, . . . , 2n− 1.

Theorem 5.1.2. Let a1, . . . , an, b1, . . . , bn−1 ∈ Q, bn = 1 and let M be
their common denomimator. Then all solutions to the generalized hyper-
geometric equation with parameters a1, . . . , an, b1, . . . , bn−1 are algebraic
functions if and only if the sets {{ka1}, . . . , {kan}} and {{kb1}, . . . , {kbn}}
interlace for all integers k, where gcd(k,M) = 1 and 1 ≤ k < M . Here
{x} is defined as the fractional part of x.

Later, Beukers [Beu10] generalizes Theorem 5.1.2 to A-hypergeometric
functions by replacing the interlacing condition by a condition on apex-
points.

Recall that C(A) is the cone generated by the columns of A. And
the cone C(AIc) is the cone generated by the vectors ai for i ∈ Ic. Let
α ∈ Rr be our parameter vector of an A-hypergeometric system and

53
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define Kα = (α + Zr) ∩ C(A). Then p ∈ Kα is called an apexpoint if
p− q 6∈ C(A) for all q ∈ Kα and q 6= p. The number of apexpoints for the
system HA(α) is denoted by σ(A,α).

Lemma 5.1.3. There are at most D apexpoints, i.e. σ(A,α) ≤ D.

Proof. Given a cotriangulation I, recall that Q(A) can be triangulated
with triangulation Ic. Hence we can exploit the fact that an apexpoint
must lie inside a simplicial cone C(AIc) for some I ∈ I. Furthermore if
this apexpoint p is not in the fundamental parallelotope ΠIc := AIc [0, 1)r

then notice that there is a column vector a of AIc such that p ∈ p− a+
C(A), which is a contradiction. As a consequence there can be at most D
apexpoints and they are contained in the fundamental paralellotopes ΠIc

where I ∈ I.

Inspired by Lemma 5.1.3 we say that the number of apexpoints is
maximal when σ(A,α) = D.

Theorem 5.1.4 (Beukers [Beu10]). Let α ∈ Qr. Let M be the common
denominator of the coordinates of α. Then the solution set of the A-
hypergeometric system consists of algebraic solutions if and only if σ(A, kα)
is maximal for all k ∈ 1, . . . ,M and gcd(k,M) = 1.

In [BH89, Corollary 4.7] it is shown that interlacing of the paramet-
ers is equivalent to the monodromy-invariant Hermitian form being def-
inite. In this section we like to establish a similar connection in the A-
hypergeometric setting. Our main result is given in Corollary 5.4.2. Before
we start we like to remark that if σ(α, A) < D, it does not seem possible
to draw any conclusions about the signature of the invariant Hermitian
form from the value of σ(α, A).

For a number x ∈ R let {x} denote the fractional part of x and
bxc denote the floor of x. For vectors we will let these operations work
component-wise.

Theorem 5.1.5. Fix a cotriangulation I. Let p ∈ Kα be an apexpoint
then there exists a solution point µ such that p = A{γµ}ᵀ and I(µ) ∈ I.

Proof. Choose I ∈ I such that p ∈ C(AIc) and write p = Av where
v ∈ RN and vi = 0 for all i ∈ I. Notice that v is uniquely determined in
this way and since p ∈ C(AIc) we have vi ≥ 0 for all i ∈ Ic. Since p is
an apexpoint we have p− ai 6∈ C(A) for all i. In particular we must have
that vi < 1 for all i ∈ Ic. Since α ≡ p (mod Zr) and the vectors in A
generate Zr there must be a solution point µ, with I(µ) = I, such that
vᵀ ≡ γµ (mod Zr). Hence v = {γµ}ᵀ.
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The points A{γµ}ᵀ, where µ runs over all solution points with I(µ) ∈
I, are called Candidate apexpoints. Each candidate apexpoint of Kα
is a point in a set KI := (α + Zr) ∩ C(AIc) for some I ∈ I. This set KI

can be written as the disjoint union of shifted semigroups

Kµ :=
{
A{γµ}ᵀ +AIcv : v ∈ Zr≥0

}
,

Here µ runs over all solution points with I = I(µ) ∈ I. This disjoint
union KI consists of ∆I sets.

Recall the linear form h : Rr → R where h(a) = 1 for all column
vectors a of A. This will give us a notion of height for points in the cone
C(A). In particular h(p) = 0 ⇐⇒ p = 0 for any p ∈ C(A).

5.2 Main theorem

Theorem 5.2.1. Given an A-hypergeometric system HA(α). Then the
following three statements are equivalent:

1. All candidate apexpoints have the same height.

2. Kα has a maximal number of apexpoints, i.e. σ(A,α) = D.

3. All candidate apexpoints have the same height modulo 2Z.

5.3 Proof

Before we discuss the proof of this theorem we need a lemma. This lemma
uses Radon’s theorem to generate two triangulations of a point set of size
n+ 2 in an n-dimensional space. We use it on the vectors of A. Note that
these points all lie on the hyperplane defined by h. By a restriction to
that hyperplane we may put n = r − 1 in the following theorem.

Lemma 5.3.1 ([Law86]). For any point set P of size n+ 2 in Rn not all
on the same hyperplane, there are exactly 2 triangulations (not necessarily
admissable) that triangulate Q(P).

Lemma 5.3.1 also exactly tells what the triangulations are. First notice
that a triangle contains n + 1 points of P. And so its corresponding
cotriangle is determined by the remaining point. Let the points P =
{p1, . . . , pn+2} and consider the matrix

A =

(
1 1 . . . 1
p1 p2 . . . pn+2

)
.
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Its kernel is one-dimensional and generated by a vector l ∈ Rn+2. The
indices with positive entries in l correspond to one cotriangulation and all
indices with negative entries in l correspond to the other cotriangulation.

Proof of theorem 5.2.1.

1⇒ 3. Trivial.

1 ⇒ 2. All candidate apexpoints have the same height, hence no ap-
expoint (or no point at all in Kα) can exist of lower height. Let p be a
candidate apexpoint and suppose it is not an apexpoint, then p = q+r for
some q ∈ Kα and some r ∈ C(A) where q 6= p. Height-wise this means
h(p) = h(q + r) = h(q) + h(r). Now p is of minimal height in Kα and
so h(q) ≥ h(p). And r ∈ C(A) so h(r) ≥ 0. This is only possible when
h(q) = h(p) and h(r) = 0. This means that r = 0, so p = q, which is a
contradiction. We conclude that all candidate apexpoints are apexpoints.

2 ⇒ 1. Let us first explain the strategy for this proof. First, we pick
any apexpoint p of minimal height. It is of course contained in some
C(AIc) for some cotriangle I ∈ I. Then we expand the triangle Ic by
adding and index j ∈ I. Let S = Ic ∪ {j}. The cone C(AS) contains
all apexpoints of C(AIc) and maybe some more. Now our goal is to find
all of them in C(AS) by a procedure and show that they have the same
height. And then by picking the S’s differently we can cover all of C(A).
I sectioned each part of the proof to improve readability.

The process: Pick a triangulation Ic with at least two triangles and
pick Ic ∈ Ic such that C(AIc) contains an apexpoint p1 of minimal height
m. Now pick another triangle Jc of Ic such that the corresponding tri-
angles Ic and Jc are adjacent, i.e. C(AIc) and C(AJc) share a codimension
1 face. Let S = Ic ∪ Jc. We triangulate AS such that it contains Ic and
Jc. Denote this triangulation by IcS . By Lemma 5.3.1 AS has another
triangulation, denote this triangulation J cS . Consider first the case where
the Z-span of columns of AS is Zr.

We have chosen p1 ∈ C(AIc1 ) where I1 = I. There exists a solution
point µ1 such that I(µ1) = I1 and p1 ∈ Kµ1 . Now as C(AS) is generated
by r + 1 column vectors of A, there is exactly one vector at1 ∈ AS which
is not in AIc1 . Thus p1 + at1 6∈ Kµ1 hence it must be in another shifted
semigroup, say Kµ2 for some solution point µ2 with I2 = I(µ2) ∈ IS .
Clearly p1 + at1 is not an apexpoint and so not a candidate apexpoint,
however it has height m+ 1, so in Kµ2 there must be an apexpoint p2 of
minimal height m which can be obtained by subtracting a vector au1 for
some u1 ∈ Ic2.

Continue in this fashion with the new point until we get a path of ap-
expoints p1, p2, . . . , pk, . . ., because we only have finitely many apexpoints
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this path is eventually periodic. So without loss of generality assume
that p1 = pk+1 for some k ≥ 1. This means we found an element of
the kernel of AS by describing the path we took as a vector l such that
ASl = 0. This vector l is a sum of sparse vectors, each of which contains
one 1 at position ti and one −1 at position ui and the rest of the values
zero. Each summand represents a piece of the path. This process is also
described in the following diagram where we want to show that k = D̃
where D̃ = Vol(Q(AS)).

m+ 1

uk

��
u1

��
u2

�� �� ��
m p1

t1

;;

p2

t2

;;

p3

<< <<

pk

tk

��

Kµ1 Kµ2 Kµ3 · · · Kµk

Non-triviality of l: Consider the first step

p1 → p1 + ai → p1 + ai − aj = p2.

Here we have that i is uniquely determined by the index in S \ Ic1. In this
sense i corresponds to the cotriangle I1 in IS . Let ν1,ν2 be two solution
points with J1 = I(ν1) ∈ JS and J2 = I(ν2) ∈ JS such that p1 ∈ Kν1 and
p2 ∈ Kν2 .

