
113

An Efficient Algorithm for Type-Safe Structural Diffing

VICTOR CACCIARI MIRALDO, Utrecht University, The Netherlands

WOUTER SWIERSTRA, Utrecht University, The Netherlands

Effectively computing the difference between two version of a source file has become an indispensable part
of software development. The de facto standard tool used by most version control systems is the UNIX diff

utility, that compares two files on a line-by-line basis without any regard for the structure of the data stored in
these files. This paper presents an alternative datatype generic algorithm for computing the difference between
two values of any algebraic datatype. This algorithm maximizes sharing between the source and target trees,
while still running in linear time. Finally, this paper demonstrates that by instantiating this algorithm to the
Lua abstract syntax tree and mining the commit history of repositories found on GitHub, the resulting patches
can often be merged automatically, even when existing technology has failed.

CCS Concepts: · Software and its engineering→ General programming languages.

Additional Key Words and Phrases: Generic Programming, diff, Version Control, Haskell

ACM Reference Format:

Victor Cacciari Miraldo and Wouter Swierstra. 2019. An Efficient Algorithm for Type-Safe Structural Diffing.
Proc. ACM Program. Lang. 3, ICFP, Article 113 (August 2019), 29 pages. https://doi.org/10.1145/3341717

1 INTRODUCTION

The UNIX diff [Hunt and McIlroy 1976] is an essential tool in modern software development. It
has seen a number of use cases ever since it was created and lies at the heart of today’s Software
Version Control Systems. Tools such as git, mercurial and darcs, that enable multiple developers to
collaborate effectively, are all built around the UNIX diff utility, that computes a patch between
two versions of a file. It compares files on a line-by-line basis attempting to share as many lines as
possible between the source and the destination files.
A consequence of the by line granularity of the UNIX diff is it inability to identify more fine

grained changes in the objects it compares. For example, if two parts of a program were changed,
but happen to be printed on the same line, the UNIX diff sees this as a single change. Ideally,
however, the objects under comparison should dictate the granularity of change to be considered.
This is precisely the goal of structural differencing tools.

In this paper we present an efficient datatype-generic algorithm to compute the difference
between two elements of any mutually recursive family. In particular, our algorithm readily works
over the abstract syntax tree of a programming languageÐ thereby enabling, for example, two
changes that work on separate parts of the AST to be trivially merged, even if they appear to be on
the same line in the source file. We have implemented our algorithm in Haskell and make heavy
use of its datatype generic programming capabilities.

Authors’ addresses: Victor Cacciari Miraldo, Information and Computing Sciences, Utrecht University, Princetonplein,
5, Utrecht, Utrecht, 3584 CC, The Netherlands, v.cacciarimiraldo@uu.nl; Wouter Swierstra, Information and Computing
Sciences, Utrecht University, Princetonplein, 5, Utrecht, Utrecht, 3584 CC, The Netherlands, w.s.swierstra@uu.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/8-ART113
https://doi.org/10.1145/3341717

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3341717
https://doi.org/10.1145/3341717

113:2 Victor Cacciari Miraldo and Wouter Swierstra

In general, we aim to compute the difference between two values of type a, and represent these
changes in some type, Patch a. The diff function computes these differences between two values
of type a, and apply attempts to transform one value according to the information stored in the
Patch provided to it.

diff :: a → a → Patch a

apply :: Patch a → a → Maybe a

Note that the apply function may fail, for example, when attempting to delete data that is not
present. Yet when it succeeds, the apply function must return a value of type a. This may seem like
an obvious design choice, but this property does not hold for the approaches [Asenov et al. 2017;
Falleri et al. 2014] using xml or json to represent their abstract syntax trees, where the result of
applying a patch may produce ill-typed results, i.e., schema violations.

Naturally, not every definition of Patch, diff and apply will solve our problem. We expect certain
properties of our diff and apply functions. The first being correctness: the patch that diff x y
computes can be used to faithfully reproduces y from x.

∀ x y . apply (diff x y) x ≡ Just y

The apply function is inherently partial and correctness only requires apply to succeed in one
particular instanceÐbut what should happen when applying a patch to a different value than
the one used to create the input patch? We argue that the apply function should only fail when
strictly necessary. In particular, if there are no changes, the patch should represent a no-op, and its
application should be the identity:

∀ x y . apply (diff x x) y ≡ Just y

This captures the idea that a patch that does not make any modifications must be applicable to
any value.
Finally, the last important properties stem from a practical perspective. We need both the diff

and apply functions to be computationally efficient.
The UNIX diff [Hunt and McIlroy 1976] satisfies these properties for the specific type of lines

of text, or, a ≡ [Strinд]. It represents patches as a series of insertions, deletions and copies of
lines and works by enumerating all possible patches that transform the source into the destination
and chooses the ‘best’ such patch. There have been several attempts at generalizing these results
to handle arbitrary datatypes [Lempsink et al. 2009; Miraldo et al. 2017], but following the same
recipe: enumerate all combinations of insertions, deletions and copies that transform the source
into the destination and choose the ‘best’ one. We argue that this design has two weaknesses when
generalized to work over arbitrary types: (A) the non-deterministic nature of the design makes the
algorithms inefficient, and (B), there exists no canonical ‘best’ patch and the choice is arbitrary.

We illustrate this last point with the example in Figure 1. The existing datatype generic approaches
with insertions, deletions and copies typically perform a preorder traversal of the trees, copying
over constructors whenever possible. Yet if we want to transform a binary tree Bin t u into Bin u t
using only these operations, we will be forced to choose between copying t or u, but never both.
The choice of which subtree to copy becomes arbitrary and unpredictable. To make matters worse,
the non-determinism such choice points introduce makes algorithms intractably slow.

The central design decision underlying the UNIX diff tool is to copy data whenever possible. Yet
this example shows that using only insertions, deletions and copies limits the opportunities for
copying data. In the presence of richly structured data beyond lines of text, this becomes especially
problematic.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:3

Fig. 1. Visualization of a diff (Bin t u) (Bin u t) using insertions, deletions and copies only

This paper explores a novel direction for differencing algorithms: rather than restricting ourselves
to insertions, deletions, and copy operations, we allow the arbitrary reordering, duplication, and
contraction of subtrees. Not only does this restrict the inherent non-determinism in the prob-
lem, making it easier to compute patches, this also increases the opportunities for copying. More
specifically, this paper makes the following novel contributions:

• This paper defines a datatype generic diff function that computes a patch between two
algebraic datatypes that is efficient in both time and space. This diff function supports the
duplication and permutation of subtrees, and satisfies all the desired properties outlined
above. We illustrate this algorithm by first defining a specific instance (Section 2), then
presenting a generic version capable of handling arbitrary mutually recursive families of
datatypes (Section 3).

• Initially, we present our diff algorithm assuming the existence of an oracle capable of detecting
all possible copying opportunities. We give a practical, generic, implementation of this oracle
that is correct modulo cryptographic hash collisions and runs in amortized constant time
(Section 3.3).

• We show how the representation for patches used in this paper enables disjoint patches to be
merged automatically (Section 4).

• Finally, we have instantiated our algorithm to the abstract syntax tree of Lua and collected
historical data regarding merge conflicts from popular GitHub repositories. We show how
our naive merging algorithm is already capable of resolving more than 10% of the merge
conflicts encountered automatically, while still offering competitive performance (Section 5).

2 TREE DIFFING: A CONCRETE EXAMPLE

Before exploring the generic implementation of our algorithm, let us look at a simple, concrete
instance first. This example sets the stage for the the generic implementation that follows (Sec-
tion 3.2). Throughout this section we will explore the central ideas from our algorithm instantiated
for the type of 2-3-trees:

data Tree23 = Leaf
| Node2 Tree23 Tree23
| Node3 Tree23 Tree23 Tree23

The central concept of our work is the encoding of a change. Unlike previous work [Klein 1998;
Lempsink et al. 2009; Miraldo et al. 2017] which is based on tree-edit-distance [Bille 2005] and hence,
uses only insertions, deletions and copies of the constructors encountered during the preorder
traversal of a tree (Figure 1), we go a step further. We explicitly model permutations, duplications
and contractions of subtrees within our notion of change. Where contraction here denotes the

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:4 Victor Cacciari Miraldo and Wouter Swierstra

Node2

0 1

Node2

1 0

Node2

0 1

Node3

0 1x

Fig. 2. Visualization of diff (Node2 t u) (Node2 u t) to the left and diff (Node2 t u) (Node3 t x u) on the

right. Metavariables are shown inside a square. Entire trees are shown inside a triangle.

partial inverse of a duplication. The representation of a change between two values of type Tree23,
then, is given by identifying the bits and pieces that must be copied from source to destination
making use of permutations and duplications where necessary.
A new datatype, Tree23C φ, enables us to annotate a value of Tree23 with holes of type φ.

Therefore, Tree23C MetaVar represents the type of Tree23 with holes carrying metavariables.
These metavariables correspond to arbitrary trees that are common subtrees of both the source and
destination of the change. These are exactly the bits that are being copied from the source to the
destination tree. We refer to a value of Tree23C as a context. For now, the metavariables will be
simple Int values but later on we will need to carry additional information.

type MetaVar = Int

data Tree23C φ = Hole φ

| LeafC

| Node2C Tree23C Tree23C
| Node3C Tree23C Tree23C Tree23C

A change in this setting is a pair of such contexts. The first context defines a pattern that binds
somemetavariables, called the deletion context; the second, called the insertion context, corresponds
to the tree annotated with the metavariables that are supposed to be instantiated by the bindings
given by the deletion context.

type Chanдe23 φ = (Tree23C φ,Tree23C φ)

The change that transforms Node2 t u into Node2 u t is then represented by a pair of Tree23C ,
(Node2C (Hole 0) (Hole 1),Node2C (Hole 1) (Hole 0)), as seen in Figure 2. This change works
on any tree built using the Node2 constructor and swaps the children of the root. Note that it is
impossible to define such swap operations in terms of insertions and deletionsÐas used by most
diff algorithms.

