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Abstract 

Bodily experiences are associated with powerful forms of understanding, yet not much research 
has investigated to what extent bodily experiences benefit the development of graphical 
reasoning. We examined the effectiveness of providing embodied support in a teaching 
sequence of six lessons on motion graphs, including both graph interpretation and graph 
construction activities, on fifth-grade students’ reasoning about graphically represented motion. 
Divided over nine classes 218 students took part in our study. Students in three classes received 
lessons on graphing motion with direct embodied support, three classes received lessons on 
graphing motion with indirect embodied support, and three classes served as a baseline 
condition and received lessons on a different mathematics topic. Development of students’ 
graphical reasoning was measured on four measurement occasions. All students were given 
these same tasks four times with two months intervals. The teaching sequence on graphing 
motion took place either after the first, second, or third measurement. We used a cohort- 
sequential design to assess the intervention effect, the condition effect and the fading effect. 
Results showed that students improved their graphical reasoning at post-intervention- 
measurements when compared to their performance before the intervention. Moreover, students 
in the teaching sequence with direct embodied support showed a slightly larger gain in their 
graphical reasoning than students in the teaching sequence with indirect embodied support. 
These results suggest that embodied support as a learning facilitator can improve reasoning 
about graphing motion in primary school classrooms. 
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1. Introduction 
 
The ability to understand and reason about graphical representations is a core part of science 
and mathematics proficiency and, therefore, an important topic in education (OECD, 2000; 
Roth & Bowen, 2003). Reasoning about graphical representations involves a broad range of 
skills ranging from encoding basic visual and spatial information in the graph, such as the 
scaling of the axes, the slope or the intercept, to relating these features to the conceptual or 
scientific phenomenon they represent, such as a sloped straight line in a distance-time graph 
reflecting constant speed (Shah & Hoeffner, 2002). Since graphing is often addressed within 
mathematics lessons, when graphing linear functions, students are mostly confronted with 
idealized examples, whereas graphs representing real-world phenomena often contain 
ambiguous elements such as noise or non-linearity (Lai et al., 2016). This might be one of the 
reasons that students are unable to apply their apparent understanding of graphs within 
mathematics lessons to graphs they encounter outside the mathematics classroom (McDermott 
et al., 1987). In the Dutch primary school mathematics curriculum, graphing is only briefly 
treated. Since graph comprehension – and reasoning about graphs – can be challenging, even 
for otherwise capable learners and expert users (e.g., McDermott et al., 1987; Roth & Bowen, 
2003), it is generally agreed upon that students should be offered ample opportunities to acquire 
the skills associated with graph interpretation and construction, and to reason about these graphs 
(e.g., NCTM, 2000; Wang et al., 2012; Wavering, 1989). 

 
In this study, we aimed to foster students’ graphical reasoning in primary school. To this end 
we developed a teaching sequence on motion graphs representing the real-world phenomenon 
of distance changing over time. In such graphs, students are prompted to connect elements of 
the graphical representation to the physical event that is represented and to reason about the 
relationship between the variables on the horizontal and vertical axis as well as their pattern of 
covariation (Leinhardt et al., 1990). We investigated both short-term and middle-long-term 
effects of this teaching sequence on students’ reasoning about graphs. Following recent 
proposals to include bodily experiences in teaching graphing (e.g., Duijzer et al., 2019b), 
stemming from the wider embodied cognition approach to learning and development (see 
below), we investigated in particular whether a teaching sequence on motion graphs 
incorporating direct physical experiences has a stronger effect on students’ graphical reasoning 
than a teaching sequence without such direct physical experiences. 

 

2. Theoretical background 
 

2.1. Graphical reasoning 
 

Recognizing visual features of a graph, such as data points and values on the axes,interpreting 
relationships represented by these features, and connecting these relationships to what the graph 
actually represents, are three essential processes for comprehending graphs (Shah & Hoeffner, 
2002). Graph comprehension is related to developing graph sense (Friel et al., 2001; Robutti, 
2006). Graph sense, like number sense (Resnick, 1989) and symbol sense (Arcavi, 1994), is a 
holistic construct. It is a way of thinking, of becoming sensitive for what various graphs might 
represent and for how various (non-standard) phenomena might be graphed, both locally and 
globally. It also includes the ability to distinguish between discrete and continuous 
representations, to recognize the meaning and significance of the slope, and the more general 
visual characteristics of the graph (e.g., Robutti, 2006). A student should become flexible in 
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recognizing and using these components, and should also be able to explain their thinking and 
communicate it to others using graph related language (Friel et al., 2001). When, for example, 
reasoning about representing the dynamic situation of distance changing over time in graphs, 
students should be given the opportunity to connect the represented physical situation (i.e., 
motion) with visual elements of the graphical representation (e.g., the slope, rate of change), 
and vice versa (e.g., McDermott, 1987). Graph sense encompasses both graph interpretation 
and graph construction (Friel et al., 2001), although the latter has only rarely been addressed in 
research on lesson activities (e.g., Leinhardt et al., 1990; Mevarech & Kramarski,1997). 

The extent to which students are able to comprehend and reason about graphical representations 
depends upon many factors such as prior personal experiences, basic everyday intuitions, and 
familiarity with the graph’s conceptual content (Friel et al., 2001; Janvier, 1981; Shah & 
Hoeffner, 2002; Vitale et al., 2015). When graphs represent changes over time (e.g., increase 
of distance or length), which are particularly difficult for students to understand (Arzarello & 
Robutti, 2004), several misconceptions about interpreting and constructing graphs can arise 
(Glazer, 2011). For example, a student can interpret a graph as an iconic representation of a real 
event (Bell & Janvier, 1981; Leinhardt et al., 1990). This might happen when a student 
interprets the intersection of two lines in a speed-time graph as the moment when two persons 
or objects meet. Such reasoning about the graph is not necessarily illogical, because the student 
simply builds upon informal and intuitive understandings encountered in everyday reality, and 
applies this knowledge to the graph (e.g., Elby, 2000; Lakoff & Núñez, 2000). Similarly, when 
asked to construct a graph, a student might draw a line representing the actual path of motion 
like a map (e.g., McDermott, 1987; Mevarech & Kramarski, 1997). Various studies have shown 
that such an iconic or pictorial way of reasoning about graphs representing change over time 
can be quite persistent in students (Clement, 1985; Mokros & Tinker, 1987). These superficial 
interpretations might hamper the deeper conceptual understanding of graphs as representing a 
specific meaningful relationship between more than one variable (Lai et al., 2016; Leinhardt et 
al., 1990). Being able to resist superficial interpretations and instead draw correct inferences 
about what a graph actually represents is an important part of graphical reasoning. 

2.2. Fostering graphical reasoning 

In order for students to develop their graphical reasoning, teachers should preferably build on a 
students’ informal and natural intuitions, and as a consequence circumvent aforementioned 
misconceptions. It is thus important that students should be offered ample opportunities to 
discover the deeper relationship between the variables on the axes and reason about their pattern 
of covariation (e.g., Friel et al., 2001; Lai et al. 2016; Leinhardt et al., 1990; Mokros & Tinker, 
1987). Covariational reasoning, for young students, entails the mental coordination of the values 
of two quantities, while keeping in mind that at every moment the other quantity also has a 
value (Carlson et al., 2002; Saldanha & Thomspon, 1998). This covariational reasoning is 
important when interpreting and constructing graphical representations, because it enables 
students to make a connection between the two variables represented on the graph’s axes 
(Saldanha & Thompson, 1998). 