Because p1 6= p2 we have that Kν1 6= Kν2 . Since i ∈ I1 we have that
i ∈ Jc1 hence p1 +ai ∈ Kν1 . Hence p2 +aj ∈ Kν1 . The fact that p2 ∈ KJ2

and KJ1 6= KJ2 means that j is the unique index in S \ Jc2 . In this sense
j corresponds to the cotriangle J2 in JS .

We conclude that the upward steps correspond to vectors ai with i ∈
IS and the downward vectors to aj with j ∈ JS . In particular, since IS
and JS are disjoint, we find that l is non-trivial.

The kernel of AS is known. It is generated by a single vector l whose
positive entries add up to D̃, these entries correspond to upward moves.
Negative entries of l add up to −D̃ and correspond to downward moves.
As a consequence l must be a non-zero multiple of l. This means that
the path created from the process visits D̃ distinct semigroups Kµk

with
I(µk) ∈ IS . Hence in each of these semigroups we find an apexpoint of
height m.
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In C(A) this means we have found D̃ apexpoints of the same height m
(which is minimal). In particular all the apexpoints coming from triangles
Ic and Jc. As this process works as well for every adjacent triangle to Ic

and Jc, we can cover up the whole triangulation by going through all the
possible pairs of adjacent triangles.

The special case. We assumed that the Z-span of columns of AS
spans Zr, however this is not always the case. If this is not the case then
the greatest common divisor g(S) among the minors of AS is greater than
1. Our process still gives us a cycle through all triangles of a triangulation
of AS . However it may not cover D̃ apexpoints. Instead we are only sure
to cover a multiple of D̃/g(S) apexpoints.

Let I be a cotriangle in a cotriangulation IS of AS . Then if we start
at an apexpoint of minimal height in Kµ, the cycle given by our process is
fixed. It produces a vector l ∈ ker(AS). The positive entries of l tell us the
upward moves we make, but it also tells us exactly how many times the
path visits each cone C(AJc) for J ∈ IS . As ker(AS) is one dimensional
this means that the cone C(AIc) is visited a multiple of ∆I/g(S) by the
process.

Choose any set S′ different from S with r + 1 indices and a cotrian-
gulation I ′ of AS′ which contains I. Then the same holds and C(AIc) is
visited a multiple of ∆I/g(S′) times by the process.

Now if we use the process for S on apexpoints of minimal height
in C(AIc) we may find new apexpoints of minimal height in this cone,
and we can continue until we have a multiple of ∆I/g(S) apexpoints.
If we do the same for S′ we can continue until we find a multiple of
∆I/g(S′) apexpoints. Combining the two means we obtain a multiple
of lcm(∆I/g(S),∆I/g(S′)) = ∆I/(gcd(g(S), g(S′)) apexpoints in C(AIc)
just by using the two paths continuously.

The number of visits to a triangle in one of these paths is only governed
by multiples of l and l′. Thus for all triangles Jc visited by a path from S
or S′ the same density of apexpoints have to be found. Hence in C(AJc)
we find ∆J/(gcd(g(S), g(S′)) apexpoints of minimal height.

We can just continue this procedure by picking a triangle that we
already used. Choose an adjacent triangle that we haven’t used before.
And in this way we get a new set S′′ and a new path and with this path
new apexpoints of minimal height may be found.

Extend until the full triangulation Ic is complete. Again the density
argument holds and we are now able to find ∆I/(gcdJ∈I(∆J)) apexpoints
of minimal height for any I ∈ I.

Now we can vary the cotriangulation I to create new paths from the
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process and merge those together as well. And again the density argu-
ment holds. So in each cone C(AIc) we find ∆I/(gcdJ(∆J)) apexpoints
of minimal height, where J runs over all cotriangles. gcdJ(∆J) is the
greatest common divisor of all d-minors of B. Because B is a basis for
the saturated lattice L this greatest common divisor is equal to 1. As
a consequence we have visited ∆I apexpoints of minimal height for each
cone C(AIc). In particular for the triangulation Ic we have found exactly
D apexpoints of minimal height.

3 ⇒ 1. (Sketch). This part is completely analogous to the proof of
step 2⇒ 1 so we will just sketch how the process works. Choose adjacent
triangles Ic and Jc create the set S = Ic ∪ Jc and AS . And make sure
there is an apexpoint p1 of minimal height m in KI . This means there is
a solution point µ1 such that p1 ∈ Kµ1 . Now let t1 be the index in S \ Ic
then p1 + at1 is in a different shifted semigroup Kµ2 for some solution
point µ2. The point p1 + at1 has height m + 1, but all the heights of
candidate apexpoints are supposed to be in m+ 2Z≥0. So clearly p1 +at1
is not an candidate apexpoint. Hence we are able to go down in Kµ2 and
find a candidate apexpoint p2 of height m in Kµ2 . In this way we create
a path of candidate apexpoints analogous to the path created in 2 ⇒ 1.
Again, every semigroup the process visits gives us a candidate apexpoint
of height m. The remainder of the proof is now analogous to 2⇒ 1.

5.4 Consequences

Now we want to convert this result into a condition based on the prop-
erties of a VHF H̃.

Lemma 5.4.1. Given an A-hypergeometric system HA(α) which admits

a VHF H̃ then the signature of H̃ is given by the signs of (−1)
∑N

i=1bγ
µ
i c

for all solution points µ such that I(µ) ∈ I

Proof. The diagonal of the diagonalization of H̃ has entries

∆I

∏
i∈I

(−1)γ
µ
i

∏
i∈Ic

sin(πγµi ), solution points µ : I = I(µ) ∈ I.

See Theorem 3.1.1. Now ∆I is always positive and sign(sin(πγµi )) =
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(−1)bγ
µ
i c. Hence

sign

(
∆I

∏
i∈I

(−1)γ
µ
i

∏
i∈Ic

sin(πγµi )

)
=
∏
i∈I

(−1)γ
µ
i

∏
i∈Ic

(−1)bγ
µ
i c

=
N∏
i=1

(−1)bγ
µ
i c

= (−1)
∑N

i=1bγ
µ
i c.

Lemma 5.4.1 implies that H̃ is definite if and only if all heights h(A{γµ}ᵀ)
are the same modulo 2Z. Application of criterion 3 of Theorem 5.2.1 now
implies the following corollary.

Corollary 5.4.2. Suppose the A-hypergeometric system HA(α) admits a
VHF H̃. Then H̃ is definite if and only if Kα has a maximal number of
apexpoints.

Following the results from Matsubara-Heo and Goto about the signa-
ture of the Hermitian form, see Remark 3.4.2 and [GMH20], we can also
give the following corollary.

Corollary 5.4.3. Given an A-hypergeometric system HA(α) where h(α) 6∈
Z. Then its invariant Hermitian form H is definite if and only if Kα has
a maximal number of apexpoints.
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Chapter 6

Bailey-type factorizations

6.1 Introduction

In this chapter we want to find factorizations of certainA-hypergeometric
functions which are similar to Bailey’s identity [Bai33]

F4

(
a, b

c, a+ b− c+ 1
x(1− y), y(1− x)

)
= 2F1

(
a, b
c

x

)
2F1

(
a, b

a+ b− c+ 1
y

)
. (6.1)

Here F4 is Appell’s F4 function. Other identities similar to (6.1) for Ap-
pell’s F2 have been found independently by Beukers [Zud19] and Vidunas
[Vid09]. It reads,

F2

(
a + b− 1

2
, a, b

2a, 2b

4u(1− u)(1− 2v)

(1− 2uv)2
,

4v(1− v)(1− 2u)

(1− 2uv)2

)
= (1− 2uv)−1+2a+2b

2F1

(
a + b− 1

2
, a

2a
4u(1− u)

)
2F1

(
a + b− 1

2
, b

2b
4v(1− v)

)
.

(6.2)

For Appell’s F3 identities it is noted in [Vid09] that these follow directly
from the observation that the two functions

F2

(
a b1, b2
c1, c2

x, y

)
,

x−b1y−b2F3

(
1 + b1 − c1 1 + b2 − c2, , b1, b2

1 + b1 + b2 − a
1

x
,

1

y

)
satisfy the same differential equations.
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The aim of this chapter is to generalize (6.1) to the classical two-
variable hypergeometric functions. Let 2,2F1,1(x, y) be such a function.
Then we look for factorizations of the form

2,2F1,1(φ(s, t), ψ(s, t)) = Q(s, t)λ2F1

(
a, b
c

ρ(s)

)
2F1

(
a′, b′

c′
σ(t)

)
,

(6.3)
where φ, ψ,Q are rational functions in two variables and ρ, σ rational
functions in one variable. Analytic continuation of the right hand side
in s, t will generate a space of functions of dimension 2 × 2 = 4. Hence
we expect the function on the left to be a solution of a rank 4 equation.
Which is the case for Appell F2, F4.

In this chapter we are interested in Bailey-type factorizations for Horn
functions of rank 4, in particular H1, H4 and H5. These are defined as the
hypergeometric series

H1

(
a, b, c
d

x, y

)
=
∞∑
m=0

∞∑
n=0

(a)m−n(b)m+n(c)n
(d)mm!n!

xmyn, (6.4)

H4

(
a, b
c, d

x, y

)
=
∞∑
m=0

∞∑
n=0

(a)2m+n(b)n
(c)m(d)nm!n!

xmyn, (6.5)

H5

(
a, b
c

x, y

)
=

∞∑
m=0

∞∑
n=0

(a)2m+n(b)n−m
(c)nm!n!

xmyn. (6.6)

6.2 Monodromy

The monodromy group of 2F1(x) is contained in GL(2). Hence the
monodromy group of 2,2F1,1 is contained in GL(2) × GL(2). Over the
complex numbers the group GL(2)×GL(2) maps injectively into the group
of orthogonal similitudes GO(4) by the map

(M1,M2) 7→
((

a b
c d

)
7→Mᵀ

1

(
a b
c d

)
M2

)
.

