
DE NOVO APPROACHES TO HAPLOTYPE-AWARE

GENOME ASSEMBLY

Jasmijn Anne Baaijens



Title: De novo approaches to haplotype-aware genome assembly

Author: Jasmijn A. Baaijens

Cover illustration: TheDigitalArtist at www.pixabay.com

Production: Gildeprint

ISBN: 978-94-632-3743-7

© Jasmijn Baaijens, 2019

The research described in this thesis was conducted at Centrum Wiskunde & Informatica

(CWI) and financially supported by the Netherlands Organization for Scientific Research

(NWO) through Vidi grant 679.072.309.

www.pixabay.com


DE NOVO APPROACHES TO HAPLOTYPE-AWARE

GENOME ASSEMBLY

Algoritmen ten behoeve van haplotype assemblage zonder referentiegenoom

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de

rector magnificus, prof.dr. H.R.B.M. Kummeling, in gevolge het besluit van het college

voor promoties in het openbaar te verdedigen op woensdag 25 september 2019 des

ochtends om 10.30 uur

door

Jasmijn Anne Baaijens

geboren op 10 december 1990 te Alphen aan den Rijn



Promotor: Prof. dr. A. Schönhuth



Table of contents

Preface vii

1 Introduction 1

1.1 DNA, RNA, and genetic variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Genome sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Genome assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Haplotype reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Outline and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 De novo assembly of viral quasispecies using overlap graphs 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Overlap graph-based generation of haplotigs for diploids and polyploids 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Full-length de novo viral quasispecies assembly through variation graph

construction 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

v



vi Table of contents

5 Viral quasispecies reconstruction via contig abundance estimation in

variation graphs 81

5.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Discussion 101

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Future applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Perspectives on third-generation sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 111

Summary 121

Samenvatting 125

Publications 129

Curriculum vitae 131



Preface

When I started my PhD research in September 2014, I was surprised by the broad variety

of research topics in bioinformatics and the speed by which this field develops. After

spending two months on reading a bit of everything, my attention was drawn towards

the haplotype-aware genome assembly problem. I found it remarkable that, at that time,

there were so few methods available for haplotype reconstruction without a reference

genome. In particular, the problem of de novo viral quasispecies assembly had not yet

been resolved.

Intrigued by these computational challenges and the 2014–2016 outbreak of Ebola

virus disease in West Africa, the primary goal of my research became to develop a de

novo approach to viral quasispecies assembly. At first, it seemed that for every problem

that we solved, ten new issues arose. But after two years of research, we were ready to

present our first results. And now, after four years of hard work, I am proud to write that

we can present a full, de novo solution to the viral quasispecies problem.

This thesis bundles the research papers presenting the results we achieved, the

scope of which is wider than viral quasispecies assembly alone. Although the core

chapters are rather technical, the first chapter gives a mild introduction to the field

of haplotype-aware genome assembly. Besides framing the problem and providing

some context, I hope that this chapter will give many people that I hold dear a further

understanding of what I have been working on all this time.

Acknowledgements

These four years of PhD research have been an amazing experience, which would not

have been possible without the support of many people.

First and foremost, I would like to thank my supervisor and promotor Alexander

Schönhuth, for giving me the chance to discover the world of bioinformatics. I am very

grateful for all the opportunities you have given me, opening up your network and giving

me the responsibility and confidence to present our work at several conferences. The

visit to Montpellier just three months after the beginning of my PhD was the perfect kick-

off for the viral quasispecies project. You were always supportive and understanding if

vii



viii Preface

something did not work as planned, yet challenged me when I needed it. So often have

I heard “You may not like it, but ...”, knowing that you were right. The freedom you gave

me to pursue my own interests has allowed me to grow as a researcher. I enjoyed my

independence, yet whenever I needed guidance you were there to assist. Thank you for

everything, I am looking forward to meet again in any future endeavors.

Although it has been a long way, these years of work certainly have not been lonely.

I have had the pleasure of working with many great people. I would like to thank Eric

Rivals and Amal Zine El Aabidine for the fruitful collaboration on the SAVAGE project.

Also, I would like to thank Christopher Esterhuyse for the work on suffix-prefix overlaps.

It was a delight to guide you through your bachelor’s project and your work has made a

big contribution to this thesis. To Bastiaan van der Roest, Johannes Köster, and Leen

Stougie, I am thankful for the great teamwork on Virus-VG. Bastiaan, you made such

a great start on this project. Johannes, thank you for always being ready to help, even

after you left CWI. Leen, I enjoyed working together with you a lot: your enthusiasm is

contagious and your help has been invaluable.

I would like to thank all members of the Life Sciences (& Health) group in the past

four years that have made my time at CWI such an enjoyable one. In particular Lisanne,

thank you for all the nice chats, walks, and pingpong breaks. Sharing an office with you

was really great. In addition, a special thanks to Davide and Mathé, for many pleasant

coffee breaks. Also to Marleen and Vincent, working with you has been a lot of fun

and a welcome distraction from the thesis work. And, as promised, my thanks to Peter,

not only for sharing your computing power in times of need, but also for your general

support.

CWI has a great working environment, powered by a fantastic support staff. Michael

and Maarten, I really appreciate all your help with IT-related issues; if I would have

tracked all my movements through CWI, the walk from my office to yours would stand

out. I would also like to express my gratitude to Nada, for your kind help with simply

everything. A great addition to the fun I had at CWI have been the PhD activities, at the

receiving end as well as on the organizing end. A special thanks to the past and current

members of the activity committee. In particular to Léon, thank you for making these

events possible through your support and involvement.

Finally, I am truly grateful for all the support I have had from friends and family. I

am greatly indebted to my parents, without whom this thesis would never have been

finished (or even started). And, most importantly, my dear husband Michiel, you

have contributed so much to this thesis by your continuous love and support, and by

providing a peaceful and happy home.

Jasmijn Baaijens

Alphen aan den Rijn, May 2019



CHAPTER 1

INTRODUCTION

1



2 Chapter 1. Introduction

1.1 DNA, RNA, and genetic variation

DNA and RNA molecules are found in abundance in all known forms of life. One or

more of these molecules together form its owner’s genome, storing all information

needed to build and maintain the organism: a genetic blueprint. The overall term for

DNA and RNA is nucleic acids and they consist of chains of nucleotides, the building

blocks of all genetic information. A nucleotide consists of three components: a sugar, a

phosphate group, and a nitrogenous base. There are five primary nitrogenous bases—

adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U)—giving rise to five

different nucleotides, also referred to as bases. The order of nucleotides in DNA and

RNA ultimately contains the information for the hereditary and biochemical properties

of life.

The nucleotides in DNA are represented by letters from the four letter alphabet

{A,C ,T,G}. Each of these bases can form hydrogen bonds with its opposing base: A

with T and C with G. These pairs of bases are called complementary. A DNA molecule

typically consists of two chains of nucleotides, called strands, which coil around each

other to form a double helix. The two strands run in opposite directions, they are

said to be reverse complements. Both strands store exactly the same information; this

redundancy enables repair mechanisms to correct errors in case of DNA damage. In

RNA, the thymine base (T) is substituted by uracil (U) and the complementary base

pairs become A with U and C with G. However, RNA is usually single stranded, which

makes it more vulnerable to corruption than DNA. Many viral genomes are encoded as

RNA, but this type of nucleid acid can also serve as a communication step that directs

protein synthesis. In this process called translation, the RNA sequence determines the

amino acid sequence of the protein that is being produced.

Many genomes come in copies, where each copy stems from one of the ancestors.

The number of copies determines the ploidy of the organism: haploid denotes a single

copy, while diploid relates to two copies, and polyploid refers to more than two copies

(depending on the context, polyploid may also include diploid). For example, the

human genome is encoded as DNA within 46 chromosomes which come in 23 pairs,

one copy from each parent. A haploid human genome (found in germ cells) counts

three billion base pairs, while a diploid human genome has twice as many base pairs.

Genomes within a population show genetic variation as a result of mutation and

recombination; the variants of a given gene are called alleles. Also the copies of the

genome within a single individual will differ in terms of the alleles present. Genetic dif-

ferences between individuals play an important role in evolution, as genomic alterations

can affect gene expression levels and enable the development of novel gene functions.

Mutations can be divided into three classes: single nucleotide polymorphisms (SNPs),

insertions or deletions, and structural variations (SVs) such as duplications or inver-



1.2. Genome sequencing 3

sions. Another source of genetic variation is recombination, where the different copies

of the genome within a single cell are recombined. Mutation and recombination rates

can vary from species to species and even from position to position within a single

genome [87].

1.2 Genome sequencing

The order of nucleotides within a genome can be determined through sequencing. How-

ever, it is hard to read the whole genome all at once; available methods can only read

stretches of nucleotides of limited length. The fragments produced by a sequencing

machine are referred to as reads. In general, the reads come together with quality scores

indicating per-base error probabilities. By producing multiple copies of the genome

through amplification and randomly breaking each copy into readable fragments, over-

laps between reads are created that enable reconstruction of the original genome. The

number of copies determines the average amount of reads covering a given position

of the genome; this value is referred to as sequencing depth or coverage. Different

technologies produce reads of different lengths and error profiles, at varying costs and

production times.

The first generation of sequencing methods were manual processes, of which the

most common technique is known as Sanger sequencing [106]. This technique has

been available since 1977 and has been used widely since. The Sanger method produces

sequencing reads with lengths up to 1000 bases and average error rates of only 0.001%

[124], but the sequencing process is rather expensive (in terms of both time and money)

when it comes to sequencing entire mammalian genomes. Despite its high costs per

base, Sanger sequencing is still used to date for small-scale experiments, where it

operates efficiently and achieves low error rates.

Then, around the year 2005, a new era of genome sequencing started with the advent

of next-generation sequencing (NGS). New technologies became available that were

able to speed up the sequencing process tremendously, while maintaining much lower

production costs as well. The downside, however, being that these machines were less

reliable than Sanger sequencing, with error rates of 0.1–1.0% at least 100-fold higher

than before [109, 124]. Moreover, with read lengths varying between 36 and 600 bases,

reads are significantly shorter than those obtained with Sanger sequencing. In order

to deal with increased error rates, genomes are sequenced at increased coverage. This

creates redundancy in the data and thereby allows for correction of sequencing errors

(up to a certain degree).

Since 2008, yet another range of sequencing technologies—described as third-

generation sequencing (TGS)—has emerged. These technologies are characterized by

much longer read lengths and are therefore also referred to as long read sequencers.



4 Chapter 1. Introduction

Depending on the technology used, read lengths can reach up to 900 kilobases [53].

But again, this advance comes at the cost of significantly increased error rates: initially

these were as high as 20%, but over the years have been reduced to 13–15% in 2017 and

are expected to be reduced even further [109, 126].

Although long read sequencing is very promising, sequencing read archives have

been filled with huge amounts of NGS data. The algorithms presented in this thesis

were designed for NGS data sets, in particular data obtained with Illumina sequencing

machines. However, we have kept a clear view towards the future: minor modifications

should enable processing of TGS reads (see also Chapter 6).

1.3 Genome assembly

The process of reconstructing a genome from sequencing data is called genome assembly.

This is typically performed in two steps: first, the sequencing reads are used to build

contiguous sequences of maximal length, referred to as contigs. Second, these contigs

are linked together into sequencing of contigs, ordering (where possible) the contigs as

they appear in the genome. The resulting creating chains of contigs are referred to as

scaffolds.

Since the first sequencing techniques, many genomes have been assembled and

databases have been filled with these sequences. Reference sequences have been built

for various species, such as the human reference genome, which can serve as a guideline

in new analyses. We distinguish between two classes of approaches to genome assembly:

reference-guided and de novo (i.e. reference-free) assembly.

1.3.1 Reference-guided assembly

In reference-guided assembly, one or more known genome sequences are used to as-

semble the genome under consideration. Instead of reconstructing a sequence from

scratch, we can align new sequencing reads to the existing genome sequence(s) and

observe the differences; these processes are known as read mapping and variant call-

ing, respectively. Although reference-guided assembly is computationally much more

efficient than reference-free assembly, the disadvantage is that such an approach is only

feasible if the existing assemblies are sufficiently similar to the genome to be assembled.

The resulting assemblies often show a bias towards the reference genome(s) used. This

bias can be reduced by using a collection of reference genomes that captures variation

within a population, instead of single (linear) reference genome [31, 90].



1.3. Genome assembly 5

1.3.2 De novo assembly

The alternative to reference-guided assembly is de novo assembly, where the genome

is reconstructed from the sequencing data without the use of a reference genome.

Sequence graphs are commonly used data structures in de novo assembly, in particular

de Bruijn graphs [25, 94] and overlap graphs [83, 85]; in the mean time, these techniques

have been perceived as assembly paradigms [84].

A de Bruijn graph stores the information from the reads in the form of k-mers, which

are substrings of the reads of length k. Every node represents a k-mer that is present

in the reads, and directed edges are drawn between any pair of nodes for which the

k-mers have an exact suffix-prefix overlap of length k −1. In such a graph, assuming

that there are no sequencing errors, the genome can be represented by a path visiting

every edge exactly once [94].

In an overlap graph, every read is represented as a node, and edges indicate suffix-

prefix overlaps between the sequences of the corresponding nodes. Edges are drawn for

sequence overlaps of any length (above a certain threshold) and inexact suffix-prefix

overlaps are allowed (up to a certain threshold). A specific type of overlap graph is the

string graph, where any contained reads (“inclusions”) and all transitive edges have

been removed. In a world without sequencing errors, the genome is represented by the

shortest possible path that visits all nodes of the string graph at least once [83].

Both of these paradigms have their advantages and disadvantages: while the prob-

lem formulation using de Bruijn graphs allows for more efficient solutions, some inform-

ation is lost when decomposing reads into k-mers. Depending on the application, one

paradigm may be preferable over the other; we will consider this choice in Chapters 2

and 3.

1.3.3 Error correction

Since sequencing reads contain errors, with error rates varying per sequencing techno-

logy, an important component of genome assembly is error correction. Some assem-

blers assume the input to be error-free by applying specialized error correction tools

to the data before assembly. Many assemblers, on the other hand, do not require such

preprocessing and handle sequencing errors during the assembly process itself. One

of the challenges in genome assembly is to distinguish sequencing errors from true

genomic variation.

1.3.4 Scaffolding

The final component of genome assembly is scaffolding, which takes place after con-

struction of maximal length contigs. Scaffolding is a process through which contigs



6 Chapter 1. Introduction

are linked together into scaffolds in the order in which they appear in the genome,

separated by gaps of known length. This is usually done based on information provided

by specific sequencing technologies, indicating how reads are linked; this information is

then transformed into linking of contigs. The task of scaffolding falls outside the scope

of this thesis, but many available tools specialize in this—see e.g. [52] for a review.

1.4 Haplotype reconstruction

The copy-specific sequences of the genome of a polyploid organism are called haplo-

types. These sequences generally differ in terms of the genetic variants affecting them:

a position in the genome (locus) is called homozygous if the haplotypes show the same

allele, and heterozygous otherwise. Reconstructing the individual haplotypes in an

organism or population, also known as haplotype-aware genome assembly, is a difficult

problem—in particular in a de novo setting. Beyond distinguishing between errors and

true sequential variants, the true variants need to be assigned to the different genome

copies.

Again, we can distinguish between reference-guided and de novo assembly when

it comes to haplotype reconstruction. In reference-guided approaches to haplotype-

aware genome assembly, variant calling leads to a list of loci showing variation and

the observed alleles at each locus. The goal is then to assign variants to haplotypes, a

process known as phasing. In de novo approaches, on the other hand, reads need to be

linked together to form haplotype-specific contigs, also called haplotigs.

Haplotype-aware assemblies contribute to representations of all genomic content

in a certain species or phylogenetic clade in the form of a pan-genome [74]. Such a

structure can serve as a tool for joint analysis of the haplotypes from which it was built,

but also as a catalog of known sequence variation, to be used as a reference for future

analyses.

1.5 Applications

Haplotype-aware genome assembly plays an important role in many disciplines. In

this thesis we focus mainly on viral quasispecies assembly, that is, the reconstruction of

viral haplotypes within a single infection. In Chapter 3 we will touch upon haplotype

assembly of the human genome, in particular the region coding for the major histocom-

patibility complex (MHC). Below, we discuss these and several other applications of

haplotype-aware genome assembly.



1.5. Applications 7

1.5.1 Viral quasispecies

Viruses consist of small particles which cannot reproduce on their own. By infecting a

host organism, they can use the replication apparatus of the host cells. Although viral

genomes are relatively short compared to bacteria and eukaryotes, they are subject

to very high mutation rates [35]. As the virus replicates rapidly during an infection,

mutation and recombination lead to a variety of mutant strains. This ensemble of

closely related viral strains populating the infected host is called a viral quasispecies

[32]. The different mutant strains can show different phenotypic properties and appear

at different frequencies within the population. Determining the haplotypes of the

individual strains and their relative abundance rates can play a key role in assessing

virulence and pathogenesis, as well as in therapy selection [39].