Instructional approaches targeting students’ graphical understanding can be divided in two main 
categories; on the one hand, approaches in which the focus is more on quantitative or local 
aspects of graphing, on the other hand approaches in which the focus is more on qualitative or 
global aspects (e.g., Leinhardt et al., 1990). Choosing scales, fitting the paper, reading points in 
the graph, and letting students plot points from data given in tables, are instructional activities 
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that lead to a focus on graphs’ local aspects when interpreting the meaning of a graph or when 
drawing a graph (e.g., Berg & Smith, 1994; Hattikudur et al., 2012; Lai et al., 2016). When 
following these more or less fixed routines, a deeper conceptual understanding of the relational 
aspect of the represented variables might not be sufficiently supported (Yerushalmy & 
Schwartz, 1993). For example, when a student plots points in a graph and produces a correct 
slope, this does not necessarily imply understanding of what the slope represents (Vitale et al., 
2016). Additionally, Thompson and Carlson (2017) argue how the plotting of points in the 
graph and “connecting points” without a deeper discussion of the values between successive 
points, often hampers a deeper understanding of the line in the graph as representing a 
relationship between two continuously changing quantities. 

In contrast, without instructional emphasis on numerals and procedures, students have been 
found to look at the represented information at a more qualitative and global level (e.g., 
Krabbendam, 1982). An advantage of a more qualitative, global approach is that it resembles 
how one might judge a graph in real-life, which often excludes performing calculations on the 
graph’s represented values (Cleveland & McGill, 1984). Another advantage is that when 
interpreting a graph, students can focus on the graph’s general shape (Leinhardt et al., 1990), 
and when constructing a graph students can visualize a relationship between two variables as 
shapes of trends mapped onto the graphs’ axes (Matuk et al., 2019). As described by Castillo- 
Garsow et al. (2013), thinking about the relationship between two variables as continuously 
changing necessarily involves thinking about motion. This thinking about motion might act as 
an embodied conceptual metaphor (Lakoff & Núñez, 2000), which maps early everyday 
experiences with motion to the abstract concept of (graphically represented) continuous change 
(see also Lakoff, 2014). 

In addition to a focus on local or global aspects of graphing, particular learning facilitators that 
are included in the design of learning environments have been found to foster students’ 
graphical reasoning. For example, in a study by diSessa et al. (1991) students (11-12 years) 
invented representations of a motion story about a car travelling through the desert by first 
drawing discrete representations and then moving on to continuous representations of this 
motion event. This meaningful motion situation and the emphasis on students’ own inventions 
turned out to be powerful learning facilitators for the development of students’ qualitative 
reasoning about these motion representations. Another example can be found in the work of 
Noble et al. (2004). Sixth-grade students were asked to make block representations of a moving 
elevator, using physical cubes. The block representations were then transferred into a simulation 
environment. The elevator in the environment moved in accordance with the motion represented 
by the blocks. Over the course of the activities, the students were reasoning about the “fastness” 
of the elevator, without explicitly referring to more quantitative ratio-based descriptions of the 
movement. Students’ reasoning about this particular motion situation was presumed to support 
more formal reasoning about multiplicative relationships. In both of these examples the real- 
world context, thus the context of the travelling car and the moving elevator, supported students’ 
(qualitative) reasoning about the (graphical) representations, which allowed them to further 
develop their formal mathematical reasoning as well as to partake in more conventional 
graphing practices. 

Another often used learning facilitator, already shortly mentioned, known to facilitate students’ 
qualitative reasoning about graphs is the use of real-time motion and simulation environments 
(Stroup, 2002). For example, in a study of Nemirovsky et al. (1998) students familiarized 
themselves with the graphical representation of their own movements in front of a motion 
sensor that was connected to a desktop computer. This approach allowed the students to reason 
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about the relationship between changes in their own movements and the resulting changes in 
the graphical representation. In learning environments making use of motion sensor technology 
physical experiences are an explicit part of students’ learning activities. Moreover, through the 
use of motion sensor technology, the line in the graphical representation becomes meaningful 
to the students since the line in the graph is connected to their own bodily movements andthus 
in experienced motion (Kaput & Roschelle, 2013). Using motion sensor technology by which 
a graphical representation appears in real-time also provides a valuable entry-point into 
reasoning about continuous change represented in graphs (e.g., distance changing over time), 
because motion experienced with your own body, or observed, must have a value at every point 
in time. The explicit introduction of bodily experiences in learning activities is in accordance 
with an embodied cognition approach. 

2.3. Enriching graph instruction: An embodied perspective 

Learning environments, in which students’ own bodily experiences are an explicit part of the 
learning activities, are also termed embodied learning environments (e.g., Johnson-Glenberg et 
al., 2014; Skulmowski & Rey, 2018). The ways in which students are provided with 
opportunities for bodily engagement in learning environments supporting students 
understanding of graphing motion can vary widely, ranging from whole- or part-bodily 
movements to observing someone or something else moving (Duijzer et al., 2019b). Including 
bodily experiences in learning environments is based on the premise that all cognitive processes 
originate from the perceptions and actions of our body in interaction with our immediate 
environment (e.g., Pouw et al., 2014; Wilson, 2002). The resulting action-perception schemes 
are considered to be the fundament of our cognitive architecture. Also, observing movement of 
others or mentally simulating actions by activating previously acquired action-perception 
structures are considered to be part of the embodied cognition continuum. Our brain enables us 
to simulate particular action-perception structures (and invent new ones) (Van Gog et al., 2014), 
by re-using the sensorimotor circuits of thebrain that were involved in previous experiences of 
perceiving and acting (e.g., Anderson, 2010; Pulvermüller, 2013). More specific, through the 
(simulated) enactment of mathematical structures with our body, content-specific action- 
perception structures evolve which constitute a source-domain that can be metaphorically 
projected to target concepts (Abrahamson & Bakker, 2016; Lakoff & Núñez, 2000). 

In a recent review of research into embodied learning environments (Duijzer et al., 2019b) it 
was shown that, although physical experiences are often utilized in learning environments 
supporting students’ understanding of graphing motion, not much comparative research into the 
development of primary school students’ understanding of motion graphs has been conducted 
to date. Of the six studies that did investigate this age group, only one study (Deniz & Dulger, 
2012) took a quasi-experimental approach in a classroom setting, the other studies reported 
(short-term) case studies, involving one or two students (e.g., Ferrara, 2014; Nemirovsky et al., 
1998), or observational research (e.g., Anderson & Wall, 2016). Deniz and Dulger (2012) 
compared two inquiry-based lesson sequences on motion and temperature of which one was 
enriched with real-time graphing technology and the other with traditional non-digital 
laboratory equipment. Both lesson sequences incorporated physical experiences, yet only the 
technology group received immediate feedback provided by the tool. These technology lessons 
inter alia consisted of specific movements students had to perform in front of a motion sensor 
(three lessons on motion, three lessons on temperature, six hours in total), which were displayed 
in real-time on a computer screen. Afterwards the graphs were discussed with the students. 
Results showed that using the real-time graphing technology significantly improved students 
ability to interpret motion and temperature graphs. 
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Based on their systematic review, Duijzer et al. (2019b) concluded that embodied learning 
environments making use of students’ own motion immediately linked to its representation, 
which was often done through the use of motion sensor technology, were most effective. Thus, 
embodied learning environments providing students with direct physical experiences have been 
found to be helpful in supporting students’ understanding of motion graphs. 