2.1 Applying Changes

Applying a change is done by instantiating the metavariables in the deletion context and the
insertion context:

applyChange :: Chanдe23 MetaVar → Tree23 → Maybe Tree23
applyChange (d, i) x = del d x >>= ins i

Naturally, if the term x and the deletion context d are incompatible, this operation will fail.
Contrary to regular pattern-matching we allow variables to appear more than once on both the
deletion and insertion contexts. Their semantics are dual: duplicate variables in the deletion context
must match equal trees, and are referred to as contractions, whereas duplicate variables in the
insertion context will duplicate trees. We use an auxiliary function within the definition of del to

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:5

make this check easier to perform. Given a deletion context ctx and source tree, the del function
tries to associate all the metavariables in the context with a subtree of the input tree.

del :: Tree23C MetaVar → Tree23 → Maybe (Map MetaVar Tree23)
del ctx tree = go ctx tree empty

The go function, defined below, closely follows the structure of trees and contexts. Only when
we reach a Hole , do we check whether we have already instantiated the metavariable stored
there or not. If we have encountered this metavariable before, we check that both occurrences of
the metavariable correspond to the same tree; if this is the first time we have encountered this
metavariable, we simply instantiate the metavariable with the current tree.

go :: Tree23C → Tree23 → Map MetaVar Tree23 → Maybe (Map MetaVar Tree23)
go LeafC Leaf m = return m

go (Node2C x y) (Node2 a b) m = go x a m >>= go y b

go (Node3C x y z) (Node3 a b c) m = go x a m >>= go y b >>= go z c

go (Hole i) t m = case lookup i m of

Nothinд → return (M .insert i t m)

Just t ′ → guard (t ≡ t ′) >> return m

go m = Nothinд

We will refer to the result of del ctx tree as the valuation that instantiates the metavariables of
ctx with subtrees of tree. Once we have obtained a such valuation, we substitute the variables in
the insertion context with their respective values, to obtain the final tree. This phase fails when the
change contains unbound variables. The ins function is defined below.

ins :: Tree23C MetaVar → Map MetaVar Tree23 → Maybe Tree23
ins LeafC m = return Leaf

ins (Node2C x y) m = Node2 <$> ins x m <∗> ins y m

ins (Node3C x y z) m = Node3 <$> ins x m <∗> ins y m <∗> ins z m

ins (Hole i) m = lookup i m

2.2 Computing Changes

Next, we explore how to produce a change from a source and a destination, defining a changeTree23
function. Intuitively, this function will try to exploit as many copy opportunities as possible. For
now, we delegate the decision of whether a subtree should be copied or not to an oracle: assume we
have access a function wcs :: Tree23 → Tree23 → Tree23 → Maybe MetaVar , short for łwhich
common subtreež. The call wcs s d x returns Nothinд when x is not a subtree of s and d; if x is a
subtree of both s and d, it returns Just i, for some metavariable i. The only condition we impose is
injectivity of wcs s d: that is, if wcs s d x ≡ wcs s d y ≡ Just j, then x ≡ y. In other words, equal
metavariables correspond to equal subtrees.
There is an obvious inefficient implementation for wcs, that traverses both trees searching for

shared subtreesÐhence postulating the existence of such an oracle is not a particularly strong
assumption to make. In Section 2.4, we provide an efficient implementation for Tree23. For now,
assuming the oracle exists allows for a clear separation of concerns. The changeTree23 function
merely has to compute the deletion and insertion contexts, using said oracleÐthe inner workings
of the oracle are abstracted away cleanly.

changeTree23 :: Tree23 → Tree23 → Chanдe23 MetaVar
changeTree23 s d = (extract (wcs s d) s, extract (wcs s d) d)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:6 Victor Cacciari Miraldo and Wouter Swierstra

a = Node2 (Node2 t k) u
b = Node2 (Node2 t k) t

extract (wcs a b) a = Node2C (Hole 0) u
extract (wcs a b) b = Node2C (Hole 0) (Hole 1)

postprocess a b (extract (wcs a b) a) (extract (wcs a b) b)

= (Node2C (Hole 0) u,Node2C (Hole 0) t)

Fig. 3. Example of erroneous context extraction due to nested common subtrees

The extract function receives an oracle and a tree. It traverses its argument tree, looking for
opportunities to copy subtrees. It repeatedly consults the oracle, to determine whether or not the
current subtree should be shared across the source and destination. If that is the case, we want our
change to copy such subtree. That is, we return a Hole whenever the second argument of extract
is a common subtree according to the oracle. If the oracle returns Nothinд, we move the topmost
constructor to the context being computed and recurse over the remaining subtrees.

extract :: (Tree23 → Maybe MetaVar) → Tree23 → Tree23C MetaVar

extract o t = maybe (peel t) Hole (o t)

where peel Leaf = LeafC

peel (Node2 a b) = Node2C (extract o a) (extract o b)

peel (Node3 a b c) = Node3C (extract o a) (extract o b) (extract o c)

Note that had we used a version of wcs that only returns a boolean value we would not know
what metavariable to use when a subtree is shared. Returning a value that uniquely identifies a
subtree allows us to keep the extract function linear in the number of constructors in x (disregarding
the calls to our oracle for the moment).
This iteration of the changeTree23 function has a subtle bug: not all common subtrees can be

copied. In particular, we cannot copy a tree t that occurs as a subtree of the source and destination,
but also appears as a subtree of another, larger common subtree. One such example is shown in
Figure 3, where the oracle claims that both Node2 t k and t are common subtrees. As t also occurs
by itself one of the extracted contexts will contain an unbound metavariable. This will trigger
an error when trying to apply the corresponding change. In this example, applying the change
from Figure 3 would trigger such error when the ins function branch for the Hole constructor and
attempts to lookup the tree associated with metavariable 1.
One way to solve this is to introduce an additional postprocessing step that substitutes the

variables that occur exclusively in the deletion or insertion context by their corresponding tree. We
can implement this postprocessing step using two calls to the del function we saw previously: one
for the deletion context against the source tree and another for the insertion context against the
destination tree. The resulting information is then used to replace unused or undeclared metavari-
ables with the tree to which they correspond. We postpone the implementation until its generic
incarnation in Section 3.2.

postprocess :: Tree23 → Tree23 → Tree23C MetaVar → Tree23C MetaVar

→ (Tree23C MetaVar ,Tree23C MetaVar)

We fix the previous changeTree23 by postprocessing the extracted contexts. The new version of
changeTree23 will only produce closed changes, where each deletion and insertion context have the
same set of metavariables. Intuitively, this means that every variable that is declared is used and
vice-versa.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:7

Node2

0 1

Node2

t Node2

1 0

Node2

t

Fig. 4. A Chanдe23 with a redundant Node2 t in both the deletion and insertion contexts.

changeTree23 :: Tree23 → Tree23 → Chanдe23 MetaVar
changeTree23 s d = postprocess s d (extract (wcs s d) s) (extract (wcs s d) d)

Assuming that wcs s d correctly assigns metavariables to all common subtrees of s and d, it is
not hard to see that our implementation already satisfies the specification we formulated in the
introduction:

Correctness Assuming wcs is correct,

∀ x y . applyTree23 (changeTree23 x y) x ≡ Just y

Preciseness Assuming wcs is correct,

∀ x y . applyTree23 (changeTree23 x x) y ≡ Just y

Time Efficiency On the worst case, we perform one query to the oracle per constructor in our
trees. With a amortized constant time wcs, Section 3.3, our algorithm is linear on the number
of constructors in the source and destination trees.

Space Efficiency The size of a Chanдe23 MetaVar is, on average, smaller than storing its
source and destination tree completely. On the worst case, where there is no common subtree,
they have the same size. This is also true of the Unix diff utility, when comparing two files
that do not share a single line of text.

Although correct with respect to our specification, there is still room for improvement. A call to
changeTree23 x y yields a single Chanдe23, consisting of a pair of insertion and deletion contexts.
When x and y resemble one another these contexts may store a great deal of redundant information
as many constructors appearing in both contexts will be ‘deleted’, and then ‘inserted’, as shown
in Figure 4. More importantly, however, is the fact that when looking at the deletion or insertion
contexts of Figure 4, we do not know whether a constructor is being copied over or not, which
hinders our capacity to easily merge patches (Section 4). For example, while merging a patch if we
see a change that looks like Chanдe (Hole i) (Hole i), we would like to merge it immediately.
We must be careful to make sure that the domain of the patch after minimizing changes is

superset of the original.

2.3 Minimizing Changes: Computing Patches

The process of minimizing and isolating the changes starts by identifying the redundant part of the
contexts. That is, the constructors that show up as a prefix in both the deletion and the insertion
context. They are essentially being copied over and we want to make this fact explicit by separating
them into what we call the spine of the patch. This step will help us reason about patches later on.
If a constructor is in the spine, we know it has been copied, if it shows up in a change, we know
it was either deleted or inserted. The spine will then contain changesÐpairs of an insertion and
deletion contextÐin its leaves:

type Patch23 = Tree23C (Chanдe23 MetaVar)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:8 Victor Cacciari Miraldo and Wouter Swierstra

Node20 0

Node3

Node2

1 2

Node2

2 1
w w' 3 3

Node3C (Hole (Hole 0,Hole 0))
(Hole (Node2C (Hole 0) (Hole 1),Node2C (Hole 1) (Hole 0))
(Node2C (Hole (tree23toC w, tree23toC w ′))

(Hole (Hole 3,Hole 3)))

Fig. 5. Graphical and textual representation of the patch that transforms the value

Node3 t (Node2 u v) (Node2 w x) into the value Node3 t (Node2 v u) (Node2 w′ x). The

tree23toC function converts a Tree23 into a Tree23C in the canonical way.

A patch consists in a spine with changes inside of it. Figure 5 illustrates a value of type Patch23,
where the changes are visualized with a shaded background in the leaves of the spine. Note that the
changes contains only the necessary constructors to make sure that all metavariables that are used
in the insertion context are defined in the deletion context. This keeps changes small and isolated,
making them easier to merge.

