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• Optimal power flow and trading are combined in a single optimization problem.

• A real dataset from a prosumer community in Amsterdam is used.

• The role of a smart contract as a virtual aggregator is described in a detailed manner.

• Import cost reductions of up to 34.9% are found for the combined model.

• The combined model shows 50% reduced peak energy imports.
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A B S T R A C T

In this paper, an integrated blockchain-based energy management platform is proposed that optimizes energy
flows in a microgrid whilst implementing a bilateral trading mechanism. Physical constraints in the microgrid
are respected by formulating an Optimal Power Flow (OPF) problem, which is combined with a bilateral trading
mechanism in a single optimization problem. The Alternating Direction Method of Multipliers (ADMM) is used to
decompose the problem to enable distributed optimization and a smart contract is used as a virtual aggregator.
This eliminates the need for a third-party coordinating entity. The smart contract fulfills several functions,
including distribution of data to all participants and executing part of the ADMM algorithm. The model is run
using actual data from a prosumer community in Amsterdam and several scenarios of the model are tested to
evaluate the impact of combining physical constraints and trading on social welfare of the community and
scheduling of energy flows. The scenario variants are trade-only, where only a trading mechanism is im-
plemented, grid-only where only OPF optimization is implemented and a combined scenario where both are
implemented. Results are compared with a baseline scenario. Simulation results show that import costs of the
whole community are reduced by 34.9% as compared to a baseline scenario, and total energy import quantities
are reduced by 15%. Total social welfare is found to be highest without a trading mechanism, however this
platform is only viable when all costs are equally shared between all households. Furthermore, peak imports are
reduced by over 50% in scenarios including grid constraints.

1. Introduction

1.1. Background

The global need to mitigate CO2 has led to an increased develop-
ment and adoption of renewable energy generation technologies such
as solar Photovoltaics (PV), as well as an electrification of various en-
ergy technologies that are traditionally based on fossil fuels, such as
Electric Vehicles (EV) [1]. These and other Distributed Energy

Resources (DER) are likely to be situated increasingly in the fringes of
the Low Voltage (LV) distribution network where grid infrastructure
may not be properly equipped to facilitate this [2]. It will be required to
strengthen the grid physically or install more advanced control systems
to enable bidirectional flow of electricity. Grid coordination in general
will become much more complex [3].

Whilst the technical challenges are considerable, opportunities may
also arise for citizens. Already, the increasing adoption of residential
solar PV has led to an increase in the number of prosumers in the
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electricity market [4]. In various countries, Feed-In-Tariffs (FiTs) are in
place to allow prosumers to sell energy back to the utility grid for a
fixed price [5], and in the Netherlands net-metering policy is being
phased out in favour of FiT [6]. Whilst Fit do provide a solution, it will
be financially and energetically more efficient to maximize self-con-
sumption by optimizing local use of energy [1]. This can be enabled by
the deployment of energy storage systems [7,8] and schedulable elec-
trical appliances or EVs that are configured to operate or charge at
times when generation exceeds consumption [9]. Other solutions in-
volve coordination at the community-level, such as novel types of
consumer-centric electricity markets, where prosumers can trade or
share energy between them [10,11]. These new types of markets are
called Peer-To-Peer (P2P) markets [12]. P2P markets may be designed
to prioritize the wellbeing of the participating individuals by providing
maximum individual freedom, financial independence and privacy, or
alternatively they may focus on the welfare of the community as whole,
where participants may choose to share access to a common resource
and aim to achieve a common goal such as total welfare maximization
or autonomy [12]. P2P markets are now starting to emerge in the en-
ergy sector [13]. This can be recognized in the rise of community-based

energy collectives [10,14–16].
The evolution of the electricity grid is enabled by several ad-

vancements in ICT technology. First of all, recent years have seen a
large increase in the number of installed smart metering systems in
Europe [4]. Analysis of data provided by these meters enables further
energy management solutions and smart optimization of energy flows
[17]. Expanding on a smart metering system is the home energy man-
agement system (HEMS). A HEMS is a system that is capable of bal-
ancing power usage in the household by measuring and controlling the
operation of all connected electrical assets in a household [9].

Furthermore, digital platform technologies have shown their dis-
ruptive potential in several sectors. Such platforms may raise privacy
issues when the platform being utilized is owned by a self-interested
third party [18]. The algorithms that run the functionality of the plat-
form are often not transparent for users, and they may be vulnerable to
cyberattacks and tampering. The recent emergence of blockchain
technology may provide a solution to these problems [18,19]. A
blockchain is a type of distributed ledger technology that is used to
connect a large number of anonymous nodes without the need for a
central controlling agent. Blockchain technology utilizes a consensus

Nomenclature

Abbreviations

AC Alternating Current
ADMM Alternating Direction Method of Multipliers
BS Baseline summer scenario
BW Baseline winter scenario
DER Distributed Energy Resource
EV Electric Vehicle
FiT Feed-in-Tariff
GS Grid-only summer scenario
GW Grid-only winter scenario
HEMS Home Energy Management System
ICT Information and Communication Technology
LV Low Voltage
OPF Optimal Power Flow
P2P Peer-to-Peer
PV Photovoltaics
SOC Second Order Cone
TGS Trade-grid combined summer scenario
TGW Trade-grid combined winter scenario
TS Trade-only summer scenario
TW Trade-only winter scenario

Parameters

b,rel Relative willingness to buy
s,rel Relative willingness to sell

The smart contract
P l Fixed real power load matrix
Pnet Net electricity budget matrix
Ppv PV generation matrix

c
b Battery charging efficiency

d
b Battery discharging efficiency
ev EV charging efficiency
t Costs of grid electricity [€/ kWh]

Blockchain network adress
Binary EV scheduling parameter
Penalty parameter for trading mechanism
Penalty parameter for grid constraints

Eev Average daily charging demand [kWh]
Bilateral trading coefficient matrix

pl Fixed real power load [kWh]
ppv PV power generation [kWh]
ql Fixed reactive power load [kWh]
r Resistance [ ]
T Number of timesteps
x Reactance [ ]

Sets

Set of assets
Set of trade partners
Set of nodes
Set of constructor variables

xl Set of local private variables
Set of local coupling variables

xg Set of global variables

Variables

D Trading quantity matrix
Squared voltage [V2]
Squared current [A2]
Price of trading and dual variable [€/ kWh]

Cg Total costs of external grid imports [€]
eb Battery state of charge [kWh]
kg Number of corresponding local variables
P Real power flow [kWh]
p Net real power flow [kWh]
pg Real power imported from external grid [kWh]
pbc Battery charging power [kWh]
pbd Battery discharging power [kWh]
pb Net battery power generation [kWh]
pev Real power consumption of EV [kWh]
Q Reactive power flow [kWh]
q Net reactive power [kWh]
qg Reactive power generation [kWh]
rgrid Primal residual for grid constraints
rtrade Primal residual for trading mechanism
S Complex power flow [kWh]
sgrid Dual residual for grid constraints
strade Dual residual for trading mechanism
y Dual variable for grid constraints

G. van Leeuwen, et al. Applied Energy 263 (2020) 114613

2



mechanism to ensure security of the network and allows participants to
store and share data in a secure and verifiable manner, even when the
identity and trustworthiness of other peers is unknown. Information is
stored in sets of data called blocks and verified using cryptographic
hashes. Participants can join or leave the blockchain network at any
moment without impacting the operation of the system significantly
and it is extremely difficult for external attackers to gain control of the
blockchain. The clearest application for blockchain has proved to be
verification of ownership, as is the case with cryptocurrency [20], but
distributed computation between all connected devices is also possible.
Extension of a blockchain with smart contract technology expands the
utility even further and enables smart optimization in the energy sector
[18,21].