The GO(4) semi-invariant form is given by the determinant ad − bc.
Thus to find Bailey-like factorizations we should look for rank 4 system
whose monodromy is contained in GO(4). To find candidates for such
hypergeometric systems, we write down the set of monodromy matrices



Monodromy 65

M1, . . . ,Mk as constructed in Chapter 2. Let Q be a candidate non-
singular 4×4 matrix and test whether MT

i QMi = λiQ for some scalar λi.
The requirement that we should find a non-trivial Q gives us a large set
of restrictions on the hypergeometric parameters α1, . . . , αr, or more cor-
rectly, e2πiα1 , . . . , e2πiαr . If the group generated by M1, . . . ,Mk acts irre-
ducibly, the resulting matrixQ will be either symmetric or anti-symmetric.
This follows from the fact that Q is uniquely determined up to a scalar
and both Q and QT are a solution. In the first case 〈M1, . . . ,Mk〉 will be
contained in GO(4), in the second case in GSp(4), the group of symplectic
similitudes.

First we give a short summary of how the algorithm works. The imple-
mentation follows straightforwardly from the algorithm, so we will omit
that part.

The monodromy matrices given to us by Definition 2.4.1 have the form
Mρ,j := Xρχρ,jX

−1
ρ where χρ,j is a diagonal matrix.

Now we want to find a (skew)-symmetric matrix Q and a scalar λρ,j ∈
C∗ such that

Mᵀ
ρ,jQMρ,j = λρ,jQ.

This can then be written as

(Xᵀρ)−1χρ,jX
ᵀ
ρQXρχρ,jX

−1
ρ = λρ,jQ.

And then it can be written as

χρ,jX
ᵀ
ρQXρχρ,j = λρ,jX

ᵀ
ρQXρ.

So let Qρ = XᵀρQXρ, then we have

χρ,jQρχρj = λρ,jQρ.

So let χρ,j = Diag(χ1, . . . , χD) then for each row-column entry (r, c) where
Qρ is non-zero, we need to have χrχc = λρ,j .

These conditions result in restrictions on the parameters α1, . . . , αr,
or more correctly e2πiα1 , . . . , e2πiαr .

This turns out to be a reasonably fast approach to compute which spe-
cializations give us a monodromy group contained in GO(4) or GSp(4) for
the classical cases. We need to be careful though, because the restrictions
hold for e2πiα1 , . . . , e2πiαr we find α-vectors upto shifts in Zr. Table 6.1
gives the results of our implementation of the algorithm described. We
feed it an A-hypergeometric system and it computes for which parameter
vectors α the system is either in GO(4) or GSp(4). The specialization
given in Table 6.1 correspond to the classical parameters and so not to the
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A-hypergeometric α-vector. Additionally note that α may not be totally
non-resonant, this is given in the third column. Here TNR means Totally
Non-Resonant and NR means Non-Resonant. Note that this may give us
an inconsistency, because the computation of the monodromy matrices
was made under the assumption of TNR. However, NR occurs only in
the symplectic case, which will not be considered any further. The fourth
column tells us whether the monodromy for the corresponding specializa-
tion is contained in GO(4) or GSp(4).

Among the classical two-variable hypergeometric equations of rank 4
the cases F3, H2, H7 are missing from the table. However, F3 and H2 are
related to F2 (they have the same A-polytope) and H7 is related to H4.

Table 6.1

System Specialization (mod Zr) Res. Mon.

F2 (q0, q1, q0 − q1 + 1
2 , 2q1, 2q0 − 2q1) TNR GO(4)

(q0, q1, q0 − q1, 2q1, 2q0 − 2q1) NR GSp(4)

F4 (q0, q1, q2, q0 + q1 − q2) TNR GO(4)

H1 (q + 1, q + 1
2 ,

1
2 , 2q) TNR GO(4)

(q, q,−1
2 , 2q) NR GSp(4)

H4 (q0, q1, q0 − q1, 2q1) TNR GO(4)
(q0 − 1

2 , q1, q0 − q1, 2q1) TNR GSp(4)

H5 (q + 1
2 , q, 2q) TNR GO(4)

(q, q, 2q) NR GSp(4)

Looking at F4 and Bailey’s identity (6.1) we see that the parameter
vectors (q0, q1, q2, q0 +q1−q2) and its classical parameter vector (a, b, c, a+
b − c + 1) are the same modulo Z4 if we take q0 = a, q1 = b, q2 = c. The
same can be said for Bailey’s identity for F2 in (3). Looking at this table
one could now wonder whether H1, H4 and H5 also admit a Bailey type
decomposition.

To find a Bailey type factorization we follow an approach from [Vid09]
who finds such identities for F2 and F4. Consider (6.3) and write F (x, y) =

2,2F1,1(x, y). Fix s and note that F (φ(s, t), ψ(s, t)), as a function of t,
satisfies an ordinary second order differential equation with rational func-
tion coefficients, because the right hand side of (6.3) does. The prob-
lem we like to solve is to find (rational) functions x(t), y(t) such that
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f(t) := F (x(t), y(t)) satisfies an ordinary second order differential equa-
tion. For general x(t), y(t) such a function would satisfy a fourth or-
der equation, so the second order restriction does give us restrictions on
x(t), y(t).

Suppose f(t) is the solution to a second order differential system of
the form

d2f

dt2
+ c1

df

dt
+ c2f = 0.

To find the relation with F and its differential equations we apply the
chain rule and product rule multiple times to f(t) = F (x(t), y(t)).

df

dt
= ẋFx + ẏFy (6.7)

d2f

dt2
= ẋ2Fxx + 2ẋẏFxy + ẏ2Fyy + ẍFx + ÿFy (6.8)

Here we denote

ẋ =
dx

dt
, ẏ =

dy

dt
.

6.3 Horn’s H4

The first system we want to investigate is Horn’s H4 hypergeometric
function (6.5). This one is interesting because we can see from Table
6.1 that it’s corresponding system has a monodromy group in GO(4) and
the corresponding specialization of the parameters is two dimensional. A
system of partial differential equations for H4 can be found at [DG02,
p.817]. It is

x(1− 4x)Fxx − 4xyFxy − y2Fyy

+ (c− (4a+ 6)x)Fx − 2(a+ 1)yFy − a(a+ 1)F = 0, (6.9)

y(1− y)Fyy − 2xyFxy

+ (d− (a+ b+ 1)y)Fy − 2bxFx − abF = 0. (6.10)

Now we would like to parameterize x and y with variable t such that
we get an equation of the form

d2f

dt2
+ c1

df

dt
+ c2f = 0.

To achieve this we take (6.8) and eliminate partial derivatives on the
righthand side terms of (6.8). First we can eliminate Fxx and Fyy using
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equations (6.9) and (6.10). Then we set the coefficient of Fxy to be zero.
This coefficient is equal to

−2y(y − 2)ẋ2 + 2(y − 1)(4x− 1)ẋẏ − 2x(4x− 1)ẏ2

(y − 1)(4x− 1)
. (6.11)

If we specialize this by

(x(u, v), y(u, v)) =

1−
(
v− 1

v
2

u− 1
u

2

)2

4
, 1 +

v + 1
v

2

 ,

we can factor (6.11) as

(v2u̇+ 2uv̇ − u̇)(v2u̇− 2uv̇ − u̇)(u2 + 1)2(v2 − 1)2

64(v2 + 1)u4v3
.

This is equal to zero when v = ±1 or u = ±i, but we skip those cases and
focus on one of the two differential equations that emerge (the other one
gives a similar result). Thus consider the following differential equation:

(v2 − 1)u̇ = −2uv̇.

Which can be simplified to

−1

2u
du =

1

v2 − 1
dv.

After integration we obtain

−1

2
log(u) + C =

1

2
(log(1− v)− log(1 + v)).

And thus we get the solutions

u = C ′
1 + v

1− v
, C ′ constant.

Now set v = t, u = C ′ 1+t
1−t and let C ′ = 1+s

1−s with s another constant. This
gives us a parameterization

x(s, t) = −(st2 + s+ 2t)(2st+ t2 + 1)s

4(s+ 1)2(s− 1)2t2
, y(s, t) = 1 +

t+ 1
t

2
,

which ensures that (6.11) is 0.
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Now we have eliminated Fxx, Fxy, Fyy from (6.8). Equation (6.8) has
now acquired the form

d2f

dt2
= c3Fx(x(t), y(t)) + c4Fy(x(t), y(t)) + c5f. (6.12)

The coefficients c3, c4, c5 are quite cumbersome to write down and can be
found in Appendix A.1.

Then, what we would like to see is that the vector (c3, c4) is a multiple,
say r2(t), of (ẋ, ẏ). In such a case we have

c3Fx + c4Fy = r2(t)(ẋFx + ẏFy) = r2
df

dt

in virtue of equation (6.7). It is a small miracle that this indeed happens
for the parameter choices a = q0, b = q1, c = 1 + q0 − q1, d = 2q1. This
choice has been motivated by Table 6.1. This means that for fixed s the
function

H4

(
q0, q1

1 + q0 − q1, 2q1
−
(
st2 + s+ 2 t

)(
2 st+ t2 + 1

)
s

4 (s2 − 1)2t2
,
(t+ 1)2

2 t

)
.

satisfies an ordinary Fuchsian equation of the form

d2F

dt2
+ r2

dF

dt
+ r3F. (6.13)

Here r2 and r3 are some rational coefficients in q0, q1, s and t which can be
found in Appendix A.1. It is a Fuchsian equation which we like to identify
with a transform of the Gaussian hypergeometric equation. To that end
we investigate its local exponents.