In this section we will discuss how to take the results of changeTree23 and transform them into
a Patch23. The first step to compute a patch from a change is identifying its spine. That is, the
constructors that are present in both the deletion and insertion contexts. We are essentially splitting
a monolithic change into the greatest common prefix of the insertion and deletion contexts, leaving
smaller changes on the leaves of this prefix:

gcp :: Tree23C var → Tree23C var → Tree23C (Chanдe23 var)
gcp LeafC LeafC = LeafC

gcp (Node2C a1 b1) (Node2C a2 b2) = Node2C (gcp a1 a2) (gcp b1 b2)

gcp (Node3C a1 b1 c1) (Node3C a1 b2 c2) = Node3C (gcp a1 a2) (gcp b1 b2) (gcp c1 c2)

gcp a b = Hole (a, b)

In the last case of the gcp function either a and b are both holes or the constructors disagree,
hence they do not belong in the common prefix.
One might be tempted to take the results of changeTree23C, pipe them into the gcp function

directly. Yet, the greatest common prefix consumes all the possible constructors leading to disagreeing
parts of the contexts where this might be too greedy. We must be careful not to break bindings as
shown below:

-- prob = changeTree23 (Node2 t t) (Node2 x t)

prob :: Chanдe23 MetaVar
prob = Chanдe (Node2C (Hole 0) (Hole 0)

,Node2C x (Hole 0))

gcp prob ≡

0 0

Node2

0x

In this example, the second change contains a Hole 0 that does not occur in the deletion context,
and is hence unbound. To address this problem, we go over the result from our call to gcp, pulling
changes up the tree until each change is closed, that is, the set of variables in both contexts is
identical. We call this process the closure of a patch and declare a function to compute this below.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:9

closure

0 0

Node2

0x

Node2

1 1 Node2

x0

Node2

0 0

Node2

1 1

Fig. 6. Graphical representation of the closure function.

We have illustrated the process of closure in Figure 6. Note that in both the input and output for
the closure function the subtree x appears on the deletion context. Moreover, the closure functions
only bubbles up the minimal number of constructors to ensure all changes are closed. In particular,
the Node2 constructor at the root is still part of the spine after the call to closure.

closure :: Tree23C (Chanдe23 MetaVar) → Patch23

Although the closure function apparently always returns a patch, its implementation might fail if
there exists no way of closing all the changes. In our case, this will never happen as we know that
changeTree23 outputs a closed change. In the worst case, the resulting spine will be emptyÐbut
the change will certainly be closed. That is due to postprocess, which could have been merged with
closure. We kept them separate for clarity. Section 3.2 comes back to the closure function in more
detail on its generic incarnation. For now, it is more important to understand that it facilitates
merging our patches, later on (Section 4). It is worth mentioning that the result of closure p should
be a patch that can be applied to at least as many elements as p. In some corner cases closure might
enlarge the domain of a patch by breaking some contractions. This is not an issue, however, as
being able to apply a patch to more elements is a good thing.

As soon as every change within the spine has been closed, we have a patch. The final diff function
for Tree23 is then defined as follows:

diffTree23 :: Tree23 → Tree23 → Patch23
diffTree23 s d = closure $ gcp $ changeTree23 s d

We could now define the applyPatch23 function that applies a patch, rather than the applyChange23
we saw previously. This is done by traversing the object tree and the spine of the patch until a
change is found and applying that change to the local subtrees in question.

2.4 Defining the Oracle for Tree23

In order to have a working version of our diff algorithm for Tree23 we must provide the wcs
implementation. Recall that the wcs function, which common subtree, has typeTree23 → Tree23 →
Tree23 → Maybe MetaVar . Given a fixed s and d, wcs s d x returns Just i if x is the ith subtree of
s and d and Nothinд if x does not appear in s or d. One implementation of this function computes
the intersection of all the subtrees in s and d, and then search for the subtree x the resulting list.
Enumerating all the subtrees of any Tree23 is straightforward:

subtrees :: Tree23 → [Tree23]
subtrees Leaf = [Leaf]

subtrees (Node2 x y) = Node2 x y : (subtrees x ++ subtrees y)
subtrees (Node3 x y z) = Node3 x y z : (subtrees x ++ subtrees y ++ subtrees z)

It is now straightforward to implement the wcs function: we compute the intersection of all the
subtrees of s and d and use this list to determine whether the argument tree occurs in both s and d.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:10 Victor Cacciari Miraldo and Wouter Swierstra

This check is done with elemIndex which returns the index of the element, when it occurs in the
list.

wcs :: Tree23 → Tree23 → Tree23 → Maybe MetaVar

wcs s d x = elemIndex x (subtrees s ∩ sutrees d)

This implementation, however, is not particularly efficient. The inefficiency comes from two
places: firstly, checking trees for equality is linear in the size of the tree; furthermore, enumerating
all subtrees is exponential. If we want our algorithm to be efficient we must have an amortized
constant-time wcs.

To tackle the first issue and efficiently compare trees for equality we will be using cryptographic
hash functions [Menezes A. J. and Vanstone [n. d.]] to construct a fixed length bitstring that
uniquely identifies a tree modulo hash collisions. Said identifier will be the hash of the root of
the tree, which will depend on the hash of every subtree, much like a merkle tree [Merkle 1988].
Suppose we have a function merkleRoot that computes some suitable identifier for every tree, we
can compare trees efficiently by comparing their associated identifiers:

instance Eq Tree23 where

t ≡ u = merkleRoot t ≡ merkleRoot u

The definition ofmerkleRoot function is straightforward. It is important that we use themerkleRoot
of the parts of a Tree23 to compute the merkleRoot of the whole. This construction, when cou-
pled with a cryptographic hash function, call it hash, is what guarantee injectivity modulo hash
collisions.

merkleRoot :: Tree23 → Diдest

merkleRoot Leaf = emptyDigest

merkleRoot (Node2 x y) = hash (concat [łnode2”,merkleRoot x,merkleRoot y])

merkleRoot (Node3 x y z) = hash (concat [łnode3”,merkleRoot x,merkleRoot y,merkleRoot z])

Note that although it is theoretically possible to have false positives, when using a cryptographic
hash function the chance of collision is negligible and hence, in practice, they never happen [Menezes
A. J. and Vanstone [n. d.]]. Nonetheless, it is easy to detect when a collision has occured in our
algorithm; consequently, we chose to ignore this issue.

Recall we are striving for a constant time (≡) implementation, but the (≡) definition above is still
linear, we recompute the hash on every comparison. We fix this by caching the hash associated
with every node of a Tree23. This is done by the decorate function, Figure 7.

data Tree23H = Leaf H
| Node2H (Tree23H ,Diдest) (Tree23H ,Diдest)
| Node3H (Tree23H ,Diдest) (Tree23H ,Diдest) (Tree23H ,Diдest)

decorate :: Tree23 → Tree23H

We omit the implementation of decorate for brevity even if it is straightforward. Moreover, a
generic version is introduced in Section 3.3. This enables us to define a constant time merkleRoot
function, shown below, which makes the (≡) function run in constant time.

merkleRoot :: Tree23H → Diдest

merkleRoot Leaf H = emptyDigest

merkleRoot (Node2H (, hx) (, hy)) = hash (encode ł2” ++ hx ++ hy)
merkleRoot (Node3H (, hx) (, hy)) (, hz)) = hash (encode ł3” ++ hx ++ hy ++ hz)

The second source of inefficiency, enumerating all possible subtrees, can be addressed by choosing
a better data structure. In order to check whether a tree x is a subtree of a fixed s and d, it suffices

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:11

Node3

Leaf Node2

Leaf Leaf

Leaf Leaf LeafNode2
++++

Leaf Leaf

Node3

...

decorate

Fig. 7. Example of a merkelized Tree23, where n2 is some fixed identifier and h is a hash function.

to check whether the merkle root of x appears in a łdatabasež of the common merkle roots of s and
d. Given that a Diдest is just a [Word], the optimal choice for such łdatabasež is a Trie [Brass 2008]
mapping a [Word] to aMetaVar . Trie lookups are efficient and hardly depend on the number of
elements in the trie. In fact, our lookups run in amortized constant time here, as the length of a
Diдest is fixed.
Finally, we are able to write our efficient wcs oracle that concludes the implementation of

our algorithm for the concrete Tree23 type. The wcs oracle will now receive Tree23H , i.e., trees
annotated with their merkle roots at every node, and will populate the łdatabasež of common
digests.

wcs :: Tree23H → Tree23H → Tree23H → Maybe MetaVar

wcs s d = lookup (mkTrie s ∩ mkTrie d) ◦merkleRoot

where

(∩) :: Trie k v → Trie k u → Trie k v

lookup :: Trie k v → [k] → Maybe v

mkTrie :: Tree23H → Trie Word MetaVar

The use of cryptographic hashes is unsurprising. They are almost folklore for speeding up a
variety of computations. It is important to notice that the efficiency of our algorithm comes from our
novel representation of patches combined with a amortized constant time wcs function. Without
being able to duplicate or permute subtrees, the algorithm would have to backtrack in a number of
situations.