3. The present study

In the present study, we investigated the middle-long-term learning outcomes of a six-lesson 
teaching sequence, supporting students’ reasoning about motion graphs, featuring a particular 
sequencing of mathematical graphing tasks. Embodied learning environments supporting 
students’ understanding of graphing motion have been found to be effective in small-scale one- 
to-one settings, however, to date, in the primary grades their effects have rarely been studied in 
whole-classroom settings (Duijzer et al., 2019b). To this end, we developed a teaching sequence 
on graphing motion for primary school students. Following the proposal that higher levels of 
(mathematical) understanding are grounded in physical experiences regarded as embodied 
cognitions, we developed two parallel versions of this teaching sequence differing in their 
degree of directness. The teaching sequence in which students were offered direct embodied 
support, involved graphing activities in which students’ own bodily movements were visualized 
as a line in the graph, using motion sensor technology. The teaching sequence in which students 
were offered indirect embodied support involved graphing activities that were mostly paper- 
and-pencil based or projected on the digital blackboard. Students did work with an image of the 
motion sensor context, but without the presence of the physical tool. A third group of students 
served as a baseline condition and received lessons on a different mathematics topic. 

The study was carried out in primary school classrooms. As a truly randomized design was not 
feasible, we used a cohort-sequential design with three cohorts which received the lesson 
sequence in the first, second and third trimester of the school year, respectively. Each cohort 
comprised of two classes who received either the direct or the indirect embodied support 
instruction in the trimester where the lesson sequence was provided. A fourth cohort was 
included as baseline condition. This cohort received a series of lessons on another mathematical 
topic. We wanted to investigate the potential effects of the embodied learning activities on 
students’ graphical reasoning ability in the context of modelling motion. We formulated the 
following research question: 

To what extent does embodied support in a six-lesson teaching sequence on graphing motion 
affect the development of students’ graphical reasoning? 

To assess students’ learning progress as a result of the teaching sequence, tests were 
administered before and after the teaching sequence. The tests consisted of a number of 
graphical reasoning tasks and required students to explain in writing their reasoning when 
solving the tasks. Students’ written responses were subsequently evaluated with regard to the 
level of graphical reasoning displayed. We will analyze changes in students’ graphical 
reasoning by performing a longitudinal analysis on the task level following Item Response 
Theory (IRT), allowing us to model intra- and inter-individual changes in growth. This 
approach enables us to increase this study’s power, to disentangle faulty reasoning from simple 
mistakes, and to get better insight in changes in levels of reasoning over time. We hypothesize 
that students taking part in a teaching sequence on graphing motion will, on average, change in 
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their graphical reasoning from lower to higher levels of reasoning more than can be expected 
based on mere maturation or multiple testing. Additionally, in line with existing research on 
embodied learning environments, we hypothesize that students receiving a teaching sequence 
with direct embodied support will outperform students taking part in a teaching sequence with 
indirect embodied support. 

4. Method

4.1. Participants and study design
Schools and classes were chosen based on the willingness of the teachers to participate, 
resulting in a convenience sample. A total of 237 fifth-grade students from seven elementary 
schools, divided over nine classes participated in our study. From 19 students we did not obtain 
written parental consent to collect data. The final sample consisted of 218 students (Grade 5; M 
= 10.47, SD = 0.47; 94 female, 43%) divided over two instruction conditions (indirect support 
condition, n = 68; direct support condition, n = 70) and a baseline condition (n = 80). All schools 
were located in the area of Utrecht, the Netherlands. The study was conducted between October 
2016 and June 2017. The research was approved by the Ethical Review Board of the facultyof 
Social and Behavioral Sciences at Utrecht University. 

All students participated in a teaching sequence of six lessons on graphing motion (with direct 
and indirect embodied support) or a non-related topic (probability) in the baseline condition as 
part of their regular classroom instruction. The study adopted a cohort-sequential design, 
meaning that for each research condition, one cohort of students participated in the teaching 
sequence in the first trimester of the school year, the second cohort of students in the second 
trimester, and the third cohort of students in the third trimester. To compose the cohorts, the six 
classes that would receive the teaching sequence on graphing motion were first clustered in 
three pairs on matching general school characteristics. Next, in consultation with the teachers, 
each pair was assigned to one of the three cohorts. Finally, per cohort, the two classes were 
randomly assigned to one of both instruction conditions. This design allowed us to (1) have the 
same researcher teaching all the lessons on graphing motion, and (2) to compare the learning 
curve during the six-lesson teaching with the baseline condition and post intervention 
conditions (when not yet having had the teaching sequence). Table 1 gives an overview of the 
study research design. 

Table 1. 

The Cohort-Sequential Design of the Study 

Phase 
Condition Cohort Oct. – Nov. 2016 Jan. – Feb. 2017 Apr. – May 2017 

Baseline 0 (n = 80) M1 M2 M3 M4 

With indirect 
embodied support 

1 (n = 24) M1 Teaching sequence 
Graphical reasoning 

M2 M3 M4 

2 (n = 23) M1 M2 Teaching sequence 
Graphical reasoning 

M3 M4 

3 (n = 21) M1 M2 M3 Teaching sequence 
Graphical reasoning 

M4 

With direct 
embodied support 

1 (n = 21) M1 Teaching sequence 
Graphical reasoning 

M2 M3 M4 

2 (n = 22) M1 M2 Teaching sequence 
Graphical reasoning 

M3 M4 

3 (n = 27) M1 M2 M3 Teaching sequence 
  Graphical reasoning 

M4 
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4.2. Teaching sequence and procedure 

The main goal of the teaching sequence was to help students become acquainted with graphs 
representing the bivariate relationship of distance changing over time, and foster students’ 
reasoning about these graphs. The instruction sequence started with informal graphing activities 
(Lesson 1), followed by a transition from discrete to continuous graphs (Lesson 2), and to 
continuous graphs (Lesson 3 onwards). Table 2 gives an overview of the teaching sequence, 
including the main topic per lesson and its key activities. 

Table 2. 
Overview of the Six-Lesson Teaching Sequence on Graphing Motion 

Lesson title  Main topic Key activities 
1. Motion: reflecting
and representing

From home to school Informal graphical 
representations 

Reason with variables and 
construct representations of a 
real-world situation 

2. From discrete to
continuous graphs

Measuring distance Measure distance in discrete 
intervals and continuously, 
and reason about differences 
between discrete and 
continuous graphs 

3. Continuous
graphs of ‘distance
to’

Generate, refine, and reason 
with continuous graphs 

Coupling specific movements 
to their representation as a 
line in the graph 
Coupling a concrete situation 
to a graphical representation 

4. Continuous
graphs of ‘distance
to’

Generate, refine, and reason 
with continuous graphs 

Coupling specific movements 
to their representation as a 
line in the graph 
Investigating how speed is 
represented in the steepness 
of slope 

5. Scaling on the
graphs’ axes

Reason about the relationship 
between two variables 
through scaling 

Construct graphs with 
different scales on the axes 

6. Multiple
movements and
their graphical
representations

Generate, refine, and reason 
about simultaneous 
movements and their 
representation as a graph 

