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The Eichler-Shimura isomorphism relates holomorphic modu-
lar cusps forms of positive even integral weight to cohomology 
classes. The Haberland formula uses the cup product to give 
a cohomological formulation of the Petersson scalar product.
In this paper we extend Haberland’s formula to modular cusp 
forms of positive real weight. This relation is based on the cup 
product of an Eichler cocycle and a Knopp cocycle.
We may also consider the cup product of two Eichler cocycles. 
In the classical situation this cup product is almost always 
zero. However we show evidence that for real weights this 
cup product may very well be non-trivial. We approach the 
question whether the cup product is a non-trivial coinvari-
ant by duality with a space of entire modular forms. The cup 
product yields a bilinear map over C from pairs of holomor-
phic modular forms (not necessarily of the same weight, one 
of them may have large growth at the cusps) to coinvariants 
in infinite-dimensional modules. To investigate whether this 
bilinear map is non-trivial we test the result against entire 
modular forms of a suitable weight. Under some conditions 
on the weights, this leads to an explicit triple integral, which 
can be investigated numerically, thus providing evidence that 
the cup product is non-trivial at least in some situations.
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1. Introduction

In this paper we investigate the cup product of the cohomology classes associated to 
holomorphic modular form.

In the classical situation of even positive weight Haberland’s formula, based on the 
cup product, gives a cohomological interpretation of the Petersson scalar product of 
two cusp forms of integral weight. We extend this relation to positive real weight. The 
Haberland formula is based on the cup product of an Eichler cocycle, which is linear in 
the cusp form, and a Knopp cocycle, which is conjugate linear in the other cusp form.

The cup product of two Eichler cocycles gives a bilinear form on holomorphic modular 
forms. The weights may differ, and one of the modular forms has to be a cusp form. In 
the classical situation of even positive weights this cup product is almost always trivial. 
We study this cup product for arbitrary real weights. That is more complicated than the 
classical case, since the coefficient modules have in general infinite dimension. We will 
give evidence that this cup product may be non-trivial in many cases.

The Eichler-Shimura isomorphism in the classical situation cannot be generalized 
directly to other real weights. For real weights that are not integers at least 2 the 
Eichler cocycles determine an injection from the space of all modular forms (with-
out growth conditions) into a parabolic cohomology group H1

p (Γ; V ) where V is a 
specific infinite-dimensional module (Eichler [8], Knopp [10], Knopp-Mawi [11], Choie-
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Bruggeman-Diamantis [3]). In [3] we show that the relation between holomorphic mod-
ular forms with weight not an integer at least 2 and cohomology is quite similar to the 
relation between Maass forms and cohomology.

The second cohomology group H2(Γ; V ) is zero for all modules V and for all cofinite 
discrete subgroups of SL2(R). However for parabolic cohomology we have

H2
p (Γ;V ) ∼= VΓ = V

/ ∑
γ∈Γ

V |(1 − γ) , (1.1)

the space of coinvariants, provided Γ has cusps; see [4, (11.9)]. (We work with right 
Γ-modules that are vector spaces over C, and denote the action by a slash.)

The cohomology group H2
p (Γ; C) ∼= C is used in the cohomological description of 

the Petersson scalar product on spaces of cusp forms of integral weights at least 2 by 
Haberland [9]. The cup product is used to go from a pair of 1-cocycles associated to 
cusp forms to H2

p(Γ; C) ∼= C. This method has been extended and used by Kohnen and 
Zagier [12, pp. 244–245], Zagier [18, Theorem 1], Cohen [6], Paşol and Popa [17] and 
Choie, Park and Zagier [5]. The Petersson scalar product of Maass cusp forms can also 
be formulated in terms of a cup product [4, Theorem 19.1].

Here we investigate the cup product of two cohomology classes associated to two 
holomorphic modular forms that may have different real weights (one of them should 
be a cusp form). In general this is a rather abstract exercitation providing a coinvariant 
in a complicated Γ-module, which is the tensor product M1 ⊗ M2 of two modules of 
infinite dimension. With an intertwining operator M1 ⊗ M2 → N we obtain from the 
cup product a coinvariant in a simpler module N that may be easier to study. We proceed 
with two choices. One choice leads to the extension to real weights of the cohomological 
description of the Petersson scalar product of cusp forms. The other choice leads to a 
trilinear form on the product of three spaces of modular forms.

We restrict our attention the full modular group Γ = SL2(Z). We work with holomor-
phic modular forms of real weight, with a corresponding multiplier system. To a modular 
form f of weight r ∈ R and multiplier system v we may associate two types of 1-cocycles. 
The first type is the homogeneous Eichler cocycle

cf (z1, z2; t) =
z2∫

τ=z1

f(τ) (τ − t)r−2 dτ (1.2)

where the variable t runs through the lower half-plane H−, such that (z − t)r−2 is well 
defined. The points z1 and z2 are in the upper half-plane H; if f is a cusp form we may 
take z1 and/or z2 equal to a cusp of Γ.

The other type is the Knopp cocycle, which depends on the modular form in a 
conjugate-linear way.
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cKf (z1, z2; z) =
z2∫

τ=z1

f(τ) (τ̄ − z)r−2 dτ . (1.3)

This cocycle has values in the holomorphic functions on the upper half-plane. It is defined 
for z1, z2 ∈ H; if f is a cusp form the points z1 and z2 may be cusps.

When dealing with cocycles it is important to indicate the module in which they 
take their values. Where possible we follow the notations and conventions of [3], which 
we recall in more detail in Section 2. For the Eichler cocycles we use two modules 
−Dω

v,2−r ⊂ −D∞
v,2−r of holomorphic functions on the lower half-plane H− in which the 

group Γ acts with weight 2 − r and multiplier system v. The elements of −Dω
v,2−r extend 

holomorphically into the upper half-plane, the elements of −D∞
v,2−r extend to functions 

in C∞(H− ∪R). Both extensions also satisfy some condition at ∞. If z1, z2 ∈ H then the 
values of cf are in −Dω

v,2−r. If cusps are involved we need to use −D∞
v,2−r. The Knopp 

cocycles take values in similar modules +Dω
v−1,2−r ⊂ +D∞

v−1,2−r of holomorphic functions 
on H. See Section 2 for a further discussion.

The association f 	→ cf induces an injective linear map from the space Sr(Γ, v) of 
holomorphic modular cusp forms of weight r > 0 and corresponding multiplier system 
v to the parabolic cohomology group H1

p(Γ; −D∞
v,2−r), and f 	→ cKf induces a conjugate 

linear map Sr(Γ; v) → H1
p (Γ; +D∞

v−1,2−r).
The space of cusp forms Sr(Γ, v) is contained in the much larger space Ar(Γ, v) of all 

modular forms of weight r and multiplier system v (without any condition on the growth 
at the cusps). This space has infinite dimension for all real weights. The association f 	→
cf , respectively f 	→ cKf , induces a linear map Ar(Γ, v) → H1(Γ; −Dω

v,2−r), respectively 
a conjugate linear map Ar(Γ, v) → H1(Γ; +Dω

v−1,2−r). If r ∈ Z≥2 the kernels of these 
maps have infinite dimension. For r ∈ R � Z≥2 these maps are injective.

Let M1 and M2 be Γ-modules. As we will discuss in Section 3 in more detail, there is a 
cup product construction in parabolic cohomology that extends, under some conditions, 
to a bilinear map

∪ : H1(Γ;M1) ×H1
p (Γ;M2) −→ H2

p (Γ;M1 ⊗M2) . (1.4)

In parabolic cohomology there is a (not canonical) isomorphism H2
p(Γ; V ) ∼= VΓ. The 

space of coinvariants VΓ has been defined in (1.1).
We apply this with M1 = −Dω

v1,2−r1 and M2 either the Γ-module −D∞
v2,2−r2 or the 

Γ-module +D∞
v−1
2 ,2−r2

. Composition with the maps from modular forms to Eichler or 
Knopp cocycles we get maps

CEE : Ar1(Γ, v1) × Sr2(Γ, v2) →
(
−Dω

v1,2−r1 ⊗
−D∞

v2,2−r2

)
Γ
,

CEE(f1, f2) = [cf1 ] ∪ [cf2 ] ,
(1.5)

which is bilinear, and
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CEK : Ar1(Γ, v1) × Sr2(Γ, v2) →
(
−Dω

v1,2−r1 ⊗
+D∞

v−1
2 ,2−r2

)
Γ
,

CEK(f1, f2) = [cf1 ] ∪ [cKf2
] ,

(1.6)

which is linear in f1 and conjugate linear in f2.
The tensor products in which these maps take their values are large and have a 

complicated structure. Simplifications are possible.
First we simplify (1.5). Since elements of −Dω

v1,2−r1 and of −D∞
v2,2−r2 are holomorphic 

functions on H− their product is also holomorphic on H−. Considering actions and the 
behavior at the boundary we check that multiplication of functions induces a linear 
intertwining operator of Γ-modules

J : −Dω
v1,2−r1 ⊗

−D∞
v2,2−r2 → −D∞

v1v2,4−r1−r2 . (1.7)

We restrict our attention to the composite bilinear map

J ◦ CEE : Ar1(Γ, v1) × Sr2(Γ, v2) →
(−D∞

v1v2,4−r1−r2

)
Γ . (1.8)

The module −D∞
v1v2,4−r1−r2 still has infinite dimension, but we are able to do some 

explicit work.
In the case of an Eichler and a Knopp cocycle in (1.6), there is no such a product 

construction. The sole case that we can handle further is the case that the weights and 
multiplier systems are equal. There is a Γ-invariant bilinear form [·, ·]2−r on −D∞

v,2−r ×
+D∞

v−1,2−r, which induces a Γ-equivariant linear map D : −D∞
v,2−r × +D∞

v−1,2−r → C. 
The image is the trivial Γ-module C, and hence CΓ = C. With use of D ◦ CEK we can 
extend Haberland’s cohomological description of the Petersson scalar product to all real 
weights. See Section 5.

In case of two Eichler cocycles the coinvariant (J ◦CEE)(f1, f2) can be represented by 
many elements of −D∞

v1v2,4−r1−r2 . In Section 3 we arrive at the following representative 
that we consider convenient:

cp(f1, f2) = cf1(ρ− 1, ρ) · cf2(i,∞) , (1.9)

with ρ = eπi/3 and ρ − 1 = e2πi/3 the vertices in H of the standard fundamental domain 
of the modular group.

The question is whether cp(f1, f2) represents the trivial coinvariant. In other words, 
whether there are a and b in the module M = −D∞

v1v2,4−r1−r2 such that cp(f1, f2) =
a|(1 − S) + b|(1 − T ) with the generators T =

( 1
0

1
1
)

and S =
(0

1
−1

0
)

of Γ.
In the classical situation of weights r1, r2 ∈ Z≥2 it turns out that cp(f1, f2) represents 

the trivial coinvariant in −D∞
v1v2,4−r1−r2 . See Subsection 7.1. This holds for the modular 

group; for subgroups of finite index the situation is a bit more complicated. We will give 
numerical evidence that there are f1 and f2 (with real non-integral weights) for which 
cp(f1, f2) represents a non-trivial coinvariant. (This will be done in Subsection 8.4.)
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In Proposition 7.2 we will show that there are modules M1 ⊃ −D∞
v1v2,4−r1−r2 in which 

the coinvariant represented by cp(f1, f2) is trivial. This is not surprising, since every 
cocycle is a coboundary if one works with a suitably large module.

For the further investigation of the coinvariant represented by cp(f1, f2) we use the 
Γ-invariant bilinear form [·, ·]r mentioned above. In Theorem 4.1 we will show that there 
is for real r and corresponding multiplier system a bilinear form [·, ·]2−r on +D−∞

v−1,2−r ×
−D∞

v,2−r. The Γ-module +D−∞
v−1,2−r ⊃ +D∞

v−1,2−r consists of the holomorphic functions 
on H with at most polynomial growth at the boundary.

Suppose that we have a Γ-invariant β ∈
(+D−∞

v−1
1 v−1

2 ,4−r1−r2

)Γ. Then

[
β, a|(1 − T ) + b|(1 − S)

]
2−r

= 0

for all a, b ∈ −D∞
v,2−r. So if 

[
β, cp(f1, f2)

]
2−r

�= 0 then we know that cp(f1, f2) represents 
a non-trivial coinvariant.

The nice fact is that we know 
(+D−∞

v−1
1 v−1

2 ,4−r1−r2

)Γ. It is the space of entire modular 
forms M4−r1−r2(Γ, v−1

1 v−1
2 ). We put v3 = v−1

1 v−1
2 and r3 = 4 − r1 − r2, and define a 

trilinear form

T(f1, f2, f3) =
[
f3, cp(f1, f2)

]
r3

(1.10)

on Ar1(Γ, v1) × Sr2(v2) × Mr3(Γ, v3). If for given f1, f2 we can find f3 such that 
T(f1, f2, f3) �= 0, then we know that cp(f1, f2) represents a non-trivial coinvariant.

The drawback is that we do not know whether all Γ-invariant linear forms on −D∞
v−1
3 ,r3

arise from Mr3(Γ, v3). So it may happen that cp(f1, f2) represents a non-trivial coinvari-
ant and still T(f1, f2, f3) vanishes for all entire modular forms f3.

To investigate the trilinear form T we can unravel all definitions, and arrive at a 
complicated description. However, the following theorem relates the rather abstract coin-
variant cp(f1, f2) to a much more explicit integral, which gives a formulation suitable 
for numerical computations.

Theorem 1.1. Let

f1 ∈ Ar1(Γ, v1) , f2 ∈ Sr2(Γ, v2) , f3 ∈ Mr3(Γ, v3) (1.11)

with

r1 + r2 + r3 = 4 , r1 < 2, 0 < r2 < 2 , v1v2v3 = 1 . (1.12)

Then
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T(f1, f2, f3) = (−2i)r3 Γ(r3)
Γ(2 − r1) Γ(2 − r2)

ρ∫
τ1=ρ−1

f1(τ1)
∞∫

τ2=i

f2(τ2)

·
1∫

u=0

f3
(
τ1 + u(τ2 − τ1)

)
u1−r2 (1 − u)1−r1 du dτ2 dτ1 (1.13)

= (−2i)r3 Γ(r3)
Γ(2 − r1) Γ(2 − r2)

ρ∫
τ1=ρ−1

f1(τ1)
∞∫

τ2=i

f2(τ2)

·
τ2∫

z=τ1

f3(z)
( z − τ1
τ2 − τ1

)1−r2 ( τ2 − z

τ2 − τ1

)1−r1 dz

τ2 − τ1
dτ2 dτ1 . (1.14)

The paths of integration for τ1 and τ2 are geodesic segments. In (1.13) the path of inte-
gration over u is the real interval [0, 1]; in (1.14) the path of z is any path from τ1 to τ2
that does not cross �τ1,τ2 � sτ1,τ2 , where sτ1,τ2 is the geodesic segment from τ1 to τ2, and 
�τ1,τ2 is the geodesic line through τ1 and τ2.