1.2. Literature Review

Most of the work that is considered here can be categorised under
the term “transactive energy” [22]. Transactive systems attain global
goals through interactive and networked cooperation of independent
and primarily self-interested actors. A precursor to transactive energy
systems can be recognized in demand response programmes, which
mainly provide financial incentives for consumers to withdraw energy
from the grid during off-peak hours [23,24]. The work in [25] shows
that the fundamental difference between demand side management and
transactive energy is that the latter also manages the supply of energy.
Transactive energy systems may focus on either the economic or en-
gineering layer of the system [22], but ultimately the development of
practical applications requires alignment and integration of business
plans and engineering techniques, which is a considerable challenge.
The various layers of a transactive energy system are also emphasised in
[13] which distinguishes the four layers of the physical grid, ICT,
control and market. In this section, relevant literature for the physical,
economic and information (ICT) layer are reviewed. Furthermore, the
literature for distributed optimization algorithms is reviewed.

In the physical grid, the optimal injections and withdrawals must be
found while respecting physical constraints. A common way of doing
this is formulating an Optimal Power Flow (OPF) problem [26]. The
objective of an OPF problem is typically to minimize operation costs.
OPF is a mathematical optimization problem that finds the optimal
power injection levels and derives branch power flows and voltage le-
vels in the process. OPF problems can be solved for both DC and AC
systems and many scientific studies have recently used OPF in a mi-
crogrid context [27–30]. For instance, one particularly interesting study
implements an AC-OPF problem on a blockchain platform for decen-
tralized optimization [28]. The work in [30] designs a blockchain-as-
sisted energy crowdsourcing system where the crowdsourcer manages
the network and requests tasks from prosumers who could also trade
energy within the distribution network.

In the economic layer, two categories of market structures can be
distinguished [15]. On the one hand there is the full P2P market, where
trades are conducted bilaterally and there is no centralized supervision.
Maximum independence, freedom and anonymity are guaranteed in a
full P2P market [12]. Full P2P markets in the energy sector have been
explored in various recent studies [31,32]. One iconic study from the
Brooklyn microgrid [33] has implemented a P2P trading scheme in a
real physical microgrid. Supply and demand bids in this study are
matched using a conventional merit-order dispatch. The second cate-
gory of market structures is the energy collective or community based
market. In this system, the interest of the group is paramount, and in-
dividual agents may sacrifice some of their own profits and interest for
the collective social welfare. The work in [34] proposes a model where
energy collectives may decide upon different goals, including total
welfare maximization or autonomy from the external grid. In [35], a
scenario where energy is shared in a microgrid that includes batteries is
investigated and shows benefits for individuals as well as the commu-
nity as a whole. Recently, a unified prosumer P2P market model has

been formulated in [36]. This scheme may be operated with both bi-
lateral trades and a centralized pool market, and provides an option for
participants to declare preferred trading partners by including a trading
penalty. A bilateral trading mechanism may provide benefits over the
use of locational marginal prices, which have been used in other studies
[37,28], since it provides participants with an extra degree of freedom
and control over their trading. It can also be used to enable product
differentiation, for example in [38].

In the information layer, the application of blockchain technology in
the energy sector has been rapidly gaining attention from the scientific
community. A large number of studies and initiatives about the use of
blockchain in the energy sector are surveyed [18] and blockchain is
seen as particularly promising in the area of P2P trading and decen-
tralized energy management, since through blockchain a large number
of self-interested actors can be connected and coordinated. The overall
conclusion in this study is that blockchains may provide clear benefits
to energy system operations, markets and consumers. The case study of
the Brooklyn microgrid employs a blockchain network to connect par-
ticipants [33], and shows that a blockchain can be successfully used to
implement local electricity markets. The work in [28] expands on this
by employing smart contracts on the blockchain network to enable
decentralized optimization of an OPF problem without a central co-
ordinator.

In the domain of distributed optimization algorithms there are
several options that may be used to solve an OPF problem or ensure
market clearance. A review of six decentralized algorithms that are
suitable for this purpose, most notably the Alternating Direction
Method of Multipliers (ADMM), is conducted in [27]. ADMM has seen
the most extensive application in decentralized energy platforms. The
ADMM algorithm is well suited to distributed convex optimization and
operates by allowing decomposition of a global optimization problem
into several sub-problems. The sub-problems are solved in parallel and
their solutions are coordinated to come to a solution of the global
problem [39]. An OPF problem can be decomposed into sub-problems
using ADMM, where every sub-problem is related to a small part of the
grid. ADMM has been used extensively in recent studies to decompose
OPF problems [28,40,41]. Similarly, ADMM can also be utilized to
decompose a market clearing problem, where a common approach is to
formulate the global optimization problem as a maximization of total
social welfare [15,36,34].

1.3. Contributions

The aim of this study is to design an integrated energy management
platform that implements solutions in the physical, economic and in-
formation layers. The goal of the platform is to optimize the flow of
electricity in a distributed manner in a realistic microgrid configuration
which features a number of households with access to a variety of DERs.
OPF is used to determine power flows in the physical layer, and a bi-
lateral trading mechanism is implemented in the economic layer. The
bilateral trading mechanism provides households with greater control
over their trading, and allows them to indicate preferred trading part-
ners. It could also be used to enable product differentiation. In the in-
formation layer, the model is implemented on a blockchain network
with a smart contract acting as a virtual aggregator. Fig. 1 shows the
structure of the platform. The goal of optimization is to maximize total
social welfare of all connected actors where the highest social welfare is
typically represented by the minimal financial costs. The ADMM algo-
rithm is used to solve the optimization problem in a distributed manner.
The modelled platform is intended to provide a high degree of in-
dependence, privacy and transparence by the implementation on the
blockchain network, as well as personal choice and freedom through
bilateral trading. Although similar models have been developed before,
as can be seen from Section 1.2, there are several novel contributions
that this study intends to make.
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1. Firstly, an AC-OPF problem is combined with a bilateral trading
mechanism in a single optimization problem. To the authors’ best
knowledge this is the first time such a model is proposed.

2. Secondly, the implementation on the blockchain platform and spe-
cifically the role of the smart contract are described in a detailed
manner. The smart contract fulfills the role of a virtual aggregator
and executes several parts of the ADMM algorithm.

3. Thirdly, the model is being tested using a dataset from a real pro-
sumer community in Amsterdam. This will give a more realistic
view than the use of constructed data.

The paper is structured as follows. The setup of the model is pre-
sented in Section 2, where the general layout and setup of the grid and
households are presented in Section 2.1. The centralized formulations
of the OPF problem and trading mechanism are given in Sections 2.2
and 2.3, respectively, and the decentralized formulations of both are
given in Section 2.4. The blockchain implementation is detailed in
Section 2.5 and the configuration of the numerical analysis can be
found in Section 2.6. The results are given in Section 3, and a discussion
of these results is found in Section 4. Finally, the study is concluded in
Section 5.