1.5.2 Major histocompatibility complex

The major histocompatibility complex is a highly polymorphic set of approximately

200 genes found in vertebrates, which are essential to the acquired immune system.

The human MHC genes, also referred to as Human Leukocyte Antigens (HLA), are

located in a region of 6 Mb on chromosome 6 of the human genome. Haplotype-

aware reconstruction of the HLA genes and the entire MHC region plays an important

role in disease association studies (in particular autoimmune diseases) and transplant

rejection [24]. However, high variability within a population and high similarity between

several genes make this assembly task particularly challenging.

1.5.3 Metagenomics

In metagenomics, sequencing technologies are used to characterize microbial sys-

tems. Metagenomic data sets consist of genetic material obtained from environmental

samples, which usually contain a mixture of viral and bacterial genomes. Not only

viruses, but also bacteria can exist as a population of closely related strains. The goal of

metagenomics is to gain understanding of the ecology and evolution of microbial eco-

systems. Examples of metagenomic studies include the analysis of microbes in ocean

water [123] and sequencing of genetic material extracted from fecal samples to study the

gut microbiome [44]. Haplotype-aware assembly of metagenomes from short-read data

is extremely challenging due to the complexity and diversity of microbial communities,

as well as the closeness of related strains and low relative abundances [107].

1.5.4 Transcriptomics

In transcriptomics, next-generation sequencing is applied to the complete set of RNA

transcripts found in a cell. The different transcripts can be seen as individual haplo-



8 Chapter 1. Introduction

types, each of which may appear at a different frequency. The observed sequencing

depths are indicative for the corresponding relative transcript abundance. The main

challenge in RNA transcript assembly is to distinguish between spliced isoforms and

similar transcripts within a gene family. Transcriptome assembly and subsequent com-

parison of assemblies across cells enable identification of genes that are differentially

expressed between cell populations. This leads to further understanding of the chemical

processes that take place in a cell, gene function annotation, and responses to different

environments [42, 49].

1.5.5 Cancer genomics

Another situation where haplotype-aware genome assembly plays an important role

is in analysis of tumor samples. Cancer cells replicate their genome and proliferate at

much higher rates than healthy cells. This behaviour is driven by mutations, leading

to a heterogeneous population of haplotypes within a single tumor. Analysis of these

haplotype sequences allows for further understanding of tumor evolution, which may

aid in development of effective cancer treatments [80]. NGS technologies enable low-

cost sequencing of tumor populations at high sequencing depths. However, haplotype

reconstruction remains a major challenge due to sequence heterogeneity, an unknown

number of haplotypes, and complex patterns of variation.

1.6 Outline and contribution

The primary goal of the research presented in this thesis was to solve the viral quasi-

species assembly problem. Until 2017, all approaches to this problem were reference-

guided, introducing severe biases: highly divergent strains often got misassembled or

were lost entirely. In order to get rid of these reference-related issues, we set out to find

a de novo solution. As a result, we present the first de novo approach to successfully

and efficiently reconstruct viral quasispecies at full length. Inspired by this success, we

also present a de novo assembly algorithm for genomes of known ploidy.

Our contribution was made in four steps, each presented as a chapter in this thesis.

These chapters are based on research articles that have been published in or submitted

to a scientific journal in the same form as they appear here. Although Chapters 3 and 4

follow up on ideas presented in Chapter 2, and Chapter 5 presents alternatives to the

method described in Chapter 4, each chapter is self-contained and can be read in

isolation.

Chapter 2 presents SAVAGE (Strain Aware VirAl Genome assEmbler), a computa-

tional tool for viral quasispecies reconstruction without the need for a high-quality

reference genome. SAVAGE makes use of either FM-index-based data structures or



1.6. Outline and contribution 9

ad-hoc consensus reference sequence for constructing overlap graphs from patient

sample data. Following an iterative scheme, a new overlap assembly algorithm then

efficiently reconstructs haplotigs from this overlap graph. In benchmark experiments

on simulated and real deep coverage data, SAVAGE drastically outperforms generic de

novo assemblers as well as specialized viral quasispecies assemblers in terms of error

rates.

Chapter 3 presents POLYTE (POLYploid genome fitTEr) as a new approach to de

novo generation of haplotigs for diploid and polyploid genomes of known ploidy, in-

spired by the success of overlap graph-based assembly in Chapter 2. The main dif-

ference between POLYTE and SAVAGE is the type of data that is targeted: while viral

quasispecies are typically sequenced at ultra-deep coverage (10.000–100.000x), this

chapter focuses on data sets of low to medium coverage values (10–100x). POLYTE

adopts ideas from Chapter 2, following an iterative overlap graph-based scheme where

in each iteration reads or contigs are joined, based on their interplay in terms of an

underlying haplotype-aware overlap graph. With each iteration, contigs grow while

preserving their haplotype identity.

In order to deal with low coverage sequencing data, edge constraints for the overlap

graph are less restrictive in comparison to the previous chapter. This, however, increases

the number of spurious edges and thereby the risk of assembling false haplotypes. We

minimize this risk by developing a procedure to reduce the number of spurious edges

in the overlap graph. Experiments on both real and simulated data demonstrate that

POLYTE establishes new standards in terms of error-free reconstruction of haplotype-

specific sequences. As a consequence, POLYTE outperforms state-of-the-art approaches

in various relevant aspects, where advantages become particularly distinct in polyploid

settings.

Chapters 2 and 3 illustrate the benefits of reference-genome-independent (de novo)

approaches over reference-guided approaches, where reference-induced biases can be-

come overwhelming. Especially when dealing with highly divergent genomes, reference-

guided methods are unable to reconstruct individual haplotypes at low error rates. De

novo methods, on the other hand, yield highly accurate, yet rather short contigs. The

remaining challenge is to reconstruct full-length haplotypes together with their abund-

ances from these contigs; this challenge is addressed in Chapters 4 and 5.

In Chapter 4 a de novo approach to extend pre-assembled contigs into viral hap-

lotypes based on variation graphs is presented: Virus-VG. This method constructs a

variation graph from the short input contigs, without making use of a reference genome

or any other prior information. Then, we enumerate all maximal-length paths through

this graph that maximally concatenate the contig subpaths. To obtain a selection of

paths that reflects the haplotypes present in the sample, a minimization problem is

solved, yielding a selection of maximal-length paths that is optimal in terms of being



10 Chapter 1. Introduction

compatible with the read coverages computed for the nodes of the variation graph.

The resulting selection of paths is output as the assembled haplotypes, together with

their abundances. Benchmark experiments show significant improvements in assembly

contiguity compared to the input contigs, while maintaining low error rates compared

to the state-of-the-art viral quasispecies assemblers.

An immediate limitation of the Virus-VG algorithm is that it is an exponential time

algorithm due to the path enumeration step. Although experiments in Chapter 4 show

that this approach suffices to solve the practical problems under consideration, it does

not scale well to larger genomes: the path enumeration step would simply explode.

Chapter 5 shows how we can avoid enumerating all possible paths by an appro-

priate flow formulation of the problem and presents VG-flow, a computational tool

that implements these new ideas. We cast the assembly problem into a min-cost flow

optimization problem, yielding abundance estimates for each of the input contigs. This

optimization problem can be solved in polynomial time and avoids the costly path enu-

meration step used in Virus-VG. Based on the computed contig abundances, we greedily

select a collection of candidate haplotypes, which are subsequently used as input for

the linear program described in the previous chapter. Thus, this chapter describes

an efficient solution to the quasispecies reconstruction problem from pre-assembled

contigs.

Together, the approaches of Chapters 2, 4, and 5 present a complete solution to

the viral quasispecies assembly problem. In addition, the computational machinery

described in Chapters 3 and 5 contributes to haplotype-aware genome assembly of

polyploid species other than viruses and has the potential to take a big step ahead in

haplotype-aware genome assembly in general. In Chapter 6, we further discuss the

implications of this work and provide perspectives on future research in the field of

haplotype-aware genome assembly.

1.7 Final remarks

There is much more to tell about the design, implementation, and benchmarking of

the methods presented in this thesis than what is written in Chapters 2-5. To preserve

the textual flow and to avoid burdening the reader with too much information, some

algorithmic details and experimental results are presented in supplementary material

available from the publishers’ websites.

Chapters 2, 4 and 5 all present assembly results for SAVAGE. However, the careful

reader may note the assembly quality has improved in later chapters compared to

Chapter 2. Indeed, since its first version in 2016, the SAVAGE algorithm has been under

continuous development, leading to improvements in assembly quality. The results

presented in Chapter 2 are based on SAVAGE version 0.1.0, while results in Chapters 4



1.7. Final remarks 11

and 5 are based on SAVAGE version 0.4.0. The corresponding changes to the algorithm

are described in the SAVAGE changelog1. Further note that in Chapters 4 and 5, when

we refer to SAVAGE we always imply the index-based de novo algorithm, introduced in

Chapter 2 as SAVAGE-de-novo.

1https://github.com/HaploConduct/HaploConduct/blob/master/savage/CHANGELOG.md

https://github.com/HaploConduct/HaploConduct/blob/master/savage/CHANGELOG.md




CHAPTER 2

DE NOVO ASSEMBLY OF VIRAL QUASISPECIES

USING OVERLAP GRAPHS

A viral quasispecies, the ensemble of viral strains populating an infected

person, can be highly diverse. For optimal assessment of virulence, patho-

genesis and therapy selection, determining the haplotypes of the individual

strains can play a key role. As many viruses are subject to high mutation

and recombination rates, high-quality reference genomes are often not

available at the time of a new disease outbreak. In this chapter we take the

first steps towards de novo haplotype reconstruction in viral quasispecies.

We present SAVAGE, a computational tool for reconstructing individual

haplotypes of intra-host virus strains without the need for a high-quality

reference genome. We show that overlap graph-based viral quasispecies

assembly is feasible and allows for the construction of high quality, strain-

specific contigs. In benchmark experiments on both simulated and real

deep coverage data sets, SAVAGE drastically outperforms generic de novo

assemblers as well as specialized viral quasispecies assemblers. We also ap-

ply SAVAGE on two deep coverage samples of patients infected by Zika and

hepatitis C virus, respectively, which sheds light on the genetic structures

of the respective viral quasispecies.

Published as:

J.A. Baaijens, A. Zine El Aabidine, E. Rivals, and A. Schönhuth. De novo assembly of

viral quasispecies using overlap graphs. Genome research, 27(5): 835–848, 2017.

Supplementary material: http://www.genome.org/cgi/doi/10.1101/gr.215038.116.

13

http://www.genome.org/cgi/doi/10.1101/gr.215038.116


14 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

2.1 Introduction

Viruses such as HIV, the Zika and the Ebola virus, populate their hosts as an ensemble

of genetically related but different mutant strains, commonly referred to as viral quasi-

species. These strains, each characterized by its own haplotypic sequence, are subject to

high mutation and recombination rates [32, 34]. Sequencing methods aim at capturing

the genetic diversity of viral quasispecies present in infected samples; the promise is

that next-generation sequencing (NGS) based methods will assist clinicians in selecting

treatment options and other clinically relevant decisions.

Ideally, a viral quasispecies assembly characterizes the genetic diversity of an infec-

tion by presenting all of the viral haplotypes, together with their abundance rates. There

are two major challenges in this.

(1) The number of different strains is usually unknown. Furthermore, two different

strains can differ by only minor amounts of distinguishing mutations. Last but not

least, abundance rates can be as low as the sequencing error rates, which hampers the

detection of true mutations present at low frequency.

(2) Due to the great diversity and the high mutation rates, reference genomes rep-

resenting high-quality consensus genome sequences can be obsolete at the time of

the disease outbreak. The lack of a suitable reference genome is a major hindrance for

many viral quasispecies assembly approaches.

It is important to understand that all existing assembly methods fail to address

either the first or the second point. Recent reference-guided approaches specialized

in viral quasispecies assembly suggested statistical frameworks modelling the driving

forces underlying the evolution of viral quasispecies. While previous approaches fo-

cused mostly on local reconstruction of haplotypes [50, 99, 130, 131], more advanced

approaches aimed at global reconstruction of haplotypes, for example, by making use

of Dirichlet process mixture models [97], hidden Markov models [119], or sampling

schemes [98]. There are also recent combinatorial approaches which compute paths

in overlap graphs [6], enumerate maximal cliques in overlap graphs [118], or compute

maximal independent sets in conflict graphs [73]. While these approaches soundly

address point (1), the vast majority of them depends on high-quality reference sequence

as a backbone to their methods, which in turn is the reason why they fail to address

(2). Hence, when confronted with hitherto unknown, significantly deviating mutation

patterns, these approaches fail to perform sufficiently well.

On the other hand, de novo assembly approaches do not depend on reference

genomes. Although there exist numerous de novo approaches for mammalian genome

assembly, – see e.g. [17, 47, 105] for comparative evaluations – these generic methods

are not well suited for the viral quasispecies assembly problem. The key difference is

that mutation rates in viruses are orders of magnitude higher than in eukaryotes, result-



2.1. Introduction 15

ing in multiple polymorphic sites within a single read [32, 34]. This makes it possible

to phase mutations into separate haplotypes; however, generic assembly approaches

do not exploit this property. Rather, generic assemblers aim at reconstructing one

single consensus sequence or are not designed to handle genomes of heavily polyploid

organisms. In this regard, note that there are de novo assemblers that specialize in viral

genome assembly already [51, 129]. However, also these specialized approaches aim at

assembling consensus genomes rather than strain-specific sequence, where the goal

is to construct new reference rather than individual sequence. To our knowledge, the

only existing de novo approach for haplotype-resolved viral quasispecies assembly is

MLEHaplo [72]. As a consequence, while addressing (2), most existing de novo assembly

methods fail to address point (1) to a satisfactory degree.

A possible principled issue is that nearly all of the NGS based genome assemblers,

including the above-mentioned specialized de novo viral quasispecies approaches, rely

on the de Bruijn graph as assembly paradigm. Thereby, reads are decomposed into k-

mers, where k is usually considerably smaller than the read length. As a generalization

of this concept the paired de Bruijn graph has been introduced [78], which incorporates

mate pair information into the graph structure itself instead of analyzing mate pairs

in a post-processing step, which yields larger contigs in the assembly. As mentioned

above, it is imperative in viral quasispecies assembly to distinguish low-frequency

mutations from sequencing errors. While low-frequency mutations are genetically

linked, hence co-occur within different reads, sequencing errors do not exhibit patterns

of co-occurrence. The detection of patterns of co-occurrence is decisively supported

by examining reads at their full length, but this information cannot be exploited with

de Bruijn graphs. Overlap graphs on the other hand make use of full-length reads and

do not decompose them into smaller parts; hence, we reason that the overlap graph

paradigm suits the problem of viral quasispecies assembly better.

The only existing method for viral quasispecies assembly based on overlap graphs

is HaploClique [118]. Although this method is reference guided, it uses the reference

solely for providing anchor points for constructing an overlap graph. Unlike in many

other approaches [30, 119, 130, 131], the haplotype sequences are then assembled

from the reads, and not from the reference. While providing inspiration in general, the

HaploClique algorithm has proven to require excessive computational resources already

on data sets of relatively low coverage (1000x and more). The reason is that it is based

on the enumeration of maximal cliques, which is exponential in the read coverage, both

in terms of runtime and space. We therefore present a novel, more efficient algorithm

for the clique enumeration part of the assembly algorithm.

There are two exit strategies to resolve the issue of the possible lack of a reference

genome. The first strategy is to construct consensus genome sequence from the patient

samples themselves, using one of the available de novo consensus genome assemblers



16 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

(among which, the most popular tool is VICUNA [129]), and to subsequently run one

of the reference-guided approaches using this ad-hoc consensus as a reference. This

strategy has also been suggested by [73] and we shall further explore it here. The

second strategy is to construct an overlap graph directly from the patient sample reads.

Subsequently, we employ a ploidy-aware assembly algorithm that can extract strain-

specific sequences from overlap graphs. The challenge is that constructing overlap

graphs requires a pairwise comparison of all reads, which, for deep coverage data sets,

requires sophisticated indexing techniques to be feasible. Here, we show how to make

efficient use of FM-index based techniques [121] to construct overlap graphs without

any need for a reference genome. As such, we provide the first approach for de novo

assembly of viral quasispecies based on overlap graphs.

In summary, we make relevant contributions for

(i) the construction of overlap graphs from deep coverage read data and

(ii) viral quasispecies assembly using the overlap graph assembly paradigm.

In combination, we present SAVAGE (Strain Aware VirAl GEnome assembly), a

method that allows for reference-free assembly of viral quasispecies from sequencing

data sets of deep coverage (20 000x and more). In this, we do not only provide the first

genuine de novo viral quasispecies assembly approach based on overlap graphs, but we

also provide the first method that can exploit ad-hoc consensus sequence generated

from patient samples, as computed for example by VICUNA [129], for high-performance

viral quasispecies assembly.

2.2 Results

We have designed and implemented SAVAGE (Strain Aware VirAl GEnome assembly),

a method for de novo viral quasispecies assembly based on overlap graphs. In this

section, we provide a high-level description of the algorithmic approach and analyze its

performance, also in comparison to state-of-the-art viral quasispecies assembly tools

and several established generic genome assemblers. Finally, we present assembly results

using SAVAGE on two real virus samples from patients infected by the Zika virus and

hepatitis C virus, respectively. We refer to the Methods section for any methodological

details.