Critically evaluate points of 
intersection and their 
meaning 

The teaching sequences in the conditions with indirect and direct embodied support were taught 
by the first author of this paper, and in the case of direct embodied support with the help of a 
teaching assistant. Each teaching sequence consisted of six lessons, about 50 minutes each, one 
lesson per week, divided over 6 weeks. Two weeks before the start of the intervention a general 
reasoning test was administered. One week before a cohort started with the teaching sequence 
all students completed the graphical reasoning assessment; this was done for the three cohorts 
(M1-M3). Finally, after all cohorts had completed the teaching sequence there was a final 
assessment (M4; see also Table 1). 
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4.3.1. Instruction conditions 
In the instruction condition with indirect embodied support (hereafter: indirect support 
condition) the students were provided with graphing activities that were paper-and-pencil 
based (including spoken narratives as well as illustrations of a motion sensor), presented on 
work sheets or on the digital blackboard. The activities on the digital blackboard were 
sometimes visualized dynamically, but mostly consisted of non-dynamic illustrations of 
motion situations of non-human moving objects, such as a toy car travelling a particular 
distance within a particular period of time. Although the motion situations referred to source 
domain embodied experiences (e.g., moving your body through space), the graphing 
activities in the indirect support condition did not involve students enacting the movements in 
the classroom. Therefore, the degree of embodied support in this instruction condition was 
low. Similar motion situations and graphing activities were also provided to students in the 
instruction condition with direct embodied support (hereafter: direct support condition), but 
instead of only providing the context as an illustrated narrative, students were explicitly 
prompted to physically enact the situations, using a motion sensor technology. The motion 
sensor registered enaction and provided students with a direct linkage between their 
movements and the representation of their movements as a line in the distance-time graph 
presented on the screen of a computer or the digital blackboard. Therefore, the degree of 
embodied support in this instruction condition was high. In Figure 1, the difference between 
both instruction conditions is further explained by giving an example of the lessons’ setup. 
Shown is an activity part of Lesson 2, in which distance is measured at discrete time- 
intervals (5 seconds). 

With indirect embodied support 
• Motion sensor illustrated on digital

blackboard (see white circle)
• Sensor measures every 5 seconds
• Toy car simulates movement in front of

motion sensor
• A graph appears in real-time

With direct embodied support 
• Motion sensor physically present (see

white circle)
• Sensor measures every 5 seconds
• Student walks in front of motion sensor
• A graph appears in real-time

Figure 1. Difference in set-up between the conditions with indirect and with direct embodied support 
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4.3.1.1. Motion sensor technology 
In the direct support condition we made use of two ultrasonic €Motion sensors, together with 
Coach6 Software (CMA, Heck et al., 2009). The motion sensor was set to measure the 
distance between the sensor and the nearest object or person over a 30-second trial, 
providing a single distance-time graph. The graph was presented on the digital blackboard 
(Lesson 2 and 6) or on the screen of laptop computers (Lesson 3-5). When moving toward 
the sensor, the distance between the sensor and the student decreased. When moving from 
the sensor this distance increased. 

4.4. Measures 
4.4.1. General mathematics performance 

In order to obtain an indication of students’ overall mathematics performance, data from the 
Dutch student monitoring system (CITO LOVS: Janssen et al., 2010), provided by the 
schools, were used. In this system, schools record their students’ results on the biannual 
standardized mathematics tests. We used the scores of the students on the end-term Grade 4 
tests as an indication of their overall mathematics performance (norm population end-term 
Grade 4: M = 91.9, SD = 10.6, CITO, 2015). 

4.4.2. General reasoning 
As a measure of students’ general reasoning ability, an abbreviated version of the Raven 
Standard Progressive Matrices (Raven SPM: Raven et al., 2000), consisting of two sets of 9- 
items, was used (Bilker et al., 2012). Raven’s SPM is a test of general reasoning ability and 
fluid intelligence. Each item consists of a set of pictorial geometric design elements, in black 
and white. Students are asked to identify the missing element which completes the specific 
pattern represented by the set. The test was administered to all students in their classrooms 
during class time, following the instructions in the test’s manual. 

4.4.3. Graphical reasoning 
Students’ graphical reasoning about distance-time graphs was assessed four times by  a 
paper- and-pencil test consisting of exactly the same four tasks at each measurement 
moment: three graph interpretation tasks and one graph construction task. The four tasks 
were part of a larger test that also included nine other problems related to two other 
mathematical domains, namely algebra (four tasks) and probability (five tasks). In this study 
we only include students’ performance on the tasks related to graphing motion. Students’ 
received a correctness score on their answer to each task (correct = 1, incorrect = 0; 
minimum score = 0, maximum score = 4). On Task 2 students could receive partial credit 
(i.e., resulting in three possible scores for this task “0”, “0.5”, 1.”). In addition, in order to 
assess students’ reasoning, all tasks included an open-ended question, which probed students 
to make their thinking explicit, by asking them “how do you know?” Students were 
requested to explain their reasoning in writing and the written responses were coded 
afterwards for the level of reasoning displayed (see below). 

Table 3 shows two tasks as examples. The tasks were developed in such a way that students 
with different levels of understanding, could show different levels of reasoning in solving 
them. For example, Task 1 shows a distance-time graph representing the movement of a car. 

The speed of the car – the hidden quantity – can be visually deduced by inspecting the 
steepness of slope. Discovering this hidden quantity can be corroborated with reasoning in 
which a student explicates that the car in this particular segment travels the largest distance 
(e.g., when compared to the other segments within the graph), or with reasoning 
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in which a student explicates how the steepness of slope qualitatively represents “distance 
changing over time” or quantitatively, by taking into account the numerals on the axes. At 
these higher levels of reasoning a student also reasons about the given quantities on the axes 
in an (informal) covariational manner. 

Task 3 represents the graph construction task, including an empty graph and a description of 
a motion situation. The motion situation consists of three separate parts, in which the train 
travels at different speeds. Each part of the motion situation implies different rates of change 
(“twice as fast between 11 and 12 o’clock”). These differences should be made visible by the 
students in the empty graph. In order to construct a correct graph a student should take into 
account the relative differences in speed between the three different segments, by 
quantifying them. In this task, applying the principle “steeper slope means faster movement” 
does not necessarily result in the correct graph. 

Table 3. 

Example Tasks Graph Interpretation (left panel) and Graph Construction (right panel) 
Task 1 Task 3 

A car drives through town A train ride. 
A train travels twice as fast between 10:00 and 
11:00 o’clock than between 11:00 and 12:00 
o’clock. The train stands still from 12:00 to 
13:00 o’clock. 

1a. Between which points does the car goes fastest? 
1b. How do you know? 

Correct answer for this task: 
B-C 

Score: correct (1), incorrect (0) 

2a. Draw a graph that fits the description above. 
2b. How do you know? 

Correct answer for this task: 

Score: correct (1), incorrect (0) 
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4.4.3.1. Coding scheme for students’ level of reasoning 

To evaluate students’ explanations of how they arrived at a particular solution of the three 
graph interpretation tasks and the graph construction task, a coding scheme was developed 
based on an open exploratory analysis of students’ explanations. At first, the work of a few 
students was examined. All research team members first individually categorized these 
students’ responses. Later these classifications were compared, discussed, and revised until 
agreement was obtained. Finally, this resulted in one coding scheme, applicable to reasoning 
on both graph interpretation and graph construction tasks, consisting of four categories with 
increasing sophistication in level of reasoning: unrelated reasoning (R0), iconic reasoning (R1), 
single variable reasoning (R2) and multiple variable reasoning (R3). 