The following singularities with corresponding local exponents were
found:

Singularity Exponent 1 Exponent 2

t = 1 0 2
t = −1 0 2− 4q1

t = 0 q0 q0 + 1
t =∞ q0 q0 + 1

Roots of t2 + 2t/s+ 1 = 0 0 q1 − q0

Roots of t2 + 2ts+ 1 = 0 0 q1 − q0

At t = 0 and t = ∞ we notice there is a difference of 1 in the local
exponents, hence they may be apparent singularities. As the system for
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2F1 only has local exponents at 0, 1 and ∞, we might want to map the
differential equations for 2F1(z) under the covering

z 7→ (s+ 1)2

(s− 1)2

(t+ 1)4

(t− 1)4
.

This is because t = 1 corresponds to z =∞ with multiplicity 4; And t =
−1 corresponds to z = 0 with multiplicity 4; If t is a root of t2+2t/s+1 = 0
or t2 +2ts+1 = 0 this corresponds to z = 1 each with multiplicity 1. And
t = 0 and t =∞ correspond to regular points.

Recall that the Riemann scheme of 2F1

(
a, b
c

z

)
is equal to

Singularity Exponent 1 Exponent 2

z = 0 0 1− c
z = 1 0 c− a− b
z =∞ a b

Hence the Riemann scheme of 2F1

(
a, b
c

(s+1)2

(s−1)2
(t+1)4

(t−1)4

)
becomes

Singularity Exponent 1 Exponent 2

t = 1 4a 4b
t = −1 0 4− 4c
t = 0 0 1
t =∞ 0 1

Roots of t2 + 2t/s+ 1 = 0 0 c− a− b
Roots of t2 + 2ts+ 1 = 0 0 c− a− b

Upto translation these exponents should be equal to the local exponents we
found for H4, hence the differences between local exponents form a linear
set of equations. 4b − 4a = 2, 4 − 4c = 2 − 4q1 and c − a − b = q1 − q0.
This can be solved for a = 1

2q0 + 1
2 , b = 1

2q0 and c = q1 + 1
2 . Indeed we can

check that under these transformations from the 2F1 system we obtain
equation (6.13).

Now we need to translate the local exponents. For this we need to
multiply by an additional factor of (1 − t)−2q0tq0 . This makes the local
exponents at t = 0 and t =∞ both q0 and q0 + 1 and the local exponents
at t = 1 now become 0 and 2.

We conclude that

H4

(
q0, q1

1 + q0 − q1, 2q1
−
(
st2 + s+ 2 t

)(
2 st+ t2 + 1

)
s

4 (s2 − 1)2t2
,
(t+ 1)2

2 t

)
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satisfies the same second order ordinary differential equation in t as

(1− t)−2q0tq02F1

(
1
2q0 + 1

2 ,
1
2q0

q1 + 1
2

(s+ 1)2(t+ 1)4

(s− 1)2(t− 1)4

)
.

Now we want to transform this such that it becomes symmetric in the
arguments s and t in the sense that swapping s and t does not change the
system, this can be done with the following transformation:

s→ −s
2 + 1

s2 − 1
, t→ st+ 1

st− 1
.

In this way we obtain

H4

(
q0, q1

1 + q0 − q1, 2q1

(
s4 − 1

)(
t4 − 1

)
4 (s2t2 − 1)2 ,

2s2t2

s2t2 − 1

)
. (6.14)

And as s is a constant it should satisfy the same differential equation in t
as(

1

1− st

)−2q0 (st+ 1

st− 1

)q0
2F1

(
1
2q0 + 1

2 ,
1
2q0

q1 + 1
2

s4

)
2F1

(
1
2q0 + 1

2 ,
1
2q0

q1 + 1
2

t4
)
.

(6.15)

By the symmetry in s, t we can also say that (6.14) and (6.15) satisfy
the same second order ordinary differential equation in s.

To establish a Bailey-like identity we consider (6.14) near the point
(s, t) = (1, 0). It is holomorphic there, so (6.14) is (1 − s2t2)q0 times
a hypergeometric series holomorphic near s = 1 times a hypergeometric
series holomorphic near t = 0.

After setting the constant terms both equal to 1 we conclude that

H4

(
q0, q1

1 + q0 − q1, 2q1

(
s4 − 1

)(
t4 − 1

)
4 (s2t2 − 1)2 ,

2s2t2

s2t2 − 1

)

=
(
1− s2t2

)q0
2F1

(
1
2q0 + 1

2 ,
1
2q0

q0 − q1 + 1
1− s4

)
2F1

(
1
2q0 + 1

2 ,
1
2q0

q1 + 1
2

t4
)
.

Notice that only squared variables are used, so substitute s →
√
s and

t→
√
t to obtain:

H4

(
q0, q1

1 + q0 − q1, 2q1

(
s2 − 1

)(
t2 − 1

)
4 (st− 1)2 ,

2st

st− 1

)
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= (1− st)q0 2F1

(
1
2q0 + 1

2 ,
1
2q0

q0 − q1 + 1
1− s2

)
2F1

(
1
2q0 + 1

2 ,
1
2q0

q1 + 1
2

t2
)
.

(6.16)
After a search in the literature it turned out that there is another way

to get the same identity. In [Erd48, eq. 7.6, p. 382] we find the identity

H4

(
α, β
γ, 2β

x, y

)
= (1− y/2)−αF4

(
1
2α,

1
2α+ 1

2
γ, β + 1

2

16x

(2− y)2
,

y2

(2− y)2

)
.

Using this identity we obtain

H4

(
q0, q1

1 + q0 − q1, 2q1

(s2 − 1)(t2 − 1)

4(st− 1)2
,

2st

st− 1

)
= (1− st)q0F4

(
1
2q0,

1
2q0 + 1

2
1 + q0 − q1, q1 + 1

2

(1− s2)(1− t2), s2t2
)
.

We can now apply Bailey’s factorization (6.1) to get the right hand side
of (6.16).

6.4 Horn’s H1

A system of partial differential equations for Horn’s H1 function (6.4) can
be found at [DG02, p.817]. It is given by

x(1− x)Fxx + y2Fyy

+ (d− (a+ b+ 1)x)Fx − (a− b− 1)yFy − abF = 0, (6.17)

y(1 + y)Fyy − x(1− y)Fxy

+ (a− 1− (b+ c+ 1)y)Fy − cxFx − bcF = 0. (6.18)

We can use (6.17) and (6.18) to eliminate Fxx and Fxy from (6.8). The
following coefficient for Fyy remains:

(y3 − y2)ẋ2 + (−2xy2 − 2xy + 2y2 + 2y)ẋẏ + (x2y − x2 − xy + x)ẏ2

(x− 1)x(y − 1)
.

(6.19)
Using the specialization

x(u, v) = 1− (v − 1/v)2(u− 1/u)2

16
, y(u, v) = v2,

the coefficient (6.19) factors as follows

4(v2u̇+ 2uv̇ − u̇)(v2u̇− 2uv̇ − u̇)(u2 + 1)2v4

((uv + u+ v − 1)(uv + u− v + 1)(uv − u+ v + 1)(uv − u− v − 1)u2)
.
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Just like in the H4 case we can make this zero by taking the parametriz-
ation

u = C
1 + t

1− t
, v = t.

And again we will pick the integration constant C to be

C =
1 + s

1− s
.

Now in equation (6.8) we eliminated the coefficients Fxx, Fxy and Fyy,
and we are left to eliminate Fx and Fy using (6.7). Call the coefficients
for Fx and Fy respectively c3 and c4 and the constant coefficient c5. These
coefficients can be found in Appendix A.2. Then what we would like to see
is that c4/c3 = ẏ/ẋ. Again miraculously this happens when a = q0− 1

2 , b =
q0, c = 1

2 , d = 2q0, which matches the entry in Table 6.1 modulo Z4. This
means that for fixed s the function

H1

(
q0 − 1

2 , q0,
1
2

2q0
−
(
st2 + s+ 2 t

)(
2 st+ t2 + 1

)
s

(s2 − 1)2t2
, t2

)

satisfies an ordinary Fuchsian equation of the form

d2F

dt2
+ r2

dF

dt
+ r3F.

The coefficients r2 and r3 can be found at Appendix A.2. Let us analyze
the local exponents of this differential equation.

Singularity Exponent 1 Exponent 2

t = 0 2q0 − 1 2q0

t =∞ 2q0 2q0 + 1
Roots of t2 + 2t/s+ 1 = 0 0 1− 2q0

Roots of t2 + 2ts+ 1 = 0 0 1− 2q0

We see that in this case t = 0 and t = ∞ may be apparent singularities,
but t = 1 and t = −1 are regular. Assume just like in the H4 case that we

can go from 2F1 to this by the covering z 7→ (s+1)2(t+1)4

(s−1)2(t−1)4
now we still want

t = 1 (z =∞ with multiplicity 4) and t = −1 (z = 0 with multiplicity 4)
to be regular. Hence 1 − c = 1

4 , so c = 3
4 . And c − a − b = 1 − 2q0 and

b − a = 1
4 so a = q0 − 1

4 and b = q0. Now we need to translate the local
exponents such that t = 0 and t = ∞ become apparent singularities and
t = 1 becomes regular, for this we need to multiply by the function by
(t− 1)1−4q0t2q0−1
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We obtain that

H1

(
q0 − 1

2 , q0,
1
2

2q0
−
(
st2 + s+ 2 t

)(
2 st+ t2 + 1

)
s

(s2 − 1)2t2
, t2

)
satisfies the same second order differential equation in t as

(t− 1)1−4q0t2q0−1
2F1

(
q0 − 1

4 , q0
3
4

(s+ 1)2(t+ 1)4

(s− 1)2(t− 1)4

)
.