2.2.1 Approach

Our algorithm proceeds in three stages (panel A of Figure 2.1), each of which iteratively

clusters the input sequences and extends them to unique haplotypes. While Stage a has

the original reads as input and contigs as output, Stage b has these contigs as input and

maximally extended contigs as output. The extended contigs are supposed to reflect in-



2.2. Results 17

Illumina reads

Undirected overlap graph

1. Pairwise overlaps

2. Overlap quality check

Directed overlap graph

Simpli�ed overlap graph

Contigs &

Final contigs

O
v
e
rl

a
p
 g

ra
p
h
 c

o
n

s
tr

u
c
ti

o
n

O
v
e
rl

a
p
 g

ra
p
h
-b

a
s
e
d
 a

s
s
e
m

b
ly

3. Read orientations

4. Transitive edge

     removal

5. Read clustering

Figure 2.1: An overview of the workflow and algorithms of SAVAGE. A. The

three stages of SAVAGE. Each assembles sequences into longer sequences.

For clarity, we assign different names to the sequences output by each stage:

contigs, maximally extended contigs, and master contigs, respectively. B.

Principle of overlap graph construction and distinction among the reads

between errors and shared mutations. C. Each stage has two steps: first, the

overlap graph construction, second, assembly. This panel summarizes the

differences in each step between the three stages. During overlap graph-

based assembly, steps 4 to 6 are repeated iteratively until there are no edges

left in the overlap graph.



18 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

dividual haplotype sequences. Finally, the optional Stage c merges maximally extended

contigs into master contigs, each representing a group of very closely related strains.

This reflects the existence of master strains in many viruses, where each individual

haplotype deviates from one of the master strains by only a relatively minor amount

of mutations (the ensemble of which is commonly referred to as mutant class in the

literature and reflects a viral subpopulation—see e.g. [32]). Each stage is divided into

overlap graph construction (upper part of panel C in Figure 2.1) and overlap graph

based assembly (lower part of panel C in Figure 2.1). Between the stages, this generic

structure only differs in the details.

The strength of overlap graphs for viral quasispecies assembly is in identifying co-

occurring mutations, thus enabling the phasing of mutations from the same strain. We

distinguish sequencing errors from true mutations by posing very strong constraints on

the overlaps in terms of minimal overlap length and sequence similarity. In addition,

we make use of paired-end read information. This results in a very conservative overlap

graph, where an edge indicates that two sequences are very likely to originate from the

same virus strain. Therefore, by enumerating cliques in the overlap graph we cluster the

reads per strain, thus reconstructing the individual haplotypes of the viral quasispecies.

We construct overlap graphs in two steps: first, pairs of reads are determined that

share sufficiently long and well-matching overlaps, followed by a statistical evaluation

of the quality of each overlap. We explore two options for finding all such overlap

candidates. The first option is to apply a completely de novo procedure using FM-index

based techniques [121]. The second option is to align all reads against a reference

genome, such that read-to-read alignments can be induced from the read-to-reference

alignments. However, in case of a viral outbreak there may not be a suitable reference

genome available; we target such cases by constructing an ad-hoc consensus sequence

from the patient samples, as computed by VICUNA [129].

SAVAGE offers three different modes, corresponding to the different approaches

to overlap graph construction described above: SAVAGE-de-novo uses the first option

and is therefore completely reference-free, while SAVAGE-b-ref uses the second option

and thus relies on a bootstrap reference sequence. For benchmarking purposes we

also consider SAVAGE-h-ref, which takes as input an existing, high quality reference

sequence.

2.2.2 Benchmark data

For benchmark experiments and performance analysis, we considered several simulated

data sets, one gold standard benchmark from real sequencing reads, and two real

patient samples. For the simulated data sets, sequencing reads were created using the

simulation software SimSeq (see Methods).



2.2. Results 19

Simulated benchmarks. We created five simulated data sets for benchmarking,

consisting of 2×250 bp Illumina MiSeq reads and representing quasispecies infections

from different viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV),

and Zika virus (ZIKV). We varied the number of strains per sample, as well as the relative

abundances of those strains and the pairwise divergence between strains. To get data

sets as realistic as possible, we used true viral genomes from the NCBI database and

Illumina MiSeq error profiles during simulations. Characteristics of each benchmark are

given in Table 2.1 and additional information can be found in Supplementary Methods.

Lab mix. In addition to the simulated benchmarks, we also considered a real Illu-

mina MiSeq (2×250 bp) data set with an average coverage of ∼20 000x, obtained from a

lab mixture of five HIV strains (see also Table 2.1). This data set was recently presented

as a gold standard benchmark [30] and is available at https://github.com/cbg-ethz/

5-virus-mix; we will refer to it as the lab mix.

Divergence-vs-ratio. To analyze the combined effect of the levels of divergence

and of the relative abundance of the strains, we constructed 36 additional data sets as

follows. Starting from the HIV-1 89.6 haplotype, we created six alternative haplotypes

by introducing, respectively, 0.5%, 0.75%, 1%, 2.5%, 5%, and 10% random mutations.

For each of those six alternative strains, we created six data sets by simulating reads

(2×250 bp Illumina MiSeq) from the mutated strain and the original at a ratio of 1:1,

1:2, 1:5, 1:10, 1:50, and 1:100, respectively, with a total coverage of 500x per data set.

Zika virus sample. We applied SAVAGE to a sample of Asian-lineage Zika virus

(ZIKV) consisting of Illumina MiSeq 2x300 bp sequencing reads (∼30,000x coverage)

obtained from a rhesus macaque after four days of infection [33, animal 393422]. This

data set is available in the NCBI Sequence Read Archive under experiment SRX1678783,

run SRR3332513.

Hepatitis C virus sample. In addition to the Zika virus sample, we also used a

hepatitis C virus (HCV) sample of approximately 80 000x coverage, covering a region of

∼3000 bp containing the HS5B gene. This data set is available in the NCBI Sequence

Read Archive under experiment SRX396803, run SRR1056035.

2.2.3 Evaluation preliminaries

In case of a viral outbreak, the agent and its genome may be unknown (or may have sig-

nificantly diverged from closely related strains such that available reference sequences

are potentially inadequate for analysis), and the samples taken from infected patients

contain an unknown number of divergent strains. Here, we target these cases where no

reference genome is available. A sample sequenced with next-generation sequencing

technology delivers enough reads and sufficient coverage to allow a de novo assembly of

a viral genome (here, we mean a single genome assembly, not a quasispecies assembly),

https://github.com/cbg-ethz/5-virus-mix
https://github.com/cbg-ethz/5-virus-mix


20 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

Virus Genome Average Strain Strain Pairwise
Data set type size (bp) coverage count abundance divergence

600x HIV mix HIV-1 9478–9719 600x 5 20 % 1–6 %

5-strain HIV mix HIV-1 9478–9719 20 000x 5 5–28 % 1–6 %

10-strain HCV mix HCV-1a 9273–9311 20 000x 10 5–19 % 6–9 %

3-strain ZIKV mix ZIKV 10251–10269 20 000x 3 16–60 % 3–10 %

15-strain ZIKV mix ZIKV 10251–10269 20 000x 15 2–13 % 1–10 %

Lab mix HIV-1 9478–9719 20 000x 5 10–30 % 1–6 %

Table 2.1: Characteristics of benchmark data sets. For each benchmark

we specify virus type, genome size, average coverage, strain count, relative

abundance, and pairwise divergence. For the 600x HIV mix, the strains were

homogeneously distributed with a relative abundance of 20% each.

to be used as an ad-hoc reference genome for further analyses. However, such genome

sequences may not represent any of the true viral haplotypes present in the sample

sufficiently well.

In the remainder of this paper, all assembly algorithms were run using default

settings. Evaluations of assemblies were performed with MetaQUAST [82], which com-

putes the usual statistics – number of contigs, largest contigs, N50, misassembled contig

length, target genome(s) covered, and error rates – and we accounted only for contigs

larger than a threshold of 500 bp. A contig is called misassembled if it contains at least

one misassembly, i.e., a position where the left and right flanking sequences align to the

true genomes with a gap or overlap of more than 1 kbp, or align to different strands, or

even align to different strains.

We compare de novo methods and reference-guided approaches. While de novo

algorithms proceed by iteratively extending contigs until some convergence criterion is

met, reference-guided approaches alter the reference sequence until a set of haplotypes

is obtained that is supposed to represent the quasispecies. By altering the reference

genome, all output sequences have the same length, which means that the N50 score

equals the length of the output sequences. For de novo approaches, on the other hand,

the N50 score provides an indication of the contig length distribution.

2.2.4 Failure of existing de novo assemblers on low-frequency strains

We explored the ability of generic genome assemblers to reconstruct a viral quasispecies.

From the broad collection of tools available, we selected four assemblers: SGA [110],

SOAPdenovo2 [69], SPAdes [9], and metaSPAdes [89]. The first two methods, SGA and

SOAPdenovo2, are generic assemblers, mostly used on mammalian genomes. SPAdes

was originally designed for bacterial genomes, and metaSPAdes is a version of SPAdes



2.2. Results 21

adapted for metagenome assembly.

First, we evaluate performance on all simulated benchmarks. Table 2.2 presents

results for all methods on the 5-strain HIV mix, the 10-strain HCV mix, and the 15-strain

ZIKV mix. The only method capable of assembling at least half a viral quasispecies on a

20 000x simulated data set is SPAdes, the only close alternative being metaSPAdes with

45.9% on the 10-strain HCV mix. For the 5-strain HIV mix and the 10-strain HCV mix,

SPAdes assembles 91.3–91.7% (SAVAGE-de-novo: ≥ 99.6%) of the true viral genomes at

an error rate of 0.015−0.084% (SAVAGE-de-novo: 0.004%), showing that SPAdes misses

to assemble a considerable fraction of the quasispecies. This becomes more evident

on the 15-strain ZIKV mix, which contains several low-frequency strains: SPAdes only

recovers 65.6% of the target genomes (SAVAGE-de-novo: 99.4%). The explanation for

this is that SPAdes misses to assemble strains of low frequency, as Figure 2.2 further

reveals: here, a comparison of all approaches is shown when at most a bootstrap

reference is provided. The performance of each approach is evaluated on each of the

strains of the 20 000x benchmarks from Table 2.1 individually, and results are stratified

by the relative abundances of the strains. We see that SPAdes recovers only 46.8% of the

strains of frequency of less than 5%.

Similar results for the 600x HIV mix and the 3-strain ZIKV mix can be found in Sup-

plementary Tables S1 and S2; these are relatively easy data sets, since neither contains

any low-frequency strains. Both SOAPdenovo2 and SPAdes perform reasonably on the

600x data set, reconstructing 78.9% and 87.8% of the viral quasispecies, respectively.

SGA and metaSPAdes, on the other hand, do not recover more than 19% of the quasi-

species. For the 3-strain ZIKV mix, only SPAdes is able to reconstruct more than 40% of

the quasispecies; in fact, it finds 99.6% of the target genomes, performing almost per-

fectly on this low-ploidy data set, which is no surprise because assemblers like SPAdes

generally target at genomes of limited ploidy.

Finally, we consider the lab mix, which is based on real data and hence the most

challenging benchmark. Table 2.3 presents results for all methods. SGA, SOAPdenovo2,

SPAdes, and metaSPAdes all perform quite similarly, reconstructing only 41.0–53.7%

of the viral quasispecies at very high error rates (1.1–2.0%). This shows that each of

these assemblers has difficulty distinguishing sequencing errors from true variants,

thus pointing out the need for specialized viral quasispecies assemblers.

The first specialized de novo assembler is now available [72]. We ran this method,

called MLEHaplo, on our benchmark data sets. Unfortunately, it could only handle the

600x HIV mix; for all 20 000x benchmarks, MLEHaplo did not finish within a week and

used more than 140GB of main memory per data set. On the 600x HIV mix, it performed

very poorly, reconstructing only 10% of the target genomes at a mismatch rate of more

than 2%.



22 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

2.2.5 Dependence of reference based approaches on reference genome

quality

Reference based quasispecies assembly tools proved to perform adequately when a

high quality reference genome is available [97, 130]. We question whether reference

based approaches could yield appropriate quasispecies assemblies if provided with a

de novo assembled genome sequence obtained from the sample reads, rather than a

high quality reference genome. To address this point, we compared state-of-the-art

methods PredictHaplo [97] and ShoRAH [130] on our benchmarks (Table 2.1) in two

settings: either with a high quality reference genome, or with a genome sequence

obtained by running the VICUNA assembler [129] on the sample reads. We refer to the

former as a high quality reference genome, denoted h-ref, and the latter as a bootstrap

reference genome, denoted b-ref. The quality of the output assemblies, as evaluated

with MetaQUAST, is described in Tables 2.2 and 2.3, as well as Supplementary Tables S1

and S2.

For PredictHaplo and ShoRAH, the number of output sequences provides an es-

timate of the total number of strains in the quasispecies, since each output sequence

represents a putative strain in the quasispecies. In Table 2.2, we see that on all bench-

marks except the 15-strain ZIKV mix, the number of output sequences for PredictHaplo

is very close to the true number of strains. For the 3-strain ZIKV mix, both the high qual-

ity reference genome and the bootstrap reference genome lead to a perfect assembly

of 3 sequences without any mismatches and less than 0.042% indels (Supplementary

Table S2). But considering the remaining (more challenging) data sets, we see that using

a bootstrap reference genome causes a serious loss in the fraction of target genomes

recovered by PredictHaplo (compared to using a high quality reference). On the 600x

HIV mix and the lab mix, using the bootstrap reference even results in 100% of the

sequences being misassembled (Supplementary Table S1). Only for the 15-strain ZIKV

mix the difference between the h-ref and b-ref approaches is small: both recover only

53% of the target genomes (8 out of 15 strains – see Table 2.2).

For ShoRAH, we observe that for all data sets the number of output sequences is

one or two orders of magnitude larger than the true number of strains. In addition,

the mismatch rate is high compared to other methods, varying between 2.4% and

4.4% on the simulated 20 000x benchmarks. Unfortunately, we can only compare the

bootstrap reference and high quality reference approaches on the HIV data, because

ShoRAH-h-ref crashed repeatedly on the HCV and ZIKV benchmarks. Remarkably, the

bootstrap reference approach increases target genome coverage from 39.4% to 93.8%

on the 5-strain HIV mix (Table 2.2). However, in both the 20 000x HIV mix and the 600x

HIV mix we see that the bootstrap reference also results in a small fraction of the total

sequence length being misassembled (7.0% and 1.6%, respectively). This effect becomes



2.2. Results 23

Figure 2.2: Target genome fraction recovered per strain for all 20 000x bench-

marks, stratified by strain frequency.

much more apparent on the lab mix, with 89.3% of the total sequence length being

misassembled. This shows that, similar to PredictHaplo, the quality of the ShoRAH

assembly is highly dependent on that of the reference genome sequence.

Both tools, especially PredictHaplo, seem valuable when the reference genome is

closely related to sample strains, but inadequate to handle cases where a good reference

genome is unavailable. Moreover, Figure 2.2 shows that both PredictHaplo and ShoRAH

have trouble reconstructing low-frequency strains, recovering less than 17% of the

low-frequency (<5%) target strains. These results emphasize the need for new assembly

approaches that are independent of a reference genome.

2.2.6 SAVAGE evaluation

For the sake of comparison, we ran SAVAGE on the same benchmarks as above (Table 2.1)

in both de novo mode and reference mode, both with default parameters. The 20 000x

coverage data sets were split into patches of 750x each, on which we applied SAVAGE

Stage a. Subsequently, all Stage a contigs were put together into one big collection of

contigs and used as input for Stage b (Supplementary Fig 1).