For the graph interpretation tasks, students’ written explanations were coded. For the graph 
construction tasks we took another approach. The students in our sample showed a richness of 
graphical solutions, yet the majority of the students explained these solutions by simply 
restating the description of the motion situation as their answer. We assumed students’ graphical 
solutions to be a direct indication of their levels of reasoning outlined above. Therefore, for the 
graph construction task, we coded students’ reasoning as a function of students’ ability to 
correctly take into account the variables on the graph’s axes. We distinguished between students 
who constructed: an illogical graph without taking into account the description of the motion 
situation (Level R0), a graph based on superficial characteristics of the motion event (Level 
R1), a graph taking into account a single variable correctly (Level R2), and a graph taking into 
account multiple variables correctly (Level R3). This highest level of reasoning included, yet 
was not restricted to, responses that showed a student’s informal covariational reasoning. 

The coding of the graph interpretation and graph construction tasks resulted in four reasoning 
scores per measurement moment. In Table 4 the four codes can be found including a description 
and examples of student’s reasoning per category. 

An independent second rater coded the four tasks on the four measurements of a subsample of 
21 students (336 responses, approximately 10% of all responses). Inter-rater reliability was high 
with an overall inter-rater reliability of Cohen’s Kappa =.92. 
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Table 4 

 
Coding Scheme used for Students’ Level of Reasoning on the Graph Interpretation Tasks (1,2,4) and 

the Graph Construction Task (3) 
 

Description 

Level of reasoning Category 
Graph interpretation Task 1 

Example 
Graph construction Task 3 

Example 
  Student reasons… Student constructs… 

Unrelated reasoning R0 … without referring to the graphical 
representation or the motion event 

 
“You can see” 
“I guessed” 

… an illogical graph in which the 
description of the motion event is 
not taken into account 

 
 
 

Iconic reasoning 

 
 
 

R1 

 
 
 

… on the basis of the shape of the 
graphical representation or superficial 
characteristics of the motion event 

 
“Because those two points are the 
highest” 
“Over there the line is the longest” 

 
 
 

… graph on the basis of 
superficial characteristics of the 
description of the motion event 

 
 

Single variable reasoning 

 
 

R2 

 
 

… on the basis of a single variable 
(distance or time or speed) 

 
“Between B and C, the line goes 
upwards from 4 till 12, so he gives a 
lot of gas” 
“There he drives 8 kilometers and 
everywhere else this is 4 or less” 

 
 

… graph taking into consideration 
a single variable (distance or time 
or speed) 

 

Multiple variable reasoning 

 

R3 

 

… on the basis of multiple variables 
(distance and/or time and/or speed) 

 
“The car drives 8 kilometers in 5 
minutes. So, in the shortest period of 
time, the most kilometers.” 
“Because, between those two points 
you find the most kilometers in the 
shortest time period.” 

 

… graph taking into consideration 
multiple variables (distance 
and/or time and/or speed) 

 
 

 

 

 
Note. The complete coding scheme, including examples of student responses for each task, can be found in the appendices of this article. 

Appendix 1 (graph interpretation) and Appendix 2 (graph construction). 
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4.5. Data analysis 
 
4.5.1. Preliminary analyses and descriptive statistics 

 
We provide sample means and standard deviations for students’ general mathematics 
performance and general reasoning. One-way analyses of variance (ANOVAs) were conducted 
in order to compare the baseline and the two instruction conditions for differences on general 
mathematics performance and general reasoning prior to the intervention. A Pearson chi-square 
test was conducted to test for unintended differences in students’ level of reasoning on M1, so 
before any lessons. Further, we used frequencies of students’ level of reasoning (R0, R1, R2, 
R3) on the graphical reasoning test to calculate the proportion of students using a particular 
level of reasoning for the baseline condition, and both instruction conditions. 

 
4.5.2. Modelling change in underlying ability 

 
To model students’ development in graphical reasoning we adopted an approach in which we 
combined multi-group Latent variable Growth curve Modelling (LGM), suitable to study 
longitudinal trends, with assumptions from Item Response Theory (IRT), suitable for 
categorical data. LGM is a versatile approach for modelling systematic intra- and inter 
individual differences in change over time and offers many advantages for the modelling of 
longitudinal data compared to more traditional statistical methods (Willet & Bub, 2005). In our 
study, we assumed that a student’s graphical reasoning would change over the four 
measurement occasions. We expected a slight increase in reasoning level due to growing 
familiarization with the tasks and maturation, and a larger increase due to the teaching sequence 
on graphing motion. The IRT assumption is that graphical reasoning ability itself cannot be 
directly observed: it is a hypothetical latent ability that underlies the observed reasoning levels 
in the students’ written answers; scored as unrelated reasoning (R0), iconic reasoning (R1), 
single variable reasoning (R2) and multiple variable reasoning (R3). Thus, the four reasoning 
levels can be mapped onto the underlying latent graphical reasoning ability. According to IRT, 
the reasoning levels shown by students on particular tasks are a function of students’ unobserved 
(latent) reasoning abilities and the difficulty of the different levels of reasoning on these tasks. 
Students’ abilities and the tasks’ difficulties are placed on the same scale, allowing to express 
students’ reasoning abilities as the probability of showing particular levels of reasoning on these 
tasks and to express the difficulties of the tasks as the proportions of students showing particular 
levels of reasoning on these tasks. LGM with IRT yields estimates of students’ growth in 
reasoning ability expressed as the increased probability of showing higher levels of reasoning 
on a particular set of tasks. 

 
We estimated students’ individual growth trajectories based on four partial individual effects. 
Students may show individual differences in their reasoning on the pre-measurement (intercept 
effect) and in the rate of change over time (slope effect) for the subsequent three measurements. 
In addition to the intercept and the slope effect, we included an intervention effect and a 
weakening effect. With the intervention effect we model students’ change in ability after 
partaking in the teaching sequence. For example, an intervention between M1 and M2, might 
lead to a change in students’ graphical reasoning ability between the measurements on M1and 
M2, and may extend to a change between M3 and M4. The weakening effect takes into account 
the possibility that the intervention effect might fade-out over time. 
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Two control variables (general mathematics performance and general reasoning) were included 
as predictors in the LGM analyses to control for individual differences in general mathematical 
ability and general reasoning ability. Finally, to answer the main question of the current study, 
condition was added as a predictor into the model since we assumed that the intervention effect 
might depend on the specific condition students are in (indirect or direct embodied support). 
Hence, by adding condition as a predictor we could investigate whether the instruction 
condition impacted changes in students’ reasoning ability over time, thus answering the 
question whether students in different instruction conditions differ in growth trajectories. In a 
stepwise procedure we first estimated an unconditional model that served as our baseline model 
only including the intercept effect and the slope effect. In the next step we added the 
intervention effect and the weakening effect. We then added the two general measures (general 
mathematics performance and general reasoning) as predictors of the intercept and the slope 
effect. Both predictor variables were grand mean centered. In the final step, we added 
condition as a predictor of the intervention effect. 

 
The multi-group latent growth curve model, with time varying effects added, was estimated 
using Mplus (Version 8; Muthén & Muthén, 2012-2017). A logit link was used to map the 
likelihood of using a certain level of reasoning (Level R0, R1, R2, or R3) onto students’ latent 
graphical reasoning ability. The logit link implies that we had to use robust Maximum 
Likelihood Estimation (MLR). As a consequence, because MLR provides no chi-square 
goodness of fit index, we used the Aikake Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC) as relative overall fit measures. We report the change in AIC 
(∆AIC) and BIC (∆BIC) for each comparison between models. Both fit indices take into account 
sample size and the number of parameters. We followed the commonly applied rule that lowest 
AIC and BIC represent the best model fit. Further, we provide parameter estimates and 
significance values of the separate effects and the predictors. 