3 TREE DIFFING GENERICALLY

In Section 2 we provided a simple algorithm to solve the differencing problem for 2-3-trees. We
began by creating the type of contexts over Tree23, which consisted of annotating a Tree23 with a
metavariable constructor. Later, assuming the existence of an oracle that determines whether or
not an arbitrary tree is a subtree of the source and the destination, we compute a value of type
Chanдe23 MetaVar from a Tree23. How to compute a Patch23 given a Chanдe23 by minimizing
the changes and isolating them in the spine. In this section we show how can we write that same
algorithm in a generic fashion, working over any mutually recursive family of datatypes. The code
in this section generalizes the example from the previous section, but we assume some familiarity
with generic programming in modern Haskell. Readers unfamiliar with these concepts may safely
skip this section on a first reading.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:12 Victor Cacciari Miraldo and Wouter Swierstra

3.1 Background on Generic Programming

Firstly, let us briefly review the generics-mrsop [Miraldo and Serrano 2018] library, that we will
use to define a generic version of our algorithm. This library follows the sums-of-products school of
generic programming [de Vries and Löh 2014] and, additionally, enables us to work with mutually
recursive families. This is particularly important for this algorithm, as the abstract syntax trees
of many programming languages consist of mutually recursive types for expressions, statements,
methods, classes and other language constructs.
Take the Tree23 type from Section 2. Its structure can be seen in a sum-of-products fashion

through the Tree23SOP type given below. It represents the shape in which every Tree23 comes
and consists in two nested lists of atoms. The outer list represents the choice of constructor, and
packages the sum part of the datatype whereas the inner list represents the product of the fields
of a given constructor. The ′· notation represents a value that has been promoted to the type
level [Yorgey et al. 2012].

type Tree23SOP = ′[′[]

,
′[I 0, I 0]
,
′[I 0, I 0, I 0]]

The atoms, in this case only I 0, represent a recursive position referencing the first type in the
family. In fact, a mutually recursive family is described by a list of sums-of-products: one for each
element in the family. We overload the word łcodež in singular or plural to mean the representation
of a datatype, or the representation of a family, respectively. The context should make clear the
distinction. For example, Tree23SOP is the code of type Tree23 and Tree23Code is the codes for
the mutually recursive family, which in this case, contains only one type.

type Tree23Code = ′[Tree23SOP]

The generics-mrsop uses the type Atom to distinguish whether a field is a recursive position
referencing the n-th type in the family, I n, or a opaque type, for example, Int or Bool , which are
represented by K KInt , K KBool .
Let us now take a mutually recursive family with more than one element and see how it is

represented within the generics-mrsop framework. The mutually recursive family containing
types Ziд and Zaд has its codes defined as a list of codes, one for each member of the family:

data Ziд = Ziд Int | ZiдZaд Zaд

data Zaд = Zaд Bool | ZaдZiд Ziд

type ZiдCodes = ′[′[′[K KInt] , ′[I 1]]
,
′[′[K KBool], ′[I 0]]
]

Note that the codes come in the same order as the elements of the family. The code for Ziд is the
first element of the ZiдCodes type level list. It consists in two lists, since Ziд has two constructors.
One receives a value of type Int , the other consists in a recursive call to the second element of the
family. The code acts as a recipe that the representation functor must follow in order to interpret
those into a type of kind ∗.

The representation is defined by the means of n-ary sums (NS) and products (NP) that work by
induction on the codes and one interpretation for atoms (NA). Their definition together with their
respective elimination principles can be found in Figure 8.

The NS type is responsible for determining the choice of constructor whereas the NP applies a
representation functor to all the fields of the selected constructor. Finally, NA distinguishes between
representation of a recursive position from an opaque type. Although the generics-mrsop provides
a way to customize the set of opaque types used, this is not central do the developments in this

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:13

data NS :: (k → ∗) → [k] → ∗ where

Here :: f x → NS f (x ′: xs)
There :: NS f xs → NS f (x ′: xs)

data NP :: (k → ∗) → [k] → ∗ where

Nil :: NP f ′[]

Cons :: f x → NP f xs → NP f (x ′: xs)

data NA :: (Nat → ∗) → Atom → ∗ where

NAI :: φ i → NA φ (I i)

NAK :: Opq k → NA φ (K k)

elimNS :: (∀ at . f at → a) → NS f s → a

elimNS f (There s) = elimNS f s

elimNS f (Here x) = f x

elimNP :: (∀ at . f at → a) → NP f p → [a]

elimNP f Nil = []

elimNP f (Cons x xs) = f x : elimNP f xs

elimNA :: (∀ ix . f x → a) → (∀ k . g k → a)

→ NA f g at → a

elimNA f g (NAI x) = f x

elimNA f g (NAK x) = g x

Fig. 8. Interpretation and elimination principles for each component of a sum-of-products code.

paper and hence we will assume a type Opq that interprets the necessary atom types, i.e., Int ,
Bool , etc. We refer the interested reader to the original paper [Miraldo and Serrano 2018] for more
information. Nevertheless, we define the representation functor Rep as the composition of the
interpretations of the different pieces:

type Rep φ = NS (NP (NA φ))

Finally, we tie the recursive knot with a functor of kind Nat → ∗ that is passed as a parameter
to NA in order to interpret the recursive positions. The familiar reader might recognize it as the
indexed least fixpoint:

newtype Fix (codes :: ′[′[′[Atom]]]) (ix :: Nat)
= Fix {unFix :: Rep (Fix codes) (Lkup codes ix)}

Here, Lkup codes ix denotes the type level lookup of the element with index ix within the list
codes. This type family throws a type error if the index is out of bounds. The generic versions of
the constructors of type Ziд are given by:

gzig :: Int → Fix ZiдCodes 0
gzig n = Fix (Here (Cons (NAK (OpqInt n)) Nil))

gzigzag :: Fix ZiдCodes 1 → Fix ZiдCodes 0
gzigzag zag = Fix (There (Here (Cons (NAI zag) Nil)))

One of the main benefits of the sums-of-products approach to generic programming is that it
enables us to pattern match generically. In fact, we can state that a value of a type consists precisely
of a choice of constructor and a product of its fields by defining a view type. For example, we take
the constructor of a generic type to be:

data Constr :: [[k]] → Nat → ∗ where

CZ :: Constr (x ′: xs) Z
CS :: Constr xs c → Constr (x ′: xs) (S c)

The Constr sum c type represents a predicate indicating that c is a valid constructor for sum,
that is, it is a valid index into the type level list sum. This enables us to define a View over a value
of a sum type to be a choice of constructor and corresponding product. We can then unwrap a
Fix codes i value into its topmost constructor and a product of its fields with the sop function.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:14 Victor Cacciari Miraldo and Wouter Swierstra

data View :: (Nat → ∗) → ′[′[Atom]] → ∗ where

Taд :: Constr sum c → NP (NA φ) (Lkup sum c) → View φ sum

sop :: Fix codes i → View (Fix codes) (Lkup codes i)

This brief introduction covers the basics of generic programming in Haskell that we will use
in this paper. We refer the interested reader to the literature [de Vries and Löh 2014; Miraldo and
Serrano 2018] for a more thorough overview.

3.2 Representing and Computing Changes, Generically

Section 2 presented one particular instance of our differencing algorithm. In this section, we will
generalize the definition using the generic programming techniques we have just seen.
We start defining the generic notion of context, called Tx . Analogously to Tree23C (Section 2),

Tx enables us to augment mutually recursive family with type holes. This type construction is
crucial to the representation of patches. This construction can be done for any mutually recursive
family.
We can read Tx codes φ at as the element of the mutually recursive family codes indexed by at

augmented with holes of type φ. Its definition follows:

data Tx :: [[[Atom]]] → (Atom → ∗) → Atom → ∗ where

TxHole :: φ at → Tx codes φ at

TxOpq :: Opq k → Tx codes φ (K k)

TxPeel :: Constr (Lkup codes i) c

→ NP (Tx codes φ) (Lkup (Lkup codes i) c)

→ Tx codes φ (I i)

Looking at the definition ofTx , we see that its values consist in either a typed hole, some opaque
value, or a constructor and a product of fields. TheTxPeel follows very closely theView type from
Section 3.1. The Tx type is, in fact, the indexed free monad over the Rep. The return method is just
TxHole , and the multiplication is given by:

txJoin :: Tx codes (Tx codes φ) at → Tx codes φ at

txJoin (TxHole tx) = tx

txJoin (TxOpq opq) = TxOpq opq

txJoin (TxPeel c d) = TxPeel c (mapNP txJoin p)

Essentially, a value of type Tx codes φ at is a value of type NA (Fix codes) at augmented with
holes of type φ. To illustrate this, let us define the injection of a NA into a Tx :

na2tx :: NA (Fix codes) at → Tx codes φ at

na2tx (NAK k) = TxOpq k

na2tx (NAI (Fix x)) = case sop x of Taд c p → TxPeel c (mapNP na2tx p)

The inverse operations is partial. We can translate a Tx into an NA when the Tx has no holes:

tx2na :: Tx codes φ at → Maybe (NA (Fix codes) at)

tx2na (TxHole) = Nothinд

tx2na (TxOpq k) = NAK k

tx2na (TxPeel c txs) = inj c <$> mapNPM tx2na txs

Generic Representation of Changes. With a generic notion of contexts, we can go ahead and define
our generic Chanдe type. We use a pair of Tx exactly as in Section 2: one deletion context and one

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:15

insertion context. This time, however, we define a new datatype to be able to partially apply its
type arguments later on.

data Chanдe codes φ at = Chanдe (Tx codes φ at) (Tx codes φ at)

The interpretation for the metavariables, MetaVar , now carries the integer representing the
metavariable itself but also carries information to identify whether this metavariable is supposed
to be instantiated by a recursive member of the family or a opaque type. We do so by carrying a
singleton [Eisenberg and Weirich 2012] of type NA. This enables the compiler to gain knowledge
over at when pattern-matching, which is important purely from the generic programming perspec-
tive. Without this information we would not be able to write a well-typed application function, for
instance. We must know the types of the values supposed to be matched against a metavariable to
ensure we will produce well-typed trees.

data MetaVar at = MetaVar Int (NA (Const Unit) at)

The type of changes overTree23 can now be written using the generic representation for changes
and metavariables.

type ChanдeTree23 = Chanдe Tree23Code MetaVar (I 0)

We can read the type above as the type of changes over the zero-th (I 0) type within the mutually
recursive family Tree23Code with values of typeMetaVar in its holes.

Computing Changes. Computing a Chanдe codes MetaVar from a source and a destination
elements of type Fix codes ix follows exactly the structure as we saw previously in Section 2:
extract the pair of contexts and fix unbound metavariables in a postprocessing step. We are still
assuming an efficient oracle buildOracle s d :: Oracle codes, that determines whether or not an
arbitrary t is a subtree of a fixed s and d indexed by n, where:

type Oracle codes = ∀ j . Fix codes j → Maybe Int

buildOracle :: Fix codes i → Fix codes i → Oracle codes

The core of computing a change is in the extraction of the deletion and insertion contexts (extract
function, Section 2). We must take care to avoid the problem we encountered in our previous
implementation: a subtree that occurs in both the source and destination trees, but also occurs as
the subtree of another common subtree (Figure 3) may result in unbound metavariables. We have
shown how to fix this with a postprocessing step of the resulting change. That is still the case, but
we now collect additional information from the context extraction before postprocessing.