2. Model setup

The proposed platform is designed to function on a microgrid net-
work that features consumers and prosumers with access to privately
owned EVs, solar PV installations and battery systems. It functions as a
day-ahead energy scheduling platform, and every prosumer household
is considered as a separate node on the network. Households are able to
trade their excess or deficit electricity budget between them and can
indicate preferred trading partners by assigning bilateral trading coef-
ficients to individual trades. Participants act in a mostly self-interested
way, but also contribute to the balancing and management of the mi-
crogrid, which may involve some sacrifice of self-benefit. The combined

optimization problem is formulated in a distributed form using the
ADMM algorithm. Finally, the distributed optimization problem is im-
plemented on a private blockchain test network by porting part of the
algorithm’s functionality to a smart contract. Fig. 1 shows the layered
structure of the model. Different versions of the platform are tested that
include and exclude the grid constraints and the trading mechanism.
These different scenarios are detailed in Section 2.6. A comparison is
also made with a baseline scenario where there is only passive inter-
action between households and the external grid.

2.1. Grid and household setup

The microgrid considered in this study is modelled as a radial Low
Voltage (LV) network over a number of timesteps T, indexed by

= …t T0, 1, , . It can be represented by a set of nodes , indexed by
= …i n0, 1, , , and connecting lines , indexed by = …l L0, 1, , . Node 0

is designated as the root node. A node in can be either referred to
with its index number i or as a neighbouring node of another node j. In
this relationship, j is defined as the node that is closer (i.e. fewer con-
necting lines) to the root node. As such, j is called the parent node of i,
and can be referred to as i( ). In similar fashion, node i is called the k-th
child node of j, and can be referred to as j( )k . Due to the radial nature
of the network, every node only has one parent node. A node can have
multiple children, and the set of children nodes of node j is referred to
as j( ), indexed by = …k c0, 1, , . For simplicity, every line in is de-
signated to have the same index number as the connected child node. In
every line i, the complex impedance is denoted as = +z r xii i i, where r
and x are the resistance and reactance in the line.

All households in have access to a connection to the grid. Power
is fed into and withdrawn from the microgrid through these connec-
tions. Power is imported from the utility grid at the root of the network,
and is designated as pi t,

g . The costs of withdrawing power from the ex-
ternal grid at time t is represented by t . The cost function for each
household i in timestep t can then be formulated as:

=C p p i t( ) , , .i t i t t i t,
g

,
g

,
g

(1)

Every household also has a fixed real power load pi t,
l and fixed re-

active power load qi t,
l that are uncontrollable. Controllable reactive

power generation qi t,
g is assumed to be available to those households

that have access to solar PV [42]. The generation of real and reactive
power is constrained within upper and lower limits as follows:

p p p i t, , ,i i t i
g

,
g g

(2)

q q q i t, , .i i t i
g

,
g g

(3)

Other assets that are available only to some households but not
others include solar PV, EV and battery systems. The availability of
solar PV yields a fixed, uncontrollable power generation pi t,

pv . The
availability of EV and battery systems yields additional constraints. An
EV is considered to be a shiftable load where both the time and quantity
of the charging power pi t,

ev can be controlled. Total daily charge must
equal the daily charging demand Ei

ev , as can be seen in Eq. (4) and the
EV charging efficiency is given by ev. Furthermore, EV charging rate is
constrained within upper and lower charging limits. Vehicle-to-Grid
technology is out of the scope of this research. A binary parameter i t, is
used in Eq. (5) to indicate the timeslots at which the EV charging can be
scheduled. It should be noted that this modelling of EV charging pat-
terns is simplified and not a fully accurate representation of real be-
haviour. Still, for the current purposes of evaluating performance of the
proposed platform with the presence of flexible load, the current for-
mulation is viable and sufficient.

=
=

p t E i, ,
t

T

i t i
0

ev
,
ev ev

(4)

Physical layer

Economic layer

Information layer

Ve
rt

ic
al

Horiz
ontal

1

2

3

4

5

Fig. 1. Illustration of the different layers of the proposed model and the in-
teraction between them. (1) In the physical layer, power flows in the horizontal
dimension between households through grid connections. (2) Information is
exchanged in the vertical dimension between the economic and the physical
layer. (3) In the economic layer, a trading mechanism is used to enable
monetary compensation for power injections and withdrawals into/from the
grid. (4) Information is exchanged between the information layer and the layers
below. (5) The households send their locally calculated optimal schemes for the
economic and physical layers to the smart contract.

G. van Leeuwen, et al. Applied Energy 263 (2020) 114613

4



p p p i t, , .i t i t i t,
ev

,
ev

,
ev (5)

For the battery, the net battery power pi t,
b is defined as the difference

between the discharging power pi t,
bd and the charging power pi t,

bc, as
follows:

=p p p i t, , .i t i t i t,
b

,
bd

,
bc

(6)

The state of charge of the battery is represented by ei t,
b , and the ef-

ficiency of charging and discharging are represented by ,c
b

d
b, re-

spectively. ei t,
b is determined as follows:

= +e e p
p

t i t( ), , .i t i t i t
i t

,
b

, 1
b

c
b

,
bc ,

bd

d
b

(7)

p p,i t i t,
bd

,
bc and ei t,

b are all constrained within upper and lower limits.
Finally, every household has a connection to the microgrid, al-

lowing for withdrawal and injection of real and reactive power. Net
power injections into the microgrid are designated as pi t, and qi t, , with
positive values representing injection and negative values representing
withdrawal. pi t, and qi t, are calculated as follows:

= + +p p p p p p i t, , ,i t i t i t i t i t i t, ,
g

,
pv

,
b

,
l

,
ev

(8)

=q q q i t, , .i t i t i t, ,
g

,
l

(9)

2.2. AC-OPF problem

For the complex power flow through line i at time t P, i t, and Qi t,
represent the real and reactive power flow. The convention is adopted
that positive values represent power flow from i to j. The squared vol-
tage at node i is represented by = vi t i t, ,

2 and the squared current is
represented by = Ii t i t, ,

2 . These quantities can be related by adopting the
branch flow model for modelling the AC power flow in a single phase
radial network [26,43]. The branch flow model is then relaxed using a
Second Order Cone (SOC) convex relaxation [26,44]. The following
equations from the branch flow model are considered:

=p P P r i t, , ,i t i t
k

k t i i t, , , ,
i (10a)

=q Q Q x i t, , ,i t i t
k

k t i i t, , , ,
i (10b)

= + + +r P x Q r x i t2( ) ( ), , ,i t j t i i t i i t i t i i, , , , ,
2 2 (10c)

=
+P Q

i t, , .i t
i t i t

i t
,

,
2

,
2

, (10d)

Eq. (10d) is a non-convex constraint, and is relaxed to the following
inequality [44]:

+P Q i t, , .i t i t i t i t,
2

,
2

, , (11)

The squared voltage i t, is to be constrained within upper and lower
limits, which are defined as 5% above and below a nominally defined
voltage.