Table 2.2 presents the evaluation results on simulated benchmarks of the Stage b

maximally extended contigs for each of the three modes: SAVAGE-h-ref with a high

quality reference genome, SAVAGE-b-ref with the genome assembled by VICUNA, and

SAVAGE-de-novo (without reference). Remember that all de novo assemblers, includ-

ing SAVAGE, proceed by progressively assembling longer and longer contigs starting



24 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

MAC target
# contigs largest length genomes N-rate mismatches indels

≥ 500 bp contig N50 (%) (%) (%) (%) (%)

5-strain HIV mix

PredictHaplo-h-ref 5 9720 9720 0 99.6 0.603 0.085 0.102

PredictHaplo-b-ref 5 9578 9578 0 93.8 0.284 0.110 0.104

ShoRAH-h-ref 289 9514 9514 0 39.4 0.268 2.403 0.016

ShoRAH-b-ref 242 9501 9501 7.0 93.8 0.127 3.197 0.124

SAVAGE-de-novo 36 9413 4913 0 99.8 0 0.004 0

SAVAGE-h-ref 28 9634 5027 0 99.6 0 0.004 0

SAVAGE-b-ref 59 9463 2424 0 99.5 0.002 0.071 0.002

SGA 36 1034 650 0 32.4 0 1.294 0.026

SOAPdenovo2 36 844 516 0 35.7 0 0.633 0

SPAdes 14 9789 5873 0 91.7 0 0.084 0.002

metaSPAdes 13 7044 5159 0 32.7 0 1.681 0.013

10-strain HCV mix

PredictHaplo-h-ref 9 9313 9313 0 90.0 0.004 0.402 0.010

PredictHaplo-b-ref 9 7636 7636 0 73.8 0.006 0.053 0

ShoRAH-h-ref - - - - - - - -

ShoRAH-b-ref 639 7570 7570 0 56.9 0 4.381 0.011

SAVAGE-de-novo 46 9297 8248 0 99.6 0.002 0.004 0

SAVAGE-h-ref 85 9247 3716 0 99.6 0 0.004 0

SAVAGE-b-ref 84 7802 2943 0 86.0 0 0.001 0

SGA 33 832 638 0 18.1 0 1.439 0

SOAPdenovo2 41 926 531 0 22.0 0 0.551 0

SPAdes 13 9311 8582 0 91.3 0 0.015 0

metaSPAdes 81 3041 1549 0 45.9 0 2.133 0

15-strain ZIKV mix

PredictHaplo-h-ref 8 10258 10258 0 53.3 0.032 0.147 0.046

PredictHaplo-b-ref 8 10270 10270 0 53.3 0.001 0.121 0.004

ShoRAH-h-ref - - - - - - - -

ShoRAH-b-ref 493 10117 10117 0 26.3 0.053 4.403 0.017

SAVAGE-de-novo 607 9282 2103 0 99.4 0.002 0.016 0

SAVAGE-h-ref 641 10243 1935 0 99.4 0.002 0.006 0

SAVAGE-b-ref 604 9079 2018 0 99.5 0.002 0.011 0

SGA 0 - - - 0 - - -

SOAPdenovo2 56 1025 562 0 21.0 0 0.545 0

SPAdes 60 10269 2577 0 65.6 0 0.131 0

metaSPAdes 37 6495 3926 0 17.5 0 1.200 0

Table 2.2: Assembly results per method on simulated HIV, HCV, and ZIKV

benchmarks (20 000x coverage).



2.2. Results 25

MAC target
# contigs largest length genomes N-rate mismatches indels

≥ 500 bp contig N50 (%) (%) (%) (%) (%)

PredictHaplo-h-ref 5 9642 9642 0 99.2 0.259 0.615 0.104

PredictHaplo-b-ref 5 11000 11000 100 94.5 0.425 0.011 0.136

ShoRAH-h-ref 160 9581 9581 0 98.9 0.378 3.203 0.113

ShoRAH-b-ref 169 10854 10854 89.3 99.0 0.770 0.911 0.165

SAVAGE-de-novo 846 1221 588 0.1 92.6 0.183 0.161 0.040

SAVAGE-h-ref 848 1167 588 0.3 91.5 0.220 0.251 0.036

SAVAGE-b-ref 828 1226 595 0.1 92.2 0.162 0.101 0.040

SGA 60 1117 635 1.5 41.0 0 1.811 0.046

SOAPdenovo2 56 984 591 1.5 41.9 0 1.655 0.114

SPAdes 60 2952 591 1.2 42.6 0 1.154 0.097

metaSPAdes 27 4543 3266 0 53.7 0 2.045 0.100

Table 2.3: Assembly results per method on the HIV lab mix, a gold standard

benchmark containing real sequencing data (20 000x coverage).

from the raw reads, until finally, each output contig may (partially) cover the target

genomes. Hence, unlike for PredictHaplo and ShoRAH, the number of contigs cannot

be interpreted directly as a number of strains.

With a reference, the results of SAVAGE-h-ref and SAVAGE-b-ref are very similar:

the contigs cover more than 99% of the target genomes, with the largest contig length

close to the genome size of the virus in question. The mismatch, indel, and N rates

are globally better than those offered by PredictHaplo and ShoRAH: the indel and N

rates are respectively one or two orders of magnitude lower. Above all, the contigs are

free of misassemblies (MAC length is 0%). Strikingly, providing a high quality reference

genome or a bootstrap genome makes little difference, and on some data sets SAVAGE

with a bootstrap genome achieves better results for certain statistics (higher N50, larger

target genome fraction, lower mismatch rate for the 15-strain ZIKV mix in Table 2.2).

These observations also hold on the lab mix (Table 2.3), where SAVAGE-ref recovers

91.5–92.2% of the target genomes at a mismatch rate of 0.101–0.251% and very low indel

rates.

On all benchmarks, SAVAGE-de-novo delivers an assembly that is qualitatively at

least as good as the SAVAGE-h-ref and -b-ref assemblies. Figure 2.2 shows that, in

terms of target genome recovered, SAVAGE-de-novo slightly but consistently outper-

forms SAVAGE-ref. More importantly, this figure shows that both SAVAGE-de-novo

and SAVAGE-b-ref greatly outperform all other methods, especially on low-frequency

strains (i.e., frequency < 10%).

To analyze the effect of read length on SAVAGE assembly performance, we also built



26 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

a 5-strain HIV mix with the exact same properties as given in Table 2.1, but with shorter

reads (2x150 bp). We evaluated the resulting maximally extended contigs for SAVAGE-

de-novo, SAVAGE-h-ref, and SAVAGE-b-ref (Supplementary Table 3). Compared to

the original 5-strain HIV mix, which has 2×250 bp reads, SAVAGE produces a more

fragmented assembly but still covers 90.6–98.4% of the target genomes with mismatch

rates between 0 and 0.006%.

Overall, SAVAGE can process samples containing a mixture of multiple strains and

recover most of the target genomes with a high level of sequence quality. It performs

slightly better in de novo mode than with a reference sequence and also performs well

on shorter sequencing reads. Moreover, compared to existing methods, our approach

does not suffer from misassemblies. For SAVAGE-de-novo, the misassembled contig

(MAC) length is 0% on all simulated data sets and 0.1% on the lab mix, which drastically

outperforms all approaches that reach ≥ 90% genome coverage and operate without a

high quality reference. Moreover, SAVAGE can take advantage of a bootstrap reference

sequence built by a single genome assembler. Finally, SAVAGE offers contigs with

improved mismatch and indel rates, especially on low-frequency strains.

2.2.7 Runtime and memory usage

We evaluate algorithm efficiency on both the 600x and the 20 000x simulated HIV mix, as

well as the lab mix. We report CPU time and maximum memory usage for all methods

evaluated previously on each of these HIV data sets in Supplementary Table 4. In terms

of CPU time, SAVAGE-b-ref was considerably faster than SAVAGE-de-novo, with 6.4

versus 19 minutes on the 600x HIV mix, 449 versus 5296 minutes on the 20 000x HIV

mix, and 850 versus 7495 minutes on the lab mix. This was to be expected, since de

novo overlap graph construction requires enumeration of all approximate suffix-prefix

overlaps among the reads. In comparison, PredictHaplo was faster but of the same

order of magnitude as SAVAGE-b-ref with 7, 223, and 158 minutes, respectively. ShoRAH

was comparable to SAVAGE and PredictHaplo on the 600x HIV mix (12 min) but very

slow on the 20 000x data (22256–32375 min). The de Bruijn graph-based assemblers

(SOAPdenovo2, SPAdes, and metaSPAdes) were very fast on all data sets, with a CPU

time of 0.15–2 minutes on the 600x HIV mix, 5–46 minutes on the 20 000x HIV mix, and

6–166 minutes on the lab mix. The generic assembler SGA was considerably slower,

with 24, 164, and 300 minutes, respectively. Finally, with 54 minutes on the 600x data

MLEHaplo was the slowest, which also points out why it could not finish the 20 000x

benchmarks.

Peak memory usage varied between 0.04 GB (PredictHaplo) and 8.4 GB (SPAdes,

metaSPAdes) for the 600x HIV mix, between 0.5 GB (SGA) and 10 GB (ShoRAH) for the

20 000x HIV mix, and between 0.7 GB (SGA) and 12 GB (ShoRAH) for the lab mix. Both



2.2. Results 27

SAVAGE-de-novo and SAVAGE-b-ref are on the lower end of this scale, with 0.6/1.3 GB

for the 600x HIV mix, 0.9/1.7 GB for the 20 000x HIV mix, and 1.1/3.0 GB for the lab mix,

respectively. A complete comparison of runtime and memory usage for all methods is

presented in Supplementary Table 4.

2.2.8 Effect of strain divergence and relative abundance

Assembling the sequences of several strains from a viral sample may turn out more

difficult depending on both the level of strain divergence and on their relative abun-

dance. After comparing SAVAGE to state-of-the-art methods, we investigated the ranges

of divergence levels and of relative abundances that SAVAGE can properly handle, and

examined the combined effect of these two parameters on the assembly quality. We

used a series of 36 benchmark data sets simulated from two HIV-1 strains: a combin-

ation of six divergence levels (from .5 % until 10% of nucleotidic divergence) with six

ratios of abundance (from 1:1 until 1:100). We ran SAVAGE-de-novo and SAVAGE-b-ref

(i.e., with VICUNA assembled genome). All assemblies were evaluated with MetaQUAST,

and Figure 2.3 reports the heatmaps of (A) the coverage fraction of the two genomes, (B)

the mismatch rate, and (C) the relative error on the frequency estimates of each strain.

Comparing the two modes of SAVAGE, de novo or with a bootstrap reference, we

observe similar results and a slight advantage to SAVAGE-de-novo in terms of genome

coverage. Altogether, SAVAGE obtains quasispecies assemblies of very low mismatch

rates for all divergence levels and all relative abundance ratios, proving its ability to dis-

tinguish sequencing errors from true mutations. In general, the target genome coverage

is very high for relative abundance ratios starting from 1:1 until 1:10, at all divergence

levels. As the relative abundance of the minor strain decreases, it becomes more dif-

ficult to reconstruct the corresponding sequence. An extreme relative abundance of

1:100 hinders SAVAGE to reconstruct both strains: genome coverage values around 50%

indicate that only one of the two strains has been assembled. We conclude that SAVAGE

performs well in both modes (de novo and reference-guided) for relative abundances

above 1:50 and a wide range of divergence levels.

Capacity to estimate the frequency of each strain The problem of estimating relative

frequencies of the contigs assembled for a viral quasispecies is very similar to quan-

tifying the abundances of bacterial genomes from HTS data. Previous work [18] has

shown that Kallisto can accurately tackle the latter problem, so we applied this method

to our virus contigs as well (see Methods). For the 36 synthetic ‘divergence-vs-ratio’

benchmarks, we compared the estimated frequency of the minor strain in the sample

with the real frequencies. The rightmost panel of Figure 2.3 shows the relative difference

between the estimated frequency and the true frequency of the minor strain. This



28 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

1:1 1:2 1:5 1:10 1:50 1:100 1:1 1:2 1:5 1:10 1:50 1:100 1:1 1:2 1:5 1:10

10%

5%

2.5%

1%

0.75%

0.5%

D
iv

e
rg

e
n
c
e

Two-strain mixture ratio Two-strain mixture ratio Two-strain mixture ratio

 A. Genomes covered (%) B. Mismatch rate (%) C. Frequency error (%)

10%

5%

2.5%

1%

0.75%

0.5%

D
iv

e
rg

e
n
c
e

SAVAGE-b-ref

SAVAGE-de-novo

Figure 2.3: Performance of SAVAGE-de-novo and SAVAGE-b-ref, depending

on pairwise distance and mixture ratio. A. Target genome fraction recovered

(%) considering all maximally extended contigs ≥ 500 bp. B. Overall mis-

match rate (%) considering all maximally extended contigs ≥ 500 bp. C.

Relative error of estimated frequency for the minor strain (%). Frequency

estimates were computed using Kallisto and only assemblies containing

exactly two maximally extended contigs longer than 4000 bp were evaluated.

comparison was performed only when the strains were almost fully assembled (exactly

two strains of length ≥ 4000 bp), hence abundance ratios of 1:50 and 1:100 were ex-

cluded. Of the remaining 24 data sets, 9–10 samples did not satisfy these criteria; the

corresponding entries are marked ‘-’ in the heatmaps. Since there are only two strains

in the sample, the absolute error is identical for both strains; however, the relative error

will be much larger on the low-frequency strain. Hence, we evaluate performance on

the most difficult task, namely estimating the frequency of the minor strain. In general,

the relative estimation errors are very low: on average 1.65% for the SAVAGE-de-novo

contigs and 1.39% for the SAVAGE-b-ref contigs, with an overall minimum of 0% (a

perfect estimate) and a maximum of 5.34%.



2.2. Results 29

2.2.9 Zika virus sample

To test SAVAGE-de-novo on real conditions, we ran it on a sample taken from a rhesus

macaque infected by an Asian lineage Zika virus [33]. The sequencing reads covered the

full ZIKV reference genome used (NCBI sequence KU681081.3) at an average coverage

of 30 000x. Using a similar procedure as for the real HIV data (lab mix), we split the

reads into patches of approximately 750x each and proceeded with Stage a assembly

on each patch (Supplementary Fig 1). Subsequently, we used the whole collection of

Stage a contigs together as input for Stage b, which yielded 148 maximally extended

contigs longer than 500 bp. A small fraction (4%) of these contigs could not be aligned

to the reference genome, but instead matched four human BAC clones (accession

AC117500.13, AC002565.1, AC079754.4, and AC015819.5) and one rhesus macaque BAC

clone (accession AC190318.8) at > 90% sequence identity, indicating contamination, so

we removed them from further consideration. The remaining 142 contigs contained

13 sequences longer than 1000 bp, the largest contig being 1874 bp long, and the N50

measure was 572 bp. The contigs covered the 10767 bp reference genome between

positions 225–10767, the greatest divergence occurring between positions 1700 and

4200.

In Stage c, we allowed up to 1% divergence between contigs in the overlap graph,

thus assembling representatives for groups of very closely related strains (see Methods).

This resulted in 6 contigs of length at least 500 bp, now called master contigs. The

largest sequence was 4155 bp long and the N50 measure was equal to 2065. Aligning

the contigs to the reference genome reveals that the master contigs together form two

master strains: their sequences differed only by a one nucleotide deletion at position

4103 followed by a SNP at position 4106 (see Supplementary Fig 2). Our frequency

estimation procedure predicted the haplotype harboring the deletion to be the minor

haplotype with a frequency of 8.6%, compared to 91.4% for the major haplotype. We

hope that in the future, novel external data obtained by different means will become

available for this sample, allowing an in-depth validation of our two-strain quasispecies

assembly.

2.2.10 Hepatitis C virus sample

Analogous to the ZIKV analysis above, we applied SAVAGE to a hepatitis C patient

sample presented in [118]. This sample covers the NS5B region (positions 7602–9374),

a gene encoding for the RNA-dependent RNA polymerase, which is essential for viral

replication. We found 857 contigs in Stage b, with an N50 measure of 533 bp and the

largest contig 839 bp long. Aligning the contigs to the HCV reference genome (NCBI

sequence NC_004102.1) reveals that the 9646 bp genome was covered between positions

6128–9304, with a relatively constant amount of variation across the whole region. We



30 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

observed no contigs resulting from sample contamination (all contigs could be aligned

to the reference sequence).

By allowing up to 1% divergence between contigs in the overlap graph in Stage c,

we continued the assembly. This led to 80 master contigs of length at least 500 bp, of

which 5 were longer that 1000 bp. The N50 measure was 535 and the largest sequence

counted 1433 bp. Aligning the master contigs to the reference genome shows that one

of the master contigs contains a large deletion of 444 bp. This particular sequence could

not be aligned across the deletion; instead we found two clipped alignments for the

contig, one for the first 781 bases and one for the last 319 bases. Combining these two

alignments, the contig covers positions 7723–9267 of the reference genome (nearly the

entire NS5B gene), apart from a gap of 444 bases starting at position 8504. The largest

master contig spans almost the same region (positions 7923–9356), but it does not show

any deletions compared to the reference genome. We conclude that there is a 444 bp

deletion in the NS5B gene of only a part of the strains in the sample, in agreement with

results from an earlier study [118].

Compared to the previous sample (ZIKV), the current sample shows much more

variation in both contigs and master strains. A likely explanation for this is the large

difference in numbers of days of infection between the samples: 4 days for ZIKV versus

135 for HCV. To get an estimate on the number of master strains in the HCV sample, we

built a conflict graph based on the alignments of the master contigs to the reference

genome. An edge in this graph reflects that two contigs disagree on at least one position

of the reference genome, hence any clique corresponds to a set of sequences all belong-

ing to different strains. The largest clique in this graph was of size 16, suggesting the

existence of at least 16 different strains in the HCV sample.

2.3 Discussion

Recent outbreaks of viral diseases, such as the Ebola or the Zika virus, have pointed

out a pressing need for methods to assess the genetic diversity of viral infections in

a flexible manner, without strongly depending on the quality of available reference

genomes. Here, we have presented SAVAGE, the first method for de novo assembly of

viral quasispecies based on overlap graphs.