Looking at the type of Oracle , we see it will only share recursive positions by construction.
We use the ForceI type to bring this fact on the type level. That is, we are only sharing recursive
positions so far. We also use the indexed product type (:∗:) to carry along information.

data (:∗:) f g x = f x :∗: g x

data ForceI :: (Nat → ∗) → Atom → ∗ where

ForceI :: f i → ForceI f (I i)

Defining the generic txExtract function is simple. We check whether a given x is a subtree of
the source and destination trees by consulting the oracle. If so, we return a hole with the subtree
annotated; if x is not a common subtree we extract the topmost constructor and recurse over its
recursive positions.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:16 Victor Cacciari Miraldo and Wouter Swierstra

txPostprocess :: Tx codes (ForceI (Const Int :∗: Fix codes)) (I ix)

→ Tx codes (ForceI (Const Int :∗: Fix codes)) (I ix)

→ Chanдe (ForceI (Const Int)) (I ix)

txPostprocess del ins =

let okvars = varsOf del ∩ varsOf ins

-- We have to txJoin the results since keepOrDrop returns a Tx

in Chanдe (txJoin (utxMap (keepOrDrop okvars) del))

(txJoin (utxMap (keepOrDrop okvars) ins))

where

-- traverses a Tx and puts all the variables in a Set.

varsOf :: Tx codes (ForceI (Const Int :∗: Fix codes)) (I ix) → Set Int

-- check whether a variable is in both contexts and decides

keepOrDrop okvars (ForceI (Const mvar) :∗: subtree)
| var ∈ okvars = TxHole (ForceI (Const mvar))

| otherwise = na2tx (NAI subtree)

Fig. 9. Post processing of contexts returning closed changes

txExtract :: Oracle codes
→ Fix codes ix

→ Tx codes (ForceI (Const Int :∗: Fix codes)) (I ix)

txExtract wcs x = case wcs x of

Just i → TxHole (ForceI (Const i :∗: x))
Nothinд → let Taд c p = sop (unFix x)

in TxPeel c (mapNP (elimNA TxOpq (txExtract wcs)) p)

Postprocessing works by traversing the result of the extracted contexts. In case we need to keep
a given tree and forget that it was shared we convert it to a context with na2tx. Recall the rea-
son for wanting to keep only the metavariables that occur in both the insertion and deletion
contexts is to prevent any undefined variable when applying our patches, which would break
correctness. More technically, the txPostprocess function groups the metavariables of each context
in a set and computes the intersection of such sets, then maps over its arguments replacing the
Const Int :∗: Fix codes hole by either Const Int , if the Int belongs in the set, or by translating the
Fix codes with na2tx ◦ NAI . The implementation is shown in Figure 9.

At this point, given two trees a and b of type Fix codes ix, we can extract and post-process both
the deletion and insertion contexts, of type Tx codes (ForceI (Const Int)) (I ix). These are just like
a value of type Fix codes ix with holes of type Const Int exclusively in recursive positions. This is
the generic version of the changeTree23 function presented in Section 2:

change :: Fix codes ix → Fix codes ix → Chanдe codes (ForceI (Const Int)) (I ix)

change x y = let wcs = buildOracle x y

in txPostprocess (txExtract wcs x) (txExtract wcs y)

Recall that this function will only produce closed changes. That is, a deletion and a insertion
context that have the same set of variables. Intuitively, this means that every variable that is declared
is used and vice-versa.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:17

Minimizing the Changes: Computing Patches. The next step is to to minimize the changes coming
from change function, yielding a patch. The generic counterpart of Patch23 from Section 2 is given
by:

type Patch codes at = Tx codes (Chanдe codes MetaVar) at

Firstly, we have to identify the spine, that is, the constructors that are present in both the deletion
and insertion contexts. This is done by splitting a big change into the greatest common prefix of
the insertion and deletion contexts and the smaller changes inside. When going over two TxPeel
we must check that the constructors are the same, i.e., have the same index. We use testEquality
from Data.Type .Equality to check for type index equality and inform the compiler of that fact by
matching on Refl.

txGCP :: Tx codes φ at → Tx codes ψ at → Tx codes (Tx codes φ :∗:Tx codes ψ) at

txGCP (TxOpq x) (TxOpq y)

| x ≡ y = TxOpq x

| otherwise = TxHole (TxOpq x :∗:TxOpq y)

txGCP (TxPeel cx px) (TxPeel cy py)

= case testEquality cx px of

Nothinд → TxHole (TxPeel cx px :∗:TxPeel cy py)

Just Refl → TxPeel cx (mapNP (uncurry′ txGCP) (zipNP px py))

txGCP a b = TxHole (a :∗: b)

The txGCP can is just like a generalized zip function, but instead of stopping whenever one of
its arguments has been consumed and forgetting the other, it stores the rest of the other argument.
It is greatest in the sense that it consumes as many constructors as possible and resorts to TxHole
when it cannot progress further.

We know, from Section 2 that we cannot simply take the result of change, compute its greatest
common prefix and be done with it. This would yield a patch with potentially malformed changes.
The txGCD function is not aware of metavariables and might break their scoping.

Refining the result of txGCP is conceptually simple. All we have to do is bubble up the changes
to a point where they are all closed. We start by creating some machinery to distinguish the open
changes from the closed changes in the result of a txGCP . Then we define a traversal that shall
look at those tags and decide whether more constructors should be pushed into the changes or not.
This is done by the closure function.

Tagging open and closed changes is done with the indexed sum type. We use InL to mark the
open changes and InR for the closed changes.

data Sum f g x = InL (f x) | InR (g x)

either ′ :: (f x → r x) → (g x → r x) → Sum f g x → r x

either ′ a b (InL fx) = a fx

either ′ a b (InR gx) = b gx

The isClosed predicate is responsible for deciding how to tag a change.

isClosed :: Chanдe codes at → Sum (Chanдe codes MetaVar) (Chanдe codes MetaVar) at

isClosed (Chanдe del ins)

| variables ins ≡ variables del = InR (Chanдe del ins)

| otherwise = InL (Chanдe del ins)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:18 Victor Cacciari Miraldo and Wouter Swierstra

The Sum f g, of kind Atom → ∗, comes in handy for it can be passed as an argument toTx . This
enables us to map our predicate over an arbitrary patch p:

txMap isClosed p :: Tx codes (Sum (Chanдe codes MetaVar) (Chanдe codes MetaVar)) at

The final closure function is defined with an auxiliary function, closure′. This auxiliary function
receives a patch with tagged changes and tries to eliminate all the open changes, tagged with InL.
We do so by finding the smallest closed change that binds the required variables. If the closure′

function cannot find the constructor that binds all variables, it tags the patch as an open change
altogether. The first three cases are trivial:

closure′ :: Tx codes (Sum (Chanдe codes MetaVar) (Chanдe codes MetaVar)) at

→ Sum (Chanдe codes MetaVar) (Tx codes (Chanдe codes MetaVar)) at

closure′ (TxOpq x) = InR (TxOpq x)

closure′ (TxHole (InL oc)) = InL oc

closure′ (TxHole (InR cc)) = InR cc

The interesting case of the closure′ function is theTxPeel pattern, where we first try to compute
the closures for the fields of the constructor and check whether all these fields contain only
closed changes. If that is the case, we are done. If some fields contain open changes, however, the
mapNPM fromInR fails with a Nothinд and we must massage some data. This is akin to a simple
distributive law for Tx , defined below.

distr :: Tx codes (Chanдe codes φ) at → Chanдe codes φ at

distr spine = Chanдe (txJoin (txMap chgDel spine))

(txJoin (txMap chgIns spine))

The difference between distr and theNothinд clause in closure′ is that in the later we are handling
NP (Tx codes (Chanдe codes φ)), i.e., a sequence of Tx instead of a single one. Consequently, we
need some more code.

closure′ (TxPeel cx px)

= let aux = mapNP closure′ px

in case mapNPM fromInR aux of

Just np → InR (TxPeel cx np) -- everything is closed.

-- some changes are open. Try pushing cx down the changes in px and

-- see if this closes them, then.

Nothinд → let chgs = mapNP (either ′ InL (InR ◦ distr)) aux

dels = mapNP (either ′ chgDel chgDel) chgs

inss = mapNP (either ′ chgIns chgIns) chgs

tmp = Chanдe (TxPeel cx dels) (TxPeel cx inss)

in if isClosed tmp

then InR (TxHole tmp)

else InL (Chanдe tmp)

In the code above, aux is a sequence of either open changes or patches. The local dels and inss
are defined as the a sequence deletion and insertion contexts from aux, regardless if they come
from open or closed changes. This allows us to assemble a new, larger, change (tmp). Finally, we
check whether this larger change is closed or not. We recall the illustration in Figure 6, repeated
below, for a graphical intuition.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:19

closure

0 0

Node2

0x

Node2

1 1 Node2

x0

Node2

0 0

Node2

1 1

It is worth mentioning that in some corner cases, closure′ will forget about certain contractions,
producing a patch that has a larger domain than the original. This is arguable a good thing, as we
want patches that can be applied to more things.

To finish it up, we wrap closure′ within a larger function that always returns a Tx with all
changes being closed. The necessary observation is that if we pass a given tx to closure′ such that
distr tx is closed, then closure′ will always return a InR value. In our case, the txPostprocess is in
place precisely to provided that guarantee, hence, the error is unreachable.

closure :: Tx codes (Sum (Chanдe codes) (Chanдe codes)) at

→ Patch codes at

closure = either ′ (const $ error łno closure exists”) id

The final diff function is then assembled by using the closure of the greatest common prefix
of the change the comes from the change function. In order to further enlarge the domain of our
patches we add a small additional step where we replace the opaque values in the spine with copies.

diff :: Fix codes ix → Fix codes ix → Patch codes (I ix)

diff x y = let Chanдe del ins = change x y

in closure $ txRefine TxHole mkCpy

$ txMap isClosed

$ txGCP del ins

The txRefine simply traverses the Tx and refines the holes and opaques into Txs using the
provided functions. In our case we leave the holes unchanged and replace the occurrences ofTxOpq
by a new copy change.

txRefine :: (∀ at . f at → Tx codes g at)

→ (∀ k . Opq k → Tx codes g (K k))

→ Tx codes f at → Tx codes g at

Applying Patches. Patch application follows closely the scheme sketched in for 2-3-trees (Sec-
tion 2). There is one main difference, though. Our changes are now placed in the leaves of our spine
and can be applied locally.

