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Remember: it’s all luck 

You are lucky to be here 

You were incalculably lucky to be born,  

And incredibly lucky to be brought up by a nice family that 

helped you get educated and encouraged you  

to go get a PhD. 
 

Or if you were born into a horrible family, that’s unlucky and you 

have my sympathy… 
 

But you were still lucky: 

Lucky that you happened to be made of the sort of DNA that 

made the sort of brain which – when placed in a horrible 

childhood environment – would make decisions that meant you 

ended up, eventually, obtaining a PhD. 
 

Well done you, for dragging yourself up by the shoelaces, but you 

were lucky. You didn’t create the bit of you that dragged you up.  
 

They’re not even your shoelaces 

 

Tim Minchin, Australian comedian   
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“We’re not here to change the world we’re here to laugh at 

others. Maybe have a nap along the way” 
 

 
 

Bowling for Soup, punk rock band 
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1 
In a perfect world… 

… individuals are only labelled as having a certain disease or health 

condition when it is truly present. Giving a diagnostic label to an individual 

can have extreme impact, both directly and indirectly, on the individual, the 

family and of course on subsequent medical decision making and care. 

Research on the value of diagnostic tests involves quantifying the extent to 

which a novel (index) test adds diagnostic information to current care. This 

is done by assessing the test’s predictive performance or accuracy in 

combination with other test results (often referred to as a diagnostic model). 

This diagnostic performance is assessed in a diagnostic accuracy study by 

comparing the results of the index test or diagnostic model to the result of 

the so-called reference test (reference standard). The reference test is 

considered to provide a completely error-free diagnostic classification of all 

study participants into those with and those without the target condition of 

interest. A fully error free reference standard would allow for the correct 

estimation of the diagnostic accuracy of the index test(s) under study. 

… the reference standard only labels individuals as having the target 

condition when they would benefit from receiving that diagnostic label. 

Benefit can be diverse, ranging from improved health, extended life 

expectancy, reduced healthcare costs, or even just reassurance. The 

reference standard defines what disease is, and who is and isn’t affected. 

Some diseases might be symptomatic, whereas others might be 

asymptomatic. Some with the disease might be severely affected, whereas 

others less so. In a perfect world, the reference standard will only detect and 

label individuals as having a disease if that disease would ultimately indeed 

lead to morbidity or mortality. 

… implementation of a novel, sufficiently accurate, diagnostic test or model 

in clinical practice, will improve effectiveness and/or efficiency of the 

current diagnostic pathway, and subsequently lead to better choices in 

patient management and care. The results of such tests or models are always 

correctly used to guide treatment decisions, maximizing net benefit in the 
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long run, improving quality of life, prolonging life-expectancy, or reducing 

healthcare costs as a result of optimal patient management. 

In reality… 

… the reference standard is often not ‘gold’, and does not provide perfect, 

error-free classification of the study participants with and without the target 

condition. However, when estimating diagnostic accuracy of an index test 

or model in a scientific study, it is assumed that it does. Several approaches 

have been proposed and evaluated to overcome imperfect reference 

standards when evaluating diagnostic tests or models, such as the use of 

composite reference standards or expert panels that use multiple component 

test results to come to a final diagnostic classification for each study 

participant. In both approaches a dichotomous classification of the target 

condition (present or absent) is forced upon all study patients, such that the 

diagnostic accuracy of the index test can be calculated in the traditional way. 

The drawback of forcing a reference standard to make such a black-and-

white diagnostic classification, when it is known that the reference standard 

is imperfect, is that it ignores any remaining uncertainty, for example, due to 

that fact that component test results of a composite reference standard are 

conflicting, or experts in a panel disagree. This in turn leads to biased 

accuracy estimates of the diagnostic index test or model under study. 

… not all patients with abnormalities that are labelled as disease present will 

have benefit from receiving a diagnosis. Disease presence versus absence is 

typically defined by deciding where to draw the line between what is 

“normal” and “abnormal”. But definitions of disease, and thus of normality 

versus abnormality may change over time, for example due to an increased 

ability to detect smaller abnormalities, due improved understanding of 

associations between risk factors and long-term health outcomes, or due to 

lobbying of invested parties. These factors can thus influence the concept 

of disease (‘abnormality’) itself, which in turn may result in more individuals 

being labelled with the disease. The question arises then whether these 

individuals that are now suddenly classified as diseased, would indeed 

experience symptoms and health deterioration if left untreated. Patients 
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1 
diagnosed with a condition which would not lead to net benefit in terms of 

health outcomes, are classified as “overdiagnosed”. This and many other 

related terms, such as overscreening, overtesting, overtreatment, can be 

grouped under the broad umbrella term of “Too much medicine”. 

Unfortunately, all these terms are still loosely defined and have different 

meaning across clinical fields leading to a myriad of definitions and much 

linguistic confusion. Conceptual and methodological frameworks have been 

proposed to give guidance on estimating and reporting the amount of 

overdiagnosis, and to describe the intricate workings and interrelatedness of 

terminology surrounding “Too much medicine”. Although these are 

valuable frameworks, they are often limited to a specific clinical field (e.g. 

screening in oncology), and tend not to provide guidance on how to reduce 

overdiagnosis and its consequences. 

… good accuracy or performance of a diagnostic test or model does not 

necessarily guarantee that diagnostic tests or models are (correctly) used to 

inform patient management decision making, leading to a positive impact 

on downstream patient health outcomes and/or healthcare costs. Issues 

such as lack of compliance by healthcare providers or patients to follow 

management recommendations based on certain test or model results, 

limited effectiveness of treatment, or unexpected complications after using 

tests or treatments, may result in limited impact on short- and long-term 

patient health outcomes. So-called randomized ‘test/model-treatment trials’ 

are the most rigorous research approach to assess the impact of diagnostic 

tests or models. However these are often complex in setting up, require 

significant time investments, and tend to be costly. Moreover, the results of 

such test/model-treatment trials have frequently been disappointing, as the 

observed impact of the index test or model was lower or even absent 

compared to what was expected. Alternative approaches for assessing 

impact of a new diagnostic test or model, and providing guidance for 

consistent reporting, could prove valuable to prevent (diagnostic) research 

waste. 
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Aim and outline of this thesis 

The aim of this thesis is to expose methodological issues surrounding 

evaluation of diagnostic tests and models, and their associated impact on 

patient health outcomes and healthcare related costs, as well as to propose 

alternative approaches to reduce bias, research waste and improve 

methodological quality. 

Chapter 2 highlights an overlooked problem that may arise when using an 

expert panel as a reference standard in diagnostic studies. An expert panel 

typically provide a dichotomous target condition classification for each 

study participant, thereby ignoring any uncertainty that may (still) exist, 

which may result in bias in the accuracy estimates of the index test. Through 

a step by step illustrative example we first demonstrate how forcing a black-

and-white classification by the expert panel can introduce bias. Next a series 

of simulations is performed, in which the number and accuracy of 

component tests that is available to the expert panel, as well as the target 

condition prevalence are varied, to assess the amount of bias when 

estimating the diagnostic accuracy of an index test. 

In chapter 3 an alternative method to dichotomous target condition 

classification is proposed, using probabilistic estimates of target condition 

presence from the expert panel. These estimates were elicited from expert 

panel members in the SPACE study, a study aimed at evaluating the accuracy 

of clinical prediction rules for detecting sepsis in the emergency room. We 

use these empirical study data to demonstrate how probabilistic estimates of 

target condition presence elicited from an expert panel can be used to derive 

diagnostic accuracy measures of the index test under study. The results from 

the probabilistic approaches are compared to those of the traditional 

approach, in which the panel is forced to provide a dichotomous (present 

or absent) target condition classification for each patient. 

Chapter 4 provides a scoping review on the topic of overdiagnosis and 

related concepts in the field of “Too much medicine”. It addresses the 

clinical fields in which the problems are described and in what context they 
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1 
are discussed. The paper concludes with the topics for which there is not yet 

consensus and where more research may be warranted. 

Subsequently, chapter 5 addresses one of the topics identified in the scoping 

review, namely the need for a uniform framework describing “Too much 

medicine” related concepts across different clinical fields. Mechanisms 

leading to too much medicine are described at various stages of the clinical 

pathway, using examples from clinical practice. Ultimately the reader is 

provided with strategies to reduce too much medicine linked to the 

mechanism applicable to their specific clinical problem. 

Chapter 6 evaluates the use and feasibility of performing a decision analytic 

modelling approach before conducting a test/model-treatment trial to assess 

the impact of a diagnostic prediction model on patient health outcomes and 

healthcare costs. We illustrate this approach using the HEART score for 

predicting cardiovascular events in the emergency room as a case study 

example. The feasibility of such decision analytic modelling approach to 

assess the impact of diagnostic tests and models is discussed, and guidance 

is given on the various steps within such an approach.  

Chapter 7 illustrates the value of early health economic modelling at the 

stage where one is (considering to) develop a novel diagnostic test. This 

approach will be illustrated by looking at the potential cost-effectiveness of 

a novel biomarker for diagnosis of primary aldosteronism in hypertensive 

patients, by using a so-called headroom approach. 

In chapter 8 a systematic review is performed, looking at the methods used 

to determine the pretest probabilities (prevalence of disease) to facilitate the 

interpretation of diagnostic accuracy parameters in the summary of findings 

tables of Cochrane reviews on diagnostic tests. The pretest probabilities 

chosen in these tables directly affect the absolute number of (true and false) 

positive and (true and false) negative individuals in a hypothetical cohort. 

These numbers play a key role when judging the clinical usefulness of a 

diagnostic test, and any shortcomings in selecting the pretest probabilities 

may potentially misinform readers of systematic reviews of diagnostic tests. 
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We provide an overview of the various methods used for selecting pretest 

probabilities and discuss their validity. 

Chapter 9 discusses the main findings from this thesis, and highlights main 

areas for future research. 
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“A famous bon mot asserts that opinions 

 are like arse-holes: everyone has one  

There is great wisdom in this… but I would add that 

opinions differ significantly from arse-holes, in that yours 

should be constantly and thoroughly examined” 
 

 
 

Tim Minchin, Australian comedian 
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Abstract 
Objective: To study the impact of ignoring uncertainty by forcing 

dichotomous classification (presence or absence) of the target disease on 

estimates of diagnostic accuracy of an index test. 

Study Design and Setting: We evaluated the bias in estimated index test 

accuracy when forcing an expert panel to make a dichotomous target disease 

classification for each individual. Data for various scenarios with expert 

panels were simulated by varying the number and accuracy of “component 

reference tests” available to the expert panel, index test sensitivity and 

specificity, and target disease prevalence. 

Results: Index test accuracy estimates are likely to be biased when there is 

uncertainty surrounding the presence or absence of the target disease. 

Direction and amount of bias depend on the number and accuracy of 

component reference tests, target disease prevalence and the true values of 

index test sensitivity and specificity. 

Conclusion: In this simulation, forcing expert panels to make a 

dichotomous decision on target disease classification in the presence of 

uncertainty, leads to biased estimates of index test accuracy. Empirical 

studies are needed to demonstrate whether this bias can be reduced by 

assigning a probability of target disease presence for each individual, or using 

advanced statistical methods to account for uncertainty in target disease 

classification. 
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Introduction 
In diagnostic test accuracy studies, the discriminatory ability of the test of 

interest (index test) is evaluated by comparing its results to those of the 

reference standard in a group of individuals suspected of the target disease. 

While analysing this comparison, it is often assumed that the reference 

standard can perfectly distinguish two groups of individuals: those with and 

without the target disease. (1, 2) For many diseases, however, the best 

available reference standard isn’t perfect. (3, 4) In the absence of a single 

perfect test that can be held as the reference standard, alternative approaches 

have been proposed, including composite reference standards (applying 

multiple tests and combining their results using a fixed rule), latent class 

models (using a statistical method to link multiple tests results to a latent 

class) and expert panels. (5) 

Using an expert panel is a common approach to assign a final diagnosis in 

fields where an accepted reference standard is lacking. (6) In such a panel, 

multiple experts combine information from multiple tests, patient 

characteristics, and clinical expertise to make a final decision on whether the 

target disease is present or absent for each individual. Typically, in an expert 

panel all individuals are ultimately classified as either having or not having 

the target disease based on a decision making procedure, such as majority 

vote or by consensus. (6, 7) With this dichotomization (presence or absence) 

of the target disease, measures of index test accuracy can be calculated in the 

traditional way. (8, 9)  

Compared to a single test error-prone reference standard, the panel 

diagnosis may improve reference standard accuracy and subsequently reduce 

reference standard bias (5, 10). However, panel diagnoses almost by 

definition lead to imperfect target disease classification, as evidenced by 

studies of panel intra- and interobserver variability. (11-13) Different experts 

within a panel can disagree on the presence/absence of the target disease, in 

particular in patients presenting with atypical signs and symptoms. Forcing 

a dichotomous decision in every individual thus ignores this uncertainty 

about the target disease status. Simply ignoring this uncertainty may lead to 

biased accuracy estimates of the index test under study. This has already 
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2 
been demonstrated for composite reference standards using explicit 

decision rules (e.g. at least two out of four tests should be positive to assign 

a target disease present classification to an individual) (14, 15), but has not 

been described in the context of expert panels, which is the goal of this 

paper. 

In this study we aim to assess the impact of dichotomization of the target 

disease classification on accuracy estimates of the index test. An expert panel 

with multiple imperfect tests at its disposal will be used as a reference test. 

We first present an example to illustrate how ignoring uncertainty in the 

target disease classification can lead to biased accuracy estimates of the index 

test. Readers familiar with this type of bias can skip this section (“The source 

of bias: an illustrative example”) and directly go to the description of the 

methods and results of our simulation study, illustrating the bias due to 

dichotomization of target disease status across a range of scenarios. 

Implications of the results for diagnostic research will be discussed and 

alternative strategies for reducing bias in index test accuracy estimates will 

be proposed.  
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The source of bias: an illustrative example 
Consider the following hypothetical example of 1,000 individuals with a 

target disease prevalence of 40% to which an index test with sensitivity and 

specificity 80% is applied. Assuming we have a perfect reference standard, 

we can construct Table 1, which we will refer to as the true contingency 

table.  

Table 1. True contingency table for a hypothetical index test when 
compared to a gold standard. 

 

Now suppose that there is no perfect reference standard, and that the disease 

classification is made by a panel of experts. These expert panels are 

frequently applied in various clinical domains such as psychiatric disorders 

and cardiovascular diseases when a single reference standard is lacking. (6) 

For example, when assessing screening tools for diagnosis of autism 

spectrum disorder, expert panels are used as a reference standard, which 

requires (subjective) interpretation of different components from the 

Diagnostic and Statistical Manual of Mental Disorders (DSM). (16, 17) Note 

that in this paper we will not consider a continuous spectrum of target 

disease severity, but rather focus on expert panel’s uncertainty regarding the 

presence or absence of a single well-defined target condition. 

Expert panels combine the results of several imperfect tests to make the 

final classification whether the target disease is present or absent. Each 

separate test available to the expert panel will hereinafter be referred to as a 

“component test”. We use the term component test in a broad sense, as any 

piece of information (e.g. patient characteristic, biomarker, imaging) that 

might help in making the disease classification. In this example we use two 

dichotomous component tests, the first having a true sensitivity and 

 
Disease present 

(according to gold 
standard) 

Disease absent 
(according to gold 

standard) 
 

Index test + 320 120 440 

Index test - 80 480 560 

 400 600 1000 
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specificity of 80%, and the second a sensitivity and specificity of 90%. For 

simplicity, we assume that the errors of these component tests are 

uncorrelated, in other words the test results are conditional independent 

given the true target disease status. (18) 

We simulate the implicit decisions by an expert panel on target disease 

classification by making them explicit, solely based on the assigned 

probability of target disease presence given the component test results for 

any given individual. Individuals are then classified to target disease present 

(i.e. probability of disease presence of 50% or higher) or target disease 

absent (i.e. probability of disease presence below 50%). We assume that the 

panel is well calibrated (they assign correct target disease presence 

probabilities) and consistent (they apply the same threshold value of 50% 

across all individuals when dichotomizing). Ultimately the panel is forced to 

classify each individual as either being disease present or disease absent. This 

final classification is used to calculate sensitivity and specificity of the index 

test. Because this is a simulation study, we know the true values of sensitivity 

and specificity of the index test, and therefore the corresponding bias can 

be calculated. 

In this example, there are four possible component reference test patterns 

(++, +-, -+, --). The probability of observing a specific test pattern is given 

by the sensitivity (Se) and specificity (Sp) of the component tests, and the 

target disease prevalence (prev). When a ++ pattern is observed, the first 

and second component test are positive. This can occur in two ways: an 

individual has the disease and these are two true positive component test 

results (with probability: prev*Secomp1*Secomp2) or an individual does not have 

the disease and these are two false positive component test results (with 

probability: (1-prev)*(1-Spcomp1)*(1-Spcomp2)). The total probability of 

observing pattern ++ is the sum of these two probabilities. This can be 

generalized for each possible component test pattern, obtaining the 

following formulas for the probability of each pattern: 
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Formulas for the probability for observing each possible component test pattern 

Pattern (k) Probability for diseased cases   Probability for non-diseased cases 

1 + + prev*Secomp1*Secomp2 + (1-prev)*(1-Spcomp1)*(1-Spcomp2) 

2 - + prev*(1-Secomp1)*Secomp2 + (1-prev)*Spcomp1*(1-Spcomp2) 

3 +- prev*Secomp1*(1-Secomp2) + (1-prev)*(1-Spcomp1)*Spcomp2 

4 - - prev*(1-Secomp1)*(1-Secomp2) + (1-prev)*Spcomp1*Spcomp2 

The probability of target disease presence given a component test pattern 

can be derived by using Bayes Theorem. (19, 20) For pattern ++, this is 

post-test probability is given by the probability of observing that pattern 

among diseased (probability: prev*Secomp1*Secomp2) divided by the total 

probability of getting that pattern (probability: prev*Secomp1*Secomp2 + (1-

prev)*(1-Spcomp1)*(1-Spcomp2)). Applying this line of reasoning to all 

component test patterns leads to the following formulas: 

Formulas for the probability of disease presence within a component test pattern 

Pattern (k) Probability for diseased cases   Probability for non-diseased cases 

1 + + prev*Secomp1*Secomp2 / (prev*Secomp1*Secomp2+ 
(1-prev)*(1-Spcomp1)*(1-Spcomp2)) 

2 - + prev*(1-Secomp1)*Secomp2 / (prev*(1-Secomp1)*Secomp2+ 
(1-prev)*Spcomp1*(1-Spcomp2)) 

3 +- prev*Secomp1*(1-Secomp2) / (prev*Secomp1*(1-Secomp2)+ 
(1-prev)*(1-Spcomp1)*Spcomp2) 

4 - - prev*(1-Secomp1)*(1-Secomp2) / (prev*(1-Secomp1)*(1-Secomp2)+ 
(1-prev)*Spcomp1*Spcomp2) 

For our illustrative example, in Table 2 we can see that the probability of 

observing a component test pattern with two positive test results is 30%, 

and within that component test pattern there is 96% (not 100%) probability 

of truly having the target disease. Hence in a sample of 1,000 individuals, the 

expert panel will assign the target disease to all 300 individuals having the 

++ pattern, of which only 288 would truly have the target disease. 
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Table 2. Distribution pattern of two component tests, mapped on a 
theoretical sample. The table shows how a sample with a known target 
disease prevalence, is classified by the expert panel. Dichotomous class 
(DC) is assigned using a threshold for target disease presence probability of 
50%. 

Test 
pattern 

Prob. 
test 
pattern 

Prob. 
target 
disease 
presence 

Dicho-
tomous 
class 
(DC) 

Total1 
n=1,000 

Truly 
disease 
present 
(D1) 

Truly 
disease 
absent 
(D0) 

+ + 0.30 0.960 1 300 288 12 

-  + 0.12 0.600 1 120 72 48 

+ - 0.14 0.229 0 140 32 108 

-  - 0.44 0.018 0 440 8 432 

1Although individuals are classified as diseased (DC1) or non-diseased (DC0), note that not 
all of them are. 

In practice, the expert panel makes a dichotomous decision about the 

presence of the target disease for each individual based on the results of the 

two component reference tests. To reach this decision, the expert panel 

applies a threshold (either implicitly or explicitly) on the probability of target 

disease being present. An intuitive threshold for dichotomizing disease 

status would be 50%, such that each individual is classified to the most likely 

disease status (present or absent). In our example this would result in all 

individuals with component test pattern ++ and -+ being classified as 

disease present, as their probabilities of having the disease are higher than 

50% (96% and 60% respectively). The remaining component test patterns 

have probabilities below the 50% threshold, consequently individuals with 

these patterns will be classified as disease absent. We will refer to component 

test patterns above the threshold as dichotomous classification 1 (DC1) and 

under the threshold as dichotomous classification 0 (DC0). 

In our illustrative example, the expected distribution of the 1,000 individuals 

can be calculated using the probability of observing a component test 

pattern and the probability of target disease presence. (Table 2) In DC1 there 

are two test patterns (++ and -+) in which 420 (300+120) individuals are 

classified as target disease present, and of which 360 (288+72) are truly 

diseased. In the test patterns in DC0 (+- and --) zero individuals are 
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classified as diseased, whereas in reality 40 (32+8) are truly diseased. From 

this we can also derive that the prevalence according to the expert panel’s 

classification has changed from 40% to 42%. Note that within DC1, only 

85% truly has the disease present, and in DC0 93% is truly non-diseased, 

hence a 15% overestimation of the number of diseased individuals in DC1, 

and 7% overestimation of non-diseased individuals in DC0. 

Now we can construct the contingency table that we would expect to obtain 

for our index test when compared to the expert panel’s target disease 

classification. DC1 consists of component test patterns ++ and -+, of which 

we know that 360 individuals are diseased (D1) and that the remaining 60 

are non-diseased (D0). For simplicity, we will denote these diseased 

individuals by N(D1, DC1) and non-diseased individuals by N(D0, DC1). 

Given a positive index test and its sensitivity (Seindex) and specificity (Spindex), 

we can calculate the number of true positives Seindex * N(D1, DC1) and 

number of false positives (1 - Spindex) * N(D0, DC1) in DC1. This can also 

be done given a negative index test, and for DC0, using the following 

formulas: 

Index test + | DC1 = Seindex * N(D1, DC1) + (1 - Spindex) * N(D0, DC1) 

Index test - | DC1  = Spindex * N(D0, DC1) + (1 - Seindex) * N(D1, DC1) 

Index test + | DC0 = Seindex * N(D1, DC0) + (1 - Spindex) * N(D0, DC0) 

Index test - | DC0 = Spindex * N(D0, DC0) + (1 - Seindex) * N(D1, DC0) 

The resulting contingency table, which we refer to as the observed 

contingency table, can be found in Table 3. This table shows the shift 

between true disease status by a perfect (gold) reference standard and 

observed disease status after disease classification by the expert panel 

(marked by the grey arrows). The misclassification of true diseased and non-

diseased individuals resulting in the observed classification is indicated by 

the red arrows. Consider the cell with a positive index test and disease 

present according to classification. In the true contingency table, this 

consisted of 320 individuals, while in the observed contingency table, this 

number has dropped to 300. 
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Table 3. An illustrative example showing the differences in contingency 
tables and accuracy when comparing an index test to a gold standard (true) 
versus an index test to an expert panel using two imperfect tests (observed). 
The shift between true and observed disease classification is given by the 
grey arrows. The shift between disease present and disease absent, resulting 
in the observed classification, is indicated by the red arrows. Note that out 
of the 420 individuals classified as disease present by the expert panel, only 
360 actually have the disease, and out of the 580 individuals classified as 
disease absent by the expert panel, only 540 actually do not have the disease. 
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Values for sensitivity and specificity of the index test are calculated from the 

observed table, yielding 71.4% and 75.9% respectively, which, compared to 

the true values of 80%, correspond to a bias of 8.6% and 4.1% respectively. 

We can also derive the total proportion of misclassifications by adding the 

misclassifications in disease classification by the expert panel in both 

directions and dividing by the total number of individuals. For our example 

this yields (40+60) / 1000 = 10% misclassification. 

Methods of the simulation study 
We investigated a series of hypothetical scenarios to study the impact of 

dichotomous classification of the target disease on the bias in sensitivity and 

specificity estimates of an index test. Each scenario consists of an expert 

panel with multiple component tests at their disposal, with varying accuracy 

(all less than 100%). The calculations as described in the preceding 

illustrative example were used. For further background on the methods 

used, we refer to the Supplementary file. 

Ten different expert panel scenarios were assessed in our simulation study, 

described in Table 4. In the base scenario the expert panel was provided 

with four component tests, each with a sensitivity and specificity of 70%, 

and the target disease prevalence was 20%. In other scenarios one of the 

following factors was varied: the number of component tests (two, four, and 

eight), the diagnostic accuracy of these component tests (60%, 70%, 80%, 

and a combination of high and low accuracy component tests), and target 

disease prevalence (10%, 20%, and 40%). Threshold for dichotomizing and 

assigning target disease status was kept constant at 50% across all scenarios 

(i.e. classification to the most likely target disease status). In all scenarios we 

assumed conditional independence between results of component tests. 
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Table 4. Description of expert panel scenarios, which include changing the 
number of component tests (a), the accuracy of component tests (b), and 
the target disease prevalence (c). A probability of 50% was chosen as a 
threshold for dichotomization of the target disease. The base scenarios are 
marked with an asterisk. 

Performance of the expert panel 

Diagnostic performance of the expert panel was assessed by calculating the 

area under the receiver operator characteristic (AUROC) and the proportion 

of misclassifications. (21) AUROC is a measure for overall discriminative 

performance of the expert panel, that can be derived using probability of 

target disease presence as a continuous cut-off threshold. The proportion of 

misclassifications was calculated as the proportion of incorrect target disease 

classifications using the aforementioned threshold of 50% for 

dichotomization. 

Bias in sensitivity and specificity estimates of the index test 

We calculated the resulting bias in sensitivity and specificity estimates of the 

index test after dichotomous target disease classification by the reference 

standard for each of the scenarios. A comprehensive range (0 – 100%) of 

true index test sensitivity and specificity values was analysed to assess the 

amount and direction of bias in each scenario. Only either index test 

sensitivity or specificity was varied at a time. When varying index test 

Scenario # of 
tests 

Component 
reference 
test 
sensitivity 

Component 
reference 
test 
specificity 

Target 
disease 
prevalence 

Low number of testsa 2 70% 70% 20% 
Medium number of 
testsa* 

4 70% 70% 20% 

High number of testsa 8 70% 70% 20% 
Low accuracyb 4 60% 60% 20% 
Medium accuracyb* 4 70% 70% 20% 

High accuracyb 4 80% 80% 20% 
Mirrored accuracyb 4 60%-70%- 

80%-90% 
90%-80%- 
70%-60% 

20% 

Low prevalencec 4 70% 70% 10% 
Medium prevalencec* 4 70% 70% 20% 
High prevalencec 4 70% 70% 40% 
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sensitivity, the specificity was kept constant at 80%. In a similar way, when 

specificity was varied, the sensitivity was fixed at 80%. Conditional 

independence between the index test and the component tests was assumed. 

Results of the simulation study 

Performance of the expert panel 

The expected distribution of component reference test patterns and their 

corresponding probability of target disease presence are visualized in Figure 

1. The bars visualize the expected relative frequencies of target disease 

probabilities corresponding to different component test patterns. The total 

number of these patterns possible for a given scenario is given by two to the 

power of the number of component tests. (i.e. 24 = 16 patterns for the base 

scenario) One bar may contain more than one component test pattern when 

patterns have an equal probability of target disease presence. Target disease 

probability estimates towards the extremes (zero or one) are likely to yield 

the least incorrect classifications; almost all individuals in these patterns are 

likely to be either truly diseased or non-diseased, hence forced 

dichotomization of the expert panel will result in minimal incorrect 

classifications. However when there are patterns around the target disease 

dichotomization threshold (in this case 50%), and probability of observing 

these patterns is high, the likelihood of errors after dichotomization will 

increase. 
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Figure 1 Distribution of component reference test patterns and their 
associated probability of target disease presence, for each scenario. 
Proportion of misclassifications (at a threshold of 50% given by the red 
dotted line) and area under the receiver operator characteristic (AUROC) 
are given as measures of diagnostic performance. If multiple component test 
patterns have the same probability of disease presence, they are aggregated 
together in a bar. The base scenarios are marked with an asterisk. 

 

As shown in the figure, when all component tests have identical accuracy 

many combinations of test patterns will have the same probability of the 

target disease being present. When comparing the scenarios with a low and 

high number of component tests, there was a higher likelihood of observing 

test patterns closer to the extremes for the latter, which resulted in higher 

discrimination (AUROC) and fewer disease misclassifications by the expert 

panel. Similar trends were observed when increasing the accuracy of the 

component tests. In the mirrored accuracy scenario, there was more spread 

in the probability of target disease presence for the various combinations of 

component test patterns, but overall provided similar discriminative 

performance (0.940 vs 0.967) and proportion of misclassifications (0.086 vs 

0.058) compared to the high accuracy scenario. Changes to the target disease 

prevalence did not affect discriminative performance, however it did affect 

the expected number of misclassifications. 
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Bias in sensitivity and specificity estimates of the index test 

Dichotomous target disease classifications by the expert panels in the 

aforementioned scenarios were used to estimate bias in sensitivity and 

specificity for a range of true values of an index test. (Figure 2) In all 

investigated scenarios there was deviation from the reference line, indicating 

that in virtually all cases there is bias in estimates of index test sensitivity and 

specificity. When considering the base scenario, combined with for example 

true values of 80% sensitivity and specificity of the index test, estimates for 

index test sensitivity and specificity by the expert panel were 60% and 75% 

respectively, leading to an absolute bias of 20% and 5%. 

The amount of bias differed across scenarios. Figure 2A shows the shift for 

the low, medium and high number of component test scenarios. A larger 

number of component tests resulted in a lower bias for both index test 

sensitivity and specificity. In a similar fashion, increasing accuracy of 

component tests led to less bias in estimates of sensitivity and specificity. 

The mirrored and high accuracy scenarios showed similar bias in estimates. 

While changes in target disease prevalence did not affect the AUROC of the 

reference standard (Figure 1), it did produce irregular results in terms of bias 

of sensitivity and specificity of the index test. In figure 2C, the bias in 

sensitivity was highest at medium target disease prevalence, lowest at high 

target disease prevalence, and intermediate at the lowest target disease 

prevalence. This can be explained by examining the distribution of test 

patterns shown in Figure 1. The difference in bias of sensitivity and 

specificity estimates of an index test between two scenarios was influenced 

by whether a component test results pattern shifted across the threshold 

used in the dichotomization process. For example, when looking at low and 

medium prevalence scenarios, there was a shift of the fourth test pattern 

across the 50% threshold. Individuals with that test pattern result were 

suddenly all classified as disease being absent in the low prevalence scenario, 

and all as disease being present in the medium prevalence scenario. As a 

consequence, there was a strong increase in bias of sensitivity estimates, 

while the effect on specificity bias was limited.  
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Discussion 
Forcing expert panels to dichotomize target disease classification leads to 

both target disease misclassification and biased accuracy estimates of the 

index test under study, even when individuals are consistently classified to 

their most likely target disease status. A series of scenarios were assessed in 

which an expert panel was given a set of component reference tests with 

varying characteristics combined with a range of true accuracy values for the 

index test. Virtually all scenarios lead to biased index test accuracy estimates. 

Increasing the number and/or accuracy of component reference tests 

reduced bias in the index test accuracy estimates. Varying target disease 

prevalence led to irregular shifts in bias of index test accuracy.  

The scenarios that were investigated demonstrated a structural 

underestimation of index test sensitivity and/or specificity when (realistic) 

true values of at least 50% for both parameters were considered. However, 

it would be an error to assume that index test accuracy will always be 

underestimated when expert panels are used as a reference standard in 

diagnostic studies. In particular, the index test results might be correlated 

(conditionally dependent) for a given true disease status, which might lead 

to overestimation rather than underestimation of sensitivity and/or 

specificity of the index test. Also, in case of conditional dependence between 

component reference test results, adding more component tests may not 

always improve estimation of the accuracy of the index test. (14) 

When looking at the distribution of the probability of target disease presence 

for different component test patterns (Figure 1), one might anticipate that a 

symmetrical distribution (i.e. equal distributions left and right of the 

threshold) will cancel out any target disease misclassifications made by a 

reference standard, which should then consequently reduce bias in accuracy 

estimates of the index test. When we simulated a scenario with such a 

symmetrical distribution, bias in estimated index test sensitivity and 

specificity were equal across the range of true values, however more research 

is required to investigate whether this minimalizes bias in sensitivity and 

specificity of the index test. 
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One tempting option in diagnostic studies would be to exclude individuals 

where there is significant uncertainty about the true disease status, as these 

have the highest probability of leading to erroneous target disease 

classification by the expert panel. However, this is ill-advised. Excluding 

cases in which there is uncertainty about the true disease status (i.e. close to 

the threshold) would mean the accuracy of the index test would only be 

generalizable to the assessment of the ‘easy’ cases with a high probability of 

either having or not having the target disease. This obviously does not 

represent the true target population of the index test, hence, such study 

patient exclusion will yield a distorted and too optimistic accuracy of the 

index test. Similar issues have been described for diagnostic case-control 

studies. (22-24) 

Earlier studies have demonstrated similar effects on estimates of sensitivity 

and specificity of index tests when composite reference standards based on 

explicit decision rules were used. (14, 25) Expert panels as reference 

standards deal with similar issues as these composite reference standards, 

resulting in biased index test accuracy estimates. However, unlike composite 

reference standards with explicit decision rules, we studied the effect of 

target disease dichotomization based on the probability of target disease 

presence, which is commonly ignored when developing a composite 

reference standard. A recent paper expressed further concerns regarding 

such types of composite reference standards, and suggested alternatives such 

as latent class models to take into account uncertainty surrounding target 

disease classification. (15)  

An alternative approach to minimize bias from dichotomous classification 

of target disease status, would be to allow for probabilistic target disease 

estimates on a continuous or ordinal scale, which have already been applied 

in a few diagnostic settings. (26, 27) Taking such probabilistic estimates of 

target disease presence is currently seldom being applied in studies 

exploiting expert panels as a reference standard, however have been 

described in the context of record linkage. (28, 29) Some authors have 

suggested obtaining ordinal target disease classes between the traditional 

disease present and absent options, such as “possible disease” and 

“intermediate classes”. (30, 31) Others have suggested using methods such 
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as diagnostic probability functions based on expert diagnosis to obtain target 

disease probabilities. (27) Although it has been emphasized that eliciting 

expert judgments on disease status is a complex task. (32) 

To fully appreciate the findings of this paper, there are some limitations that 

should be considered. First, in our simulations we have only considered 

dichotomous component reference tests, whereas in practice some test 

results may produce continuous outcomes. Unless these continuous tests 

can be used to perfectly separate individuals with and without the target 

disease, uncertainty in target disease classifications will remain present. 

Therefore, bias in index test accuracy estimates after dichotomization of 

target disease classification based on continuous diagnostic component 

reference tests, is also to be anticipated. 

Secondly, we have not included conditional dependence between 

component reference tests nor between component tests and the index test. 

Conditional dependence is likely to be present in real-life situations, for 

instance, because tests are likely to make fewer errors in more severe cases 

compared to less severe cases. (33) We anticipate that similar problems as 

observed would occur for test results that are conditionally dependent. The 

exact influence of dependent test results may be a complicated interplay 

between the mechanism of the dependence between the tests, which may 

obviously vary between settings, the accuracy of the component tests and 

index test, and the prevalence of the disease. (14) While our results may be 

viewed as a simplification, the fact that the bias occurs even in the simplest 

situations should already be of great concern. 

Finally, we have assumed that the expert panel is able to correctly estimate 

the target disease probability for all individuals, and that these individuals 

are consistently classified to the target disease status with the highest 

probability. In diagnostic research this may not always be realistic, especially 

when target disease probability estimates of individuals are centred around 

the threshold for dichotomous classification. Thus we may expect even 

more target disease classification errors when not all subjects are classified 

to the target disease status with the highest probability. 
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Our findings are not only applicable to expert panels serving as a reference 

standard in diagnostic studies, but also to other situations in which a 

dichotomous outcome classification is used, and uncertainty is not taken 

into account. Composite reference standards in diagnostic research (34, 35), 

adjudication committees used to classify endpoints in intervention or 

prognostic studies (36), and probabilistic medical record linkage (28, 37, 38), 

frequently force dichotomisation from their respective reference standards. 

As a result, similar biases may occur.  