Viral genomes are characterized by high mutation and recombination rates. They

are therefore often extreme in terms of both ploidy and the low relative abundance of

single haplotypes. In our experiments, existing genome assemblers that do not depend

on reference genomes were unable to reconstruct a viral quasispecies completely, where

the (often resistance-inducing) low-frequency strains could not be captured sufficiently

well. This has pointed out that only more specialized assemblers that can operate

without depending on a reference genome have the power to overcome the current



2.3. Discussion 31

limitations.

We have shown that SAVAGE has this power and thus provides answers to such

currently pressing issues. SAVAGE has performed very favorable—if not crucially

advantageous—in comparison to a large collection of state-of-the-art de novo assem-

blers and specialized (but reference-dependent) viral quasispecies assemblers. Thereby,

it proved particularly beneficial when being compared to reference-free approaches in

terms of reconstructing strains of low frequency, which had been one of the essential

goals of this study. Comparisons with existing reference-guided approaches pointed

out that those yield contigs that are affected by more sequencing errors in general.

Moreover, they tend to become confused by reference genomes of suboptimal quality,

while SAVAGE behaves in a robust manner and can also make favorable use of such

suboptimal bootstrap (ad-hoc) reference genomes. Last but not least, our method

significantly outperforms the only available de novo viral quasispecies assembler (MLE-

Haplo) in terms of assembly quality, runtime, and memory usage. In an overall account,

SAVAGE has proven to bridge a significant gap in the spectrum of viral quasispecies

assembly approaches.

We believe that the central methodical reason for the benefits of our approach is the

use of overlap graphs as the underlying assembly paradigm. While assembling genomes

of low ploidy usually works favorably based on de Bruijn graphs, we have pointed

out that using reads at their full length is key in assembling viral quasispecies, where

distinguishing between low-frequency mutations and sequencing errors is imperative.

The key insight is that (genetically linked) true mutations co-occur among different

reads. Examining the full read span decisively enhances the detection of patterns

of co-occurrence. Beyond enabling the detection of low-frequency strains, this also

allows correction of sequencing errors in novel ways. We have pointed this out by

making integrative use of sound statistical sequence models in combination with an

iterative algorithmic scheme, which extends reads into contigs of increasing length and

extremely low error content.

Key to reference free construction of overlap graphs has been the use of FM-index

based techniques, which has been novel in the context of the analysis of viral data.

Moreover, we have demonstrated that overlap graphs also seem to be the approach

of choice when aiming to make use of ad-hoc consensus reference genomes, such as

provided by specialized tools that construct a single consensus sequence from patient

sample read data. Often, the resulting consensus sequence is of worse quality than a

well-curated reference sequence. This can substantially disturb approaches that rely on

the underlying reference as a sequence template (e.g. PredictHaplo, ShoRAH). Overlap

graphs constructed by making use of reference sequence coordinates provide a robust

alternative, since they use the reference sequence only as a coordinate system for the

determination of overlaps.



32 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

A few more things are noteworthy. First, the bootstrap reference approach SAVAGE-

b-ref has proven to outperform reference guided approaches in terms of the error

rates of the contigs, even when they make use of high-quality reference sequence,

which further underlines the general use of overlap graphs. Second, the target genome

coverage of our full de novo approach SAVAGE-de-novo exceeded that of the high-quality

reference-guided approaches, which points out its ability to distinguish sequencing

errors from true mutations. Finally, SAVAGE-b-ref also depends on the quality of the

reference sequence: the target genome coverage is 13.6 points lower compared to

SAVAGE-h-ref on the 10-strain HCV mix. This, of course, had to be expected: if reference

coordinates are too mistaken, overlaps cannot be detected. This last point underscores

that a full de novo approach can come with decisive extra advantages.

Of course, there is still room for improvements. While substantially faster and

more space efficient than previous overlap graph based viral quasispecies assembly

algorithms, SAVAGE has been particularly tailored towards dividing deep coverage data

sets into chunks of 500 to 1000x, and merging the contigs of the chunks in subsequent

steps, because this reflects its statistical calibration. While this works well, it sets certain

limits on the frequency of strains it can recover — haplotypes of frequencies below

1% remain difficult to reconstruct. In future work, we will seek to lower these limits

further by considering novel strategies for computing cliques in overlap graphs. On

the algorithmic side, we will also explore alternative indexing techniques that allow

for more relaxed definitions of overlaps and faster computation. Last but not least,

incorporating long read data into SAVAGE may help to reconstruct full-length genomes.

2.4 Methods

2.4.1 Overlap graph construction

We first provide a brief definition of an overlap graph and then sketch how to construct

such graphs from patient sample read data using indexes or reference genomes as two

options.

Overlap graphs. For a collection R of sequencing reads (Stage a) or contigs (Stages

b,c), both of which are sequences over the alphabet of nucleotides {A,C ,G ,T, N } (which

includes N as a common placeholder for unknown nucleotides), the overlap graph

G = (V ,E) is a directed graph, where vertices v ∈V correspond to reads/contigs R ∈R

and directed edges connect reads/contigs R j ,R j ∈R whenever a suffix of Ri of sufficient

length matches a prefix of R j and QS(Ri ,R j ) ≥ δ where QS : V ×V →R is a quality score

that has to exceed a certain threshold δ. For Stages a, b we make use of the statistical

model presented in [118], where QS(Ri ,R j ) ≥ δ reflects that the overlapping parts of

reads Ri and R j present a locally identical haplotypic sequence. Note that the statistical



2.4. Methods 33

model includes a refined analysis of the (Phred-scaled) error profiles that underlie Ri

and R j so as to reflect that sequencing is an erroneous process and hence to assess the

identity of their overlapping parts on a sound statistical basis.

In Stage c, QS(Ri ,R j ) reflects the fact that the two contigs share only a limited

amount of mismatches in their overlaps, meaning that they did likely emerge from

identical master strain sequences.

Paired-end reads. SAVAGE was designed for short reads (typically Illumina reads);

after merging self-overlapping pairs, the input in Stage a may contain paired-end reads

and/or single-end reads. To make use of the pairing information, we add another edge

restriction by allowing only the overlap cases shown in Figure 2.4. For overlaps involving

a paired-end read, we require both read ends to have a sufficiently long overlap (at least

half of the minimum overlap length for single-end reads) as well as a sufficiently high

quality score.

Construction. Construction of overlap graphs always proceeds in two steps. First,

pairs of reads (Ri ,R j ) are determined that have a sufficiently long and well-matching

overlap. Subsequently, QS is evaluated on all pairs (Ri ,R j ). For Stages b and c, where

the input is sufficiently small, the first step is implemented by pairwise comparison

of all contigs using BLAST [5]. The only difficulty is the first step in Stage a, where the

input is very large (the original deep coverage data). This requires some sophistication;

we explore two options:

1. With a read index: We determine all sufficiently long overlaps between sequencing

reads using FM-index based techniques [121, SFO] such that overlaps contain at most

2% mismatches (accounting for up to 1% sequencing errors in each of the reads). This

method, however, only works on single-end reads, so we first ignore the paired-end

relations and consider each of the sequences as a single-end read. Then, after listing

all pairwise overlaps with SFO, we reconsider the pairing information, outputting only

overlaps that are supported by both read ends as described above.

2. With a reference genome: We align all reads against a reference genome; here we

may use an ad-hoc consensus genome obtained by running an assembly tool on the

sample reads. With all read alignments in hands, it is then computationally straightfor-

ward to determine all sufficiently long and sufficiently matching overlapping pairs.

Read orientations. When merging multiple reads into one consensus sequence,

it is important that the reads agree on their respective orientations. Therefore, we

apply a read orientation routine that assigns a label (+/−) to every read, indicating

the orientation in which its sequence should be considered. This routine starts by

setting the orientation of a node of minimal in-degree to +, then recursively labels

all out-neighbors as defined by the corresponding edges (Figure 2.5, panel A). When

there is no perfect labelling possible, meaning that there are conflicts among the read

orientations due to inversions, we heuristically search for an orientation that leads to a



34 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

single - single single - paired paired - paired

Figure 2.4: Edge criteria. For an overlap to become an edge in the overlap

graph, it must satisfy three criteria. First, the overlap length l must be at least

the minimal overlap length L. Second, the overlap quality score QS(R1,R2)

must be at least the minimal score δ. For overlaps involving paired-end

reads, we require both l1 ≥ L and l2 ≥ L, and, analogously, QS(R1a ,R2a ) ≥ δ

and QS(R1b ,R2b ) ≥ δ. Finally, we only accept overlaps where the sequence

orientations of a paired-end read agree: either both sequences in forward

orientation, or both sequences in reverse orientation.

minimal amount of conflicts among the reads.

2.4.2 Overlap graph based assembly

In all stages, our algorithm proceeds as an iterative procedure where contigs grow with

the iterations. The final contigs (in particular the output of Stage b, or, optionally, Stage

c) can substantially exceed the length of the original reads. As our analyses demonstrate,

these contigs present haplotype specific sequences with high accuracy.

Cliques and contigs. The main idea of our algorithm is to compute cliques in

the overlap graph. A clique is a subset of the nodes such that each pair of nodes is

linked by an edge. By definition of the edges, a clique groups reads that stem from

identical haplotypes. Within a clique, reads/contigs share (possibly low-frequency) true

mutations while sequencing errors are not shared by the majority of reads (Figure 2.1,

Panel B). Hence, cliques can be used to clearly distinguish between true mutations and

sequencing errors. This further allows us to correct these errors by transforming cliques

into contigs that represent an error-corrected consensus sequence of the reads in the

clique.

Transitive edge removal. The number of maximal cliques in an overlap graph grows

exponentially with the number of nodes in the graph, that is here, with the read coverage

of the data set giving rise to the overlap graph. While our method relies on cliques for

the purpose of error correction, the size of the cliques does not have to exceed a certain

threshold for that goal.

A common approach to reduce the complexity of an overlap graph is to remove

transitive edges—see e.g. [110]. An edge u → w is called transitive if there exist a vertex v



2.4. Methods 35

and edges u → v , v → w . We call an edge u → w double transitive if there exists a vertex

v and transitive edges u → v , v → w , illustrated in Figure 2.5, panel B. Note that, by

definition, any double transitive edge is also single transitive. We found that removing

double transitive edges bounds the size of the cliques to 4, thus decisively limiting the

number of maximal cliques and allowing efficient maximal clique enumeration, while

still allowing for safely distinguishing errors from true mutations.

To find all double transitive edges, we first remove all non-transitive edges from

the overlap graph to obtain the transitive graph G ′. This can be done efficiently by

computing the inner product of a−
u and a+

v for all pairs (u, v) ∈V ×V , where a−
u (resp.

a+
v ) is the adjacency vector of outgoing (resp. incoming) edges of u (resp. v). Applying

this procedure to G we obtain G ′, and to find all double transitive edges we apply the

same procedure to G ′.
In the first iteration of Stage a, we remove all double transitive edges from the overlap

graph. This reduces the number of contigs obtained in this iteration by an order of

magnitude, leading to a decrease in CPU time and memory usage of even two orders

of magnitude (Supplementary Table 4). In later iterations our algorithm no longer

depends on clique formation because the reads (contigs) are assumed to be already of

high quality. This allows us to remove not only double but also single transitive edges.

Read clustering. In the first iteration of Stage a, we cluster reads by enumerating

maximal cliques in the overlap graph. After double transitive edge removal in an acyclic

graph, the maximum clique size is 4, as illustrated in Figure 2.5, Panel B: a clique of size

5 will always use a double transitive edge. In practice, our overlap graphs are nearly

acyclic and all cliques are of size at most 4. This implies that the total number of cliques

is polynomial in the number of nodes, hence we can efficiently enumerate all maximal

cliques; we use the degeneracy algorithm presented in [38] to do so. For the error

correction algorithm to function optimally, we solely consider cliques of size 4 in this

iteration.

In later iterations, after removing all single transitive edges, we merge pairs of contigs

into new (extended) contigs. This does not require clique enumeration of any kind. See

Figure 2.5, panel C for an illustration of the two read clustering techniques. In case of

conserved regions among multiple strains, there can be branches in the overlap graph.

In such situations it is often impossible to connect the variants left and right of the

conserved region, hence we do not merge any pair of contigs connected by a branching

edge (Supplementary Fig 3).

Contig formation and error correction. We transform all reads/contigs within a

cluster (a clique or a pair of contigs) into a consensus sequence. It is important to

determine the consensus very carefully, because the original sequencing reads may

contain up to 1% sequencing errors. Every consensus base is determined by a position-

wise weighted majority vote, where the weights correspond to the respective base quality



36 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

scores, as described in [118] and Supplementary Methods. This procedure was designed

to correct for all putative sequencing errors showing among members of a clique, which

is especially relevant in the first iteration of stage a (the error correction step). In this

specific iteration, therefore, we require cliques of size at least 4; it is then highly unlikely

that all the reads in a clique will agree on a sequencing error. We remove the extremities

of the resulting contig where the support of the clique is less than 4 (Figure 2.5, panel

D). Reads that are not contained in any size 4 clique are discarded after this iteration.

Graph updating. The newly constructed contigs become the nodes of the updated

overlap graph and we need to determine the edges between those nodes. In other

words, we need to find all pairs of contigs satisfying our overlap criteria. In Stage a, we

examine all pairs of contigs that share an original read. This approach is very efficient,

but risks ignoring overlaps of contigs that do not share an original read. In Stages b

and c the graph is sparse enough, such that we can update the edges by considering all

induced overlaps. This means that for every edge u → v in the graph before updating,

we consider every overlap u′ → v ′ for all u′ ∈ Su , v ′ ∈ Sv , where Su ,Sv are the sets of all

newly constructed contigs containing u, v , respectively. In addition, we also reconsider

all overlaps that were not included as an edge in the graph before updating due to an

insufficient overlap quality score.

Iteration. The key idea of the SAVAGE assembly algorithm now is to repeatedly

apply this twofold procedure of clique enumeration (Stage a) or merging pairs (Stages

b and c) and contig formation. Thereby, all contigs of iteration i ≥ 1 become nodes in

the overlap graph of iteration i +1, which results in an overlap graph to be processed in

iteration i +1. We repeat this procedure until there are no more edges in the overlap

graph. Key to success is that contigs are constantly growing along the iterations, and,

upon convergence, greatly exceed the length of the original reads. An example of

the progression of contig lengths during the three stages of the algorithm is given in

Supplementary Table 5.

2.4.3 Parameter settings

There are three parameters to be set, namely, the overlap score threshold δ, the mis-

match rate mr allowed in the overlaps, and the minimal overlap length L. To analyze

the behaviour of the overlap score function, we simulated 2×250 bp Illumina MiSeq

reads from different genomes, diverging between 1% and 10%. We computed all over-

laps among those reads and classified them by the number of true mutations in the

overlap (not counting mismatches that are due to sequencing errors). This resulted in

distributions Pi , i ≥ 0, representing the overlap scores found in case of i true mutations

(Supplementary Fig 4), from which we concluded that δ= 0.97 is the optimal choice.

To be more conservative, this threshold can be raised, but this comes at the cost of a



2.4. Methods 37

Cliques

 

Pairs

double transitive

single transitive

Transitive edgesBA Read orientations

C Read clustering D

 

Error correction sequencing error

non-transitive

Cluster

Consensus

Error corrected

(+,+) (+,-)

(-,+)

+ + -

Figure 2.5: Algorithmic details. A. Read orientations: Given an edge u → v

with orientations (−,+). Then if u is labelled +, the induced label for v is −,

while if u is labelled − the induced label for v is +. This procedure leads to a

vertex labelling in O(V ) time. B. Transitive edges: An edge u → w is called

single transitive (resp. double transitive), shown in green (resp. red), if there

exists a vertex v and edges (resp. transitive edges) u → v , v → w . C. Read

clustering by cliques (top) or by pairs (bottom). D. Error correction: when a

consensus sequence is constructed from a cluster of reads, the extremities

are removed.

decrease in the target genome coverage.

The mismatch rate parameter allows overlaps having an insufficient overlap score

to become edges in the overlap graph if the mismatch rate is sufficiently low. By default,

this parameter is set to 0, meaning that we only rely on the overlap score for constructing

the overlap graph. When assembling master strains, however, the allowed mismatch rate

was set to 0.01, so that strains diverging by less than 1% were merged into a consensus

sequence.

Finally, the setting of the minimal overlap length parameter depends on the average

read coverage and sequencing depth. Increasing the minimal overlap length results in

a faster algorithm and lower error rate, because the overlap graph will be very much

restricted. But this achievement comes with a potential loss of low-frequency strains,

since the corresponding reads may not have sufficiently long overlaps. In general, we

found a minimal overlap length of 50–70% of the total read length to work well. The

exact command lines and parameter settings used for all experiments can be found in

Supplementary Methods.



38 Chapter 2. De novo assembly of viral quasispecies using overlap graphs

2.4.4 Frequency estimation

We apply Kallisto [18] to estimate relative frequencies of the contigs assembled for a

viral quasispecies. Kallisto was designed for quantifying the abundances of bacterial

genomes from HTS data, which is similar in spirit to estimating frequencies for viral

quasispecies assembly. The Kallisto algorithm takes as input the original sequencing

reads along with the contigs, and returns for every contig a so called TPM (Transcripts

Per Million). This number estimates the amount of sequencing reads corresponding to

this contig for every one million reads considered, and it is independent of the contig

length. We translate these counts to relative frequencies by dividing each TPM by the

sum of TPMs of all contigs evaluated. For the heatmaps in Figure 2.3, panel C, we only

evaluated the two contigs of at least 4000 bp.