In (1.14) we may just take the geodesic segment from τ1 to τ2 as the path of integration 
for z.

We state several remarks regarding the above theorem:

Remark 1.2.

(1) This theorem relates the rather abstract coinvariant cp(f1, f2) to a much more ex-
plicit integral. In §8.4 we formulate in Proposition 8.5 the trilinear form T in terms 
of Fourier coefficients of the fj . In that way we obtain a formulation suitable for 
numerical computations.

(2) The restriction on the weight r2 implies that f2 is a multiple of the 2r2-th power of 
the Dedekind eta-function. The restrictions r1 < 2 and r2 < 2 are due to our wish 
to have the inner integral as simple as we can make it.

(3) The triple integral is reminiscent of Manin’s iterated integrals, considered for instance 
in [2]. We have found not direct connection.

(4) In the case of Haberland’s formula a cohomological quantity is shown to be related 
to a quantity in the theory of cusp forms. It would be interesting to find a non-
cohomological interpretation of the triple integral.

Overview of the paper. Section 2 recalls definitions over various concepts in some more 
details than in this introduction. Section 3 discusses the cup product.

In both cases that we consider (two Eichler cocycles, and the combination of an Eichler 
cocycle and a Knopp cocycle) we use the duality theorem Theorem 4.1 in Section 4. To 
prove the duality theorem we use principal series representations of the universal covering 
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group of SL2(R). This requires further definitions and discussion, which we have put at 
the end of the paper in Section 9.

In Section 5 we extend to real positive weights Haberland’s relation between the 
Petersson scalar product and the cup product.

Sections 6–8 study the coinvariant represented by cp(f1, f2). Section 6 shows that in 
the classical context this coinvariant is uninteresting. Section 7 discusses the definition of 
the trilinear form T and show explicitly that cp(f1, f2) represents the trivial coinvariant 
over the module of all holomorphic functions on H−.

The main work to prove Theorem 1.1 is done in Section 8.2. In Section 8.4 we mention 
how we approach the study of T(f1, f2, f3) numerically.

2. Modular forms and cohomology

Modular forms. By a holomorphic modular form f of weight r ∈ R with multiplier system
v we mean a holomorphic function f : H → C such that

f(γz) = v(γ) (cz + d)rf(z) for all γ =
(
a

c

b

d

)
∈ Γ = SL2(Z) . (2.1)

We take arg(cz + d) ∈ (−π, π]. The multiplier system is a function v : Γ → C∗ such 
that non-zero solutions of this equation are possible. For the modular group we use 
v = v[p] with p ≡ r mod 2, where v[p] is the multiplier system of the (2p)-th power of 
the Dedekind eta-function:

v[p]
(
a

c

b

d

)
= η2p(γz)

(cz + d)pη2p(z) . (2.2)

The transformation behavior of the Dedekind eta function has a multiplier system with 
values in the 24-th roots of unity. See, e.g., [13, Chap. IX]. Hence the multiplier system 
v[p] depends only on p mod 12. Any multiplier system suitable for weight r satisfies

v

(
−1

0
0

−1

)
= e−πir . (2.3)

We denote by Ar(v) = Ar(Γ, v) the space of all holomorphic f satisfying (2.1). We 
do not impose any further restriction; so Ar(v) has infinite dimension. Entire modular 
forms satisfy the condition f(z) = O(1) as Im z ↑ ∞; we denote by Mr(v) = Mr(Γ, v)
the resulting subspace of Ar(v). This space is finite dimensional and zero if r < 0. A 
further restriction is the condition of quick decay f(z) = O

(
(Im z)−a

)
for all a > 0, as 

Im z ↑ ∞. It defines the subspace Sr(v) = Sr(Γ, v) ⊂ Mr(v) of cusp forms, which is zero 
if r ≤ 0.

Actions. For each weight r and corresponding multiplier system v there are right actions 
of PSL2(Z) = Γ/{1, −1}; the action |v,r is on functions on the upper half-plane H, and 

|−−1 on functions on the lower half-plane H− given for γ =
(

a b
)

by
v ,r c d
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f |v,rγ(z) = v(γ)−1 (cz + d)−r f(γz) (z ∈ H) ,

f |−v−1,rγ(t) = v(γ) (ct + d)−r f(γt) (t ∈ H−) .
(2.4)

It turns out to be convenient to use the argument conventions arg(cz + d) ∈ (−π, π]
for z ∈ H, and arg(ct + d) ∈ [−π, π) for t ∈ H−. Hence we use v(γ)−1 in the action on 
functions on H and v(γ) in the action on functions of H−. These representations of Γ
are trivial on the center {1, −1} of Γ. So they are in fact representations of PSL2(Z) ∼=
Γ/{1, −1}.

The property (2.1) of modular forms is invariance under the action |v,r of Γ. See [3, 
§2.1] for more information.

Eichler cocycles. For f ∈ Ar(v), t ∈ H−, z1, z2 ∈ H we put

cf (z1, z2; t) =
z2∫

z=z1

f(z) (z − t)r−2 dz , (2.5)

with arg(z − t) ∈
(
−π/2, 3π/2

)
. This defines holomorphic functions on H− satisfying

cf (z1, z3) = cf (z1, z2) + cf (z2, z3) ,

cf (γ−1z1, γ
−1z2) = cf (z1, z2)|−v,2−rγ (γ ∈ Γ) .

(2.6)

So this defines a homogeneous 1-cocycle, called an Eichler cocycle. It has values in the 
holomorphic functions on H− with the action |−v,2−r. The corresponding inhomogeneous 
1-cocycle is γ 	→ cf (γ−1z0, z0); it depends on the choice of a base point z0 ∈ H. See for 
instance [4, §6.1] for a discussion of cohomology based on homogeneous cocycles.

The values of Eichler cocycles are holomorphic functions on H− satisfying further 
properties. They are in the Γ-module −Dω

v,2−r of holomorphic functions h on H− that 
have a holomorphic continuation to a neighborhood of R in C and for which t 	→ (i −
t)2−r h(t) is holomorphic in −1

t on a neighborhood of t = 0 in C. The association f 	→ cf
induces a linear map

Ar(v) −→ H1(Γ;−Dω
v,2−r) (2.7)

which is injective if r ∈ R � Z≥2 [3, Theorem A].
For a cusp form f ∈ Sr(v) we can form cf (z1, z2; t) =

∫ z2
z=z1

f(z) (z − t)r−2 dz, where 
z1 and z2 may be cusps. These cocycles take values in the larger module −D∞

v,2−r of 
holomorphic functions h on H− for which h has an extension to C∞(H− ∪ R) and for 
which t 	→ (i − t)2−r h(t) is C∞ in −1

t on a neighborhood of 0 in H−∪R. The association 
f 	→ cf induces an injective linear map

Sr(v) −→ H1(Γ;−D∞
v,2−r) . (2.8)
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This map is bijective if r ∈ R �Z≥2, by Theorem B in [3]. For r ∈ Z≥2 the cocycles take 
values in the (r−2)-dimensional submodule −Dpol

v,2−r ⊂ −Dω
v,2−r of polynomial functions 

on C of degree at most r − 2.

Knopp cocycles. The conjugate linear map ι given by ιf(z) = f(z̄) interchanges functions 
on H and H− and intertwines the actions |v,r and |−v−1,r (for real r and corresponding 
multiplier system). This map can be used to define +Dω

v−1,2−r ⊂ +D∞
v−1,2−r in terms of 

the modules −Dω
v,2−r ⊂ −D∞

v,2−r with analogous descriptions. If r ∈ Z≥2 we have also 
+Dpol

v−1,2−r ⊂ +Dω
v−1,2−r consisting of the polynomial functions of degree at most r − 2.

The Knopp cocycle

cKf (z1, z2) = ιcf (z1, z2) (2.9)

induces conjugate linear maps

Ar(v) → H1(Γ; +Dω
v−1,2−r) ,

Sr(v) → H1
p (Γ; +D∞

v−1,2−r) .
(2.10)

Actually, Knopp [10] considers the resulting map with values in the larger module 
+D−∞

v−1,2−r of holomorphic functions on H with at most polynomial growth:

h(z) = O
(
(Im z)−B

)
+ O

(
|z|σ

)
z ∈ H for some B > 0 and σ > 0 . (2.11)

Knopp and Mawi [11] showed that

Sr(v) → H1
p (Γ; +D−∞

v−1,2−r) (2.12)

is bijective for all r ∈ R.

3. Cup product of modular cocycles

We recall the cup product construction in parabolic cohomology. Applied to two 
1-cocycles with values in possibly different modules it gives a coinvariant in the ten-
sor product of the two modules.

Applied to pairs of cocycles attached to modular forms this construction yields coin-
variants in a module that may be large and complicated to investigate. We discuss various 
choices in which one obtains coinvariants in simpler modules.

3.1. Cup product

We base our discussion of the parabolic cup product on the discussion in [4, §19], 
where more details can be found.
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Fig. 1. The standard fundamental domain of the modular group Γ as the union of two triangles. The tessel-
lation of the upper half-plane formed by the Γ-translates of these triangles is the basis of the cup product 
construction that we use.

We use the tessellation of the upper half plane given by the Γ-translates of the triangles 
L and R in Fig. 1. This tessellation determines a resolution with which we can compute 
parabolic cohomology, as discussed in [4, §12.1]. It is based on the spaces C[Xi], where 
X0 is the set of vertices of the tessellation, X1 a set of oriented edges, and X2 the set of 
faces.

In [4, §19.2] the construction of the cup product is based on a diagonal approximation. 
In the context of general cofinite groups a diagonal approximation as in Table 19.1 of [4]
is used. Here we can proceed in a simpler way, and determine for i = 0, 1, 2 the diagonal 
approximation

δi : C[Xi] →
i∑

j=0
C[Xj ] ⊗C[Xi−j ] (3.1)

as a C[Γ]-linear map. It has to satisfy the compatibility relations ∂jδj = δj−1∂j with the 
boundary map ∂j . In dimension 0 we determine it by

δ0(P ) = (P ) ⊗ (P ) (P ∈ X0) . (3.2)

In dimension 1 we take on the basis edges eρ,∞, eρ−1,i and ei,∞

δ1eP,Q = (P ) ⊗ eP,Q + eP,Q ⊗Q , (3.3)

use δ1eQ,P = −δ1eP,Q, and extend δ1 C[Γ]-linearly. Guided by the diagonal embedding 
in Table 19.1 in [4] we take

δ2R = (ρ) ⊗R + eρ,i ⊗ ei,∞ + R⊗ (∞) ,

δ L = (ρ− 1) ⊗ L− e ⊗ e + L⊗ (∞) ,
(3.4)
2 ρ−1,i i,∞



R. Bruggeman, Y. Choie / Advances in Mathematics 351 (2019) 296–342 307
and extend this C[Γ]-linearly. It takes some work to check the compatibility relation 
∂2δ2 = δ1∂2 with the boundary maps.

The cup product of cochains c1 ∈ Cp(C[X·]; V ) and c2 ∈ Cq(C[X·]; W ) is defined by

(c1 ∪ c2)(x) = −(c1 ⊗ c2)
(
δp+q(x)

)
for x ∈ C[Xp+q] . (3.5)

The tensor c1 ⊗ c2 sees only the component C[Xp] ⊗C[Xq] of

(C[X·] ⊗C[X·])p+q =
⊕
j

C[Xj ] ⊗C[Xp+q−j ] .

This defines c1 ∪ c2 ∈ Cp+q(C[X·]; V ⊗W ). If both c1 and c2 are cocycles, then c1 ∪ c2
is a cocycle. If one is a coboundary and the other a cocycle then the cup product is a 
coboundary.

In particular for p = q = 1 we are interested in

(c1 ∪ c2)(L + R) = −(c1 ⊗ c2) (eρ,i ⊗ ei,∞ − eρ−1,i ⊗ ei,∞)

= −c1(eρ,i) ⊗ c2(ei,∞) + c1(eρ−1,i) ⊗ c2(ei,∞)

= c1(eρ−1,ρ) ⊗ c2(ei,∞) .

(3.6)

In principle this works when c1 and c2 are both parabolic cocycles. However, c1 is 
evaluated only on the interior edge eρ−1,ρ, which makes sense for a cocycle that is not 
parabolic. (See §11.1 in [4].) Now [4, equation (19.7)] states that this results in a well-
defined linear map

∪ : H1(Γ;V ) ⊗H1
p (Γ;W ) → H2

p (Γ;V ⊗W ) . (3.7)

This is not true in the generality in which [4] states it. We need the condition that the 
space of invariants Wπ is zero for all parabolic π ∈ Γ. For the modular group it suffices 
that WT = {0}.

3.2. Application to modular forms

We apply this to the cocycles attached to two modular forms, f1 ∈ Ar1(v1), f2 ∈
Sr2(v2), with real weights rj and corresponding multiplier systems, with r2 > 0. We take 
the cocycle c1 = cf1 representing a cohomology class in H1(Γ; −Dω

v1,2−r1), and either 
the parabolic cocycle c2 = cf2 representing a class in H1

p(Γ; −D∞
v2,2−r2) or c2 = cK(f2)

representing a class in H1
p(Γ; +D∞

v−1
2 ,2−r2

). We need to impose the condition r2 /∈ Z≥2 to 

have WT = {0}; see [3, Lemma 12.1]. If r2 ∈ Z≥2 we assume that f1 ∈ Sr1(v1) as well, 
to have a well-defined cup product.

In this way the cup product gives coinvariants in the Γ-modules

−Dω
v ,2−r ⊗ −D∞

v ,2−r and −Dω
v ,2−r ⊗ +D∞

−1 ,

1 1 2 2 1 1 v2 ,2−r2
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or if r2 ∈ Z≥2 in

−Dω
v1,2−r1 ⊗

−Dpol
v2,2−r2

and −Dω
v1,2−r1 ⊗

+Dpol
v−1
2 ,2−r2

.

These tensor products are large complicated modules. It is hard to determine what it 
means to have a representative of a coinvariant in such a module. There is hope to get 
more information if there is an intertwining operator from the tensor product to a simpler 
module.

We restrict our attention to a number of situations, in which an intertwining operator 
to a simpler module can be found.

EE. J : −Dω
v1,2−r1 ⊗ −D∞

v2,2−r2 → −D∞
v1v2,4−r1−r2 by multiplication of functions, un-

der the assumption that r2 /∈ Z≥2. The image of the cup product cf1 ∪ cf2 is a 
coinvariant in −D∞

v1v2,4−r1−r2 represented by the product

cp(f1, f2) = cf1(ρ− 1, ρ) · cf2(i,∞) (3.8)

for f1 ∈ Ar1(v1) and f2 ∈ Sr2(v2).
cEE. J : −Dpol

v1,2−r1
⊗−Dpol

v2,2−r2
→ −Dpol

v1v2,4−r1−r2
by multiplication of polynomial func-

tions. For fj ∈ Srj (v2) with r1, r2 ∈ Z≥2 we get the coinvariant in −Dpol
v1v2,4−r1−r2

represented by the product cp(f1, f2) in (3.8).
cEK. J : +D∞

v−1,2−r ⊗ −D∞
v,2−r → C by a duality to be discussed in Section 4, for 

r = r1 = r2 > 0, v = v1 = v2. To two cusp forms f1, f2 in the same space Sr(v) is 
associated a number 

[
cKf2

(i, ∞), cf1(ρ − 1, ρ)
]
2−r

.