The optimization objective of the AC-OPF problem is to minimize
total costs of grid imports for every household. It is formulated as fol-
lows:

= = C pminimize ( ),
subject to (4) (11).

t
T

i
N

i t i t0 0 , ,
g

(12)

2.3. Trading Mechanism

For the trading mechanism, the unified prosumer market proposed
in [36] is adopted. The unified model provides options for im-
plementing either a pool market model or a bilateral trading system.

For the purposes of this study the bilateral trading form is used, which
allows the designation of a bilateral trading coefficient to every in-
dividual trade. Bilateral trading coefficient values can be decided by the
household owners, and can thus be used to indicate preferred trading
partners and enable product differentiation. Every node in is con-
sidered to be a separate rational, non-strategic market agent. In the
unified prosumer market model, costs for every separate agent are
minimized across their set of connected assets. This includes the costs of
trading with the other participants. It is formulated as follows:

min.
+

= = = =
f p d( ) ,

t

T

i a
i t
a

i t
a

j
ij t ij t

0 0 1
, ,

0
, ,

(13a)

s. t. =D D [ ]t t t
T t, (13b)

=
= =

p d
a

i t
a

j
ij t

1
,

0
,

i t, , (13c)

pi t
a

i t
a

, , a i, . (13d)

In this formulation, indexed by a represents the set of assets of
agent i, and indexed by j represents the set of trading partners of
agent i. fi t

a
, represents the cost function of asset a as a function of the

power set point pi t
a
, . ij t, represents the bilateral trading coefficient im-

posed by agent i on the trade between agents i and j, and dij t, is the
quantity of electricity traded between agents i and j. The matrix D
contains the quantities of all trades, and the associated dual variable
matrix contains the prices of all trades. Set i t

a
, contains the feasible

set of power set points of i at t. Constraint Eq. (13b) enforces reciprocity
of trade quantities, and reciprocity of trading prices is also implicitly
enforced by this constraint as it is the dual variable. Constraint Eq.
(13c) ensures that the sum of all power generated by agent i equals the
sum of the quantities of all trades conducted.

2.4. Decentralized formulation

2.4.1. General Consensus ADMM
In order to optimize in a distributed manner, the general consensus

optimization form of the ADMM algorithm is used. In this section only,
the formulation from [39] is used for the general form consensus pro-
blem. In its general form, it is written as follows:

min.

=
f x( ),

i
i i

0

i, (14a)

s. t. =x z~ 0,i i i. (14b)

From this, the augmented Lagrangian of this problem is formulated
as:

= + +
=

L x z y f x y x z x z, , ( ) /2 ,
i

i i i i i i i
0

T
2
2

(15)

where y represents the dual variable, and represents the penalty
parameter (i.e. the step size) which is predefined. In Eq. (15), mini-
mizing the second and third terms enforces constraint Eq. (14b). Eq.
(15) is solved through a series of iterative steps, which are formulated
as:

= + ++x f x y x z x zargmin ( ) /2 ,i
k

x
i i i

k
i i

k
i i

k1
2
2

i

T

(16a)

=+

=

+z k x1/ ( ) ,g
k

g
i c g

i
k

c
1

( , )

1

(16b)

= ++ + +y y x z( ).i
k

i
k

i
k

i
k1 1 1 (16c)

Eq. (16b) is essentially an averaging of all local variable components
to retrieve the corresponding global variable component. The ADMM
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algorithm will iterate through the steps until the convergence condi-
tions are met. These conditions are evaluated through the primal and
dual residual values r k and sk , which are defined as follows:

=r x z ,k
i
k

i
k (17a)

=s z z .k
g
k

g
k 1 (17b)

The convergence conditions are then defined as:

r ,k
p2 (18a)

s .k
d2 (18b)

In Eqs. (18a) and (18b), p and d are the allowed tolerances for the
primal and dual residuals, respectively, which are typically assigned a
low value in the range of 10 102 3. Besides meeting the convergence
conditions, the execution of and ADMM algorithm is also typically as-
signed a maximum number of iterations after which execution of the
algorithm will end.

2.4.2. ADMM + AC-OPF
The AC-OPF of Eq. (12) is reformulated using the general consensus

form ADMM. The global optimization problem is decomposed into a set
of subproblems where every node i solves its own local sub-
problem using its own set of local variables xi. In this set of local
variables, the subset of local private variables
x p p q q p p p e p( ) [ , , , , , , , , , ]l i i i i i i i i i

dc
i i

g g b bc b ev generally contains the
variables pertaining to local energy infrastructure and the set of local
coupling variables x P Q v P Q v( ) [ , , , , , ]u i i i i i i i( ) ( ) ( ) generally contains
the variables pertaining to its set of branch flow equations. The set of
global variables is denoted as z P Q v[ , , ]g . Fig. 2 shows how the lo-
cally calculated coupling variables correspond to the global variables in
the present OPF problem. The steps of the ADMM algorithm are exe-
cuted according to Eqs. (16a)–(16c), as follows:
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2.4.3. ADMM + Trading mechanism
As for the OPF problem, the centralized optimization problem Eq.

(13a) is decomposed into subproblems where every agent solves their
corresponding subproblem. Every agent will determine their own local
trading schedule D, which is treated as a coupling variable that cor-
responds to the global variable C . Following [36], =C C D( )/2T is
defined as the average of the trading quantity proposed by agent i to
agent j and the trading quantity proposed by agent j to agent i. By using
this consensus constraint, the fully decentralized augmented La-
grangian for bilateral trading can be formulated as follows, according to
[36]:
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+
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(20a)

= =p d

subject to:

,i t j ij t, 0 ,

(20b)

(4) (8).

In this formulation the penalty parameter is represented by to

distinguish it from the penalty parameter in Eq. (19a)–(19c). Dual
variable , representing the price of trading, being updated in the next
step:
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(21)

2.4.4. Combined formulation
As stated, the main contribution of this study is the combination of

an OPF problem with a trading mechanism in a single distributed op-
timization problem. This leads to a fully decentralized algorithm that
achieves maximum total social welfare by minimizing both grid import
costs and trading costs for every agent i separately and in parallel
while respecting global grid constraints and balancing supply and de-
mand. The fully decentralized algorithm consists of several iterative
steps. First, the local optimization problem is solved by agent i:
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(22)

It can be recognized that two separate penalty parameters are used,
for the grid constraints and for the trading mechanism. Since the

only cost-generating asset in this setup is the external grid connection,

= f p( )a i t
a

i t
a

1 , , is replaced by C p( )i t i t,
g

,
g , which is the cost function of the

external grid connection. In this first step, agent i calculates both the set
of local variables xi and the optimal trading schedule D for every
timestep. In the next step, the global variables zg are calculated:
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In the third step, dual variables y and are updated by every agent:
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After every iteration, separate sets of residuals for grid constraints
and trading are calculated as follows:
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Fig. 2. An illustration of the coupling between local and global variables in the
ADMM-based general form consensus method for the OPF problem in a 4-nodes
network.
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2.5. Blockchain implementation

By adopting blockchain and smart contracts technology the pro-
posed distributed algorithm can be executed in a secure, verifiable
manner that ensures independence and anonimity of the market par-
ticipants. In such a setup, the role of the smart contract is essential. A
smart contract is a piece of computer code that is deployed on the
blockchain and can execute certain functions when called upon by
other nodes [19,21]. The smart contract takes over the function of this
central aggregator, thus effectively functioning as a virtual aggregator.
In this role, the smart contract performs several types of functions:

1. Executing parts of the ADMM algorithm
2. Exchanging information with other nodes
3. Giving permission to other nodes to proceed with the next opera-

tion.