2.4.5 Other methods used for evaluation

For benchmarking, we compared SAVAGE against the state-of-the-art approaches

ShoRAH [130] and PredictHaplo [97]. Both methods were run with default parameter

settings, after aligning the reads to the reference genome using BWA-MEM [63]. The de

novo assembler MLEHaplo [72] required the reads to be error corrected first, for which

we used MultiRes [71] with default settings (recommended by the authors). Unfortu-

nately, we could not compare against VGA [73] and HaploClique [118] because these

software packages were no longer maintained.

2.4.6 Data simulations

To evaluate performance of SAVAGE, we designed several simulated data sets. We used

the software SimSeq [112] to simulate Illumina MiSeq reads from the genome of interest.

In order to obtain reads similar to the real 5-virus-mix data, we simulated 2×250 bp

paired-end reads, with a fragment size of 450 bp and the MiSeq error profile provided

with the software. In addition, we also simulated a 5-strain HIV mix with shorter

reads (2x150 bp). The genomes used for each data set are listed in the Supplementary

Methods.

2.4.7 Read trimming and merging

Before running any of the methods, the raw Illumina reads were trimmed using CutAd-

apt [76]. Next, we applied PEAR [132] for merging self-overlapping read pairs. This

resulted in a final read set containing both single-end and paired-end reads, on which

we ran SAVAGE. For the other methods (MLEHaplo, PredictHaplo, ShoRAH, and VI-

CUNA) we used the trimmed reads without merging, since neither of these methods



2.4. Methods 39

accepts a combination of single- and paired-end reads. In addition, MLEHaplo required

an error correction step on the input reads which was performed using MultiRes [71].

2.4.8 MetaQUAST evaluation

We use MetaQUAST [82] for quality evaluation of the assembled contigs, which evaluates

the contigs against each of the true viral genomes. By default, MetaQUAST uses the

option –ambiguity-usage all, which means that all possible alignments of a contig

are taken into account. However, the genomes in a viral quasispecies can be so similar

that a contig may align to multiple strains, even though it only matches one haplotype.

Therefore, we manually changed this option to –ambiguity-usage one, such that for

every contig only the best alignment is used. Contigs shorter than 500 bp were ignored

during evaluation.

2.4.9 Software availability and data access

A C++ implementation of SAVAGE is available for public use as part of the HaploConduct

package at https://github.com/HaploConduct/HaploConduct. All simulated data sets

can be downloaded from https://bitbucket.org/jbaaijens/savage-benchmarks.

https://github.com/HaploConduct/HaploConduct
https://bitbucket.org/jbaaijens/savage-benchmarks




CHAPTER 3

OVERLAP GRAPH-BASED GENERATION OF

HAPLOTIGS FOR DIPLOIDS AND POLYPLOIDS

In this chapter we present POLYTE (POLYploid genome fitTEr) as a new

approach to de novo generation of haplotigs for diploid and polyploid

genomes of known ploidy. We adapt the overlap graph-based assembly

approach described in the Chapter 2 to be applied in a scenario of fixed

ploidy and low to medium sequencing depths (10–100x). In order to deal

with low coverage sequencing data, edge constraints for the overlap graph

are less restrictive in comparison to the previous chapter. As this increases

the number of spurious edges and thereby the risk of assembling false

haplotypes, we present a procedure to reduce the number of spurious

edges in the overlap graph.

Experiments on both real and simulated data demonstrate that POLYTE es-

tablishes new standards in terms of error-free reconstruction of haplotype-

specific sequences. As a consequence, POLYTE outperforms state-of-the-

art approaches in various aspects, where advantages become particularly

distinct in polyploid settings.

Published as:

J.A. Baaijens and A. Schönhuth. Overlap graph-based generation of haplotigs for

diploids and polyploids. Bioinformatics, btz255, 2019 (in press).

Supplementary material: https://doi.org/10.1093/bioinformatics/btz255.

41

https://doi.org/10.1093/bioinformatics/btz255


42 Chapter 3. Generation of haplotigs for diploids and polyploids

3.1 Introduction

In most eukaryotic organisms genomes come in copies, where each copy stems from

one of the ancestors. The number of copies determines the ploidy of the organism: while

diploid relates to two copies, polyploid refers to more than two copies.The copy-specific

sequences are referred to as haplotypes, which generally differ in terms of the genetic

variants affecting them. Distinguishing the two haplotypes in diploid organisms (such as

in most vertebrates) or more than two in polyploid organisms (such as many plants and

some funghi) plays an important role in various disciplines. Prominent examples are

genetics, where assigning variants to ancestors is key [114], and medicine, because very

often haplotype-specific combinations of variants establish clinically relevant effects,

e.g. when disease risks have been inherited [45]. In general, determining haplotypic

sequence, i.e. keeping track of ancestry-based dependencies is instrumental in many

biomedical settings.

Assembling the two (diploid) or more (polyploid) haplotypes from sequencing

reads is known as haplotype-aware genome assembly, and the resulting assembled

pieces of sequence are haplotigs, as a shorthand for haplotype-aware contigs. The

advent of next-generation sequencing (NGS) has brought about a plethora of NGS read

compatible assembly programs. The vast majority of these programs, however, do not

yield haplotigs, but consensus genome sequence, as a summary across all haplotypes

involved. Even then, sequencing errors, read length and hardware limitations already

pose fundamental challenges during the assembly process.

Generating haplotigs from NGS reads—which is the challenge that we tackle here—

comes with additional obstacles. Beyond distinguishing between errors and true se-

quential variants, one needs to assign the true sequential variants to the different copies.

This requires keeping track of information that allows to link the true sequential vari-

ants stemming from identical copies. However, NGS reads in general are rather short:

techniques are needed that can link haplotype-specific variants across read bound-

aries. Despite the many recent advances, this is not (yet) a standard procedure in

genome assembly: haplotype-aware assembly can still be considered in its early stages

of development which explains that further advances are desirable.

Motivation. The majority of sequencing machines installed worldwide perform tradi-

tional NGS, such as Illumina sequencing. A plethora of population-scale sequencing

studies (e.g. [14, 113, 115, 116]) have filled up databases with traditional, short NGS

reads. In terms of quantities, traditional short NGS reads exceed the amount of reads

stemming from more recent third-generation sequencing (TGS) protocols by at least

one order of magnitude. The increase in read length due to TGS has considerably

spurred the development of methods for haplotype-aware assembly (see Related work).



3.1. Introduction 43

While the increase in length is beneficial, the increase in sequencing error rates is also

a major obstacle when distinguishing between haplotypes, usually leaving applicants

with ambiguities that are hard to resolve.

Recent work has pointed out that targeted examination of NGS (Illumina type) reads

can have significant positive effects in haplotype-aware assembly [12, 91]. Seemingly,

the enormous quantities of traditional NGS read data have been underexploited in

terms of haplotig computation so far. This establishes our major motivation.

To better understand where serious progress can be made, one needs to realize that

existing methods for haplotype computation from traditional NGS (Illumina) reads

fall into two classes: the first (and arguably more popular) choice of approaches are

referred to as haplotype assembly programs. These approaches make use of a reference

genome to call variants from aligned reads, which are subsequently phased into separate

haplotypes. The advantage of haplotype assembly programs is their stability and their

resource-friendly usage. Examples for diploid haplotype assembly are WhatsHap [91],

Phaser [20], HapCut2 [36], ProbHap [60] and HapCol [95]. Examples for polyploid

haplotype assembly are HapCompass [2], HapTree [12], SDhaP [29], and H-PoP [128].

The disadvantage of haplotype assembly programs is that they depend on high-quality

reference sequence as a backbone. In addition, they depend on external variant call

sets. These two factors can introduce non-negligible biases.

The second class of methods is de novo haplotype-aware assembly approaches that

can deal with traditional NGS (in particular Illumina) reads. The advantage of such

approaches is that they are independent of reference genomes and external call sets,

which eliminates the externally induced biases. There are only little such approaches

available however; to the best of our knowledge, only ALLPATHS-LG [100], Platanus

[55], and dipSPAdes [104] explicitly aim at computation of haplotigs from (diploid) NGS

data. However, ALLPATHS-LG and Platanus require particularly tailored libraries, which

renders their general application difficult, and the dipSPAdes software is no longer

maintained. In results of ours, we further noted that SPAdes [9] can be run in diploid

mode (which is not to be confused with the no longer maintained dipSPAdes), and is

able to compute haplotigs (surprisingly not only in diploid, but also in conventional

mode), thereby likely establishing the only tool among the (myriad of) approaches for

consensus oriented genome assembly (see [17, 105] for references) that one can use for

computation of haplotigs from short NGS reads.

In summary, there are no approaches that 1) specialize in the generation of (high-

quality) haplotigs, but 2) do not depend on high quality reference sequence as a back-

bone, 3) do not depend on external variant call sets and 4) do not require particularly

tailored sequencing libraries.



44 Chapter 3. Generation of haplotigs for diploids and polyploids

Illumina paired-end reads

single sequences pairing information

read-overlap graph

corrected sequences

contig-overlap graph

reduced graph

contigs + overlaps

diploid contig graph

diploid contigs + overlaps

g
ra

p
h

u
p
d
a
ti

n
g

u
n
ti

l
c
o
n
v
e
rg

e
n
c
e read-based branch reduction

exact su�x-pre�x overlaps

approximate su�x-pre�x overlaps

maximal clique enumeration

+ consensus seq

contig extension

diploid branch reduction

contig extension

(Input)

(Output)

(Optional

output)

Figure 3.1: Algorithm overview.

Contribution. The contribution of this paper is to close this gap in the landscape of

approaches. We present POLYTE (POLYploid genome fitTEr), as an approach to do

this for genomes of known ploidy. Our results indicate that POLYTE outperforms state-

of-the-art approaches of the two classes—haplotype assembly and de novo assembly

approaches—with significant advantages in a variety of relevant aspects. As an example

of an application scenario, POLYTE outperforms the other approaches in reconstructing

individual haplotypes of the human Major Histocompatibility Complex (MHC). This

region of 6Mb on chromosome 6 is essential to the acquired immune system and

shows very high genetic variability; haplotype-aware reconstruction of the MHC region

therefore usually is particularly challenging during the assembly process. Note finally

that the majority of approaches focuses on diploid genomes. Therefore, the lack of

approaches that can compute haplotigs for organisms of ploidy larger than two is

even more striking. For ploidy larger than two, POLYTE achieves performance rates

that are nearly on a par with those achieved for diploid organisms. To the best of

our understanding, because of the lack of competitors, one might perceive POLYTE’s

achievements for polyploid organisms as a novelty in its own right.



3.2. Methods 45

Related work. In terms of assembly paradigms, POLYTE is an overlap graph-based

approach. It adopts ideas from earlier work that either focused on variant discovery

[75], viral quasispecies assembly [7, 118] or metagenome gene assembly [46] and unites

the virtues of Marschall et al. [75]—the ability to handle low coverage—on the one

hand, and Baaijens et al. [7] and Töpfer et al. [118]—dealing with real overlap graphs

and contig computation—on the other hand. That is, POLYTE brings forth an iterative

overlap graph-based scheme for contig generation that reliably works in low coverage

settings, requiring coverage of only as low as 5x per haplotype.

Note finally that our approach also draws motivation from the recent technology

shifts, such as the advent of third-generation sequencing (TGS) and explicitly haplotype-

aware sequencing protocols like StrandSeq [96], which have put the computation of

haplotigs into the focus of current attention. Chin et al. [23], Jain et al. [53] and Weis-

enfeld et al. [127] describe approaches that aim to exploit the respective advances in

sequencing technology and protocol design. Although there are similarities between

these approaches and POLYTE, we focus on NGS data and hence our method fully ex-

ploits paired-end read information. We consider the adaptation of POLYTE to TGS data

most interesting future work: the framework of POLYTE is generic in terms of choosing

reads, such that this is a matter of adapting parameters, more than anything else. We

recall, however, that our motivation was to bring forward a method that exploits (the

abundantly available) traditional NGS reads in the first place. This, e.g. enables to re-

construct MHC region haplotypes in various population-scale studies (e.g. Besenbacher

et al. [14], Sudmant et al. [113], The Genome of the Netherlands Consortium [115] and

The UK10K Consortium [116]), which has been a major challenge so far.

3.2 Methods

We present POLYTE, an algorithm to assemble individual haplotypes of diploid and poly-

ploid genomes from short read sequencing data; see Figure 3.1 for the complete work-

flow. POLYTE follows the overlap-layout-consensus (OLC) paradigm, where consensus

refers to removing errors within haplotypes (instead of the common interpretation

of reaching consensus across different haplotypes). Our method starts by construct-

ing a read-overlap graph which is used for error correction of the input sequences.

Subsequently, we make use of an iterative OLC scheme, where in each iteration a contig-

overlap graph is constructed. This graph is further reduced by applying transitive edge

removal and read-based branch reduction. Then, contigs are clustered and merged ac-

cording to their interplay within the overlap graph, resulting in a collection of extended

contigs (‘contig extension’ in Figure 3.1). These extended contigs establish the nodes

of the contig-overlap graph of the next iteration, which is achieved by an updating

procedure. When contigs can not be merged any further, POLYTE outputs the final set



46 Chapter 3. Generation of haplotigs for diploids and polyploids

of contigs. When dealing with diploid organisms, an additional assembly stage can

be activated which consists of two additional steps (‘diploid branch reduction’ and

‘contig extension’ in Figure 3.1), creating an optional output that is refined for diploid

organisms.

Given that we are dealing with data of relatively low sequencing depth, we need

to exploit the information present in the sequencing reads as much as possible. The

initial error correction procedure is particularly crucial, as sequencing errors can heav-

ily disturb the process of distinguishing between different haplotypes. For this error

correction step, approximate suffix-prefix overlaps are computed to establish an ini-

tial read-overlap graph. Inspired by Baaijens et al. [7] and Töpfer et al. [118], maximal

cliques are enumerated in the non-oriented graph and errors are corrected by inspecting

the overlaps between reads within the cliques. By design of the overlap graph—edges

indicate that two reads stem from identical haplotypes—every clique only contains

reads from identical haplotypes, which allows to eliminate errors based on majority

votes. Note that this procedure is particularly tailored to low coverage settings with

known ploidy: admissible clique sizes and minimal sequence overlap lengths can heav-

ily vary in comparison to earlier approaches. However, with edge criteria that are much

less restrictive than in other approaches, we obtain a larger number of spurious edges.

We have developed a procedure for read-based branch reduction to reduce the num-

ber of spurious edges in the overlap graph, which is of great importance for accurate

reconstruction of haplotigs.

In the following sections we will discuss each of the steps involved in POLYTE,

following the workflow depicted in Figure 3.1.

3.2.1 Read-overlap graph construction

The steps outlined in this section refer to the initial step ‘approximate suffix-prefix

overlaps’ that leads to the establishment of the ‘read-overlap graph’ in Figure 3.1.

Read-overlap graph: definition. The read-overlap graph follows the idea that nodes

are reads and edges indicate that a pair of reads stem from identical haplotypes. Given

the input consisting of paired-end sequencing reads (Illumina), let R be the collection

of single-end sequences from all paired-end reads. The read-overlap graph G = (V ,E)

is a directed graph where V corresponds to the collection of input sequences R. That

is, for every paired-end read we have two vertices v, v ′ ∈ V , one for each single-end

sequence R ∈R. Directed edges vi → v j ∈ E connect sequences Ri ,R j whenever the

suffix of Ri overlaps the prefix of R j for at least 50% of the average sequence length

of all reads. Furthermore, for each edge vi → v j , we require QS(Ri ,R j ) ≥ δ, where

QS : R ×R → R is a quality score and δ is an appropriate threshold. This threshold

is determined based on empirical statistics so as to maximize the chances that the



3.2. Methods 47

edge (vi , v j ) indeed indicates that the corresponding sequences Ri and R j stem from

identical haplotypes; increasing the δ-threshold would lead to a higher accuracy but

possible loss of low abundance haplotypes. In this, we largely follow ideas presented in

earlier work [7, 75, 118].

The difference with respect to these prior approaches is that only single ends are

considered, whereas in the earlier approaches nodes represent the entire paired-end

reads. Also note that here overlap graphs are twice as large in comparison to the earlier

approaches, because each paired-end read is represented by two nodes, instead of only

one. While this difference imposes substantial methodical and technical challenges, it

is key to dealing with low coverage because it decisively increases the recall in terms of

recovering reads that stem from identical haplotypes. However, it also implies follow-up

complications, because the information that read ends come in pairs is temporarily lost.

In POLYTE, paired-end information is stored and used in later steps; see Section 3.2.4

below.