Our final applyChange will be responsible for receiving a change and a tree and instantiate the
metavariables by matching the tree against the deletion context then substituting this valuation in
the insertion context. Its type is given by:

applyChange :: Chanдe codes MetaVar at
→ NA (Fix codes) at

→ Maybe (NA (Fix codes) at)

We are now left to match the spine with a value of NA (Fix codes). and leave the changes paired
up with the corresponding local elements they must be applied to. This is similar to the txGCP , and
can be implemented by it. We must extract the greatest common prefix of the spine and the Tx

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:20 Victor Cacciari Miraldo and Wouter Swierstra

that comes from translating the NA (Fix codes) value but must make sure that the leaves have all
TxHoles on the left.

txZipEl :: Tx codes φ at → NA (Fix codes) at → Maybe (Tx codes (φ :∗: NA (Fix codes)))

txZipEl tx el = txMapM (uncurry′ checkIsHole) $ txGCP tx (tx2na el)

where

checkIsHole :: Tx codes φ at → Tx codes ψ at → Maybe (φ :∗: NA (Fix codes) at)

checkIsHole (TxHole φ) el = (φ:∗:) <$> na2tx el

checkIsHole = Nothinд

Finally, we define our application function. First we check whether the spine matches the element.
If that is the case, we apply the changes, which are already paired with the parts of the element
they must be applied to:

apply :: Patch codes ix → Fix codes ix → Maybe (Fix codes ix)

apply patch el = txZipEl patch el >>= return ◦ txMapM (uncurry′ applyChange)

Whenever a patch p can be applied to an element x, that is, apply p x returns Just y for some y,
we say that p is applicable to x.

3.3 Defining the Generic Oracle

We conclude the generic algorithm with the implementation of the generic oracle which answers
whether a tree is a common subtree of the source and destination of a patch. In this section we
take the example from Section 2.4 and generalize the construction.
The first step is annotating our trees with cryptographic hashes [Menezes A. J. and Vanstone

[n. d.]]. Essentially transforming our trees into merkle trees [Merkle 1988]. This technique is
more commonly seen in the security and authentication context [Miller et al. 2014; Miraldo et al.
2018], and is similar in spirit to hash-consing [Filliâtre and Conchon 2006]. Luckily, the generic
programming machinery that is already at our disposal enables us to create merkle trees generically
quite easily. The generics-mrsop provide some attribute grammar [Knuth 1990] functionality, in
particular the computation of synthesized attributes arising from a fold. The synthesize function
is just like a catamorphism, but we decorate the tree with the intermediate results at each node,
rather than only using them to compute the final outcome. This enables us to decorate each node
of a Fix codes with a unique identifier (as shown in Figure 7, for example) by running the generic
decorate function, defined below.

newtype AnnFix x codes i = AnnFix (x i,Rep (AnnFix x codes) (Lkup codes i))

decorate :: Fix codes i → AnnFix (Const Diдest) codes i

decorate = synthesize authAlgebra

merkleRoot :: AnnFix (Const Diдest) codes i → Diдest

merkleRoot (AnnFix (Const r,)) = r

Here, AnnFix is the cofree comonad, used to add a label to each recursive branch of our generic
trees. In our case, this label will be the cryptographic hash of the concatenation of its subtree’s
hashes. We can easily fetch these hashes with the merkleRoot function. Figure 7 shows an example
of an input and corresponding output of the decorate function, producing a merkelized Tree23. The
synthesize generic combinator annotates each node of the tree with the result of the catamorphism
called at that point with the given algebra. Our algebra is sketched in pseudo-Haskell below:

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:21

authAlgebra :: Rep (Const Diдest) sum → Const Diдest iy

authAlgebra rep = case sop rep of

Taд c [p1, . . . , pn] → Const ◦ sha256Concat

$ [encode c, encode (getSNat @iy), p1, . . . , pn]

We must append the index of the type in question, in this case getSNat @iy, to our hash compu-
tation to differentiate constructors of different types in the family represented by the same number.
In the real implementation we must also pass around a constraint stating that constructors can be
encoded and opaque values can be hashed.

Following the guidelines in Section 2.4, we now must traverse our merkelized tree and store all
the digests we see in a Trie [Brass 2008].

mkSharingTrie :: AnnFix (Const Diдest) codes j → Trie Word MetaVar

It is of paramount importance to avoid recomputing the merkle root of a tree x each time we wish
to know whether it is a common subtree. Otherwise, we still end up with an exponential algorithm.
The solution is quite simple: we use AnnFix (Const Diдest) codes in the txExtract function and the
type of our oracle, where Fix codes was used before. This provides access to the merkle root in
constant time. After this small modification to our Oracle , allowing it to receive trees annotated
with hashes we proceed to define the efficient buildOracle function.

type Oracle codes = ∀ j . AnnFix (Const Diдest) codes j → Maybe Int

buildOracle :: Fix codes i → Fix codes i → Oracle codes

buildOracle s d = let s′ = decorate s

d ′ = decorate d

in lookup (mkSharingTrie s′ ∩ mkSharingTrie d ′) ◦merkleRoot

It is true that the buildOracle, as defined above, could give us false positives caused by hash
collisions. It is worth mentioning that when using a cryptographic hash, the chance of collision is
negligible [Menezes A. J. and Vanstone [n. d.]] and we chose to ignore it. Regardless, it is not difficult
to work around the possibility for collisions if we wanted. We could compute an intermediate Trie
fromWord to Exists (Fix codes) in the mkSharingTrie function and every time we find a potential
collision we check the trees for structural equality. If equality check fails, a hash collision is found
and the entry would be removed from the map. The Exist datatype simply encapsulate the ix type
index from a Fix codes ix into an existential.

4 MERGING PATCHES

One of the main motivations for generic structure-aware diffing is being able to merge patches
in a more structured fashion than using diff3, which considers changes to every line. In the
past, structural merging has proven to be a difficult task [Miraldo et al. 2017; Vassena 2016] even
for the easiest cases. This is due to the sub-optimal representations for structured patches. This
section shows how our new structure for representing changes enables us to write a simple merge
algorithm, offering both acceptable performance and a improvement over diff3. We will sketch
the implementation of our algorithm here and evaluate its performance in Section 5.

The merging problem, illustrated in Figure 10, is the problem of computing a new patch, q // p,
given two patches p and q. It consists in a patch that contains the changes of q adapted to work on
a value that has already been modified by p. This is sometimes called the transport of q over p or
the residual [Huet 1994] of p and q.
There is a class of patches that are trivial to merge: those that modify separate locations of a

tree. If p and q are disjoint, then p // q can return p without further adaptations. Our algorithm

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:22 Victor Cacciari Miraldo and Wouter Swierstra

o
p

��

q

��

a

q//p
��

b

p//q
��

c

Fig. 10. Merge square

shall merge only disjoint patches, marking all other situations as a conflict. We choose to represent
conflicts as a pair of overlapping patches.

type Conflict codes = Patch codes :∗: Patch codes

type PatchConf codes = Tx codes (Sum (Conflict codes) (Chanдe codes MetaVar))

In practice, it may be desirable to record further meta-information to facilitate conflict resolution.
Our merging operator, (//), receives two patches and returns a patch possibly annotated with

conflicts. We do so by matching the spines, and carefully inspecting any changes where the spines
differ.

(//) :: Patch codes at → Patch codes at → PatchConf codes at

The intuition here is that p // q must preserve the intersection of the spines of p and q and
reconcile the differences whenever one of the patches has a change. Note that it is impossible to
have completely disjoint spines since p and q are applicable to at least one common element. Using
the greatest common prefix function defined previously, we can zip together the shared spines,
pushing the resolution down to the leaves:

p // q = txMap (uncurry′ reconcile) $ txGCP p q

Here, the reconcile function shall check whether the disagreeing parts are disjoint, i.e., either one
of the two changes is the identity or they perform the exactly same change. If that is the case, the
reconcile function returns its first argument. In fact, this is very much in line with the properties of
a residual operator [Huet 1994].

reconcile :: Patch codes at → Patch codes at → Sum (Conflict codes) (Chanдe codes) at

reconcile p q

| patchIden p ∨ patchIden q = InR $ distr p
| patchEquiv p q = InR $ copy
| otherwise = InL $Conflict p q

We see the code for reconcile closely follows the definition of disjointness aboveÐone of the
patches must be the identity or they are equal. The patchIden functions checks whether all changes
in that patch are copies and patchEquiv checks if two patches are α-equivalent. Taking a closer
look at the reconcile function, we see it follows the three identity laws from residual theory. The
first branch agrees from the two identity laws from residual theory that state that p // id ≡ p and
id // p ≡ id, whereas the second branch follows the third identity law, which states that p // p ≡ id,
meaning that applying a patch over something that has been modified by this very patch amounts
to not changing anything.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:23

Node2

0 1

Node2

1 0

0 0

Node2

0 0

Node2

x w

Fig. 11. Example of a merge square where the first residual is obtained by not changing the patch and the

second is computed by applying a patch to another patch, transporting the changes.

Our trivial merge algorithm returns a conflict for non-disjoint patches, but this does not mean
that it is impossible to merge them in general. Although a full discussion is out of the scope of
this paper, there are a number of non-disjoint patches that can still be merged. These non-trivial
merges can be divided in two main situations: (A) there is no action needed even though patches
are not disjoint, and (B) the relevant parts of a patch can be transported to operate on different
parts tree automatically. In Figure 11 we illustrate situations (A) and (B) in the merge square for two
non-disjoint patches. In the top subfigure we see the residual returning the patch unaltered (case
A). In this example, the patch in the ‘nominator’ position is a simple swap of subtrees. This swap
operation can be applied to every possible result of applying the second patch in the ‘denominator’
of the residual. As a result, it computing the residual is easy: we simply return the ‘nominator’
patch. In the second subfigure, however, the situation is reversed. The ‘denominator’ patch must be
applied to the ‘nominator’ ś yielding a new patch that has the expected behavior. In future work,
we hope to identify the precise conditions under which two non-disjoint patches can be merged in
this way.