Various steps in the ADMM algorithm are distinguished where these
functions are executed. In this work the smart contract is written in the
Solidity language and the other files that are run locally are written in
Python. Web3.py [45] is used to communicate between Python and the
contract, and the local optimization problems are solved using the
Cvxpy package [46]. The blockchain network is set up by running a
local Ethereum node with Ganache-cli [47]. It should be noted that the
proposed blockchain setup is not assessed for efficiency of commu-
nication, security, execution speed and energy consumption.

Upon setting up the blockchain network every node i is assigned a
personal account with address i, and the smart contract is assigned
an account . The contract is deployed to the network using a set of
constructor variables n µ[ , , , , , , , ]p d p

t
d
tg g that configure the

integrated ADMM algorithm. The variable µ represents the maximum
number of iterations, n represents the total number of nodes on the
network. It can be noted that it is not required to pass any information
on the network topology. As the contract is deployed, the bytecode of
the contract’s contents ABI are generated. and ABI must be known
by all other nodes to allow them to interact with the contract.

In the execution of the ADMM algorithm on the blockchain network
for the integrated model there are several steps that can be dis-
tinguished, which are visualised in Fig. 3.

1. In step 1, i connects to by using the adress and bytecode ABI .
This action only has to be performed once.

2. In step 2 a new round of optimization starts for the next day, and all
nodes will declare their participation by passing i, the number of the
node, and i( ) and i( ), the numbers of the parent and child nodes.
Also, the nodes will retrieve from the contract to configure the
local optimization problem. keeps track of participating nodes
using a counter and when all n nodes have declared participation,
the nodes will proceed to solve their local optimization problem.

3. When local optimization Eq. (22) is complete, the nodes send their
sets of coupling variables x( )u i and their set of trade bids di to the
smart contract which will keep track using a counter. When all
nodes submitted their coupling variables, one node is configured to
call the z-update step function, which will make the contract execute
Eq. (23) of ADMM. Note that the set of trade bids contains the

optimally calculated trading quantities for all trading partners and
all timesteps. For the trading portion, the only role of the smart
contract is to gather all trade bids and distribute them to the re-
spective trading partners.

4. When the z-update step is complete, the nodes will retrieve the re-
calculated global variables zi as well as the trade bids of their
trading partners dj. The nodes will form their full trading quantity
matrix dij t, and calculate their local penalty values as in Eq. (24a)
and Eq. (24b). The nodes will also calculate the partial residual
values as in Eqs. (25a)–(25d) for their local problem.

5. The nodes send the partial residuals r s r s, , ,grid i grid i trade i trade i, , , , to the
contract, which initiates a counter and sums all partial residuals
upon completion to receive the global residuals. The nodes peri-
odically call checking functions to check for completion.

6. The nodes retrieve the global residual values r s r s, , ,grid grid trade trade
and evaluate the converge conditions. If the conditions are not sa-
tisfied, go back to step 3) and repeat.

If at any point in the algorithm a node fails to provide the necessary
information, the system will timeout since full optimization needs all
the information from every node to complete. It can be recognized that
very little sensitive information is shared by the nodes with the con-
tract. All information regarding the local energy infrastructure (i.e.
local private variables x( )l i) remains private: only data on power flows
in adjacent lines is shared, as well as residual values and trade bids.
This information is stored on the smart contract, and not accessible by
any other nodes on the network. Furthermore, it can be recognized that
full network topology is not explicitly stated anywhere. Every node
must only know its parent and children. As for the end-user interaction
with the blockchain network, the HEMS could perform virtually all of
the required actions. In the configuration of the optimization problem
and connection to the blockchain network, all communication with the
network can be automated in the HEMS, requiring no knowledge of the
blockchain’s operation on the part of the end-user.

2.6. Numerical analysis

For the fixed real power load and solar generation data, actual data
from the East Harbour Prosumers Community [48] in Amsterdam is
used. The fixed reactive power load qi t

l
, is assumed to be proportional to

1/10th of the fixed real power load pi t
l
, . For the topology of the radial

microgrid, the network of [49] is used. The topology is indicated in
Fig. 4. It can be recognized that 11 households in the network are
prosumers and that 8 households are owners of an EV. For grid elec-
tricity withdrawals, a time-of-use price signal t is used from the day-
ahead market clearing prices of the European Power Exchange (EPEX)
Netherlands [50]. Based on average daily distance travelled in the
Netherlands by EV, the average EV daily charging demand (Eev) is set at
7.06 kWh [51,52]. The charging hours i are pre-defined, with some

Fig. 3. A flowchart showing the interaction between the smart contract and
node i in the steps of the ADMM algorithm. The g and t subscripts indicate grid
and trade residuals, respectively.
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households preferring to charge during the day and others during the
night. The charging efficiency of EV is set at 90%, and the battery ef-
ficiency is set at 95%.

For every day, the bilateral trading coefficients are pre-determined
for every household based on their fixed real power consumption and
solar PV generation data. It should be emphasized that in a real setup
the values of the coefficients are decided by the household owners to
indicate preferred trading partners or allow for product differentiation.
It is assumed that the willingness to trade of a household i in any
timestep t is proportional to the magnitude of their expected deficit/
surplus p pi t

l
i t, ,
pv . It is assumed that households with an expected sur-

plus budget are more likely to trade with households that have an ex-
pected deficit and visa versa. In order to reflect these assumptions in the
bilateral trading coefficients, several steps are taken.

First, the expected net budget matrix Pnet is determined. Along the
rows it contains all households and is indexed by i, and along the col-
umns it contains all timesteps and is indexed by t. Pnet is defined as:

=P P Pnet pv l (26)

where Ppv and P l have the same dimensions as Pnet. From matrix Pnet,
two new matrices Pbuy and Psell are defined. These matrices contain the
amount of power that each household wants to sell or buy in every
timestep. The elements from these matrices are determined as follows:

=
<

p
p

p p
0 if 0

if 0i t
i t
net

i t
net

i t
net,

buy ,

, , (27a)

=
>

p
p p

p
if 0

0 if 0i t
i t i t

net

i t
net,

sell ,
net

,

, (27b)

From these matrices, two column vectors Pmax
buy and Pmax

sell are defined.
Each element of these vectors represents the maximum value in the
corresponding row of the matrices Pbuy and Psell. This means that these
vectors contain the maximum deficit and surplus budget of every
household across all timesteps. Pbuy and Psell are then normalized as:

= P
P2

b,rel
buy

max
buy (28a)

= P
P2

s,rel
sell

max
sell (28b)

Matrices b,rel and s,rel represent the relative willingness of
households to buy or sell electricity. Parameter represents the max-
imum, baseline value for bilateral trading coefficients. From matrices

b,rel and s,rel, the final 3D matrix of bilateral trading coefficients is
defined as follows:

=

>

>

+ + +
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if , 0

( ) otherwise
ij t

i t j t

i t j t
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,
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,
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,
b,rel

,
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,
b,rel

,
s,rel

,
s,rel

(29)

At the maximum value of =ij t, , nodes i and j are considered very

unlikely trading partners. In the present study, is set at 10, meaning
that all bilateral trading coefficients have a value of anywhere between
0 and 10.