Construction. Computation of the edges for the read-overlap graph requires enu-

meration of all pairwise approximate suffix-prefix overlaps (of sufficient length) between

the single read ends R ∈R and evaluation of a quality score QS(Ri ,R j ) for each pair of

sequences for which a sufficiently good overlap was established during the approximate

suffix-prefix overlap computation. We further orient the edges (which is necessary

because reads can stem from either the forward or the reverse stand) and systematically

remove double transitive edges, which ensures that one can enumerate maximal cliques

in an efficient manner (see Section 3.2.2). Each of these graph construction steps is

described in detail in Section 1 of the Supplementary Material.

The computation of approximate suffix-prefix overlaps for vertebrate genome-sized

input read sets is a serious issue, currently hardly conceivable without external auxiliary

means (see also Simpson and Durbin [110]). Here, we suggest a method that aims to

suppress externally introduced biases to a maximum degree. We make use of a reference

genome for binning reads in an initial step and, after binning, we discard the reference

genome and any related information entirely such that POLYTE operates in full de

novo mode. This binning step does not require a high-quality reference genome, as

long as reads get mapped; any unaligned reads are discarded (see also Supplementary

Section 9).

3.2.2 Correction of sequencing errors

After the establishment of the read-overlap graph, we cluster its nodes by enumerat-

ing the maximal cliques contained in the non-oriented graph. The idea is to collect

groups of reads belonging to the same haplotype and produce error-free sequences

for subsequent assembly steps (‘corrected sequences’, Figure 3.1). By definition of



48 Chapter 3. Generation of haplotigs for diploids and polyploids

a maximal clique—a maximal group of nodes all of which are connected by edges—

maximal cliques represent maximum-sized groups of reads all of which belong to the

same haplotype. Once all maximal cliques are determined, it is therefore reasonable

to merge the reads within a maximal clique into a single contig. Note that this contig

is longer than the individual reads participating in the contig and that sequencing

errors can be eliminated by raising majority votes among the reads participating in the

maximal clique. While this reflects an approved procedure in its generic form [7, 46,

118], accounting for the particular setting we are facing here—namely low coverage in

combination with sequence-based edge definition—requires particular care.

The minimum clique size depends on the coverage per haplotype; in all settings

considered we are dealing with known ploidy, while the overall coverage of reads can be

determined by usual considerations, which yields per-haplotype-coverage estimates.

To determine the optimal minimum size of a clique for a given per-haplotype coverage,

we compute the probability pc,k that, due to unfortunate fragmentation of sequencing

reads, at a per-haplotype coverage of c there is no clique of size k that extends a given

sequencing read R to the right when requiring at least 50% read overlap. In other words,

we compute the probability that there are at most k −1 reads extending R to the right;

the exact same analysis applies to extensions to the left.

For determining pc,k , we assume that sequencing reads are fragmented randomly,

which implies that reads are generated independently of one another. Let R be a read

and S be a set containing reads from the haplotype of R at exactly 1x coverage, further

assuming that all reads R ′ ∈ S have the same length as R (which reflects that all single

read ends have the same length). It is straightforward to see that the probability that

there is R ′ ∈ S that overlaps R for at least 50% of its length (into one direction, left or

right) as 0.5. When dealing with a per-haplotype coverage of c , we assume the existence

of c sets of reads Si , i = 1, ..,c all of which contain reads that cover the haplotype c at

1x. For computing pc,k we consider that for only k −2 of the c sets Si , i = 1, ...,c we have

that there is R ′ ∈ Si that overlaps R for at least 50% of its length (resulting in a clique of

size at most k −1), which evaluates as

pc,k =
k−2∑
i=0

(
c −1

i

)
0.5i 0.5c−1−i =

k−2∑
i=0

(
c −1

i

)
0.5c−1. (3.1)

We aim to have pc,k low to be able to deal with sufficiently many cliques, hence for

every choice of c we compute k such that pc,k < 0.001. In this regard, we obtain that

for up to 10x per haplotype an appropriate choice for the minimum clique size is 2, for

coverages between 10x and 15x a minimum clique size of 3 is required, while for c ≥ 15x

an optimal choice for the minimum clique size is 4. Note that in practice cliques do not

grow larger than size 4 because of double transitive edge removal (see Supplementary

Material).



3.2. Methods 49

Figure 3.2: Illustration of branching components in a contig-overlap graph.

Edges of the same colour belong to the same branching component.

3.2.3 Contig-overlap graph construction

Given the corrected sequences obtained by merging maximal cliques, we build a new

graph: the contig-overlap graph (see Figure 3.1).

Contig-overlap graph: definition. The contig-overlap graph G ′ = (V ′,E ′) is very

similar to the read-overlap graph, except that we construct it from a set of contigs

assumed to be free of sequencing errors. Therefore, every node v ∈V ′ corresponds to a

contig and we add an edge between a pair of nodes whenever they have an exact (i.e.

error-free) overlap of sufficient length.

Construction. The contig-overlap graph can be constructed very efficiently by

making use of the FM-index-based algorithm from Chapter 2 while allowing only exact

overlaps. This gives us the complete edge set E ′ without any further computations,

since we do not need to compute the overlap quality score for exact overlaps. Note that

the minimal overlap length in the contig-overlap graph does not need to be as high as

before error correction and it is independent of the read length: all experiments were

performed using a minimal contig overlap of 50 bp.

Remark. Allowing approximate overlaps in this stage of the algorithm, for example

by allowing some substitutions, would slow down the contig-overlap graph construction

considerably. Although the additional edges could lead to improved recovery of true

haplotypes, it would also bring the risk of collapsing highly similar sequences and thus

missing haplotypes.

3.2.4 Branch reduction in the contig-overlap graph

Before using the contig-overlap graph to extend our contigs, we trim the graph by

removing redundant vertices and edges and resolving branches based on read evidence

where possible, now also exploiting the paired-end information. After completing this

step, we have a ‘reduced graph’ (see Figure 3.1) that is ready for contig extension.

Transitive edge removal. An edge u → w ∈ E ′ is called transitive if there exists a

vertex v ∈V ′ and edges u → v, v → w ∈ E ′. Now that sequences (contigs) are assumed

to be error-free, transitive edges have become fully redundant, hence we remove all

transitive edges from the graph before further processing.



50 Chapter 3. Generation of haplotigs for diploids and polyploids

Branching edges and nodes. The indegree (resp. outdegree) of a node v ∈ V ′ is

defined as the total number of incoming (resp. outgoing) edges in G ′. If v has indegree

greater than one, we say v has an in-branch; analogously, if v has outdegree > 1, we

say that v has an out-branch. We refer to the corresponding edges as branching edges

and to v as a branching node. Since we did not use any read pairing information during

construction of our overlap graphs, we observe many branches in the contig-overlap

graph. We now use the information how ends are paired to remove any branching edges

in the contig-overlap graph that do not correspond to a true haplotype.

Merging simple paths. Following the above definition, any edges that are not

branching edges constitute simple paths through the contig-overlap graph. For such

paths, there is only one possible way to combine the corresponding contigs; hence,

before processing the graph any further, we merge every simple path into a single contig.

Since edges in the graph represent exact overlaps, this is a straightforward procedure.

Branching components. After merging simple paths, all remaining edges are branch-

ing edges. We define a branching component as a subgraph H of the contig-overlap

graph, such that (1) H is an induced subgraph, (2) H is connected as an undirected

graph, and (3) within H , any vertex has only incoming or outgoing edges in H , but not

both. A branching component is defined to be maximal with respect to these three prop-

erties; see Figure 3.2. Intuitively, a branching component reflects all possible haplotypes

within a small region of the genome.

Note that different components may intersect across their vertex sets, but cannot

have any edges in common. In other words, the maximal branching components

partition the set of all branching edges, as illustrated in Figure 3.2. This partition can

be found in time linear in the number of branching edges by alternatingly traversing

in-branch edges and out-branch edges until every edge has been seen exactly once;

see Section 2 in the Supplementary Material for further details. After enumerating all

maximal branching components, we evaluate read evidence per component.

Read evidence. The main idea of read-based branch reduction is to remove all

branching edges for which there is insufficient read evidence in the input data. For

this purpose, we keep track of all original sequencing reads (‘subreads’) that were used

to build a contig; each of these subreads may provide evidence for a branching edge.

Within a branching component, we first list all variant positions, i.e., the positions

at which the sequences corresponding to the different neighbors differ from each

other. These are the positions where we may find sequencing reads supporting a given

branching edge. A paired-end sequencing read R = (R1,R2) is marked as evidence for

the branching edge u → v if it satisfies the following conditions:

(i) R spans the branching edge, meaning that at least one of the sequences R1,R2 is

a subread of u and at least one of the sequences R1,R2 is a subread of v ;



3.2. Methods 51

A B

contigs

subreads

contig overlap

graph

Figure 3.3: Two examples of contigs creating branches in the overlap graph.

Edges corresponding to true haplotypes are highlighted in yellow. The

corresponding subreads are aligned below, those providing read evidence

are again highlighted. (A) Only two out of four edges are supported by read

evidence, the other edges will be removed. (B) Both edges are supported by

read evidence.

(ii) The sequence spanning the edge is identical to the contig sequence of the corres-

ponding node for all variant positions it covers;

(iii) R is unique for this edge: it does not satisfy conditions (i) and (ii) for any other

edge involved in this branching component.

Figure 3.3 shows two examples of contigs creating branches in the overlap graph,

along with the sequencing reads (‘subreads’) that were used to build these contigs; the

subreads providing read evidence are highlighted in yellow. Observe that in panel A,

in order to satisfy condition (iii) a subread has to cover at least one variant position on

either contig. In panel B, we illustrate that also a single read end can provide evidence:

the rightmost subread covers a variant position and satisfies all conditions listed above.

Note that condition (ii) ensures that erroneous contigs do not find evidence in

correct reads: if a sequencing error accidentally ends up in a contig, it will cause a branch

in the overlap graph which can only be supported by reads containing exactly this

sequencing error. Whenever such a branch occurs, there will be insufficient evidence

and hence the erroneous contigs will never be merged. Eventually, these contigs can be

filtered out based on their short length. In the Supplementary Material we discuss how

an appropriate evidence threshold is determined (using similar considerations as for

determining the optimal clique size, Section 3.2.2). Increasing the evidence threshold

would lead to a higher accuracy but also potential loss of low abundance haplotypes.

Branching edge removal. For every branching component, we count the read

evidence per branching edge and remove any edges with evidence count below the



52 Chapter 3. Generation of haplotigs for diploids and polyploids

A B

Figure 3.4: Typical branching components in diploid assemblies: four con-

tigs, two from each haplotype, having identical sequence in their overlap.

Depending on the contig lengths, all contigs overlap (panel A) or only a

subset of the contigs overlap (panel B).

evidence threshold.

3.2.5 Contig extension and graph updating.

After applying the read-based branch reduction techniques described above, all branches

have been either resolved or removed from the contig-overlap graph. Contig extension

has become an easy task: any contigs which are connected by an edge in the graph must

belong to the same haplotype, and, therefore, we merge each such pair of contigs into a

new, longer contig. Then, we update the overlap graph: the extended contigs become

the new nodes and the edges are updated accordingly. The resulting updated graph is

used for further assembly in an iterative manner, as described in Section 3.2.6.

3.2.6 Iterative procedure and diploid mode

Our workflow consists of iteratively performing the steps described in Sections 3.2.3-

3.2.5, as illustrated in Figure 3.1. The number of edges in the contig-overlap graph

decreases with every iteration, since contigs connected by an edge in the graph are

merged (Section 3.2.5). The algorithm terminates when the edge set E ′ of the updated

contig-overlap graph becomes empty, either upon construction or after branch re-

duction. Thus, our algorithm is guaranteed to converge, and once it does we remove

any remaining inclusions from the final contig set. Also any contigs shorter than the

fragment size of the original reads are removed from the output.

Diploid mode. Knowing that a given sample is diploid is a very strong piece of

information when performing haplotype assembly. We have developed a special module

which can be activated for diploid samples. It extends the POLYTE pipeline by two

additional steps after the standard algorithm has terminated: construction of a diploid

contig graph, followed by contig extension (see Figure 3.1). In these additional steps, we

use the knowledge that the sample is diploid to resolve additional branches (for which



3.3. Results 53

there was insufficient evidence in the read set to resolve them during the read-based

branch reduction step; see Section 3.2.4).

In overlap graphs from diploid samples we typically see two types of branching

components; Figure 3.4 illustrates both types (Panel A and B) and gives an example of a

possible collection of contigs giving rise to the corresponding branching component.

In both situations we have four contigs, two from each haplotype, which have identical

sequence where the contigs overlap. In diploid mode, a single read of evidence may

already be considered sufficient, depending on the amount of evidence found for the

other edges (Supplementary Material, Section 3).

This procedure is more risky than default branch reduction (Section 3.2.4), since

it does not require such stringent read evidence. Therefore, we always run the main

POLYTE algorithm until convergence before turning to diploid mode (Figure 3.1). This

ensures that all evidence in the original reads has been exploited first.

3.2.7 Software availability

Software and analysis scripts are publicly available as part of the HaploConduct package

at https://github.com/HaploConduct/HaploConduct.

3.3 Results

In this section we show results for POLYTE on both simulated and real Illumina data

sets and evaluate the assembly quality in terms of haplotype coverage, N50, NGA50,

error rate, and the number of misassembled contigs relative to the total number of

contigs. We also compare our method against alternative haplotype reconstruction

tools: SPAdes [9], Phaser [20], HapCut2 [36], WhatsHap [91], SGA [110], and H-PoP [128].

Other polyploid assemblers [2, 12, 29] were unable to process our benchmark data due

to issues with the available software. All methods were run with default settings and

assembly statistics were obtained with QUAST [47].

3.3.1 Data sets

Simulated data. We generated a collection of simulated data sets of varying ploidy

and sequencing depth to evaluate the effect of these characteristics. We selected four

human MHC haplotypes (COX, DBB, MANN, and SSTO) from the Vega Genome Browser

[37]. Subsequently, we used SimSeq [112] to simulate Illumina MiSeq reads of length

2×250 bp for each of those haplotypes at a coverage of 5x, 10x, 20x, 30x, 40x, and 50x,

respectively, and combined the resulting read sets to form data sets of ploidy 1 (only

COX haplotype, a sanity check), ploidy 2 (COX and DBB), ploidy 3 (COX, DBB, and

MANN), and ploidy 4 (all).

https://github.com/HaploConduct/HaploConduct


54 Chapter 3. Generation of haplotigs for diploids and polyploids

Real data. For evaluation on real sequencing data, we considered a data set from

phase 3 of the 1000 Genomes project [1, 113] for individuals NA19240. This data set was

obtained from a 2×250 bp PCR free Illumina protocol, sequenced to a coverage of 28-

68x. Full haplotypes have been reconstructed for this individual as part of a recent study

[21] using various specialized sequencing techniques and reconstruction algorithms;

we use the resulting haplotypes as a ground truth for a whole-chromosome benchmark

experiment on chromosome 22.

Alignments and variant call sets for reference-guided methods. Reference-guided

methods Phaser, HapCut2, WhatsHap, and H-PoP require as input a reference genome,

read alignments to the reference genome, and a pre-computed set of genomic variants.

For the simulated data we performed read alignment to the GRCh38 reference genome

using BWA MEM [65]. The real data were already provided as alignments to the GRCh37

reference genome, also obtained with BWA MEM. We extracted the sequencing reads

corresponding to chromosome 22 from the provided BAM files. Finally, we performed

variant calling on all data sets with FreeBayes (https://github.com/ekg/freebayes).

3.3.2 Assembly performance criteria

We evaluate assembly performance in terms of several statistics commonly used for de

novo assembly evaluation, as reported by QUAST.

Haplotype coverage (HC). The completeness of the assembly is measured by the

fraction of nucleotides in the target haplotypes (ground truth) covered by haplotigs,

referred to as the haplotype coverage.

N50 and NGA50. Assembly contiguity is measured using the N50 value, which is

defined as the length for which the collection of all contigs of that length or longer

covers at least half the assembly. The NGA50 measure is computed in a similar fashion,

but only aligned blocks are considered (obtained by breaking contigs at misassembly

events and removing all unaligned bases). This measure reports the length for which

the total size of all aligned blocks of this length or longer equals at least 50% of the total

length of the true haplotypes.

Error rate (ER) and N-rate (NR). We evaluate error rate as the sum of mismatch rate

and indel rate when comparing to the ground truth haplotype sequences. In addition,

we report the relative number of ambiguous bases (‘N’s), referred to as the N-rate.