 
4.5.3. Missing data 

 
Of the 218 students in this study, 213 had complete data on general mathematics performance, 
and 217 had complete data on general reasoning. For the students with missing data on these 
measures, values were imputed based on class averages. Four students in the conditions with 
direct or indirect embodied support missed either M2 or M3, while the subsequent measure was 
present. To avoid having missing post-measurements, we decided to substitute the missing 
measurement point with the subsequent one. For example, a student in Cohort 1, receiving the 
intervention between M1 and M2, missed M2. For this student we treated M3 as if it were M2 
and M4 as if it were M3. 

 

5. Results 
 
5.1. Preliminary analyses and descriptive statistics 

 
There were no significant differences between the baseline condition and the two instruction 
conditions on students’ general mathematics performance (F(2, 210) = 0.77, p = .465, partial ƞ2 

= .007), general reasoning (F(2, 214) = 0.29, p = .752,partial ƞ2 = .003), and level of graphical 
reasoning on M1 (ꭓ2 (6) = 10.88, p = .092). Table 5 presents per condition, for each cohort, the 
means and standard deviations of general mathematics performance and general reasoning, as 
well as the correctness scores on the graphical reasoning test for all four measurement moments. 
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Although they did not have an intervention on graphing motion, students in the baseline 
condition did seem to improve in their correctness scores over the school year (+ 0.70), as did 
students in the indirect (+1.03) and direct support condition (+ 1.08). 

 
Table 5 

 
Means and Standard Deviations for General Mathematics Performance, General Reasoning 
(Abbreviated Raven’s SPM) and Graphical Reasoning Mmeasure 1 – Mmeasure 4 (correctness scores) 

 

 
Note. E6=End-term Grade 4. Boldened scores indicate scores on measurements in between which the intervention took place. 

 
The development of students’ level of reasoning on the graphical reasoning test for all four 
tasks together is shown in Figure 2 for the baseline condition. Proportions of students using a 
particular level of reasoning are shown for each measurement occasion. Students showed some 
decline of R1 reasoning over time, but a slight increase of R0 and R3 reasoning. Overall, 
students’ level of reasoning (R0-R3) in the baseline condition stayed rather stable overtime. 

 

 
 

Figure 2. Proportion of students using a particular level of reasoning (R0-R3) for each measurement 
occasion for the Baseline condition. 
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In Figure 3, the development of students’ reasoning is shown for the indirect support condition 
(left panel) and the direct support condition (right panel). In this figure measurement occasions 
are aligned between cohorts, such that the intervention is set to start and end at the same virtual 
time points for all cohorts. This alignment was necessary in order to be able to visually compare 
the development of students in the different cohorts, since students in the different cohorts 
participated in the teaching sequence in different time periods. Students in Cohort 1 participated 
in the teaching sequence during the first time-period (October – November), directly after the 
first measurement occasion; students in Cohort 2 received the teaching sequence during the 
second time-period (January – February), performing two measurements before the teaching 
sequence; and students in Cohort 3 participated in the third time-period (April – May), 
performing three measurements before the teaching sequence. When aligned in Figure 3, 
students in Cohort 1 are shown as having participated in virtual measurements 3 to 6, students 
in Cohort 2 in virtual measurements 2 to 5, and students in Cohort 3 in measurements 1 to 4. 
This allows for a direct comparison of the improvement of students in all cohorts following 
their participation in the teaching sequence by inspecting the change between virtual 
measurement occasions 3 and 4. 

 
                  Indirect embodied support                                      Direct embodied support 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Proportion of students using a particular level of reasoning (R0-R3) for each 
measurement occasion. Between virtual measurements 3 and 4 the teaching sequence took place 
for the indirect and direct support conditions. Thin line-segments are based on one cohort, 
thicker line-segments on two cohorts, and thickest line-segments are based on all three cohorts. 

 
After partaking in the teaching sequence more students in both the direct and indirect support 
condition showed reasoning on the basis of a single variable (R2) as well as reasoning on the 
basis of multiple variables (R3). 

 
Additionally, students in the direct support condition exhibited a larger gain in the frequency 
of R2 and R3 reasoning (R2 + 21% points and R3 + 13% points) than students in the indirect 
support condition (R2 + 7% points and R3 + 9% points). 
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5.2. Effects of embodied support on students’ graphical reasoning ability 
 
To investigate the general effectiveness of both instruction conditions in terms of immediate 
(post-test) and middle-long-term (follow-up) effects, latent growth curve analysis was used to 
model intra-individual change in graphical reasoning over the four measurement points, 
corrected for general mathematics ability and general reasoning. First, an unconditional growth 
model, including the intercept effect and the slope, but no other effects was estimated. The fit 
of this model (AIC = 7970.16; BIC = 8031.08) serves as our baseline. Adding the intervention 
effect and the weakening effect to the model resulted in an improvement in the overall relative 
model fit (∆AIC = 83.69; ∆BIC = 73.54). In addition to the overall fit measures also structural 
parameters of the model are of interest (Wald tests). The effect of the intervention on students’ 
reasoning was significant (1.10, p < .001). There was also a significant weakening effect on the 
delayed measures after the intervention (-0.47, p < .001). The addition of general mathematics 
performance and general reasoning as predictors of the intercept further improved our model 
(∆AIC = 86.21; ∆BIC = 79.44). Both predictors are significant predictors of the intercept effect 
(general mathematics performance: 0.52, p < .001, general reasoning: 0.23, p = .001). 

 
To investigate the effect of embodied support on students’ reasoning about motion graphs on 
the immediate and delayed post-test, instruction condition was added as a predictor of the 
intervention effect. In this way we modelled the relationship between students’ changes in 
graphical reasoning over the four measurement points and the specific condition they are in. 

 
After adding the condition effect to our model, we found an improvement in model   fit (∆AIC 
= 7.64; ∆BIC = 4.25). Condition turned out to be a significant predictor of the intervention 
effect (p = .001), explaining 25% of the variance of the intervention effect. Thus, students 
receiving direct embodied support during the teaching sequence displayed higher levels of 
reasoning after the intervention than students that received indirect embodied support. 
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In order to gauge the effect of instruction condition, it is helpful to visualize the results. 
Figure 4 shows these effects for the baseline (left) and the three cohorts separately. The 
lines in the graphs show the visualization of the additive relationship between the 
intercept effect, the slope effect, the intervention effect, and the weakening effect, for 
students in the direct support condition (top line) and students in the indirect support 
condition (bottom line). 

 

Figure 4. Additive relationship between the effects of the intercept, the slope, the 
intervention, and the weakening separately for the baseline (left), Cohort 1, Cohort 2, 
and Cohort 3, for the direct support condition (black line) and the indirect support 
condition (grey line), for students’ latent graphical reasoning ability: Error bars indicate 
95% confidence intervals. 

Table 6 presents the fit indices and parameter estimates of our final model including all 
four partial effects (i.e., intercept, slope, intervention, weakening), as well as the three 
predictors (general mathematics performance, general reasoning, condition). 

 
Table 6. 