We conclude that dichotomizing target disease classification by a reference 

standard based on multiple imperfect component tests, such as a panel 

diagnosis, leads to biased accuracy estimates of the index test in a simulation 

study. The direction and magnitude of these biases were found to depend 

on the combination of the number of component reference tests, their 

accuracy, and the target disease prevalence. The bias found in this simulation 

study may not reflect the true bias in an empirical setting, as more complex 

interactions, such as conditional dependence and misclassification by expert 

panels (e.g. classifying an individual with a low probability of disease, as 

target disease present) may be at play. To potentially reduce these biases, 

alternatives to dichotomous classification of target disease by the reference 

standard should be sought after, such as obtaining target disease probability 

estimates per individual from the expert panel, or via a latent class analysis 

(39). Researchers involved in diagnostic studies that employ expert panels as 

a reference standard should be wary that solely asking for presence or 

absence of the target disease will limit the ability of unbiased estimation of 

index test accuracy. Performance of novel diagnostic tests needs to be 

established accurately in diagnostic research, and it should not have to suffer 

from the imperfectness of reference standard that it is being compared to.  
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2 
Appendix 

Strengthening the Reporting of Empirical Simulation Studies 

(STRESS)Discrete-event simulation guidelines STRESS-DES  

 

Section/Subsection Item Recommendation 

1. Objectives   

Purpose of the model 1.1 Explain the background and objectives 

for the model.  

The model aims to provide insight in the 
diagnostic performance of an expert 
panel, that have a number of component 
tests at their disposal, and provide insight 
in the bias in diagnostic accuracy 
estimates when an index test were to be 
assessed by such a panel. 

Model Outputs 1.2 Define all quantitative performance 

measures that are reported, using 

equations where necessary. Specify how 

and when they are calculated during the 

model run along with how any measures 

of error such as confidence intervals are 

calculated. 

Proportion of misclassifications 

Area under the receiver-operator 

characteristic curve (AUROC) 

Percentage points bias in sensitivity 

Percentage points bias in specificity  

Experimentation 

Aims 

1.3 If the model has been used for 

experimentation, state the objectives that 

it was used to investigate. 

  

a.) Scenario based analysis – Provide 

a name and description for each 

scenario, providing a rationale for 

the choice of scenarios and 

ensure that item 2.3 (below) is 

completed. 

See table below 

 

b.) Design of experiments – Provide 

details of the overall design of the 
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experiments with reference to 

performance measures and their 

parameters (provide further 

details in data below). 

First, for each scenario the 

distribution of test patterns is 

visually displayed against the 

likelihood of observing those 

patterns. For each scenario the 

proportion of misclassifications 

and AUROC were calculated. 

Second, for each scenario the 

estimated sensitivity and 

specificity of an index test is 

plotted against a range of true 

values of sensitivity and 

specificity of the index test. This 

shows the amount of bias for a 

given scenario. 

 

c.) Simulation Optimisation – (if 

appropriate) Provide full details 

of what is to be optimised, the 

parameters that were included 

and the algorithm(s) that was be 

used. Where possible provide a 

citation of the algorithm(s). 

Not applicable 
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Table 1 

 

2. Logic   

Base model overview 

diagram 

 

 

 

 

 

 

 

 

 

 

 

 
 

2.1 Describe the base model using appropriate 

diagrams and description. This could include one 

or more process flow, activity cycle or equivalent 

diagrams sufficient to describe the model to 

readers. Avoid complicated diagrams in the main 

text. The goal is to describe the breadth and depth 

of the model with respect to the system being 

studied.  

Illustration below depicts the process of 

determining test pattern options (Test 1 – 4), 

probability of observing that pattern (pP), 

probability of disease (pD1) and non-disease 

(pD0) in those patterns, the dichotomous class 

that pattern belongs to (Dich_class), and a worked 

out example for 100.000 individuals.  

  

Scenario # of 
tests 

Component 
reference 
test 
sensitivity 

Componen
t reference 
test 
specificity 

Target 
disease 
prevalence 

Low number of testsa 2 70% 70% 20% 
Medium number of 
testsa* 

4 70% 70% 20% 

High number of testsa 8 70% 70% 20% 
Low accuracyb 4 60% 60% 20% 
Medium accuracyb* 4 70% 70% 20% 

High accuracyb 4 80% 80% 20% 
Mirrored accuracyb 4 60%-70%- 

80%-90% 
90%-80%- 
70%-60% 

20% 

Low prevalencec 4 70% 70% 10% 
Medium prevalencec* 4 70% 70% 20% 
High prevalencec 4 70% 70% 40% 
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Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Base model logic 2.2 Give details of the base model logic. Give 

additional model logic details sufficient to 

communicate to the reader how the model works. 

Probability of observing a test pattern in 

combined with the probability of disease for that 

pattern. These can be used to determine the 

dichotomous class (0 or 1) based on a predefined 

threshold, in this case 0.5. For a given sample, the 

proportion of truly diseased and truly non-

diseased can be calculated. These truly diseased 

and non-diseased samples (Sample100K_D1 and 

Sample100K_D0) can be used to calculate the 

number of positive and negative test results for an 

index test with a given sensitivity and specificity. 

(results not shown in table) 

Detailed instructions on how to obtain probability 

of pattern and/or disease and how these can be 

used to calculate the index test positives and 

negatives can be found in the manuscript under 

“Numerical example”.  

 

Scenario logic 2.3 Give details of the logical difference between the 

base case model and scenarios (if any). This could 

be incorporated as text or where differences are 

substantial could be incorporated in the same 

manner as 2.2. 

Base-case scenario is defined as 4 component 

tests, each with 70% sensitivity and specificity, 
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and a prevalence of 0.2. The logic behind the 

scenarios is that each of these separate 

components was varied to a value lower and 

higher than the base-case values. For example: the 

low diagnostic accuracy scenario, meant using 

60% instead of 70% sensitivity and specificity. For 

accuracy, a mirrored accuracy option was taken 

into account, since it was deemed to reflect a 

realistic situation in which expert panels are given 

both high sensitivity - low specificity tests, and 

low sensitivity - high specificity tests. 

 

Algorithms 2.4 Provide further detail on any algorithms in the 

model that (for example) mimic complex or 

manual processes in the real world (i.e. scheduling 

of 

arrivals/appointments/operations/maintenance, 

operation of a conveyor system, machine 

breakdowns, etc.). Sufficient detail should be 

included (or referred to in other published work) 

for the algorithms to be reproducible. Pseudo-

code may be used to describe an algorithm. 

Any formulas used to calculate the 

aforementioned outcomes can be found in the R-

script alongside the publication 

 

Components 2.5 2.5.1 

Entities 

 

 

 

Give details of all entities within the 

simulation including a description of 

their role in the model and a 

description of all their attributes. 

Entities are described here as the 

parameters used for the simulations. 

Probability of test pattern (pP): used 

in combination with probability of 

disease to determine the distribution 

of patterns across the  

Probability of disease (pD1): given a 

certain pattern, the probability of 

disease for an individual within that 

pattern. 

Dich_class: indicator to highlight 

whether individuals in a test pattern 
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would be classified as diseased (D1) 

or non-diseased (D0) 

Sample100K: pP, pD1, and 

dich_class are applied to a 

hypothetical sample of 100.000 

individuals. This ultimately allows 

for calculation of 2x2 tables and 

with that allows for calculation of 

misclassifications, as well as bias in 

sensitivity and specificity estimates 

of an index test. 

2.5.2 

Activities  

 

Describe the activities that entities 

engage in within the model. Provide 

details of entity routing into and out 

of the activity.  

Not applicable 

2.5.3 

Resources 

List all the resources included within 

the model and which activities make 

use of them. 

No resources, only simulated data 

2.5.4 

Queues  

 

Give details of the assumed queuing 

discipline used in the model (e.g. 

First in First Out, Last in First Out, 

prioritisation, etc.). Where one or 

more queues have a different 

discipline from the rest, provide a 

list of queues, indicating the queuing 

discipline used for each. If reneging, 

balking or jockeying occur, etc., 

provide details of the rules. Detail 

any delays or capacity constraints on 

the queues. 

Not applicable 

2.5.5 

Entry/Exit 

Points  

 

Give details of the model 

boundaries i.e. all arrival and exit 

points of entities. Detail the arrival 

mechanism (e.g. ‘thinning’ to mimic 

a non-homogenous Poisson process 

or balking) 

Not applicable 
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3. Data   

Data sources 3.1 List and detail all data sources. Sources may 

include: 

 

 Interviews with stakeholders, 

 Samples of routinely collected data, 

 Prospectively collected samples for the 

purpose of the simulation study,  

 Public domain data published in either 

academic or organisational literature.  

Provide, where possible, the link and 

DOI to the data or reference to 

published literature. 

 

All data source descriptions should include details 

of the sample size, sample date ranges and use 

within the study.  

All data have been simulated. Number of 

simulated patients, sensitivity and specificity of 

component tests, target disease prevalence, and 

range of sensitivity and specificity of the index 

test have been chosen based on scenarios, ranges 

or assumptions. 

 

Pre-processing 3.2 Provide details of any data manipulation that has 
taken place before its use in the simulation, e.g. 
interpolation to account for missing data or the 
removal of outliers. 
No empirical data was used, hence no data 

manipulation has taken place 

 

Input parameters 3.3 List all input variables in the model. Provide a 

description of their use and include parameter 

values. For stochastic inputs provide details of any 

continuous, discrete or empirical distributions 

used along with all associated parameters. Give 

details of all time dependent parameters and 

correlation. 

 

Clearly state: 
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 Base case data 

 Data use in experimentation, where 

different from the base case. 

 Where optimisation or design of 

experiments has been used, state the 

range of values that parameters can take. 

 

Where theoretical distributions are used, state 
how these were selected and prioritised above 
other candidate distributions. 
For the variables in the model (on which the 

scenarios are based) we refer to table 1 (above). 

No distributions were used as we performed a 

deterministic assessment (no sample data was 

used). Conditional dependency between 

component tests, although optional, was not 

assessed (as pointed out in the manuscript) to 

avoid additional complexity. 

Assumptions 3.4 Where data or knowledge of the real system is 

unavailable what assumptions are included in the 

model? This might include parameter values, 

distributions or routing logic within the model. 

No empirical data was used for these assessments. 

Scenarios, and with that the values for sensitivity, 

specificity, and prevalence, were chosen 

determined after deliberation amongst the 

researchers  

4. Experimentation    

Initialisation 4.1 Report if the system modelled is terminating or 

non-terminating. State if a warm-up period has 

been used, its length and the analysis method used 

to select it. For terminating systems state the 

stopping condition. 

Not applicable 

 

State what if any initial model conditions have 

been included, e.g., pre-loaded queues and 

activities. Report whether initialisation of these 

variables is deterministic or stochastic. 

Not applicable 
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Run length 4.2 Detail the run length of the simulation model and 

time units. 

Model can be run within seconds 

 

Estimation approach 

 

4.3 State the method used to account for the 

stochasticity: For example, two common methods 

are multiple replications or batch means. Where 

multiple replications have been used, state the 

number of replications and for batch means, 

indicate the batch length and whether the batch 

means procedure is standard, spaced or 

overlapping. For both procedures provide a 

justification for the methods used and the number 

of replications/size of batches. 

Model is deterministic, as no observational data is 

used there is no uncertainty. Hence there was no 

need to account for stochasticity. 

5. Implementation    

Software or 

programming language 

5.1 State the operating system and version and build 

number.  

Windows 7 Enterprise SP1 

 

State the name, version and build number of 

commercial or open source DES software that the 

model is implemented in.  

Rstudio, version 1.1.383 

 

State the name and version of general-purpose 

programming languages used (e.g. Python 3.5).  

R’s programming language 

 

Where frameworks and libraries have been used 

provide all details including version numbers. 

library(ggplot2) 

library(data.table) 

library(e1071) # for bincombinations 

library(pROC) 

library(ROCR) 

library(vcdExtra) 

library(grid) 

library(Hmisc) 
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library(stringr) 

library(ggridges) 

library(plyr) 

 

Random sampling  5.2 State the algorithm used to generate random 

samples in the software/programming language 

used e.g. Mersenne Twister. 

No random sampling, just discrete simulations are 

run 

 

If common random numbers are used, state how 

seeds (or random number streams) are distributed 

among sampling processes. 

No random sampling, just discrete simulations are 

run 

 

Model execution 5.3 State the event processing mechanism used e.g. 

three phase, event, activity, process interaction.  

Not applicable 

 

Note that in some commercial software the event processing 

mechanism may not be published. In these cases authors 

should adhere to item 5.1 software recommendations. 

 

State all priority rules included if entities/activities 

compete for resources.  

Not applicable 

 

If the model is parallel, distributed and/or use 

grid or cloud computing, etc., state and preferably 

reference the technology used. For parallel and 

distributed simulations the time management 

algorithms used. If the HLA is used then state the 

version of the standard, which run-time 

infrastructure (and version), and any supporting 

documents (FOMs, etc.) 

Not applicable 

 

System Specification 5.4 State the model run time and specification of 

hardware used. This is particularly important for 

large scale models that require substantial 
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computing power. For parallel, distributed and/or 

use grid or cloud computing, etc. state the details 

of all systems used in the implementation 

(processors, network, etc.)  

Not applicable, model can be run within seconds 

6. Code Access   

Computer Model 

Sharing Statement 

6.1 Describe how someone could obtain the model 

described in the paper, the simulation software 

and any other associated software (or hardware) 

needed to reproduce the results. Provide, where 

possible, the link and DOIs to these. 

R-code is provided alongside the manuscript 

publication 
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“The more you know, the harder you will find it 

To make up your mind, it doesn't really matter if you find 

You can't see which grass is greener 

Chances are it's neither, and either way it's easier 

To see the difference, when you're sitting on the fence” 
 

 
 

Tim Minchin, Australian comedian  
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Abstract 
Introduction: Expert panels, used as reference standard in diagnostic 

accuracy studies, typically classify each patient as having or not having the 

target condition, even when they have remaining uncertainty about that 

classification. This has been shown to lead to biased diagnostic accuracy 

estimates of the index test. We aim to show how probabilistic estimates of 

presence of a target condition elicited from an expert panel can be used in 

diagnostic accuracy research. 

Methods: The SPACE (SePsis in Acutely ill patients in the Emergency 

department) study, aimed at investigating the diagnostic value of clinical 

decision rules (SIRS, qSOFA, CBJ) for diagnosis of sepsis in the emergency 

room, was used as a case study. Both dichotomous (i.e. present or absent) 

and probabilistic estimates of sepsis status were obtained from the expert 

panels. Measures of diagnostic accuracy were calculated using three 

approaches: (1) (traditional) dichotomous sepsis classification; (2) an 

approach using probabilistic estimates for presence of sepsis as weights; (3) 

an approach using these probabilistic estimates in combination with the 

diagnostic odds ratio (DOR). 

Results: A total of 306 patients were included in the analysis. A skewed 

distribution of probabilistic estimates for the presence of sepsis by the panel 

was observed (median=0.30). The panel expressed considerable uncertainty 

whether sepsis was present or not (probabilities between 0.2 and 0.8) in 57% 

of patients. Estimates of diagnostic accuracy varied considerably between 

the dichotomous and two probabilistic approaches, but also between the 

two probabilistic approaches. For example, sensitivity of SIRS was 91% for 

the dichotomous approach, 74% for the probabilistic weighting approach, 

and 99% for probabilistic DOR approach. Specificity was 46%, 47% and 

60% for these approaches respectively.  

Conclusions: Eliciting probabilistic estimates of target disease presence 

from expert panels, can provide valuable insight in the uncertainty that is 

normally ignored in dichotomous target disease classification. Different 

approaches exist on how to incorporate this uncertainty when estimating 

diagnostic accuracy measures and results can vary substantially depending 
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on the  assumptions made. When substantial uncertainty about the final 

diagnosis is present in a considerable proportion of patients, it may be 

questioned whether the diagnostic accuracy framework is still useful. 
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Introduction 
Detecting sepsis in patients presenting at the emergency department is of 

vital importance, as this could progress into septic shock which is associated 

with high mortality and morbidity. (1, 2) Diagnosing sepsis is challenging, 

due to a heterogeneous clinical presentation, and complex underlying 

pathophysiology. Hence numerous diagnostic accuracy studies have been 

performed, looking at index tests or clinical decision rules to improve clinical 

decision-making for patients suspected of sepsis. For sepsis, a single 

reference test providing error-free classification of the target condition is 

not available. (3-5) One proposed solution for such situations is to use an 

expert panel, in which a group of experts assess multiple relevant pieces of 

information (e.g. patient characteristics, diagnostic tests, follow-up 

information, and response to treatment) to make a final target condition 

classification. (6) 

Typically, experts are asked to provide a dichotomous classification of the 

target condition (i.e. target condition present or absent) for each patient. 

When there is disagreement between experts, a final decision on target 

disease status of an individual can be made through majority vote, or 

deliberation until consensus is reached. (7) After obtaining the final target 

condition classification for each patient, measures of diagnostic accuracy 

(e.g. sensitivity, specificity) of the index test or clinical decision rule can be 

calculated in the traditional way. (4, 8) In this traditional approach, any 

remaining uncertainty among experts about the dichotomous target 

condition classification that may be present in certain patients, is basically 

ignored.  

We recently showed in a simulation study that forcing dichotomous target 

condition classification by expert panels, thus ignoring any uncertainty in 

target disease classification, introduces bias in estimates of index test 

diagnostic accuracy. (9) This study looked at various scenarios in which we 

varied the number and accuracy of tests available to the expert panel, as well 

as the target disease prevalence.  

Eliciting probabilistic estimates of patient target disease status from expert 

panels may be a more sound alternative to dichotomous target disease 
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classification. This will allow the panel to provide the likelihood of presence 

of the target condition (“probabilistic approach”), rather than the 

dichotomous classification of presence or absence of the target condition 

(“dichotomous approach”). Although probabilistic estimates of target 

condition presence may provide less biased estimates of diagnostic accuracy 

of the index tests, there is still the methodological challenge of calculating 

diagnostic accuracy measures for the index test, as the contingency table 

cannot be constructed in the traditional way. 

The goal of this paper is to demonstrate how probabilistic estimates for 

presence of the target condition can be used to calculate diagnostic accuracy 

outcomes. Furthermore, we aim to explore and investigate how diagnostic 

accuracy measures of index tests differ between the traditional dichotomous 

approach, and the approach using probabilistic estimates of presence of the 

target condition. We will use a real-life diagnostic accuracy study as a case 

study: the SPACE study for prediction of sepsis in suspected patients in the 

emergency room. 

Methods 
Our aim is to compare and investigate difference in estimates of diagnostic 

accuracy between the dichotomous and two different probabilistic 

approaches when using an expert panel to obtain the final diagnosis. First 

we will briefly illustrate how the dichotomous approach is used to for 

traditional calculation of diagnostic accuracy of an index test. Next we 

explain what steps need to be taken to calculate diagnostic accuracy when 

using estimates for probability that the target condition is present. Then we 

describe how that information was acquired and used for our illustrative 

example, the SPACE study. 

Dichotomous approach 

The dichotomous approach is the most commonly used method for 

calculating diagnostic accuracy of an index test when using an expert panel 

as the reference standard. The basic concept is that each expert (preferably 

from different medical disciplines) in the panel provides the probability that 

the target condition is present. Final target condition classification is often 
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based majority vote, or on consensus between experts through deliberation. 

(5) Positive and negative index test results can be cross-classified with the 

final dichotomous target condition classification in a contingency table, 

allowing for calculation of diagnostic accuracy measures in the traditional 

way. (Table 1) 

Table 1. Hypothetical example of how the contingency table for calculating 

diagnostic accuracy of an index test can be constructed, using the 

dichotomous target condition classification by the expert panel. TP = true 

positive; FP = false positive; TN = true negative; FN = false negative. 

 

 
Disease 
present 

Disease 
absent 

 

Index test 
positive 

∑TP = 2 ∑FP = 1 3 

Index test 
negative 

∑FN = 1 ∑TN = 2 3 

 3 3  

 

  

Patient Expert panel 
dichotomous target 
condition 
classification  

Index test 
result 

TP FP TN FN 

1 Present Positive 1 - - - 

2 Absent Negative - - 1 - 

3 Absent Positive - 1 - - 

4 Present Positive 1 - - - 

5 Absent Negative - - 1 - 

6 Present Negative - - - 1 
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Probabilistic approach  

In the probabilistic approach experts are instructed to give the probability 

that the target condition is present for each individual. This allows the 

experts to express any remaining uncertainty regarding the target condition 

status. When a probability of target condition presence of 80% is provided 

to each individual in a group of 100 patients, the (true) number of patients 

having the target condition would be 80. Of course, in absent of a gold 

standard, it is not exactly known which patients in the total group have the 

target condition. Our assumption is that the probabilities of an expert panel 

are not systematically biased, in other words, the estimated probabilities of 

the panel are well calibrated. 

Reconstructing the true contingency table based on the probabilistic 

estimates of target condition presence requires additional assumptions and 

calculations. The total number of positive and negative index test results are 

directly observed. The total number of patients with and without sepsis can 

be calculated by summing the expert panel estimates of the target condition 

being present, assuming that these panel estimates are well calibrated. 

Therefore, the row and column totals of the contingency table are known. 

The critical issue now becomes what the distribution of these row and 

column totals is across the remaining cells (i.e. TP, FP, TN, FN) of the 

contingency table. (Table 2) Multiple combinations are still possible, even 

when the row and column totals are known. 

Two methods to estimate the expected contingency table, each using 

different assumptions, will be described in the following sections: the 

probabilistic weighting approach and the probabilistic diagnostic odds ratio 

(DOR) approach. For our case study, both approaches will be demonstrated 

to estimate the contingency table. 
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Table 2. Hypothetical example of how the contingency table for calculating 
diagnostic accuracy of an index test can be constructed, using the 
probability of disease as provided by the expert panel. TP = true positive; 
FP = false positive; TN = true negative; FN = false negative. 

 

 
Disease 
present 

Disease 
absent 

 

Index test 
positive 

? ? 3 

Index test 
negative 

? ? 3 

 3.2 2.8  
 

Probabilistic weighting approach 

This method uses weighting of the index test result for each individual based 

on the probability that the target condition is present according to the expert 

panel. For example, the first case from Table 2 has 0.8 probability that the 

target condition is present, and a positive index test result. Using the 

weighting approach, that positive test result should be taken as 0.8 true 

positive and 0.2 false positive index test result. Doing this for the observed 

positive and negative index test results in all patients, and summing the total, 

would provide an estimate of the expected contingency table. (Table 3) This 

also preserves the previously mentioned row and column totals from the 

observed empirical data. 

  

Patient Probability that target 
condition is present 

Index test 
result 

TP FP TN FN 

1 0.8 1 ? ? ? ? 

2 0.2 0 ? ? ? ? 

3 0.1 0 ? ? ? ? 

4 0.7 1 ? ? ? ? 

5 0.5 0 ? ? ? ? 

6 0.9 1 ? ? ? ? 
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Table 3. The estimated expected contingency table for the hypothetical 
example based on probabilistic estimates of target condition presence using 
the weighting method. 

 
Disease 
present 

Disease 
absent 

 

Index test 
positive 

∑TP = 2.4 ∑FP = 0.6 3 

Index test 
negative 

∑FN = 0.8 ∑TN = 2.2 3 

 3.2 2.8  
 

This method assumes that the expert panel provides the best possible 

estimate of target condition presence, and the index test result will not 

change the estimate by the expert panel for a given patient. In other words, 

the information from the index test being evaluated is already incorporated 

in the probabilistic estimates of target condition presence as given by the 

panel, either directly (the index test results were available to the panel) or 

indirectly (index test information is captured in the result of other test and 

follow-up information). 

Probabilistic diagnostic odds ratio approach 

To estimate the most likely values for the individual cells in the contingency 

table given the observed row and column totals, one additional parameter is 

required. One logical parameter would be the diagnostic odds ratio (DOR). 

The DOR is a single measure of diagnostic accuracy that indicates how the 

ratio of positive versus negative index test results differs between patients 

with and without the target condition, by taking the ratio of these ratios. An 

accurate index test will produce many (true) positive index test results and 

few (false) negative results among patients with the target condition, while 

among patients without the target condition there will be few (false) positive 

index test results and many (true) negative results. Dividing ratios of an 

informative diagnostic test on each other will produce a high DOR, whereas 

in an uninformative diagnostic test, these ratios will be the same among 

patients with and without the target, producing a DOR close to 1. 
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Figure 1 shows individual patients stratified according to their probability of 

the target condition being present as determined by the expert panel, 

together with the number of positive and negative index test results for each 

of these strata. Given an informative index test, the ratio of positive to 

negative index test results should increase as the probability of presence of 

the target condition increases. For example, consider the subgroup with a 

probability of presence of the target condition 0 – 0.2. If (on average) 10% 

of the individuals in this subgroup have the target condition, ideally only 

10% of the index test results in this group should be positive. In the 

subgroup of 0.20 – 0.40, one would expect positive results in 30% of 

individuals. If there is a high linear correlation between the ratio of positive 

and negative index test results and the probability of target condition 

presence (as is the case in Figure 1), the index test will have a high DOR. 

By performing a logistic regression with the index test result (positive or 

negative) as outcome and the probability of presence of the target condition 

provided by the expert panel as a covariate, an estimate of the DOR can be 

calculated. This DOR can then be combined with the observed row and 

column totals to estimate the best fitting contingency table by using an 

optimization program or script. (e.g. Excel GRG non-linear solver or nleqslv 

package in R) See Appendix for further details. Once the contingency table 

has been estimated, measures of diagnostic accuracy such as sensitivity, 

specificity, PPV, and NPV can be calculated in the traditional way. 
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Case study 

The SPACE study (Sepsis in ACutely ill patients in the Emergency room) 

was taken as a case study to illustrate the use of the probabilistic approach 

for calculating diagnostic accuracy estimates. The primary aim of the SPACE 

study was to investigate what the diagnostic value of three clinical decision 

rules is for diagnosing sepsis in suspected patients presenting at the 

emergency department.  

In short, data were prospectively collected from adult patients suspected of 

an infection presenting at the emergency department of the University 

Medical Center Utrecht between January 2018 and April 2018 for the 

internal medicine department. Suspected infection was defined by the 

treating physician in the ED as either the working diagnosis of infection or 

the differential diagnosis stated in the clinical chart. Patients were included 

in a consecutive series. No additional exclusion criteria were used.  

SIRS (Systemic Inflammatory Response Syndrome) and the qSOFA (quick 

Sequential Organ Failure Assessment) are the two clinical decision rules that 

will be assessed with regard to their diagnostic accuracy for diagnosing 
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Figure 1. Example showing the expected ratio of positive to negative index 
test results as a function of the probability of the target condition being 
present as determined by the expert panel. 
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sepsis. Both can be calculated based on readily available measurements from 

clinical practice. SIRS consist of tachycardia (heart rate >90 beats/min), 

tachypnea (respiratory rate >20 breaths/min), fever or hypothermia 

(temperature >38 or <36 °C), and leukocytosis, leukopenia, or bandemia 

(white blood cells >1,200/mm3, <4,000/mm3 or bandemia ≥10%). (10) 

qSOFA score can be calculated based on respiratory rate ≥22/min, change 

in mental status, or systolic blood pressure ≤100 mmHg were present. (11) 

Both SIRS and qSOFA were considered positive if at least two criteria were 

present, as suggested by previous publications. (12) Alongside the two 

clinical decision rules, diagnostic accuracy of clinical bedside judgement 

(CBJ) for diagnosing sepsis in patients presenting at the ED was evaluated. 

This was assessed by an automated system in the patient record asking the 

treating physician whether or not sepsis was present at the moment of ED 

visit.  

An expert panel was used as a reference standard to obtain the final 

diagnosis whether sepsis was present or absent. The panel consisted of at 

least two experts, taken from a pool of physicians involved in internal 

infectious diseases, emergency medicine, acute internal medicine, intensive 

care medicine, and general internal medicine. Experts were provided with all 

clinically relevant information, before, during, and after the patient was 

admitted to the hospital. They were asked to give a dichotomous (yes / no) 

answer to the question: was sepsis present at time of admission to the 

emergency department? In addition, experts were requested to provide the 

likelihood that the patient had sepsis at time of admission to the emergency 

department on a scale from 0 to 10, with 0 representing absolute certainty 

that the patient did not have sepsis, and 10 representing absolute certainty 

that the patient did have sepsis. Experts could also give feedback on their 

main motivation for providing a specific likelihood. CBJ, SIRS and qSOFA 

scores were not directly provided to the experts in the panel, however SIRS 

and qSOFA could be manually calculated if so desired.  

Likelihoods provided by the expert panel were interpreted as probability 

estimates for sepsis status. For example, a likelihood of 6 was seen as a 0,6 

probability of sepsis being present for a given individual. Probability of 

sepsis presence reported by at least two experts was weighted to provide a 
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single probability of sepsis being present in an individual according to the 

expert panel. 

If one or more measurements required for calculating SIRS or qSOFA was 

missing, the minimum score was determined, which was taken as the 

dichotomous index test result. If the minimum score of SIRS or qSOFA 

could not be determined, CBJ was missing, or there was no more than 

majority vote or likelihood estimate from the expert panel, multiple 

imputation would be used to account for the missing data. If any of these 

variables were missing in less than 5% of patients, complete case analysis 

was performed. 

Results 

A total number of 374 patients suspected of sepsis presented at the 

emergency room during the study period. Minimum scores (allowing for 

dichotomous classification) for SIRS and qSOFA could be calculated for all 

except five cases, which were excluded from the analysis.  

Figure 2. Flowchart of patients in the SPACE study. Note that the reasons 
for exclusion are not mutually exclusive. 

Selection of  patients 
N = 374 

Evaluated by =< 2 experts (n = 25) 
SIRS score could not be calculated (n = 5) 

qSOFA score could not be calculated (n = 5) 
 

Eligible patients 
N = 349 

Patients analysed 
N = 306 

Likelihood score provided by =< 2 experts  
(n = 43) 
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In 306 of those patients at least two experts provided dichotomous and 

probabilistic estimates of sepsis presence. Diagnostic accuracy measures 

were calculated for this group. Figure 2 provides a flowchart with additional 

information. 

Figure 3 shows the distribution of the weighted probability estimates for 

presence of sepsis in patients with at least two expert panel scores, and the 

proportion of positive (red) and negative (blue) SIRS, qSOFA, and CBJ test 

results. Probabilities of sepsis presence provided by the expert panel 

followed a skewed distribution, with a median of 0.30. There was 

considerable uncertainty (i.e. a probability of sepsis presence between 0.2 

and 0.8) in 57% of patients. 

Positive test results were more prevalent for all three index tests as 

probability of sepsis presence increased. SIRS test results were positive in 

185 patients (60.5%), and were distributed across the range of probabilities 

that sepsis is present according to the expert panel. qSOFA was only positive 

in 18 patients (5.9%) suspected of sepsis, however these were mainly 

observed in the group with a probability of sepsis >0.5 according to the 

expert panel. Positive CBJ results were observed more frequent in 46 out of 

306 patients (15%). Most were mainly observed from a probability of sepsis 

of 0.3 and higher. Below a threshold of 0.2 none of the 81 patients were 

positive on the qSOFA or CBJ tests. 

Comparison of diagnostic accuracy estimates between approaches 

Three approaches were used to construct the contingency table: the 

dichotomous approach, the probabilistic weighting approach, and the 

probabilistic DOR approach. These can be used to calculate diagnostic 

accuracy measures for SIRS, qSOFA, and CBJ, which are given in tables 4, 

5 and 6 respectively. 

The dichotomous classification approach resulted in a much lower apparent 

prevalence (18%) compared to the apparent prevalence from the 

probabilistic approach (35%) because of the skewed distribution of the 

probabilities of sepsis presence given by the panel. This led to a higher 

number of true positives and false negatives, and to a lower number of false 
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positives and true negatives. However, the absolute impact on diagnostic 

accuracy measures differed between index tests. Note that the total number 

of positive expert panel classification (either from dichotomous or 

probabilistic classification) was equal across all contingency tables.  

  

Figure 3. Distribution of weighted expert panel probabilities presence of 
sepsis, and the frequency of positive (red) and negative (blue) index test 
results. The intuitive threshold for dichotomisation of sepsis is depicted by 
the red dotted line. 
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In the dichotomous approach, SIRS was demonstrated to have relatively 

high sensitivity (91%) and NPV (96%), whereas specificity (46%) and PPV 

(27%) were considerably lower. (Table 4) The probabilistic weighting 

approach resulted in decreased sensitivity (74%) and NPV (77%) and 

increased PPV (43%). When the probabilistic DOR approach was used, 

diagnostic accuracy of SIRS was higher on all four diagnostic accuracy 

measures when compared to the traditional dichotomous approach. 

Contingency tables and diagnostic accuracy estimates for qSOFA are 

provided in table 5. Dichotomous sepsis classification resulted in high 

specificity (98%) and NPV (85%), moderate PPV (67%), and poor 

sensitivity (22%). The probabilistic weighting approach resulted in both 

sensitivity and NPV of qSOFA dropping by 10% and 18% respectively 

when compared to the dichotomous approach. Specificity and PPV 

remained largely unaffected. The probabilistic DOR approach led to a 5% 

and 16% reduction of sensitivity and NPV, but resulted in near perfect 

specificity and PPV of qSOFA. 

The diagnostic accuracy of CBJ is assessed in table 6. Using the dichotomous 

approach, CBJ had relatively good specificity (91%) and NPV (88%), with a 

sensitivity and PPV of 42% and 50% respectively. When the probabilistic 

weighting method was applied, sensitivity and NPV dropped by 16% and 

19% compared to the dichotomous approach, while PPV increased and 

specificity was unaffected. Specificity and PPV increased to near perfect 

values when the probabilistic DOR approach was used, while NPV dropped 

to 76% and sensitivity was unaffected. 
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Table 4. Contingency table and diagnostic accuracy estimates for SIRS as 
an index test, constructed using dichotomous and probabilistic (weighting 
and DOR) approaches. DOR = diagnostic odds ratio; PPV = positive 
predictive value; NPV = negative predictive value. 

 Dichotomous Probabilistic 
(weighting) 

Probabilistic 
(DOR) 

 

 Expert+ Expert- Expert+ Expert- Expert+ Expert-  

SIRS+ 50 135 79.9 105.1 106.6 78.4 185 

SIRS - 5 116 27.6 93.4 1.0 120.0 121 

 55 251 107.5 198.5 107.5 198.5  

 

Sens. 91% 74% 99%  

Spec. 46% 47% 60%  

PPV 27% 43% 58%  

NPV 96% 77% 99%  

 

Table 5. Contingency table and diagnostic accuracy estimates for qSOFA as 
an index test, constructed using dichotomous and probabilistic (weighting 
and DOR) approaches. DOR = diagnostic odds ratio; PPV = positive 
predictive value; NPV = negative predictive value. 

 Dichotomous Probabilistic 
(weighting) 

Probabilistic 
(DOR) 

 

 Expert+ Expert- Expert+ Expert- Expert+ Expert-  

qSOFA+ 12 6 12.4 5.6 17.9 0.1 18 

qSOFA - 43 245 95.1 192.9 89.6 198.4 288 

 55 251 107.5 198.5 107.5 198.5  

 

Sens. 22% 12% 17%  

Spec. 98% 97% 100%  

PPV 67% 69% 100%  

NPV 85% 67% 69%  
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Table 6. Contingency table and diagnostic accuracy estimates for CBJ as an 
index test, constructed using dichotomous and probabilistic (weighting and 
DOR) approaches. DOR = diagnostic odds ratio; PPV = positive predictive 
value; NPV = negative predictive value. 

 Dichotomous Probabilistic 
(weighting) 

Probabilistic 
(DOR) 

 

 Expert+ Expert- Expert+ Expert- Expert+ Expert-  

CBJ+ 23 23 27.7 18.3 45.3 0.8 46 

CBJ - 32 228 79.8 180.2 62.3 197.7 260 

 55 251 107.5 198.5 107.5 198.5  

 

Sens. 42% 26% 42%  

Spec. 91% 91% 100%  

PPV 50% 60% 98%  

NPV 88% 69% 76%  

 

Discussion 

This study was performed to demonstrate how probabilistic estimates for 

the presence of the target condition can be incorporated in diagnostic 

research using expert panels as a reference standard. Using the SPACE study 

we illustrated how probabilistic estimates can explicitly be applied for 

calculating diagnostic accuracy measures of the index test under study rather 

than the traditional approach in which this uncertainty is ignored.  

The expert panel expressed considerable uncertainty about the final 

diagnosis of sepsis in over half (57%) of study participants, despite having 

access to all diagnostic test results, follow-up information, and information 

on response to treatment. This underlines the difficult nature of diagnosing 

sepsis. 