We discuss case cEE in Sections 6, and show in Section 5 how case cEK leads to a 
generalization of the relation between cup product and Petersson scalar product.

Case EE is the subject of Sections 7 and 8, where we use the duality theorem in 
Section 4 to go from cup product to a fourfold and a triple integral.

4. Duality theorem

In this section we formulate the duality theorem, and show that a space of entire 
modular forms gives the continuous Γ-invariant linear forms on −D∞

v1v2,4−r1−r2 that we 
will use for further study of the cup product.

4.1. Γ-modules of holomorphic functions

For a real weight r and a corresponding multiplier system we discussed in Section 2
various spaces of holomorphic functions on which Γ acts, related by the conjugate linear 
transformation ι given by (ιf)(z) = f(z̄).
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−Dω
v−1,r

ι

−D∞
v−1,r

ι

−D−∞
v−1,r

ι

−D−ω
v−1,r

ι

+Dω
v,r

+D∞
v,r

+D−∞
v,r

+D−ω
v,r

(4.1)

The modules in the top row consist of holomorphic functions on H−, with the action |−v−1,r

of Γ, the modules in the bottom row consist of holomorphic function on H with the action 
|v,r. If r ∈ Z≤0, there are the (|r| + 1)-dimensional submodules −Dpol

v−1,r ⊂ −Dω
v−1,r and 

+Dpol
v,r ⊂ +Dω

v,r, also related by ι. These submodules consist of the polynomial functions 
of degree at most |r|.

We put

f−(t) = (i− t)r f(t) for functions f on H− ,

f+(z) = (−i− z)r f(z) for functions f on H .
(4.2)

With this notation we have the following characterizations:

±D−ω
v±1,r f± is holomorphic on H±

±D−∞
v±1,r ∃B>0 f±(z) = O

(
|Im z|−B

)
+ O

(
|z|B

)
on H±

±D∞
v±1,r ∃ extension f± ∈ C∞(

H± ∪ P 1
R

)
±Dω

v±1,r ∃ holomorphic extension of f± to U ⊃ H± ∪ P 1
R

±Dpol
v±1,r f± polynomial function of t∓i

t±i , degree at most |r|

(4.3)

The actions on −D∞
v,2−r and +D∞

v−2,2−r are continuous for the topology given by 
the supremum norms of all derivatives on P 1

R of the extension of f± to H± ∪ P 1
R. The 

derivatives are taken with respect to ϑ = − cot t for t ∈ P 1
R with ϑ ∈ R 

/
πZ.

The representation spaces +Dω
v,r and −Dω

v−1,r are the direct limits of spaces of bounded 
holomorphic functions f± on neighborhoods U1 of P 1

R in P 1
C. The natural topology is 

obtained by providing these spaces with the supremum norm on U1.

4.2. Duality

To formulate the duality theorem we use linear operators σr:

σr : −Dω
v−1,r → −Dω

v−1,r if r ∈ R� Z≤0 ,

σr : −Dpol
v−1,r → −Dω

v−1,r if r ∈ Z≤0 .
(4.4)

For r ∈ R �Z≤0 we describe σr in terms of the functions f− : z 	→ f(z) (i − z)r defined 
in (4.2).

σrf
−(z) := 1

π

z + i

z − i

∫
f−(τ) 2F1

(
1, 1; r; (τ − i)(z + i)

(τ + i)(z − i)

) dτ

τ2 + 1 , (4.5)

τ∈C
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where the hypergeometric function is given on the unit disk by 2F1(a, b; c; z) :=∑
n≥0

(a)n(b)n
(c)n

zn

n! , and (a)n is the Pochhammer symbol. This function has an analytic 
extension to C � [1, ∞). The positively oriented curve C in H encircles i and is in the 
domain of the extension f−. It should be homotopic to the boundary P 1

R of H in the 
domain of f−. The point z is outside the curve C. By definition of −Dω

v−1,r the function 
is holomorphic on P 1

C � K for some compact set K ⊂ H. Adapting C to K we get a 
holomorphic function σrf

− on P 1
C �K.

If we would insist to formulate the relation g− = σrf
− in terms of f and g in −Dω

v−1,r

the formula would be more complicated:

g(z) = (z − i)−r 1
π

z + i

z − i

∫
τ∈C

f(τ) (i− τ)r 2F1

(
1, 1; r; (τ − i)(z + i)

(τ + i)(z − i)

) dτ

τ2 + 1 .

To see that this integral makes sense we would need to remember that τ 	→ f(τ) (i − τ)r
extends holomorphically from H− across P 1

R into a region in H.
For f−

n (t) = ( t−i
t+i

)n, with n ≤ 0, we will see in Proposition 9.5 that

σrf
−
n = |n|!

(r)|n|
f−
n−1 . (4.6)

If r ∈ Z≤0 then (r)|n| �= 0 for r ≤ n ≤ 0. We use (4.6) to define σr for r ∈ Z≤0.
At this point the operators σr seem arbitrary. In §9.2 we will see that they arise 

naturally.

For h ∈ +D−ω
v,r and f ∈ −Dω

v−1,r we consider the integral

[
h, f ]r = 1

π

∫
z∈C

h+(z)σrf
−(z) dz

(z + i)2 . (4.7)

At first sight this integral seems undefined since h and f are holomorphic on disjoint 
domains, H and H− respectively. However, since f ∈ −Dω

v−1,r the function f− is holo-
morphic on H− ∪P 1

R ∪U where U is a simply connected, connected neighborhood of P 1
R

in P 1
C. Then also σrf

−, for r /∈ Z≤0, is holomorphic at least on U . The function h+ is 
holomorphic on H, and the integral over a positively oriented curve C in H ∩U encircling 
i makes sense. The precise choice of C does not influence the value of the integral. If 
r ∈ Z≤0 we need to require that f ∈ −Dpol

v−1,r in order to have a well defined lift σrf
−. In 

both cases the value of the integral does not change if we add to σrf
− any holomorphic 

function on H.

Theorem 4.1 (Duality theorem).

i) Let r /∈ Z≤0. The integral in (4.7) defines a non-degenerate Γ-invariant bilinear form 
on +D−ω

v,r × −Dω
−1 .
v ,r
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ii) Let r /∈ Z≤0. If h ∈ +D−∞
v,r then the linear form f 	→ [h, f ]r on −Dω

v−1,r extends 
continuously to −D∞

v−1,r for the natural topology on −D∞
v−1,r defined in §4.1.

iii) Let r ∈ Z≤0. The integral in (4.7) defines a non-degenerate Γ-invariant bilinear form 
on +D−ω

v,r × −Dpol
v−1,r. Its restriction to +Dpol

v,r × −Dpol
v−1,r is non-degenerate.

iv) In terms of the expansions

h+(z) =
∑
n≥0

cn

(z − i

z + i

)n

, f−(z) =
∑
m≤0

dm

(z − i

z + i

)m

,

with dm = 0 for m < |r| if r ∈ Z≤0 the duality is given by

[
h, f

]
r

=
∑
n≥0

n!
(r)n

cn dn . (4.8)

We note that i) and iii) give the bilinear form in terms of a well defined contour 
integral. The bilinear form in ii) is given by a, less explicit, limit process.

We will give the proof of the duality theorem in §9.3, in the context of principal series 
representations of the universal covering group of SL2(R).

Use of the duality theorem. At the end of Subsection 3.2 we mentioned three cases in 
which we want to further investigate the cup product of modular cocycles. In two of 
them we will use the duality theorem.

In case cEK we associate to f1, f2 ∈ Sr(v) the cup product cf1(ρ − 1, ρ) ⊗ cf2(i, ∞) in 
−D∞

v,2−r ⊗ +D∞
v−1,2−r. We get a Γ-equivariant linear map from the tensor product to C

generated by v ⊗ w 	→ [w, v]2−r for r /∈ Z≥2. If r ∈ Z≥2 we use part iii) of the duality 
theorem. See Section 5.

In the case EE we have cf1(ρ − 1, ρ) ⊗ cf2(i, ∞) ∈ −Dω
v1,2−r1 ⊗−D∞

v2,2−r2 representing 
the cup product cf1 ∪ cf2 . The linear map induced by multiplication v ⊗ w 	→ v w is an 
intertwining operator from the tensor product to −D∞

v1v2,4−r1−r2 . If we have Γ-invariant 
elements u ∈ +D−∞

v−1
1 v−1

2 ,4−r1−r2
, we use the linear form ϕ 	→

[
u, ϕ

]
2−r

resulting from 

part iii) of the duality theorem to test whether the coinvariant represented by cp(f1, f2)
is non-trivial. See section 7.

5. Cup product and Petersson scalar product

We consider now case EK in Subsection 3.2. After Theorem 4.1 we explained that to 
two cusp forms f1, f2 ∈ Sr(v) we associate the number

[
cKf2

(i,∞), cf1(ρ− 1, ρ)]2−r

in the trivial Γ-module C ∼= CΓ. This number turns out to be a multiple of the Petersson 
scalar product. We extend Haberland’s relation in [9] to real weights.
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Theorem 5.1. Let r > 0 and let v be a corresponding multiplier system. For all f1, f2 ∈
Sr(v)

[
cKf2

(i,∞), cf1(ρ− 1, ρ)]2−r = −2i
(
f1, f2)r := −2i

∫
Γ\H

f1(τ) f2(τ) yr dx dy

y2 .

Remarks. Haberland [9, §7] gave this relation for even positive weights. With the duality 
theorem Theorem 4.1 available we can essentially follow Haberland’s approach. As far as 
we know the case of positive weights has not been considered in generality. We note that 
Neururer’s paper [15], Sections 2 and 3, and Cohen’s paper [7], Section 3, come close to 
what we do here.

Proof. We start with the cup product and show that it is a multiple of the Petersson 
scalar product.

Truncation. The function cKf2
is in +Dω

v−1,2−r, since the integration is over a compact 
path in H. However cf1 ∈ −D∞

v,2−r. We use as an approximation the element cf1(i, ia) ∈
−Dω

v,2−r.

Lemma 5.2. Let f ∈ Sr(v). Then

lim
a↑∞

cf (i, ia) = cf (i,∞)

in the natural topology on −D∞
v,2−r.

Proof. The topology on −D∞
v,2−r is given by the norms associating to ϕ on P 1

R the 

supremum on P 1
R of the derivatives 

(
1

1+t2 ∂t

)N

ϕ−(t). We put ϕ(t) = cf (i, ∞; t).

ϕ−
a (t) = i

a∫
y=1

f(iy)
( iy − t

i− t

)r2−2
dy = i

a∫
y=1

f(iy)
( iy/t− 1
i/t− 1

)r2−2
dy ,

ϕ−(t) = i

∞∫
y=1

f(iy)
( iy − t

i− t

)r2−2
dy = i

∞∫
y=1

f(iy)
( iy/t− 1
i/t− 1

)r2−2
dy .

The integrand has the exponentially decreasing factor f(iy) and another factor that is 
O(yr2−2), uniform in t ∈ P 1

R. So the integral ϕ−
a converges to ϕ− in the supremum norm 

on P 1
R.

Applying the differential operator 1
1+t2 ∂t a number of times gives an integral with a 

more complicated expression. We do not need to determine these derivatives explicitly. 
We note that they involve powers of 1

1+t2 , t, and iy−t
i−t , which allows us to handle the 

derivatives of ϕ−
a and ϕ− in an analogous way. Thus we conclude that ϕ−

a → ϕ− as 
a ↑ ∞ in the topology of −D∞

v2,2−r2 . �
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Lemma 5.3. For f1, f2 as in the theorem

[
cKf2

(i,∞), cf1(ρ− 1, ρ)
]
2−r

= lim
a↑∞

[
cKf2

(i, ia), cf1(ρ− 1, ρ)
]
2−r

. (5.1)

Proof. Part ii) of Theorem 4.1 gives continuity in the second argument. As long as both 
arguments are in ±D∞

v,2−r the transition to [ιf, ιg]r in the theorem gives continuity in 
the first argument as well. To see this we use part iv) of the duality theorem. �
Rearranging the integrals. We proceed with 

[
cKf2

(i, ia), cf1(ρ − 1, ρ)
]
2−r

. The three inte-
grals involved in it all run over compact sets, and we can order them as it pleases us. 
We take

[
cKf2

(i, ia), cf1(ρ− 1, ρ)
]
2−r

=
ρ∫

τ1=ρ−1

f1(τ1)
ia∫

τ2=i

f2(τ2)
[
pτ2 , qτ1

]
2−r

dτ1 dτ̄2 ,

pτ2(z) =
(
τ̄2 − z

)r−2
, qτ1(z) =

(
τ1 − z

)r−2
.

(5.2)

The inner integral. We note that pτ2(z) is holomorphic in z ∈ H, and that z 	→ (τ1−z)r−2

is holomorphic in z ∈ H−, with an extension q−τ1 to a neighborhood of H− ∪ P 1
R in P 1

C. 
So [pτ2 , qτ1 ]2−r as in (i) and (iii) of the duality theorem Theorem 4.1 is well-defined, and

[
pτ2 , qτ1

]
2−r

= 1
π

∫
z∈C

p+
τ2(z)σ2−rq

−
τ1(z)

dz

(z + i)2 . (5.3)

The closed contour C in H encircles the path from τ1 to i. We have with (4.2):

p+
τ2(z) =

( τ̄2 − z

−i− z

)r−2
, q−τ1(z) =

(τ1 − z

i− z

)r−2
. (5.4)

It is convenient to proceed in disk coordinates w = z−i
z+i , z = i 1+w

1−w , u1 = τ1−i
τ1−i . With 

|u1| < |w| < 1 we find:

q−τ1(z) =
( u1 − w

−w(1 − u1)

)r−2
= (1 − u1)2−r

(
1 − u1/w

)r−2

= (1 − u1)2−r
∑
m

(
r − 2
m

)
(−1)mu1

m w−m , (5.5)

σ2−rq
−
τ1(z) = (1 − u1)2−r

∑
m

(
r − 2
m

)
(−1)mu1

m m!
(2 − r)m

w−m−1

= (1 − u1)2−r
∑
m

u1
m w−m−1 . (5.6)
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We used (4.6). If r /∈ Z≥2 the sum runs over m ≥ 0, and over 0 ≤ m ≤ r − 2 if r ∈ Z≥2.
We take u2 = τ2−i

τ2+i . Then τ̄2 = −i ū2+1
ū2−1 and

p+
τ2(z) =

(1 − wū2

1 − ū2

)r−2
= (1 − ū2)2−r

∑
n

(
r − 2
n

)
(−1)nūn

2w
n . (5.7)

Here 0 ≤ n ≤ r − 2 if r ∈ Z≥2, and n ≥ 0 otherwise. With use of part iv) of the duality 
theorem we get

[
pτ2 , qτ1

]
2−r

= (1 − ū−1
2 )2−r (1 − ū2)2−r

(
1 − u1ū2

)r−2

= (2i)2−r
(
τ1 − τ̄2

)r−2
.