Now we want to make the arguments symmetric again. We can do this
by the substitution

s→ −s
2 + 1

s2 − 1
, t→ st+ 1

st− 1
.

As a consequence

H1

(
q0 − 1

2 , q0,
1
2

2q0

(s4 − 1)(t4 − 1)

(s2t2 − 1)2
,

(
st+ 1

st− 1

)2
)

satisfies the same differential equation in t as

(st− 1)4q0−1

(
st+ 1

st− 1

)2q0−1

2F1

(
q0 − 1

4 , q0
3
4

s4

)
2F1

(
q0 − 1

4 , q0
3
4

t4
)
.

Hence by symmetry this is true both in s and t. To find a Bailey-like
identity, which is an identity of two variable power series, we must look
at the function

φ : (s, t) 7→

(
(s4 − 1)(t4 − 1)

(s2t2 − 1)2
,

(
st+ 1

st− 1

)2
)
.

Then we wish to choose a point (s0, t0) with s4
0, t

4
0 ∈ {0, 1} such that

φ maps an open neighbourhood of (s0, t0) to a neighbourhood of (0, 0).
Unfortunately this is impossible. Such points must satisfy s4

0 = t40 = 1
and s0t0 = −1. For example, s0 = −1, t0 = 1. But φ is not continuous
in (−1, 1). In order to get a meaningful identity we could restrict φ to a
neighbourhood U of (−1, 1) of the form s = −1 + 2uv, t = 1 + 2v with u, v
small. One verifies that

φ(−1 + 2uv, 1 + 2v) = (−4u+ h.o.t. , v2 + h.o.t.),

where ’h.o.t.’ means ’higher order terms’. So φ is well-defined on U and
its image is in a neighbourhood of (0, 0).
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Therefore

H1

(
q0 − 1

2 , q0,
1
2

2q0
φ(−1 + 2uv, 1 + 2v)

)
(6.20)

is holomorphic near the point (u, v) = (0, 0). The only function in the
space spanned by the products of Gauss hypergeometric functions can be

(st− 1)2q0(st+ 1)2q0−1(1− t4)1−2q0

× 2F1

(
1− q0,

3
4 − q0

2− 2q0
1− t4

)
2F1

(
q0 − 1

4 , q0

2q0
1− s4

)
.

After the substitution s → −1 + 2uv, t → 1 + 2v this becomes, after
normalization,

(1 + v − uv − 2uv2)2q0

(
1− u− 2uv

(1 + v)(1 + 2v + 2v2)

)2q0−1

× 2F1

(
1− q0,

3
4 − q0

2− 2q0
− 8v(1 + v)(1 + 2v + 2v2)

)
× 2F1

(
q0 − 1

4 , q0

2q0
8uv(1− uv)(1− 2uv + 2u2v2)

)
, (6.21)

which is also holomorphic at (u, v) = (0, 0). Since the constant terms of
(6.20) and (6.21) are equal these power series expansions must be equal.

6.5 Horn’s H5

The system of differential equations corresponding to Horn’s H5 function
(6.6), given in [DG02, p.817], is

x(1 + 4x)Fxx − y(4x− 1)Fxy − y2Fyy

+ (1− b+ (4a− 6)x)Fx + 2(a+ 1)yFy + a(a+ 1)F = 0 (6.22)

y(1− y)Fyy − xyFxy + 2x2Fxx

+ (c− (a+ b+ 1)y)Fy + (2 + a− 2b)xFx − abF = 0. (6.23)

Again we would like to parameterize x and y with variable t such that
we get an equation of the form

d2f

dt2
+ c1

df

dt
+ c2f = 0.

First we can eliminate Fxx and Fxy from (6.8) using equations (6.22)
and (6.23). Then we set the coefficient of Fyy to be zero. This coefficient
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is equal to

(3xy2 − 4xy − y2 + y)ẋ2 + (−12x2y + 8x2 − 2xy + 2x)ẋẏ + (12x3 − x2)ẏ2

(12x− 1)x2
.

(6.24)

Instead of factoring (6.24) such that we only have to solve linear differ-
ential equations. It is easier to solve this right away, thanks to a suggestion
from Wadim Zudilin. Namely let x be dependent on y and try to find an
algebraic relation between x and y using power series solutions of x(y).
Rewrite the numerator of (6.24), then we want to solve

(3xy2−4xy−y2+y)
d2x

dy2
+(−12x2y+8x2−2xy+2x)

dx

dy
+(12x3−x2) = 0.

(6.25)
Now by trying out different constant terms for x(y) we can generate power
series solutions from the recurrences of (6.25) upto a certain degree M .
Suppose we have found power series solutions x1(y), . . . , xN (y) all of degree
M . Then we can make a matrix Qi where each row corresponds to the
coefficient vector of yvxui +O(yM ) and where the rows run over a sufficient
number of pairs (u, v) ∈ Z2

≥0.
In our case it was enough to let M = 30, the constant terms of x(y)

were chosen to be the twenty integers {−10, . . . ,−1}∪{1, . . . , 10}, and we
let (u, v) ∈ {(a, b) : a = 0, . . . , 3, b = 0, . . . , 2}. This is because we don’t
expect the algebraic relation between x and y to be very complex.

The left kernel of each Qi now corresponds to an algebraic relations
between x and y. By our choice of x1(y), . . . , x20(y) and the choice of
(u, v) this kernel turns out to be 1-dimensional for each of these Qi. Let
the algebraic relation that generates the left kernel of Qi be denoted by
fi.

Then we interpolate the coefficients of {fi}i=1,...,N separately using
variable a to form an algebraic relation

f(a, x, y) :=

3∑
u=0

2∑
v=0

cu,v(a)xuyv. (6.26)

The full relation is given in Appendix A.3. Solving f(a, x, y) = 0 for y
gives two solutions

y1 =
4
(

144 a2x− 144 a
3
2 x

3
2 + 4 a2 − 36 a

3
2
√
x + 36 ax− 4

√
ax

3
2 + a−

√
a
√
x
)

(4 a + 1)

(12 a− 1)3x
,
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y2 =
4
(

144 a2x + 144 a
3
2 x

3
2 + 4 a2 + 36 a

3
2
√
x + 36 ax + 4

√
ax

3
2 + a +

√
a
√
x
)

(4 a + 1)

(12 a− 1)3x
.

Pick y = y2 and substitute x→ t2 and a→ s2 to get the specialization

x(s, t) = t2, y(s, t) =
4
(
144s2t2 + 4s2 + 32st+ 4t2 + 1

)(
4 s2 + 1

)
(s+ t)s

(12 s2 − 1)3t2
.

One checks that (6.24) is annihilated by these choices of x and y.

This means in (6.8) we eliminated the coefficients Fxx, Fxy and Fyy,
and we would like to eliminate Fx and Fy using (6.7). Again we call the
coefficients for Fx and Fy respectively c3 and c4 and the constant coefficient
c5. These coefficients can be found in Appendix A.3. And miraculously
we find c4/c3 = ẏ/ẋ when a = q, b = q − 1

2 , c = 2q. This means that for
fixed s the function

H5

(
q, q − 1

2
2q

t2,
4
(
144 s2t2 + 4 s2 + 32 st+ 4 t2 + 1

)(
4 s2 + 1

)
(s+ t)s

(12 s2 − 1)3t2

)
.

satisfies an ordinary Fuchsian equation of the form

d2F

dt2
+ r2

dF

dt
+ r3F.

The coefficients r2 and r3 can be found in Appendix A.3. The local expo-
nents for this differential equation look like

Singularity Exponent 1 Exponent 2

t = 0 2q − 1 2q
t =∞ q q + 1
t = −s 0 1− 2q

Roots of 144s2t2 + 4s2 + 32st+ 4t2 + 1 = 0 0 1− 2q

Consider the covering

z → − 4(s+ t)2

(12st+ 1)2
.

The singularity t = −s now corresponds to z = 0 with multiplicity 2. The
singularity at a root of 144s2t2 + 4s2 + 32st+ 4t2 + 1 = 0 now corresponds
to z = 1 with multiplicity 1. And lastly z =∞ corresponds to the regular
point t = − 1

12s with multiplicity 2. This means the local exponents of

2F1(z) under this covering will look like
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Singularity Exponent 1 Exponent 2

t = 0 0 1
t =∞ 0 1
t = −s 0 2(1− c)

Roots of 144s2t2 + 4s2 + 32st+ 4t2 + 1 = 0 0 c− a− b
t = − 1

12s 2a 2b

Comparing the two tables we want to solve the equations 2(1 − c) =
1− 2q, 2(b− a) = 1 and c− a− b = 1− 2q. Which comes down to

a =
3

2
q − 1

2
, b =

3

2
q, q +

1

2
.

Making the last table

Singularity Exponent 1 Exponent 2

t = 0 0 1
t =∞ 0 1
t = −s 0 1− 2q

Roots of 144s2t2 + 4s2 + 32st+ 4t2 + 1 = 0 0 1− 2q
t = − 1

12s 3q-1 3q

Hence we need to multiply by a factor (12st + 1)1−3qt2q−1 to make the
tables for H5 and 2F1 equal. As a consequence we get that

H5

(
q, q − 1

2
2q

t2,
4
(
144 s2t2 + 4 s2 + 32 st+ 4 t2 + 1

)(
4 s2 + 1

)
(s+ t)s

(12 s2 − 1)3t2

)
.