Prevalence was notably different between the dichotomous and probabilistic 

approaches, attributable to the skewed distribution of probabilities that 

sepsis was present. Both the probabilistic weighting and DOR approach 

resulted in significantly different diagnostic accuracy estimates when 

compared to the traditional method of dichotomous sepsis classification. 
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A simulation study has previously shown that dichotomous classification of 

the target condition by an expert panel leads to biased estimates of sensitivity 

and specificity. (9) Similar biases have been demonstrated for composite 

reference standards. (13-15) The results of our previous simulation study 

indicated that bias in diagnostic accuracy estimates of the index test is likely 

when an expert panel has substantial remaining uncertainty about target 

disease classification. In other words, if more patients are classified 

surrounding the threshold for dichotomisation of the target disease (i.e. a 

probability for the presence of sepsis of 0.5), the reference standard is likely 

to misclassify individuals, leading to bias of index test sensitivity and 

specificity estimates. Remaining uncertainty was clearly an issue in our 

empirical sepsis study, and therefore bias in diagnostic accuracy estimates 

based on the dichotomous approach is to be expected. 

To acknowledge the significant uncertainty expressed by the expert panel, 

we applied a probabilistic weighting and probabilistic DOR approach for 

incorporating this uncertainty when calculating the diagnostic accuracy of 

SIRS, qSOFA, and CBJ. These two approaches resulted in widely different 

estimates of diagnostic accuracy, attributable to the underlying assumptions 

of each method. The probabilistic weighting approach assumes that the 

expert panel has all information available to make the most accurate 

estimates of the probability of target condition classification; in other words, 

the index test adds no new information. Hence, if an expert panel is 

uncertain about the presence of the target condition in a group of study 

participants (i.e. the panel does not have perfect accuracy), the accuracy of 

the index test will always be bounded by this imperfection. The index test 

result may be provided to the expert panel to ensure that this assumption 

holds, although this may introduce the risk of incorporation bias. (4, 16, 17) 

Incorporation bias will occur if the panel members overestimate (or 

underestimate) the value of the new test under evaluation because of high 

expectations or hype surrounding the new test. Probabilities of presence of 

the target condition elicited from the expert panel are then biased, and the 

association with index test results artificially too high. To avoid this bias, the 

results of the new test under evaluation are often withheld from the expert 

panel. 
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The probabilistic DOR approach assumes that the results of the index test 

could provide additional diagnostic information to an expert panel 

diagnosis. This means that information of index test results is not (fully) 

captured by the other information provided to the expert panel. Whether 

this assumption holds, is difficult to judge. Alternative methods may be 

sought after, such as latent class analysis, which explores correlations 

between the results of an index test and various other sources of information 

(e.g. patients’ history, clinical examination, imaging, laboratory or function 

tests, severity scores) and relates them to an unknown (latent) outcome. (6, 

18, 19) In latent class analysis, none of the single pieces of information 

(neither stand-alone or as a combination) can be promoted to the status of 

a reference standard. In this regard the aim of the latent class approach is 

similar to that of expert panel, as they use the same relevant pieces of 

information to determine diagnostic accuracy of an index test. The 

advantage of the latent class approach, being a statistical model, is that there 

is no risk of incorporation bias, as this approach it is not influenced by high 

expectations or hype with regard to the new index. The index test can thus 

safely be added to the model, allowing for estimation of its diagnostic 

accuracy. The drawback of the latent class approach is that it does not 

necessarily create a clinically relevant definition of the target condition. 

Furthermore, results of latent class analysis are directly subject to 

assumptions made during modelling. 

A more fundamental question may arise: is the diagnostic accuracy 

framework still a useful concept when there is substantial uncertainty 

regarding the final diagnosis, or should alternative ways of validation of test 

results be explored? Abandoning the diagnostic test accuracy paradigm 

means index test results are related to other relevant clinical features related 

to the presence of absence of the target condition. Validation is an 

alternative process to evaluate a medical test in the absence of a gold 

reference standard. In this context, validity refers to whether the index test 

can identify clinically meaningful cases of the target condition. (6, 20, 21) 

Validation of a test can best be understood as a gradual process whereby the 

relationship between the test and various outcomes (such as prognosis or 

impact of treatment on test positive cases) is assessed. One might also check 
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whether findings are consistent with intuitive mechanics of the target 

condition, such as spreading patterns in infectious diseases. (22) In this way 

a body of evidence is generated, increasing the degree of confidence we can 

place on inferences about patients with positive and negative test results. 

This paper should be viewed as a starting point for how to use probabilistic 

estimates of presence of the target condition elicited from an expert panel. 

There are however still several challenges for future research. First, it was 

assumed that the expert panel is well calibrated, meaning that the mean 

probability estimate of sepsis for a given patient provided by at least two 

experts in the panel, resembles the true probability of sepsis being present. 

The fact that these two experts can, and often will, differ in their individual 

probability estimates, points out that there is remaining uncertainty 

surrounding the average point estimate of the panel. This uncertainty could 

have been taken into account by, for example using a Monte-Carlo 

simulation based on the distribution of individual expert probability 

estimates of sepsis. (23)  

Furthermore, researchers should be wary about selective missing values of 

probability estimates of target condition presence by experts. Not only 

might these values be selectively missing within patients, but also within 

experts (across patients). Ignoring these missing estimates may bias the 

mean value of probability that the target condition is present, which may 

subsequently affect diagnostic accuracy estimates of the index test. Multiple 

imputation could prove to be a valid alternative to complete case analysis 

(24), although further (simulation) studies should be performed to assess 

whether this is the case.  

There are several other considerations researchers may have regarding the 

use of probabilistic estimates of target condition presence. There may be a 

relevant spectrum within the same target condition, in which less and more 

severe forms can be distinguished. (26) Diagnostic accuracy of the index test 

may differ between these subtypes of the target condition. Sample size may 

also affect the observed point estimates of diagnostic accuracy. Normally 

exact binomial distribution should be used to provide confidence intervals, 
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but given that probabilistic estimates of presence of the target condition are 

given on a continuous scale from 0 to 1, this may not be suitable. 

In this paper we have used a case study to demonstrate how probabilistic 

estimates of presence of sepsis, elicited from an expert panel, can be used to 

calculate diagnostic test accuracy measures of three clinical decision rules. 

Considerable uncertainty surrounding sepsis classification was observed in 

over half of all study participants. Dichotomisation resulted in significantly 

different diagnostic accuracy estimates of the index test compared to the 

probabilistic weighting and DOR approach. The latter two also produced 

markedly different estimates. As both approaches have different 

assumptions, it is critical to match the analysis with the design and set-up 

how experts derived the probabilities of target condition presence. If we 

cannot, we should consider abandoning the diagnostic accuracy framework 

in settings where there is substantial uncertainty on target condition status 

in a considerable proportion of study participants. 
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Appendix 
Constraints that ought to be fulfilled when estimating values for individual 

cells of the contingency table. Numbers are derived from the hypothetical 

example. TP = true positive; FP = false positive; TN = true negative; FN = 

false negative; DOR = diagnostic odds ratio. 

Estimated Constraint Observed Example 

TP + FP = ∑Index test positive TP + FP = 3 

TN + FN = ∑Index test negative TN + FN = 3 

TP + FN = ∑Disease present TP + FN = 3.2 

TN + FP = ∑Disease absent TN + FP = 2.8 

TP, FP, 
TN, FN 

>= 0 
∑TP = 2.4; ∑FP = 0.6;  
∑FN = 0.8; ∑TN = 2.2 

DOR = 
DOR 
(Logistic regression) 

(TP / FP) / (FN / TN) = 4.5 
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“Not a single diagnosis has ever cured anyone” 
 

 
 

Self-quoted 
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Abstract 

Objective: To provide insight into how and in what clinical fields 

overdiagnosis is studied, and give directions for further applied and 

methodological research. 

Design: Scoping review 

Data sources: Medline up to August 2017 

Study selection: All English studies on humans, in which overdiagnosis 

was discussed as a dominant theme. 

Data extraction: Studies were assessed on clinical field, study aim (i.e. 

methodological or non-methodological), article type (e.g. primary study, 

review), the type and role of diagnostic test(s) studied, and the context in 

which these studies discussed overdiagnosis. 

Results: From 4896 studies, 1851 were included for analysis. Half of all 

studies on overdiagnosis were performed in the field of oncology (50%). 

Other prevalent clinical fields included mental disorders, infectious diseases 

and cardiovascular diseases accounting for 9%, 8% and 6% of studies 

respectively. Overdiagnosis was addressed from a methodological 

perspective in 20% of studies. Primary studies were the most common 

article type (58%). The type of diagnostic tests most commonly studied were 

imaging tests (32%), although these were predominantly seen in oncology 

and cardiovascular disease (84%). Diagnostic tests were studied in a 

screening setting in 43% of all studies, but as high as 75% of all oncological 

studies. The context in which studies addressed overdiagnosis related most 

frequently to its estimation, accounting for 53%. Methodology on 

overdiagnosis estimation and definition provided a source for extensive 

discussion. Other contexts of discussion included definition of disease, 

overdiagnosis communication, trends in increasing disease prevalence, 

drivers and consequences of overdiagnosis, incidental findings and 

genomics.  
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Conclusions: Overdiagnosis is discussed across virtually all clinical fields 

and in different contexts. The variability in characteristics between studies 

and lack of consensus on overdiagnosis definition indicate the need for a 

uniform typology to improve coherence and comparability of studies on 

overdiagnosis. 
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Introduction 
Overmedicalisation is the broad overarching term describing the use of “too 

much medicine”. (1) It encompasses various concepts such as disease 

mongering, misdiagnosis, overutilization, overdetection and overtreatment. 

Initiatives relating to these concepts have begun to flourish on a global scale 

under the ‘Choosing Wisely’ initiative and in national programs such as Slow 

Medicine (Italy, the Netherlands and Brazil), Quaternary Prevention 

(Belgium) and Do not do (UK). (2, 3) A subcategory of the aforementioned 

concepts is overdiagnosis. This has become an even more popular term 

especially over the last two decades. (4-9) Furthermore, an annual 

conference going by the name of “Preventing Overdiagnosis”, dedicated to 

issues surrounding this concept, has been gaining popularity ever since its 

start in 2013, demonstrating a growing interest in the topic. (10) In this 

scoping review we will focus specifically on overdiagnosis. 

Defining overdiagnosis is challenging and diverse definitions exist. (11, 12) 

In a narrow sense, overdiagnosis describes individuals receiving a diagnosis 

with a condition that would never have become symptomatic before the end 

of the individual’s life. (5, 7) However, overdiagnosis has also been described 

as giving a diagnosis that would not yield a net benefit. (1) These definitions 

are not similar, and thus may lead to different interpretations of (the extent 

of) overdiagnosis. Consequently, the mechanisms leading to overdiagnosis 

may also differ. Labelling an individual with a blood pressure over a certain 

threshold as hypertensive, and thus “diseased”, is conceptually different 

than not knowing whether one should diagnose an individual with a very 

small potentially malignant growth as having cancer, and thus “diseased”. 

Providing definitions in combination with mechanisms of overdiagnosis for 

a typology is challenging and source of extensive discussion. (13-17) 

The range of overdiagnosis drivers is also extensive. It, amongst others, 

includes technological developments that detect smaller abnormalities than 

ever before which might not become clinically manifest. Furthermore, the 

use of large scale screening programs, inappropriate application of 

diagnostic criteria, legal incentives, cultural believes (i.e. that we should do 
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everything in our power to find and treat disease) and commercial or 

professional interests have driven overdiagnosis. (6, 18-20)  

Consequences of overdiagnosis may be serious and can be subdivided in 

negative effects on patient health and additional costs within the health care 

system. (21) Health effects include impaired quality of life and early loss of 

life due to side-effects or complications of unnecessary subsequent testing 

or treatment. Incorrectly labelling of individuals as patients may also lead to 

stigmatization, impacting psychological well-being and indirectly exert social 

effects through eligibility for health benefits. In monetary terms, 

overdiagnosis can result in unwarranted usage of (follow-up) tests, treatment 

and healthcare facilities and services. 

Despite the increasing number of publications on overdiagnosis, ranging 

from discussions on overdiagnosis definition to estimating its impact, a 

scoping analysis on overdiagnosis is still lacking. In the present study, we 

provide an overview of research that has been performed across medical 

disciplines surrounding the topic of overdiagnosis. Not only will we give 

insight into how and in what clinical fields overdiagnosis is studied, but also 

provide directions for further applied and methodological research to 

investigate the mechanisms and impact of overdiagnosis, and to generate 

directions for reducing or preventing overdiagnosis. 

Methods 
PubMed was searched on August 2017 for published articles using keywords 

related to overdiagnosis, overdetection, overscreening, insignificant disease, 

overtesting, overmedicalisation, pseudodisease, inconsequential disease, and 

quaternary prevention, by using the following query: 

overdiagnos*[tw] OR over diagnos*[tw] OR overdetect*[tw] OR over detect*[tw] OR 

"insignificant disease"[tw] OR overscreen*[tw] OR over screen*[tw] OR overtest*[tw] 

OR over test*[tw] OR overmedical*[tw] OR over medical*[tw]OR "pseudodisease"[tw] 

OR "pseudo disease"[tw] OR "inconsequential disease"[tw] OR "Quaternary 

prevention"[tw] 
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These terms were chosen as they were believed to capture most concepts 

related to overdiagnosis, generating a representative set of articles. All 

English articles on humans where the full text was available were included. 

Articles in which overdiagnosis was a dominant theme were included. 

Overdiagnosis was considered a dominant theme when a paper clearly 

addressed overdiagnosis as an issue being investigated or discussed. For 

example, a study on the adoption of a new threshold guideline for prostate-

specific antigen screening for prostate cancer was considered to have a 

dominant overdiagnosis theme. In contrast, a study that used overdiagnosis 

as a buzzword and merely suggested in the discussion that overdiagnosis 

might possibly play a role or have occurred, was excluded. Studies with 

overdiagnosis as a dominant theme were included regardless of which 

definition of overdiagnosis the authors adopted.  

The titles and abstracts of the included studies were then screened. Included 

studies were assessed using (a list of) prespecified criteria. These criteria were 

established by screening the first 200 studies of the search query. They 

included clinical field, study aim, article type, type of diagnostic test, whether 

this was a screening test, and the context in which overdiagnosis was 

discussed. These criteria are described below (see further details in the 

Appendix). Articles were assessed based solely on title and abstract. If an 

abstract was unavailable (e.g. opinion pieces), the full text was scanned.  

Clinical field 

The clinical field to which the study belonged was determined using the 

ICD-10 classification. When a study addressed more than one clinical field 

or did not address overdiagnosis within a specific clinical field, but discussed 

overdiagnosis on a more general level, they were included in the separate 

category “No specific clinical field”.  

Study aim 

Two study aims were distinguished: 1) studies focusing on how overdiagnosis 

should be studied. These are studies with a methodological aim. Examples 

are studies looking into how overdiagnosis estimations are affected by the 

methods used, or studies providing a framework for the definition of 

overdiagnosis. Simulation studies using mathematical models for estimating 
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the extent of overdiagnosis were also classified as methodological studies. 

Studies not addressing the aforementioned concepts, but rather provide, for 

example, a qualitative overview of the (possible) impact of overdiagnosis in 

a certain field, or calculate overdiagnosis estimates from empirical data, were 

considered to have 2) a non-methodological aim. 

Article type 

Studies were classified using four article types: primary studies, narrative 

reviews, systematic reviews or commentaries. Primary studies used data 

collected from trials, observational studies or generated using simulation 

models. Narrative reviews described a broad oversight on overdiagnosis. 

These included editorials, opinion pieces, interviews and overviews. 

Systematic reviews stated a specific hypothesis and tested this using a 

systematic approach to gather existing literature. If a systematic approach 

was lacking, these studies were scored as narrative reviews. Studies were 

considered commentaries when they, replied to previously published papers. 

Type of diagnostic test 

Diagnostic tests were categorized into six types: imaging, medical 

examination, biomarker, histology, prediction model or various. Whenever 

a study looked into a combination of two tests, both types were scored. For 

example, an image guided biopsy would be scored as both an imaging and 

histologic diagnostic test. If three or more diagnostic tests were addressed 

within a study, or overdiagnosis was addressed in a general context without 

any diagnostic test in particular, this was scored under “Various tests”. 

Screening 

When studies focused on a test used for screening groups of asymptomatic 

individuals, this was scored as a screening study. Studies that did not 

explicitly state that the diagnostic test was studied in the context of 

screening, were scored as a non-screening. 

Overdiagnosis context  

To assess the context in which studies discussed overdiagnosis five 

categories were defined: estimating extent of overdiagnosis, disease 

definition, overdiagnosis communication, incidental findings, and genomics. 
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The first category, estimating extent of overdiagnosis, relates to all articles 

giving a quantified estimate of overdiagnosis. Disease definition revolves 

around the setting of thresholds to define the absence or presence of a 

disease or to distinguish between two subcategories of a certain disease (e.g. 

progressive and non-progressive forms). Overdiagnosis communication 

relates to studies aimed at assessing and improving the understanding of 

overdiagnosis in the general public, and improving overdiagnosis 

dissemination by the healthcare professionals. Studies addressing 

abnormalities found of an unrelated condition during either diagnostic 

testing or surgery were scored as studies on incidental findings. Spurious 

findings on genome wide screening tests were scored in the overdiagnosis 

context of genomics. 

Results 
The PubMed search resulted in a total number of 4896 studies identified. 

After application of the inclusion criteria 3746 studies were assessed for 

eligibility on title and abstract. Studies in which overdiagnosis was a 

dominant theme yielded 1851 studies. (Figure). Table 1 provides a 

summarized view of the characteristics of the total number of studies, the 

four largest clinical fields, all other remaining clinical fields and studies not 

related to a specific clinical field. 
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Clinical field 

Papers on overdiagnosis were found in all clinical fields, but were mainly 

published within oncology (50%), in which breast (34%), prostate (24%) and 

lung cancer (14%) ranked as most prevalently studied. Other clinical fields 

addressing overdiagnosis included mental disorders (9%), infectious diseases 

(8%) and cardiovascular disease (6%). Within these fields, studies were 

predominantly looking into bipolar disorder, malaria and pulmonary 

embolism (PE), respectively. (22-27) 

Study aim 

Studies addressing methodological issues consisted of 20%. The majority of 

these studies were performed within the field of oncology. However, non-

methodological studies were the most common study aim used across  

Figure. Flow diagram of article selection for further review and scoring 
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all clinical fields, accounting for 80% of the total number of articles. These 

notably included studies using empirical data to assess the occurrence or 

estimate overdiagnosis for a specific disease.  

Article type 

Primary studies (58%) were the most common article type discussing 

overdiagnosis. Of all included studies narrative, systematic reviews and 

commentaries represented 24%, 9% and 9% respectively. From all studies 

that addressed a specific clinical field, the proportion of systematic reviews 

and commentaries was relatively high within oncology. 

Type of diagnostic test 

Imaging was the most often encountered diagnostic test, accounting for 32% 

of all studies. Biomarkers (15%), histology (13%) and medical examination 

(17%) were approximately equally often found. Prediction models were less 

common (3%). The proportion not related to one particular diagnostic test 

of interest was 21%. Distributions of diagnostic tests varied significantly 

depending on the clinical field. Imaging was most prevalent in oncology 

where it accounted for 48% of diagnostic tests, mostly related to breast 

(53%) and lung cancer screening (21%). Within the field of mental disorders 

medical examination was often seen in the form of application of the DSM 

(Diagnostic and Statistical Manual of Mental Disorders) as diagnostic tool. 

Biomarkers and histology were seen relatively more frequent as diagnostic 

tests for infectious diseases when compared to other clinical fields.  

Screening 

Diagnostic testing was studied in the context of screening in 43% of studies. 

There was however a skewed distribution between clinical fields. Within 

oncology, 75% of all studies were related to screening, whereas for mental 

disorders, infectious diseases and cardiovascular diseases this was 15% or 

lower. 

Overdiagnosis context 

The context in which overdiagnosis was most frequently discussed related to 

its estimation (53%). Only within the field of mental disorders was disease 

definition more frequently discussed than overdiagnosis estimation (46% vs 
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22%). Descriptions and example studies on each of the five predefined 

categories can be found in table 2. The majority of studies discussing 

overdiagnosis (72%) were classifiable in one of these categories. Studies that 

did not fall within any of the five categories were scored in a separate 

“Other” category (28%). Results for each of these overdiagnosis contexts are 

discussed below.  

Table 2. Descriptions and examples of context of overdiagnosis discussion 

Overdiagnosis 
context 

Description Example Ref. 

Overdiagnosis 
estimation 

Providing a quantitative 
estimate of overdiagnosis 

Estimation of 
overdiagnosis in low-dose 
computed tomography 
screening for lung cancer 

(28) 

Disease 
definition 

Setting thresholds to define 
the absence or presence of a 
disease, or distinguishing 
between two subcategories 
within a disease 

Current definitions of 
airflow obstruction and 
attention deficit 
hyperactivity disorder yield 
overdiagnosis in primary 
care 

(29) 

Overdiagnosis 
communication 

Assessing and improving 
the understanding of 
overdiagnosis in the general 
public, and improving 
overdiagnosis dissemination 
by the healthcare 
professionals 

Assessing what the general 
public thinks is meant by 
the term ‘overdiagnosis’ 

(30) 

Incidental 
findings 

An abnormality found of an 
unrelated condition during 
either diagnostic testing or 
surgery  

Relevance of incidental 
findings when screening for 
a disorder in the 
abdominal area using 
multi-detector contrast-
enhanced CT 

(31) 

Genomics Spurious genetic 
abnormalities 

Implications of genetic 
screening for common 
cancers in children 

(32) 
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Overdiagnosis estimation  

The most common context of discussion relates to overdiagnosis estimation, 

accounting for 53% of all studies. These articles could be divided into two 

groups. The first were studies attempting to estimate the degree of 

overdiagnosis in their respective clinical fields. (79%) These often described 

the impact of implementation or a threshold shift of a diagnostic or screening 

intervention on the rate of overdiagnosis. Notable examples of this are 

prostate-specific antigen testing for prostate cancer and mammography for 

breast cancer. (33-38) However several articles estimated overdiagnosis in 

symptomatic conditions, such as incorrect diagnosis by untrained clinicians 

in patients presenting with malaria-like symptoms, leading to false-positives 

and unnecessary treatment. (26, 27) This should rather be considered 

misdiagnosis (incorrect diagnosis of a symptomatic person with a condition 

they do not have (1)) due to inaccuracy of clinical tests used in practice 

leading to false-positives, incorrect disease labels, and overtreatment. The 

second group represented studies that report methodological approaches for 

how one should estimate overdiagnosis. (21%) Differences regarding 

definitions used, measurement, study design and methods for estimation can 

lead to different results (39), hence there is often a large spread in these 

estimates, resulting in controversy regarding the true impact of overdiagnosis 

in the field. 

Disease definition 

In 15% of all studies disease definition was addressed. A relatively high 

proportion of these studies was addressed in the context of mental disorders 

(28%). Common topics included application of DSM for bipolar disorder, 

depression and attention deficit hyperactivity disorder, (40, 41) and physician 

diagnosis of attention deficit hyperactivity disorder or asthma, which were 

related to misdiagnosis rather than actual overdiagnosis. (42-44) The other 

major contributor was in oncology (25%), where the main issue was the 

transition of benign to malignant growths. Examples of such pre-disease 

conditions are ductal carcinoma in situ, early stage prostate tumours and 

papillary thyroid carcinoma. (45-47) 
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Overdiagnosis communication 

Communication about overdiagnosis with patients or the public accounted 

for 3% of all 1851 publications. This mainly involved the people’s 

understanding of the concept of overdiagnosis, and whether they perceived 

it to be an issue. (30, 48, 49) Other articles dealt with communication of 

overdiagnosis between the patient and the treating physician, (50, 51) or the 

development and effectiveness of decision aids. (52, 53) 

Other contexts 

Scientific literature on overdiagnosis in genomics and incidental findings 

were found only sporadically (0.4% and 0.8%). The term overmedicalisation 

was frequently used in literature to describe medicalisation of normal life 

events, such as birth, adolescence and death. Quaternary prevention was 

mostly used to describe the action being taken to prevent overmedicalisation. 

One of the most commonly observed topics in the other category was drivers 

and consequences of overdiagnosis. (18, 21, 54, 55) These were often 

mentioned alongside in narrative reviews on overdiagnosis. Furthermore, 

trend studies were common, describing the possibility of overdiagnosis 

based on a rapid increase in the number of diagnoses, without any significant 

decrease in the mortality rate. These studies did not provide an exact 

overdiagnosis estimate, but rather an indication that overdiagnosis might be 

occurring or increasing, based on historic data. Another context in which 

overdiagnosis was commonly addressed, especially in the last couple of years, 

was its definition. These studies aim at formulating accurate and appropriate 

definitions of overdiagnosis as well as related terminology (e.g. 

overmedicalisation, overdetection, disease mongering). In addition, some 

have attempted defining broad overall classifications to provide guidance for 

distinction between different overdiagnosis subtypes. (13, 16) 

Discussion 
This scoping review provides insight in the current landscape of 

overdiagnosis. There is great diversity in study characteristics across medical 

disciplines and in the contexts in which overdiagnosis is discussed. Some 

characteristics correlate with specific clinical fields, with, for example, 
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screening occurring predominantly in oncological studies and medical 

examination being the most prevalently used diagnostic test for mental 

disorders.  

Overdiagnosis is discussed in a variety of contexts, however three could be 

distinguished which invoked significant debate: 1) differences in 

overdiagnosis definition, 2) differences in methods used, leading to varying 

overdiagnosis estimates, and 3) typologies for overdiagnosis. 

Overdiagnosis definitions 

The definition of overdiagnosis has been topic of discussion for some time. 

In a narrow sense it refers to a diagnosis that does not result in a net benefit 

for an individual. (1) This can be viewed within an individual or on a group 

level, where benefits (early detection of clinically relevant disease) are 

weighted against the deficits (overdiagnosis and its associated consequences). 

However, not all included studies give a clear definition, but implicitly use 

the definition of overdiagnosis as a diagnosis of a “disease” in an 

asymptomatic individual, that will never go on to cause symptoms or early 

death. (7) This definition is particular to the screening-context, but does not 

apply to a large portion of the studies found in this review that are on testing 

symptomatic individuals, for example those with mental disorders. Others 

have used the relation between pathology and symptoms as a measure of 

overdiagnosis. (56, 57) In the latter there is no doubt there is a clear 

abnormality, however it is uncertain whether smaller forms of this 

abnormality still significantly correlate with future clinically relevant disease. 

Ultimately, the question would be how or even if we should treat these 

individuals. These examples of definitions demonstrate the heterogeneity 

and complexity of the concept of overdiagnosis, and have led to the 

discussion regarding the extent or even the existence of overdiagnosis. 

Which definition researchers use for overdiagnosis needs to be reported 

completely to be able to judge the applicability of the results. 

Methods for overdiagnosis estimation 

Another discussion revolves around variation in estimates of overdiagnosis. 

Major trials such as the European Randomized Study of Screening for 

Prostate Cancer (ERSPC), the National Lung Screening Trial (NLST), the 
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Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, and 

the Malmö breast cancer screening trial, often form the basis for these 

discussions. (58-61) These trials look into the effects of cancer screening 

programs. The ERSPC did not provide an overdiagnosis in prostate cancer 

screening in their initial publication (62), but did provide an estimate of 41% 

in their 2014 publication. (58) However, this was obtained through 

modelling, and not calculated directly from the observed data. The NLST 

merely states that overdiagnosis is presumably not large, as the number of 

breast cancers diagnosed between the two screening arms is comparable. (59) 

And the PLCO and Malmö breast cancer screening trials did not state 

anything about overdiagnosis. (60, 61) The scientific community reacted by 

using different methods to provide overdiagnosis estimates for these trials. 

The rate of overdiagnosis that is estimated depends on various features such 

as the definitions and measurements used, study design and context and 

estimation approaches applied. (12, 39, 63-67) The latter can be divided in 

lead-time (the time between screening detection and clinical presentation) 

and excess incidence approach (excess number of cases between a screening 

and non-screening group), each of which has its merits and issues, and 

requires assumptions to be made. Ultimately, the variety in methodology 

used has resulted in variation in overdiagnosis estimates, and significant 

controversy between studies. (11, 67, 68) 

Overdiagnosis typologies 

Several studies have provided overviews and acknowledged that finding a 

singular definition of overdiagnosis may not be feasible. However, providing 

an overdiagnosis classification, aimed at describing subtypes of 

overdiagnosis, could prove to be useful. Some efforts have been made to 

create such a typology, however this is challenging as definitions vary widely 

and classifications can be made over different axes. Hence, this is a complex 

issue which should be addressed in a systematic manner. A comprehensive 

typology could aid researchers in their communication as was already 

suggested in a paper by Moynihan et al in 2012. (6) A recent paper by Rogers 

described the use of maldetection (issues with our understanding of what 

‘truly’ disease is) and misclassification (an implicit or explicit threshold shift 

resulting in overdiagnosis). (13) Shortly after, Carter et al described the 
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concepts of predatory, tragic and misdirected overdiagnosis. (17) Other work 

by Hofmann takes a more sociological and philosophical point of view. In 

his 2017 publication, indicative, measurable and observable phenomena are 

used to describe the different stages in which a phenomenon develops into 

a clinical manifestation. (16) In oncology a tumour-patient classification has 

been described, relating to tumours that are regressive, non-progressive or 

truly malignant disease. (69) Although these works provide great 

improvement in our understanding of the issues at hand, they do not give 

further guidance as to how these concepts should be used in clinical research. 

To our knowledge, this is the first scoping review performed on the subject 

of overdiagnosis. It provides broad insight in the available research on 

specific topics within overdiagnosis. To appreciate the findings in this 

review, the following limitations should be considered. First, studies were 

excluded when they did not have full text available. This may have led to 

exclusion of a selection of relevant articles, but not a systematic exclusion of 

a particular range of overdiagnosis studies. The same holds true for the lack 

of search criteria for iatrogenic disease, overtreatment, and overutilisation. 

The issue in identifying studies discussing overdiagnosis, is that there are no 

clear selection criteria to find these. Terminologies used to describe 

overdiagnosis differ between studies, are widely spread and search filters in 

medical databases are lacking. Hence, our goal was not to perform a 

comprehensive search. Instead, we aimed at finding a large representative of 

papers discussing overdiagnosis. 

Second, unexpectedly, studies on genomics and incidental findings (or 

incidentalomas) were largely missed. Forward reference checking revealed 

that some of the papers not found in our search may use other terminology 

for describing overdiagnosis, such as the “prevalence of significant findings” 

or “diagnostic value”. Using our search strategy these articles were 

unfortunately omitted and not included in this review. When researchers are 

interested particularly in this subset, the information in this review might not 

suffice. 

In summary, overdiagnosis is a topic discussed over medical disciplines, and 

in a wide array of contexts, from conceptual ideas in definition to practical 
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issues for clinicians in daily practice. The various characteristics of studies 

looking at overdiagnosis suggest that there may be different (and sometimes 

multiple) underlying mechanisms through which it may manifest itself. A 

lack of consensus on what is called overdiagnosis hampers communication 

between researchers, physicians, patients, and policy makers. The use of 

overdiagnosis to describe misdiagnosis will dilute its actual meaning, result 

in linguistic confusion, and counterproductive discussion, and should thus 

be avoided. Providing clarity on the mechanisms that lead to overdiagnosis 

will aid researchers communicate their results, especially with regard to 

overdiagnosis estimates. Future methodological studies should focus on 

establishing a framework to aid clinicians and researchers in understanding 

the different subtypes of overdiagnosis, their consequences, and provide 

guidance for selecting appropriate study designs and methods that match the 

research question of interest. 
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Appendix 

Criteria used for scoring of articles, and a description of specific in- and 

exclusion criteria per item 

Criterion Outcome Description 

Full-text 
available 

Yes / No Is a full-text available from PubMed? 

Veterinary 
study 

Yes / No Is the paper a study with animals? 

Overdiagnosis 
as a dominant 
theme 

Yes / No Is overdiagnosis discussed as a specific 
dominant theme 
Include: Prognostic / prediction studies 
relating to disease progression 
Include: Trend studies. Index test will 
often be not addressed 
Include: Active surveillance studies that 
assess what the impact is of having an in-
between category, next to treat and do not 
treat 
Exclude: Studies in which no diagnostic 
method is evaluated 
Exclude: Erratum’s 
Exclude: Case-studies (n = < 10) 
Exclude: Overview articles without a 
specific focus on diagnostics 
Exclude: Articles not mentioning 
overdiagnosis or only briefly commenting 
on it (particularly in the discussion) 
Example: Exclude article which states: 
"When Diagnostic test X is replaced with 
Diagnostic test Y sensitivity and 
specificity may be improved. As a result 
overdiagnosis of Disease Z may be 
reduced" 

Clinical field Bone & 
connective tissue 

Examples: Myopathy, osteoporosis, dental 
problems 

Cancer Examples: Prostate cancer, breast cancer, 
leukaemia 
Exclude: cervical cancer caused by HPV 
(=infection) 

Cardiovascular Examples: Pulmonary embolism, angina 

Congenital Examples: Down syndrome, hypospadias 
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Ear Example: Tinnitus 

Eye Example: Gingivitis 

Gastrointestinal Examples: Crohn’s disease, reflux disease, 
liver failure 

Gynaecology & 
Obstetrics 

Example: Preeclampsia 

Immune system Examples: Allergic reactions, autoimmune 
disorders, Heparin induced 
thrombocytopenia (HIT), PANDA's, 
Rheumatoid arthritis 

Infection Examples: Malaria, HIV, HPV, 
Clostridium difficile, pneumonia 

Mental Examples: ADHD, autism, depression, 
schizophrenia, bipolar disorder, (vascular) 
dementia 
Include: Diseases that are primarily 
psychiatric disorders and often result in 
impaired cognitive function 
Exclude: See neurological disorders 

Metabolic Examples: Diabetes, hypogonadism, 
hypothyroidism, growth related 
'disorders', nutrition status 

Neurological Example: Multiple sclerosis, Parkinson’s, 
Alzheimer 
Include: Diseases of the central / 
peripheral nervous system, that often 
have motorial implications 
Exclude: See mental disorders 

Perinatal Example: Malnutrition of the unborn 
child, child specific problems during 
pregnancy 
Include: disease in the unborn child 

Respiratory Examples: COPD, asthma, nasal 
disorders 

Skin Example: Eczema 

Trauma Examples: Car accidents, cuts, fractures, 
sprains, injury during surgery 

Urogenital Examples: Chronic kidney failure, kidney 
stones 

No specific 
clinical field 

Multiple clinical domains are assessed OR 
it is unclear if the paper focusses on a 
specific clinical domains 
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Example: a methodological paper on how 
we should quantify overdiagnosis 

Study aim Methodological Papers describing a theoretical framework 
for assessing overdiagnosis 
Include: Commentaries discussing the 
way overdiagnosis was determined in a 
different empirical primary study 
Include: Combination papers; Papers 
that are empirical, but also have a strong 
methodological focus on overdiagnosis 
Include: Modelling studies 

Non-
methodological 

Results from a primary study or 
assessment of outcomes by a review / 
overview paper 

Article type Commentary A comment, reply or rebuttal on a 
previously published paper or 
commentary 

Narrative review A paper giving a broad oversight of a 
specific topic, often from one particular 
authors view 
Include: editorials 
Include: opinion pieces 
Include: interviews 
Include: guidelines 
Exclude: Overviews that only refer to 1 
or 2 accuracy studies, without further 
discussion on the topic of overdiagnosis  

Primary paper Consists of a collection of original 
primary data collected by the researcher 

Systematic 
review 

Collection and synthesis of available 
evidence on a topic.  
Include: Systematic assessments / meta-
analyses of various articles within a 
specific domain 
Exclude: General discussions and 
exposes about a subject without a clear 
structural approach 

Type of 
diagnostic test 

Biomarker Any measurement of chemicals in the 
human body as well as genotyping 
Include: immunohistochemistry (even 
though this may be assessed via 
microscopy in some cases) 
Include: Rapid diagnostic test for malaria 
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Histology Qualitative visual assessment of a target 
tissue through biopsy under a microscope 
(or similar devices) 
Exclude: Rapid diagnostic test for 
malaria (biomarker) 
Exclude: Scope (medical examination) 

Imaging Any form of digital visualisation of the 
human body, such as MRI, CT, EKG, 
EEG, etc 
Exclude: Scope (medical examination) 

Medical 
examination 

(Quick) medical tests that are performed 
directly by the clinician, either with or 
without specific medical equipment 
Include: Endoscopy, colonoscopy, 
spirometry, reflex test, exploratory 
surgery, DSM-V assessment, 
psychological evaluations, skin prick tests 
(for allergy), blood pressure measurement 
Include: Assessment of medical history 
of the patient by a clinician, such as age, 
gender, smoking habits, exercise pattern, 
etc 

Prediction model List of predictors used in a prediction 
model 
Exclude: Overall assessments using 
multiple tests (="none")  
Exclude: Modelling studies that evaluate 
one particular index test, while using input 
on transition predictions in the rest of 
that model 
Note: Other index tests cannot be 
checked with a prediction model, since 
they will be part of that model 

None Not one specific test is studied (so a 
broad range of tests or no specific one is 
addressed) 
Include: Overview papers that only 
discuss the general topic of overdiagnosis 
Include: Papers discussing various tests 
(hence there is no specific index test) 
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Screening Yes / No Is the primary focus of the study on 
diagnosis or detection in asymptomatic 
patients? 
Include: Screening is mentioned multiple 
times and explicitly 
Exclude: Screening as an example in an 
overview / review paper 
Exclude: Prognostic studies in patients 
that already received diagnosis 

Overdiagnosis 
context 

Overdiagnosis 
estimation 

Overdiagnosis relating to the effect that a 
diagnostic test has on the number of 
excess cases found 
Include: Overdiagnosis mentioned in the 
results 
Include: Accuracy studies quantifying 
false-positive findings or % of 
overdiagnosis 
Include: Modelling papers that quantify 
overdiagnosis 
Exclude: Comparison of two diagnostic 
tests, without explicit quantification / 
assessment of overdiagnosis 
Exclude: Misdiagnosis / misclassification 
(= disease definition) 
Exclude: Overview papers that only 
briefly mention results from other 
primary studies 
Exclude: Overview papers that mention 
some quantitative results of 
overdiagnosis, but predominantly have a 
more broad discussion in general (=other) 

Disease 
definition 

Overdiagnosis as a result of shifting the 
disease definition in terms of biomarker 
threshold or criteria in a scoring list 
Include: Misclassification / misdiagnosis 
Include: Papers assessing pathologic / 
biologic / mechanistic background of the 
disease in context with overdiagnosis. 
However be critical whether these directly link 
particular biologic subclassifications of a disease to 
overdiagnosis 
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Overdiagnosis 
communication 

Overdiagnosis as subject of 
communication between clinicians and/or 
patients 
Include: Studies that assess overdiagnosis 
communication to patients before or after 
diagnostic tests 
Include: Studies assessing people's 
general understanding of the concept of 
overdiagnosis 

Incidental 
findings 

Overdiagnosis as a coincidental finding 
resulting from diagnostic testing of an 
unrelated illness 

Genomics Overdiagnosis resulting from genome 
(screening) assessments, determining 
high-risk groups 

Other Overdiagnosis that cannot be related to 
any of the categories above 
Include: Overview paper describing 
multiple aspects of overdiagnosis (e.g. 
accuracy, definition, litigation, 
methodology) 
Include: Studies looking at the 
downstream consequences of 
overdiagnosis (e.g. quality of life) 
Include: Studies looking at overall 
reasons for clinicians to overdiagnose (e.g. 
litigation risk, carefulness, unaware of 
negative consequences) 
Include: Trend studies 
Include: Studies on drivers and 
consequences of overdiagnosis 
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Abstract 
Concepts related to ‘too much medicine’ remain a complex multifaceted 

issue, difficult to grasp and dissect. Although valuable descriptive 

frameworks have been proposed, these have not tackled the issues related to 

too much medicine across clinical domains, nor have they provided 

actionable strategies for reducing them. We provide a conceptual framework 

aimed at distinguishing uncertainty over thresholds and errors, two key 

mechanisms leading to ‘too much medicine’, and placing these in the clinical 

pathway of screening, diagnosis, prognosis and treatment of individuals. This 

allows researchers to evaluate concepts related to ‘too much medicine’ in the 

context of their own specific research, and facilitates communication 

between researchers, healthcare providers and patients. Based on the 

mechanism(s) at play, we provide strategies for reducing too much medicine. 
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Introduction  
There is a rising awareness of the consequences of ‘too much medicine’ for 

individual patients and to the healthcare system as a whole. (1) ‘Too much 

medicine’ is the umbrella term to capsulize several concepts related to 

excessive and unnecessary use of healthcare services. Amongst these are 

overtesting, overdiagnosis, misdiagnosis, diagnostic error, overtreatment, 

and overutilization of medical activities. Communication on these topics, 

especially the widely used term overdiagnosis, is hampered by the myriad of 

definitions that exist, and our view is that there is an urgent need to be more 

specific about the underlying mechanisms. (2, 3) 

While a single definition for ‘too much medicine’ might not be feasible, a 

descriptive framework may provide more insight into the many facets of the 

interrelated components. So far, most conceptual or methodological 

research in this area has focused on overdiagnosis and diagnostic error (4-7), 

specifically on providing guidance for widening disease definitions (8), 

methods for estimating the amount of overdiagnosis in a certain disease area 

(particularly in the field of oncology) (9-14), describing harms related to 

overdiagnosis (15), and creating frameworks that aim to provide better 

understanding of overdiagnosis. (7, 16-19) Though these frameworks are 

valuable for describing overdiagnosis as a general concept, most are only 

applicable only to a specific clinical field or context, (15, 19) and do not 

include other aspects of ‘too much medicine’ such as overtreatment or 

overtesting. (16, 17) Additionally, while links between the drivers for 

overdiagnosis and approaches for reducing it have been made (20, 21), they 

can be further elucidated and incorporated in a framework. 