(5.8)

Thus we find for the quantity in (5.2):

= (2i)2−r

ρ∫
τ1=ρ−1

f1(τ1)
ia∫

τ2=i

f2(τ2)
(
τ1 − τ̄2

)r−2
dτ̄2 dτ1 . (5.9)

Limit as a ↑ ∞. The exponential decay of cusp forms shows that the limit of the quantity 
in (5.9) exists. With (5.1) we get

[
cKf2

(i,∞), cf1(ρ− 1, ρ)
]
r−2

= (2i)2−r

ρ∫
τ1=ρ−1

f1(τ1)
∞∫

τ2=i

f2(τ2)
(
τ1 − τ̄2

)r−2
dτ̄2 dτ1

= (2i)2−r

ρ∫
τ1=ρ−1

∞∫
τ2=i

ω(τ1, τ2) ,

(5.10)

with the differential form on H × H

ω(τ1, τ2) = f1(τ1) f2(τ2) (τ1 − τ̄2)r−2 dτ̄2 dτ1 . (5.11)

This differential form is invariant for the diagonal action of Γ. Hence we have also

[
cKf2

(i,∞), cf1(ρ− 1, ρ)
]
r−2 = −(2i)2−r

ρ∫
τ1=i

∞∫
τ2=0

ω(τ1, τ2) . (5.12)

Partial integration. We proceed as in [9, §7.2]. The function

F2(τ1) =
∞∫

f2(τ2) (τ1 − τ̄2)r−2 dτ̄2 (τ1 ∈ H) , (5.13)

τ2=τ1
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is not holomorphic, but satisfies

∂τ̄1F2(τ1) = −f2(τ1)
(
τ1 − τ̄1)r−2 = −(2i)r−2 (Im τ1)r−2 f2(τ1) , (5.14)

and has the following transformation behavior under γ ∈ Γ:

F2|v−1,2−rγ(z) = F2(z) + cKf2
(∞, γ−1∞)(z) . (5.15)

We use that

d
(
f1(τ)F2(τ) dτ

)
= −f1(τ)

(
∂τ̄F2(τ)

)
dτ dτ̄

= −(2i)r−1 f1(x + iy) f2(x + iy) yr−2 dx dy ,

to compute the Petersson scalar product on the fundamental domain F1 = R ∪ TL (not 
the standard fundamental domain), with R and L as in Fig. 1 on p. 306. We use Stoke’s 
theorem to get:

(
f1, f2)r = −(2i)1−r

∫
∂F1

f1(τ1)F2(τ1) dτ1

= −(2i)1−r

( ∞∫
i+1

−
∞∫
i

+
ρ∫

i

−
ρ∫

i+1

)
f1(τ1)F2(τ1) dτ1 .

The transformation behavior in (5.15) implies that the first two integrals cancel each 
other, and that the remaining integrals give

−(2i)1−r

ρ∫
τ1=i

f1(τ1) cKf2
(∞, 0)(τ1) dτ1

= (2i)1−r

ρ∫
τ1=i

∞∫
τ2=0

ω(τ1, τ2) .

Comparison with (5.12) completes the proof of Theorem 5.1. �
6. Coinvariants of polynomial functions

The case cEE in the discussion of Subsection 3.2 considers the product

cp(f1, f2) = cf1(ρ− 1, ρ) · cf2(i,∞)

for two cusp forms f1 ∈ Sr1(v1), ff ∈ Sr2(v2) with weights rj ∈ Z≥2 and the vj multiplier 
systems corresponding to rj . It represents a coinvariant in the finite dimensional module 
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−Dpol
v1v2,4−r1−r2

. If we take trivial multiplier systems this is the classical situation of the 
cup product of two Eichler cohomology classes.

It turns out that in this classical context the cup product of two Eichler cocycles is 
uninteresting.

Proposition 6.1. For a weight r ∈ Z≥2 and a corresponding multiplier system v

(−Dpol
v,2−r

)
Γ =

{
C if r = 2 and v = 1 ,
{0} otherwise .

(6.1)

Proof. For integral weights multiplier systems are characters. For any polynomial p of 
the form p(t) = ta + lower degree terms, we have

p|−v,2−r(1 − T ) =
(
1 − v(T )

)
ta + lower degree terms .

So if v(T ) �= 1 we obtain by induction on the degree that −Dpol
v,2−r|−v,2−r(1 −T ) = −Dpol

v,2−r.
The value on T determines the multiplier system, hence we are left with the case 

v = 1. For p of degree a as above we have

p|−1,2−r(1 − T ) = −ata−1 + lower degree terms .

By induction on a we conclude that ta ∈ −Dpol
1,2−r|−1,2−r(1 −T ) for a = 0, . . . , r−3. Finally 

we note that

tr−2|−1,2−r(1 − S) = tr−2 − v(S)−1 tr−2 (−1/t)r−2

= tr−2 − 1 · (−1)r−2 ∈ tr−2 + −Dpol
1,2−r|−1,2−r(1 − T ) . �

This implies that in case cEE the polynomial cp(f1, f2) indicated above represents 
the trivial coinvariant in −Dpol

v1v2,4−r1−r2
if r1 > 2 or r2 > 2, and also if r1 = r2 = 2 and 

v1v2 �= 1.
For the modular group the sole multiplier system v for which S2(v) �= {0} is determined 

by v(T ) = eπi/3. (The corresponding space of cusp forms is spanned by η4.) This multi-
plier system does not satisfy v2 = 1, and hence it is understandable that in the classical 
context the cup product of two Eichler cocycles of modular forms is uninteresting.

7. Coinvariants associated to two Eichler cocycles

In the case cEE in the previous section it turned out that for modular forms (on the 
full modular group SL2(Z)) with integral weight at least 2 the cup product leads to the 
trivial coinvariant. In the case EE in §3.2 we consider a modular form f1 ∈ Ar1(v1) and 
f2 ∈ Sr2(v2) and form the coinvariant in −D∞

v1v2,4−r1−r2 represented by the following 
product of two values of Eichler cocycles
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cp(f1, f2) = cf1(ρ− 1, ρ) · cf2(i,∞) .

Under the assumption r2 /∈ Z≥2 this coinvariant represents the image of the cup product

cf1 ∪ cf2 ∈ H2
p

(
Γ;−D∞

v1,2−r1 ⊗
−D∞

v2,2−r2

) ∼=
(−D∞

v1,2−r1 ⊗
−D∞

v2,2−r2

)
Γ

under the map in cohomology corresponding to the linear map

−D∞
v1,2−r1 ⊗

−D∞
v2,2−r2 → −D∞

v1v2,4−r1−r2

induced by v ⊗ w 	→ v w.
To simplify the formulas we use the multiplier system v3 = v−1

1 v−1
2 corresponding to 

the weight r3 = 4 − r1 − r2. Since Γ is generated by S =
( 0

1
−1

0
)

and T =
( 1

0
1
1
)
, the 

space of coinvariants is the quotient of the infinite-dimensional module −D∞
v−1
3 ,r3

by the 
submodule

−D∞
v−1
3 ,r3

|−
v−1
3 ,r3

(1 − S) + −D∞
v−1
3 ,r3

|−
v−1
3 ,r3

(1 − T ) .

It is hard to understand this submodule. Even the question whether cp(f1, f2) represents 
the trivial coinvariant is hard to answer.

We use the fact that each Γ-invariant linear form β on −D∞
v−1
3 ,r3

is trivial on the 

submodule, and induces a linear form on 
(−D∞

v−1
3 ,r3

)
Γ. The duality theorem Theorem 4.1

has the following consequence:

Corollary 7.1. Let r3 ≥ 0, and let c ∈ −D∞
v−1
3 ,r3

represent a coinvariant [c] ∈
(−D∞

v−1
3 ,r3

)
Γ. 

If there exists an entire modular form h ∈ Mr3(v3) for which 
[
h, c

]
r3

�= 0, then the 
coinvariant [c] is non-trivial.

Proof. The space of entire modular forms Mr3(v3) is characterized by Γ-invariance and 
polynomial growth at the cusps. Polynomial growth near the boundary implies polyno-
mial growth at the cusps, so 

(+D−∞
v3,r3

)Γ ⊂ Mr3(v3). With use of the Fourier expansion 
one checks that elements of Mr3(v3) have polynomial growth near R. So Mr3(v3) is equal 
to 

(−D−∞
v−1
3 ,r3

)Γ.
Suppose that c represents the trivial coinvariant. Then c ∈ −D∞

v−1
3 ,r3

|−
v−1
3 ,r3

(1 − S) +
−D∞

v−1
3 ,r3

|−
v−1
3 ,r3

(1 −T ), and any Γ-invariant linear form α on −D∞
v−1
3 ,r3

satisfies α(c) = 0. 
In particular this would mean [h, c]r3 = 0. Hence c in the corollary represents a non-trivial 
coinvariant. �
Remark. We do not know whether −D∞

v−1,r|
−
v−1,r(1 − S) + −D∞

v−1,r|
−
v−1,r(1 − T ) is closed 

in −D∞
v−1,r for the natural topology on −D∞

v−1,r. So if [h, c]r = 0 for all h ∈ Mr(v), 
there still might be a non-continuous Γ-invariant linear form α for which α(c) �= 0. The 
condition in the corollary is sufficient but not necessary for non-triviality of [c].
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Trilinear form. We proceed with r1, r2, r3 ∈ R and corresponding multiplier systems 
v1, v2, v3 satisfying

r1 + r2 + r3 = 4 r2 > 0 , r3 ≥ 0 v1v2v3 = 1 (7.1)

and consider the trilinear form

T(f1, f2, f3) =
[
f3, cp(f1, f2)

]
r3

(7.2)

on Ar1(v1) × Sr2(v2) ×Mr3(v3).
Our aim in the next section is to reformulate T(t1, f2, f3) more explicitly (under 

stronger conditions than (7.1)) such that it can be computed numerically.
The trilinear form T makes sense without the condition r2 /∈ Z≥2. Under this addi-

tional condition we know that if T(f1, f2, f3) �= 0 for some choice of (f1, f2, f3), then 
cp(f1, f2) represents a non-trivial coinvariant.

7.1. Triviality over larger modules

In this subsection we give ourselves the task to describe the 2-cocycle corresponding 
to cp(f1, f2) as a 2-coboundary over some larger Γ-module, or equivalently, to write

cp(f1, f2) = A1|(T − 1) + A2|(S − 1)

with some A1 and A2 in a larger Γ-module. The following result establishes this for two 
larger modules.

Proposition 7.2. Let f1 ∈ Ar1(v1), f2 ∈ Sr2(v2) with r1 ∈ R and r2 > 0. As above we use 
r3 = 4 − r1 − r2, and multiplier systems satisfying v3 = v−1

1 v−1
2 .

i) There are fairly explicit functions A1, A2 in the module of all real-analytic functions 
on H− with the action |−

v−1
3 ,r3

such that

cp(f1, f2) = A1|−v−1
3 ,r3

(T − 1) + A2|−v−1
3 ,r3

(S − 1) . (7.3)

ii) There are B1, B2 ∈ −D−ω

v−1
3 ,r3

such that

cp(f1, f2) = B1|−v−1
3 ,r3

(T − 1) + B2|−v−1
3 ,r3

(S − 1) . (7.4)

The proof takes the remainder of this subsection. It depends on various other re-
sults, which may be considered interesting independently. In the course of the proof the 
meaning of fairly explicit will become clear.
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Lemma 7.3. Let V be a linear space of functions on the lower half-plane containing the 
holomorphic functions and stable under multiplication by holomorphic functions.

Let c1 ∈ Z1(Γ; −D∞
v2,2−r2) and c2 ∈ Z1

p(Γ; −D∞
v2,2−r2). If there exist elements q ∈ V

such that

q|−v2,2−r2
T = q|−v2,2−r2

S , and q|−v2,2−r2
(S − 1) = c1(ρ− 1, ρ) , (7.5)

then

c1(ρ− 1, ρ) c2(i,∞)

=
(
q c2(ρ,∞

) ∣∣−
v−1
3 ,r3

(T − 1) +
((

q|−v1,2−r1
S
)
c2(ρ− 1, i)

) ∣∣−
v−1
3 ,r3

(S − 1) .
(7.6)

Remark. We consider (7.6) to be ‘fairly explicit’ in the data c1, c2, and q.

Proof. By the following computation, starting at the right hand side in (7.6). To save 
space we denote by | the actions |v1,2−r1 and |−v2,2−r2

on the separate factors

=
(
q|T ) c2(ρ− 1,∞) − q c2(ρ,∞) + q c2(ρ, i) − (q|S) c2(ρ− 1, i)

= (q|S)
(
c2(ρ− 1,∞) − c2(ρ− 1, i)

)
− q

(
c2(ρ,∞) − q c2(ρ, i)

)
=

(
q|S − q

)
c2(i,∞) = c1(ρ− 1, ρ) c2(i,∞) . �

Remark. We found the relation by using the fact that the linear map in (3.7) preserves 
cohomology classes. So the cup product dp ∪c2 should be a coboundary. Evaluating p ⊗c2
on δ1∂ (L + R) leads to (7.6).

If we try to work with the cup product c1 ∪ dp2 the function p2 would have to have 
values in a module in which there are no non-trivial invariants for the element T ∈ Γ. 
Cocycles of modular forms do not become trivial in modules satisfying this condition.

Proof of part i) of Proposition 7.2. The space V an of all real-analytic functions on H−

satisfies the condition in Lemma 7.3. We put for t ∈ H−

Qf1(t) =
t̄∫

τ=ρ

f1(τ)
(
τ − t

)r1−2
dτ . (7.7)

The presence of t̄ as limit of integration makes Qf1 non-holomorphic. It is real analytic. 
A direct computation shows that for all γ ∈ Γ

Qf1 |−v1,2−r1
(γ − 1) =

ρ∫
−1

f1(τ) (τ − t)r1−2 dτ . (7.8)

τ=γ ρ
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So the group cocycle γ 	→ ψρ
γ = cf1(γ−1ρ, ρ) associated to f1 with base point ρ becomes 

a coboundary in the module 
(
V an, |−v2,2−r

)
. It satisfies ψρ

TS = 0 since ST−1ρ = ρ. So 
Qf1 |−v2,2−r2

TS = Qf1 . We can take q = Qf1 in Lemma 7.3.
The construction of Qf1 may also be considered fairly explicit. �

Proposition 7.4. For all r1 ∈ R and corresponding multiplier system the space of auto-
morphic functions has a decomposition

Ar1(v1) = Sr1(v1) ⊕Xr(v1) , (7.9)

where Xr1(v1) is the space of f1 ∈ Ar1(v1) for which there is an element qf1 ∈ −D−∞
v1,2−r1

such that

cf1(γ−1ρ, ρ) = qf1 |−v1,2−r1
(γ − 1) for all γ ∈ Γ . (7.10)

Proof. This is a consequence of the theorem of Knopp and Mawi [11] which gives a 
bijection

Sr1(v1) −→ H1(Γ;−D−∞
v1,2−r1

) , (7.11)

given by assigning to a cusp form f1 the cohomology class represented by the group 
cocycle γ 	→ ψ∞ = cf1(γ−1∞, ∞). Actually, they state the result with Knopp cocycles 
ιψ∞.