(6.27)
satisfies the same differential equation as the one coming from

(12st+ 1)1−3qt2q−1
2F1

(
3
2q −

1
2 ,

3
2q

q + 1
2

− 4(s+ t)2

(12st+ 1)2

)
. (6.28)

Next we want the arguments of H5 in (6.27) to be symmetric, i.e. we
want to find a parameterization of s(u, v) and t(u, v) such that

H5(φ(s(u, v), t(u, v)), ψ(s(u, v), t(u, v))) = H5(φ(s(v, u), t(v, u)), ψ(s(v, u), t(v, u))).

And we want the argument of 2F1 in (6.28) to be independent of s. If
we can achieve this then we can swap roles of u and v to make the Bailey
identity by a symmetry argument. There are two approaches to this. The
first approach is to make H5 symmetric by plugging in a power series
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for t with variable coefficients. Then determine these coefficients and try
to figure out which rational function belongs to this power series. When
we perform this calculation where we fix s(u, v) = u

2 , we find that by a
miracle the argument of 2F1 becomes independent of s. This approach is
succesful but the result suggests a more intuitive approach which I will
present here.

We want to find the inverse function of

gs(t) =
2(s+ t)

12st+ 1
.

This is simply

g−1
s (t) =

2t− s
12st− 2

.

Hence if we take s(u, v) = u
2 and t(u, v) = g−1

u/2(v) this means (6.28)
becomes

(3uv + 1)q
(
1− 3u2

)1−3q
(
−u+ v

2

)2q−1

2F1

( 3q−1
2 , 3q

2
q + 1

2

− v2

)
.

(6.29)

Miraculously (6.27) becomes symmetric under this parameterization,

H5

(
q, q − 1

2
2q

(u+ v)2

4 (3uv + 1)2 ,
4
(
u2 + 1

)(
v2 + 1

)
uv

(3uv + 1)(u+ v)2

)
. (6.30)

Multiply (6.29) by the constant

(−2)1−2q(1− 3u2)3q−1
2F1

( 3q−1
2 , 3q

2
q + 1

2

− u2

)
.

This means that (6.29) turns into something symmetric:

(3uv + 1)q
(
−u+ v

2

)2q−1

2F1

( 3q−1
2 , 3q

2
q + 1

2

− u2

)
2F1

( 3q−1
2 , 3q

2
q + 1

2

− v2

)
.

By this symmetry we note that it satisfies the same differential equations
as (6.30) in both u and v.

Consider the function

η : (u, v) 7→

(
(u+ v)2

4 (3uv + 1)2 ,
4
(
u2 + 1

)(
v2 + 1

)
uv

(3uv + 1)(u+ v)2

)
.
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Want want to pick a point (u0, v0) with −u2
0,−v2

0 ∈ {0, 1}, such that
η maps an open neighborhood of (u0, v0) to an open neighborhood of
(0, 0). Just as we saw with H1, this is impossible. To get a meaningful
Bailey identity we will restrict η to a neighborhood of (0, 0) of the form
u = x, v = −x · y. By comparing the solution spaces we find and making
both constant terms equal we see that

H5

(
q, q − 1

2
2q

x2(y − 1)2

4(3x2y − 1)2
,
4(x2y2 + 1)(x2 + 1)y

(3x2y − 1)(y − 1)2

)
=

(1−3x2y)q(1−y)2q−1
2F1

(
3
2q −

1
2 ,

3
2q

q + 1
2

− x2y2

)
2F1

(
1
2q,

1
2q + 1

2
3
2 − q

− x2

)
.

Note that this identity only depends on x2 and y. So we may substitute
x→

√
x to obtain the Bailey-type identity

H5

(
q, q − 1

2
2q

x(y − 1)2

4(3xy − 1)2
,
4(xy2 + 1)(x+ 1)y

(3xy − 1)(y − 1)2

)
=

(1−3xy)q(1−y)2q−1
2F1

(
3
2q −

1
2 ,

3
2q

q + 1
2

− xy2

)
2F1

(
1
2q,

1
2q + 1

2
3
2 − q

− x
)
.

(6.31)
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Appendix A

Additional Coefficients

In chapter 6 we left out some of the coefficients to improve readability.

A.1 Horn’s H4

The following coefficients belong to those of equation (6.12).

c3 =
(
2 bs4t6 + cs4t6 + 2 as3t7 + bs3t7 + as2t8 − 4 bs4t5 − 6 bs3t6 − 2 bs2t7

+2 s3t7 + s2t8 + 4 bs4t4 − 2 cs4t4 − 2 as3t5 + 15 bs3t5 + 4 as2t6 + 8 bs2t6

−2 cs2t6 + 2 ast7 + bst7 − 4 bs4t3 − 20 bs3t4 − 2 s4t4 − 22 bs2t5 − 5 s3t5

−6 bst6 + 3 s2t6 + 2 st7 + 2 bs4t2 + cs4t2 − 2 as3t3 + 15 bs3t3 − 10 as2t4

+32 bs2t4 + 4 cs2t4 − 2 ast5 + 15 bst5 + 2 bt6 + ct6 − 6 bs3t2 − 2 s4t2

−22 bs2t3 − 12 s3t3 − 20 bst4 − 21 s2t4 − 4 bt5 − 5 st5 + 2 as3t+ bs3t

+4 as2t2 + 8 bs2t2 − 2 cs2t2 − 2 ast3 + 15 bst3 + 4 bt4 − 2 ct4 − 2 bs2t

−s3t− 6 bst2 − 7 s2t2 − 4 bt3 − 12 st3 − 2 t4 + as2 + 2 ast+ bst+ 2 bt2

+ct2 − st− 2 t2
)
s/
((
st2 + s+ 2 t

)(
2 st+ t2 + 1

)(
s2 − 1

)2
t4
)

c4 = −
(
as2t5 + bs2t5 + ast6 − 2 ds2t4 − 2 bst5 + s2t5 + st6 − 2 as2t3

−2 bs2t3 + 4 ds2t3 − ast4 + 4 dst4 + at5 + bt5 − 2 ds2t2 + 4 bst3 − 8 dst3

−4 s2t3 − 2 dt4 − 2 st4 + t5 + as2t+ bs2t− ast2 + 4 dst2 − 2 at3 − 2 bt3

+4 dt3 − 2 bst− s2t− 2 dt2 − 7 st2 − 4 t3 + as+ at+ bt− t
)

/
((
st2 + s+ 2 t

)(
2 st+ t2 + 1

)
t3
)

c5 = −
(
2 bs2t+ ast2 + 2 ast− 4 bst+ st2 + as+ 2 bt+ 2 st+ s

)
a(t− 1)2

(st2 + s+ 2 t)(2 st+ t2 + 1)t2
.

83
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The following coefficients belong to those of equation (6.13).

r2 = 2
(
q0s

2t5 + q1s
2t5 + q0st

6 − 4 q1s
2t4 − 2 q1st

5 + s2t5 + st6 − 2 q0s
2t3

+6 q1s
2t3 − q0st

4 + 8 q1st
4 + q0t

5 + q1t
5 − 4 q1s

2t2 − 12 q1st
3 − 4 s2t3

−4 q1t
4 − 2 st4 + t5 + q0s

2t+ q1s
2t− q0st

2 + 8 q1st
2 − 2 q0t

3 + 6 q1t
3

−2 q1st− s2t− 4 q1t
2 − 7 st2 − 4 t3 + q0s+ q0t+ q1t− t

)
/
((
st2 + s+ 2 t

)(
2 st+ t2 + 1

)
(t+ 1)(t− 1)t

)
r3 =

(
2 q1s

2t+ q0st
2 + 2 q0st− 4 q1st+ st2 + q0s+ 2 q1t+ 2 st+ s

)
q0(t− 1)2

(st2 + s+ 2 t)(2 st+ t2 + 1)t2
.

A.2 Horn’s H1

Similarly we show the coefficients corresponding to the same equations,
but now for Horn’s H1.

c3 = 2
(
8 cs4t6 + 2 ds4t6 + 4 as3t7 + 4 bs3t7 + 12 cs3t7 + 2 as2t8 + 2 bs2t8

+4 cs2t8 + 2 s3t7 + s2t8 + 8 cs4t4 − 4 ds4t4 − 4 as3t5 − 4 bs3t5 + 40 cs3t5

+8 as2t6 + 8 bs2t6 + 44 cs2t6 − 4 ds2t6 + 4 ast7 + 4 bst7 + 12 cst7 − 4 s4t4

−8 s3t5 + 2 s2t6 + 2 st7 + 2 ds4t2 − 4 as3t3 − 4 bs3t3 + 12 cs3t3 − 20 as2t4

−20 bs2t4 + 44 cs2t4 + 8 ds2t4 − 4 ast5 − 4 bst5 + 40 cst5 + 8 ct6 + 2 dt6

−4 s4t2 − 22 s3t3 − 32 s2t4 − 8 st5 + 4 as3t+ 4 bs3t+ 8 as2t2 + 8 bs2t2

+4 cs2t2 − 4 ds2t2 − 4 ast3 − 4 bst3 + 12 cst3 + 8 ct4 − 4 dt4 − 4 s3t

−18 s2t2 − 22 st3 − 4 t4 + 2 as2 + 2 bs2 + 4 ast+ 4 bst+ 2 dt2 − s2 − 4 st− 4 t2
)
s