Building on preceding guidance and frameworks, we present a framework 

that includes various concepts related to ‘too much medicine’ and is 

applicable across clinical contexts. This allows researchers to disentangle 

whether the use of a test (either a screening, diagnostic, prognostic or 

monitoring test) and its downstream consequences (such as labelling of 

individuals and treatment decisions) leads to more harm than benefit. This 

broad starting point allows us to differentiate between the multiple, often 

simultaneously present, underlying mechanisms that drive ‘too much 
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medicine’. Use of our framework will structure the thinking, communication 

and study of overtesting, overdiagnosis, overtreatment, and related concepts, 

and their consequences. 

Conceptual framework 
We propose a framework that maps different mechanisms of ‘too much 

medicine’ to stages of the clinical pathway (see Figure). This clinical pathway 

encompasses the entire clinical process starting as early as screening tests in 

(non-symptomatic) individuals up until management and treatment of 

patients diagnosed with the target condition. (22) We distinguish four key 

stages of the clinical pathway: eligibility for testing, presence of abnormality, 

determining sub-classification of abnormality, and choosing appropriate 

management for a subclass.  

At each stage ‘too much medicine’ can arise from two main underlying 

mechanisms: 1. uncertainty over thresholds (e.g. screening, diagnostic, 

prognostic or treatment thresholds) and 2. errors (e.g. screening, diagnostic, 

prognostic or treatment decision errors). In the following sections we first 

provide a general description of these mechanisms, then we address them 

in context of the four key stages of the clinical pathway, and finally we 

illustrate them with clinical examples. This framework will facilitate 

describing and differentiating between, often interrelated and 

simultaneously occurring, underlying mechanisms leading to ‘too much 

medicine’, and provide guidance for actions that can be taken for reducing 

its harmful consequences.  
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Mechanisms of too much medicine 

Uncertainty over thresholds 

The term ‘threshold’ is often used to refer to a numerical cut-off of a test, 

for example, what is considered high blood pressure? However, we use the 

term threshold in the broader sense, to refer to all the points along the clinical 

pathway at which a decision is made: screening, diagnosis, prognosis, and 

treatment. Uncertainty over thresholds is the situation in which there is no 

widely agreed upon threshold, or the chosen threshold is not evidence-based. 

In other words, there is uncertainty over thresholds when it is unclear which 

threshold results in the optimal harm/benefit ratio for a given person or 

targeted population. (23) The harms of ‘too much medicine’ introduced by 

uncertainty over thresholds can best be understood at the level of the 

healthcare system as a whole, as the question to be answered is: do the 

benefits outweigh the harms for the targeted group of individuals. 

Uncertainty over thresholds can be resolved through more high quality, 

adequately powered, empirical research into the long-term consequences (in 

terms of health outcomes and costs), and by summarizing this and all other 

available evidence in systematic reviews and evidenced based guidelines.  

Errors 

We define errors as any deviation from prevailing agreed upon thresholds. 

They can occur as diagnostic or prognostic errors (e.g. deviating or 

overruling the result of the prevailing ‘gold standard’) or management or 

treatment errors (e.g. deviating or overruling established treatment 

guidelines). Errors thus only exist when there are explicit agreed upon 

diagnostic or treatment thresholds. We broadly divide errors into human, 

technical, and system errors. Human errors are the result of incorrectly 

ordering, conducting, or interpreting information leading to incorrect 

decisions for the individual patient. Technical errors are the result of 

inaccurate provided by the instruments used (e.g. due to miscalibration or 

malfunctioning of tests). Finally, system errors occur when the (healthcare) 

system prevents certain tests or treatments being ordered or conducted (e.g. 

availability of only an inferior test or suboptimal treatment). 
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Uncertainty over thresholds and errors can both be understood at the level 

of the target population, however at the level of the individual patient this is 

more complex. Whether an error has occurred in a specific individual patient 

can be established by performing the reference standard in that same 

individual, or consulting the prevailing guidelines in case of a treatment 

decision. Whether a diagnosis or treatment leads to a net benefit for one 

specific individual can never be determined, as the alternative course of 

action (e.g. no diagnosis or an alternative treatment) was not taken for that 

individual. This relates to the concept of counterfactual thinking, which is 

considered complex and hard to interpret on an individual level. (24, 25) 

Stages of the clinical pathway 
In the following sections we describe how uncertainty over thresholds and 

errors occur at each stage of the clinical pathway, supported by clinical 

examples (Table 1 and the Appendix). 

Eligibility for testing for abnormality 

Uncertainty over thresholds as mechanism 

The uncertainty in the first stage of the clinical pathway involves determining 

who is eligible for testing (i.e. for screening, diagnosis, prognosis, or 

monitoring). At one extreme, some screening tests may be applied 

universally and at the other extreme, some confirmatory, invasive, or 

expensive diagnostic or prognostic tests are only performed when there is a 

very high probability that the patient has a certain disease. The relevant 

question to ask is whether the benefits of testing a particular population 

outweigh the harms compared to not testing. To answer such a question, not 

only the direct harms of the test itself need to be considered, but also 

downstream consequences of the test results. A typical example can be found 

in the field of breast cancer, where there is uncertainty surrounding the 

appropriate starting age of screening. (Table 1, E1) (26, 27) 

There is not only a trend within the public health and medical system towards 

broadening indication for screening and testing, but also within the general 

public, due to the rapid development in diagnostics and monitoring devices 
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that are available directly for the consumers, ranging from health monitoring 

apps for smartphones (28), to total body scans (29). Such technological 

developments are flooding the market before the key question on whether 

they lead to a net benefit on a population level, has been answered.  

Incidental findings, defined as results pertaining to an abnormality other than 

the expected target disease, also relate to uncertainty over testing. With 

increasing resolution, these findings are becoming more common in various 

imaging tests (30, 31). While some incidental findings may be clinically 

relevant, others might be serendipitous, hence the net benefit of subsequent 

testing and/or treatment of incidental findings may be questionable. 

Uncertainty in incidental findings relates more to how far we should go when 

testing an individual, rather than who we should test. 

Errors as mechanism 

Errors of eligibility for testing occur when there are clear indication 

guidelines to decide who should be tested, but the tests are applied to an 

individual not having that indication. An example is when a physician is 

expected by a patient to perform a screening or diagnostic test regardless of 

whether there is an indication. (Table 1, E2) (32) 

The question of interest to study this type of error is: why are more 

individuals being tested? Various drivers have been described that encourage 

the overuse of tests, including e.g. expectations of patients, the idea that 

‘more is better’, the feeling of reassurance, consequences of undertesting, 

time constraints, and difficulty of keeping up with new evidence. (20) 

Additionally, there are few barriers to overtesting when tests are simple and 

non-invasive to use, little feedback is given on testing practices to physicians, 

or lack of financial disincentives. Tests may sometimes be bundled together 

on test request forms or software systems (i.e. a system error), and the 

physician is forced to perform a series of tests, despite the fact that 

combining these does not provide additional diagnostic information. (e.g. 

ASAT/ALAT tests for routine liver function) (33) 
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Defining abnormality 

Uncertainty over thresholds as mechanism 

Once a screening, diagnostic or prognostic test has been performed, we 

discriminate between individuals with and without abnormalities. In this 

stage of the clinical pathway we determine what we define as ‘abnormality’. 

Thresholds to classify individuals can either be defined explicitly using 

numbers (e.g. mmHg for hypertension) or more implicitly (e.g. 

histopathological diagnosis). Because slight changes in treatment thresholds 

or diagnostic criteria can lead to a large change in absolute numbers of 

individuals being labelled as diseased, such changes are often a subject of 

serious debate. (8, 41) Uncertainty can arise when it is unknown which 

threshold for defining abnormality optimizes the net benefit for individuals 

in terms of patient outcomes and costs. However, it is important to consider 

that labels do not only have long-term impact via the treatment decisions 

they lead to, but that the diagnostic or prognostic label itself can have direct 

consequences for psychological well-being (i.e. being told you have an 

indolent tumour as opposed to cancer), eligibility for disability aids and 

reimbursement, and decision on further testing and management.  

The widening disease definitions or prognostic classifications by altering 

thresholds results in inclusion of a group of individuals at low risk of 

unfavourable outcomes, in whom the net benefit of further testing and 

treatment may be limited. When considering altering a threshold for defining 

abnormality, the main research question to address is to quantify the net 

benefit of classifying those individuals with likely more mild conditions or 

prognosis as being diseased or indicated for treatment. 

Examples of uncertainty over thresholds involve discussion about at what 

level high blood pressure needs to be classified and treated as hypertension 

(42, 43), and at what concentration of prostate specific antigen (PSA) 

warrants further testing in a prostate cancer screening setting? (44) These are 

both changes in explicit thresholds, though changes at implicit thresholds 

may be more insidious. Technological advances allow for detection of very 

low biomarker concentrations, and high resolution imaging allows small 

abnormalities to be observed. But are these clinically relevant?  
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Table 1. Examples of how uncertainty over thresholds and errors can lead to 
‘too much medicine’ at different stages of the clinical pathway. 

Clinical pathway Mechanism Example 

Eligibility for 
testing 

Uncertainty 
over 
thresholds 

E1. Breast cancer screening (34) 
Whether extending the national breast 
cancer screening to start screening at age 
40 instead of 50 will be beneficial.  

Errors E2. Head trauma in children (32) 
Parental anxiety leading to cranial CT 
scans for minor blunt head trauma in 
children 

Defining 
abnormality 
 

Uncertainty 
over 
thresholds 

E3. Major depressive disorder (35) 
The discussion about widening the 
definition by removal of the bereavement 
exclusion from the diagnostic criteria in 
the DSM-V  

Errors E4. Pulmonary Embolism (36) 
Artefact on pulmonary CT angiography 
leading to diagnosis of pulmonary 
embolism 

Subclassification 
of abnormality 

Uncertainty 
over 
thresholds 

E5. Disruptive mood dysregulation disorder 
(DMDD) (37) 
Whether the inclusion of DMDD as new 
diagnosis in the DSM-V as alternative for 
paediatric bipolar disorder will lead to 
better patient outcomes 

Errors E6. Alzheimer’s disease (AD) / vascular 
dementia (VD) (38) 
Structural brain imaging leading to 
misdiagnosis of VD as AD when 
compared to autopsy as a reference 
standard 

Management of 
subclasses 
 

Uncertainty 
over 
thresholds 

E7. Ductal carcinoma in situ (DCIS) (39) 
Whether active surveillance is a valid 
alternative to surgical treatment for DCIS 
patients 

Errors E8. Malaria (40) 
Despite having a negative culture and 
rapid diagnostic test, individuals still 
receive anti-malaria medication 
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For example, should small asymptomatic blood clots found in the lungs 

through imaging be labelled as pulmonary emboli? (45) 

There can also be uncertainty over thresholds for defining the presence of 

abnormality in patients presenting with signs or symptoms. A threshold may 

shift depending on what society considers part of normal life. This makes 

abnormality a relative and dynamic concept. For example, it has been 

discussed whether prolonged bereavement is a natural reaction to a life-

changing event, or a disease, as part of major depressive disorder? (Table 1, 

E3) (35) 

Errors as mechanism 

Errors at the level of defining abnormal result in incorrect diagnostic labels 

for individuals (when compared to a reference standard), consequently 

labelling too many individuals with a condition. In essence, errors by the test 

of interest at this level are false-positives, which can be detected in a research 

setting in which it is compared to a ‘gold’ reference standard. However, as 

this reference test is not performed in daily clinical practice (e.g. due to costs, 

risks, practical constraints), or its results are incorrectly interpreted, these 

false-positives will not be detected. Consequently, these individuals will 

receive a diagnostic label, subclass, and management, without any potential 

benefit. The key question that should be asked is what causes the errors in 

defining abnormality, and can we act upon those errors to reduce 

overdiagnosing abnormalities? 

An example of classification error is patients suspected of scaphoid fractures 

who were diagnosed using bone scintigraphy scans. (46) Bone scintigraphy 

was found to overdiagnose individuals when compared to the prevailing 

“gold standard” of follow-up with clinical examination and repeated scans. 

Therefore, if scintigraphy scans would be implemented in clinical practice, 

overdiagnosis would occur. Other examples of classification errors include 

using a tourniquet cuff for longer than the advised duration inducing 

(pseudo)hyperkalaemia, leading to overdiagnosis of hypertension (47), or an 

artefact on a pulmonary CT angiography leading to an incorrect diagnosis of 

pulmonary embolism. (Table 1, E4) (36) 
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Subclassification of abnormalities 

Uncertainty over thresholds as mechanism 

Given the presence of an abnormality, thresholds are required to distinguish 

subclasses of that abnormality. The aim of subclassification is to identify and 

separate individuals based on the aetiology and prognosis of their 

abnormality. All these patients receive a diagnostic label, however the type 

of label they receive has implications for their prognosis and guides further 

patient management. Research questions in this area relate to the uncertainty 

over which thresholds for subclassification result in a balance between the 

harms and benefits of the treatments for each diagnostic or prognostic 

subcategory. 

In oncology, for example, prognostic staging is used for abnormal growths, 

with higher stages corresponding to a more severe condition. However, there 

can be uncertainty over which thresholds provide valuable and accurate 

prognostic categories, usable to guide further patient management. (48) 

Another example in the field of obstetrics and gynaecology, relates to a 

change of diagnostic subclassifications by electronic foetal monitoring in the 

SOGC guidelines. This led foetuses with a non-reassuring foetal status to be 

further subclassified into ‘abnormal’ and ‘atypical’ tracings. (49, 50) Whether 

this subclassification results in improved patient management and clinical 

outcomes is unknown.  

Uncertainty over subclassification of abnormalities can also refer to 

distinguishing between two different disorders with similar signs, symptoms 

or test results, but requiring different clinical management due to different 

underlying aetiologies. For example, there is uncertainty over 

subclassification of children previously diagnosed with bipolar disorder, 

whom should now be labelled with temper dysregulation syndrome with 

dysphoria. (Table 1, E5) (37) While in general there is consensus that these 

children have a condition and require intervention, the specific subclass of 

mental disorders to which they belong and type of intervention required (i.e. 

antipsychotics and mood stabilizers or psychosocial intervention) is up for 

debate. 
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Errors as mechanism 

Errors at the level of subclassification share similar properties with errors 

occurring at the stage of defining abnormality. The test of interest can be 

compared to a reference standard to detect false-positives, however there is 

a reason that the reference test not performed, incorrectly performed, or 

wrongfully interpreted in daily clinical practice. The key research question is 

what the drivers are for this, and whether something can be done about it.  

For example, in the case of patients suffering from some form of dementia, 

a follow-up question might be whether this is or is not Alzheimer related. 

When structural brain imaging was used to this extent, it was found to lead 

to overdiagnosis of vascular dementia when compared to autopsy results (the 

reference standard). (Table 1, E6) (38) This error is hard to resolve, as 

obviously autopsy results are not available at the time subclassification needs 

to be made. Another example relates to the overdiagnosis of borderline 

personality disorder as bipolar disorder in clinical practice, when compared 

to a research setting. (51) In this particular example, increasing availability 

and commercial stimuli of medication for bipolar disorder may be the 

underlying driver. 

Management of subclasses 

Uncertainty over thresholds as mechanism 

Finally, after an abnormality has been identified, and a diagnostic or 

prognostic sub-classification has been made (if applicable), the next step is 

to determine the appropriate management. Especially in this component of 

the clinical pathway, there is a direct weighing of benefits (e.g. improving 

quality of life, prolonging life expectancy) and risks (e.g. complications, side-

effects) of the available management options. The choice of treatment 

regimen, intensity or the decision to withhold treatment depends on both 

disease prognosis and probability of harms and benefits for a specific disease 

subclass. Uncertainty over thresholds for management decision relates to not 

knowing what management option provides the highest net benefit for a 

specific subclass. The main research question to be answered here is what is 

the optimal threshold to maximize harms and benefits of the treatments for 

each diagnostic and prognostic subclass of individuals.  
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For example, there can be uncertainty over whether ductal carcinoma in situ 

(DCIS) should be treated by surgical resection of the tumour, or monitored 

through active surveillance. (Table 1, E7) (39) Though surgical resection of 

the tumour would reduce the risk of recurrence, it does have risks related to 

complications, possible reconstructive surgery, and associated (healthcare) 

costs. Active surveillance would only require regular check-ups, though it 

may pose a higher risk of recurrence. 

Errors as mechanism 

Errors in management of a specific diagnostic or prognostic subclass often 

involves human errors. Doctors, either knowingly or unknowingly, provide 

management to an individual which is not recommended by prevailing 

guidelines. This deviation does not necessarily need to be wrong, as there 

may be specific circumstances, e.g. patient preferences, to specifically decide 

for another type of management than indicated. Individual patient 

preferences (e.g. for specific health related outcomes, willingness to pay) 

should be taken into account to provide personalized estimates of potential 

benefits and harms of treatment options. There is, however, also a trend in 

healthcare towards defensive medicine and “more is better”. Research 

questions related to this error are aimed eliciting motivations for providing 

certain patient management, and looking at facilitators and barriers to use 

evidence-based guidelines, together with training healthcare professionals 

and patients the essential principles of “less-is-more” medicine and shared 

decision making.  

An example of an error in management decision occurring can be found in 

the field of malaria treatment in resource limited settings. Despite having 

both a negative culture and rapid diagnostic test result, a significant number 

of individuals still received artemisinin-combination therapy against malaria. 

(Table 1, E8) (40) 

Strategies for reducing ‘too much medicine’ 
Possible directions for strategies to reduce ‘too much medicine’ may be 

informed by the underlying mechanism that is present (i.e. uncertainty over 

thresholds or errors). These are described in the following sections, and a 
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Table 2. Overview of mechanisms, their definitions, and possible strategies 
for reducing ‘too much medicine’. 

general overview is given in Table 2. It is important to note that uncertainty 

over thresholds and errors can occur simultaneously, hence multiple 

strategies may need to be used to maximize reduction of ‘too much 

medicine’. 

Mechanism Definition 
Strategies for reducing  
‘too much medicine’ 

Uncertainty 
over 
thresholds 

Not knowing what the 
most appropriate 
threshold is for 
maximizing benefits and 
minimizing harms for a 
group of individuals 

Solution lies in gathering evidence 
on optimal thresholds 

- Clinical trials 

- Observational studies 

- Modelling studies 

Human 
errors 

Humans that take 
discordant actions when 
compared to a reference 
standard or guideline 

Solution lies in behaviour of 
doctors and patients 

- Uncover underlying drivers  

- Better communication of 
guidelines  

- Discuss motivations for 
deviating from guidelines 

- Training principles of “less-is-
more” medicine 

Technical 
errors 

Devices or software 
programs that lead to 
discordant actions when 
compared to a reference 
standard or guideline 

Solution lies in device or software 

- Optimize current tests 

- Implement better tests 

- Improve software system 

System errors The (healthcare) system 
leads to discordant 
actions when compared 
to a reference standard 
or guideline 

Solution lies in (healthcare) system  

- Increase access to better 
diagnostic tests and treatments 

- Reduce financial or time 
constraints 

- Improve quality of guidelines 
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Reducing uncertainty over thresholds 

Performing research on the impact of a threshold shift (e.g. who to test, who 

to diagnose, who to prognosticate, or who to treat) on patient relevant 

outcomes can help reduce uncertainty over what the optimal threshold is. (8) 

Impact of a shift in threshold should be measured by comparing the harms 

and benefits for one threshold to the other, and should incorporate all 

important downstream consequences, such as subsequent patient 

management, complications, and clinically relevant health events. The earlier 

in the clinical pathway (i.e. eligibility for testing) the more complex it is to 

capture all the downstream consequences. Ultimately, the result of a 

threshold shift is a ratio between the harms (psychological harm from 

unnecessary labelling, complications from treatment, medical expenses) and 

benefits (early detection and treatment of clinically relevant disease or 

prognostic classes) of the old and the new threshold. (15) Lowering 

thresholds will result in more (or earlier) detection of individuals with 

clinically relevant disease, but will inevitably increase overdiagnosis and 

overtreatment. 

Several study designs can be considered to assess the harm/benefit ratio, 

each with specific strengths and limitations. (11, 52) Clinical trials or 

observational studies are useful for obtaining direct evidence through 

empirical estimates of overdiagnosis, and incremental cost-effectiveness 

ratios. However, when there is, for example, a significant amount of lead-

time (i.e. the time between development of an abnormality and actual 

detection of the targeted condition), only costly randomized screening trials 

with significant follow-up time may be suitable as an empirical study design. 

(53) Alternatively, (decision analytic) modelling studies can be used to 

simulate long-term outcomes. (54-56) There is an ongoing debate on how to 

weigh harms and benefits. In some situations, a cost-effectiveness based 

approach may be combined with citizens’ juries or multiple criteria decision 

analysis (MCDA) to ensure stakeholder support of a new threshold. (57, 58) 
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Reducing errors  

While the solution to reducing uncertainty over thresholds is more high 

quality empirical or model-based research, the solutions to reducing errors 

are multifaceted. When human errors are the cause of ‘too much medicine’, 

it is helpful to identify whether the errors occur due to a lack of knowledge 

on guidelines, their attitude towards these guidelines, or practical issues in 

performing tests. This way interventions can be targeted specifically towards 

the problem at hand. Dialogue with physicians is key in unravelling the 

drivers for these errors. If, for example, knowledge about current guidelines 

is lacking, one might opt to stimulate communication and education of these 

guidelines to healthcare providers as a potential solution. However, if 

physicians knowingly deviate from those guidelines (sometimes rightfully 

so), solutions might want to be sought elsewhere. 

Technical errors can be reduced by improving the performance of the 

diagnostic or prognostic test itself. Technical performance of a device can be 

increased by, for example, improving discrimination (i.e. sensitivity and 

specificity), consistency, performing software updates, or reducing artefacts. 

These aforementioned properties can be improved for the current index test, 

but alternatively a novel test with better performance may be developed. 

For system errors it is important to realize that neither the healthcare 

professional, nor the device or test, is to blame. The professional may be 

restricted by the system if one is required to diagnose, prognosticate and treat 

the patient with limited resources and time. The (software) system may also 

only allow for packages of bundled tests to be ordered, resulting in 

unnecessary overtesting. (59) Solutions should be sought at the level of the 

organization, that may, for example, provide more time per patient, allocate 

more resources for guideline recommended tests and treatments, or ensure 

flexibility in software.   

Concluding remarks 
We have developed a framework that allows concepts related to ‘too much 

medicine’ to be described by using uncertainty over thresholds and errors as 

mechanisms. These mechanisms are outlined using four stages along the 
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clinical pathway, from testing to treatment. A variety of clinical examples 

have been given to demonstrate its applicability across clinical fields and 

contexts. Furthermore, the framework helps to provide guidance for 

strategies useful for assessing or reducing ‘too much medicine’ based on the 

underlying mechanisms. Use of this framework by researchers, healthcare 

professionals, policy makers, and others interested in ‘too much medicine’, 

including related concepts such as overdiagnosis and diagnostic error, will 

help facilitate communication and stimulate constructive discussion. 
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Appendix 
Examples specific for human, technical, and system errors 

Clinical pathway Mechanism Example 

Eligibility for 
testing 

Human 
errors 

Head trauma in children (32) 
Anxiety of parents leading to an 
increased number of Cranial CT scans 
being ordered 

Technical 
errors 

Breast cancer screening (60) 
Women of 70 years old not being 
invited to breast cancer screening due to 
a software failure 

System 
errors 

Atrial fibrillation (28) 
People having free access to apps for 
smartwatches allowing for monitoring 
atrial fibrillation 

Defining 
abnormality 
 

Human 
errors 

Attention deficit hyper activity disorder 
(ADHD) (61) 
Overestimating the role of gender in 
diagnosing ADHD 

Technical 
errors 

Pulmonary Embolism (36) 
Artefacts on pulmonary CT 
angiography leading to overdiagnosis 

System 
errors 

Mental disorders (62) 
Clinicians intentionally code mental 
disorders wrong in order to ensure 
treatment access and reimbursement 

Subclassification 
of abnormality 

Human 
errors 

Bipolar disorder (BD) / borderline personality 
disorder (BPD) (51) 
BPD is misdiagnosed as BD in clinical 
practice when compared to a research 
setting 

Technical 
errors 

Lung carcinoid tumours (63) 
Artefacts on histological staining lead to 
misclassification of cytological diagnosis 

System 
errors 

Hypo(mania) (64) 
Guidelines for diagnosing (hypo)mania 
use unspecific criteria, open for 
interpretation 
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Clinical pathway Mechanism Example 

Management of 
subclasses 
 

Human 
errors 

Malaria (40) 
Despite having a negative culture and 
rapid diagnostic test, individuals still 
receive anti-malaria medication 

Technical 
errors 

Incorrect dosage (65)* 

Excessive dose of medication being 
given due to lack of software feedback 
loop 

System 
errors 

Fee-for-service (66) 
A fee for service system leads to 
overtreatment and overutilization of 
healthcare resources 

* Although the origin is a human error, the solution can be found at the software level 

 

  



CHAPTER 5 

144  
 

  



FRAMEWORK FOR ASSESSING CONCEPTS RELATED TO ‘TOO MUCH MEDICINE’ 

145 

 

5 

 

 

 

 

 

“Most models are wrong, 

the question is how wrong they have to be to not be useful” 
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Abstract 

Objective: To demonstrate how decision analytic models (DAM) can be 

used to quantify impact of using a (diagnostic or prognostic) prediction 

model in clinical practice, and provide general guidance on how to perform 

such assessments. 

Study design and setting: A DAM was developed to assess the impact of 

using the HEART score for predicting major adverse cardiac events 

(MACE). Impact on patient health outcomes and healthcare costs was 

assessed in scenarios by varying compliance with and informed deviation 

(ID) (using additional clinical knowledge) from HEART score management 

recommendations. Probabilistic sensitivity analysis was used to assess 

estimated impact robustness. 

Results: Impact of using the HEART score on health outcomes and 

healthcare costs was influenced by an interplay of compliance with and ID 

from HEART score management recommendations. Compliance of 50% 

(with 0% ID) resulted in increased missed MACE and costs compared to 

usual care. Any compliance combined with at least 50% ID, reduced both 

costs and missed MACE. Other scenarios yielded a reduction in missed 

MACE at higher costs. 

Conclusion: Decision analytic modelling is a useful approach to assess 

impact of using a prediction model in practice on health outcomes and 

healthcare costs. This approach is recommended before conducting an 

impact trial to improve its design and conduct. 
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Introduction 

Diagnostic or prognostic prediction models can be used to support 

management decisions such as subsequent testing, treatment or lifestyle 

changes. Developed prediction models require external validation to ensure 

they have adequate predictive performance. (1-4) However good predictive 

performance does not imply that implementation in clinical practice will 

improve health outcomes or reduce healthcare costs. The impact of using 

risk prediction models in clinical practice on patient health and monetary 

outcomes can be evaluated in impact studies, such as comparative 

longitudinal (ideally (cluster) randomized) trials, in which care directed by the 

prediction model is compared to usual care. (5-10) 

Impact studies for prediction models are infrequent, most likely due to their 

complexity, long follow-up, associated high costs, and lack of regulatory 

requirements. (7-9, 11-13) In addition, the benefits observed in such impact 

studies have typically been smaller than expected, or even lacking. (14-16) 

An approach using a decision analytic model (DAM) may prove useful, 

making use of evidence available at the time an impact study is being 

considered. A DAM could provide insight in the conditions under which a 

prediction model is likely to result in favourable health outcomes or costs 

when implemented in clinical practice. 

Decision analytic modelling is a method that integrates multiple sources of 

evidence to assess the downstream cost-effectiveness of applying a 

prediction model in daily practice. (7-9, 17, 18) Constructing a DAM forces 

researchers to think about the pathway through which (multiple alternative) 

complex interventions can lead to health and monetary benefits; such as 

variation in the interplay between the model predictions and subsequent 

patient management based on these predicted risks. DAMs also allow for 

uncertainty on parameters, such as distribution of predicted probabilities or 

effectiveness of treatment, to be taken into account. Additionally, 

downstream effects of hypothetical scenarios can be analysed, by varying 

values of parameters for which there is little or no evidence. The results are 

then used to inform decisions for an individual patient or healthcare policy. 

DAMs have also been proposed and performed before conducting 
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longitudinal comparative trials to assess impact of (complex) therapeutic 

interventions and diagnostic tests (19-21), although they are still rare for 

diagnostic or prognostic prediction models. An explanation for this could be 

that using DAMs to assess impact is more complex for prediction models 

than for interventions, as the former would not only need to include accuracy 

of predictions, but also downstream effects of, for example, benefits and 

harms of subsequent tests. Additionally, lack of available evidence on 

compliance with management recommendations from a prediction model 

based on the predicted risk, and informed deviation from that compliance 

(i.e. whether there is incremental value of a clinician’s experience on top of 

predictions provided by a model) may also explain the limited number of 

DAMs assessing impact of prediction models before conducting a formal 

large scale, long-term, costly, empirical impact study. Even though DAMs 

are particularly ideal to estimate the impact when evidence is lacking, namely 

by simulating multiple (hypothetical) scenarios.  

In this paper we demonstrate how to assess the potential impact of a 

prediction model on patient health outcomes and healthcare costs using a 

DAM approach, specifically focusing on the effect of compliance with 

management recommendations. We will use the HEART score prediction 

model for diagnosis of major adverse cardiac events (MACE) in patients with 

chest pain as a case study. (22) This paper will conclude by providing generic 

guidance on how to perform a decision analytic model-based assessment to 

estimate the impact of using a prediction model in daily practice, and how 

the results of such DAM can inform the design and conduct of a subsequent 

prospective comparative prediction model impact study. 

Methods 

Case study 

We compared implementation of the HEART score prediction model to 

usual care in a DAM as an example of how compliance with management 

recommendations from a prediction model influences the impact of that 

model on patients’ health outcomes, healthcare costs, and cost-effectiveness. 

The HEART score provides an excellent example for illustrating the 

usefulness of a DAM, as model development (22) and several external 
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validations have shown that the HEART score can correctly predict and 

stratify patients according to their risk of having MACE (23-26), and 

HEART score predictions were categorized and linked to management 

recommendations. (Table 1) Although a randomized impact trial has recently 

been conducted for the HEART score prediction model (27), the DAM only 

used information from studies and data sources available before this trial was 

conducted. Note that the main of this paper was not to replicate the results 

from this impact trial (27), but rather to illustrate how a DAM can be used to 

assess the impact of a prediction model on patient health outcomes and 

healthcare costs.  

The HEART score is a prediction model that uses routinely collected 

information from patient history and blood tests to predict MACE in 

patients presenting with chest pain at the emergency room, to generate a risk 

score ranging from 0 to 10. (Table 1) (22) The potential benefit of using the 

HEART score lies in its ability to stratify patients according to their risk of 

MACE and provide risk based management recommendations. Physicians 

are advised to promptly discharge low risk patients (i.e. HEART score ≤ 3), 

reducing utilization of healthcare resources, and providing additional 

diagnostic testing in higher risk patients (i.e. HEART score ≥ 4), to prevent 

unnecessary delay in treatment initiation. Non-invasive diagnostic testing for 

the intermediate HEART score category consisted of stress bicycle ECG, 

myocardial scintigraphy, coronary CT angiography, and cardiac MRI. 

Invasive diagnostic testing for the high HEART score category consisted of 

coronary angiography, in combination with any of the non-invasive tests. 

Table 1. Overview of the HEART score prediction scores, categories, and 
their associated risk based management recommendations 

HEART score HEART score category Management 
recommendation 

0 – 3 Low Discharge home 

4 – 6  Intermediate Non-invasive testing 

7 – 10  High Invasive testing 
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We evaluated the HEART score purely as a diagnostic instrument for 

MACE, meaning that in our model the HEART score and any subsequent 

actions do not have an impact on the total number of MACE. MACE found 

during diagnostic work-up (detected MACE) were considered a favourable 

outcome, whereas MACE in discharged patients (missed MACE) were 

considered an unfavourable outcome. 