5 EXPERIMENTS

We have conducted two experiments over a number of Lua [Ierusalimschy et al. 1996] source
files. We obtained these files data by mining the top Lua repositories on GitHub and extracting
all the merge conflicts recorded in their history. Next, we ran two experiments over this data: a
performance test and a merging test. We chose the Lua programming language for two reasons. First,
there is a Haskell parser for Lua readily available on Hackage and, secondly, due to a performance
bug [GHC Trac 2018] in GHC we are not able to instantiate our generic algorithm to more complex
abstract syntax trees, such as that of C.

Performance Evaluation. In order to evaluate the performance of our implementation1 we have
timed the computation of the two diffs, diff o a and diff o b, for each merge conflict a, o, b in our
dataset. In order to ensure that the numbers we obtained are valid and representative of a real
execution trace we timed the execution time of parsing the files and running length ◦ encode ◦
uncurry diff over the parsed files, where encode comes from Data.Serialize . Besides ensuring that

1https://github.com/VictorCMiraldo/hs-digems

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:24 Victor Cacciari Miraldo and Wouter Swierstra

Repository Commits Contributors Total Conflicts Trivial Conflicts

awesome 9289 250 5 0
busted 936 39 9 0
CorsixTH 3207 64 25 8
hawkthorne-journey 5538 61 158 27
kong 4669 142 163 11
koreader 6418 89 14 2
luakit 4160 62 28 2
luarocks 2131 51 45 3
luvit 2862 68 4 1
nn 1839 177 3 0
Penlight 730 46 6 3
rnn 622 42 6 1
snabb 8075 63 94 6
tarantool 12299 82 33 2
telegram-bot 729 50 5 0

total 598 66

Fig. 12. Lua repositories mined from GitHub

the patch is fully evaluated, the serialization also mimics what would happen in a real version
control system since the patch would have to be saved to disk. After timing approximately 1200
executions from real examples we have plotted the data over the total number of constructors for
each source-destination pair. In Figure 13 we see two plots: on the left we have plotted 70% of our
dataset in more detail whereas on the right we show the full plot. The results were expected given
that we seen how diff x y runs in O(n +m) where n and m are the number of constructors in x
and y abstract syntax trees, respectively. Confirming our analysis with empirical results further
strengthens our algorithm as a practical implementation of structured differencing, even though
it stands about one order or magnitude slower than purely textual differencing tools. One could
combine both approaches and only fallback to the more expensive structural merging tool when
the textual merging fails. In Figure 13 we see that around 90% of our dataset falls within a one
second runtime.

Merging Evaluation. We have also performed a preliminary evaluation of the simple merging
algorithm presented in Section 4. After collecting all the merge commits from the GitHub repos-
itories, we selected those that git merge failed to solve automatically, which we call a conflict,
and attempted to use our structured merge instead. When this merge succeeded, we checked that
the resulting merge square (Figure 10) commutes as expected. In this way, we were able to solve
a total of 66 conflicts automatically, amounting to 11% of all the conflicts we encountered. We
consider these initial numbers to be encouraging: even a naive merge algorithm on structured
changes manages to outperform the current state of the art. We expect that a more refined notion
of merging may improve these results further.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:25

Fig. 13. Plot of the time for diffing two lua files over the total AST nodes

5.1 Threats to Validity

There are two main threats to the validity of our empirical results. Firstly, we are diffing and
merging abstract syntax trees, hence ignoring comments and formatting. There would be no extra
effort in handling these issues, beyond recording them explicitly in a more concrete syntax tree
and adapting our parser to produce such trees. Nevertheless, one might expect a slightly lower
success rate since we are ignoring formatting changes altogether. Secondly, a significant number of
developers prefer to rebase their branches instead of merging them. Therefore, we may have missed
a number of important merge conflicts that are no longer recorded, as rebasing erases history. Our
merge algorithm might be able to resolve some of these conflicts automaticallyÐbut there is no
way to establish this. Nevertheless, we could still have gathered the Pull Requests merged using
rebase or squash on GitHub. This is because GitHub keeps a hidden branch that refers to the state
before the merge available.

6 DISCUSSION AND CONCLUSION

The results from Section 5 are very encouraging. We see that our diffing algorithm has competitive
performance and our trivial merging operation is capable of merging changes where git merge

fails. Yet there is still plenty of work to be done.

6.1 Future Work

Controlling Sharing. One interesting direction for further work is how to control the sharing
of subtrees. As it stands, the differencing algorithm will share every subtree that occurs in both
the source and destination files. This can lead to undesirable behavior. For example, we may not
want to share all occurrences of a variable within a program, but rather only share occurrences
of a variable with the same binder. That is, sharing should respect the scope variables. A similar
question arises with constants ś should all occurrences of the number 1 be shared?

There are a variety of options to customize the sharing behavior of our algorithm. One way to do
so would allow the definition of a custom oracle that is scope-aware. By hashing both the identifier
name and its binder, we can ensure that variables are not shared over scope boundaries. Another
option would be to consider abstract syntax trees that make the binding structure of variables
explicit.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

113:26 Victor Cacciari Miraldo and Wouter Swierstra

Better Merge Algorithm. The merging algorithm presented in Section 4 only handles trivial cases.
Being able to merge patches that are not disjoint is the subject of ongoing research. The problem
seems related to unification, residual systems, and rewriting systems. We hope that relating the
merging problem to these settings might help nail down the necessary conditions for merging
to succeed. One would expect that it would have some resemblance to a pushout, as in pointed
out by Mimram and Di Giusto [Mimram and Giusto 2013]. This would come hand-in-hand with
more meta-theoretical work of formalizing our representation of patches and our algorithms in
dependently typed language. Another interesting addendum to a better merging algorithm is the
ability to define domain specific strategies to solve conflicts.

Extending the Generic Universe. Our prototype is built on top of generics-mrsop, a generic
programming library for handling mutually recursive families in the sums of products style. With
recent advances in generic programming [Serrano and Miraldo 2018], we might be able to extend
our algorithm to handle mutually recursive families that have GADTs.

6.2 Related Work

The hashing techniques used in this paper is reminiscent of hash-consing [Filliâtre and Conchon
2006], a technique to share values that are structurally equal. Hash-consing is done by maintaining
a global hash-table during run-time, which keeps track of the values that have already been created
and can be shared. There are two main differences to our situation, however: (A) we cannot use
hash tables for it would use too much space, and, (B) we must detect which subtrees are shared
within two fixed trees instead of sharing the values in memory, which is the main objective of
hash-consing. On another hand, the problem of minimizing finite acyclic deterministic automata
has efficient solutions in the literature [Bubenzer 2014], which could be seen as a different way of
defining the which common subtree oracle.
On the diffing side, related work can be classified in the treatment of types. The untyped tree

differencing problem was introduced in 1979 [Tai 1979] as a generalization of the longest common
subsequence problem [Bergroth et al. 2000]. There has been a significant body of work on the
untyped tree differencing problem [Akutsu et al. 2010; Demaine et al. 2007; Klein 1998], but
these results do not transport to the typed setting: the transformations that are computed are not
guaranteed to produce well-typed trees.

The first datatype generic algorithm was presented by Lempsink and Löh [Lempsink et al. 2009],
which was later extended by Vassena [Vassena 2016]. Their work consists largely in using the same
algorithm as diff on the flattened representation of a tree. The main observation is that basic
operations (insertion, deletion and copy) can be shown to be well-typed when operating on these
flattened representations. Although one could compute differences with reasonably fast algorithms,
merging these changes is fairly difficult and in some cases might be impossible [Vassena 2016].
Miraldo et al. [Miraldo et al. 2017] take a slightly different approach, defining operations that work
directly on tree shaped data. Using this approach, changes become easier to merge but harder to
compute. Both bodies of work follow the same general idea as the untyped variants: compute all
possible patches and select the ‘best’ patch from these alternatives. As we have already mentioned
(Section 1), this is not an optimal strategy. For one, the number of patches can grows exponentially
if one is not careful to design a dynamic or memoized program. Secondly, defining the best patch
using insertions, deletions and copies is impossible without further heuristics.
The work of Asenov et al. [Asenov et al. 2017] is also untyped, but uses a different technique

for finding the diff: it flattens trees and embellishes the resulting lists with additional annotations,
and then uses the UNIX diff tool to compute patches. Finally, it transports the changes back to
the tree-shaped datatypes using the annotations that were added. The authors identify a number

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

An Efficient Algorithm for Type-Safe Structural Diffing 113:27

of interesting situations that occur when merging tree differences. The gumtree [Falleri et al.
2014] project, explores a similar line of work, but uses its own algorithm for computing graph
transformations between untyped representations of abstract syntax trees.
There have been several different approaches to formalizing a theory of patches. The version

control system darcs [Roundy 2005] was one of the first to present a more formal theory of patches,
but the patches themselves were still line-based. Mimram and De Giusto [Mimram and Giusto 2013]
have developed a theoretical model of line-based patches in a categorical fashion. This has inspired
the version control system pijul. Swierstra and Löh [Swierstra and Löh 2014] have proposed using
separation logic to define a meta-theory of patches and merging. Finally, Angiuli et al. [Angiuli
et al. 2014] describe a patch theory based on homotopy type theory.

Shifting to the language-theoretic point of view, two lines of similar research must be mentioned
here. Firstly, incremental parsing [Wagner and Graham 1998] must also represent a change within
a tree. It is different from structured differencing for incremental parsing does not have a notion of
change. The change always happen at the point the user is editing the file, and its representation
is trivial. The hard challenge is in applying parsing rules to partial input. Secondly, the work on
Grammar-Based Tree Compression [Lohrey 2015] could be seen as a variant of the differencing
problem. There are significant differences, however. In GBTC one must maintain one copy of every
subtree, by definition. In our case, we want to abstract away the common subtrees and identify
copy opportunities without storing the subtrees involved.