The natural maps associated to extension of modules give linear maps

Ar1(v1) → H1(Γ;−Dω
v1,2−r1) → H1(Γ;−D∞

v1,2−r1) → H1(Γ;−D−∞
v1,2−r1

) (7.12)

sending f1 to the cohomology class 
[
ψρ]. For cusp forms f1 the classes of ψρ and ψ∞

coincide in the last two of the modules in (7.12). We define Xr1(v1) as the kernel of 
Ar1(v1) → H1(Γ; −D−∞

v1,2−r1
). The theorem of Knopp and Mawi implies the statements 

in the proposition. �
Remark. In principle the construction of qf1 might be traced by analyzing the proofs 
in [10] and [11]. We would not call the result fairly explicit.

Proposition 7.5. Let f1 ∈ Ar1(v1) have at most exponential growth O
(
eA Im z

)
with some 

A ∈ R at the cusp. Then there are elements q ∈ −D−ω
v1,2−r1

such that

cf1(γ−1ρ, ρ) = qf1 |−v1,2−r1
(γ − 1) for all γ ∈ Γ . (7.13)

Proof. Theorem C in [3] implies that such q exist if the automorphic form f1 has a 
(2 − r)-harmonic lift. For exponentially growing modular forms the existence of such 
harmonic lifts follows from Theorem 1.1 in [1]. �
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Remark. The proof of the existence of harmonic lifts is highly non-explicit. Here we 
need it only for cusp forms. Then we may work with the cocycle ψ∞

f1
. The corresponding 

functions q∞f1
are mock modular forms with shadow (a multiple of) f1. The difference 

q∞f1
− qf1 can be made more or less explicit.

Proof of part ii) of Proposition 7.2. The function q in Lemma 7.3 is provided by Propo-
sition 7.4 for f1 ∈ Xr−1(v1). For cusp forms we use Proposition 7.5. �
8. Triple integral

Our aim in this section is to prove Theorem 1.1, which gives an expression as a 
threefold iterated integral for the trilinear form T(f1, f2, f3) introduced in (7.2). We 
reformulate the triple integral in Theorem 1.1 in Proposition 8.5. This formulation is 
sufficiently explicit to allow numerical computations, in Section 8.4, that suggest that 
for many choices of the weights the trilinear form (f1, f2, f3) 	→ T(f1, f2, f3) is non-zero.

Throughout this section we consider three modular forms f1 ∈ Ar1(v1), f2 ∈ Sr−2(v2), 
f3 ∈ Mr3(v3), and assume that the weights rj and corresponding multiplier systems vj
satisfy the conditions in (7.1).

From Subsection 8.2 on we work under the stronger conditions

r1 < 2 , 0 < r2 < 2 , r1 + r2 + r3 = 4 , v1v2v3 = 1 . (8.1)

The triple integral as stated in Theorem 1.1 is absolutely convergent if r1, r2 < 2. We 
expect that analytic continuation in (r1, r2) is possible. Then the modular forms should 
be families depending on the weight. (This makes sense if we multiply the modular 
forms with powers of the Dedekind eta-function.) Here we do not pursue the analytic 
continuation.

8.1. Truncation and fourfold integral

We start without the additional assumption r1, r2 < 2.

Truncation. Like in the proof of Theorem 5.1 we approximate cf2(i, ∞) by cf2(i, ia) with 
a > 0, and put

Ta(f1, f2, f3) =
[
f3, cf1(ρ− 1, ρ) · cf2(i, ia)

]
r3
. (8.2)

Lemma 8.1. Under the assumptions (7.1)

T(f1, f2, f3) = lim
a→∞

Ta(f1, f2, f3), . (8.3)

Proof. Lemma 5.2 states that cf2(i, ia) approximates cf2(i, ∞) as a ↑ ∞ in the natural 
topology on −D∞

v2,2−r2 . The multiplication ϕ 	→ cf1(ρ − 1, ρ) ϕ is a continuous map 
−D∞

v ,2−r → −D∞
v v ,4−r −r . Since the ϕ 	→ [h, ϕ]r3 is continuous the lemma follows. �
2 2 1 2 1 2
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Fig. 2. Paths of integration in Proposition 8.2.

Fourfold integral. The quantity Ta(f1, f2, f3) has the advantage that it has an expression 
involving four integrals over compact sets: the two Eichler integrals from ρ − 1 to ρ and 
from i to ia, and the two integrals over compact cycles in the duality theorem Theorem 4.1
and in the definition of σrf . This is quite complicated. However, the compact domains 
of integration allow us to choose any order of integration that suits us.

Proposition 8.2. Under the assumptions (7.1) and r3 > 0:

T(f1,f2, f3) = lim
a→∞

ρ∫
τ1=ρ−1

f1(τ1)
ia∫

τ2=i

f2(τ2)
1
π

∫
z∈C2(a)

f3(z) (−z − i)r3

· 1
π

∫
τ∈C1(a)

2F1

(
1, 1; r3;

(τ − i)(z + i)
(τ + i)(z − i)

)(τ1 − τ

i− τ

)r1−2 (τ2 − τ)
i− τ

)r2−2

· dτ

τ2 + 1
dz

z2 + 1 dτ2 dτ1 .

(8.4)

We take C2(a) and C1(a) as positively oriented circles 
∣∣z−i
z+i

∣∣ = c2(a) and 
∣∣ τ−i
τ+i

∣∣ = c1(a)
with c1(a) < c2(a) < 1 such that C1(a) encircles paths from ρ − 1 to ρ and from i to ia. 
See Fig. 2.

Proof. We unravel the definitions in Theorem 4.1, and in (4.5), (4.2) and (2.5), and 
combine them as the limit of a fourfold integral. We use that r1 + r2 = 4 − r3. For 
τ ∈ C1(a) we can combine (τj−τ)rj−2 and (i −τ)2−rj to get 

( τj−τ
i−τ

)rj−2 as a holomorphic 
function on P 1

C minus a path from τj to i. Actually, in (4.5) we need the following form 
of the Eichler integrals

cfj (x1, x2)−(τ) = (i− τ)2−rj cfj (x1, x2; τ) ,

since these functions are holomorphic on a neighborhood of H− ∪ P 1
R in P 1

C. They are 
directly given by
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cfj (x1, x2)−(τ) =
x2∫

τ=x1

fj(τj)
(τj − τ

i− τ

)rj−2
dτ . (8.5)

We need r3 > 0, since the hypergeometric function in formula (4.5) is not defined at 
r3 = 0. �
8.2. Triple integral

In this subsection we prove Theorem 1.1. To the assumptions (7.1) we add in (8.1)
the conditions r1 < 2, r2 < 2. These additional conditions restrict the triples (f1, f2, f3)
considerably. We have r3 > 0, and moreover f2 can only be a multiple of η2r2 , hence 
v2 = v[r2].

The plan of the proof is to modify the fourfold integral in Proposition 8.2. We start 
with the two inner integrals, which describe 

[
f3, κ(τ1, τ2; ·)

]
r3

, with the product of mod-
ified Eichler kernels

κ(τ1, τ2; τ) =
(τ1 − τ

i− τ

)r1−2 (τ2 − τ

i− τ

)r2−2
. (8.6)

Lemma 9.9, derived in the context of the universal covering group of SL2(R), gives a 
simpler expression for the two innermost integrals.

The main work is the transformation is the simplification of this expression. We use 
Kummer relation for the hypergeometric function, and go over from a closed contour to 
a segment in H as the path of integration.

Combining the resulting integral with the integrals over τ1 and τ2 finishes the proof.

Standing assumptions. In stating lemmas we work with the standard assumptions for 
the fj , the rj , and the vj . From Lemma 8.4 onwards we assume r1 < 2, r2 < 2.

Lemma 8.3. Let τ1 �= τ2. Then

[
f3, κ(τ1, τ2; ·)

]
r3

= (2i)2−r2

π

∣∣cτ1 + d
∣∣2r1−2 (τ2 − τ̄1)r2−2

·
∫

z∈C

f3(z) (−i− z)r3
( z + i

z − τ̄1

)1−r3

· 2F1

(
1, 2 − r2; r3;

(τ2 − τ1)(z − τ̄1)
(τ2 − τ̄1)(z − τ1)

)
dz

(z − τ1)(z + i) ,

(8.7)

where C is a positively oriented curve in H encircling all singularities of the integrand. 
The matrix g =

(
a
c
b
d

)
∈ SL2(R) is determined by the conditions gτ1 = i and gτ2 ∈

i(1, ∞), and arg(ci + d) ∈ [0, π).

Proof. This is Lemma 9.9 with h+(z) = f3(z) (−i − z)r3 . �
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Relation (8.7) is complicated, since it depends directly on τ1 and τ2, and indirectly 
via the matrix g. In the following result we use the lower row (c, d) of g again.

Lemma 8.4. If r1, r2 < 2 the integral in (8.7) is equal to:

−π 22−r1 e−πi(r1/2+r3) B(2 − r1, 2 − r2)−1 (τ2 − τ̄1)2−r2
∣∣cτ1 + d

∣∣2−2r1

·
τ2∫

z=τ1

f3(z)
( z − τ1
τ2 − τ1

)1−r2 ( τ2 − z

τ2 − τ1

)1−r1 dz

τ2 − τ1
.

(8.8)

The path of integration can be chosen along the geodesic segment sτ1,τ2 from τ1 to τ2, or 
be deformed in such a way that it does not cross the geodesic �τ1,τ2 through τ1 and τ2 in 
points of �τ1,τ2 � sτ1,τ2 .

We use the beta-function B(a, b) = Γ(a) Γ(b)/Γ(a + b).

Proof. We rewrite for z ∈ H

(−i− z)r3
( z + i

z − τ̄1

)1−r3
= e−πir3 (z + i) (z − τ̄1)r3−1 .

In the resulting expression for the integral in (8.7) we go over to the disk coordinate 
w = z−τ1

z−τ̄1
, z = τ1−wτ̄1

1−w , and put q = τ2−τ1
τ2−τ̄1

. We choose the curve C such that |w| = q1
with |q| < q1 < 1. We write f3[w] = f3(z). The integral is equal to

= e−πir3(τ1 − τ̄1)r3−1

·
∫

|w|=q1

f3[w] 2F1
(
1, 2 − r2; r3; q/w

)
(1 − w)−r3

dw

w

= e−πir3(τ1 − τ̄1)r3−1 (8.9)

·
∫

|u|=q1/|q|

f3
[
qu

]
2F1

(
1, 2 − r2; r3;u−1) (1 − qu)−r3

du

u
.

We use Kummer relations (1), (7) §6.5 and (9), (13), (17), (21) §6.4 in [14, §6.5] to 
get, under the additions conditions r1, r2 �= 1:

2F1
(
1, 2 − r2; r3; z

)
= Γ(r2 − 1) Γ(r3)

Γ(2 − r1)
(−z)r2−2(1 − 1/z)1−r1

+ r3 − 1
r2 − 1 z−1

2F1
(
1, 2 − r3; r2; 1/z) (8.10)

= Γ(r1 − 1) Γ(r3)
Γ(2 − r2)

z1−r3 (1 − z)1−r1

+ r3 − 1
2F1

(
1, 2 − r2; r1; 1 − z) . (8.11)
1 − r1
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We use that in both cases one hypergeometric function specializes to a simpler expres-
sion.

Relation (8.11) is valid for z ∈ (0, 1) and extends to a relation between holomorphic 
extensions on C � (−∞, 0] ∪ [1,∞)). In relation (8.10) there are no z for which both 
hypergeometric series are in their domain of absolute convergence. The relations hold 
for the holomorphic extension for z ∈ (−1, 0), and extend to C � [0, ∞).

The two singularities of the integrand in (8.9) are determined by the behavior of the 
hypergeometric function at u = 0 and at u = 1. The Kummer relations show that

2F1
(
1, 2 − r2; r3; 1/u

)
�

{
|u|min(1,2−r2) as u → 0 ,
|u− 1|min(0,1−r1) as u → 1 .

(8.12)

Together with u−1 in duu this implies that the original path of integration |u| = q1/|q|
can be moved closely to the interval [0, 1]. We have to determine the contributions of the 
limits of the integrals on both sides of the interval.

10
�
�

We have to consider the integrand in (8.9) at points u = x ± iε with x ∈ (0, 1) and 
ε ↓ 0. The factors f3[qu] and (1 − qu)−r3 are holomorphic at the points u ∈ (0, 1).

We use the Kummer relation (8.11). The points 1 −1/x are in (−∞, 0). So the hyper-
geometric function 2F1

(
1, 2 − r2, r1; 1 − 1/u) is holomorphic on the interval u = (0, 1), 

and the contributions from the integrals on both sides cancel each other. The factor 
(1/u)1−r3 in the first term of (8.11) is the same on both sides of the interval. The imag-
inary part of 1 − 1/u at u = x ± iε is ±iε

x2+ε2 . This means that the factor (1 − 1/u)1−r1

should be computed as 
(1−u

u

)1−r1
e±πi(1−r1). The integral in (8.9) is equal to

e−πir3 (τ1 − τ̄1)r3−1
1∫

u=0

f3[qu] (1 − qu)−r3
Γ(r1 − 1) Γ(r3)

Γ(2 − r2)
ur3−1

·
(
1/u− 1

)1−r1 du

u

(
−eπi(1−r1) + e−πi(1−r1)

)

= 2πi e−πir3 (τ1 − τ̄1)r3−1 Γ(r3)
Γ(2 − r1) Γ(2 − r2)

1∫
u=0

f3[qu] (1 − qu
)−r3

· u1−r2 (1 − u)1−r1 du .

This integral is holomorphic in r1 and r2 under the conditions r1 < 2, 0 < r2 < 2, 
r3 = 4 − r1 − r2 > 0. The integral in the left hand side of the relation in the lemma is 
holomorphic in r1 and r2 as well. So we can drop the assumptions that r1 and r2 are not 
integral.
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As u runs from 0 to 1, the image z = τ1−τ̄1qu
1−qu runs from τ1 to τ1−τ̄1q

1−q = τ2 along 
the geodesic segment sτ1,τ2 in H. Carrying out the backward substitutions u = w/q and 
w = z−τ1

z−τ̄1
we arrive at

2πi e−πir3(τ1 − τ̄1)r3−1 B(2 − r1, 2 − r2)−1
τ2∫

z=τ1

f3(z)
( z − τ̄1
τ1 − τ̄1

)r3

·
( (z − τ1)(τ2 − τ̄1)

(z − τ̄1)(τ2 − τ1)

)1−r2 ( (τ2 − z)(τ1 − τ̄1)
(z − τ̄1)(τ2 − τ1)

)1−r1

· (τ2 − τ̄1)(τ1 − τ̄1)
(τ2 − τ1)(z − τ̄1)2

dz ,

(8.13)

with the beta-function B(x, y) = Γ(x)Γ(y)/Γ(x + y). The path of integration is the 
geodesic segment sτ1,τ2 . To handle the powers we note that z − τ̄1 and τ1 − τ̄1 are both 
in the upper half-plane. So with the standard choice of the argument in (−π, π) we have

(τ1 − τ̄1)r3−1
( z − τ̄1
τ1 − τ̄1

)r3
= (τ − τ̄1)−1 (z − τ̄1)r3 .