In order to evaluate the impact of including the bilateral trading
mechanism and grid constraints on social welfare and scheduling of
power flows and bilateral trades, several scenarios are compared where
these different parts of the model are included and excluded. A baseline
scenario will also be analysed, where there is no microgrid and
households only interact with the external grid. In all scenarios, pro-
sumers are able to feed their excess electricity budget into the grid for
50% of the electricity price at that time. The scenarios are run for one
week in summer (21–28 June 2018) and one week in winter (21–28
December 2018) to evaluate performance in both seasons. The different
scenarios are shown in Table 1. The trade-only scenarios execute the
optimization problem as in Eq. (20b), grid-only scenarios execute as in
Eqs. (19a)–(19c), the combined scenarios execute as in Eq. 22. In the
grid-only scenarios, there is no cost on the exchange of energy so that
the impact of including the bilateral trading mechanism can be more
clearly assessed in isolation.

3. Results

The objective of this study is to assess the performance of the in-
tegrated model and to compare it with a baseline scenario. This per-
formance is assessed with regard to economic indicators and the sche-
duling of power flows.

The economic performance parameters represent financial costs for
the households. Table 2 shows values for total social welfare across the
entire week. In this table, a comparison is made between total prosumer
costs and total consumer costs. Furthermore, Fig. 5 shows the price of
electricity throughout the entire week, both for trading, grid imports
and grid feed-in.

Results for power imported across the week, in total and at peak
hours, are found in Table 3.

Based on the results shown in the figures and tables, a comparison
can be made between the different scenarios for every performance
category. Building on this, the respective benefits and downsides of the
scenarios can be discussed, as well as their applicability in real-life
communities. This analysis is provided in Section 4.

3.1. Economic indicators

Looking at the results for total community-wide costs in Table 2, it
can be recognized that in summer the BS scenario yields the highest
costs (rounded numbers) at 182 euros. The GS scenario results in the
lowest costs at around 83 euros, which is 45% of the baseline scenario.
Total costs in the TS and TGS scenarios are only slightly lower than BS
at around 168 euros, respectively. When regarding only external grid
imports, which includes compensation from feed-in, the GS scenario is
still the cheapest at 83 euros, but the difference between the BS sce-
nario on the one hand and the TS and TGS scenarios on the other is
much larger, with the BS coming in at 182 euros and the TS and TGS
yielding 130 and 118 euros, respectively. Differences between the
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Fig. 4. Topology of the considered microgrid. Owners of EV and PV are in-
dicated.

Table 1
Considered scenarios for numerical evaluation.

Scenario Abbreviation

Baseline, summer BS
Baseline, winter BW
Trade only, summer TS
Trade only, winter TW
Grid only, summer GS
Grid only, winter GW
Grid + Trade, summer TGS
Grid + trade, winter TGW
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scenarios are larger when distinguishing prosumers and consumers. In
the BS scenario, prosumer costs are almost the same as consumer costs
around 90 euros. In the GS scenario, prosumer costs are 54 euros, which
is higher than consumer costs at 30 euros. In both trading scenarios
however, the difference between prosumers and consumers is much
larger, with the total consumer costs being around 3 times higher than
the prosumer costs in the TS scenario, and almost 10 times higher in the
TGS scenario. In the winter scenarios, differences between the scenarios
are much smaller, and give the same overall picture. Looking at Fig. 5,
it can be recognized that during daytime hours, when trading is most
likely to take place, the average internal trading price is lower than the
price of grid imports yet higher than the compensation for grid feed-in.
It can also be recognized that the TS and TGS scenarios yield similar
results for the price of internal trading, as well as the TW and TGW
scenarios. For the TG and TGW scenarios, the trading price is not be-
tween feed-in and withdrawal prices, but these data should not be
considered meaningful or reliable since there is next to no trading
happening in these scenarios. The boxplots in Fig. 7 show the dis-
tribution of total costs data for households in every scenario, split up for
prosumers and consumers. It can be seen that in the GS scenario there is
the least variation, both for consumer and prosumer households. In the
trading scenarios, the variation is significantly larger, with the variation
in TS being somewhat larger than in TGS.

3.2. Scheduling indicators

Table 3 shows the results for energy imports and energy exchanged
in all scenarios. The GS scenario yields the highest local energy ex-
change at 495 kWh as there is no price on trading. The TGS scenario
yields a similar amount at 468 kWh, with the TS being the lowest at 291
kWh of traded energy. For the winter scenarios, very little exchange is
occuring as there is almost no excess solar electricity. For energy

Table 2
Numerical results for economic indicators. All costs are summed over the entire week and over all households. Prosumer and consumer costs are summed over all
prosumer and consumer households, respectively. Relative costs are compared to the baseline scenarios, the values of which are set at 100%. For the trade costs, the
values of the trade-only scenarios is set at 100%.

Summer Winter

Scenario BS GS TS TGS BW GW TW TGW

Prosumer import costs (Eur) 90.17 53.46 70.84 60.06 150.82 126.56 132.76 136.05
Consumer import costs (Eur) 92.23 30.01 59.59 58.74 151.44 118.19 148.02 147.32
Prosumer trade costs (Eur) – – −37.40 −49.37 – – 0 0
Consumer trade costs (Eur) – – 37.40 49.37 – – 0 0
Total prosumer costs (Eur) 90.17 53.46 33.44 10.69 150.82 126.56 132.76 136.05
Total consumer costs (Eur) 92.23 30.01 96.99 108.11 151.44 118.19 148.02 147.32

Total import costs (Eur) 182.40 83.47 130.43 118.8 302.26 244.75 280.78 283.37
Total trade costs (Eur) – – 37.40 49.37 – – 0 0

Total costs (Eur) 182.40 83.47 167.83 168.17 302.26 244.75 280.78 283.37

Relative prosumer import costs 100% 59.3% 78.6% 66.6% 100% 83.9% 88.0% 90.2%
Relative consumer import costs 100% 32.5% 64.6% 63.7% 100% 78.0% 97.7% 92.2%
Relative prosumer trade costs – – 100% 132.0% – – 100% 100%
Relative consumer trade costs – – 100% 132.0% – – 100% 100%
Relative total prosumer costs 100% 59.3% 36.8% 11.8% 100% 83.9% 88.0% 90.2%
Relative total consumer costs 100% 32.5% 105.2% 117.2% 100% 78.0% 97.7% 92.2%

Relative total import costs 100% 45.8% 71.5% 65.1% 100% 80.1% 92.9% 93.8%
Relative total trade costs – – 100% 132.0% – – 100% 100%

Relative total costs 100% 45.8% 92.0% 92.2% 100% 80.1% 92.9% 93.8%

Fig. 5. The price of electricity in the different scenarios.

Table 3
Numerical results for energy consumption. Grid imports and the energy ex-
changed are summed over the entire week and over all households. Peak hours
are defined as 6–9am in the morning and 5–8 pm in the evening, and peak
imports are summed over all peak hours for all days and all households.
Relative values are compared to the baseline scenarios, the values of which are
set at 100%.

