
18 OCTOBER 2019 • VOL 366 ISSUE 6463    315SCIENCE   sciencemag.org

P
H

O
T

O
: 

T
O

N
Y

F
E

D
E

R
/

IS
T

O
C

K
.C

O
M

Forest restoration: 

Overlooked constraints
In their Report “The global tree restora-

tion potential” (5 July, p. 76), J.-F. Bastin 

et al. use machine learning to derive the 

carbon storage potential of global tree 

restoration, which they identify as the 

most effective climate change mitigation 

option. However, the study likely overesti-

mates the actual potential by identifying 

opportunities for increasing canopy cover 

in environments with obvious environ-

mental or socioeconomic constraints. 

In high-latitude regions of Russia, 

Scandinavia, and North America, perma-

frost and short growing seasons (1) impair 

tree growth. In large parts of Australia 

and other arid and hyperarid regions, 

salinity, sodicity, hardpans, and moisture 

limitations prevent tree establishment (2, 

3). In African grasslands, infertile soils, 

grazing animals, water constraints, and 

wildfires maintain patchy shrub–grass 

environments (4). In areas with severely 

degraded soils and biodiversity loss in the 

Americas and in Asia (5, 6), prospects of 

restoring pre-degradation canopy cover 

are limited. In grazing lands and produc-

tion forests, abandoning current uses 

implies staggering absolute opportunity 

costs. Finally, Bastin et al. excluded areas 

classified as urban, but the data set they 

used (7) fails to recognize some major 

Edited by Jennifer Sills

LETTERS

urban centers and many towns and vil-

lages in rural areas (7); more than 2.5 billion 

people live in areas that Bastin et al. consid-

ered eligible for restoration (8), including 

entire cities, such as Kinshasa, the capital of 

the Democratic Republic of Congo. 

Bastin et al. introduced further over-

estimation by multiplying tree cover 

expansion potential by total ecosystem 

carbon. This operation lowers the baseline 

by assuming that carbon stock is propor-

tionally related to canopy cover—i.e., that 

land with no trees contains no carbon. 

The use of biome-level carbon stock 

averages, without considering spatial 

variation, also adds considerable error, 

especially in alleged high-potential areas, 

where these averages (154.7 to 282.5 Mg 

ha–1) are approximately 5 times greater 

than what has been reported in site-spe-

cific assessments (9, 10).

We appreciate the need for benchmark 

estimates of carbon storage and restora-

tion potentials, but realistic predictions 

require tapping expert knowledge to 

ensure relevant constraints are consid-

ered, as well as more rigorous quality 

control, such as mapping how model 

validation errors are spatially distrib-

uted. Overly hopeful figures produced by 

models without necessary supervision 

may misguide the development of climate 

policy (11, 12).
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Arid conditions limit the 

forest restoration potential of 

many regions of Australia. 
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 Forest restoration: 
Expanding agriculture
In their Report “The global tree restora-

tion potential” (5 July, p. 76), J.-F. Bastin 

et al. determine the available potential 

forest restoration area by excluding areas 

with existing trees, urban settlement, and 

cropland. However, they overestimate the 

potential area because they do not account 

for projected agricultural land expansion 

or current use of pasture land.

There is evidence from satellite imag-

ery that most of global agricultural land 

expansion in the previous three decades 

happened and is still happening on 

tropical forest land, especially in Brazil and 

Southeast Asia (1–3). Given that this trend 

is likely to continue, especially in the highly 

productive areas in Central and South 

America, agricultural land expansion must 

be taken into account when assessing future 

tree restoration potentials (4–6). Food and 

Agriculture Organization projections expect 

an increase of cropland by 7% until 2030 

(7), and evidence suggests an increase in 

global cropland area between 11 and 26% 

until 2050 (8), the latter corresponding to 

4 million km². Based on one approach (4), 

not using this area for crop production 

would reduce global crop production by 

11% and increase crop prices by 23%. 

Furthermore, Bastin et al. assume that 

grassland would be available for tree 

restoration. They choose to ignore the data 

showing that currently about 30 million 

km² of grassland areas are used for exten-

sive livestock production (9). Not utilizing 

areas for cropland expansion and pasture 

land requires a higher intensification of 

agriculture, which in turn is associated 

with higher agricultural emissions (10) 

and loss of biodiversity (4). 