/
((
st2 + s+ 2 t

)(
2 st+ t2 + 1

)
(s+ 1)2(s− 1)2t4

)
c4 = −2

(
4 bs2t3 + 4 cs2t3 + 2 ast4 + 2 bst4 + 4 cst4 + 2 s2t3 + st4 − 4 as2t

−8 ast2 + 8 bst2 + 4 cst2 + 4 bt3 + 4 ct3 + 2 s2t+ 6 st2 + 2 t3

−2 as− 2 bs− 4 at+ s+ 2 t) /
((
st2 + s+ 2 t

)(
2 st+ t2 + 1

))
c5 = −

4
(
2 cs2t3 + ast4 + 2 cst4 − 2 ast2 + 2 cst2 + 2 ct3 + as

)
b

(st2 + s+ 2 t)(2 st+ t2 + 1)t2

r2 = 2
(
2 q0s

2t3 + 2 q0st
4 + 2 s2t3 + st4 − 2 q0s

2t+ 2 q0t
3

+2 s2t+ 6 st2 + 2 t3 − 2 q0s− 2 q0t+ s+ 2 t
)

/
((
st2 + s+ 2 t

) (
2 st+ t2 + 1

)
t
)

r3 =
2
(
2 q0st

4 + 2 s2t3 + st4 − 4 q0st
2 + 4 st2 + 2 t3 + 2 q0s− s

)
q0

(st2 + s+ 2 t)(2 st+ t2 + 1)t2
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A.3 Horn’s H5

The algebraic relation (6.26) is given by

f(a, x, y) =
(
2985984a6 − 1492992a5 + 311040a4 − 34560a3 + 2160a2 − 72a + 1

)
x2y2

− 256
(
20736 a5 + 11520 a4 + 1888 a3 + 80 a2 + a

)
x3

− 288
(
27648 a6 + 6912 a5 − 1152 a4 − 160 a3 + 28 a2 − a

)
x2y

+ 128
(
41472 a6 + 20736 a5 + 4032 a4 + 704 a3 + 82 a2 − a

)
x2

− 8
(
27648 a6 + 6912 a5 − 1152 a4 − 160 a3 + 28 a2 − a

)
xy

+ 16
(
18432 a6 − 2304 a5 − 4608 a4 − 736 a3 − 8 a2 − a

)
x

+ 4096 a6 + 4096 a5 + 1536 a4 + 256 a3 + 16 a2.

The remaining coefficients appearing in the section 6.5 are given by

c3 = −2
(
192 as3t2 − 192 bs3t2 + 288 as2t3 + 192 s3t2 + 288 s2t3 − 8 as3

−8 bs3 − 72 bs2t+ 48 ast2 − 48 bst2 + 8 at3 + 4 s3 + 36 s2t+ 48 st2 + 8 t3

−2 as− 2 bs− 2 bt+ s+ t) /
((

144 s2t2 + 4 s2 + 32 st+ 4 t2 + 1
)
(s+ t)

)
c4 = 4

((
13824 as6t4 + 27648 bs6t4 − 20736 cs6t4 − 27648 as5t5 + 27648 bs5t5

−41472 as4t6 + 13824 s6t4 − 27648 s5t5 − 41472 s4t6 − 1920 as6t2

−1536 bs6t2 + 1728 cs6t2 + 4608 bs5t3 − 3456 as4t4 + 13824 bs4t4

+5184 cs4t4 − 7680 as3t5 + 7680 bs3t5 − 2304 as2t6 + 1536 s6t2

+13824 s5t3 + 6912 s4t4 − 7680 s3t5 − 2304 s2t6 − 64 as6 − 64 bs6

−576 as5t− 576 bs5t− 960 as4t2 − 768 bs4t2 − 432 cs4t2 + 1280 bs3t3

+288 as2t4 + 1728 bs2t4 − 432 cs2t4 − 192 ast5 + 192 bst5 − 32 at6

+32 s6 + 576 s5t+ 3360 s4t2 + 3840 s3t3 + 864 s2t4 − 192 st5 − 32 t6

−32 as4 − 32 bs4 − 160 as3t− 160 bs3t− 120 as2t2 − 96 bs2t2 + 36 cs2t2

+32 bst3 − 8 at4 + 12 ct4 + 16 s4 + 160 s3t+ 240 s2t2 + 96 st3

−4 as2 − 4 bs2 − 4 ast− 4 bst− ct2 + 2 s2 + 4 st+ 2 t2
) (

4 s2 + 1
)
s
)

/
((

144 s2t2 + 4 s2 + 32 st+ 4 t2 + 1
)(

12 s2 − 1
)3

(s+ t)t4
)

c5 = −4a
(
12 as3t2 − 48bs3t2 + 36as2t3 + 12s3t2 + 36s2t3

+4bs3 + 3ast2 − 12bst2 + at3 + 3st2 + t3 + bs
)

/
((

144 s2t2 + 4 s2 + 32 st+ 4 t2 + 1
)

(s+ t) t2
)
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r2 = 2
(
144 qs2t3 + 144 s3t2 + 144 s2t3 − 8 qs3 − 36 qs2t

+4 qt3 + 4 s3 + 36 s2t+ 36 st2 + 4 t3 − 2 qs− qt+ s+ t
)

/
((

144 s2t2 + 4 s2 + 32 st+ 4 t2 + 1
)

(s+ t) t
)

r3 = −2
((

72 qs3t2 − 72 qs2t3 − 72 s3t2 − 72 s2t3 − 8 qs3

+18 qst2 − 2 qt3 + 4 s3 − 18 st2 − 2 t3 − 2 qs+ s
)
q
)

/
((

144 s2t2 + 4 s2 + 32 st+ 4 t2 + 1
)

(s+ t) t2
)
.



Samenvatting

Hypergeometrische Functies

Klassieke functies als sin−1(x), tan−1(x), log(x) of
√
x duiken overal op in

de wiskunde, in het dagelijks leven en we zijn ze vast wel eens tegengeko-
men op school. Hoewel deze functies allemaal verschillende toepassingen
hebben en regels voor de ene functie niet op lijken te gaan voor de an-
dere functie, zou je je kunnen afvragen of er misschien eigenschappen zijn
die deze functies verbinden. Zo zouden we ons kunnen afvragen of er
misschien een algemene formule bestaat die ze allemaal beschrijft. Euler
vond precies zo’n formule, de zogenaamde hypergeometrische functie. De
hypergeometrische functie is de volgende oneindige som

2F1

(
a, b
c

x

)
= 1 +

a · b
c · 1

x+
a · (a+ 1) · b · (b+ 1)

c · (c+ 1) · 1 · 2
x2+

+
a · (a+ 1) · (a+ 2) · b · (b+ 1) · (b+ 2)

c · (c+ 1) · (c+ 2) · 1 · 2 · 3
x3 + . . . .

In plaats van deze som steeds volledig uit te schrijven, kunnen we dit
compact op schrijven als

2F1

(
a, b
c

x

)
=
∞∑
n=0

(a)n(b)n
(c)nn!

xn. (1)

Hier is (a)n = a · (a+ 1) · . . . · (a+ n− 1) de stijgende faculteit.
Door de waardes van de parameters a, b, c slim te kiezen krijgen we nu

klassieke functies. Hier volgen een aantal voorbeelden.

sin−1(x) = x 2F1

(
1
2 ,

1
2

3
2

− x2

)
,



88 Samenvatting

log(x) = (x− 1) 2F1

(
1, 1

2
1− x

)
,

xn = (x− 1) 2F1

(
−n, m
m

1− x
)
.

De hypergeometrische functie beschikt over meer interessante eigenschap-
pen. Zo zag Gauss dat de hypergeometrische functie een oplossing is van
de differentiaalvergelijking

x(1− x)F ′′(x) + (c− (a+ b+ 1)x)F ′(x) + abF (x) = 0. (2)

De hypergeometrische functie (1) is echter niet de enige oplossing van dit
differentiaal systeem. Een andere oplossing is bijvoorbeeld

G(x) = x1−c
2F1

(
1 + a− c, 1 + b− c

2− c x

)
.

Lineaire combinaties vanG(x) en F (x) = 2F1

(
a, b
c

x

)
geven de volledige

oplossingsruimte van het differentiaal systeem (2). Dat wil zeggen alle
oplossingen zijn van de vorm kF (x) + lG(x) met k en l constanten. Om
onderscheid te maken tussen verschillende hypergeometrische functies zul-

len we 2F1

(
a, b
c

x

)
Gauss’ hypergeometrische functie noemen.

Na het veralgemeniseren van een aantal klassieke functies tot hyper-
geometrische functies, zouden we ook hypergeometrische functies verder
kunnen uitbreiden. Een voordehandliggende uitbreiding is om het aantal
stijgende faculteiten in de teller en noemer van (1) te variëren. Dit noe-
men we de gegeneraliseerde hypergeometrische functie en deze is als volgt
gedefinieerd

nFn−1

(
a1, . . . , an
b1, . . . , bn−1

z

)
=
∞∑
k=0

(a1)k(a2)k . . . (an)k
(b1)k(b2)k . . . (bn−1)kk!

zk.

Maar er zijn meer generalisaties mogelijk. Zo zouden we ook het aantal
variabelen kunnen veranderen.

Voorbeelden hiervan zijn Appell’s hypergeometrische functies F1, F2, F3, F4,
Horn’s hypergeometrische functies G1, G2, G3, H1, H2, H3, H4, H5, H6, H7

en Lauricella’s hypergeometrische functies FA, FB, FC , FD. Hier is een
voorbeeld van F4,

F4

(
α, β
γ, γ′

x, y

)
=
∞∑
m=0

∑
n=0

(α)m+n(β)m+n

(γ)m(γ′)nm!n!
xmyn.
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Lauricella’s FC is op haar beurt weer een generalisatie van F4 en is als
volgt gedefinieerd

FC

(
a, b

c1, . . . , cn
x1, . . . , xn

)
=

∞∑
m1=0

. . .

∞∑
mn=0

(a)m1+...+mn(b)m1+...+mnx
m1
1 . . . xmn

n

(c1)m1
. . . (cn)mn

m1! . . .mn!
.