Structure of the decision analytic model 

Figure 1 and Appendix A display the DAM comparing usual care to the 

HEART score strategy. In the usual care strategy HEART scores are not 

available to clinicians and are therefore not used to guide subsequent patient 

management decisions. In the HEART score strategy, we mimicked that 

clinicians at the emergency department would calculate the HEART score, 

and be given clear guidance on subsequent risk based patient management 

recommendations (see Table 1). 

The DAM used an assistive (as opposed to a directive) prediction model 

approach, meaning physicians were not forced to comply with management 

recommendations. (8, 28) This allows for better mimicking actual 

implementation of the prediction model in clinical practice and thus provide 

more realistic and generalizable quantification of impact. The focus of this 

study is to quantify the impact of compliance with the HEART score 

predictions and subsequent management recommendations on patient 

relevant health outcomes and monetary outcomes. Accordingly, we varied 

the amount of compliance to prediction model’s management 

recommendations (i.e. the percentage of patients in whom the specified 

management recommendation was followed) in several scenarios (see 

“Scenario analysis” paragraph). 
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Figure 1. Decision tree for using the HEART score prediction model for 
management decisions in patients presenting with chest pain at the 
emergency department. ID = Informed deviation of management 
recommendations corresponding to HEART score predictions. Euro signs 
and emoticons represent negative effects on costs and health outcomes 
respectively. 

 

In the DAM clinicians could deviate from recommended management based 

on additional patient information (e.g. signs and symptoms) or clinical 

expertise, leading to more appropriate stratification of management given to 

patients, so-called informed deviation (ID). This ID was included as a 

variable in the DAM, defined as the proportion of patients for whom the 

initial management recommendations according to the prediction model 

were incorrect, in which physicians – informed by additional knowledge – 

correctly deviate from those recommendations. ID ranged from 0% 

(uninformative compliance; compliance is equal in patients with and without 

MACE) to 100% (fully informative compliance; patients with MACE follow 

a diagnostic pathway, patients without MACE are discharged). For an 

example of how ID influences management recommendations in the low 
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HEART score category, see Table 2. Introducing 50% ID to a scenario in 

which there is 80% compliance to management recommendations, would 

lead to an additional 40% of patients with MACE receiving testing, and an 

additional 10% of individuals without MACE being discharged. 

Table 2. Illustration how compliance with, and informed deviation from 
HEART score management recommendations for the low HEART score 
category (0-3) influence the proportion of patients being discharged vs. 
receiving additional (non-)invasive testing. Asterisks denote the preferred 
course of action for patients with and without MACE. 

 Scenario (HEART score 0-3) 

Compliance 80% 
ID 0% 

ID 50% 
Compliance 80% 

ID 50% 

MACE 

Discharged 80% 
-40% 

(80%*0.5) 
40% 

Additional 
testing* 

20% 
+40% 

(80%*0.5) 
60% 

No 
MACE 

Discharged* 80% 
+10% 

(20%*0.5) 
90% 

Additional 
testing 

20% 
-10% 

(20%*0.5) 
10% 

Input parameters for the decision analytic model 

To operationalize the DAM, each parameter requires an input value. Three 

types of input parameters are considered. First, transition probabilities, 

which are the probabilities for transitioning from one (health) state to the 

next, are defined (marked in Figure 1 by the orange arrows). Secondly, we 

defined the main and other health outcomes. Finally, input values for the 

intended and unintended effects and costs of any subsequent tests, 

treatments, and conditions need to be determined. Input for most of these 

parameters in the “usual care” strategy was based on the observational data 

from the study by Nieuwets et al. (29) See Appendix B for an overview of all 

input parameters. 
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Transition probabilities 

The distribution of the target patient population across HEART score 

categories and MACE rates per HEART score category were derived from 

development(22), and multiple external validation studies of the HEART 

score prediction model. (23, 24, 30) Values for compliance and ID were not 

available, and are further described in the “Scenario analysis” section. 

Transition probabilities and likelihood of receiving specific diagnostic tests 

(e.g. a stress bicycle ECG) in non-invasive and invasive diagnostic testing 

pathways, were derived from a study measuring consumption of healthcare 

resources in usual care. (29) 

Health outcomes 

The health outcome of interest was defined as the proportion of missed 

MACE, i.e. patients with MACE at 6 weeks who were (initially) discharged 

without any subsequent diagnostic work-up. MACE detected during or 

occurring after diagnostic workup was not included as adverse outcome, as 

this would have been found and managed accordingly in clinical practice. 

MACE was defined as occurrence of one or more of the following events or 

interventions: acute myocardial infarction (both ST- and non-ST-segment 

elevation), unstable angina, percutaneous coronary intervention (PCI), 

coronary artery bypass grafting (CABG), significant stenosis (>50%) 

managed conservatively, and death due to any cause. (31) 

Healthcare costs 

Calculation of the HEART score relies on readily available predictors, hence 

no extra costs are associated with collection of these predictors when 

compared to usual care. Costs of MACE were calculated based on a weighted 

average of costs and probability of each individual MACE component, 

derived from scientific literature. (29, 32-35) Costs of non-invasive and 

invasive testing pathways in a specific HEART score category were 

calculated by taking the average number of times a specific diagnostic test 

was used per patient in that pathway, and multiplying it by its unit costs. (29) 

Summing the average cost for all diagnostic tests in each of the pathways 

yielded the total costs of diagnostic testing. Similarly, the average number of 

admission and re-admission days were calculated for each of the diagnostic 

pathways. Complication rates in non-invasive and invasive testing pathways 
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were not explicitly included in the model, however the expected frequency 

of severe complications for procedures included in the DAM is low (36-38) 

and expected costs of complications are largely captured by the number of 

(re)admission days. 

Analyses 

Scenario analysis was performed, comparing hypothetical scenarios in which 

compliance and ID were varied. Furthermore, a probabilistic sensitivity 

analysis was performed, in which a cohort was run through a series of 

simulations to take into account uncertainty surrounding the parameters in 

the DAM. A time horizon of 6 weeks was taken for the analyses, for which 

discounting was not deemed necessary. 

Scenario analysis 

Scenario analysis focused on comparing different compliances to HEART 

score predictions and corresponding management recommendations, 

combined with varying degrees of ID from those compliances. The influence 

of compliance on missed MACE and costs was investigated in three different 

scenarios: low (50%), medium, (75%), and full (100%) compliance. 

Furthermore, four scenarios were defined for ID: no (0%), low (25%), 

medium (50%), and high (75%) ID. 

For each scenario the incremental proportion of missed MACE, healthcare 

costs, and cost per missed MACE will be given per HEART score category 

and for all HEART score categories combined, as compared with usual care. 

Cost-effectiveness planes will be provided to give insight in the distribution 

of missed MACE and healthcare costs in the presence of parameter 

uncertainty. 

  

Probabilistic sensitivity analysis 

Monte Carlo simulation was used to assess the robustness of expected health 

outcomes and healthcare costs based on uncertainty surrounding the 

different parameters. A series of 10,000 simulations was run per scenario, 

each with a patient population of 200,000, reflective of the annual Dutch 

population visiting the emergency department with chest pain. (39) 
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Parameter uncertainty was reflected by calculating standard errors, and 

defining appropriate statistical distributions for each parameter. Beta and 

Dirichlet distributions were used to account for uncertainty in transition 

probabilities. Gamma distributions were used for uncertainty surrounding 

costs (see Appendix B). 

Results 

In usual care, the average proportion of patients with missed MACE was 

estimated at 0.016 (95% confidence interval 0.007 – 0.027), or an average of 

16 MACE in discharged patients per 1,000 individuals presenting with chest 

pain at the emergency department. The average cost per patient in usual care 

was €2,870. (29) 

Scenario analysis 

The impact of compliance and ID on the number of missed MACE (i.e. 

effects), costs and cost-effectiveness was investigated in various scenarios. 

Negative values for missed MACE indicate a decrease and positive numbers 

an increase in missed MACE compared to usual care. The values in Table 3, 

4 and 5 are coloured green to indicate a beneficial effect, or red to indicate 

an unbeneficial effect of using the HEART score in practice. 

Missed MACE 

Table 3 shows the average difference in missed MACE (per person) for each 

of the HEART score categories and for the total patient population, as 

compared to usual care. Maybe somewhat surprisingly at first sight, the low 

HEART score category shows an increase in the proportion of missed 

MACE as compliance increases, whereas in the intermediate and high 

HEART categories there is an inverse relation. This can be explained by the 

different management recommendations associated with each HEART score 

category. Higher compliance in the low HEART score category, obviously 

leads to more patients being discharged, running the risk of missing more 

MACE in these patients. On the other hand, compliance in the intermediate 

and high HEART score categories, automatically implies more diagnostic 

testing, reducing the risk of missing MACE. ID counteracts the higher  
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Table 3. Average difference in missed MACE per person between the 
HEART score strategy and usual care. A negative number represents a 
reduction in missed MACE. The average number of missed MACE per 
patient in usual care was 0.016. 

 Compliance Informed deviation (ID) 

  0% 25% 50% 75% 

HEART 
score 0-3 

50% 0.006 0.004 0.001 -0.001 

75% 0.011 0.007 0.004 0.000 

100% 0.016 0.011 0.006 0.001 

      

HEART 
score 4-6 

50% 0.002 -0.005 -0.011 -0.018 

75% -0.011 -0.015 -0.018 -0.021 

100% -0.025 -0.025 -0.025 -0.025 

      

HEART 
score 7-10 

50% 0.003 -0.003 -0.009 -0.014 

75% -0.009 -0.011 -0.014 -0.017 

100% -0.020 -0.020 -0.020 -0.020 

      

Total 50% 0.004 -0.001 -0.006 -0.011 

75% -0.002 -0.005 -0.009 -0.012 

100% -0.008 -0.010 -0.012 -0.014 

proportion of missed MACE in the low HEART score category, and further 

reduces missed MACE in the intermediate and high categories. 

Costs 

Table 4 shows the average difference in costs per patient between the 

HEART score strategy and usual care. Costs declined for the low and 

intermediate HEART score category when compliance and ID increased. A 

different pattern is observed when the high HEART score category is taken 

into consideration, where a higher compliance led to higher costs. In the total 

patient population an ID of at least 50% reduced costs of the HEART score 

strategy compared to usual care. 
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Table 4. Average difference in costs per patient between the HEART score 
strategy and usual care. A negative number represents a reduction in costs. 
The average cost per patient in usual care was €2,870. 

 Compliance Informed deviation (ID) 

  0% 25% 50% 75% 

HEART 
score 0-3 

50% € 26 -€ 55 -€ 137 -€ 219 

75% -€ 148 -€ 186 -€ 224 -€ 262 

100% -€ 323 -€ 317 -€ 312 -€ 306 

      

HEART 
score 4-6 

50% € 7 -€ 114 -€ 235 -€ 356 

75% -€ 102 -€ 196 -€ 289 -€ 383 

100% -€ 211 -€ 278 -€ 344 -€ 410 

      

HEART 
score 7-10 

50% € 537 € 613 € 689 € 764 

75% € 1,465 € 1,309 € 1,153 € 996 

100% € 2,393 € 2,005 € 1,617 € 1,228 

      

Total 50% € 98 € 23 -€ 51 -€ 126 

75% € 125 € 43 -€ 38 -€ 119 

100% € 151 € 64 -€ 24 -€ 112 

Costs / missed MACE ratio 

To gain insight in the monetary investment required to reduce missed 

MACE, the ratio for the difference in costs and missed MACE between the 

HEART strategy and usual care is calculated. Table 5 shows the results for 

the different scenarios of compliance and ID, exhibited for the total patient 

population. HEART score strategy is considered cost-effective when there 

are less costs and fewer missed MACE compared to usual care (marked in 

green in Table 5). HEART score strategy is considered not cost-effective 

when there are both extra costs and more missed MACE compared to usual 

care (marked in red in Table 5). When missed MACE could be reduced at 

higher costs, cost-effectiveness depends on the willingness to pay for 

reducing missed MACE (marked in black in Table 5). 
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Table 5. Ratios of the average difference in cost and missed MACE between 
the HEART score strategy and usual care. Cost-effective scenarios are 
marked in green, where numbers represent the reduction in costs to prevent 
one missed MACE. Not cost-effective scenarios are marked in red, where 
numbers represent the increase in costs for one extra missed MACE. Other 
scenarios are marked in black, where cost-effectiveness depends on the 
willingness to pay for preventing missed MACE. Numbers represent the 
increase in costs to prevent one missed MACE. 

 Compliance Informed deviation (ID) 
 

  0% 25% 50% 75% 

Total 50% € 25,946 € 21,749 € 8,614 € 11,648 

75% € 64,113 € 8,099 € 4,292 € 9,738 

100% € 19,751 € 6,576 € 2,092 € 8,228 

 

The impact of introducing the HEART score strategy on cost per missed 

MACE depended greatly on the interplay between compliance and ID. For 

scenarios with a compliance of at least 50% combined with at least 50% ID, 

costs and missed MACE were both reduced, resulting in a promising (i.e. 

cost-effective) strategy. 

Probabilistic sensitivity analysis  

Figure 2 shows the incremental cost-effectiveness plane of four scenarios 

(compliance of 50% / 100% and ID of 0% / 75%) of the HEART score 

strategy compared to usual care. In the scenario with 50% compliance with 

(and 0% ID from) management recommendations, 68% of simulations 

resulted in an outcome that would be considered not cost-effective. This 

means that there are both more missed MACE, and higher costs for the 

HEART score strategy compared to usual care. When 100% compliance 

(and 0% ID) was assumed, there was a reduction in missed MACE, but in 

all simulations costs per patient were higher. For both the 50% compliance 

/ 75% ID and 100% compliance / 75% ID scenarios, 94% of the simulations 

resulted both in a reduction in missed MACE and cost savings. 
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Figure 2. Incremental cost-effectiveness planes for 10,000 simulations (each 
symbol represents one simulation) comparing the HEART score strategy to 
usual care for the following scenarios: 50% compliance with 0% ID; 50% 
compliance with 75% ID; 100% compliance with 0% ID; 100% compliance 
with 75% ID. Note that negative numbers indicate a more desirable outcome 
(less missed MACE and / or reduction in costs). 

 

Discussion 

We have shown how a DAM can be used to estimate the potential health-

economic impact of using a diagnostic or prognostic prediction model in 

practice, using only data and information available before performing a 

costly, long-term, randomized impact trial. We illustrated this for various 

hypothetical scenarios if the HEART score prediction model was to be 

implemented in clinical practice.  

Generating a DAM for impact assessment of a prediction model forces 

researchers to think about its main goals (e.g. reducing the primary outcome, 

reducing side-effects, optimizing diagnostic and treatment pathways) and 

how it aims to achieve these goals. DAMs can help demonstrate under what 

conditions (e.g. amount of required compliance and deviation of model 

adherence) a prediction model is likely to have the desired impact on health 

outcomes and/or costs. If it is unlikely that these conditions are going to be 
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satisfied, then one should consider whether investment in a large-scale 

prediction model impact trial is justified. (7-9, 40) Should those conditions 

be deemed plausible, a pilot study or qualitative assessments with experts in 

the field might be considered to gain more insight and reduce parameter 

uncertainty. This information can then be used to update the DAM, allowing 

researchers to re-assess the prediction model’s expected consequences. 

Researchers should ensure using representative and valid input parameters 

for their DAM, preventing goal-oriented model construction and 

assessment. In general DAMs should be used for optimizing, the design and 

conduct of an upcoming impact study. (9, 41) 

A DAM can be developed for any type of prediction model to evaluate its 

potential impact. Table 6 provides a concise overview on how to conduct a 

model-based impact assessment of a prediction model. The first step is 

designing the DAM, for which different structures can be chosen, such as a 

decision tree, Markov model, or micro-simulation model. Next, parameter 

estimates should be collected, such as probabilities (e.g. transition probability 

between (health) states), health outcomes (e.g. quality of life), and costs (e.g. 

cost of diagnostic tests). Feasibility of creating a DAM depends on 

availability of these data. Analyses can then be run for different scenarios, 

typically by varying parameters with the greatest uncertainty surrounding 

them (e.g. compliance and ID for our case study). Alternatively, scenarios 

can look at other cut-offs for stratifying patients into risk categories. 

Robustness of outcome measures can be assessed by using Monte Carlo 

simulation, varying parameter estimates based on the uncertainty 

surrounding them. In the final step, the results of the DAM can guide the 

decision on whether a trial to study the impact of a prediction model is 

warranted. If so, a DAM could provide directions for a pilot study or 

qualitative assessment before the trial to help optimize its design and 

conduct. More details on how to develop and analyse DAMs can be found 

in literature. (17, 42) 
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Table 6. Guidance for a model-based impact assessment of prediction 

models, before data on clinical impact have become available. Solid arrows 

mark the logical sequence in which the steps should be taken. Dotted arrows 

allow researchers to make adapt and adjust decisions in previous steps, 

based on newly available information. 

Steps Methods & Sources 
Examples  
from the 

case study 

Design of the 
decision 

analytic model 

• Decision tree (50) 

• Markov model (49) 

• Micro-simulation model (51) 

• New & current clinical 
pathway 

• Guidelines 

• Protocol / design paper 

• Expert opinion 

 Reference (31) 

 Figure 1 

 Appendix A 

 
Collecting 
parameter 
estimates 

and uncertainty 

 

• Development / validation 
studies 

• Medical consumption studies 

• Electronic Health Records 

• Expert opinion 

 Reference(22-24) 

 Reference (29) 

 Appendix B 

Comparative 
(scenario) 
analysis 

• Probabilistic sensitivity 
analysis (52) 

• Best, reasonable, worst case 
scenarios (53) 

• One/two/multi-way 
sensitivity analysis & 
threshold analysis (17) 

 Table 3,4 & 5 

 Figure 2 

Impact trial 
recommen-

dations 

• Pilot study 

• Sample size calculation 

• Education on prediction 
model usage 

• Application of the prediction 
model in a specific cohort 
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To provide insight in the validity of our DAM it is worthwhile to compare 

its results to those of the impact trial that was performed by Poldervaart et 

al (27). Unfortunately, health outcomes could not be compared, because a 

different health outcome was used in the impact trial compared to the DAM 

(any MACE vs. missed MACE). Furthermore, cost data in the trial were 

collected over a 3-month time horizon, different from the 6-week time 

horizon used in literature available before the trial. Still, the impact of non-

compliance in our DAM study can be translated to the actual HEART 

impact trial. The DAM showed that non-compliance without ID in patients 

with a low HEART score had a detrimental effect on potential cost savings, 

which was also the main finding of the HEART impact trial: substantial non-

compliance in the low HEART score category led to small differences in 

total cost reduction. This information could have been known before the 

impact trial, and hence could have been used to support a more efficient 

design and conduct by, for example, assessing potential compliance of 

physicians beforehand using interviews, or performing a pilot study.  

Few other DAM-based assessments have been previously performed that 

assess the potential impact of prediction models before an empirical impact 

study has been executed. One study assessed the value of a prediction model 

for predicting shoulder pain in patients with early stage oral cavity squamous 

cell carcinoma after surgical removal of lymph nodes. (43) Although the 

analysis did focus on specific scenarios regarding the accuracy of predictions, 

compliance or additional clinical expertise on top of the prediction model 

were not evaluated. DAM assessments have also been used for headroom 

analysis, a method that is used to assess the likelihood of potential cost-

effectiveness of an intervention, often at very early stage of development, for 

a given willingness to pay threshold. (19, 44-48) These analyses also make 

use of data before implementation of an innovation to assess potential 

benefit. Although a headroom approach is feasible for prediction models, to 

our knowledge there are no articles on this topic described in literature. 

This is one of the first examples in which a DAM was applied for impact 

assessment of implementing a prediction model in daily practice, using solely 

data available before conducting a trial. This method can be applied using 

data that is commonly available after prediction model development and 
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validation, or can be retrieved from (hospital) databases. Compared to a 

clinical trial, DAM assessments require a fraction of the time and cost, and 

could help improve design and conduct of an impact trial, reducing research 

waste. 

There are a few considerations to fully appreciate the findings of the impact 

assessment in this paper. Use of healthcare resources in our model was based 

on the first 6 weeks of medical consumption. (29) It is likely that negative 

consequences from MACE will last beyond this timeframe. Markov chain 

modelling could account for these long-term effects, however reliable data 

for these effects were lacking. (49) Out-of-hospital costs, such as general 

practitioner visits, medication usage, and non-medical costs (e.g. labour 

productivity losses, traveling expenses) were not included in the assessment. 

Although these are likely to influence the incremental costs and health from 

a societal perspective, the general conclusions will likely be similar. 

We viewed the HEART score purely as a diagnostic tool, which implies that 

using the HEART score cannot prevent MACE. It can only optimize correct 

stratification of patients and streamline subsequent management. Because 

MACE is not prevented, the natural outcome is missed MACE, associated 

with poorer outcome and additional costs. Others have argued that the 

HEART score can also be used to predict future MACE, opening the 

opportunity to prevent it. This would of course lead to a rather different 

DAM. We chose not to do this because HEART was designed for use in an 

acute care setting, where patients present with chest pain, which is clearly a 

diagnostic setting. 

A decision analytic model is ideal for assessing the expected impact of using 

a prediction model in clinical practice on patient health outcomes and 

healthcare costs, using solely data available before conducting an empirical 

long-term randomized impact study. With the results of such DAMs one can 

decide whether an empirical impact trial is still deemed necessary, and if so, 

under what conditions such prediction model is likely to show favourable 

results. Efforts can then be directed at improving the use of the prediction 

model by clinicians and on improving the trial design. In general, DAMs can 

provide insight in the mechanism through which a prediction model and its 

risk based management recommendations can lead to desired results, and 
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expose potentials flaws in mechanistic pathways, allowing researchers to 

adapt the design of an empirical trial beforehand. Ultimately model-based 

impact assessments have the potential to reduce research waste, by more 

efficient selection of prediction models in which an empirical impact trial is 

warranted. 
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Appendix A 

The decision tree for the usual care strategy. HEART scores are given in this 

decision tree, as they can be calculated, but in current practice they are not 

provided to clinicians, nor are the management recommendations attached 

to these scores. Compliance and ID are not present in the usual care strategy, 

as there is no HEART score to comply to. 
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Appendix B 

Input parameters used for the decision analytic model for evaluation of the 
HEART score 
 

Parameter Transition 
probability 

Standard 
error 

Distribution Source 

HEART score 0-3 0.400 0.019 Dirichlet (29) 

Probability at least one 
MACE < 6 weeks 

0.020 0.009 Beta (29) 

 Compliance     

 Discharged 1.000 - - Conse-
quential 

 Average # of MACE 1.000 0.000 Gamma (29) 

 Non-compliance     

 Non-invasive testing 0.750 0.217 Beta (29) 

 Average # of MACE 1.333 0.333 Gamma (29) 

 Invasive testing 0.250 0.217 Beta (29) 

 Average # of MACE 1.000 0.000 Gamma (29) 

     

Probability of no MACE < 
6 weeks 

0.980 0.009 Beta (29) 

 Compliance     

 Discharged 1.000 - - Conse-
quential 

 Non-compliance     

 Non-invasive testing 0.948 0.021 Beta (29) 

 Invasive testing 0.052 0.021 Beta (29) 

     

HEART score 4-6 0.444 0.020 Dirichlet (29) 

Probability at least one 
MACE < 6 weeks 

0.236 0.025 Beta (29) 

 Compliance     

 Non-invasive testing 1.000 - - Conse-
quential 

 Average # of MACE 1.194 0.067 Gamma (29) 

 Non-compliance     

 Discharged 0.226 0.075 Beta (29) 

 Average # of MACE 1.000 0.000 Gamma (29) 

 Invasive testing 0.774 0.075 Beta (29) 
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Parameter Cost Standard 
error 

Distribution Source 

 Average # of MACE 1.167 0.078 Gamma (29) 

     

Probability of no MACE < 
6 weeks 

0.764 0.025 Beta (29) 

 Compliance     

 Non-invasive testing 1.000 - - Conse-
quential 

 Non-compliance     

 Discharged 0.806 0.041 Beta (29) 

 Invasive testing 0.194 0.041 Beta (29) 

     

HEART score 7-10 0.156 0.014 Dirichlet (29) 

Probability at least one 
MACE < 6 weeks 

0.590 0.049 Beta (29) 

 Compliance     

 Invasive testing 1.000 - - Conseq
uential 

 Average # of MACE 1.333 0.094 Gamma (29) 

 Non-compliance     

 Discharged 0.077 0.052 Beta (29) 

 Average # of MACE 1.000 0.000 Gamma (29) 

 Non-invasive testing 0.923 0.052 Beta (29) 

 Average # of MACE 1.458 0.104 Gamma (29) 

     

Probability of no MACE < 
6 weeks 

0.410 0.049 Beta (29) 

 Compliance     

 Invasive testing 1.000 - - Conse-
quential 

 Non-compliance     

 Discharged 0.132 0.055 Beta (29) 

 Non-invasive testing 0.868 0.055 Beta (29) 
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Parameter Cost Standard 
error 

Distribution Source 

HEART score 0-3      

 Non-invasive testing € 558 € 87 Gamma (29) 

 Invasive testing € 2,900 € 850 Gamma (29) 

HEART score 4-6       

 Non-invasive testing € 1,458 € 152 Gamma (29) 

 Invasive testing € 5,729 € 648 Gamma (29) 

HEART score 7-10 non-
invasive 

    

 Non-invasive testing € 2,701 € 287 Gamma (29) 

 Invasive testing € 6,145  € 448 Gamma (29) 

     

MACE € 5,484  € 291 Gamma Weight. 
average  

 Acute myocardial 
infarction (AMI) 

€ 5,800    (32) 

 Percutaneous coronary 
intervention (PCI) 

€ 6,850    (35) 

 Coronary artery bypass 
grafting (CABG) 

€ 5,621    (35) 

 Conservative 
management 

€ 315    (34) 

 Death € 2,552    (33) 
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“We never really save a life; we only postpone death” 

 

 

 
Karl Claxton, health economist 

  



CHAPTER 6 

178  
 

Chapter 7 

When Is Pursuing an Innovative 

Idea Worthwhile? A Model-Based 

Approach 

 
 

 

A. Kluytmans 

J. Deinum 

K. Jenniskens 

A.E. van Herwaarden 

J. Gloerich 

A.J. van Gool 

G.J. van der Wilt 

J. Grutters 

Clin Chem Lab Med. 2019 Jul 9. 

 



WHEN IS PURSUING AN INNOVATIVE IDEA WORTHWHILE? 

179 
 

7 

Abstract 

Background: With seemingly unlimited technological possibilities yet 

limited budgets, clinicians face the challenge of which novel ideas to pursue 

and which to lay aside. Although health economic modelling methods may 

support innovation decisions, they are not yet widely known or used. Our 

aim was to illustrate early health economic modelling to clinicians by 

applying its methods to the case of diagnosing primary aldosteronism (PA) 

in patients with hypertension. 

Methods and Findings: we developed a cohort state-transition model to 

simulate diagnosis, treatment, and long-term health outcomes for patients 

aged ≥40 years with resistant hypertension suspected of PA. We included 

relevant literature and Dutch costing data and took a lifetime, societal 

perspective on costs and health effects (quality-adjusted life-years, QALYs). 

In our model we compared the current aldosterone-to-renin ratio test for 

diagnosing PA to a hypothetical new test. During a patient’s lifetime, a 

perfect diagnostic test would yield 0.027 QALYs and increase costs by €43. 

At a cost-effectiveness threshold of €20,000 per QALY, the maximum price 

for this perfect test to be cost-effective is €498 (95% CI: €275 - €808). The 

value of the perfect test was most strongly influenced by the sensitivity of 

the current biomarker test. Threshold analysis showed the novel test needs 

a sensitivity of at least 0.9 and a specificity of at least 0.7 to be cost-effective.  

Conclusions: Applying a model-based approach to determine the added 

value of a clinical innovation in PA diagnostics, we demonstrated there was 

room for improvement while indicating a maximum price per test, 

supporting the conclusion that early health economic modelling is useful and 

feasible in clinical practice to determine the cost-effectiveness of novel ideas 

prior to extensive development activities and clinical implementation. More 

applications of early modelling through collaborations between health 

economists and clinical experts will illustrate the benefits and help further 

the accessibility of early health economic modelling in dealing with 

innovation. 
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Introduction 

In clinical medicine, the past decades have been an era of health technology 

innovation (5). Inventions such as genome sequencing, PET scans, stents, 

and biologicals have considerably improved the diagnosis and treatment of 

numerous medical conditions. However undeniable the advantages of health 

technology innovation are (6), the advances coincide with a steep rise in 

health care expenditure (7, 8). Around the globe, studies predict that health 

care costs will consume around one-third of family incomes by the year 2040 

(9, 10), which would challenge the accessibility of health care and social 

solidarity (11). In addition, it is not always clear whether innovations provide 

‘true value for money’ (12). The need for decision-making in innovation is 

therefore evident. 

Efficient methods to assess the added clinical value of novel concepts – prior 

to committing considerable resources to their development – could help 

decide which new ideas to pursue and which to lay aside. Health technology 

assessments or health economic modelling provide such methods. They are 

increasingly being applied at the early stages of technology development to 

inform decisions regarding the further development of potentially innovative 

ideas (13). Even when there is no concrete data on the innovation, 

methodologies such as headroom analysis afford estimates of its potential by 

assessing the room for improvement in current care practices (14-16).  

Novel ideas are often proposed by scientists or clinicians who tend to be 

unfamiliar with health economic modelling concepts. Using the example of 

diagnosing primary aldosteronism (PA), we will illustrate how such early 

modelling methods can help clinicians and developers make evidence-

informed decisions on whether or not to pursue a new diagnostic approach.  

In the field of PA, new concepts are being considered out of concern for the 

current diagnostic method, which centres around the aldosterone-to-renin 

ratio (ARR) test. First, renin’s variability is a cause for concern (17). The 

different recommended cut-off values for the ARR in the Endocrine Society 

Clinical Practice Guideline introduce further variability (18). Second, for 

reliable use as a screening test – the Japan Endocrine Society even 

recommends to screen all hypertensive patients for PA – the test’s sensitivity 
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should be perfect to avoid false negatives (19). Doubts regarding the ARR’s 

suitability are evident from the many studies that investigated its diagnostic 

properties, indicating a repeated desire to evaluate the test (20-29). Third, 

optimization of the PA diagnosis is an active field of research, also implying 

concerns regarding current diagnostic methods, as is illustrated by ENSAT-

HT and PRIMAL, two ongoing clinical trials (30, 31), and the Berge et al 

(2015) and Rehan et al (2015) studies investigating the use of liquid 

chromatography-mass spectrometry (LC-MS) (32, 33).  

We believe novel tests for PA, such as a targeted LC-MS protein test, are 

highly relevant for an early health economic assessment prior to their 

(further) development and clinical validation to thus estimate their potential 

value. Through decision modelling, we analysed the room for improvement 

in current PA testing and determined what properties, in terms of sensitivity, 

specificity, and costs, a new test should have in order to be clinically valid as 

well as cost-effective. 

Methods 

Model Overview and Validation 

To simulate the expected costs and health benefits of various diagnostic 

strategies, we constructed a health economic model (see Appendix A) that 

consists of a decision tree for the diagnostic part (Figure 1) and a cohort 

state-transition model (see Appendix A) to simulate the long-term health 

consequences (Appendix B). The model was conceptualized and optimized 

based on the literature and the input of various experts in the areas of 

hypertension, laboratory medicine, and technology assessment, and 

developed and analysed using Microsoft Office Excel 2016.  
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Figure 1. Decision tree for the diagnosis of primary aldosteronism (PA), 

comparing the current aldosterone-to-renin ratio test to a hypothetical 

diagnostic test, leading to one of five health states that form the starting point 

of the long-term part of the model that simulates yearly costs and health 

effects (see Appendix B). 

 

Target Population 

The target population consists of patients diagnosed with resistant 

hypertension who are suspected of PA. We assume that prior attempts to 

treat their hypertension with antihypertensive medication have failed and 

that patients are being monitored by a hypertension specialist. In our model, 

the starting age of our patient cohort is 40, with a lifetime model being 

created to reflect a lifelong perspective on costs and effects. 
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Model Structure 

In the decision tree, the patients are divided into those with and those 

without PA, where patients with PA can have a (false) negative or (true) 

positive test result and those without PA a (true) negative or (false) positive 

test result. Every positive test result is confirmed by a saline-infusion (SI) test 

(which is considered the criterion reference test for PA) (18). In case of a 

positive SI test, a CT scan plus adrenal vein sampling (AVS) is used to 

subtype PA. Following their diagnosis, the patients receive treatment: 

adrenalectomy and/or medication for those patients with a confirmed PA 

and continuation of antihypertensive medication for those not diagnosed 

with PA. Following treatment, patients either become normotensive, with or 

without continued use of their medication, or remain hypertensive.  

The long-term part of the model is shown in Appendix B. All patients may 

develop cardiovascular complications (i.e., stroke, coronary artery disease, 

atrial fibrillation, or heart failure). The risk is lowest for the normotensive 

group, higher for the hypertensive, and highest for the PA groups (34). Once 

affected by a cardiovascular complication, patients move to a post-

complication health state which is associated with higher health care costs 

and a lower quality of life compared to their starting health states. At every 

cycle, patients in the cohort may die from cardiovascular or other causes.  

The decision tree and state-transition model are equally structured for the 

two strategies (ARR test and hypothetical test), but the parameters that are 

assigned to the model differ (see model input).  

Assumptions  

We assume that SI tests are always conducted to confirm the PA diagnosis 

and that they are 100% accurate. The assumed success rate for 

antihypertensive medication is based on a 50% treatment adherence rate 

(35). Due to scarce data on the long-term development of hypertension in 

this population, we assume that once patients are assigned to normotension 

or hypertension health states, they will remain normotensive or hypertensive 

until they develop cardiovascular complications or die. Regarding 

cardiovascular complications, our modelled cohort could only develop one 

complication during the remaining life-span due to scarce data on the 
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probability and consequences of developing multiple cardiovascular 

complications within this specific population.  

Model input 

All model inputs and their sources are listed in Appendix C.  

Transition probabilities 

In the diagnostic part of our model, we assume a .15 prevalence of PA, which 

rate was reported by Jansen et al (2014) and fits in with the literature on PA 

in patients with essential hypertension (28, 36). Because prevalence estimates 

differ across health- care settings, we varied this parameter to investigate the 

relationship between PA prevalence and the headroom for a diagnostic test 

(see Analyses) (37). For the aldosterone-to-renin ratio test, we assume a 

sensitivity of .89 and a specificity of .96 based on a meta-analysis conducted 

by Li et al (2016) (29). For confirmed PA patients we assume a probability 

of .47 of having an aldosterone-producing adenoma that qualifies for surgery 

after the Shah et al 2014 study (38). The outcomes of adrenalectomy are 

based on a recent study by Williams et al (2017), who reported that 37% of 

their patients became normotensive without further need for medication and 

another 47% following antihypertensive medication, while 16% remained 

hypertensive even with antihypertensive medication (39). For all the patients 

that did not have an aldosterone-producing adenoma suitable for surgery, we 

assume that the probability to become either normotensive or remain 

hypertensive is equal to the patients’ adherence to their medication regimen, 

which Azizi et al (2016) estimated to be .5 (35).  

In the long-term part of our model, we based the probability for our patients 

to develop one of four cardiovascular complications on publically available 

data on normotension and hypertension issued by the Dutch Ministry of 

Health. For the PA patients, odds ratios published by Monticone et al (2018) 

were used to calculate their increased risk of cardiovascular events compared 

to hypertensive patients (34). The probability of dying from cardiovascular 

causes was derived from various studies, where we distinguished between 

the year of the incident and all subsequent years (40-43). The probability of 
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dying from other causes was based on publically available data from Statistics 

Netherlands (44).  

Utilities 

To model health effects in terms of quality-adjusted life-years (QALYs, see 

Appendix A), we retrieved utilities (see Appendix A) for every health state 

from the relevant literature. QALYs were discounted at a rate of 1.5% 

annually to reflect the Dutch time preference for health effects (45). 

Costs 

In the model, costs were determined from a societal perspective and based 

on Dutch sources, comprising one-time costs of the various tests, the yearly 

costs of medication, and those associated with the four cardiovascular 

events. All costs were converted to 2016-prices and discounted at a rate of 

4% (45, 46). 

Analyses 

Based on the transition probabilities pertaining to the PA diagnosis, the 

cohort data was divided across health states (See Figure 1 and Appendix B). 

Using yearly cycles, we calculated the costs and QALYs proportional to 

either remaining in the starting health states or a progression to 

cardiovascular events or death. We next computed the total accumulated 

costs and QALYs per patient at 10 years, 20 years, and lifetime, and 

compared the costs and QALYs of the current test with those of the 

hypothetical test. We used these per-patient totals in our subsequent 

headroom (14-16), sensitivity (3, 4), and threshold analyses.  