Summer Winter

Scenario BS GS TS TGS BW GW TW TGW

Total local energy
exchange (kWh)

– 495 291 468 – 52 5 17

Total imports (kWh) 999 788 895 856 2638 2333 2530 2455
Peak imports (kWh) 731 273 620 302 1199 843 1140 876
Ratio of peak/total

imports
0.73 0.34 0.69 0.35 0.45 0.36 0.45 0.35
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imports, the BS scenario shows a higher result than the other summer
scenarios at a total withdrawal of 999 kWh. The GS scenario has the
lowest consumption at 788 kWh, and the TS and TGS scenarios show
values of 895 and 856 kWh, respectively. There is a large difference in
peak imports, with the TS and BS scenario showing values of 70% of
total imports, whereas in the GS and TGS scenarios the peak imports are
around 35% of the total. In the winter scenarios again differences are
smaller, there is only a noticable variation with the peak imports where
again GW and TGW scenarios yield the lowest values. Looking at Fig. 6,
which shows the power exchanged throughout the first day of the four
summer scenarios, it can be recognized that there is no import peak at
peak hours in the GS and TGS scenarios. Furthermore, it appears that
power flows are smoother and more consistent throughout the day. In
the scenarios that include trading, this trading is limited during daytime
hours when there is an excess of PV. In the GS scenario, there is some
more exchange happening during other hours as well as it is free.

4. Discussion

As has been shown in Section 3, results in winter are very similar for
all scenarios. This makes sense as there is very little excess PV elec-
tricity during this time of year, which means that the microgrid is re-
latively inactive as most PV electricity is self-consumed directly.
Therefore, further discussion of the results will focus on the results of
the summer scenarios.

4.1. Discussion of economic and scheduling results

Out of the GS, TS and TGS scenarios, the GS scenario shows fa-
vourable results for total social welfare. Total costs in this scenario are
considerably lower than for the other scenarios, which means that total

social welfare is the highest. This can simply be explained by the ab-
sence of trading costs as energy is exchanged for free. GS scenario is
also cheapest when considering only import costs however, and so it
appears that the absence of a trading mechanism allows the microgrid
to function at maximum efficiency. When comparing TS and TGS sce-
narios, the inclusion of the microgrid constraints in TGS results in a
slightly higher import costs than in TS. This can be explained by effi-
ciency losses which are not considered in the TS scenario. Although the
total energy imports in Table 3 are fairly close together for the three
scenarios, the real difference shows in the peak imports, where the GS
and TGS show peak imports that are less than half that of the TS and BS
scenarios. It appears that inclusion of physical network constraints in
the optimization problem means that the algorithm will avoid using the
grid excessively during peak hours, not just because of cost incentives,
but also because of possible congestion issues. From Fig. 6, it can be
seen that overall power flows are smoother in the G scenarios. In the TS
and BS scenarios, this management is left to the DSO. Furthermore,
when comparing the amount of energy that is traded in the TS and TGS
scenarios, it appears that the TGS scenario allows for a larger quantity
of energy to be traded at a similar price as the TS scenario. Possibly this
is a result of more local trading during peak hours to compensate for the
lower external grid imports.

4.2. Inequality between prosumers and consumers

Looking at the differences between total prosumer and consumer
costs, the inequality is significantly larger in the trading scenarios than
in the others. This makes sense given that this difference is primarily a
result of the trading. When considering only import costs, it appears
that consumers benefit more than prosumers from the proposed setup
as compared to the BS scenario. Still, it is clear that owners of PV

Fig. 6. Power exchanged in all nodes during the first day of the summer scenarios. Magnitudes are summed over all nodes.
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benefit of their investment through the trading. The GS scenario is most
beneficial for consumers, yet prosumers still benefit as compared to the
TS and TGS scenarios. When comparing the TS and TGS scenarios the
figures are similar. Prosumers benefit more in the TGS scenario because
of increased trading, and for the same reason consumers pay a bit more.
This increased benefit is not a result of the trading price, which is si-
milar in both scenarios as can be recognized from Fig. 5, but of in-
creased trading volume, as can be seen in Table 3. Fig. 7 shows the
spread in costs for all households. Similar to the other results, the GS
scenario shows the lowest spread and the TS and TGS show a larger, yet
similar spread. TGS spread appears to be somewhat smaller. In the
winter scenarios the difference between consumers and prosumers is
much smaller as there is very little trading happening.

4.3. Real life application

4.3.1. Baseline and grid-only scenarios
First of all, the BS scenario represents a situation that is similar to

the present situation in the distribution grid in some countries. There is
no cooperation between households on any level, and prosumers may
dispose of their excess PV-generated electricity by feeding it into the
grid. A financial compensation is offered to them in the form of FiTs,
and battery storage systems are only for private use. Consumers are
completely reliant on their energy service providers to provide them
with energy. Also, this scenario requires the DSO to monitor and dis-
tribute energy in the grid and ensure that all physical constraints are
respected. Given the expected increase in DER adoption [3,52,53], this
task will become more and more complex. Furthermore, considering
the expected abolishment of net metering [6], prosumers must find
other ways to optimally benefits from their installed PV systems. Cou-
pled with the developments discussed in Section 1, it seems likely that
the system configuration represented in the baseline scenarios will in-
creasingly be replaced by alternative systems. This is reinforced by the
result from this study that the BS scenario yields the highest total costs
and grid imports of all summer scenarios. Of the other scenarios, the GS
scenario yields the highest social welfare and lowest peak imports. In
fact, peak imports are just over one-third of the BS scenario. This can be
very beneficial for the DSO. This scenario can be conceptualized as a
microgrid community that shares energy between community mem-
bers. The GS scenario appears to only be viable when costs of grid
imports are fairly shared across all members of the network or when the
exchange of power is valued using for instance locational marginal
prices, like in [37]. Furthermore, a way should be found to compensate
investors of PV and batteries for their extra contribution to the total
welfare of the community. This would require intensive cooperation
between all participants on the network, and the resulting community
would be akin to an energy collective as discussed in Section 1.2. In
such a community, there would be no need for a trading mechanism
since all households will act in the interest of the group.

4.3.2. Trading scenarios
When intensive cooperation is not possible and households act in a

mostly self-interested manner, the inclusion of a trading mechanism can
regulate cooperation whilst still ensuring maximization of total social
welfare. The TS scenario seems viable when all participants on the
network are primarily self-interested and little cooperation between
them is possible or desirable. Such a network may be akin to a full P2P
market as discussed in Section 1.2. The mechanism allows prosumers to
benefits maximally from their PV and battery systems. The TGS sce-
nario is similar to the TS scenario, except that grid management is
adopted by the network participants. The largest benefit of this is a
significant decrease in peak imports of over 50%. This can be very
beneficial for the DSO. Furthermore, some efficiency losses from grid
management are not included in the TS scenario because they are left to
the DSO, meaning that in reality the energy consumption will be
somewhat higher than the figures found here. It is also interesting that

the inclusion of the OPF equations allows for more trading to take place
in the TGS scenario (see Table 3 and Fig. 5), allowing participants to
benefit more from the bilateral trading system that is in place. Mon-
etarily speaking, prosumers do benefit more from TGS scenario as
compared to consumers. As such, it is more heavily incentivized in the
TGS scenario to have a PV installation than in the TS scenario.