We zouden ons ook in dit geval kunnen afvragen of al deze hypergeo-
metrische functies niet allemaal op een algemenere manier te schrijven zijn.
Dit is mogelijk door middel van A-hypergeometrische functies, gëıntro-
duceerd door Gelfand, Kapranov en Zelevinsky. Het idee is dat je begint
met een configuratie matrix A en een parameter vector α. De vector α
komt overeen met de parameters van de hypergeometrische functie en de
matrix A specificeert het type hypergeometrische functie. De keuze van
matrix A en parameter vector α geeft ons nu een stelsel van differentiaal
vergelijkingen en een bijbehorende basis van machtreeks oplossingen. Alle
genoemde voorbeelden kunnen zo op deze manier beschreven worden als
A-hypergeometrische functies.

Monodromie

Een probleem van hypergeometrische functies is dat ze meerwaardig zijn.
Eenvoudige voorbeelden van functies met meerwaardigheidsproblematiek
zijn

√
z en log(z). Het is gebruikelijk dat

√
1 = 1. Neem een kleine

omgeving rondom z = 1 in de complexe ruimte als je domein. We gaan nu
het domein uitbreiden langs de complexe eenheidscirkel. En als we dan
terug komen bij z = 1 heeft onze functie

√
z plots de waarde −1.

Voor log(z) is het gebruikelijk dat log(1) = 0. Dus neem een kleine
omgeving rondom z = 1 in de complexe ruimte als domein voor log(z).
We gaan dit domein ook nu langs de eenheidscirkel uitbreiden. Zodra
we terugkeren bij z = 1 vinden we twee mogelijke nieuwe waarden voor
log(1), namelijk −2πi of 2πi. Deze waarden zijn afhankelijk van of je met
de klok mee of tegen de klok in de complexe eenheidscirkel af gaat.

Het probleem van meerwaardigheid bij oplossingen van lineaire differ-
entiaal vergelijkingen, zoals bij A-hypergeometrische functies het geval is,
wordt tegenwoordig bestudeert in de vorm van monodromie. Monodromie
kan als volgt worden beschreven. Stel we hebben een basis van oplossingen
f1(z1, . . . , zn), . . . , fr(z1, . . . , zn) van een systeem van lineaire differentiaal
vergelijkingen. Dan kunnen we de variabelen z1, . . . , zn in een lus laten be-
wegen en kijken hoe de oplossingen daar onder veranderen via analytische
voortzetting. Omdat dit nog steeds oplossingen zijn van het zelfde stelsel
differentiaal vergelijkingen kunnen we elke nieuwe oplossing schrijven als
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lineaire combinatie van onze basis f1(z1, . . . , zn), . . . , fr(z1, . . . , zn). Op
deze manier ontstaan er lineaire afbeeldingen ten opzichte van de gekozen
basis. Het geheel van deze lineaire afbeeldingen wordt ook wel de mono-
dromie groep genoemd. Deze lineaire afbeeldingen noteren we in de vorm
van matrices.

In dit proefschrift zijn we vooral gëınteresseerd in de eigenschappen van
deze monodromie groep. En hoe deze ons kunnen helpen in het vinden
van eigenschappen voor hypergeometrische functies.

In Hoofdstuk 2 worden de concepten A-hypergeometrische functie en
monodromie verder ingeleid. We laten zien, hoe we onder strenge voor-
waarden, een deel van de monodromie groep van een A-hypergeometrisch
systeem kunnen genereren door middel van een methode door Frits Beuk-
ers. De strenge voorwaarden zijn nodig om een basis van zogenaamde
Mellin-Barnes integralen te garanderen, die voldoen aan deA-hypergeometrische
vergelijkingen. De resulterende monodromie groep is ten opzichte van een
basis van deze Mellin-Barnes integralen.

Invariante Hermitische Vormen

Eén eigenschap van de monodromie groep waar we gëınteresseerd in zijn
is de bijbehorende invariante Hermitische vorm. Heel concreet is deze
Hermitische vorm een matrix H zodanig dat voor elke matrix M in de
monodromie groep het volgende geldt:

M
ᵀ
HM = H.

Hier is M
ᵀ

de geconjugeerde getransponeerde matrix van M . Verder is H
een Hermitische matrix, dat wil zeggen H

ᵀ
= H.

De hoofdstelling uit Hoofdstuk 3 geeft een expliciete constructie van
een invariante Hermitische vorm H ten op zichte van de monodromie groep
die door middel van de methode van Frits Beukers geconstrueerd wordt.

De constructie van de Hermitische vorm uit Hoofdstuk 3 gebruikt de
Mellin-Barnes integralen niet expliciet. Dat maakt het mogelijk om het
bestaan van deze Mellin-Barnes integralen achterwege te laten en de con-
structie in Hoofdstuk 3 virtueel uit te breiden. Heel specifiek willen we een
matrix groep construeren die de constructie van de invariante Hermitische
vorm zoals beschreven in Hoofdstuk 3 mogelijk maakt. Deze matrix groep
is in veel gevallen een subgroep van de volledige monodromie groep. In
Hoofdstuk 4 geven we voorwaarden en algoritmes die het vinden van zo’n
virtuele monodromie groep mogelijk maken.

Een Hermitische matrix H ∈ Cn×n is positief-definiet als voor alle
vectoren x ∈ Cn \ {0} geldt dat xᵀHx > 0. En soortgelijk is een Hermit-
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ische matrix H ∈ Cn×n negatief-definiet als voor alle vectoren x ∈ Cn\{0}
geldt dat xᵀHx < 0. Tot slot noemen we H definiet als deze ofwel positief-
definiet dan wel negatief-definiet is. Hoofdstuk 5 geeft een criterium waar-
voor de Hermitische vorm uit Hoofdstuk 3 definiet is. Dit criterium maakt
gebruik van zogenaamde apexpunten. Apexpunten vinden hun oorsprong
in de theorie van algebräıciteit van oplossingen van A-hypergeometrische
functies. Om te bepalen of alle oplossingen van een A-hypergeometrisch
systeem algebräısch zijn heeft Frits Beukers een criterium gegeven op basis
van deze apexpunten. De hoofstelling van Hoodstuk 5 verbind het cri-
terium voor algebräıciteit van oplossingen van het A-hypergeometrische
systeem aan de definietheid van de matrix H.

Bailey factorisaties

In Hoofdstuk 6 gaan we op zoek naar relaties tussen klassieke hy-
pergeometrische functies. In 1933 publiceerde Bailey een identiteit waar
Appell’s F4 wordt opgesplitst in twee Gauss’ hypergeometrische functies

F4

(
a, b

c, a+ b− c+ 1
x(1− y), y(1− x)

)
= 2F1

(
a, b
c

x

)
2F1

(
a, b

a+ b− c+ 1
y

)
.

Ook voor Appell’s F2 is later zo’n type factorisatie gevonden

F2

(
a + b− 1

2
, a, b

2a, 2b

4u(1− u)(1− 2v)

(1− 2uv)2
,

4v(1− v)(1− 2u)

(1− 2uv)2

)

= (1− 2uv)−1+2a+2b
2F1

(
a + b− 1

2
, a

2a
4u(1− u)

)
2F1

(
a + b− 1

2
, b

2b
4v(1− v)

)
.

(3)

We zouden ons nu kunnen afvragen hoe we zulke factorisaties kunnen
vinden bij andere klassieke hypergeometrische functies zoals Horn’s hy-
pergeometrische functies.

We laten zien hoe eigenschappen van de monodromie gebruikt kunnen
worden om vast te stellen voor welke specialisaties van de parameters een
Horn functie van rang 4 opsplitst in twee Gauss hypergometrische functies.
Nadat deze specialisatie is vastgesteld gaan we de Horn hypergeometrische
functies van rang 4 daadwerkelijk factoriseren.
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Dit resulteerde in de volgende factorisatie voor Horn’s H4

H4

(
q0, q1

1 + q0 − q1, 2q1

(
s2 − 1

)(
t2 − 1

)
4 (st− 1)2 ,

2st

st− 1

)

= (1− st)q0 2F1

(
1
2q0 + 1

2 ,
1
2q0

q0 − q1 + 1
1− s2

)
2F1

(
1
2q0 + 1

2 ,
1
2q0

q1 + 1
2

t2
)
.

Dit is een gelijkheid in machtreeksen ontwikkeld in het punt (s, t) = (1, 0).
Voor Horn’s H1 vinden we de factorisatie

H1

(
q0 − 1

2 , q0,
1
2

2q0
φ(−1 + 2uv, 1 + 2v)

)
=

(1 + v − uv − 2uv2)2q0

(
1− u− 2uv

(1 + v)(1 + 2v + 2v2)

)2q0−1

× 2F1

(
1− q0,

3
4 − q0

2− 2q0
− 8v(1 + v)(1 + 2v + 2v2)

)
× 2F1

(
q0 − 1

4 , q0

2q0
8uv(1− uv)(1− 2uv + 2u2v2)

)
.

Hier nemen we

φ(s, t) =

(
(s4 − 1)(t4 − 1)

(s2t2 − 1)2
,

(
st+ 1

st− 1

)2
)
.

Dit is een gelijkheid in machtreeksen ontwikkeld in het punt (u, v) = (0, 0).
En tot slot laten we zien dat H5 af splitst als

H5

(
q, q − 1

2
2q

x(y − 1)2

4(3xy − 1)2
,
4(xy2 + 1)(x+ 1)y

(3xy − 1)(y − 1)2

)
=

(1−3xy)q(1−y)2q−1
2F1

(
3
2q −

1
2 ,

3
2q

q + 1
2

− xy2

)
2F1

(
1
2q,

1
2q + 1

2
3
2 − q

− x
)
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