Our headroom analysis (see Appendix A) estimates the (financial) room for 

improvement in the current diagnostic pathway of patients with PA by 

comparing the ARR to a hypothetical, perfectly accurate test with a 

sensitivity and specificity of 1. The difference in QALYs between the current 

and the perfect diagnostic procedure is known as the effectiveness gap, or 

the health effects foregone by imperfections in the current protocol. 

Headroom, then, is calculated by monetizing the effectiveness gap using a 

cost-effectiveness threshold – in our case €20,000 per QALY, following the 

Dutch recommendations for diagnostic and preventive interventions – and 
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adding or subtracting any differences in costs between the current and 

perfect diagnostic strategy. The resulting headroom can be interpreted as the 

maximum price at which a perfectly accurate PA test could be considered 

cost-effective. Given the lifelong consequences of cardiovascular 

complications, a lifetime horizon on costs and health benefits is most 

appropriate. We will also report the main results at 10 and 20 years after the 

diagnosis.  

Many of the parameters in our model suffer from a degree of uncertainty. A 

PSA (see Appendix A) was conducted using 10,000 samples from beta 

distributions. Standard errors for probabilistically varied parameters are 

listed in Appendix C. Results of the PSA are reported using the percentile 

method, yielding ranges similar to 95% confidence intervals. Further, a 

univariate sensitivity analysis was conducted to investigate the individual 

impact of the following parameters: the sensitivity and specificity of the ARR 

(varied from 0.22 to 1 and 0.56 to 1 respectively, based on the ranges 

reported in a meta-analysis by Li et al (29)), the prevalence of PA (varied 

from 5 to 25%), and the cost-effectiveness threshold (varied from €20,000 

to €80,000). The mentioned ARR sensitivity and specificity values were 

selected because of the heterogeneous figures reported in the literature and 

the PA prevalence rate and cost-effectiveness threshold based on potential 

differences across health care settings.  

Since a novel test for PA is unlikely to be perfect and costless, besides the 

headroom analysis we also performed a multivariate threshold analysis to 

investigate trade-offs between a novel test’s sensitivity, specificity, and price. 

In this analysis sensitivity and specificity were simultaneously varied, both 

ranging from 0 to 1.  

Results 

Headroom analysis 

The average QALYs per patient of the ARR strategy with a lifetime horizon 

were 21.249 versus 21.276 for the perfect diagnostic strategy (Table 1). The 

average costs were €17,779 versus €17,822. Compared to the current test, a 
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Table 1. Results of the headroom analysis as averages per patient. Headroom 

was calculated with a cost-effectiveness threshold of €20,000 per QALY. 

Horizon Current test Perfect test Increments Headroom* 

 QALYs Costs QALYs Costs QALYs Costs (95% CI) 

10-years 7.721 €6,867 7.724 €6,915 0.003 €48 €19  
(-€9 - €62) 

20-years 13.692 €12,245 13.703 €12,280 0.011 €35 €181 
(€90 - €320) 

Lifetime  21.249 €17,779 21.276 €17,822 0.027 €43 €498 
(€275 - €808) 

perfect test would yield 0.027 QALYs – or nearly 10 days in perfect health – 

at a cost increase of €43. At our cost-effectiveness threshold of €20,000 per 

QALY gained, the resulting headroom is 0.027*€20,000-€43, or €498 (95% 

CI: €275 to €808). The QALY gain – and therefore the headroom – 

decreases for the 20- and 10-year time horizons.  

Univariate sensitivity analyses 

The lifetime headroom results were further investigated whereby key 

parameters of interests were varied one by one (Table 2). The sensitivity of 

the current test had the largest impact on the headroom estimate, followed 

by the cost-effectiveness threshold. PA prevalence had some impact on the 

headroom, indicating that an improved test would be most valuable in care 

settings with relatively many PA patients. The impact of the specificity of the 

current test on the headroom results was negligible. 

Multivariate threshold analysis 

The results of the multivariate sensitivity analysis, in which the sensitivity and 

specificity of the novel test were varied simultaneously, are presented in 

Figure 3. To exemplify, a novel PA test for hypertensive patients with a 

sensitivity of .90 and a specificity of 1 might cost €51 more than the current 

test and still be considered cost-effective compared to the current test. Note 

that for the current test we assumed a sensitivity of .89 and a specificity of 

.96 (29). Figure 3 shows that a novel test for diagnosing PA may be worth 

the extra expenditure when its sensitivity is at least .90 and its specificity is at 

least .70. 
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Figure 3. Results of the multivariate threshold analysis. The figure contains 

model results indicating the monetary loss or gains associated with a 

hypothetical new test for different specificity (y-axis) and sensitivity (x-axis) 

combinations. The red area indicates a net loss for the new test and the green 

area its additional value compared to the current test.  

 

Figure 2. Tornado plot for the four univariate sensitivity analyses, lifetime 

perspective on costs and effects. †The four parameters of interest are listed on 

the y-axis, with their ranges specified in brackets. The x-axis contains the 

headroom values. The bars show the lifetime headroom result across the 

range of the parameter. For example, when the sensitivity of the current ARR 

test is varied in the model, the headroom is near zero when the current care 

has a sensitivity of 1 and reaches €3,500 when the sensitivity of the current 

ARR test is as low as .22. The base-case headroom result of €498 per patient 

is taken as a reference value and represented by the red line.  
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Discussion 

We applied headroom and threshold analyses to illustrate how early health 

economic modelling can support decisions regarding health care 

innovations. Focusing on a hypothetical novel test to support the diagnosis 

of PA in patients with hypertension, we found some headroom for 

improving the current diagnostic protocol. Additional research is needed to 

determine whether a headroom of roughly €500 per patient provides realistic 

opportunities for the R&D of innovations such as LC-MS techniques. 

Headroom analyses can similarly be applied to other indications and target 

populations to obtain an estimate of the potential value of new health 

technologies – diagnostic or otherwise – before committing resources to 

their further development and testing. Our analyses may be especially useful 

in the early stages of biomarker innovation (47).  

Decisions to adopt (or decline) innovations are particularly complicated if 

there is debate about the assessment of current health care practices. While 

most studies investigating the current ARR test for diagnosing PA in patients 

with essential hypertension found that its specificity and sensitivity are high, 

some studies showed that they may be as low as .56 and .22, respectively (26, 

28). Through our model-based approach we were able to simulate what the 

headroom would be given these discrepancies and show that uncertainty 

regarding ARR’s sensitivity would be most influential. 

Several choices and assumptions we made in the modelling process may 

challenge the acceptability of our headroom analysis. Due to the lack of data, 

we assumed that patients would either remain normotensive or hypertensive 

without allowing for transitions between the two. Because in reality 

hypertensive patients can become normotensive with a reduced risk of 

developing cardiovascular events, our headroom may be overestimated. We 

also assumed that false negatives would never be identified as having PA, 

while in reality the persistence of hypertension will likely prompt further 

testing and, in some cases, the eventual diagnosis of PA. Although a delayed 

diagnosis is costly as well, our assumption may have resulted in an 

overestimation of the headroom in that it underestimates the current 

detection rate of PA. Likewise, the model may overestimate the risk of 
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cardiovascular events in PA patients because they were computed relative to 

the risks in a hypertensive population that is likely to also contain 

undiagnosed PA patients.  

Another limitation is that we reduced the complex and multifaceted nature 

of the diagnostic process to one specific test and assumed that all other tests 

in the diagnostic pathway are perfectly accurate. While debatable (48), doing 

so allowed us to single out the effectiveness gap of the ARR test itself and 

ignore the inaccuracies of tests that are beyond the scope of our headroom 

analysis. Finally, we based the success rate of the medication regimen in false 

negatives and non-PA patients on a 50% treatment adherence. If, in reality, 

the success rate is lower, our headroom is underestimated and, if it is higher, 

overestimated.  

We acknowledge that these – and other – assumptions may affect the 

support for our model. However, our goal was to illustrate how an 

exploratory analysis could illustrate whether or not a (diagnostic) innovation 

might be worthwhile and why. Our model can easily be adapted to 

incorporate different assumptions or model inputs, for example when new 

data becomes available. 

As such, headroom analysis is one important step in supporting the decision 

to pursue or abandon a new health care approach. It can also help steer the 

development of innovation and maximize its added value by assessing how 

the innovation should be (further) developed or applied to maximize its 

potential benefit. Also, when multiple innovative approaches compete for 

the same resources, headroom analysis may help prioritize proposals. What 

these uses have in common, is that headroom analysis helps identify those 

problems whose solution would have the biggest impact. In doing so, it helps 

foster efficient innovation such that it maximizes societal benefit.  

We believe early health economic modelling methods such as headroom 

analysis can help scientists and clinicians decide on innovations before 

committing considerable resources. On a larger scale, models like ours could 

help increase the efficiency and yield of innovations. More applications of 
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early modelling through collaborations between health economists and 

clinical experts will illustrate their benefits and help further their accessibility.  
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Appendix A 
Glossary of terminology surrounding (early) health technology assessment 

Term Meaning 

Decision model A simplified representation of a certain health care 
setting whose purpose it is to inform health-related 
decisions by simulating the health effects and costs 
incurred following a certain health care strategy. (1) 

Headroom The maximum room for improvement within a 
certain health care strategy. Headroom is calculated 
by comparing a current care strategy to a 
hypothetical, perfect care strategy. The difference 
between the two indicates the room for 
improvement. Headroom indicates the potential 
gain in health effects, monetized at a cost-
effectiveness threshold, plus or minus any 
differences in costs between the current and perfect 
care strategies. Headroom provides an indication of 
the maximum price at which a perfect innovation 
could be considered cost-effective. 

Cohort state-
transition model 

A specific type of decision model, suited for 
simulating periodic outcomes in a hypothetical 
patient cohort. A cohort state-transition model 
describes a hypothetical cohort of patients across 
health states (e.g., healthy, ill) that are associated 
with a certain health effect and certain costs. At 
every periodic cycle, patients in the cohort may 
remain in their original health state or transition to 
another. The total health effects and costs of the 
cohort are recorded at each cycle, until the time 
horizon of the model has been met. The results of 
different care strategies may then be compared to 
determine which strategy yields the most favourable 
average cost-benefit balance. (2)  

Probabilistic 
sensitivity analysis 
(PSA) 

One source of uncertainty in decision modelling 
stems from the uncertainty regarding the input 
parameters of a model. The impact of such a 
parameter uncertainty on the model results can be 
investigated using probabilistic sensitivity analysis 
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(PSA) in which the decision model is re-run with 
randomly sampled values from distributions of the 
parameters whose exact value is uncertain. Taken 
together, all runs of a PSA (e.g., 10,000) reveal the 
uncertainty in the model results as a consequence of 
the uncertainty in the input parameter values. PSA 
can be used to provide simulated 95% confidence 
intervals of the results (3)  

Quality-adjusted 
life-years 

Quality-adjusted life-years (QALYs) are the product 
of the number of life-years spent in a certain health 
state and the utility of one’s health (or quality of life) 
during that time. As a result, 10 QALYs may be 
interpreted as both 10 life-years spent in perfect 
health and 20 life-years spent with a utility of 0.5 (4).  

Utility Utilities express the societal preference for being in 
a certain health state. Utilities are typically expressed 
on a scale from 0 (death) to 1 (perfect health).  

 

  



CHAPTER 7 

200  
 

Appendix B 
Long-term part of the model. The ellipses represent health states. The arrows 

represent transitions. “MR-antagonist” is short for mineralocorticoid 

receptor antagonist (spironolactone or eplerenone). 
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Appendix C 
Input parameters for the model. 
 

Parameter Value Standard 
error 

Distri-
bution 

Source 

Transition probabilities     

Diagnostic part of the model     

   Prevalence of PA in EH patients 0.152 0.01 Beta (1) 

   Sensitivity of the current 
aldosterone-to-renin ratio test 

0.890 0.025 Beta (2) 

   Specificity of the current 
aldosterone-to-renin ratio test 

0.960 0.006 Beta (2) 

   Probability that confirmation test 
following a positive diagnosis is 
accurate 

1   Assump-
tion 

   Probability that PA patients have 
an aldosterone-producing 
adenoma fit for adrenalectomy 

0.470 0.01 Beta (3, 4) 

   Probability of normotension 
without medication after 
adrenalectomy 

0.370 0.01 Beta 
dirichlet 

(5) 

   Probability of normotension 
with antihypertensive medication 
after adrenalectomy 

0.470 0.01 Beta 
dirichlet 

(5) 

   Probability of hypertension with 
antihypertensive medication after 
adrenalectomy 

0.160 0.01 Beta 
dirichlet 

(5) 

   Probability of normotension 
with medication for patients with 
bilateral hyperplasia 

0.500 0.01 Beta (6) 

   Probability that patient with 
bilateral hyperplasia uses both 
MR-antagonist and 
antihypertensive medication 

0.25   Assump-
tion 

   Probability of normotension 
with antihypertensive medication 
for non-PA patients 

0.500 0.01 Beta (6) 

Long-term part of the model        

   Probability of developing a 
stroke (normotensive patients) 

Age-
depend
ent 

 Fixed (7) 
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Parameter Value Standard 
error 

Distri-
bution 

Source 

   Probability of developing a 
stroke (hypertensive patients) 

Age-
depend
ent 

 Fixed (8) 

   Probability of developing a 
stroke (PA patients) 

Age-
depend
ent 

 Fixed (9) 

   Probability of developing 
coronary artery disease 
(normotensive patients) 

Age-
depend
ent 

 Fixed (7) 

   Probability of developing 
coronary artery disease 
(hypertensive patients) 

Age-
depend
ent 

 Fixed (8) 

   Probability of developing 
coronary artery disease (PA 
patients) 

Age-
depend
ent 

 Fixed (9) 

   Probability of developing atrial 
fibrillation (normotensive 
patients) 

Age-
depend
ent 

 Fixed (10) 

   Probability of developing atrial 
fibrillation (hypertensive patients) 

Age-
depend
ent 

 Fixed (11) 

   Probability of developing atrial 
fibrillation (PA patients) 

Age-
depend
ent 

 Fixed (9) 

   Probability of developing heart 
failure (normotensive patients) 

Age-
depend
ent 

 Fixed (7) 

   Probability of developing heart 
failure (hypertensive patients) 

Age-
depend
ent 

 Fixed (8) 

   Probability of developing heart 
failure (PA patients) 

Age-
depend
ent 

 Fixed (9) 

   Probability of dying from stroke 
(year of incident) 

0.365  Fixed (12) 

   Probability of dying from stroke 
(years after) 

0.100  Fixed (12) 

   Probability of dying from 
coronary artery disease (year of 
incident) 

0.029  Fixed (13) 
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Parameter Value Standard 
error 

Distri-
bution 

Source 

   Probability of dying from 
coronary artery disease (years 
after) 

0.026  Fixed (13) 

   Probability of dying from atrial 
fibrillation (year of incident) 

0.311  Fixed (14) 

   Probability of dying from atrial 
fibrillation (years after) 

0.032  Fixed (14) 

   Probability of dying from heart 
failure (year of incident) 

0.373  Fixed (15) 

   Probability of dying from heart 
failure (years after) 

0.103  Fixed (15) 

   Probability of dying from other 
causes 

Age-
depend
ent 

 Fixed (16) 

     

Health effects in the model     

   Utility for being normotensive 0.88 0.02 Beta (17) 

   Utility for being normotensive 
with the use of medication 

0.86 0.02 Beta Assump-
tion 

   Utility for being hypertensive 
with the use of medication 

0.83 0.02 Beta (18) 

   Utility after having a stroke 0.68 0.02 Beta (19) 

   Utility after having coronary 
artery disease 

0.74 0.02 Beta (20) 

   Utility after having atrial 
fibrillation 

0.80 0.02 Beta (21) 

   Utility after having heart failure 0.60 0.02 Beta (22) 

   Utility for being dead (reference 
value) 

0  Fixed (23) 

   Discount rate for effects in the 
model 

1.5%  Fixed (23) 

     

Costs     

Diagnostic part of the model     

   Costs of the aldosterone-to-renin 
ratio test 

€47  Fixed (24) 

   Costs of a saline infusion test to 
confirm positive ARR test 

€177  Fixed (25) 

   Costs of adrenal vein sampling 
to subtype PA 

€1,888  Fixed (25) 
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Parameter Value Standard 
error 

Distri-
bution 

Source 

   Costs of CT scan to subtype PA €131  Fixed (26) 

   Costs of adrenalectomy €4,850  Fixed (27) 

Long-term part of the model     

   Costs of stroke, year of incident €17,371  Fixed (28)* 

   Costs of stroke, years after €7,427  Fixed (28)* 

   Costs of coronary artery disease, 
year of incident 

€16,623  Fixed (29) 

   Costs of coronary artery disease, 
years after 

€1,010  Fixed (29) 

   Costs of atrial fibrillation, year of 
incident 

€1,647  Fixed (30, 31) 

   Costs of atrial fibrillation, years 
after 

€1,558  Fixed (30, 31) 

   Costs of heart failure, year of 
incident 

€3,719  Fixed (29) 

   Costs of heart failure, years after €1,555  Fixed (29) 

   Costs of cardiovascular mortality €4,868  Fixed (32) 

   Yearly costs of 150mg 
spironolactone, daily usage 

€548  Fixed (33, 34) 

   Yearly costs of antihypertensive 
medication, daily usage 

€418  Fixed (33, 34)      

   Willingness to pay for a QALY €20,000  Fixed (23) 

   Discount rate for costs in the 
model 

4%  Fixed (23) 

* Assuming 2/3 of strokes is minor 
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Abstract 

Introduction: To facilitate the interpretation of diagnostic test accuracy 

(DTA) parameters it is possible to calculate normalized frequencies. They 

provide the number of (false) positives and (false) negatives in a tested 

hypothetical cohort. A pretest probability must be determined to calculate 

these normalized frequencies. The aim of this study was to assess the data 

sources and methods used in Cochrane DTA reviews for determining pretest 

probabilities to facilitate the interpretation of DTA parameters. 

Methods: Cochrane DTA reviews published in the Cochrane Database of 

Systematic Reviews up to and including January 2018 and presenting at least 

one meta-analytic estimate of the sensitivity and/or specificity as a primary 

analysis were included in the cohort. Study selection and data extraction were 

performed by one author and checked by other authors. Observed data 

sources and methods were categorized. 

Results: Fifty-nine DTA reviews were included, comprising of 308 meta-

analyses. A pretest probability was used in 148 meta-analyses. Authors used 

included studies in the DTA review, external sources, and expert opinion as 

data sources for the pretest probability. When using the included studies in the 

DTA review, authors used a measure of central tendency whether or not 

combined with a measure of dispersion to determine the pretest probabilities. 

Identical pretest probabilities were used for analyses of two or more index 

tests for the same target conditions. About half (53.6%) of these identical 

pretest probabilities fell within the prevalence ranges from all analyses within 

a target condition. 

Conclusions: Various methods are used for selecting pretest probabilities and 

no consensus seems to exists on which data source or method to use. 

However, there are some considerations to take in to account when presenting 

DTA results: 1) Consider whether to present normalized frequencies, 2) 

Consider the influence of the chosen method for selecting a pretest probability 

on the normalized frequencies, and 3) Consider whether to use identical 

pretest probabilities that fall within the range of the selected studies when 

there are multiple meta-analyses for a target condition. 
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Introduction 
Diagnostic tests are essential to clinicians in their daily practice. Test results 

inform about the preferred healthcare pathway to, ideally, cure a patient from 

disease. The optimal way to understand a diagnostic test’s performance and 

the downstream consequences for patients is through a test-treatment 

randomized controlled trial. Such trials provide comparative information on 

health outcomes (both harms and benefits) of healthcare pathways initiated by 

the outcome of the diagnostic tests or strategies. However, test-treatment 

randomized controlled trials are methodologically complex (1). Primary cross-

sectional studies are usually an alternative to these complex trials and can be 

summarized in systematic reviews. Diagnostic test accuracy (DTA) reviews 

include primary cross-sectional studies using the diagnostic test of interest and 

aggregate data by meta-analysis so that a pooled sensitivity and specificity is 

presented. The pooled sensitivity and specificity could help to classify persons 

correctly as having the target disease or not having the target disease (i.e. true 

positives and true negatives). Misclassified persons (i.e. false positives and false 

negatives) in DTA reviews are equally important to report due to the 

downstream consequences of misclassifications. A false negative classified 

person may not receive appropriate treatment while a falsely positive classified 

person may receive abundant treatment.  

From literature it seems that clinicians have trouble interpreting accuracy 

parameters such as sensitivity and specificity (2). To facilitate the interpretation 

of DTA results absolute numbers of true/false positives and true/false 

negatives can be presented in a hypothetical cohort of e.g. 1000 persons, which 

is also known as normalized frequencies (2). However, to calculate normalized 

frequencies a pretest probability (i.e. the disease prevalence in the hypothetical 

cohort) needs to be determined. The normalized frequencies are then 

calculated and reported, after which the diagnostic test’s end-user can interpret 

whether the test performance is acceptable in terms of true or false positives 

and negatives. Such normalized frequencies are usually presented in summary 

of findings tables in Cochrane DTA Reviews and in the evidence tables from 

the Grading of Recommendations Assessment, Development and Evaluation 

(GRADE) (3). 
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These normalized frequencies are not only important for clinicians, but also 

for guideline boards and policy makers. Decisions whether or not to 

recommend the use of a diagnostic test in a guideline or decisions about health 

care restitution may be influenced by the presented normalized frequencies, 

which, in turn, are dependent on the determined pretest probability. While 

GRADE does not suggest a specific method to determine a pretest probability 

in its handbook (3, 4) the Cochrane Handbook does propose some methods 

(e.g. the median disease prevalence or the prevalence from disease registries) 

although a rationale to use a specific method is not given (5).  

Because guidance in determining a pretest probability is minimally described 

it is unknown what data sources (i.e. the data on which a pretest probability is 

based) and methods are actually used to determine a pretest probability in 

DTA reviews. Furthermore, an identical pretest probability is ideally used in 

analyses of more than one index test for the same target condition in order to 

enable comparison of the normalized frequencies of the various index tests. 

Therefore, the aim of this study was to assess the data sources and methods 

used in a cohort of Cochrane DTA reviews to determine pretest probabilities 

to facilitate the interpretation of pooled DTA accuracy parameters. A 

secondary aim was to assess the use of identical pretest probabilities in 

multiple analyses within a target condition, necessary for the comparison of 

normalized frequencies. 

Methods 

Cohort definition 

The Cochrane Database of Systematic Reviews (CDSR) was accessed through 

the Cochrane Library. Cochrane DTA reviews published in the period from 

inception of the CDSR up to and including January 2018 were potentially 

eligible to enter the cohort. To obtain DTA reviews the CDSR was browsed 

by the topic ‘Diagnosis’, while protocols and intervention or methodology 

reviews were excluded through limiters in the search engine interface. A DTA 

review was included in the cohort when it reported at least one meta-analytic 

estimate of sensitivity and/or specificity (i.e. either retrieved with a bivariate 
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model or by using a hierarchical summary receiver operating characteristic 

model) as a primary analysis in the presented tables. The screening and 

selection of eligible DTA reviews was performed by one author (MSO) and 

checked by the other authors (KJ, RJPMS, WAvE, LH).  

Categorization of sources and methods for determining 

pretest probabilities 

The first step in the categorization of extracted data was to divide the included 

meta-analyses into two groups; One group of analyses where no pretest 

probability was used and one group of analyses where a pretest probability was 

used. Next, for every analysis that used a pretest probability the source of the 

pretest probability was determined. For example, the pretest probability could 

be determined based on the studies that were included for one of the target 

conditions presented in the DTA review. Furthermore, the method for 

determining the pretest probability itself was recorded. For example, this could 

be the usage of the mean or median disease prevalence (from studies included 

for a target condition). General characteristics (e.g. title, publication year), the 

number of meta-analyses in the review, whether a pretest probability was used, 

the number of pretest probabilities used (if applicable), the source of data for 

determining the pretest probability, and the method used for selecting pretest 

probabilities (if applicable) were extracted by one author (MSO) and checked 

by the other authors (KJ, RJPMS, WAvE, LH). When a disease prevalence 

was reported but not used to interpret the sensitivity and/or specificity in 

some manner, the disease prevalence was not considered as a pretest 

probability. Descriptive statistics were performed in IBM SPSS Statistics for 

Windows (Version 21, 2012, Armonk, NY: IBM Corp.).  
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Figure 1. Flow diagram showing the formation of the cohort and reasons for 
exclusion. CDSR: Cochrane Database of Systematic Reviews 

 

Pretest probabilities in prevalence ranges of analyses within 

a target condition 

DTA reviews that had analyses for more than one index test for the same 

target condition were identified from the cohort. The number of analyses for 

the same target condition, the number of identical pretest probabilities used 

in those analyses, and whether the pretest probability fell within or outside the 

range of disease prevalence found in the individual analyses within a target 

condition were extracted by one author (MSO) and checked by a second 

Records up to and including January 
2018 in the CDSR when limited by the 

topic “Diagnosis” 
 

(n = 171) 

Cochrane diagnostic test accuracy 
reviews screened 

 
(n = 81) 

Records excluded through 
additional limiters in the Cochrane 
Library: 
 
n = 88 (reason: review protocols) 
n = 1 (reason: methodology 
review) 
n = 1 (reason: intervention 
review) 

Cochrane diagnostic test accuracy 
reviews included for analyses 

  
(n = 59) 

Full text reviews excluded: 
  
n = 22 (reason: no meta-analytic 
results were presented) 
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author (KJ). It was recorded whether an identical pretest probability fell inside 

all prevalence ranges from the analyses within a target condition or whether it 

fell outside of at least one prevalence range from an analysis within a target 

condition. When the range of disease prevalence per analysis was not 

described in the DTA review, it was calculated from the data in the review’s 

appendices. 

Results 

Cohort description 

The CDSR contained 171 documents on the topic ‘Diagnosis’. There were 81 

reviews left after excluding 88 review protocols and 2 reviews on interventions 

and methodology. After screening the full text an additional 22 DTA reviews 

were excluded as no meta-analytic results were presented (referenced in 

Appendix A). Consequently, 59 Cochrane DTA reviews were included in the 

cohort (Figure 1 and Appendix A). The 59 DTA reviews in the cohort 

contained 308 meta-analyses (see Table 1). The number of meta-analyses 

ranged from 1 to 34 (median: 3) per review. In 16 reviews (27.1%) there were 

150 meta-analyses (48.7%) that did not use a pretest probability. Thirty-nine 

reviews (66.1%) had 143 meta-analyses (46.4%) where a pretest probability 

was used. Four reviews (6.8%) contained 15 meta-analyses for which a pretest 

probability was used in 5 analyses. Therefore, a total of 160 analyses were 

found where no pretest 
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probability was used and 148 analyses were found where at least one pretest 

probability was used. 

Sources of pretest probabilities 

In the 148 analyses in which a pretest probability was used three main 

categories of data sources were distinguished (Figure 2). The pretest 

probability was determined from the included studies (90 analyses), from 

external sources (26 analyses) or based on expert opinion (31 analyses). In 

one analysis the source was unclear. When the included studies in the review 

were used to determine one or multiple pretest probabilities the data source 

could be further differentiated into: all studies included for the target 

condition (40 analyses), studies used per test/analysis for a target condition 

(22 analyses), or all studies in the systematic review across all target 

conditions (18 analyses). 

Furthermore, ten other analyses had multiple pretest probabilities determined 

from all studies in the systematic review and from an unclear method (5 

analyses), from all studies in the systematic review and only from studies with 

a low risk of bias (3 analyses), or only from included studies that reported the 

disease prevalence (2 analyses). When the pretest probability was determined 

based on external sources the pretest probability came from a reported disease 

prevalence in published scientific literature (14 analyses), from a WHO 

suggestion (10 analyses), or from a guideline (2 analyses). It was considered an 

expert opinion when authors assumed a pretest probability (31 analyses). See 

Appendix B for a short description of each category and for examples within 

each category.  

Methods for determining a pretest probability 

Pretest probabilities based on studies within the review were determined by 

using measures of central tendency (e.g. median) whether or not combined 

with measures of dispersion (e.g. range). Using multiple methods resulted in 

multiple pretest probabilities for a single analysis (e.g. using a median with a 

range results in three pretest probabilities). The median was used individually 

(64 analyses) or together with the interquartile range (3 analyses), with the 

range (1 analysis), with the range and interquartile range  
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Table 1. General characteristics of Cochrane DTA reviews included in the 
analysis. DTA: Diagnostic Test Accuracy, IQR: Interquartile Range. a 
Calculated from the analyses that used pretest probabilities. b Could not be 
calculated since there were no analyses using a pretest risk 

 

(5 analyses), or with an unclear method (5 analyses). The mean was used 

individually (7 analyses) or together with the range (1 analysis). Figure 2 shows 

the methods per data source and the number of analyses in where these 

methods were used. 

  

 Reviews 

(n) 

Meta-

analysesa 

n (% using a 

pretest risk) 

Number of 

meta-

analyses per 

DTA review 

Median 

(range) 

Number of 

pretest 

probabilities 

used per meta-

analysisa 

Median (range) 

Total 

included 

Cochrane 

DTA reviews 

59 308 (48.1) 3 (1-34) 1 (1-6) 

Reviews not 

using a 

pretest risk at 

all 

16 150 (0) 4 (2-34) b 

Reviews 

using a 

pretest risk 

for all pooled 

analyses 

39 143 (100) 3 (1-16) 1 (1-5) 

Reviews 

reporting 

analyses with 

and without 

pretest risk 

4 15 (33.3) 3.5 (3-5) 3 (1-6) 
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Figure 3. Identical pretest probabilities in a target condition and whether 
they fell inside disease prevalence ranges. TC = Target condition 

Number of identical pretest probabilities in target conditions with two or more 

analyses. No bar indicates a target condition that did not have any identical pretest 

probabilities in all of its analyses. White bars indicate the number of identical 

pretest probabilities that fell in the disease prevalence ranges in all analyses within 

the target condition. Black bars indicate the number of identical pretest 

probabilities that fell outside the disease prevalence range from at least one 

analysis within the target condition. The gray bar indicates that it was unclear 

whether these identical pretest probabilities fell inside or outside the disease 

prevalence ranges. DTA: Diagnostic Test Accuracy, TC: Target Condition 
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Pretest probabilities in target conditions with more than one 

analysis  

In 29 reviews there were 41 target conditions with two or more analyses 

(Figure 3). In 32 target conditions identical pretest probabilities were used in 

all analyses (range: 1-6 pretest probabilities). In nine target conditions different 

pretest probabilities were used. From the 69 identical pretest probabilities that 

were used in the 41 target conditions, 37 pretest probabilities (53.6%) fell 

inside the disease prevalence ranges of the included studies. However, 26 

identical pretest probabilities (37.7%) fell outside at least one prevalence range 

of an analysis within a target condition, while this remained unclear for six 

pretest probabilities (8.7%). One target condition had six identical pretest 

probabilities in both of its analyses, however it was unclear which pretest 

probability fell inside or outside the disease prevalence ranges.  

Discussion 
A total of 59 Cochrane DTA reviews were included to assess the data sources 

and methods used to determine pretest probabilities and to assess the use of 

identical pretest probabilities in multiple analyses within a target condition. 

Various sources and methods to determine a pretest probability were found. 

Sixteen DTA reviews did not use a single pretest probability. Almost half of 

the observed meta-analyses used at least one pretest probability (range: 1-6 

pretest probabilities) to facilitate the interpretability of the results. The median 

was the most used method to determine a pretest probability. Thirty-nine 

target conditions contained two or more analyses and used at least one 

identical pretest probability for all of its analyses (range: 1-6 pretest 

probabilities). Twenty-six of the identical pretest probabilities (37.7%) fell 

outside the disease prevalence range of at least one analysis within the target 

condition. 

The Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy 

proposes to use the median prevalence of the included studies or external 

sources as methods to select a pretest probability (5). Indeed, the median was 

used more than any other method in Cochrane DTA reviews when the pretest 
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probability was determined based on studied included in the review. External 

sources were also used in 26 analyses. The Cochrane Handbook also suggests 

the use of disease registries for selecting a representative pretest probability, 

but no such method was specifically mentioned in the included Cochrane 

DTA reviews. Observed prevalence from disease surveillance systems and 

epidemiological surveys by the WHO, however, might be interpreted as 

disease registries as well. The Cochrane Handbook states that a representative 

pretest probability may be derived from the included studies only when the 

studies are representative for the target setting (5), in which case the selected 

pretest probability will fall within the prevalence range of included studies. 

However, when determining a pretest probability from external sources or 

expert opinion a pretest probability may be selected that falls outside the 

disease prevalence range from the included studies. A pretest probability from 

an external source could be representative for the target setting, but it might 

not necessarily be an appropriate pretest probability in the context of the 

disease prevalence range from the included studies in a meta-analysis. When a 

representative pretest probability falls outside the disease prevalence range, a 

more appropriate pretest probability from the range of disease prevalence 

from the meta-analysis itself might be selected in the context of the data in the 

meta-analysis. Therefore, a representative and an appropriate pretest 

probability are not necessarily the same. Appropriateness in this case means 

to not extrapolate outside of the data in the meta-analysis.  

A potential limitation of this study is that only Cochrane DTA reviews were 

included. Since the Cochrane Handbook proposes to use the median it was 

beforehand likely to observe that the median is being preferred in Cochrane 

DTA reviews. Different methods and data sources for determining pretest 

probabilities in non-Cochrane DTA reviews could have been missed. 

However, when there were data sources or methods that this study did not 

address, it adds to the impression that there is no consensus on what data 

source and method to use for determining a representative or appropriate 

pretest probability.  

From the results of this study no clear guidance can be given on what source 

or what method should be used for determining a pretest probability. 

Furthermore, it is unknown if a pretest probability outside the disease 



SOURCES AND METHODS USED FOR DETERMINING PRETEST PROBABILITIES 

225 
 

8 

prevalence ranges is problematic in clinical reality. Whether or not it is 

problematic may also be context dependent, as for some target conditions a 

certain number of misclassifications are more acceptable than for target 

conditions where misclassifications have severe downstream consequences. 

Even if it turns out to be clinically problematic in future research, it presently 

might still be best practice to facilitate the interpretability of diagnostic 

accuracy parameters by presenting normalized frequencies. Furthermore, 

there are some considerations which may be taken in to account when 

presenting results in DTA reviews. 

First to consider is whether to provide a way for end-users to interpret the 

presented accuracy parameters, as it was observed in this study that about half 

of all meta-analyses were not accompanied with normalized frequencies from 

a hypothetical cohort. Literature shows that interpreting diagnostic test 

accuracy parameters may be troublesome for its users and therefore 

normalized frequencies may be useful (2). However, choosing pretest 

probabilities to calculate normalized frequencies is not without difficulties and 

therefore it is uncertain whether normalized frequencies are trustworthy 

enough for all decision-making (see the second consideration). The need for 

interpretability versus the certainty of and need for a truthful representation 

might determine whether normalized frequencies are calculated. 

Secondly, consider giving thought about the influence of the method of 

selecting the pretest probability on the normalized frequencies from the 

hypothetical cohort. A guideline board may base their decision about whether 

or not to recommend a test for clinical practice on the presented normalized 

frequencies. It is important to understand that different pretest probabilities 

will result in different normalized frequencies while the sensitivity and 

specificity remain constant (see Appendix C), potentially influencing the 

decision-making in practice, policy or guidelines.  

Thirdly, when there are multiple meta-analyses for the same target condition, 

consider whether to use an identical pretest probability in each of those 

analyses so that the normalized frequencies can be compared. Ideally the 

selected pretest probabilities fall inside all of the disease prevalence ranges 

from all individual meta-analyses within the target condition, although this 
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might not be feasible for every scenario (e.g. when the disease prevalence 

ranges from the meta-analyses do not overlap). However, from this study no 

guidance can be provided on whether an identical pretest probability is suitable 

for all of the disease prevalence ranges in the analyses, even when the pretest 

probability falls inside all prevalence ranges. 

Providing clinicians, policy makers, and guideline boards with methods to 

facilitate the interpretation of DTA results is not only important for them, but 

ultimately also for patients who undergo diagnostic tests. Different pretest 

probabilities will result in different normalized frequencies. However, it is not 

known whether differences in normalized frequencies caused by the use of 

different pretest probabilities actually impacts decision-making and whether it 

will then clinically harm of benefit patients. The future direction of research 

in this area could focus on whether different pretest probabilities will actually 

result in a different clinical decision, guideline recommendation, or policy 

change. Furthermore, future research could focus on developing other 

strategies for accuracy parameters so that they are both interpretable and 

helpful when research shows that calculating normalized frequencies may not 

be beneficial for actual decision-making by clinicians, policy makers, and/or 

guideline boards. 