4.4. Overall comparison

For social welfare, it appears that the best result is achieved without
implementing a trading mechanism (GS scenario), and a combination of
physical microgrid constraints and trading mechanism (TGS scenario)
yields lowest social welfare. However, not implementing a trading
system means that intensive cooperation between the households is
required, and that participants cannot benefit from the options and
freedom provided by the bilateral trading mechanism. Furthermore, the
trading mechanism favours owners of PV, incentivizing adoption and
investment of such rooftop systems. When considering the TS and TGS
scenarios, social welfare results are similar, and the main benefit from
the addition of the OPF problem appears to be strongly reduced peak
imports, as well as a slightly reduced total imports. Increased trading
volume in TGS is also beneficial. Comparing to the baseline scenario,
the other three scenarios show considerable benefits, especially re-
garding the import costs. Trading costs are spent by individual house-
holds but the money remains within the community, thus arguable still
benefiting the community as a whole. The TGS scenario shows lower
import costs than the TS scenario at 35.4% lower than the baseline
scenario, and peak imports are 60% lower than the baseline. Total
imports are around 15% lower than in the baseline. Overall, it seems
that applicability of the different scenarios in real life is dependent on
the nature of the cooperation between the participants, as well as the
cooperation between the community and the DSO. Given that the
present study proposes a platform that is implemented on blockchain, it
seems reasonable that adopters of such platforms hold independence,
free choice and anonymity in high regard, which could make it feasible
for them to adopt any of the platforms modelled in the different sce-
narios. A platform similar to the GS scenario would fit a situation where
independence and welfare of the community as a whole are deemed
important. In this case, individuals must be prepared to collaborate
intensively to fairly share costs and take responsibility for microgrid
management. The TS scenario seems to fit a community where parti-
cipants prioritize individual choice, freedom and welfare and do no
desire to be involved in local grid management. The TGS scenario re-
presents a middle ground where extra responsibility is adopted for
management of the microgrid, but where cooperation between

Fig. 7. Boxplot showing the total costs for households in all scenarios. These
data are summed over the entire week. The ’c’ and ’p’ indicate data for con-
sumer and prosumer households, respectively. Yellow lines indicate median
values of the particular group. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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participants is regulated by a trading mechanism.

4.5. The blockchain network and end-user interaction

It should be emphasized that the proposed model is intended to
function on a private blockchain network, where all participants are
known and accepted members of the community. In this case, it is not
possible for just anyone to enter the network and participate.
Particularly when the platform is implemented in a microgrid en-
vironment this is impossible since it would require that the new parti-
cipant is physically connected to the microgrid: in a trade-only sce-
nario, it would be possible to allow new participants as no physical
connection is required, although this might have consequences for
overall performance of the algorithm when the number of participants
becomes too large. Regarding end-user interaction with the network,
virtually none is required: almost all actions can be automated by the
HEMS, where the local optimization problem and communication with
the blockchain network are all performed by the HEMS. The only input
that the end-user would need to pass to the HEMS would be the de-
signated EV charging hours. The bilateral trading coefficients could
either be determined manually by the end user, or, like shown in this
study, automatically calculated.

4.6. Limitations

4.6.1. Structural limitations
First of all, the modelled platform is intended to function as a day-

ahead optimization platform, meaning that outcomes are dependent on
accuracy of PV generation and consumption forecasts. Regarding the
implementation on blockchain, the suggested configuration has not
been extensively tested for communication efficiency, security and ex-
ecution speed, even though these are important factors. The aim of this
study has been to provide a general framework for implementation and
for using the smart contract. Regarding the development of the model,
there are always inherent uncertainties in the software that is used, in
this case Python, Cvxpy, Ganache-cli and Web3.py. Also, uncertainties
are inherently present in the branch flow model and the ADMM algo-
rithm, since a distributed optimization algorithm typically does not
converge to exactly the same solution as a centralized algorithm.
Furthermore, the proposed integrated model could benefits from a
comprehensive sensitivity analysis to evaluate how the input para-
meters and setup of the two parts of the model affect performance and
results in both categories.

4.6.2. Assumptions
Other important limitations arise from the assumptions that are

made in the setup of the model. It has been assumed that all EVs have
the same average charging demand and charging hours every day,
which is not likely to occur in a real-life situation. Also, values have
been assumed for the battery parameters, and assumptions have been
made regarding the availability of reactive power generation and the
topology of the grid. It is unclear whether varying the amount or dis-
tribution of DERs in the microgrid will severely affect the outcome, and
the investment costs of the various assets has not been taken into ac-
count. For battery systems in particular, the investment costs can play a
large role when making financial calculations in a model. Finally, the
bilateral trading coefficients may have large impacts on the outcomes of
the model. In this study, an effort has been made to set realistic values
for the bilateral trading coefficients in a relatively straightforward
manner based on the net power consumption in each timestep, but a
more extensive modelling of prosumer market behaviour may provide
further insights into the impact of the coefficient values.

5. Conclusions

This study has shown the modelling of an integrated blockchain-

based energy management platform that respects physical microgrid
constraints and implements a bilateral trading mechanism. The proce-
dure of integrating the physical, economic and information layers in a
single model has been shown in Section 2. As a first main contribution,
the formulation of a distributed optimization problem that respects
physical microgrid limitations through OPF and implements a bilateral
trading mechanism has been detailed in Section 2.4.1. As a second main
contribution, the implementation of the distributed algorithm on a
blockchain network has been specified in Section 2.5. A smart contract
can take on the role of virtual aggregator: Not only does it have to
execute the consensus step from the ADMM algorithm, it also functions
as a central agent for distributing required information and data to all
other nodes. Several scenarios are defined, the setup of which has been
detailed in Section 2.6. The results of running the scenarios have been
shown in Section 3 and have been discussed in Section 4.

Although combining the trading mechanism and physical con-
straints yields a somewhat lower total social welfare, peak imports as
well as grid import costs are reduced as compared to the trade-only
scenario. The GS scenario, while showing the best results for social
welfare, seems difficult to realize since intensive cooperation is re-
quired. Furthermore, it does not provide the benefits conferred by the
bilateral trading mechanism. As such, it appears that there are con-
siderable benefits to combining trading with physical constraints when
designing energy optimization platforms, especially when comparing to
the baseline scenario: Import costs are reduced by 34.9%, and peak
import quantity is reduced by 60%. Regarding real-life applicability, it
is argued that a trade-only scenario could represent full P2P type
markets, whereas a grid-only scenario could represent an energy col-
lective. The combined scenario could represent a middle-ground where
several downsides of the other scenarios are mitigated. Research into
the social acceptance of the different scenarios and actual wishes of
participants could give further insights into the practical feasibility. The
usefulness of the proposed model can be expanded in several ways. First
of all, the model could be implemented on a live blockchain network to
evaluate security, efficiency and execution speed in a real life situation.
Furthermore, the sensitivity of modelling results to input parameters
such as trading coefficients, investment costs and DER distribution
could be explored. Also, a detailed techno-economic assessment could
be carried out to evaluate social welfare over an extended period of
time.
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