Bastin et al. do not consider current and 

future trade-offs with food security and 

neglect socioeconomic aspects of increasing 

consumption that arise through population 

growth, income growth, and preference 

changes toward more livestock products 

in fast-growing economies (11). Excluding 

estimated expansion areas and grazing 

land reduces the calculated sequestration 

potential by 19 and 57%, respectively, when 

applying the carbon densities of the book-

keeping model BLUE (12).
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Forest restoration: 
Transformative trees
We welcome the attention given to forest 

and trees by the Report “The global tree 

restoration potential” (5 July, p. 76), in which 

J.-F. Bastin et al. study the potential of tree 

cover to reduce climate change. However, we 

are concerned by their neglect of the water 

cycle. They consider how water influences 

tree cover but disregard how tree cover 

influences water. Bastin et al. recognize that 

their extrapolations are not “future projec-

tions of potential forest extent” but instead 

represent potential tree cover “under exist-

ing environmental conditions.” However, 

given the influence of forests on their 

environment, the concept of potential tree 

cover under current conditions is problem-

atic. Trees influence several of the variables 

Bastin et al. used to model tree cover, 

including precipitation quantity, variability, 

and seasonality, as well as soil moisture and 

atmospheric water transport (1–4). 

While much remains uncertain (2), we 

know enough to foresee that afforestation 

and reforestation have potential for both 

negative and positive hydrological impacts. 

Negative impacts can result if plantings 

deplete groundwater and thus exacerbate 

local water scarcity. Changes can manifest 

quickly and are a recognized problem with 

fast-growing monoculture plantations (5). 

Positive impacts can result when tree cover 

improves soil and groundwater recharge 

and storage, such as through suitable spe-

cies and tree densities (6). Forest cover can 

also promote rainfall recycling and thus 

bolster and stabilize regional and downwind 

rainfall (1, 7, 8). In suitable circumstances, 

increased forest cover may even return 

wetter climates to currently drier regions, 

expanding the land available for trees (2). 

These outcomes have profound implica-

tions given that reliable access to water is 

central to achieving the UN Sustainable 

Development Goals. Accounting for the 

potentially transformative power of trees 

for both water and carbon offers crucial 

constraints as well as vast benefits.
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Expanding agricultural land and livestock production could conflict with forest restoration goals.
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Response

Luedeling and colleagues argue that we 

have overestimated the restoration capac-

ity in several regions of the world. Our 

model predicts the expected optimal tree 

cover from a combination of 10 envi-

ronmental variables that were selected 

through a variable selection procedure 

to avoid overfitting issues. As detailed in 

table S1 of our supplementary material, 

these 10 variables include mean annual 

temperature, temperature of the wettest 

quarter, annual precipitation, precipi-

tation seasonality, precipitation of the 

driest quarter, elevation, hillshade, soil 

organic carbon, sand content, and depth 

to bedrock. These ecological variables 

cover average and seasonal variation in 

climate and variation in topographic and 

edaphic conditions. As such, we have done 

everything that is possible to represent all 

of the conditions raised by Luedeling and 

colleagues. Of course, cold and dry condi-

tions are among the main limitations for 

tree growth, and that is why we have rep-

resented these environmental constraints 

in our model to ensure that we do not 

predict that trees can exist in regions that 

are too cold or dry. 

As explained in the main text, our 

rigorous k-fold cross-validation (fig. S4A) 

revealed that our model could explain 

about 71% of the variation in tree cover 

without bias (fig. S3, B and C). This means 

that our model is unbiased at a global 

scale, but we do not explain 100% of the 

potential tree cover variation. It is conse-

quently possible to find places where we 

overestimate or underestimate the poten-

tial tree cover—particularly in areas where 

uncertainties are high, as shown in fig S6. 

Delzeit and colleagues claim that we 

overestimate the area available for tree 

restoration because the expansion of crop-

lands in upcoming decades will reduce the 

land available for restoration, and because 

pasture lands are considered as potential 

land for restoration in our assessment. 

We agree that, if we continue to expand 

agricultural land area, there will be a 

reduction in the land available for res-

toration. As stated in our analysis, our 

model estimates the area that is currently 

available for restoration under present 

conditions. Of course, any changes in the 

area of land use will necessarily affect this 

global total. We exemplified this in our 

attempts to show how future changes in 

climate might reduce the area available 

for restoration. We hope that our analy-

sis can also serve as a stepping stone for 

future research to evaluate how changes 

in agricultural land use will affect the 

potential restoration area. 

It is true that we included rangelands 

in the area available for restoration. Of 

course, much of this land is used for the 

grazing of animals and so may not be 

available for complete forest restoration. 

However, as mentioned in the Report, 

several studies suggest that it is possible 

to increase the current tree cover in these 

areas without limiting food production 

(1, 2), especially when forest cover is rela-

tively low, as is the case for most of the 

pasture land in our model. 

Because we removed all urban and 

agricultural land (i.e., we considered a 

potential increase of tree cover of 0% in 

cropland and urban areas), our numbers are 

likely to underestimate the total area that 

could currently be covered by trees. Indeed, 

both croplands and cities constitute great 

opportunities to increase the current tree 

cover and to play a major role in mitigat-

ing climate change (3–5). We maintain that 

our global estimate of the land available 

for restoration is a conservative one, and 

we encourage local land owners to use our 

forest restoration potential map in combina-

tion with more detailed local-scale estimates 

of land use when designing effective resto-

ration strategies. 