 

Various data sources and methods are used to obtain a pretest probability 

without consensus on which data source or method to use. However, there 

are three considerations that might be taken in to account when presenting 

DTA results: 1) Consider whether or not to present normalized frequencies 

from a hypothetical cohort, 2) Consider the influence of the chosen method 

for selecting a pretest probability on the normalized frequencies from a 

hypothetical cohort on which a clinical decision, guideline recommendation 

or policy change may be based, and 3) Consider to use identical pretest 

probabilities that fall within the range of the selected studies when there are 

multiple meta-analyses for a target condition. 
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Appendix A 
Reviews excluded from the analysis 

Author Year Title Reason for 

exclusion 

Hull et al. 2017 Tests for detecting strabismus in 

children aged 1 to 6 years in the 

community 

No 

pooled/summary 

analysis performed 

Davidson  

et al. 

2017 Amylase in drain fluid for the 

diagnosis of pancreatic leak in 

post‐ pancreatic resection 

No 

pooled/summary 

analysis performed 

Mens et al. 2017 Imaging for the exclusion of 

pulmonary embolism in 

pregnancy 

No 

pooled/summary 

analysis performed 

Harrison 

et al. 

2016 Informant Questionnaire on 

Cognitive Decline in the Elderly 

(IQCODE) for the early 

diagnosis of dementia across a 

variety of healthcare settings 

No 

pooled/summary 

analysis performed 

Crawford  

et al. 

2016 Ankle brachial index for the 

diagnosis of lower limb 

peripheral arterial disease 

No 

pooled/summary 

analysis performed 

Crawford 

et al. 

2016 D‐ dimer test for excluding the 

diagnosis of pulmonary embolism 

No 

pooled/summary 

analysis performed 

Nisenblat  

et al. 

2016 Combination of the non‐

invasive tests for endometriosis 

diagnosis  

No 

pooled/summary 

analysis performed 

Liu et al. 2015 Urinary biomarkers for the non‐

invasive endometriosis diagnosis 

No 

pooled/summary 

analysis performed 

Davis et al. 2015 Montreal Cognitive Assessment 

for the diagnosis of Alzheimer’s 

disease and other dementias 

No 

pooled/summary 

analysis performed 

Bleeker et al. 2015 123I‐ MIBG scintigraphy and 

18F‐ FDG‐ PET imaging for 

diagnosing neuroblastoma 

No 

pooled/summary 

analysis performed 
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Author Year Title Reason for 

exclusion 

Palaniyappan 

et al. 

2015 Voxel‐ based morphometry for 

separation of schizophrenia from 

other types of psychosis in first 

episode psychosis 

No 

pooled/summary 

analysis performed 

Archer et al. 2015 Regional Cerebral Blood Flow 

Single Photon Emission 

Computed Tomography for 

detection of Frontotemporal 

dementia in people with 

suspected dementia 

No 

pooled/summary 

analysis performed 

Arevalo et al. 2015 Mini‐ Mental State Examination 

(MMSE) for the detection of 

Alzheimer's disease and other 

dementias in people with mild 

cognitive impairment (MCI) 

No 

pooled/summary 

analysis performed 

Hunt et al. 2015 Thromboelastography (TEG) and 

rotational thromboelastometry 

(ROTEM) for trauma-induced 

coagulopathy in adult trauma 

patients with bleeding 

No 

pooled/summary 

analysis performed 

Fage et al. 2015 Mini‐ Cog for the diagnosis of 

Alzheimer's disease dementia and 

other dementias within a 

community setting 

No 

pooled/summary 

analysis performed 

McCleery et 

al. 

2015 Dopamine transporter imaging 

for the diagnosis of dementia 

with Lewy bodies 

No 

pooled/summary 

analysis performed 

Harrison et 

al. 

2014 Informant Questionnaire on 

Cognitive Decline in the Elderly 

(IQCODE) for the diagnosis of 

dementia within a general 

practice (primary care) setting 

No 

pooled/summary 

analysis performed 

Rutten et al. 2014 Laparoscopy for diagnosing 

resectability of disease in patients 

with advanced ovarian cancer 

No 

pooled/summary 

analysis performed 
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Author Year Title Reason for 

exclusion 

Walsh et al. 2013 Clinical assessment to screen for 

the detection of oral cavity cancer 

and potentially malignant 

disorders in apparently healthy 

adults 

No 

pooled/summary 

analysis performed 

Hanchard et 

al. 

2013 Physical tests for shoulder 

impingements and local lesions of 

bursa, tendon or labrum that may 

accompany impingement 

No 

pooled/summary 

analysis performed 

Henschke et 

al. 

2013 Red flags to screen for 

malignancy in patients with low‐

back pain 

No 

pooled/summary 

analysis performed 

Wiliams et 

al. 

2013 Red flags to screen for vertebral 

fracture in patients presenting 

with low‐ back pain 

No 

pooled/summary 

analysis performed 
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Reviews included in the analysis 

Author Year Title 

Koliopoulos 

et al. 

2017 Cytology versus HPV testing for cervical cancer 

screening in the general population 

Abraha et al. 2017 Ultrasonography for endoleak detection after 

endoluminal abdominal aortic aneurysm repair 

Wijedoru et al. 2017 Rapid diagnostic tests for typhoid and paratyphoid 

(enteric) fever 

Nieuwenhuis 

et al. 

2017 Three‐ dimensional saline infusion sonography 

compared to two‐ dimensional saline infusion 

sonography for the diagnosis of focal intracavitary 

lesions 

Colli et al. 2017 Platelet count, spleen length, and platelet count‐ to‐

spleen length ratio for the diagnosis of oesophageal 

varices in people with chronic liver disease or portal 

vein thrombosis 

Rompianesi et 

al. 

2017 Serum amylase and lipase and urinary trypsinogen and 

amylase for diagnosis of acute pancreatitis 

Best et al. 2017 Imaging modalities for characterising focal pancreatic 

lesions 

Ritchie et al. 2017 CSF tau and the CSF tau/ABeta ratio for the diagnosis 

of Alzheimer's disease dementia and other dementias 

in people with mild cognitive impairment (MCI) 

Pammi et al. 2017 Molecular assays for the diagnosis of sepsis in neonates 

Tamburrino et 

al. 

2016 Diagnostic accuracy of different imaging modalities 

following computed tomography (CT) scanning for 

assessing the resectability with curative intent in 

pancreatic and periampullary cancer 

Theron et al. 2016 GenoType® MTBDRsl assay for resistance to 

second‐ line anti‐ tuberculosis drugs 

Allen et al. 2016 Diagnostic accuracy of laparoscopy following 

computed tomography (CT) scanning for assessing the 

resectability with curative intent in pancreatic and 

periampullary cancer 
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Author Year Title 

Shaikh et al. 2016 Dimercaptosuccinic acid scan or ultrasound in 

screening for vesicoureteral reflux among children with 

urinary tract infections 

Cohen et al. 2016 Rapid antigen detection test for group A streptococcus 

in children with pharyngitis 

Shah et al. 2016 Lateral flow urine lipoarabinomannan assay for 

detecting active tuberculosis in HIV‐ positive adults 

Nisenblat et 

al. 

2016 Blood biomarkers for the non‐ invasive diagnosis of 

endometriosis 

Gupta et al. 2016 Endometrial biomarkers for the non‐ invasive 

diagnosis of endometriosis 

Ratnavelu et 

al. 

2016 Intraoperative frozen section analysis for the diagnosis 

of early stage ovarian cancer in suspicious pelvic 

masses 

Nisenblat et 

al. 

2016 Imaging modalities for the non‐ invasive diagnosis of 

endometriosis 

Creavin et al. 2016 Mini‐ Mental State Examination (MMSE) for the 

detection of dementia in clinically unevaluated people 

aged 65 and over in community and primary care 

populations 

Leeflang et al. 2015 Galactomannan detection for invasive aspergillosis in 

immunocompromised patients 

Nicholson et 

al. 

2015 Blood CEA levels for detecting recurrent colorectal 

cancer 

Alldred et al. 2015 Urine tests for Down's syndrome screening 

Alldred et al. 2015 First trimester serum tests for Down's syndrome 

screening 

Michelessi et 

al. 

2015 Optic nerve head and fibre layer imaging for 

diagnosing glaucoma 

Cruciani et al. 2015 Polymerase chain reaction blood tests for the diagnosis 

of invasive aspergillosis in immunocompromised 

people 

Mallee et al. 2015 Computed tomography versus magnetic resonance 

imaging versus bone scintigraphy for clinically 

suspected scaphoid fractures in patients with negative 

plain radiographs 
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Author Year Title 

Macey et al. 2015 Diagnostic tests for oral cancer and potentially 

malignant disorders in patients presenting with 

clinically evident lesions 

Hooper et al. 2015 Clinical symptoms, signs and tests for identification of 

impending and current water‐ loss dehydration in 

older people 

Ochodo et al. 2015 Circulating antigen tests and urine reagent strips for 

diagnosis of active schistosomiasis in endemic areas 

Harrison et al. 2015 Informant Questionnaire on Cognitive Decline in the 

Elderly (IQCODE) for the diagnosis of dementia 

within a secondary care setting 

Gurusamy et 

al. 

2015 Endoscopic retrograde cholangiopancreatography 

versus intraoperative cholangiography for diagnosis of 

common bile duct stones 

Gurusamy et 

al. 

2015 Ultrasound versus liver function tests for diagnosis of 

common bile duct stones 

Giljaca et al. 2015 Endoscopic ultrasound versus magnetic resonance 

cholangiopancreatography for common bile duct 

stones 

Mocellin et al. 2015 Diagnostic accuracy of endoscopic ultrasonography 

(EUS) for the preoperative locoregional staging of 

primary gastric cancer 

Smailagic et al. 2015 18F‐ FDG PET for the early diagnosis of Alzheimer’s 

disease dementia and other dementias in people with 

mild cognitive impairment (MCI) 

Soares et al. 2015 First rank symptoms for schizophrenia 

Pavlov et al. 2015 Transient elastography for diagnosis of stages of 

hepatic fibrosis and cirrhosis in people with alcoholic 

liver disease 

Shaikh et al. 2015 Procalcitonin, C‐ reactive protein, and erythrocyte 

sedimentation rate for the diagnosis of acute 

pyelonephritis in children 

Virgili et al. 2015 Optical coherence tomography (OCT) for detection of 

macular oedema in patients with diabetic retinopathy 
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Author Year Title 

Abba et al. 2014 Rapid diagnostic tests for diagnosing uncomplicated 

non‐ falciparum or Plasmodium vivax malaria in 

endemic countries 

Schmidt et al. 2014 PET‐ CT for assessing mediastinal lymph node 

involvement in patients with suspected resectable 

non‐ small cell lung cancer 

Colli et al. 2014 Capsule endoscopy for the diagnosis of oesophageal 

varices in people with chronic liver disease or portal 

vein thrombosis 

Josephson et 

al. 

2014 Computed tomography angiography or magnetic 

resonance angiography for detection of intracranial 

vascular malformations in patients with intracerebral 

haemorrhage 

Zhang et al. 2014 11C‐ PIB‐ PET for the early diagnosis of Alzheimer’s 

disease dementia and other dementias in people with 

mild cognitive impairment (MCI) 

Lawrie et al. 2014 Sentinel node assessment for diagnosis of groin lymph 

node involvement in vulval cancer 

Boelaert et al. 2014 Rapid tests for the diagnosis of visceral leishmaniasis in 

patients with suspected disease 

Ritchie et al. 2014 Plasma and cerebrospinal fluid amyloid beta for the 

diagnosis of Alzheimer's disease dementia and other 

dementias in people with mild cognitive impairment 

(MCI) 

Quinn et al. 2014 Informant Questionnaire on Cognitive Decline in the 

Elderly (IQCODE) for the diagnosis of dementia 

within community dwelling populations 

Taylor et al. 2014 Computed tomography (CT) angiography for 

confirmation of the clinical diagnosis of brain death 

Steingart et al. 2014 Xpert® MTB/RIF assay for pulmonary tuberculosis 

and rifampicin resistance in adults 

Lenza et al. 2013 Magnetic resonance imaging, magnetic resonance 

arthrography and ultrasonography for assessing rotator 

cuff tears in people with shoulder pain for whom 

surgery is being considered 
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Author Year Title 

Arbyn et al. 2013 Human papillomavirus testing versus repeat cytology 

for triage of minor cytological cervical lesions 

Wang et al. 2012 Clinical symptoms and signs for the diagnosis of 

Mycoplasma pneumoniae in children and adolescents 

with community‐ acquired pneumonia 

Alldred et al. 2012 Second trimester serum test for Down Syndrome 

screening 

Wang et al. 2011 Cardiac testing for coronary artery disease in potential 

kidney transplant recipients 

Abba et al. 2011 Rapid diagnostic tests for diagnosing uncomplicated P. 

falciparum malaria in endemic countries 

Windt et al. 2010 Physical examination for lumbar radiculopathy due to 

disc herniation in patients with low‐ back pain 

Brazzelli et al. 2009 Magnetic resonance imaging versus computed 

tomography for detection of acute vascular lesions in 

patients presenting with stroke symptoms 
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Appendix B 
Examples of data source categories 

From included studies 

From all studies included for the target condition  

There are multiple target conditions in the systematic review and a target 

condition has one or multiple index tests. All studies from all analyses for a 

single target condition were used to determine a pretest probability. See Lenza 

et al. (2013) for an example (1). 

From studies used per test/analysis for a target condition 

A target condition has multiple index tests. For each analysis of the index test 

the included studies for that index test were used to determine a pretest 

probability. See Colli et al. (2017) for an example (2). 

From all studies in the systematic review across all target conditions 

A review used all of the included studies for analyses across all of the target 

conditions to determine a pretest probability. Analyses were also placed in this 

category if there was only one target condition defined in the systematic review 

and a pretest risk was determined from all included studies for that target 

condition, unless specifically stated otherwise by the authors. See Leeflang et 

al. (2015) for an example (3). 

From all studies in the systematic review and from an unclear method 

An analysis used two pretest probabilities to calculate normalized frequencies. 

One of the pretest probabilities was determined from all of the included 

studies for analyses across all target conditions, while the other pretest 

probability had an unclear data source. See Abba et al. (2011) for an example 

(4). 
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From all studies in the systematic review and only from studies with a 

low risk of bias 

An analysis used two pretest probabilities to calculate normalized frequencies. 

One pretest probability was determined by all of the included studies for 

analyses across all target conditions, while the other pretest probability was 

calculated solely from studies with a low risk of bias. See Colli at al. (2014) for 

an example (5). 

Only from included studies that reported the disease prevalence 

Only studies that reported their sample’s disease prevalence were used to 

determine the pretest probability. See Ritchie et al. (2017) for an example (6). 

From external sources 

From published scientific literature 

The pretest probability used in the systematic review was based on or 

informed by the disease prevalence as reported in published scientific 

literature. See Wijedoru et al. (2017) for an example (7). 

From a WHO suggestion 

The pretest probability used in the systematic review was based on or 

informed by the disease prevalence as suggested by the WHO. See Steingart 

et al. (2014) for an example (8). 

From a guideline 

The pretest probability used in the systematic review was based on or 

informed by the disease prevalence as reported in a guideline. See Wang et al. 

(2011) for an example (9). 
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Expert opinion 

It was considered expert opinion when authors determined a pretest 

probability based on an assumption. See Shaikj et al. (2016) for an example 

(10). 
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Appendix C 
A worked example for calculating normalized frequencies:  

High grade vesicoureteral reflux in children with urinary tract infection 

In the Cochrane DTA review of Shaikh et al. (2016) summary sensitivity and 

specificity were obtained for both ultrasound and dimercaptosuccinic acid 

renal scans used for detecting vesicoureteral reflux. The authors assumed a 

pretest probability of 13% in a hypothetical cohort of n=1000 for high grade 

vesicoureteral reflux. We use the data of the ultrasound analysis for high grade 

vesicoureteral reflux to calculate the mean, median, interquartile range (IQR), 

and the range of the disease prevalence and calculate the accompanying 

normalized frequencies. The authors were able to include 11 studies (2498) 

participants in the ultrasound analysis for high grade vesicoureteral reflux. This 

resulted in a summary sensitivity and specificity of 59% and 79%, respectively. 

From the data of the analysis (test 2 on page 115 of the DTA review), the 

disease prevalence of the included studies for the ultrasound analysis were 

calculated: 8%, 9.1%, 9.3%, 15.6%, 16.6%, 17.7%, 19.5%, 20,1%, 21,2%, 

23.9%, 31% 

 

Therefore: 

Range lower limit = 8% 

IQR lower limit = 9.3% 

Assumed = 13% 

Mean = 17.5% 

Median = 17.7% 

IQR upper limit = 21.2% 

Range upper limit = 31% 

 

Calculating the normalized frequencies 

The mean, median, interquartile range, range and the assumed pretest 

probability were used as pretest probabilities when calculating the normalized 

frequencies. The sensitivity and specificity used in these calculations will 

remain unchanged. With this we show that normalized frequencies vary when 

using different pretest probabilities determined by various methods (see 

Table). 
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Table – Normalized frequencies for various pretest probabilities while the 

sensitivity and specificity remain constant 

Ultrasound detecting high grade vesicoureteral reflux in a hypothetical 

cohort of n = 1,000  

Summary sensitivity: 59% 

Summary specificity: 79% 

 

Pretest probability 

 

True 

positive 

 

False 

positive 

 

False 

negative 

 

True 

negative 

8% (range lower limit) 47 193 33 727 

9.3% (IQR lower limit) 55 190 38 717 

13% (assumed) 77 183 53 687 

17.5% (mean) 103 173 72 652 

17.7% (median) 104 173 73 650 

21.2% (IQR upper 

limit) 

125 165 87 623 

31% (range upper 

limit) 

183 145 127 545 

     

IQR: interquartile range 
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PubMed Central PMCID: PMC6457894 
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“I advocate passionate dedication  

to the pursuit of short-term goals. 

Be micro-ambitious. If you focus too far in front of you, 

you won’t see the shiny thing out the corner of your eye” 

 

 

 
Tim Minchin, Australian comedian 
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Chapter 9 
General discussion 

 



GENERAL DISCUSSION 

245 
 

9 

Lessons learned 
Diagnostic research may seem as a straightforward practice at first sight, 

however, there are still many methodological hurdles that require the 

attention of diagnostic researchers. In this thesis I have outlined some of 

these hurdles and provided directions towards solving them. The lessons 

learned in this thesis are: 

 Dichotomisation of the presence or absence of the target condition by 

an imperfect reference standard leads to biased estimates of index test 

sensitivity and specificity estimates. 

 Approaches using probabilistic estimates for presence of the target 

condition elicited from expert panels yield different diagnostic accuracy 

estimates of the index test(s) under study compared to the traditional 

dichotomous target condition classification approach. 

 The framework of diagnostic accuracy becomes less appropriate if the 

final diagnosis is uncertain in a substantial proportion of study 

participants. 

 Overdiagnosis is a complex issue, occurring not only in oncology, but 

across clinical fields and in different contexts. The lack of consensus on 

the definition is leading to linguistic confusion and inefficient 

communication between researchers. 

 Our framework explicating the mechanisms leading to overdiagnosis 

(and other concepts related to ‘too much medicine’) in context of stages 

of the clinical pathway, allows researchers to better understand, 

describe, and investigate overdiagnosis for their specific situation. 

 Strategies for reducing ‘too much medicine’ are dependent on the 

mechanism(s) through which it occurs and should therefore be tailored 

to their specific situation. 

 Early impact assessment of prediction models using decision analytic 

modelling has great potential, as it provides professionals with: 

o Insight in the mechanism through which a prediction model 

should provide health and/or monetary benefit; 

o The likelihood of cost-effectiveness of a prediction model in a 

given scenario; 
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o The ability to adapt and optimize the design of subsequent model 

impact trials. 

 Performing a decision-analytical based impact assessment of a 

prediction model prior to conducting a randomised impact trial is 

feasible, provided that there is sufficient data on diagnostic 

performance, consumption of healthcare resources, and expected 

effectiveness of subsequent treatments. 

 Decision analytical based impact and headroom assessment of a 

diagnostic test or model at a very early stage of development, gives 

insight in the potential value of the concept idea of a novel diagnostic 

test or model. 

 There is great heterogeneity in the methods used for selecting pretest 

probabilities in summary of findings tables in Cochrane diagnostic test 

accuracy reviews. 

In the sections below I will elaborate on two aspects of this thesis in 

particular, namely the use of expert panels as reference standard in diagnostic 

research and studying the impact of diagnostic and prognostic prediction 

models based on prior knowledge before conducting a randomised impact 

trial. 

Expert panels as reference standard 
When a single preferred reference test (‘gold standard’) is lacking, or 

incorporating multiple tests into a composite reference standard is not 

feasible (e.g. tests that require qualitative assessment such as MRI scans), 

expert panels can be used as a reference standard in scientific diagnostic 

research. However, forcing these experts to reach a final diagnosis (target 

condition is either absent or present) for each individual is likely to introduce 

bias in diagnostic accuracy estimates of the index test under evaluation. 

(Chapter 2) A solution for reducing this bias is providing probabilistic 

estimates for the presence of the target condition, allowing for more valid 

estimation of the diagnostic accuracy estimates of the test(s) under study. 

(Chapter 3) Currently the number of studies asking for non-dichotomous 

target condition is limited, prohibiting these types of assessments. 
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Although Chapters 2 and 3 provide insight in the bias introduced by forcing 

dichotomisation of the target condition (absent or present) by expert panels, 

and probabilistic estimates of target condition presence are suggested as a 

potential solution, several methodological challenges regarding expert panel 

diagnosis remain. In the case study described in Chapter 3, four experts were 

approached to participate, providing a dichotomous target condition 

classification and a probabilistic estimate of presence of the target condition 

for each study participant. However, not every study participant was 

reviewed by all four experts, resulting in missing values for the outcome (final 

diagnosis) in some patients. If these values are missing at random, the mean 

probability of presence of the target condition would not be biased. (1-3) 

However, it is plausible that these values are not missing at random, thereby 

biasing the probability of presence of the target condition, and consequently 

accuracy estimates of the index test(s) or model under evaluation. 

One of the key assumptions when using expert panels as a reference standard 

is that this panel is well calibrated: i.e. the mean of the probabilities of target 

condition presence provided by each of the panel members for a particular 

patient, is an accurate estimate of the probability of the presence of the target 

condition in that patient. This is a strong assumption, as can be demonstrated 

by the following example: if two experts in a panel provide probabilities for 

presence of the target condition of 0.1 and 0.9 for the same study individual, 

then the mean of 0.5 is unlikely to reflect the true probability of disease 

presence for the individual. Another issue is that experts from varying clinical 

specialties may also look at diagnostic information differently, hence the 

composition of the expert panel may affect the mean probability of target 

condition presence in an individual. 

Another key issue is how to view the probabilities of presence of the target 

condition given by the expert panel. One possibility is that the results of the 

index test are incorporated in these probabilities; then the weighting method 

is then appropriate approach for calculating accuracy. Incorporated here 

means that, either these results are formally available to the experts, or the 

information from the index test is captured by information from other tests 

or follow-up. The drawback of making index test results available to the 

expert is the fear of incorporation bias. This means that the experts base 
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their final diagnosis to strongly on the index test results, because the index 

test is new and sounds promising, overestimating its value. An alternative for 

an expert panel would be a latent class model. Latent class models 

acknowledge that a gold standard does not exist and that the available pieces 

of information are all related to an unknown (latent) true status: target 

condition present or absent. Diagnostic accuracy measures for the test(s) 

under study can be estimated by the latent class model. The benefit is that 

the statistical latent class model is based on the observed patterns in the data 

and is not influenced by expectations about the new index test. Drawbacks 

come from the statistical definition of the target condition which may deviate 

from the clinical relevant interpretation of what the condition entails. 

Furthermore, results of the latent class model are directly subject to 

assumptions made during modelling. 

Directions for future research 

The results of our studies suggest that probabilistic estimates of target 

condition presence provide more insight in the certainty surrounding target 

condition classification by the expert panel, and may help provide more 

accurate estimates for the index test(s) under evaluation. Acquiring these 

estimates in all studies involving expert panels is of key importance, as this 

information cannot be obtained after the study has been performed. Ideally, 

probabilistic estimates become part of formal guidance on methodology and 

reporting of the use of expert panels in future studies. 

On a methodological level there are still significant challenges with regard to 

analysis of probabilistic estimates of target condition presence obtained from 

expert panels. As described above, non-random missing values of 

probabilistic estimates of target condition presence could lead to biased 

accuracy estimates of the index test under study. Furthermore, probabilistic 

estimates can be missing at random both within study participants (e.g. 

experts might be more reluctant in giving probability of target disease 

presence in more complex patients) or within experts (e.g. some experts 

might be more committed to providing a probability of target disease 

presence for each patient). Future (e.g. simulation) studies could provide 

insight in the effects of different patterns of missingness on the mean 

probability of target condition presence within study participants, as well as 



GENERAL DISCUSSION 

249 
 

9 

the impact on accuracy estimates of the diagnostic index test(s) or model 

under evaluation. 

Another topic for future research is how to take uncertainty between experts 

in a panel into account in the analysis. Alternatives to solely taking the mean 

value of probabilities of target condition presence within a study participant 

might be sought after. For example, sensitivity analyses can be performed, in 

which the outliers of expert panel estimates within each study participant are 

excluded, or that these outliers may receive less weight when calculating the 

mean probability of target condition presence. Other methods for 

incorporating uncertainty of the assigned expert probabilities include using a 

beta-binomial distribution or bootstrapping to reflect uncertainty in the 

target condition presence estimates, and by extension the index test or 

prediction model accuracy estimates. Simulation studies, reflecting a series 

of hypothetical scenarios, may provide more insight in the validity of each of 

these methods. 

A more fundamental issue arises when there is still considerable uncertainty 

about target condition presence in a substantial proportion of patients. In 

this situation, the traditional diagnostic accuracy framework may no longer 

be appropriate when evaluating new diagnostic tests. In such scenarios, 

abandoning the diagnostic accuracy framework may generate more insight. 

Future research may focus on exploring alternatives to this framework, such 

as relating index test results to the risk of future clinical events, or assessing 

whether test results can discriminate who will have the most benefit from an 

intervention in a randomised trial. 

Decision analytical modelling for studying impact 

of diagnostic and prognostic prediction models  
Impact assessment of diagnostic and prognostic prediction models is vital to 

ensure that they have a significant benefit on patient health outcomes and/or 

healthcare costs when they are implemented in daily practice. There is no 

straightforward association between a model’s predictive accuracy and its 

clinical utility. Hence there is no single threshold value that determines what 

is considered "accurate enough", warranting use of a model in patient care. 
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(4) Trials are often considered to establish the impact of implementing a 

model in clinical practice on patient relevant outcomes and/or healthcare 

costs. However, as stated in Chapter 6, clinical impact trials of prediction 

models are yet rare due to the fact that they are complex in their organization, 

time-consuming, and costly. Even when these trials are performed, the 

impact of a prediction model on health outcomes and / or healthcare costs 

observed in such trials is often below expectations, contributing to research 

waste. (5, 6) 

Thousands of prediction models have been developed throughout the years, 

with for example already 363 developed and another 473 validated for 

cardiovascular disease alone (7), in which the main aim is to assess 

discrimination and calibration of the prediction model under study. Only a 

small proportion of these models are used in clinical daily practice, most of 

which have never undergone impact assessment. 

A systematic overview of impact studies of diagnostic or prognostic 

prediction models on clinical decision making and patient outcome in 

randomised trials is, to our knowledge, still lacking. However, there are some 

case examples worth mentioning. A trial on a prediction model aimed at 

providing prophylactic anti-emetics for post-operative nausea and vomiting 

showed that the impact of using the prediction model in clinical practice did 

not reduce event rate below what was beforehand expected. (6) Another trial 

in the UK looked at a prediction model for reducing emergency hospital 

admissions in an elderly population. (8) Their conclusion was unambiguous: 

“Introduction of PRISM increased emergency episodes, hospitalisation and 

costs across, and within, risk levels without clear evidence of benefits to 

patients.” Finally, in a recent trial, a prediction model was used to identify 

people at high risk of not returning to work after orthopaedic surgery, and 

provide them with extra coaching or evaluation. (9) They found no 

significant clinical improvement, attributing it to either insufficient directive 

guidelines for management or fear of disadvantaging patients. 

Decision analytic modelling (DAM) prior to conducting a randomised 

prediction model impact trial (as described in Chapter 6) is an important 

alternative, if not prerequisite, before performing a costly (cluster) 
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randomised trial. (5, 10) DAMs can be performed in a fraction of the time 

of an actual impact trial, resulting in minimal research time and costs to be 

invested, leading to less research waste in prediction model research. 

Exactly how many randomised trials have been performed for all the 

thousands of prediction models is unknown. There is, however, a systematic 

review of all risk prediction models for which a modelling assessment has 

been performed. (11) A total of 60 prediction models were identified (only a 

small proportion of the thousands of developed prediction models) for 

which a modelling assessment had been performed. Quality of analyses and 

reporting varied between these studies. Whether the authors of these 

modelling assessments reported positive, negative, or neutral impact of the 

prediction models under study on health outcomes or costs, is not stated in 

the systematic review. Neither can we be sure that this is a comprehensive 

overview, as the search was restricted to HTA related outcomes. 

As stated before, disappointing results of a randomised trial on a prediction 

model’s impact on health outcomes and healthcare costs, contributes to 

research waste. Worldwide numbers related to research waste are scarce, but 

estimates state that approximately 85% of money spent in research is being 

wasted. (12, 13) It is has been stated that study design flaws and incomplete 

or inaccurate reporting account for two thirds of that number. 

Efforts to reduce research waste in medicine have been described in several 

key publications. (14, 15) Among the features for clinical useful research are 

the use of other sources of evidence besides randomised trials, value for 

money, and patient centeredness. DAMs, used to quantify the impact of a 

diagnostic or prognostic prediction model without having to do a large scale 

randomised trials, tick the first box, as they are a clear alternative to costly 

impact trials. Second, DAMs provide value for money, as they can be 

performed by a single person, don’t require lengthy regulatory approval by 

medical ethical committees, and take months rather than years to complete. 

Lastly, patient centeredness can be assured by involving patients during 

model construction phase and by using patient relevant outcomes such as 

QALYs. 
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Directions for future research 

DAMs are a valuable asset to evaluate impact of prediction models at an early 

stage of their development. There are many opportunities for expanding this 

relatively novel field of prediction model research. 

A comprehensive overview of both model-based and trial-based impact 

assessments of prediction models, looking at the methods used, study 

quality, and proportion of studies in which the impact of a prediction model 

was on par with expectations, will serve the field. Such a systematic review 

could also provide the starting point of how quality assessment tools, such 

as the Cochrane risk of bias tool (for randomised trials), the Drummond 

checklist (for health economic evaluations) and PROBAST (for 

development or validation of prediction model studies), can be used for 

quality assessment of in the mixed field of prediction model impact research. 

(16-19) 

Currently there is also still a lack of clear guidance on how to use DAMs 

specifically for assessing the impact of prediction models on health outcomes 

and healthcare costs without empirical evidence from a randomised trial. 

Though we have provided a short piece of guidance in Chapter 6, the exact 

methodological challenges and choices that researchers are faced with at each 

stage have not been fully elaborated on. Furthermore, there are inherently 

greater limitations regarding data availability, as resources tend to be limited 

at an early stage of prediction model development. An overview of where 

such resources can be located, could prove to be a practical and valuable tool 

for researchers aiming to perform DAMs. Other guidance may include 

considering implications of the intended use of a prediction model 

(diagnostic or prognostic) and choice of management recommendations 

associated with predicted risk categories of the model on DAM structure. 

Information on methodologies particularly useful at an early stage of 

development, such as value of information and headroom analysis, may also 

provide useful to researchers. (20-22) 

Finally, it would be worthwhile to look beyond the early impact assessment 

of prediction models: what does it provide us, and in what way can we use 

its outcomes? Its results could be used for a hard go/no-go decision, as 
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randomised impact trials for prediction models with either a very high or 

very low likelihood of success, may not be deemed necessary. However, a 

DAM? could also provide a starting point for additional research before 

deciding whether or not a trial is warranted. An example of this is a 

qualitative pilot study, looking at clinicians’ view on and support of 

prediction model management recommendations. Furthermore, sample size 

calculations could be performed based on the results of a DAM analysis, and 

multiple-criteria decision-making (MCDM) could be used to incorporate 

results on cost-effectiveness with additional items (e.g. appropriateness, 

urgency) in a broader context. (23) Providing researchers with more guidance 

on the use and interpretation of DAMs before conducting a costly 

randomised impact trial, could reduce uncertainty on the impact of a 

prediction model on health and monetary outcomes, allowing more 

appropriate decision-making on which prediction models require 

randomised trials, and ultimately increase the efficiency and value of such 

trials.  
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Diagnostic research may seem straightforward at first sight. We provide 

diagnostic labels to patients to indicate in whom a target condition is present 

or absent. Those labels respectively distinguish who will benefit from 

intervention and who won’t. Implementing a perfect accurate test or 

(diagnostic or prognostic) prediction model will result in better health 

outcomes for patients and/or a reduction in healthcare costs. Unfortunately, 

reality is not so simplistic, warranting the use of more complex methodology 

to evaluate these tests and prediction models. The aim of this thesis is to 

address methodological issues in evaluation and impact assessment of 

diagnostic tests and models, and propose alternative approaches to reduce 

bias, research waste and improve communication by providing 

methodological guidance. 

The objective in Chapter 2 is to study the impact of ignoring uncertainty by 

forcing dichotomous classification (presence or absence) of the target disease 

on estimates of diagnostic accuracy of an index test. We evaluated the bias 

in estimated index test accuracy when forcing an expert panel to make a 

dichotomous target disease classification for each individual. Data for 

various scenarios with expert panels were simulated by varying the number 

and accuracy of ‘‘component reference tests’’ available to the expert panel, 

index test sensitivity and specificity, and target disease prevalence. The 

results showed that index test accuracy estimates are likely to be biased when 

there is uncertainty surrounding the presence or absence of the target 

disease. Direction and amount of bias depend on the number and accuracy 

of component reference tests, target disease prevalence, and the true values 

of index test sensitivity and specificity. In this simulation, forcing expert 

panels to make a dichotomous decision on target disease classification in the 

presence of uncertainty leads to biased estimates of index test accuracy. 

Empirical studies are needed to demonstrate whether this bias can be 

reduced by assigning a probability of target disease presence for each 

individual, or using advanced statistical methods to account for uncertainty 

in target disease classification. 

Expert panels, used as reference standard in diagnostic accuracy studies, 

typically classify each patient as having or not having the target condition, 
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even when they have remaining uncertainty about that classification. This 

has been shown to lead to biased diagnostic accuracy estimates of the index 

test. Chapter 3 aims to show how probabilistic estimates of presence of a 

target condition elicited from an expert panel can be used in diagnostic 

accuracy research. The SPACE (SePsis in Acutely ill patients in the 

Emergency department) study, aimed at investigating the diagnostic value of 

clinical decision rules (SIRS, qSOFA, CBJ) for diagnosis of sepsis in the 

emergency room, was used as a case study. Both dichotomous (i.e. present 

or absent) and probabilistic estimates of sepsis status were obtained from the 

expert panels. Measures of diagnostic accuracy were calculated using three 

approaches: (1) (traditional) dichotomous sepsis classification; (2) an 

approach using probabilistic estimates for presence of sepsis as weights; (3) 

an approach using these probabilistic estimates in combination with the 

diagnostic odds ratio (DOR). A total of 306 patients were included in the 

analysis. A skewed distribution of probabilistic estimates for the presence of 

sepsis by the panel was observed (median=0.30). The panel expressed 

considerable uncertainty whether sepsis was present or not (probabilities 

between 0.2 and 0.8) in 57% of patients. Estimates of diagnostic accuracy 

varied considerably between the dichotomous and two probabilistic 

approaches, but also between the two probabilistic approaches. For example, 

sensitivity of SIRS was 91% for the dichotomous approach, 74% for the 

probabilistic weighting approach, and 99% for probabilistic DOR approach. 

Specificity was 46%, 47% and 60% for these approaches respectively. 

Eliciting probabilistic estimates of target condition presence from expert 

panels can provide valuable insight in the uncertainty that is normally ignored 

in dichotomous target disease classification. Different approaches exist on 

how to incorporate this uncertainty when estimating diagnostic accuracy 

measures and results can vary substantially depending on the assumptions 

made. When substantial uncertainty about the final diagnosis is present in a 

considerable proportion of patients, it may be questioned whether the 

diagnostic accuracy framework is still useful.  