6.3 Conclusions

Throughout this paper we have developed an efficient type-directed algorithm for computing
structured differences for a large class of algebraic datatypes, namely, mutually recursive families.
This class of types can represent the abstract syntax tree of most programming languages and,
hence, our algorithm can be readily instantiated to compute the difference between programs
written in these languages. We have validated our implementation by computing diffs between
Lua [Ierusalimschy et al. 1996] source files obtained from various repositories on GitHub; the
algorithm’s run-time is competitive, and even a naive merging algorithm already offers a substantial
improvement over existing technology, for the former is tree-based and the latter is line-based.
Together, these results demonstrate both a promising direction for further research and a novel
application of the generic programming technology that is readily available in today’s functional
languages.

REFERENCES

Tatsuya Akutsu, Daiji Fukagawa, and Atsuhiro Takasu. 2010. Approximating Tree Edit Distance through String Edit
Distance. Algorithmica 57, 2 (2010), 325ś348. https://doi.org/10.1007/s00453-008-9213-z

Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper. 2014. Homotopical Patch Theory. In Proceedings

of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM, New York, NY, USA,
243ś256. https://doi.org/10.1145/2628136.2628158

Dimitar Asenov, Balz Guenat, Peter Müller, and Martin Otth. 2017. Precise Version Control of Trees with Line-Based Version
Control Systems. In Proceedings of the 20th International Conference on Fundamental Approaches to Software Engineering -

Volume 10202. Springer-Verlag New York, Inc., New York, NY, USA, 152ś169. https://doi.org/10.1007/978-3-662-54494-5_9
L. Bergroth, H. Hakonen, and T. Raita. 2000. A survey of longest common subsequence algorithms. In String Processing and

Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium on. 39ś48.
Philip Bille. 2005. A survey on tree edit distance and related problems. Theor. Comput. Sci 337 (2005), 217ś239.
Peter Brass. 2008. Advanced Data Structures (1 ed.). Cambridge University Press, New York, NY, USA.
Johannes Bubenzer. 2014. Cycle-aware minimization of acyclic deterministic finite-state automata. Discrete Applied

Mathematics 163 (2014), 238 ś 246. https://doi.org/10.1016/j.dam.2013.08.003 Stringology Algorithms.
Edsko de Vries and Andres Löh. 2014. True Sums of Products. In Proceedings of the 10th ACM SIGPLAN Workshop on Generic

Programming (WGP ’14). ACM, New York, NY, USA, 83ś94. https://doi.org/10.1145/2633628.2633634

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

https://doi.org/10.1007/s00453-008-9213-z
https://doi.org/10.1145/2628136.2628158
https://doi.org/10.1007/978-3-662-54494-5_9
https://doi.org/10.1016/j.dam.2013.08.003
https://doi.org/10.1145/2633628.2633634

113:28 Victor Cacciari Miraldo and Wouter Swierstra

Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. 2007. An Optimal Decomposition Algorithm for
Tree Edit Distance. In Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP

2007). Wroclaw, Poland, 146ś157.
Richard A. Eisenberg and Stephanie Weirich. 2012. Dependently Typed Programming with Singletons. In Proceedings of the

2012 Haskell Symposium (Haskell ’12). ACM, New York, NY, USA, 117ś130. https://doi.org/10.1145/2364506.2364522
Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-grained and accurate

source code differencing. In ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, Vasteras,

Sweden - September 15 - 19, 2014. 313ś324. https://doi.org/10.1145/2642937.2642982
Jean-Christophe Filliâtre and Sylvain Conchon. 2006. Type-safe Modular Hash-consing. In Proceedings of the 2006 Workshop

on ML (ML ’06). ACM, New York, NY, USA, 12ś19. https://doi.org/10.1145/1159876.1159880
GHC Trac. 2018. Memory usage exploding for complex pattern matching. (2018). https://ghc.haskell.org/trac/ghc/ticket/

14987#no2.
Gérard Huet. 1994. Residual theory in λ-calculus: a formal development. Journal of Functional Programming 4, 3 (1994),

371âĂŞ394. https://doi.org/10.1017/S0956796800001106
J. W. Hunt and M. D. McIlroy. 1976. An Algorithm for Differential File Comparison. Technical Report CSTR 41. Bell

Laboratories, Murray Hill, NJ.
Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. 1996. LuaâĂŤAn Extensible Extension

Language. Software: Practice and Experience 26, 6 (1996), 635ś652. https://doi.org/10.1002/(SICI)1097-024X(199606)26:
6<635::AID-SPE26>3.0.CO;2-P

Philip N. Klein. 1998. Computing the Edit-Distance Between Unrooted Ordered Trees. In Proceedings of the 6th Annual

European Symposium on Algorithms (ESA ’98). Springer-Verlag, London, UK, UK, 91ś102.
Donald E. Knuth. 1990. The Genesis of Attribute Grammars. In Proceedings of the International Conference WAGA on Attribute

Grammars and Their Applications. Springer-Verlag, London, UK, UK, 1ś12. http://dl.acm.org/citation.cfm?id=645938.
671208

Eelco Lempsink, Sean Leather, and Andres Löh. 2009. Type-safe Diff for Families of Datatypes. In Proceedings of the 2009

ACM SIGPLAN Workshop on Generic Programming (WGP ’09). ACM, New York, NY, USA, 61ś72.
Markus Lohrey. 2015. Grammar-Based Tree Compression. In Developments in Language Theory, Igor Potapov (Ed.). Springer

International Publishing, Cham, 46ś57.
Paul van Oorschot Menezes A. J. and Scott A. Vanstone. [n. d.]. Handbook of Applied Cryptography (boca raton, xiii, 780,

1997 ed.). CRC Press.
Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption Function. In Advances in Cryptology Ð

CRYPTO ’87, Carl Pomerance (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 369ś378.
AndrewMiller, Michael Hicks, Jonathan Katz, and Elaine Shi. 2014. Authenticated Data Structures, Generically. In Proceedings

of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY,
USA, 411ś423. https://doi.org/10.1145/2535838.2535851

Samuel Mimram and Cinzia Di Giusto. 2013. A Categorical Theory of Patches. CoRR abs/1311.3903 (2013). arXiv:1311.3903
http://arxiv.org/abs/1311.3903

Victor Cacciari Miraldo, Harold Carr, Alex Kogan, Mark Moir, and Maurice Herlihy. 2018. Authenticated Modular Maps in
Haskell. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Type-Driven Development (TyDe 2018). ACM,
New York, NY, USA, 1ś13. https://doi.org/10.1145/3240719.3241790

Victor Cacciari Miraldo, Pierre-Évariste Dagand, and Wouter Swierstra. 2017. Type-directed diffing of structured data. In
Proceedings of the 2nd ACM SIGPLAN International Workshop on Type-Driven Development. ACM, 2ś15.

Victor Cacciari Miraldo and Alejandro Serrano. 2018. Sums of products for mutually recursive datatypes: the appropriation-
istâĂŹs view on generic programming. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Type-Driven

Development. ACM, 65ś77.
David Roundy. 2005. Darcs: Distributed Version Management in Haskell. In Proceedings of the 2005 ACM SIGPLAN Workshop

on Haskell (Haskell ’05). ACM, New York, NY, USA, 1ś4. https://doi.org/10.1145/1088348.1088349
Alejandro Serrano and Victor Cacciari Miraldo. 2018. Generic Programming of All Kinds. In Proceedings of the 11th ACM

SIGPLAN International Symposium on Haskell (Haskell 2018). ACM, New York, NY, USA, 41ś54. https://doi.org/10.1145/
3242744.3242745

Wouter Swierstra and Andres Löh. 2014. The Semantics of Version Control. In Proceedings of the 2014 ACM International

Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software (Onward! ’14). 43ś54.
Kuo-Chung Tai. 1979. The Tree-to-Tree Correction Problem. J. ACM 26, 3 (July 1979), 422ś433. https://doi.org/10.1145/

322139.322143
Marco Vassena. 2016. Generic Diff3 for Algebraic Datatypes. In Proceedings of the 1st International Workshop on Type-Driven

Development (TyDe 2016). ACM, New York, NY, USA, 62ś71.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/1159876.1159880
https://ghc.haskell.org/trac/ghc/ticket/14987#no2
https://ghc.haskell.org/trac/ghc/ticket/14987#no2
https://doi.org/10.1017/S0956796800001106
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
http://dl.acm.org/citation.cfm?id=645938.671208
http://dl.acm.org/citation.cfm?id=645938.671208
https://doi.org/10.1145/2535838.2535851
http://arxiv.org/abs/1311.3903
http://arxiv.org/abs/1311.3903
https://doi.org/10.1145/3240719.3241790
https://doi.org/10.1145/1088348.1088349
https://doi.org/10.1145/3242744.3242745
https://doi.org/10.1145/3242744.3242745
https://doi.org/10.1145/322139.322143
https://doi.org/10.1145/322139.322143

An Efficient Algorithm for Type-Safe Structural Diffing 113:29

Tim A. Wagner and Susan L. Graham. 1998. Efficient and Flexible Incremental Parsing. ACM Trans. Program. Lang. Syst. 20,
5 (Sept. 1998), 980ś1013. https://doi.org/10.1145/293677.293678

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.
2012. Giving Haskell a Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and

Implementation (TLDI ’12). ACM, New York, NY, USA, 53ś66. https://doi.org/10.1145/2103786.2103795

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 113. Publication date: August 2019.

https://doi.org/10.1145/293677.293678
https://doi.org/10.1145/2103786.2103795

	Abstract
	1 Introduction
	2 Tree Diffing: A Concrete Example
	2.1 Applying Changes
	2.2 Computing Changes
	2.3 Minimizing Changes: Computing Patches
	2.4 Defining the Oracle for hsblue3Tree23

	3 Tree Diffing Generically
	3.1 Background on Generic Programming
	3.2 Representing and Computing Changes, Generically
	3.3 Defining the Generic Oracle

	4 Merging Patches
	5 Experiments
	5.1 Threats to Validity

	6 Discussion and Conclusion
	6.1 Future Work
	6.2 Related Work
	6.3 Conclusions

	References