Sheil and colleagues point out that 

restoring ecosystems might have either 

positive or negative consequences regard-

ing hydrology. We agree that these effects 

must be considered as a priority in 

upcoming research in restoration ecology.
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TECHNICAL COMMENT ABSTRACTS

Comment on “The global tree restoration potential”

Pierre Friedlingstein, Myles Allen, Josep G. 

Canadell, Glen P. Peters, Sonia I. Seneviratne

  Bastin et al. (Reports, 5 July 2019, p. 76) 

claim that global tree restoration is the most 

ef ective climate change solution to date, 

with a reported carbon storage potential 

of 205 gigatonnes of carbon. However, this 

estimate and its implications for climate miti-

gation are inconsistent with the dynamics of 

the global carbon cycle and its response to 

anthropogenic carbon dioxide emissions.

Full text: dx.doi.org/10.1126/science.aay8060

Comment on “The global tree restoration potential”

Joseph W. Veldman, Julie C. Aleman, Swanni T. 

Alvarado, T. Michael Anderson, Sally Archibald, 

William J. Bond, Thomas W. Boutton, Nina 

Buchmann, Elise Buisson, Josep G. Canadell, 

Michele de Sá Dechoum, Milton H. Diaz-Toribio, 

Giselda Durigan, John J. Ewel, G. Wilson Fernandes, 

Alessandra Fidelis, Forrest Fleischman, Stephen 

P. Good, Daniel M. Griffith, Julia-Maria Hermann, 

William A. Hoffmann, Soizig Le Stradic, Caroline 

E. R. Lehmann, Gregory Mahy, Ashish N. Nerlekar, 

Jesse B. Nippert, Reed F. Noss, Colin P. Osborne, 

Gerhard E. Overbeck, Catherine L. Parr, Juli G. 

Pausas, R. Toby Pennington, Michael P. Perring, 

Francis E. Putz, Jayashree Ratnam, Mahesh 

Sankaran, Isabel B. Schmidt, Christine B. Schmitt, 

Fernando A. O. Silveira, A. Carla Staver, Nicola 

Stevens, Christopher Still, Caroline A. E. 

Strömberg, Vicky M. Temperton, J. Morgan Varner, 

Nicholas P. Zaloumis

Bastin et al.’s estimate (Reports, 5 July 

2019, p. 76) that tree planting for climate 

change mitigation could sequester 205 

gigatonnes of carbon is approximately 

five times too large. Their analysis inflated 

soil organic carbon gains, failed to safe-

guard against warming from trees at high 

latitudes and elevations, and considered 

afforestation of savannas, grasslands, and 

shrublands to be restoration.

Full text: dx.doi.org/10.1126/science.aay7976

Comment on “The global tree restoration potential”

Simon L. Lewis, Edward T. A. Mitchard, Colin 

Prentice, Mark Maslin, Ben Poulter

Bastin et al. (Reports, 5 July 2019, p. 76) 

state that the restoration potential of 

new forests globally is 205 gigatonnes of 

carbon, conclude that “global tree restora-

tion [is] our most effective climate change 

solution to date,” and state that climate 

change will drive the loss of 450 million 

hectares of existing tropical forest by 2050. 

Here we show that these three statements 

are incorrect.

Full text: dx.doi.org/10.1126/science.aaz0388

Response to Comments on “The global tree 

restoration potential”

Jean-Francois Bastin, Yelena Finegold, Claude 

Garcia, Nick Gellie, Andrew Lowe, Danilo Mollicone, 

Marcelo Rezende, Devin Routh, Moctar Sacande, Ben 

Sparrow, Constantin M. Zohner, Thomas W. Crowther

Our study quantified the global tree 

restoration potential and its associated 

carbon storage potential under existing 

climate conditions. We received multiple 

technical comments, both supporting and 

disputing our findings. We recognize that 

several issues raised in these comments are 

worthy of discussion. We therefore provide 

a detailed common answer where we show 

that our original estimations are accurate.

Full text: dx.doi.org/10.1126/science.aay8108

 Comment on “The global tree restoration potential”

Alan Grainger, Louis R. Iverson, Gregg H. Marland, 

Anantha Prasad

Bastin et al. (Reports, 5 July 2019, p. 76) 

neglect considerable research into forest-

based climate change mitigation during the 

1980s and 1990s. This research supports 

some of their findings on the area of land 

technically suitable for expanding tree cover 

and can be used to extend their analysis to 

include the area of actually available land 

and operational feasibility. 

Full text: dx.doi.org/10.1126/science.aay8334
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