Chapter 4 focuses on overdiagnosis, aiming to provide insight into how and 

in what clinical fields overdiagnosis is studied and give directions for further 

applied and methodological research. A scoping review was performed in 
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which Medline was searched. All English studies on humans published up to 

August 2017 in which overdiagnosis was discussed as a dominant theme were 

included. Studies were assessed on clinical field, study aim (i.e. 

methodological or non-methodological), article type (e.g. primary study, 

review), the type and role of diagnostic test(s) studied and the context in 

which these studies discussed overdiagnosis. From 4896 studies, 1851 were 

included for analysis. Half of all studies on overdiagnosis were performed in 

the field of oncology (50%). Other prevalent clinical fields included mental 

disorders, infectious diseases and cardiovascular diseases accounting for 9%, 

8% and 6% of studies, respectively. Overdiagnosis was addressed from a 

methodological perspective in 20% of studies. Primary studies were the most 

common article type (58%). The type of diagnostic tests most commonly 

studied were imaging tests (32%), although these were predominantly seen 

in oncology and cardiovascular disease (84%). Diagnostic tests were studied 

in a screening setting in 43% of all studies, but as high as 75% of all 

oncological studies. The context in which studies addressed overdiagnosis 

related most frequently to its estimation, accounting for 53%. Methodology 

on overdiagnosis estimation and definition provided a source for extensive 

discussion. Other contexts of discussion included definition of disease, 

overdiagnosis communication, trends in increasing disease prevalence, 

drivers and consequences of overdiagnosis, incidental findings and 

genomics. Overdiagnosis is discussed across virtually all clinical fields and in 

different contexts. The variability in characteristics between studies and lack 

of consensus on overdiagnosis definition indicate the need for a uniform 

typology to improve coherence and comparability of studies on 

overdiagnosis. 

Concepts related to ‘too much medicine’ (such as overdiagnosis) remain a 

complex multifaceted issue, difficult to grasp and dissect. Although valuable 

descriptive frameworks have been proposed, these have not tackled the 

issues related to too much medicine across clinical domains, nor have they 

provided actionable strategies for reducing them. In Chapter 5 we provide 

a conceptual framework aimed at distinguishing uncertainty over thresholds 

and errors, two key mechanisms leading to ‘too much medicine’, and placing 

these in the clinical pathway of screening, diagnosis, prognosis and treatment 
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of individuals. This allows researchers to evaluate concepts related to ‘too 

much medicine’ in the context of their own specific research, and facilitates 

communication between researchers, healthcare providers and patients. 

Based on the mechanism(s) at play, we provide strategies for reducing too 

much medicine. 

Chapter 6 continues on the topic of evaluating impact of prediction models. 

The main goal in this chapter was to demonstrate how decision analytic 

models (DAM) can be used to quantify impact of using a (diagnostic or 

prognostic) prediction model in clinical practice, and provide general 

guidance on how to perform such assessments. A DAM was developed to 

assess the impact of using the HEART score for predicting major adverse 

cardiac events (MACE). Impact on patient health outcomes and healthcare 

costs was assessed in scenarios by varying compliance with and informed 

deviation (ID) (using additional clinical knowledge) from HEART score 

management recommendations. Probabilistic sensitivity analysis was used to 

assess estimated impact robustness. Impact of using the HEART score on 

health outcomes and healthcare costs was influenced by interplay of 

compliance with and ID from HEART score management 

recommendations. Compliance of 50% (with 0% ID) resulted in increased 

missed MACE and costs compared to usual care. Any compliance combined 

with at least 50% ID, reduced both costs and missed MACE. Other scenarios 

yielded a reduction in missed MACE at higher costs. DAM is a useful 

approach to assess impact of using a prediction model in practice on health 

outcomes and healthcare costs. This approach is recommended before 

conducting an impact trial to improve its design and conduct. 

With seemingly unlimited technological possibilities yet limited budgets, 

clinicians face the challenge of which novel ideas to pursue and which to lay 

aside. Although early health economic modelling methods may support 

innovation decisions, they are not yet widely known or used in the evaluation 

of diagnostic tests and prediction models. The aim in Chapter 7 is to 

illustrate early health economic modelling to clinicians by applying its 

methods to the case of diagnosing primary aldosteronism (PA) in patients 

with hypertension. We developed a cohort state-transition model to simulate 

diagnosis, treatment, and long-term health outcomes for patients aged ≥40 
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years with resistant hypertension suspected of PA. We included relevant 

literature and Dutch costing data and took a lifetime, societal perspective on 

costs and health effects (quality-adjusted life-years, QALYs). In our model 

we compared the current aldosterone-to-renin ratio test for diagnosing PA 

to a hypothetical new test. During a patient’s lifetime, a perfect diagnostic 

test would yield 0.027 QALYs and increase costs by €43. At a cost-

effectiveness threshold of €20,000 per QALY, the maximum price for this 

perfect test to be cost-effective is €498 (95% CI: €275 - €808). The value of 

the perfect test was most strongly influenced by the sensitivity of the current 

biomarker test. Threshold analysis showed the novel test needs a sensitivity 

of at least 0.9 and a specificity of at least 0.7 to be cost-effective. Applying a 

model-based approach to determine the added value of a clinical innovation 

in PA diagnostics, we demonstrated there was room for improvement while 

indicating a maximum price per test, supporting the conclusion that early 

health economic modelling is useful and feasible in clinical practice to 

determine the cost-effectiveness of novel ideas prior to extensive 

development activities and clinical implementation. More applications of 

early modelling through collaborations between health economists and 

clinical experts will illustrate the benefits and help further the accessibility of 

early health economic modelling in dealing with innovation. 

To facilitate the interpretation of diagnostic test accuracy (DTA) parameters 

it is possible to calculate normalized frequencies. They provide the number 

of (false) positives and (false) negatives in a tested hypothetical cohort. A 

pretest probability must be determined to calculate these normalized 

frequencies. The aim of Chapter 8 is to assess the data sources and methods 

used in Cochrane DTA reviews for determining pretest probabilities to 

facilitate the interpretation of DTA parameters. Cochrane DTA reviews 

published in the Cochrane Database of Systematic Reviews up to and 

including January 2018 and presenting at least one meta-analytic estimate of 

the sensitivity and/or specificity as a primary analysis were included in the 

cohort. Study selection and data extraction were performed by one author 

and checked by other authors. Observed data sources and methods were 

categorized. Fifty-nine DTA reviews were included, comprising of 308 meta-

analyses. A pretest probability was used in 148 meta-analyses. Authors used 
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included studies in the DTA review, external sources, and expert opinion as 

data sources for the pretest probability. When using the included studies in 

the DTA review, authors used a measure of central tendency whether or not 

combined with a measure of dispersion to determine the pretest 

probabilities. Identical pretest probabilities were used for analyses of two or 

more index tests for the same target conditions. About half (53.6%) of these 

identical pretest probabilities fell within the prevalence ranges from all 

analyses within a target condition. Various methods are used for selecting 

pretest probabilities and no consensus seems to exist on which data source 

or method to use. However, there are some considerations to take in to 

account when presenting DTA results: 1) Consider whether to present 

normalized frequencies, 2) Consider the influence of the chosen method for 

selecting a pretest probability on the normalized frequencies, and 3) Consider 

whether to use identical pretest probabilities that fall within the range of the 

selected studies when there are multiple meta-analyses for a target condition. 

The general discussion of this thesis (Chapter 9) directs attention to two 

topics: methods for using expert panels as a reference standard in diagnostic 

research, and methods for early assessment of the impact of prediction 

models on health outcomes and healthcare costs. Remaining challenges are 

described for both topics and suggestions for future research are given. 

These suggestions include dealing with missing estimates of probability of 

target disease presence by the expert panel, taking into account the 

uncertainty between experts within a panel, and providing more guidance on 

the use and interpretation of DAMs before conducting a randomised impact 

trial. Focus on these methodological topics should ultimately improve 

efficiency and value of diagnostic research, and reduce research waste. 
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“God might play dice with the universe 

but they are THE BEST dice in the universe” 
 

 

 
Michael “Vsauce” Stevens, science educator 

(sic. of quantum mechanics) 
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Diagnostisch onderzoek lijkt op het eerste gezicht misschien eenvoudig. We 

geven diagnostische labels aan patiënten om aan te duiden bij wie een 

aandoening aanwezig of afwezig is. Die labels onderscheiden respectievelijk 

wie van interventie zou profiteren en wie niet. Implementatie van een perfect 

accurate test of (diagnostisch of prognostisch) voorspellingsmodel zal leiden 

tot gezondheidswinst voor patiënten en / of een verlaging van de 

ziektekosten. Helaas is de realiteit niet zo simplistisch, waardoor complexere 

methodologie nodig is om deze testen en voorspellingsmodellen te 

evalueren. Het doel van dit proefschrift is om methodologische kwesties 

rondom de evaluatie van (de impact van) diagnostische testen en predictie 

modellen onder de loep te nemen, alternatieve aanpakken voor te stellen om 

zo bias en verspilling van onderzoek te verminderen, en communicatie te 

verbeteren door het aanreiken van methodologische handvatten. 

Het doel in hoofdstuk 2 is om de impact te bestuderen van het negeren van 

onzekerheid door het forceren van dichotome classificatie (aanwezigheid of 

afwezigheid) van de aandoening op schattingen van de diagnostische 

accuratesse van een indextest (de test waarin we geïnteresseerd zijn). We 

evalueerden de bias van de geschatte indextest accuratesse door het 

expertpanel te forceren om een dichotome ziekteclassificatie te maken voor 

elk individu. Data voor verschillende scenario’s met expertpanels werden 

gesimuleerd door het aantal en de accuratesse van 

‘componentreferentietesten’ beschikbaar voor het expertpanel, de 

sensitiviteit en specificiteit van de indextest, en de ziekteprevalentie te 

variëren. De resultaten lieten zien dat schattingen van de accuratesse van 

indextesten waarschijnlijk vertekend zijn wanneer er onzekerheid bestaat 

over de aanwezigheid of afwezigheid van aandoening. De richting en mate 

van bias hangen af van het aantal en de nauwkeurigheid van 

componentreferentietesten, de ziekteprevalentie en de werkelijke waarden 

van de sensitiviteit en specificiteit van de indextest. In deze simulatiestudie 

leidde het forceren van expertpanels om een dichotome beslissing te nemen 

over ziekteclassificatie in de aanwezigheid van onzekerheid tot vertekende 

schattingen van de accuratesse van de indextest. Empirische studies zijn 

nodig om aan te tonen of deze bias kan worden verminderd door kans op 

aanwezigheid van de aandoening toe te laten wijzen voor elk individu, of 
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door geavanceerde statistische methoden te gebruiken om rekening te 

houden met onzekerheid in de classificatie van aandoening.  

Expertpanels, die als referentiestandaard worden gebruikt in diagnostische 

accuratesse studies, classificeren doorgaans elke patiënt met het wel of niet 

hebben van de desbetreffende aandoening, zelfs als ze onzeker zijn over die 

classificatie. Er is aangetoond dat dit leidt tot vertekende schattingen van de 

diagnostische accuratesse van de indextest. Hoofdstuk 3 beoogt te laten zien 

hoe probabilistische schattingen van de aanwezigheid van aandoening 

verkregen van een panel van experts kunnen worden gebruikt in diagnostisch 

accuratesse onderzoek. De SPACE studie, gericht op het onderzoeken van 

de diagnostische waarde van klinische beslisregels (SIRS, qSOFA, CBJ) voor 

de diagnose van sepsis op de spoedeisende hulp, werd gebruikt als casus. 

Zowel dichotome (d.w.z. aanwezig of afwezig) en probabilistische 

schattingen van de sepsis-status werden verkregen van het expertpanel. 

Uitkomstmaten van diagnostische accuratesse werden berekend met behulp 

van drie methoden: (1) (traditionele) dichotome sepsis-classificatie; (2) een 

benadering die probabilistische schattingen voor de aanwezigheid van sepsis 

gebruikt als weging; (3) een benadering die probabilistische schattingen 

gebruikt in combinatie met de diagnostische odds ratio (DOR). Een totaal 

van 306 patiënten werden geïncludeerd in de analyse. Er was een scheve 

verdeling van de van het expertpanel verkregen probabilistische schattingen 

op aanwezigheid van sepsis (mediaan = 0,30). Het panel toonde aanzienlijke 

onzekerheid of sepsis al dan niet aanwezig was (kans tussen 0,2 en 0,8) bij 

57% van de patiënten. Schattingen van diagnostische accuratesse varieerden 

aanzienlijk tussen de dichotome en twee probabilistische methoden, maar 

ook tussen de twee probabilistische methoden. De sensitiviteit van SIRS was 

bijvoorbeeld 91% voor de dichotome methode, 74% voor de 

probabilistische wegingsmethode en 99% voor de probabilistische DOR-

methode. De specificiteit was respectievelijk 46%, 47% en 60% voor deze 

methoden. Het verkrijgen van probabilistische schattingen op de 

aanwezigheid van aandoening van expertpanels kan waardevol inzicht 

verschaffen in de onzekerheid rondom dichotome classificatie die normaal 

wordt genegeerd. Er bestaan verschillende methoden om deze onzekerheid 

mee te nemen bij het schatten van diagnostische accuratesse van een 
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indextest, en de resultaten kunnen aanzienlijk variëren afhankelijk van de 

gemaakte aannames. Wanneer er substantiële onzekerheid aanwezig is bij de 

diagnoses van een aanzienlijk deel van de patiënten, kan het de vraag zijn of 

het diagnostische accuratesse raamwerk nog steeds bruikbaar is.  

Hoofdstuk 4 richt zich op overdiagnose, met als doel inzicht te geven in hoe 

en in welke klinische gebieden overdiagnose wordt bestudeerd, en richtingen 

voor te stellen voor verder toegepast en methodologisch onderzoek. Er is 

een verkennend literatuuronderzoek uitgevoerd waarbij Medline is 

doorzocht. Alle Engelse studies die onderzoek deden in mensen, 

gepubliceerd tot augustus 2017, waarbij overdiagnose als een dominant 

thema werd besproken, werden geïncludeerd. Studies werden geclassificeerd 

op klinisch gebied, onderzoeksdoel (d.w.z. methodologisch of niet-

methodologisch), artikeltype (bijv. primair of overzichtsonderzoek), het type 

en de rol van diagnostische test(en) die werden onderzocht, en de context 

waarin deze studies overdiagnose bespraken. Uit 4896 studies werden 1851 

verder geanalyseerd. De helft van alle onderzoeken naar overdiagnose werd 

uitgevoerd op het gebied van oncologie (50%). Andere veelvoorkomende 

klinische velden waren mentale stoornissen, infectieziekten, en hart- en 

vaatziekten, die respectievelijk 9%, 8%, en 6% van de studies 

vertegenwoordigden. Overdiagnose werd bekeken vanuit een 

methodologisch perspectief in 20% van de onderzoeken. Primaire studies 

waren het meest voorkomende artikeltype (58%). Het type diagnostische 

tests dat het meest werd bestudeerd waren beeldvormende tests (32%), 

hoewel deze voornamelijk werden gezien in oncologie en cardiovasculaire 

aandoeningen (84%). Diagnostische testen werden in een screening situatie 

bestudeerd in 43% van alle onderzoeken, en maar liefst in 75% van alle 

oncologische onderzoeken. De context waarin studies overdiagnose 

bespraken was het meest frequent gerelateerd aan de schatting ervan (53%). 

Methodologie van de schatting en definitie van overdiagnose vormden een 

bron voor uitgebreide discussie. Andere contexten van discussie waren de 

definitie van ziekte, communicatie van overdiagnose, trends in toenemende 

prevalentie van aandoening, drijfveren en de gevolgen van overdiagnose, 

incidentele bevindingen, en genetica. Overdiagnose wordt besproken op 

vrijwel alle klinische gebieden en in verschillende contexten. De diversiteit in 
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kenmerken tussen studies en het ontbreken van consensus over de definitie 

van overdiagnose geven de noodzaak aan van een uniforme typologie om de 

coherentie en vergelijkbaarheid van studies die overdiagnose bespreken te 

verbeteren.  

Concepten met betrekking tot Too much medicine (zoals overdiagnose) 

blijven complex, veelzijdig, en moeilijk te begrijpen en ontleden kwesties. 

Hoewel er waardevolle descriptieve raamwerken zijn voorgesteld, hebben 

deze niet de problemen aangepakt die verband houden met Too much 

medicine in verschillende klinische domeinen, en hebben ze geen bruikbare 

strategieën geboden om Too much medicine te reduceren. In hoofdstuk 5 

bieden we een conceptueel raamwerk gericht op het onderscheiden van 

onzekerheid over afkapwaarden en afwijkingen, twee belangrijke 

mechanismen die leiden tot Too much medicine, en plaatsen we deze in het 

klinische pad van screening, diagnose, prognose en behandeling van 

individuen. Dit stelt onderzoekers in staat om concepten gerelateerd aan Too 

much medicine te evalueren in de context van hun eigen specifieke 

onderzoek, en vergemakkelijkt het de communicatie tussen onderzoekers, 

zorgverleners en patiënten. Gebaseerd op de mechanismes die er spelen, 

stellen wij strategieën voor ten behoeve van het verminderen van Too much 

medicine. 

Hoofdstuk 6 gaat verder over het evalueren van de impact van 

voorspellingsmodellen. Het belangrijkste doel van dit hoofdstuk was om aan 

te tonen hoe besliskundige modellen, ofwel decision analytic models (DAM’s), 

kunnen worden gebruikt om de impact van het gebruik van een (diagnostisch 

of prognostisch) voorspellingsmodel in de klinische praktijk te kwantificeren 

en algemene richtlijnen te geven voor het uitvoeren van dergelijke evaluaties. 

Er is een DAM ontwikkeld om de impact te onderzoeken van het gebruik 

van de HEART-score voor het voorspellen van belangrijke ongunstige 

cardiovasculaire uitkomsten, ofwel major adverse cardiac events (MACE). De 

impact op gezondheidsuitkomsten en zorgkosten van patiënten werd in 

verschillende scenario's onderzocht door naleving van aanbevelingen voor 

behandeling op basis van de HEART-score, en geïnformeerde afwijking 

hiervan (door aanvullende klinische kennis), ofwel informed deviation (ID), te 

variëren. Probabilistische sensitiviteitsanalyse werd gebruikt om de 
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robuustheid van de gevonden resultaten te beoordelen. Het effect van het 

gebruik van de HEART-score op gezondheidsuitkomsten en kosten voor 

gezondheidszorg werd beïnvloed door een samenspel van naleving en ID 

van aanbevelingen voor behandeling op basis van de HEART-score. 

Naleving van 50% (met 0% ID) resulteerde in een toename van gemiste 

MACE en kosten in vergelijking met de gebruikelijke zorg. Voor elk scenario 

van naleving gecombineerd met minimaal 50% ID, werden zowel de kosten 

als het gemiste MACE gereduceerd. Andere scenario's leidden tot een 

afname van het aantal gemiste MACE tegenover hogere kosten. DAM is een 

nuttige methode om de impact van een voorspellingsmodel op 

gezondheidsuitkomsten en ziektekosten te evalueren wanneer deze in de 

dagelijkse praktijk toegepast zou worden. Deze aanpak wordt aanbevolen 

voor het uitvoeren van een klinische impactstudie, zodat tijdig het ontwerp 

en de uitvoering kunnen worden verbeterd. 

Met schijnbaar onbeperkte technologische mogelijkheden en beperkte 

budgetten staan clinici voor de uitdaging welke nieuwe ideeën moeten 

worden nagestreefd en welke terzijde moeten worden geschoven. Het 

vroegtijdig uitvoeren van gezondheidseconomische evaluaties biedt mogelijk 

ondersteuning rondom beslissingen omtrent innovaties, maar het is nog niet 

algemeen bekend of ze tevens gebruikt zouden kunnen worden bij de 

evaluatie van diagnostische testen en voorspellingsmodellen. Het doel in 

hoofdstuk 7 is om vroege gezondheidseconomische evaluaties aan clinici te 

illustreren door deze methodiek toe te passen bij het diagnosticeren van 

primair aldosteronisme (PA) bij patiënten met hypertensie. We hebben een 

cohort toestand transitie model ontwikkeld om de diagnose, behandeling en 

gezondheidsuitkomsten op de lange termijn te simuleren voor patiënten van 

40 jaar of ouder met resistente hypertensie die van PA worden verdacht. We 

hebben relevante literatuur en Nederlandse kostendata gebruikt, in 

combinatie met een levenslang, maatschappelijk perspectief op kosten en 

gezondheidseffecten (op kwaliteit gecorrigeerde levensjaren, quality adjusted 

life-years, QALY's). In ons model hebben we de huidige test, het aldosteron-

renine-ratio, voor het diagnosticeren van PA vergeleken met een 

hypothetische nieuwe test. Tijdens de levensduur van een patiënt zou een 

perfecte diagnostische test 0,027 QALY's opleveren en de kosten verhogen 
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met € 43. Bij een kosteneffectiviteitsdrempel van € 20.000 per QALY is de 

maximale prijs waarbij deze perfecte test nog kosteneffectief is € 498 (95% 

BI: € 275 - € 808). De waarde van de perfecte test werd het sterkst beïnvloed 

door de sensitiviteit van de huidige biomarkertest. Threshold analyse liet zien 

dat de nieuwe test een sensitiviteit van ten minste 0,9 en een specificiteit van 

ten minste 0,7 nodig heeft om kosteneffectief te zijn. Door een modelmatige 

aanpak toe te passen voor het bepalen van de toegevoegde waarde van een 

klinische innovatie in PA-diagnostiek, hebben we aangetoond dat er ruimte 

was voor verbetering onder de assumptie van een maximale prijs per test. 

Dit ondersteunt de conclusie dat vroegtijdige economische evaluatie 

bruikbaar en haalbaar is om te bepalen of nieuwe innovaties of ideeën 

kosteneffectief kunnen zijn voorafgaand aan uitgebreide doorontwikkeling 

en klinische implementatie. Door samenwerkingen tussen 

gezondheidseconomen en klinische deskundigen zullen meer toepassingen 

en voordelen van vroegtijdig modellering geïllustreerd kunnen worden, en 

zal de toegankelijkheid van vroege economische modellen ten behoeve van 

evaluatie van nieuwe innovaties bevorderen.  

Om de interpretatie van diagnostische test accuratesse (DTA) parameters te 

vergemakkelijken, is het mogelijk om genormaliseerde frequenties te 

berekenen. Deze geven het aantal (fout) positieve en (fout) negatieve 

testresultaten in een hypothetisch cohort. Een vooraf-kans moet worden 

bepaald om deze genormaliseerde frequenties te berekenen. Het doel van 

hoofdstuk 8 is om te onderzoeken welke gegevensbronnen en methoden 

worden gebruikt in Cochrane DTA literatuuroverzichten ten behoeve van 

het bepalen van de vooraf-kans om zo de interpretatie van DTA parameters 

te vergemakkelijken. Cochrane DTA literatuuroverzichten gepubliceerd in 

de Cochrane database tot en met januari 2018, met ten minste één meta-

analytische schatting van de sensitiviteit en / of specificiteit als primaire 

analyse, werden opgenomen in het cohort. Studie selectie en data-extractie 

werden uitgevoerd door één auteur en gecontroleerd door andere auteurs. 

De gebruikte gegevensbronnen en methoden werden gecategoriseerd. 

Vijfenvijftig DTA evaluaties werden geïncludeerd, bestaande uit 308 meta-

analyses. Een vooraf-kans werd gebruikt in 148 meta-analyses. Auteurs 

gebruikten de onderzoeken in hun DTA literatuuronderzoek, externe 
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bronnen, en expert opinie als gegevensbronnen bij het bepalen van de 

vooraf-kans. Bij gebruik van studies uit de DTA literatuuroverzichten, 

gebruikten auteurs een mate van centrale neiging al dan niet gecombineerd 

met een spreidingsmaat om de vooraf-kans te bepalen. Identieke vooraf-

kansen werden gebruikt voor analyses van twee of meer indextesten voor 

diagnostiek omtrent dezelfde aandoening. Ongeveer de helft (53,6%) van 

deze identieke vooraf-kansen viel binnen het bereik van prevalenties 

geobserveerd in studies over dezelfde aandoening. Verschillende methoden 

worden gebruikt voor het selecteren van de vooraf-kansen en er lijkt geen 

consensus te bestaan over welke gegevensbron of methode te gebruiken. Er 

zijn echter enkele overwegingen waarmee rekening mee gehouden moet 

worden bij het presenteren van DTA resultaten: 1) Overweeg of 

genormaliseerde frequenties gepresenteerd dienen te worden, 2) Overweeg 

de invloed van de gekozen methode voor het selecteren van een vooraf-kans 

op de genormaliseerde frequenties, en 3) Overweeg het gebruik van identieke 

vooraf-kansen die vallen binnen het bereik van de geselecteerde studies 

wanneer er meerdere meta-analyses zijn die zich richten op een aandoening. 

De algemene discussie van dit proefschrift (hoofdstuk 9) richt de aandacht 

op twee onderwerpen: methoden voor het gebruik van expertpanels als 

referentiestandaard in diagnostisch onderzoek, en methoden voor vroege 

evaluatie van de impact van voorspellingsmodellen op 

gezondheidsuitkomsten en kosten voor de gezondheidszorg. Resterende 

uitdagingen worden beschreven voor beide onderwerpen en suggesties voor 

toekomstig onderzoek worden gegeven. Deze suggesties omvatten het 

omgaan met ontbrekende schattingen van de kans op aanwezigheid van de 

aandoening van interesse door het expert panel, rekening houden met de 

onzekerheid tussen experts binnen een panel, en het bieden van meer advies 

over het gebruik en de interpretatie van DAM's voordat een 

gerandomiseerde impactstudie wordt uitgevoerd. Focus op deze 

methodologische onderwerpen zou uiteindelijk de efficiëntie en waarde van 

diagnostisch onderzoek moeten verbeteren en onderzoekverspilling moeten 

verminderen.  
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“Always be relentlessly positive” 

 

 

 
Sean “Day9” Plott, former pro-gamer 
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En dan nu het belangrijkste gedeelte van dit proefschrift: de bedankjes. Het 

heeft een aantal jaar geduurd, met ups en downs, maar dan is toch dit 

proefschrift er als resultaat uitgerold. Ondanks dat enkel mijn naam op de 

kaft staat, had ik dit niet kunnen doen zonder de mensen om mij heen. Dus 

bij dezen, een dankbetuiging aan jullie. 

Geachte Prof. Dr. K.G.M. Moons, beste Carl. Als promovendus loop je 

soms wel eens een overleg binnen als je met je handen in het haar zit, en het 

even niet meer zo goed weet. Als dat eens onverhoopt gebeurde, dan wist je 

tijdens ons overleg er binnen een uur voor te zorgen dat er een positieve 

draai aan werd gegeven, en ik met frisse energie uit de deur uitliep. Dat is 

echt een gave. Daarnaast heb je ook altijd aandacht voor de persoon, en ben 

je niet te beroerd om gewoon te beginnen met de vraag ‘hoe gaat het met 

je?’. Bedankt dat je mijn promotor was, en ik hoop dat onze samenwerking 

de aankomende jaren alleen maar meer en beter gaat worden. 

Geachte Dr. C.A. Naaktgeboren, beste Christiana. Vanaf dag 1 was jij de 

persoon bij wie ik binnen lopen als ik vragen had of ergens niet uit kwam. Ik 

heb veel van je geleerd, niet alleen inhoudelijk over het opzetten en uitvoeren 

van verschillende soorten onderzoek, maar ook de praktische kant van het 

reilen en zeilen binnen het Julius Centrum. Jij was altijd gene die snel en 

uitgebreid feedback gaf op mijn werk, en dat heeft dit proefschrift gemaakt 

tot wat het is geworden. Bedankt voor de afgelopen jaren en ik hoop dat we 

elkaar in de toekomst nog eens tegenkomen. 

Geachte Dr. L. Hooft, beste Lotty (ook wel bekend als Looty). Na het 

vertrek van Joris was er een plek die vrijkwam binnen mijn promotieteam. 

Jouw naam viel al snel, en ondanks je toen al overvolle schema, was jij bereid 

om deze positie in te vullen als mijn copromotor. En wat een waardevolle en 

leuke toevoeging was dat. We hebben niet alleen goed samengewerkt binnen 

de projecten die al liepen, maar we zijn eveneens nog een week naar de WHO 

in Geneve afgereisd. Daar heb ik je leren kennen als een aimabel persoon en 

trotse moeder van je dochtertje Mikki. Nu met jou als mijn direct 

leidinggevende kijk ik al met plezier uit naar de aankomende jaren als postdoc 

verder te gaan in Utrecht. 
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Geachte Dr. J.A.H. de Groot, beste Joris. Ook jou ben ik zeker niet vergeten. 

Het eerste jaar van mijn promotietraject heb je als copromotor een blijvende 

indruk achtergelaten. In positieve zin, want de manier waarop ik in alle rust 

en kalmte met jou en Christiana mijn eerste projecten kon opzetten, 

bespreken, en evalueren was een ontzettend fijne kickstart voor mijn 

promotie. Na ongeveer een jaar kreeg ik een berichtje van je: “ik moet je 

spreken, heb je straks even tijd?”. Dat klonk ernstig, en je vertelde dat je had 

besloten om het Julius Centrum te verlaten en bij Philips aan de slag te gaan. 

Ondanks dat ik teleurgesteld was dat je ons ging verlaten, vond ik het ook 

ontzettend leuk voor dat je deze nieuwe uitdaging aanging. Hopelijk heb je 

het daar nog steeds naar je zin, en we gaan elkaar ongetwijfeld nog wel eens 

tegenkomen op congressen of borrels. 

Geachte Dr. J.B.R. Reitsma, beste Hans. Formeel geen onderdeel van mijn 

promotieteam, maar informeel overal bij betrokken. Dat is steevast hoe ik 

mensen uitleg wat jouw rol is geweest binnen mijn promotie. Je bent bij alle 

projecten betrokken geweest die in deze thesis terugkomen, en wat 

ontzettend fijn is het geweest om jou erbij gehad te hebben. Altijd zo 

hartelijk, open, en vrolijk gestemd. Daarnaast heb ik altijd heel goed met je 

kunnen sparren, en was en ben je nog steeds een bron van inspiratie voor 

mij. Ik hoop dat we ook de aankomende jaren nog veelvuldig kunnen blijven 

samenwerken! 

Geachte Prof. Dr. R.J.P. Scholten, beste Rob. Tijdens mijn promotie hebben 

we elkaar vooral gezien en gesproken tijdens meetings en borrels, en hebben 

we niet echt projecten samen opgepakt. Maar des te meer heb je mij in de 

maanden na het inleveren van dit proefschrift in no time geïntroduceerd en 

wegwijs gemaakt binnen het onderwijs dat we geven in het Julius Centrum. 

Dank daarvoor, en ik hoop dat we samen het onderwijs de aankomende tijd 

weer naar een hoger niveau kunnen tillen! 

Geachte Prof. Dr. C.J. Kalkman, Prof. Dr. M.M. Roovers, Prof. Dr. C.H. 

van Gils, Prof. Dr. E. Buskes, Dr. G.W.J. Frederix, beste leden van de 

beoordelingscommissie. Dank voor de bereidheid van het lezen en 

beoordelen van mijn proefschrift. 
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Aan Valentijn en Saskia, mijn roomies van Matthias van Geuns 5.18. We 

hebben toch een slordige paar jaar bij elkaar op de kamer gezeten, en wat fijn 

was het om jullie in de buurt te hebben. Niet alleen om te sparren als ik met 

een probleem zat, of om te ventileren als het een keer tegenzat, maar ook 

om gewoon een stukje te wandelen en een bakje koffie te halen. @Saskia, 

bedankt voor je tomeloze enthousiasme en positieve energie. @Valentijn, ik 

kijk er nu al weer naar uit als je weer terugverhuisd naar het Stratenum, zodat 

we weer ongegeneerd de nerd uit kunnen hangen. 

Loan, Anne-Karien, Pauline, Giske, Chris, Nicole, Carline, Timo, Faas, 

Suzanne, Romin, en Anna-Maria. Ik heb met elk van jullie op de gezelligste 

kamer in het Stratenum mogen vertoeven. Van serieuze gesprekken, tot 

tafelvoetbal (ik sta officieel nog steeds aan kop trouwens), tot boulderen en 

biertjes drinken, mijn promotietijd is er door jullie alleen maar leuker op 

geworden. Dank jullie wel! 

Het epi-methoden team, dank voor alle wijze woorden. Mede dankzij jullie 

input heeft dit proefschrift de kwaliteit behaald die het nu heeft. In het 

bijzonder wil ik Anneke nog bedanken voor de vele (lunch)wandelingen, en 

hulp en wijze raad rondom het afronden van dit proefschrift. 

Promovendi van de JOB, dank voor alle informatie, hulp, en feedback tijdens 

mijn promotie-tijd. In het bijzonder wil ik nog bedanken Marian, Eveline, & 

Anouk: wat gaaf om met jullie de Promovenski 2018 te hebben mogen 

organiseren. Ik heb het hele weekend in Winterberg ontzettend genoten. 

Michiel, Nick, René, Sander, Simon, Stef, en Toon, beste heren van de ASV 

Pap in de Beane. In September 2007 werd de eerste grondslag gelegd voor 

dit illustere gezelschap, en ruim 12 jaar later mag ik nog steeds genieten van 

jullie grappen en grollen. Of het nu met hotrods door Düsseldorf racen is, 

een potje Secret Hitler spelen tijdens ons vriendenweekend, of gewoon 

biertjes drinken in de Aesulaaf, wij vermaken ons wel. Het blijft mooi om te 

zien dat we na al deze tijd nog steeds zo goed bevriend zijn, en ik hoop dat 

er nog vele jaren volgen. 

Karst, Rudy, en Jasmijn. Het is toch ongelofelijk hoe wij naar al die jaren nog 

steeds contact hebben. Zelfs voor een reünie met het team van vroeger bleek 
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nog veel animo. Ik hoop dat we deze lijn voor de rest van ons leven 

doortrekken, en ondanks dat de afstand misschien wat groter wordt, we 

nooit te beroerd zijn om met elkaar een hapje te gaan eten of een 

biertje/whisky te gaan drinken. 

Ruud, Tristan, Roel, en Thijmen, dank voor alle heerlijke borreltjes in de 

prachtige stad Nijmegen. Dat er nog velen mogen volgen! 

Beste familie en kennissen, en in het bijzonder oma, de interesse die jullie in 

mijn promotietraject door de jaren heen hebben getoond heeft me 

enthousiast gehouden en me geholpen om telkens weer te reflecteren op ‘the 

bigger picture’ rondom mijn onderzoek. Dank!  

Theo en Marie-José, lieve pap en mam. Ooit had ik op de middelbare school 

het geweldige idee om maar iets economisch te gaan doen, waarop jullie 

zeiden: “Zou je dat wel doen? Is iets met menselijk lichaam niet meer iets 

voor jou?“. Toen kon ik nooit weten dat die beslissing verstrekkende 

gevolgen zou hebben, en zonder jullie had ik nooit dit geweldige carrièrepad 

gekozen. Jullie hebben me altijd gesteund en gestimuleerd op alle mogelijke 

manieren die jullie maar konden, zonder jullie had ik dit niet gekund. 

Lieve Daan, in wat een sneltreinvaart hebben we de afgelopen jaren alles 

doorgemaakt. Af en toe wat downs, ook heel veel ups, maar wat mooi dat ik 

ze allemaal met jou mee te mogen maken. Je houdt het gek genoeg nog steeds 

met mij vol, en ik hoop dat daar de rest van ons leven ook geen verandering 

in gaat komen. Naast jou kreeg ik ook gelijk je 

zoontje Toine erbij. Dat was wel even wennen, 

maar eigenlijk weet ik nu al niet meer beter, en 

ben ik blij dat we het zo goed met elkaar kunnen 

vinden. Heel veel liefde voor jullie. 

En dan blijft er nog maar een over… 

Een knuffel voor die lieve, gekke, territoriale, 

kuilen-gravende, speeltjes vernielende, 

aanhankelijke, luierende, stronteigenwijze 

levensgenieter: onze teckel Trijntje. 
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“You need equality of opportunity 

Not equality of outcome” 
 

 
 

Jordan Peterson, clinical psychologist 
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Kevin Jenniskens was born on the 31st of 

July, 1988, in Venlo, the Netherlands. He 

obtained his master’s degree in Biomedical 

Sciences, with specialisations in Health 

Technology Assessment (HTA) and 

Toxicology combined with a consultancy 

profile, from the Radboud University 

Nijmegen in 2014. After his studies he 

worked as a junior researcher at the 

department of Health Evidence of the 

Radboudumc, and as a consultant at 

KALCIO healthcare. Kevin developed an 

interest in methodological and applied 

research, as well as teaching. He found those three aspects in a PhD position 

at the Julius Center for Health Sciences and Primary Care for which he 

applied and got accepted to in late 2015.  

From January 2016 onward he worked on his PhD, focusing on evaluation 

of methodology surrounding diagnostic tests and prediction models. During 

the next 3.5 years he performed research, which he presented to his peers 
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“The meaning of life, in my humble opinion, 

is maximising QALYs: 

Living as long as you can, as happy as you can” 
 

 
 

Self-quoted 
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