In 
(

(z−τ1)(τ2−τ̄1)
(z−τ̄1)(τ2−τ1)

)1−r2
, coming from u1−r2 , the arguments of the quotients z−τ1

τ2−τ1
and 

z−τ̄1
τ2−τ̄1

are equal, and contained in (−π, π). So we can split up this power correspond-
ingly. The factor coming from (1 − u)1−r1 can be handled analogously. This leads to the 
following:

2πi e−πir3 B(2 − r1, 2 − r2)−1
τ2∫

z=τ1

f3(z) (z − τ̄1)r3−2
( z − τ1
τ2 − τ1

)1−r2 ( z − τ̄1
τ2 − τ̄1

)r2−1

·
( τ2 − z

τ2 − τ1

)1−r1 ( z − τ̄1
τ1 − τ̄1

)r1−1 τ2 − τ̄1
τ2 − τ1

dz

= −π 22−r1 e−πi(r1/2+r3) B(2 − r1, 2 − r2)−1 (τ2 − τ̄1)2−r2
∣∣cτ1 + d

∣∣2−2r1

·
τ2∫

z=τ1

f3(z)
( z − τ1
τ2 − τ1

)1−r2 ( τ2 − z

τ2 − τ1

)1−r1 dz

τ2 − τ1
. (8.14)

In the second step we decomposed the powers of quotients in which τ̄1 occurs. This is 
possible since both numerator and denominator are in the upper half-plane. We also 
used that di−b

a−ic = τ1, hence τ1 − τ̄1 = 2i
a2+c2 , and cτ1 + d = 1

a+ic .
The resulting integrand is holomorphic in z, and we can deform the path of integration. 

The two powers in the integrand are multi-valued and have singularities at τ1 and τ2, 
respectively. In the statement of the lemma we choose a region on which the integrand 
is well-defined. If τ2 tends to τ1 the limit of the integral exists. �
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Completion of the proof of Theorem 1.1. For τ1 �= τ2 we obtain from Lemmas 8.3 and 8.4:
[
f3, κ(τ1, τ2; ·)

]
r3

= −(2i)2−r2 |cτ1 + d|2r1−2+2−2r1 (τ2 − τ̄1)r2−2+2−r2

· 22−r1 e−πi(r1/2+r3) B(2 − r1, 2 − r2)−1

·
τ2∫

z=τ1

f3(z)
( z − τ1
τ2 − τ1

)1−r2 (τ2 − z)
τ2 − τ1

)1−r1 dz

τ2 − τ1

= (−2i)r3 B(2 − r1, 2 − r2)−1

·
τ2∫

z=τ1

f3(z)
( z − τ1
τ2 − τ1

)1−r2 (τ2 − z)
τ2 − τ1

)1−r1 dz

τ2 − τ1

= (−2i)r3 B(2 − r1, 2 − r2)−1

·
1∫

u=0

f3
(
τ1 + u(τ2 − τ1)

)
u1−r2 (1 − u)1−r1 du .

The quantities τ̄1, c and d, which are not holomorphic in τ1 and τ2 cancel in this result. 
The second version shows that the whole expression is holomorphic in (τ1, τ2) ∈ H2.

These expressions can be inserted for 
[
f3, κ(τ1, τ2)

]
r3

in

Ta(f1, f2, f3) =
ia∫

τ2=i

f2(τ2)
ρ∫

τ1=ρ−1

f1(τ)
[
f3, κ(τ1, τ2)

]
r3
dτ1 dτ2 .

The values 
[
f3, κ(τ1, τ2)

]
r3

have at most polynomial growth in τ2, since f3 has at 
most polynomial growth. The values of f1(τ) stay bounded. The exponential decay of 
the cusp form f2(τ2) as τ2 moves up to infinity, ensure that the limit as a ↑ ∞ exists. 
The limit is given by the same expression with ia replaced by ∞. Lemma 8.1 implies 
that the resulting limit is equal to T(f1, f2, f3).

The path of integration of the integral over z can be deformed, provided we take 
care not to cross singularities of the integrand. The discontinuities of the powers of 
quotients in (1.14) can be chosen to occur along the geodesic half-lines indicated in the 
theorem. �
8.3. Reformulations of the triple integral

8.3.1. Integration over a 3-cycle
The triple integral in (1.14) is based on the choice of the pairs (ρ − 1, ρ) and (i, ∞)

determining the limits of integration in the outer integral.
Let us put

Y3 =
{
(τ1, τ2, z) ∈ H3 : z /∈ �τ1,τ2 � sτ1,τ2

}
, (8.15)
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with �τ1,τ2 and sτ1,τ2 as indicated in Theorem 1.1. On Y3 we have the holomorphic 3-form

Ω(τ1, τ2, z) =
( z − τ1
τ2 − τ1

)1−r2 ( τ2 − z

τ2 − τ1

)1−r1 dz dτ2 dτ1
eτ2 − τ1

. (8.16)

One can check that its transformation behavior is such that

f1(τ − 1) f2(τ2) f3(z) Ω(τ1, τ2, z)

is Γ-invariant for the diagonal action of Γ on H3. Up to the factor

(−2i)r3
B(2 − r1, 2 − r2)

the triple integral T(f1, f2, f3) is given by a specific 3-dimensional cycle in Y3. Cutting 
up the cycle and using the Γ-invariance we can give alternative formulations of the triple 
integral.

8.3.2. Triple integral expressed in Fourier coefficients
We turn to the question whether T(f1, f2, f3) in Theorem 1.1 might be zero for all 

choices of the modular forms fj . The expression (1.13) for the triple integral is fairly 
explicit, but for numerical purposes the following version is more convenient.

Proposition 8.5. Let r1, r2, r3, p1, p2, p3 ∈ R satisfy

r1 < 2, 0 < r2 < 2, r3 > 0 r1 + r2 + r3 = 4 ,

pj ≡ rj mod 2 , p1 + p2 + p3 = 0 .
(8.17)

We consider modular forms f1 ∈ Ar1

(
v[p1]

)
, f2 ∈ Sr2

(
v[p2]

)
, f3 ∈ Mr3

(
v[p3]

)
given by 

their Fourier expansions

fj(z) =
∑
m≥0

aj(m) e2πi(m+pj/12)z . (8.18)

Then

T(f1, f2, f3) = (−2i)r3
B(2 − r1, 2 − r2)

∑
m1,m2,m3≥0

a1(m1) a2(m2) a3(m3)

· Ψr1,r2

( 12m1+p1
12 , 12m2+p2

12 , 12m3+p3
12

)
,

(8.19)

where we use
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Ψr1,r2(μ1, μ2, μ3) = e−2πμ2−π
√

3(μ1+μ3)

2πi

1∫
u=0

u1−r2 (1 − u)1−r1
e−π(2−

√
3)μ3u

μ2 + μ3u

· S
(
π(μ1 + (1 − u)μ3)

)
du (8.20)

= e−2πμ2−π
√

3(μ1+μ3)

2πi μ1−r3
3

μ3∫
u=0

u1−r2 (μ3 − u)1−r1

· e
−π(2−

√
3)u

μ2 + u
S
(
π(μ1 + μ3 − u)

)
du , (8.21)

S(x) = sin x

x
with smooth continuation at x = 0 . (8.22)

Remark. Both versions of the integral for Ψr1,r2 are trivially equivalent. Version (8.21)
seems slightly simpler for numerical integration. The factor S(· · · ) may oscillate, de-
pending on μ1 ∈ R and μ3 > 0.

Proof. The absolute convergence of (1.13) and the uniform absolute convergence of 
the Fourier expansions of the modular forms fj in the domains occurring in (1.13)
allow us to interchange the order of integration and summation. We compute the re-
sulting integral for a triple of individual Fourier terms. Inserting it gives the triple 
sum (8.19).

Let μ1 ∈ R, μ2 > 0, μ3 ≥ 0. We have to consider

ρ∫
τ1=ρ−1

e2πiμ1τ1

∞∫
τ2=i

e2πiμ2τ2

1∫
u=0

e2πiμ3(τ1+u(τ2−τ1)

· u1−r2 (1 − u)1−r1 du dτ2 dτ1 .

The absolute convergence allows us to carry out the integration of τ2 and τ1 first. 
That brings us to the integral

= e−π(2μ2+
√

3(μ1+μ3))

2πi

1∫
u=0

u1−r2 (1 − u)1−r1
e−π(2−

√
3)μ3u

μ2 + uμ3

· sin π(μ1 + (1 − u)μ3)
π(μ1 + (1 − u)μ3)

du .

(8.23)

Except for a change of variables, we do not see a way for further analytic treatment 
of this integral. �
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Table 1
Computations of T(f1, f2, f2), without the factor in front of the 
integral in (8.19), and the factor (2πi)−1 in (8.21).

r1 r2 = .2 r2 = .6 r2 = 1.3 r2 = 1.8
−.3 7.911485
−.7 3.983793 3.811007
−1.1 2.530185 2.706137 5.777819
−1.5 1.784794 2.070295 5.008281
−2.4 0.993019 1.313467 3.934317 22.868919

8.4. Numerical approach

Choice of modular forms. For a numerical computation we consider f1 = η2r1 , f2 = η2r2 , 
and f3 = E4 η

−2(r1+r2), with r1 < −r2 and 0 < r2 < 2. In this situation we can apply 
Proposition 8.5.

Approach to compute the triple integral. We used GP/Pari [16] for the computation.
The Fourier coefficients of E4 are known in terms of divisor sums, and the Fourier 

expansion of powers of the Dedekind eta-function has the form

η2r(z) =
∑
m≥0

pm(r) e2πi(m+r/12)z , (8.24)

with polynomials pm of degree m in Q[r], which can be symbolically computed.
For given (r1, r2) we start with a computation of the three lists of Fourier coefficients 

up to a given order, and store them for use later on. Then we have to compute the terms 
in the triple series in (8.19). For the evaluation of Φr1,r2 we use the routine intnum
of Pari. The integrand may have problematic behavior at the end points u = 0 and 
u = 1. This can be indicated in the arguments of intnum. We can prescribe a desired 
precision.

Actual computations. The Pari computations of Φr1,r2 give consistent results under in-
crease of the precision. We give in Table 1 a number of computations for f1, f2, f3 as 
indicated at the start of this subsection.

These results give evidence that the triple integral is non-zero, and the cup product 
cp(f1, f2) is non-trivial at least in some cases.

9. Universal covering group and principal series representation

In the previous sections we work with the discrete subgroup Γ = SL2(Z) of SL2(R), 
and its action on spaces of holomorphic functions. Some of the results that we need to 
prove can be more conveniently considered in terms of the universal covering group of 
SL2(R) and its principal series representations. See the Appendix in [3] for a further 
discussion.
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9.1. The universal covering group

The universal covering group G̃ of G = SL2(R) can be obtained from the Iwasawa 
decomposition G = PK of G = SL2(R), where K = SO(2) and P consists of all upper 
triangular matrices in G. This gives a description of the analytic variety G as the product 
of a simply connected space P ∼= H, and the space SO(2) ∼= S1. The circle S1 has 
as simply connected covering the line R. This gives G̃ as the space H × R. The group 
operations of G can be lifted in a unique way to G̃. In this way we get a central extension

0 → Z → G̃ → G → 1 .

The center Z̃ of G̃ is isomorphic to Z and covers the center {1, −1} of G. In [3, (A.2)] a 
useful section g 	→ g̃ of the homomorphism G̃ → G is indicated. We note that it cannot 
be a group homomorphism.

The group Γ = SL2(Z) is covered by a discrete subgroup Γ̃ of G̃, generated by two 

elements t̃ =
(̃ 1

0
1
1
)

and s̃ =
(̃ 0

1
−1

0
)
. The relations between t̃ and s̃ are generated by 

t̃s̃2 = s̃2t̃ and t̃s̃t̃s̃t̃ = s̃. All multiplier systems v[p] correspond to a character χp of Γ̃. 
See [3, (A.10)].

Characters of Γ̃ correspond to multiplier systems. See [3, (A.10)]. Let ρ be a repre-
sentation of G̃ in some vector space V . One says that this representation has a central 
character if the center acts by s̃2 	→ e−πiq for some q ∈ C. The character χp of Γ̃ corre-
sponding to the multiplier system v[p] also satisfies χp : s̃2 	→ e−πip. Then χ−1

p ⊗ ρ is a 
representation of Γ̃ that is trivial on Z̃. Hence it induces a representation of Γ. We will 
see in Proposition 9.3 that the representations +D−ω

v,r and −Dω
v−1,r are of this form. So 

it is useful to understand some representations of Γ̃ that have a central character.

9.2. Principal series representation

In [3, §A.2] principal series representations of the universal covering group G̃ are 
discussed. We use realizations depending on parameters for s, p ∈ C.

Vω(s, p) ⊂ V∞(s, p) ⊂ V−∞(s, p) ⊂ V−ω(s, p) . (9.1)

The space Vω(s, p) consists of holomorphic functions on some neighborhood of P 1
R in P 1

C, 
or equivalently of the real-analytic functions on P 1

R, so that the space of the representa-
tion Vω(s, p) is the space Cω(P 1

R) of real-analytic functions on P 1
R, the space V∞(s, p) is 

C∞(P 1
R), the space V−∞(s, p) is the space of distributions on P 1

R, and the space V−ω(s, p)
is the space of hyperfunctions. Hyperfunctions on P 1

R are represented by holomorphic 
functions on U � P 1

R where U is some neighborhood of P 1
R in P 1

C. Two representatives 
h1 on U1 � P 1

R and h2 on U2 � P 1
R are equivalent if f1 − f2 on (U1 ∩ U2) � P 1

R is the 
restriction of a holomorphic function on U1 ∩ U2. The natural inclusion in (9.1) sends 
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ϕ ∈ Vω(s, p) to the hyperfunction with representative h that is zero on H− and equal to 
ϕ on H ∩ dom(ϕ).

The action of G̃ is given by the same formulas in all these spaces. It is indicated in 
[3, (A.23)]. For g =

(
a
c
b
d

)
with arg(ci + d) ∈ (−π, π) it has the form

ϕ|ps
s,pg̃ (t) := (a− ic)p/2−s

( t− i

t− g−1i

)s−p/2

· (a + ic)−s−p/2
( t + i

t− g−1(−i)

)s+p/2
ϕ(gt) .