Fit Indices and Parameter Estimates of the final LGM Model Including all Partial Effects, Control 
Measures, and the Effect of Condition 

 
Model AIC/BIC df Model parameter Estimate p-value (two- 

  tailed)  

Intercept, Slope, 
Intervention effect, 
Weakening effect + 
Condition as predictor of the 
intervention effect) 
+ General mathematics 

performance 
+ Non-verbal reasoning 

7792.624/ 
7873.852 

193 Intercept (mean) 
Slope (mean) 
Intervention (mean) 
Weaken (mean) 
General mathematics 

performance (mean) 
General reasoning (mean) 
Condition (regression β) 

0.0 
0.128 
1.125 

-0.443 
0.044 

 
0.088 

0.3091 

fixed 
.003 

< .001 
< .001 
< .001 

 
.001 
.001 

Note. 1Condition was coded as 1 Direct support condition and -1 Indirect support instruction condition 
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5.3. Reaching higher levels of reasoning: Example of two growth 
trajectories 

 
In order to explicate what the above quantitative analysis implies in relation to the activities 
that were conducted in the classroom, and the reasoning of the students on the tasks used to 
assess their levels of reasoning, in this final section we provide the growth trajectories of two 
students over the schoolyear (see Table 7). We focus on Task 1. The trajectories given below 
are not representative for the entire sample of students, they serve as an illustration. Both 
trajectories show growth in reasoning ability as a result of the intervention and some post- 
intervention fading of this effect. Following the findings of the quantitative analysis, indicating 
that the direct support condition was more effective on students’ growth in graphical reasoning, 
we restrict ourselves to the instruction condition offering direct embodied support. 

 
Table 7 

 
Growth trajectories of Elliot and Levi showing their reasoning on the four measurement moments 

 
Name M1 M2 M3 M4 
Elliot [CD-EF] 

“I think so, 
because these are 
small pieces” 

[B and C] 
“because in 5 
minutes they 
travel 12 
kilometers” 

[BC] 
“Because 
between these 
points you have 
the most 
kilometers in a 
short time 
period” 

[BC] 
“I looked and 
then I have 
written down the 
answer” 

Levi [B-C] 
“It is the longest” 

[b and c] 
“I looked at 
which one was 
the longest and 
the time” 

[b to c] 
“I looked at 
where the lines in 
the graph were 
going up the 
highest” 

[BC] 
“Nowhere it goes 
as fast in the 
graph. He travels 
in 5 minutes, 8 
kilometers, he 
never does this at 
another moment 

  in the graph”  
 
 
 

Trajectory 1 – Cohort 1: Elliot 
 
On the measurement before the intervention (M1), Elliot based his answer on some superficial 
characteristics of the graph, resulting in Level R1. The answer of Elliot is “C-D and E-F”, which 
is an incorrect answer. Elliot corroborates his answer with: “Because these are the shortest 
pieces”. With shortest pieces this student refers to the line segments in the graph. On the 
measurement directly after the intervention (M2) the reasoning of Elliot has changed. He now 
uses the variables distance and time in an informal covariational manner: “because in 5 minutes 
they travel 12 kilometers”, using both quantities represented on the axes of the graph in his 
reasoning. On the third measurement moment (M3), 
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Elliot still reasons according to the highest level (R3), still showing reasoning in an informal 
covariational manner, yet without explicitly mentioning the numerals. Instead he qualitatively 
refers to the given quantities “most kilometers” and “little time”. On the final measurement 
(M4), Elliot does not show reasoning that is related to the graphical representation anymore. 
Instead his reasoning is merely procedural, resulting in Level R0. The growth trajectory of 
Elliot illustrates how a student can show an increase in level of reasoning from pre- to post 
intervention and a weakening effect on one of the delayed measures, as was found in the 
quantitative analysis described above. 

 

Trajectory 2 – Cohort 3: Levi 
 
On the first measurement moment, Levi shows reasoning according to Level R1, see Table 7. 
He, like Elliot, focuses on a particular line segment being “the longest”. Although his answer is 
correct: “BC”, the reasoning associated with his answer can be considered superficial. On the 
second and third measurement moment, without having had an intervention, Levi shows 
reasoning according to Level R2. For example, on measurement moment 2 he states: “I looked 
at which one was the longest and the time”. Although the first part of this answer is similar to 
his answer given on measurement moment 1, this time he corroborates his answer with 
explicitly mentioning the variable time, indicating that he incorporated the quantity time given 
on the y-axis of the graph. Finally, on the fourth measurement moment, directly after having 
had the intervention, he shows reasoning according to Level R3: “Nowhere it goes as fast in the 
graph, he travels in 5 minutes, 8 kilometers, he never does this at another moment in the graph.” 
The growth trajectory of Levi shows how Levi throughout the schoolyear shows growth, 
regardless of having had an intervention. Yet, his reasoning after the intervention clearly is 
more elaborate. 

 

6. Discussion 

In this study, we examined whether a six-lesson teaching sequence on motion graphs raised 
students graphical reasoning. We defined graphical reasoning as a mixture of qualitative and 
quantitative reasoning about a single variable or about multiple variables, as opposed to 
reasoning in an iconic or pictorial way. We took students’ written responses to the open-ended 
graph interpretation and graph construction tasks as reflecting their reasoning and coded this 
reasoning on four levels of increasing complexity and appropriateness. In line with previous 
research, the present study investigated the added benefit of direct bodily experiences, 
compared to indirect bodily experiences in the teaching sequence. We thus asked: To what 
extent does embodied support in a teaching sequence on graphing motion affect the 
development of students’ graphical reasoning? The teaching sequence focused on problem 
situations involving motion, situated in a real-world context that was presented on worksheets 
and modelled on the digital blackboard in the instruction condition offering indirect embodied 
support and was presented on paper and physically enacted in the instruction condition offering 
direct embodied support. In our method and analyses, we took into account both short-term and 
long-term effects of the intervention. 

 
We modelled individual changes in graphical reasoning ability using latent growth modelling. 
We found that students’ graphical reasoning improved after taking part in the teaching sequence 
on motion graphs. Students more often used reasoning taking into account a single variable 
(Level R2) or taking into account multiple variables (Level R3). 
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We also found that students taking part in the direct embodied support condition benefited 
more from the intervention than students in the indirect embodied support condition. Students 
receiving direct embodied support showed more often higher levels of graphical reasoning 
(Level R2 and Level R3) after partaking in the teaching sequence than students receiving 
indirect embodied support. This shows that an embodied learning environment incorporating 
immediate whole-bodily motion activities is more helpful in stimulating students’ reasoning 
about graphs than when students do not perform immediate whole-bodily motion activities, and 
instead receive an illustrated model of this motion sensor context on worksheets and the 
digital blackboard. This finding underscores previous research within this specific 
mathematics domain (e.g., Deniz & Dulger, 2012), and other mathematics domains (e.g., 
Fisher et al., 2011). For a review on this topic, see Duijzer et al. (2019b). The difference in 
terms of estimated abilities, between the two conditions, was about one standard deviation 
apart. The proportion explained variance, however, was small (r2= .25). This can be explained 
by the fact that students in the indirect support condition, were also confronted with activities 
that capitalize on bodily-based experiences. For example, the object of the toy car used in the 
indirect support instruction condition, to some extent, might have caused neural activity in the 
human brain similar to the neural activity induced when viewing another person’s action or 
performing an action (see also Beauchamp & Martin, 2007; Chao & Martin, 2000; Chouinard 
& Goodale, 2010). Additionally, the graphing of motion itself capitalizes on experienced 
motion, whereby these experiences with real motion can act as metaphorical mappings 
between source domain experiences (such as real movements through space) and the graphical 
representation, even in the absence of direct physical experiences (e.g., Barsalou, 1999; see 
also Castillo-Garsow et al., 2013). 