(9.2)

The powers of τ−x1
τ−x2

with x1 and x2 both in H or both in H− are holomorphic on P 1
C

minus a path from x1 to x2. They are determined by the choice of arg τ−x1
τ−x2

= 0 at 
τ = ∞.

The central character is determined by s̃2 	→ e−πip. Since each element of G̃ can be 
written as the product of an integral power of s̃2 and an element g̃, we have a complete 
description of the action.

9.2.1. Disk coordinates
The spaces in (9.1) have an alternative characterization in disk coordinates in the 

variable w = z−i
z+i on P 1

C. To |w| = 1 corresponds the real projective line P 1
R, the upper 

half-plane is determined by |w| < 1, and the lower half-plane by |w| > 1 (including 
w = ∞, which corresponds to z = −i).

Elements of ϕ ∈ Vω(s, p) have a polar expansion

ϕ[w] =
∑
n∈Z

cn wn , (9.3)

with cn = O
(
(1 + ε)−|n|) for some ε > 0. For V∞(s, p) the condition is weaker: cn =

O
(
(1 + |n|)−A

)
for all A ≥ 0. The distributions in V−∞(s, p) have a polar expansion with 

coefficients satisfying dn = O
(
(1 + |n|)B

)
for some B > 0. This gives a duality between 

C∞(P 1
R) and the space C−∞(P 1

R) of distributions by the bilinear form

〈∑
n

dnw
n,
∑
n

cnw
n
〉

=
∑
n

dn c−n . (9.4)

In this way each distribution determines a continuous linear form on C∞(P 1
R) for the 

natural topology given by all supremum norms of h ∈ P 1
R of the derivatives 

( 1
w∂w)kh for 

k ≥ 0.
A representative of a hyperfunction is given by convergent Laurent series

{∑
n∈Z c+nw

n for 1 − ε < |w| < 1 ,
−
∑

c− wn for 1 < |w| < 1 + ε .
(9.5)
n∈Z n
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One can go over to the representative

{
c0
2 +

∑
n≥1 cn w

n for |w| < 1 ,
− c0

2 −
∑

n≤−1 cn wn for |w| > 1 ,

cn = c+n + c−n .

(9.6)

This is the unique representative f that is holomorphic on H ∪ H− and satisfies f(i) +
f(−i) = 0.

9.2.2. Duality
Let h, respectively f , represent an element of V−ω(s, p), respectively Vω(1 − s, −p). 

Denote h̃(w) = h
(
z−i
z+i

)
and f̃(w) = f

(
z−i
z+i

)
the corresponding functions in disk coordi-

nates. Following [4, §2.1] we may consider

〈h, f〉 = 1
2πi

( ∫
|w|=c

−
∫

w=c−1

)
h̃(w) f̃(w) dw

w

= 1
π

( ∫
z∈C+

−
∫

z∈C−

)
h(z) f(z) dz

z2 + 1 .

(9.7)

The constant c ∈ (0, 1) is such that f̃ is holomorphic on the region c ≤ |w| ≤ c−1

and h̃ is holomorphic on the regions c ≤ |w| < 1 and 1 < |w| ≤ c−1. This corresponds 
to contours C± in H± such that f is holomorphic on the region in P 1

C between C+ and 
C−, the contours included, and h is holomorphic on this region with P 1

R excluded. In 
this way the choice of the contour does not influence the value of 〈h, f〉. Moreover, if we 
replace h by another representative of the same hyperfunction we get the same value, so 
we have obtained a duality between V−ω(s, p) and Vω(1 − s, −p). One may check that 
if we take h ∈ V−∞(s, p) then we get the duality in (9.4). Comparison with (9.2) shows 
that for all α ∈ V−ω(s, p), f ∈ Vω(1 − s, −p)

〈
α|ps

s,pg, f |ps
1−s,−pg

〉
= 〈α, f〉 for all g ∈ G̃ . (9.8)

In Theorem 4.1 we used brackets [·, ·]r for a bilinear Γ-invariant duality between +D−ω
v,r

and −Dω
v−1,r. Here we use the brackets 〈·, ·〉 for a more general duality between hyper-

functions and analytic vectors. It is invariant for all principal series actions of G̃. In §9.3
we will derive the specialized bilinear form [·, ·]r from the general duality 〈·, ·〉.

9.2.3. Identifications
One can relate the Γ-modules −D±ω

v−1,r and +D±ω
v,r to submodules of principal series 

representations of G̃.



334 R. Bruggeman, Y. Choie / Advances in Mathematics 351 (2019) 296–342
Definition 9.1. Let r ∈ R.

a) +D−ω(r/2, r) ⊂ V−ω(r/2, r) consists of the hyperfunctions with a representative that 
is holomorphic on H and zero on H−.

b) −D−ω(r/2, −r) ⊂ V−ω(r/2, −r) consists of the hyperfunctions with a representative 
that is holomorphic on H− and zero on H.

Application of (9.2) to these representatives gives functions of the same type. So the 
subspaces +D−ω(r/2, r) of V−ω(r/2, r) and −D−ω(r/2, −r) of V−ω(r/2, −2) are in fact 
submodules for these choices of the parameters (s, p) in the principal series representa-
tions. To check it we use that

G0 =
{(a

c

b

d

)
∈ SL2(R) : arg(ci + d) ∈ (−π, π)

}
(9.9)

is an open neighborhood of 1 in SL2(R), which is mapped by the lift g 	→ g̃ to an 
open neighborhood of 1 in G̃. Hence representations of the connected Lie group G̃ are 
determined by their behavior on the g̃ with g ∈ G0, or even g in a small neighborhood 
of 1 in SL2(R).

Definition 9.2. The submodules +Dω(r/2, r) ⊂ V−ω(r/2, r) and −Dω(r/2, −r) ⊂
V−ω(r/2, −r) are defined by the condition that the representative h in Definition 9.1
has the property that the restriction of h to H± extends holomorphically to a neighbor-
hood of H± ∪ P 1

R in P 1
C.

Of course the extension of the restriction to the half-plane on which h is zero is 
trivial. It is an easy check with (9.2) that this extension property is preserved by the 
action of G̃.

The six multiplier systems v on Γ for a given real weight r are v[p] in (2.2), where 
p ∈ R/12Z satisfies p ≡ r mod 2. These multiplier systems correspond to characters χ
of Γ̃ by the relation χ(γ̃) = v(γ) for γ ∈ Γ. The central character of χ is determined 
by χ(s2) = e−πir, the same as for V(s, p). Hence the representation χ−1 ⊗ V(s, r) is a 
representation of Γ̃ that is trivial on the center Z̃ of Γ̃. So it is in fact a representation 
of Γ̃/Z̃ ∼= PSL2(Z) ∼= Γ/{1, −1}. We can view it as a representation of Γ that is trivial 
on −1.

Proposition 9.3.

i) For a multiplier system of Γ for the real weight r, corresponding to the character χ
of Γ̃ the following equivalences hold:

χ−1 ⊗ +D−ω(r/2, r) ∼= +D−ω
v,r

χ⊗ −D−ω(r/2,−r) ∼= −D−ω
v−1,r

(9.10)
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ii) Under these equivalences the submodules obtained by replacing −ω by ω are equiva-
lent as well.

iii) If r ∈ Z≤0 the submodule +Dpol
v,r corresponds to the submodule of χ−1⊗−Dpol(r/2, −r)

spanned by the functions w 	→ wq with integers q satisfying 0 ≤ q ≤ |r|.
iv) If r ∈ Z≤0 the submodule −Dpol

v−1,r corresponds to the submodule of χ ⊗−Dpol(r/2, −r)
spanned by the functions w 	→ w−q with integers q satisfying 0 ≤ q ≤ |r|.

Proof. Let h+ be the holomorphic function on H that together with 0 on H− represents 
a given element of +D−ω(r/2, r). The description in (9.2) implies for g =

(
a
c
b
d

)
∈ G0

that

h+|ps
r/2,r g̃(z) = (a + ic)−r

( z + i

z − g−1(−i)

)r

h+(gz) . (9.11)

Now put h(z) = (−i − z)−r h+(z).

(−i− z)−r
(
h+|ps

r/2,r g̃
)
(z) = (cz + d)−r h(gz) . (9.12)

To check this relation we first take 
(

a
c
b
d

)
near to 

(1
0

0
1
)
. Then we can take apart the powers 

of products and quotients. The resulting formula extends to g ∈ G0 by analyticity.
In a similar way f(z) = (i − z)−rf−(z) on H− leads to the other isomorphism in 

part i).
Part ii) is obtained by checking the definitions, where the holomorphy at ∞ requires 

a bit of care.
The submodule −Dpol

v−1,r consists of the polynomial functions of degree at most |r|. 
Some computations on the basis of f−(t) = (i − t)|r| f(t) and w = t−i

t+i show that 
polynomials in t of degree at most |r| correspond to polynomials in w−1 of degree at 
most |r|. �

So the Γ-modules that are of interest in this paper occur in principal series represen-
tations of the universal covering group. We note that we have used the functions h+ and 
f− already in the description in (4.3).

9.2.4. Intertwining operators
In the parameters (s, p) of the principal series representations the parameter p is 

essentially determined modulo 2. There is an algebraic isomorphism � : V−ω(s, p) →
V−ω(s, p − 2), given by multiplication by w = z−i

z+i . It preserves the subspaces of distri-
bution vectors, smooth vectors and analytic vectors. See [3, (A.24, p. 157].

A more subtle relation exists between V−ω(s, p) and V−ω(1 − s, p − 2). For general 
complex values of s these spaces are isomorphic. For the values of s in which we are 
interested the isomorphism breaks down, but there is a relation.
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Proposition 9.4.

i) For each r ∈ R here is an intertwining operator of G̃-modules

Jr : Vω(1 − r/2, 2 − r) → Vω(r/2,−r) (9.13)

given by the integral transformation

Jrh(z) = 1
π

∫
τ∈C

h(τ)
( 2i(z − τ)

(τ + i)(z − i)

)−r dτ

(τ + i)2 , (9.14)

where the positively oriented cycle in H is inside the domain of h, encircles −i, and 
z is outside C.

ii) If r /∈ Z≤0 the image of Jr is the module −Dω(r/2, −r), and the kernel is +D(1 −
r/2, 2 − r).

iii) If r ∈ Z≤0 then the image of Jr is the module −Dpol(r/2, −r).

Proof. Any h ∈ Vω(1 − r/2, 2 − r) has an expansion h =
∑

m∈Z cm wm in the disk 
coordinate w = z−i

z+i , where cm = O
(
(1 + ε)−|m|) for some ε > 0.

If we formulate the integral in (9.14) in disk coordinates w and v, with the substitution 
τ = i 1+v

1−v , and insert the expansion we arrive at

Jr :
∑
m∈Z

cmwm 	→
∑

m≤−1
cm

(r)−m−1

(−m− 1)! w
m+1 . (9.15)

To show that Jr is an intertwining operator we have to check that

(Jrh)|ps
r/2,−rg = Jr

(
h|ps

1−r/2,2−rg
)

for all g ∈ G̃ .

It suffices to do this for g̃ with g in a small neighborhood of 1 in SL2(R), for which we do 
not have to worry about taking apart powers of products and quotients. We leave this 
computation to the reader. (An alternative would be to look at the Lie algebra action 
on the weight vectors wm.) This completes the proof of part i).

In part ii) we have r /∈ Z≤0 and the statements concerning the kernel and the image 
of Jr follow from (9.15). For part iii) we have r = −a with a ∈ Z≥0. So (r)−m−1 is 
nonzero if and only if −m − 1 or −a + |m| − 2 ≤ −1. This leads to possibly non-zero 
terms in the image in (9.15) with −a ≤ m + 1 ≤ 0. �

A lift of the intertwining operator Jr in (9.13) is a linear map σ : Im Jr → Vω(1 −
r/2, 2 −r) such that Jr ◦σ is the identity on ImJr. A lift is in general not an intertwining 
operator. With (9.15) it is not hard to describe a lift.
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Proposition 9.5.

i) For r ∈ R � Z≤0 we define σrϕ for ϕ ∈ −Dω(r/2, −r)

σrϕ(z) = 1
π

z + i

z − i

∫
τ∈C

ϕ(τ) 2F1

(
1, 1; r; (τ − i)(z + i)

(τ + i)(z − i)

) dτ

τ2 + 1 , (9.16)

where C is a positively oriented closed curve in P 1
C � {i, −i} homotopic to P 1

R in the 
domain of ϕ, and where z is outside C.
The resulting linear map σr : −Dω(r/2, −r) → Vω(1 − r/2, 2 − r) is a lift of Jr.

ii) For n ∈ Z ≤ 0 we denote by ϕn the element of −Dω(r/2, −r) given by ϕn(w) = wn

(in disk coordinates). Then

σrϕn = |n|!
(r)|n|

ϕn−1 (9.17)

for all r ∈ C � Z≤0.
iii) For r ∈ Z≤0 we define σr on −Dpol(r/2, −r) by use of (9.17) for r ≤ n ≤ 0 on the 

basis elements ϕn. The resulting map sr : −Dpol(r/2, −r) → Vω(1 − r/2, 2 − r) is a 
lift of Jr.

Proof. Comparison with (9.15) shows that (9.17) in part ii) describes a lift of Jr for 
r /∈ Z≤0, and gives part iii) as well.

Insertion of the power series of the hypergeometric function in (9.16) and interchanging 
the order of summation and integration leads to (9.17). This gives part i). �
Freedom in the section. We have given one section σr of Jr with a simple description in 
the disk coordinate. We can add to σr an arbitrary map from −Dω(r/2, −r), respectively 
−Dpol(r/2, −r), to +Dω(1 − r/2, 2 − r) to obtain another section.

We note that for all g ∈ G̃ and ϕ ∈ −Dω(r/2, −r)
(
σrϕ)|ps

1−r/2,2−rg and σr

(
ϕ|ps

r/2,−rg
)

(9.18)

have the same image under Jr. Hence their difference is in +Dω(1 − r/2, 2 − r).

9.3. Duality

We formulate the duality Theorem 4.1 in the context of suitable principal series rep-
resentations.

Theorem 9.6.

i) Let r ∈ R � Z≤0. There is a non-degenerate G̃-invariant bilinear form [·, ·]r on 
+D−ω(r/2, r) × −Dω(r/2, −r) given by
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[α, f−]r = 1
π

∫
z∈C

h+(z)
(
σrf

−)(z) dz

(z + i)2 . (9.19)

Here h+ is the holomorphic function on H that together with the zero function on 
H− represents the hyperfunction α ∈ +D−ω(r/2, r), and f− ∈ −Dω(r/2, −r). The 
cycle C is homotopic to P 1

R in the intersection of H and the domain of σrf
−.

The value of the bilinear form does not change if we add to σrf
− any holomorphic 

function on H.
ii) Let r ∈ Z≤0. The integral in (9.19), now with f ∈ −Dpol(r/2, −r) defines a 

G̃-invariant bilinear form on +D−ω(r/2, r) × −Dpol(r/2, −r). The bilinear form is 
non-degenerate when restricted to +Dpol(r/2, r) × −Dpol(r/2, −r).

We first show how this theorem implies Theorem 4.1, and next prove the present 
version.

Proof of Theorem 4.1. Parts i) and iii) are identical to part i) in Theorem 4.1 with use 
of the identifications in Proposition 9.3.

For part ii) we note that if h ∈ +D−∞
v,r then the coefficients in the polar expansion 

(9.3) of h+ satisfy cn � (1 + n)B for some B > 0. The natural topology on −D∞
v−1,r

given by the supremum norms of the derivatives with respect to − cot t for t ∈ P 1
R can 

also be described by the seminorms 
∑

m≤0 dmwm 	→ supm≤0 |dm| mA for all A > 0. A 
computation shows that

[∑
n≥0

cn w
n,

∑
m≤0

dm w−m
]
r

=
∑
n≥0

n!
(r)n

cndm . (9.20)

This gives part iv) of the theorem, and shows the linear form f 	→ [h, f ]r extends 
continuously to −D∞

v−1,r. �
Proof of Theorem 9.6. We start with the duality in (9.8), in the situation

〈·, ·〉 : V−ω(r/2, r − 2) × Vω(1 − r/2, 2 − r) → C .

There is an algebraic isomorphism � : V−ω(s, p) → V−ω(s, p − 2), given by multipli-
cation by w = z−i

z+i . It preserves the subspaces of distribution vectors, smooth vectors 
and analytic vectors. See the characterization in terms of the polar expansion in §9.2.1. 
Applying it to +D−ω(r/2, r) ⊂ V−ω(r/2, r) we get a submodule of V−ω(r/2, r−2). With 
use of the expansion in the disk coordinate w this submodule can be checked to be 
orthogonal to +Dω(1 − r/2, 2 − r). So we get a G̃-invariant duality

+D−ω(r/2, r) ×
(
Vω(1 − r/2, 2 − r)

/
+Dω(1 − r/2, 2 − r)

)
→ C .

If r /∈ Z≤0 the section σr of the intertwining operator Jr in Proposition 9.5 induces 
an isomorphism
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−Dω(r/2,−r) ∼=
(
Vω(1 − r/2, 2 − r)

/
+Dω(1 − r/2, 2 − r)

)
.

Combining this we obtain for α ∈ +D−ω(r/2, r) and ϕ ∈ −Dω(r/2, −r)

[
α,ϕ]r =

〈
�α, σrϕ

〉
. (9.21)

Since α ∈ +D−ω(r/2, r), it has a representative given by a holomorphic function ψ on 
H and by 0 on H−. The hyperfunction �α is represented by z 	→ z−i

z+i h
+(z).

To see that the bilinear form is non-degenerate we note that in terms of w = z−i
z+i we 

have

〈
wa, w−b

〉
= a!

(r)a
δa,b . � (9.22)

If r ∈ Z≤0, the lift σr is defined only on −Dpol(r/2, −r). The bilinear form is de-
fined on +D−ω(r/2, r) × −Dpol(r/2, −r). In (9.21) we see that it is non-degenerate on 
+Dpol(r/2, r) × −Dpol(r/2, −r).

9.4. Variants of the integral in the duality theorem

In the discussion in §8.2 of the triple integral we need an alternative way to describe 
the integrals in the duality theorem. The proofs are easiest in the context of the universal 
covering group G̃.

The function

κ(τ1, τ2; τ) =
(τ1 − τ

i− τ

)r1−2 (τ2 − τ

i− τ

)r2−2
(9.23)

is holomorphic on H3 minus the set for which τ is on the union of geodesic segment 
si,τ1 ∪ si,τ2 . The function τ 	→ κ(τ1, τ2, τ) extends holomorphically to P 1

R and H−, and 
determines an element of −Dω(r3/2, −r3).

For functions holomorphic on the product of H2 and some neighborhood of P 1
R in P 1

C

we define two actions of G̃:

|+r1,r2,r3g = |2−r1g ⊗ |2−r2g ⊗ |ps
1−r3/2,2−r3

g ,

|−r1,r2,r3g = |2−r1g ⊗ |2−r2g ⊗ |ps
r3/2,−r3

g .
(9.24)

The action |ps
s,p in the third factor of the tensor product is given in (9.2). We define the 

other actions by taking for M =
(

a
c
b
d

)
near 1 in SL2(R)

h|2−r1M̃ ⊗ |2−r2M̃(τ1, τ2, z) = (cτ1 + d)r1−2 (cτ2 + d)r2−2 h(Mτ1,Mτ2, z) .

This determines an action of the universal covering group.
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Lemma 9.7. Let r1, r2 ∈ R, and put r3 = 4 − r1 − r2.

i) κ|−2−r1,2−r2,r3
g = κ for all g ∈ G̃ and all r3 ∈ R.

ii) For given τ1, τ2 ∈ H2, r3 /∈ Z≤0 and g ∈ G̃

(σr3κ)|+2−r1,2−r2,r3
g (τ1, τ2, z) − σr3κ(τ1, τ2, z)

extends as a holomorphic function of z on H.

Proof. Part i) is a consequence of the properties of Eichler kernels. It can be checked 
for g = M̃ near to 1 by a direct computation. Since G̃ is connected this implies the 
invariance for all g ∈ G̃.

For part ii) we use Proposition 9.5. It gives the operator σr3 as a lift of the intertwining 
operator Jr3 . Hence for each h ∈ −Dω(r3/2, −r3) and each g ∈ G̃

Jr3

(
(σr3h)|ps

1−r3/2,2−r3
g
)

=
(
Jr3σr3h

) ∣∣ps
r3/2,−r3

g = h|ps
r3/2,−r3

g

= Jr3

(
σr3

(
h|r3/2,−r3g

))
.

So (σr3h)|ps
1−r3/2,2−r3

g−σr3

(
h|r3/2,−r3g

)
is in the kernel of Jr3 , hence holomorphic on H. 

The lift σr3 concerns only the third coordinate. Modulo functions of z extending holo-
morphically to H we have

(σr3κ)|2−r1g ⊗ |2−r2g ⊗ |ps
1−r3/2,1−r3

g = σr3

(
κ(|2−r1g ⊗ |2−r2g)

)
|ps
1−r3/2,2−r3

g

≡ σr3

(
κ(|2−r1g ⊗ g2−r2 ⊗ gps

1−r3/2,2−r3
g)
)

= σr3κ ,
(9.25)

with use in the last step of the invariance of κ given in part i). �
Lemma 9.8. For p ≥ 1, r3 = 4 − r1 − r2 /∈ Z≤0

σr3κ(i, ip; ·)(z) = 22−r2 (p + 1)r2−2 z + i

z − i
2F1

(
1, 2 − r2; r3;

(p− 1)(z + i)
(p + 1)(z − i)

)
, (9.26)

for z outside a curve from i to ip.

Proof. We use disk coordinates w = τ−i
τ+i , u = z−i

z+i and v = ip−i
ip+i = p−1

p+1 . We have v ∈
(0, 1) and should take C1 corresponding to |w| = c1 with v < c1 < 1. Then σr3κ(i, ip; ·)(z)
is applicable for |u| > c1.

We have

σr3κ(i, ip; ·)(z) = 1
π

1
u

∫
1r1−2 (1 − v/w

1 − v

)r2−2
2F1

(
1, 1; r3;w/u

) 1
2i

dw

w

|w|=c1



R. Bruggeman, Y. Choie / Advances in Mathematics 351 (2019) 296–342 341
= 1
2πi

1
u

(1 − v)2−r2

∫
|w|=c1

∑
n≥0

(2 − r2)n
n!

vn

wn

∑
m≥0

m!
(r3)m

wm

um

dw

w

= u−1(1 − v)2−r2 2F1
(
1, 2 − r2; r3; v/u

)
= 22−r2 (p + 1)r2−2 z + i

z − i
2F1

(
1, 2 − r2; r3;

(p− 1)(z + i)
(p + 1)(z − i)

)
. �

Lemma 9.9. Let r3 = 4 − r1 − r2 /∈ Z≤0, and τ1 �= τ2 in H. For α ∈ +D−ω(r3/2, r3) rep-
resented by the holomorphic function h+ on H and zero on H−, and f−(τ) = κ(τ1, τ2; τ)

[
α, f−]

r3
= (2i)2−r2

π

∣∣cτ1 + d
∣∣2r1−2 (τ2 − τ̄1)r2−2

∫
z∈C

h+(z)

·
( z + i

z − τ̄1

)1−r3

2F1

(
1, 2 − r2; r3;

τ2 − τ1
τ2 − τ̄1

z − τ̄1
z − τ1

) dz

(z − τ1)(z + i) ,

(9.27)

where C is a wide closed curve in H encircling all singularities of the integrand in H, and 
where g =

(
a
c
b
d

)
∈ SL2(R) and p satisfy gτ1 = i, gτ2 = ip, p ≥ 1, and arg(ci +d) ∈ [0, π).

Remarks. The matrix g is unique for given different τ1 and τ2.
This is a hybrid formula. The right hand side depends directly on τ1 and τ2, and 

indirectly via c and d. The integrand is not holomorphic in τ1 and τ2.

Proof. In the integral for [α, f−]r3 in Theorem 9.6 we can replace σr3κ(τ1, τ2; τ) by 
(σr3κ)|+2−r1,2−r2,r3

g̃ (τ1, τ2; τ), by Lemma 9.7. The choice of g is such that we can apply 
the explicit formula in Lemma 9.8. We try to write the result in terms of τ1 = g−1i and 
τ2 = g−1(ip) as far as possible. We use

a + ic = 1
cτ̄1 + d

a− ic = 1
2τ1 + d

p + 1 = −i(gτ2 − gτ̄1) p− 1 = −i(gτ2 − gτ1)

After some computations we arrive at the formula in the lemma. We handle powers of 
products and quotients by first taking τ1 and τ2 near to each other, and hence g near 
to the unit matrix. We observe that both sides of the equality are real-analytic in τ1
and τ2. �
Acknowledgments

The second author is partially supported by NRF 2018R1A4A 1023590 and NRF 
2017R1A2B 2001807.

We thank the referees for their remarks, which led to improvements in the paper.



342 R. Bruggeman, Y. Choie / Advances in Mathematics 351 (2019) 296–342
References

[1] R. Bruggeman, Harmonic lifts of modular forms, Ramanujan J. 33 (1) (2014) 55–82.
[2] R. Bruggeman, Y. Choie, Multiple period integrals and cohomology, Algebra Number Theory 10 (3) 

(2016) 645–664.
[3] R. Bruggeman, Y. Choie, N. Diamantis, Holomorphic automorphic forms and cohomology, Mem. 

Amer. Math. Soc. 253 (1212) (2018), vii+167 pp.
[4] R. Bruggeman, J. Lewis, D. Zagier, Period functions for Maass wave forms and cohomology, Mem. 

Amer. Math. Soc. 237 (1118) (2015), xii+132 pp.
[5] Y. Choie, Y. Park, D. Zagier, Periods of modular forms on Γ0(N) and products of Jacobi theta 

functions, J. Eur. Math. Soc. (JEMS) 21 (5) (2019) 1379–1410.
[6] H. Cohen, Haberland’s formula and numerical computation of Petersson scalar products, in: ANTS 

X—Proceedings of the Tenth Algorithmic Number Theory Symposium, in: Open Book Ser., vol. 1, 
Math. Sci. Publ., Berkeley, CA, 2013, pp. 249–270.

[7] H. Cohen, Expansions at cusps and Petersson products in Pari/GP, in: Elliptic Integrals, Elliptic 
Functions and Modular Forms in Quantum Field Theory, in: Texts Monogr. Symbol. Comput., 
Springer, Cham, 2019, pp. 161–181.

[8] M. Eichler, Eine Verallgemeinerung der Abelsche Integrale, Math. Z. 67 (1957) 267–298.
[9] K. Haberland, Perioden von Modulformen einer Variabler und Gruppencohomologie, I, Math. Nachr. 

112 (1983) 245–282.
[10] M.I. Knopp, Some new results on the Eichler cohomology of automorphic forms, Bull. Amer. Math. 

Soc. 80 (4) (1974) 607–632.
[11] M. Knopp, H. Mawi, Eichler cohomology theorem for automorphic forms of small weights, Proc. 

Amer. Math. Soc. 138 (2) (2010) 395–404.
[12] W. Kohnen, D. Zagier, Modular forms with rational periods, in: Modular Forms, Durham, 1983, in: 

Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 197–249.
[13] S. Lang, Introduction to Modular Forms, Grundlehren Math. Wiss., vol. 222, Springer-Verlag, 1976.
[14] Y.L. Luke, Mathematical Functions and Their Approximations, Academic Press, 1975.
[15] M.O. Neururer, Eichler cohomology in general weights using spectral theory, Ramanujan J. 41 (1–3) 

(2016) 437–463.
[16] The Pari Group, Pari/Gp, Version 2.7.5, Bordeaux, available from http://pari .math .u -bordeaux .

fr/, 2015.
[17] V. Paşol, A. Popa, Modular forms and period polynomials, Proc. Lond. Math. Soc. (3) 107 (4) 

(2013) 713–743.
[18] D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985) 372–384.

http://refhub.elsevier.com/S0001-8708(19)30250-6/bib42723134s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4243s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4243s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib424344s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib424344s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib424C5As1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib424C5As1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib43505As1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib43505As1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib436F68s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib436F68s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib436F68s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib436F683138s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib436F683138s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib436F683138s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib45693537s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4861s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4861s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4B6E3734s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4B6E3734s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4B4D3130s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4B4D3130s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4B5As1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4B5As1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4C61s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4C75s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4E6575s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib4E6575s1
http://pari.math.u-bordeaux.fr/
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib5050s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib5050s1
http://refhub.elsevier.com/S0001-8708(19)30250-6/bib5A613835s1
http://pari.math.u-bordeaux.fr/

	Modular cocycles and cup product
	1 Introduction
	2 Modular forms and cohomology
	3 Cup product of modular cocycles
	3.1 Cup product
	3.2 Application to modular forms

	4 Duality theorem
	4.1 Γ-modules of holomorphic functions
	4.2 Duality

	5 Cup product and Petersson scalar product
	6 Coinvariants of polynomial functions
	7 Coinvariants associated to two Eichler cocycles
	7.1 Triviality over larger modules

	8 Triple integral
	8.1 Truncation and fourfold integral
	8.2 Triple integral
	8.3 Reformulations of the triple integral
	8.3.1 Integration over a 3-cycle
	8.3.2 Triple integral expressed in Fourier coefﬁcients

	8.4 Numerical approach

	9 Universal covering group and principal series representation
	9.1 The universal covering group
	9.2 Principal series representation
	9.2.1 Disk coordinates
	9.2.2 Duality
	9.2.3 Identiﬁcations
	9.2.4 Intertwining operators

	9.3 Duality
	9.4 Variants of the integral in the duality theorem

	Acknowledgments
	References