 
In previous research it has been established that when students partake in graphing activities, 
using for example a motion sensor and desktop laptop, several graph reading errors, such as 
iconic and pictorial interpretations of graphs can be overcome (e.g., Brasell, 1987; Deniz & 
Dulger, 2012; Duijzer et al., 2019a, Mokros & Tinker, 1987). These findings were mostly based 
on tests consisting of multiple-choice questions. In our study, we added complexity and depth 
to the analyses by taking into account students’ written explanations as indications of their level 
of reasoning and changes therein over a prolonged period of time. We illustrated these changes 
by incorporating two qualitative examples presenting the growth trajectories of two students. 
At the highest level of reasoning (Level R3) these students reasoned about the variables distance 
and time in an informal covariational manner. Additionally, these qualitative examples showed 
the added value of including students’ written explanations in the statistical analysis. For 
example, Levi gave the correct answer on each of the four measurement moments, yet his 
written explanation show a clear increase in the level of understanding over time. At the first 
measurement, he incorporates a superficial characteristic of the graph in his reasoning, while at 
the final measurement (M4) his reasoning changed to reasoning in which he took into account 
both variables. Thus, including students’ written explanations gave us more information 
regarding their understanding than when we would have only looked at students’ correctness 
scores. This approach is in line with Lai et al. (2016), who show the importance of incorporating 
a direct measure of reasoning by giving students the opportunity to elaborate on their answers 
in achievement tests. In this sense, we demonstrated that students’ reasoning taking into account 
iconic or pictorial aspects of the graphs (Level R1), was often replaced by reasoning in which 
they took into account one or more of the relevant variables (Level R2 and Level R3), regardless 
of the correctness of their answer. 
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6.1. The value of direct versus indirect embodied support 
 
The motion sensor context used in our study is just one example of digital technology that has 
been utilized over the past couple of decades to support learning in mathematics and science 
classrooms. The digital element of the motion sensor entails the real-time translation of 
movement into a digitalized graphical representation of that movement. The context of the 
motion sensor was used extensively in the teaching sequence offering direct embodied support. 
In the instruction condition offering indirect embodied support, the students did not have the 
opportunity to benefit from a motion sensor in the physical way. They were offered this context 
on paper and on the digital blackboard. Thus, on the basis of our comparison between 
instruction conditions, we cannot determine exactly which specific elements of the teaching 
sequence were most helpful in facilitating student’s graphical reasoning. Both instruction 
conditions involved sense making activities that were perceptually experienced (Barsalou, 
1999; see also Goldman, 2012). 

 
Further, we operationalized direct embodied support as making whole bodily movements in 
front of the motion sensor. Yet, due to the nature of the motion sensor context, the whole bodily 
motion activities in front of the sensor to some extent has more advantages than the physical 
experience of motion alone. It includes physical movement as well as immediate feedback 
provided by the tool. Even though this immediate feedback was sometimes also provided to the 
students in the teaching sequence with indirect embodied support, the combination of physical 
experiences with real-time feedback in one instruction condition makes it difficult to 
disentangle their respective unique effects. Future research could address this by creating a 
condition in which students for example do not receive immediate real-time feedback, but 
delayed feedback (see also Brasell, 1987), to isolate the effects of the real-time feedback 
provided by the tool. Another possibility is to isolate the unique contribution of own bodily 
motion experiences. For example, by letting students work with a dynamic model of the 
activities’ set-up. An example of such a learning environment is presented in the study of 
Salinas et al (2016), who gave students the opportunity to control an animated avatar in a 
computer software program. The movement of the avatar is presented alongside the 
corresponding graph. The students could influence or control the motion of the avatar, but could 
not move their selves, eliminating the possibility of direct physical experiences. 

 

6.2. Limitations, strengths and future research 
 

`This study has some limitations that we have to mention here. First, even though students’ 
reasoning on the test items provided us with a window into their thinking processes, we cannot 
be sure that we captured the full breadth of students’ understanding, when only looking at their 
written responses to the tasks. It might be worthwhile to include more extended measures such 
as think-aloud protocols when solving the tasks. A second, related limitation, is that we included 
only four tasks to measure students’ development in reasoning about motion graphs. Even 
though using few tasks is a considerable advantage when thinking about the mental effort 
imposed on the students, future research might consider using more tasks, specifically more 
graph construction tasks. A third, and final, limitation worth mentioning is that even though we 
have investigated the teaching sequence in a realistic classroom setting, which enhanced the 
ecological validity of our study and the applicability of the approach in education, a drawback 
of this approach is that some of the teaching time was consumed by the procedural aspects of 
setting up the equipment. 
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Also, the use of motion sensor technology in the classroom might have had a distracting effect 
as well. Since not all students are walking at the same time in front of the sensor some students 
sometimes were disengaged, either by the other small group working with the sensor, or by 
talking with their peers (see also Anderson & Wall, 2016). A suggestion for future research is 
to let students work in even smaller groups (e.g., three or four students) on the tasks. 

 
This study also has several strengths. First, an important difference between previous research 
on graph understanding in the primary grades and the current study is that we looked at the 
development of students’ graphical reasoning over a year. We included multiple measurements 
to look at students’ longitudinal development and to take into account fade-out effects of the 
intervention. We indeed found a fade out effect for the intervention. Second, from a statistical 
point of view, this study is innovative in the sense that the used latent growth curve model 
incorporated categorical responses to the tasks, which allowed us to model gradual changes in 
levels of reasoning (Boom & Ter Laak, 2007). Third, our cohort-sequential research design 
enabled us to “re-use” student groups per instruction condition, whereby the groups served as 
their own control group, depending on the specific cohort. This resulted in the need of fewer 
participants overall, which is an advantage from both a practical and ethical point of view. 
Fourth, we incorporated a baseline condition that helped us to more accurately estimate the 
intercept effect and the slope effect, thus increasing this study’s statistical power. As a fifth 
strength we would like to mention the contribution of our study to the existing literature, by 
presenting a way of incorporating whole bodily movements in whole-classroom lesson 
activities. 

 

6.3. Conclusions and implications for education 
 
The aim of this study was to incorporate (physical) experiences during graphing activities as 
embodied support in mathematics lessons in order to positively contribute to fifth-grade 
students’ understanding of distance-time graphs. This study showed that the used activities 
resulted in higher levels of graphical reasoning, thus demonstrating the usefulness of 
incorporating graphing activities in the primary school mathematics classroom. Additionally, 
this study showed the added value of physical activities, as whole bodily movements in front 
of the motion sensor, on students’ graphical reasoning. The current study adds to a growing 
body of evidence that physical experiences are indeed helpful for mathematics learning in 
general and graphical understanding in particular. Yet, what exactly caused this growth is 
something further research could explore. 

 
Even though on the basis of this study we cannot make strong statements, we do think our study 
has some implications for graphing motion in primary school mathematics classrooms. First, 
through carefully designed lesson activities involving problem situations situated in a real- 
world context, capitalizing on students’ intuitive understandings of representing motion, 
students’ graphical reasoning can be improved. Second, our study shows that it is possible to 
implement embodied activities, that are activities enriched with immediate whole-bodily 
motion experiences, in an authentic classroom setting (see also Deniz & Dulger, 2012), which 
adds to research investigating practical applications of embodied cognition approaches for 
education and learning. In this respect, our study confirms findings from previous research into 
embodied mathematics learning showing the feasibility of incorporating these type of physical 
bodily-based activities in whole classrooms. 
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