Misassembled contigs (MC). A contig or haplotig is called misassembled if it con-

tains at least one misassembly, meaning that left and right flanking sequences align to

the true haplotypes with a gap or overlap of more than 1kbp, or align to different strands,

or even align to different haplotypes. We report the proportion of misassembled contigs.

https://github.com/ekg/freebayes


3.3. Results 55

HC (%) N50 NGA50 ER (%) NR (%) MC (%)

Simulated data

POLYTE 92.4 4397 4394 0.035 0 0

SGA 73.4 3444 - 0.025 0 0

SPAdes 84.1 3588 919 0.032 0 0.0

SPAdes-dip 83.6 3294 903 0.003 0 0

HapCut2 84.5 29259 17980 0.068 0 2.1

H-PoP 81.7 32319 17484 0.158 0 1.7

Phaser 82.6 24785 16884 0.095 0 1.8

WhatsHap 85.2 32656 17980 0.098 0 2.2

Real data

POLYTE 78.2 (90.5) 2838 2316 0.090 0 0.2

SGA 57.7 (66.8) 2842 - 0.069 0 0.0

SPAdes 67.0 (77.5) 5798 - 0.131 0 0.6

SPAdes-dip 66.4 (76.9) 5772 - 0.139 0 0.8

HapCut2 70.1 (81.1) 6541 5306 0.090 0.9 0.2

H-PoP 62.4 (72.2) 9583 7435 0.119 0.9 0.2

Phaser 66.2 (76.6) 6394 5245 0.094 0.9 0.2

WhatsHap 67.6 (78.2) 6257 6094 0.092 0.9 0.2

Table 3.1: Benchmarking results, HC = Haplotype Coverage, ER = Error Rate

(mismatches + indels), NR = N-Rate (ambiguous bases), MC = Misassembled

Contigs. Top: simulated diploid data for the MHC region. Bottom: real data

for chromosome 22 of 1000 Genomes individual NA19240. HC values within

parentheses indicate haplotype coverage relative to the amount of bases

covered by sequencing reads.

3.3.3 Benchmarking results

We performed benchmark experiments on one of the simulated MHC data sets de-

scribed above (ploidy 2, 20x coverage per haplotype) to compare a variety of haplotype

reconstruction tools. In addition, we ran all methods on the chromosome 22 data of the

1000 Genomes individual NA19240. The assembly statistics on both data sets are shown

in Table 3.1. Since both data sets are diploid, we present results for SPAdes in regular

mode and in diploid mode, referred to as SPAdes-dip.

In both experiments, we observe that across all methods POLYTE has the largest

haplotype coverage (HC, 92.4% and 78.2% for MHC and chr22, respectively). In other

words, it reconstructs the largest fraction of the true haplotype sequences. In compar-



56 Chapter 3. Generation of haplotigs for diploids and polyploids

ison, the other methods are all more or less on a par (81.7–85.2% [MHC] and 57.7–70.1%

[Chr22], respectively). On the real data the haplotype coverage achieved by all methods

is rather low; this can be explained by only 86.4% of the target haplotypes being covered

by sequencing reads. After normalizing the haplotype coverage values by 86.4, POLYTE

achieves a haplotype coverage of 90.5%.

In terms of assembly contiguity, indicated by high N50 and NGA50 values, reference-

guided methods (HapCut2, Phaser, WhatsHap, H-PoP) perform better than de novo

assemblers (POLYTE, SGA, SPAdes). This reflects a common advantage of reference-

guided approaches, which can make use of the external information to bridge regions

only poorly covered with informative reads, if appropriate. The increase in length,

however, is offset by a substantial decrease in terms of haplotig quality: reference-

guided approaches exhibit both substantially more misassemblies (which in particular

can lead to severe issues in downsteam interpretations) and increased error rates, here

larger by one to two orders of magnitude. Note that several NGA50 values are undefined

(‘-’), because the aligned blocks are unable to cover at least 50% of the total reference

length.

Another important difference between reference-guided methods and de novo

approaches is reflected in the N-rates on the real data: the reference genome contains

several stretches of ambiguous nucleotides (‘N’s), which the reference-guided methods

cannot correct. De novo approaches, on the other hand, can potentially uncover the

true sequence behind these ambiguous regions and show an N-rate of 0% (versus 0.9%

for the reference-guided methods).

Between de novo approaches, we compare POLYTE with SGA and SPAdes and

observe that POLYTE reconstructs a substantially larger fraction of the true haplotypes.

Although SPAdes achieves better N50 values, this comes at the expense of a decrease

in terms of error rate and misassemblies, also reflected in a low NGA50 value on the

simulated data and the NGA50 being undefined on the real data (see explanation above).

On the simulated data set, POLYTE and SPAdes achieve comparable error rates of 0.035%

and 0.031%, respectively. On the real data we notice an advantage for POLYTE, with an

error rate of only 0.090% compared to 0.131% for SPAdes. In addition, POLYTE is less

vulnerable to misassemblies than SPAdes on real data, with 0.2% versus 0.6% MC. SGA

is able to reconstruct highly accurate contigs with slightly lower error rates than POLYTE

(0.025 versus 0.035% [MHC] and 0.069 vs 0.090% [Chr22], respectively), but covers a

significantly lower fraction of the ground truth haplotypes (73.4 vs 92.4% [MHC] and

57.7 vs 78.2% [Chr22], respectively).

In an overall account, we believe that, arguably, the major advantage of POLYTE is

established by the increase of 10-15% over the other approaches in terms of haplotype-

specific coverage, in combination with the error rates, which are clearly lower than

those of the other tools.



3.3. Results 57

0

25

50

75

5x 10x 20x

H
C

 (
%

)
k=2

10

1000

5x 10x 20x

N
5
0

10

1000

5x 10x 20x

N
G

A
5
0

0.00

0.05

0.10

0.15

5x 10x 20x

E
R

 (
%

)

0

1

2

3

5x 10x 20x

M
C

 (
%

)

0

25

50

75

5x 10x 20x

H
C

 (
%

)

k=3

10

1000

5x 10x 20x

N
5
0

10

1000

5x 10x 20x

N
G

A
5
0

0.00

0.05

0.10

0.15

0.20

5x 10x 20x

E
R

 (
%

)

0.0

0.5

1.0

1.5

5x 10x 20x

M
C

 (
%

)

0

20

40

60

80

5x 10x 20x

H
C

 (
%

)

k=4

1e+01

1e+03

1e+05

5x 10x 20x

N
5
0

10

1000

5x 10x 20x

N
G

A
5
0

0.00

0.05

0.10

0.15

0.20

5x 10x 20x

E
R

 (
%

)

0

2

4

6

5x 10x 20x

M
C

 (
%

)

Method POLYTE SGA SPAdes H−PoP

Figure 3.5: Assembly results per method for simulated data of increasing

ploidy (k=2,3,4) and per-haplotype coverage (5x,10x,20x). N50 and NGA50

values are plotted on a log-scale for increased readability. For SGA (k=2,3,4)

and SPAdes (k=3,4) the NGA50 values are undefined.

In terms of runtime and memory usage, de novo approaches are in general more

expensive than reference-guided methods. We also observe this when comparing CPU

time and peak memory usage (Supplementary Tables 3–5). Reference-guided methods

have CPU times that are orders of magnitude less compared to de novo methods (where

POLYTE requires 9–15 times more (resp. 3–6 times more) runtime and 3 times less

(resp. 12–17 times more) memory than SPAdes and SGA, respectively). It is important

to notice, however, that these de novo assemblers are highly parallelizable; we demon-

strate the effect of increasing the number of available CPUs on the effective runtime

in Supplementary Table 6. This leads to feasible runtimes on multi-core computing

facilities in practice.

3.3.4 Effect of ploidy and sequencing depth

To study the effect of genome ploidy and sequencing depth on the assembly quality and

completeness, we ran POLYTE, SPAdes, SGA, and H-PoP on all simulated data sets de-

scribed in Section 3.3.1 (other tools were unsuitable for polyploid genomes). Figure 3.5

shows the results for the 5x, 10x, and 20x data sets in terms of haplotype coverage (HC),

N50, NGA50, error rate (ER), and misassembled contigs (MC). For additional result

tables we refer the reader to the Supplementary Tables 8–11.

We observe that POLYTE excels regarding haplotype coverage, with advantages

becoming more distinct as the ploidy increases. SPAdes and H-PoP achieve more con-

tiguous assemblies (higher N50 values) but, as we already observed on diploid data, this



58 Chapter 3. Generation of haplotigs for diploids and polyploids

comes at the cost of significantly higher error rates and misassemblies. SGA performs

very similar to POLYTE when considering N50, ER, and MC, but obtains much lower

HC values. The NGA50 values highlight the improved assembly quality of POLYTE over

SGA and SPAdes: while POLYTE achieves NGA50 values comparable to the N50, SGA

and SPAdes are unable to cover at least 50% of the ground truth with alignments (hence

NGA50 is undefined). Overall, we conclude that in polyploid settings the same advant-

ages of POLYTE apply as in diploid settings – increased haplotype-specific coverage in

combination with low error rates – and become even more pronounced.

All other methods evaluated (HapCut2, Phaser, Whatshap, SPAdes-dip) are designed

for diploid data, so for those we could only assess the effect of sequencing depth. Results

indicate that each of the reference-guided methods already performs optimally at a

coverage per haplotype of 5x. Moreover, these methods are unaffected by a further

increase in sequencing depth (see Supplementary Table 12). SPAdes in diploid mode

(SPAdes-dip) performs optimally at a per-haplotype coverage 20x.

3.4 Discussion

Assembling the individual haplotypes of an organism from sequencing reads is known

as haplotype-aware genome assembly and plays a major role in various disciplines,

including genetics and medicine [45, 114]. Computing haplotype-specific pieces of

sequence, also known as haplotigs, is a difficult task. Algorithms addressing this task

do not only need to distinguish between sequencing errors and true variants, but also

need to assign the true variants to the individual haplotypes. Enormous quantities

of next-generation sequencing (NGS) reads generated worldwide have not been fully

exploited in terms of haplotig computation, because methodology for de novo haplotig

computation from NGS reads has been in a rather immature state.

We have presented POLYTE (POLYploid genome fitTEr) as a new approach to de

novo assembly of haplotigs from NGS data, suitable for diploid genomes as well as

genomes of higher ploidy. Unlike the majority of NGS based de novo assemblers, our

method follows the overlap-layout-consensus (OLC) paradigm to achieve enhanced

performance rates in terms of haplotype-specific computation of contigs. In order

to appropriately distinguish between errors and true variants to be assigned to hap-

lotypes, it employs an iterative OLC scheme. Along the iterations, contigs grow in

length while preserving their uniqueness in terms of haplotype identity. As a result,

POLYTE outperforms the currently available state-of-the-art approaches for haplotig

computation, where it performs particularly favorable in terms of quantities that refer

to haplotype-specific reconstruction of the genomes.

Experimental results showed that POLYTE can build accurate assemblies from

Illumina MiSeq reads (2×250 bp) for data sets of varying ploidy (di-, tri- and tetraploid),



3.4. Discussion 59

with results for tetraploid organisms almost on a par with those for diploid organisms.

Although building overlap graphs for larger genomes remains a challenge, we provide

a read binning step that allows efficient assembly by splitting the work over multiple

cores. The typical use-case for POLYTE consists of Illumina NGS reads for a specific

gene, region or genome that is highly polymorphic (of any ploidy > 1).

We showed that POLYTE succeeds in accurate reconstruction of individual haplo-

types of the human MHC region. Future work may therefore be to apply POLYTE to

NGS data in population-scale human genome projects, where individual genomes are

still lacking proper annotation of their MHC region, which applies in the majority of

cases. Advantages become particularly distinct on data of higher ploidy, leading to plant

genome assembly as another interesting future application of POLYTE.

Our algorithm is, in its essence, generic in the choice of input reads, so applying it

for TGS reads essentially is a matter of adapting parameters, which we will explore in

the short-term future.





CHAPTER 4

FULL-LENGTH DE NOVO VIRAL QUASISPECIES

ASSEMBLY THROUGH VARIATION GRAPH

CONSTRUCTION

In Chapter 2 we took the first steps towards full-length haplotype recon-

struction in viral quasispecies. We observed that having a reference-free

approach has significant advantages, as reference-induced biases can be-

come overwhelming when dealing with divergent strains. Although we were

able to construct strain-specific contigs through de novo assembly, these

contigs remained rather short compared to the genome size. This chapter

continues our quest for full-length viral quasispecies assembly without a

reference genome.

We present Virus-VG, a de novo approach to viral haplotype reconstruction

from pre-assembled contigs. Virus-VG is based on the construction of a

variation graph from short input contigs. We define a minimization prob-

lem that yields a selection of maximal-length paths and the corresponding

abundance estimates, which are optimal in terms of being compatible

with the read coverages computed for the nodes of the variation graph.

Benchmark experiments on challenging simulated and real data sets show

significant improvements in assembly contiguity compared to the input

contigs, while preserving low error rates compared to state-of-the-art viral

quasispecies assemblers.

Published as:

J.A. Baaijens, B. van der Roest, J. Köster, L. Stougie, A. Schönhuth. Full-length de

novo viral quasispecies assembly through variation graph construction. Bioinform-

atics, btz443, 2019 (in press).

Supplementary material: https://doi.org/10.1093/bioinformatics/btz443.

61

https://doi.org/10.1093/bioinformatics/btz443


62 Chapter 4. Viral quasispecies assembly through variation graph construction

4.1 Introduction

The ensembles of genetically related, but different mutant viral strains that populate

infected people are commonly referred to as viral quasispecies [32]. Each of these

strains comes with its own genomic sequence (henceforth referred to as haplotype). The

final goal of primary viral quasispecies analysis is the reconstruction of the individual

haplotypes—optimally at full length—and also to provide estimates of their abundances.

The unknown number of different, strain-specific haplotypes and their variance in

abundance establish the theoretical issues that characterize viral quasispecies assembly.

They explain why this form of assembly is difficult, despite the shortness of virus

genomes. These issues are further accentuated by the fact that neither next-generation

nor third-generation sequencing reads, by their combinations of error rates and length,

allow for immediate reconstruction and abundance estimation of haplotypes [11, 102].

State-of-the-art approaches currently allow for two options: (i) full-length recon-

struction of haplotypes based on statistical, usually reference genome dependent meas-

ures, or (ii) de novo reconstruction of (optimally haplotype-specific) contigs.

Approaches of type (i) assume that the sequencing reads are aligned to a reference

genome and make use of model-based clustering algorithms [3, 10, 130], Dirichlet

process mixture models [97], hidden Markov models [119], sampling schemes [98],

or combinatorial methods [57], respectively. However, as was demonstrated in [7,

118], resorting to external auxiliary means (such as reference genomes) can bias the

reconstruction procedure significantly.

Approaches of type (ii) comprise generic (meta)genome assemblers as well as spe-

cialized viral quasispecies assemblers, both of which are not helped by external meas-

ures (“de novo”) hence are not affected by external biases. Metagenome assemblers are

designed to reconstruct multiple genomes simultaneously, but in viral quasispecies tend

to collapse strains [102]. It was further shown by Baaijens et al. [7] that among generic de

novo assemblers SPAdes [9] was the only approach to identify strain-specific sequences,

however only in case of sufficiently abundant strains. De novo viral quasispecies as-

semblers (e.g. [51, 129]) generally aim at constructing suitable consensus reference

genomes, which may serve as a template for more finegrained studies (for example if

curated reference genomes have become too divergent, which is a frequent scenario).

The only methods that truly aim at de novo genome assembly at strain resolution are

SAVAGE [7], MLEHaplo [72] and PEHaplo [22]. However, the contigs produced by these

methods, while strain-specific, in general do not represent full-length haplotypes.

We present Virus-VG, an algorithm that turns strain-specific contigs into full-length,

strain-specific haplotypes, thus completing the de novo viral quasispecies assembly

task. For that, we construct a variation graph from the contigs, without the help of a

(curated) reference genome, where we use the contigs produced by SAVAGE [7]. We



4.1. Introduction 63

obtain full-length haplotypes as a selection of maximal-length paths in the variation

graph, each of which reflects a concatenation of subpaths associated with the input

contigs. The selected paths are optimal in terms of differences between their estimated

abundances and the read coverages computed for the nodes they traverse. Although

our approach to quasispecies assembly using candidate path enumeration followed by

abundance estimation is similar to Astrovskaya et al. [6] and Skums et al. [111], these

methods make use of read graphs rather than variation graphs and define optimality

for path abundance estimation in a very different way.

Variation graphs are mathematical objects that have recently become very popular

as reference systems for (evolutionarily coherent) collections of genomes [90]. Using

such genome structures instead of standard linear reference genomes has been shown

to reduce reference bias [31, 90] and to allow for efficient subhaplotype match queries

[88] and haplotype modelling [103]. Methods presented so far for constructing variation

graphs, however, have been focused on a linear reference genome as a point of departure.

Here, we point out how to construct variation graphs de novo, by first sorting the

contigs in an appropriate way and then making use of progressive multiple alignment

techniques (vg msga, part of the vg toolkit by Garrison et al. [43]). In this, we present

an approach for full-length, high-quality reconstruction of the haplotypes of a viral

quasispecies that is entirely de novo.

Our method depends on the enumeration of maximal-length paths in a variation

graph, whose number is in the worst case exponential in the number of nodes of the

graph. However, since all these paths enumerated are to respect the subpaths associated

with the input contigs, their number will decrease on increasing contig length. Thanks

to advances in sequencing technology, input contig length will inevitably increase,

which points out that our method, as per its design, will be able to deal with future

technological developments smoothly.

Benchmark experiments demonstrate that Virus-VG yields substantial improve-

ments over the input contigs assembled with SAVAGE in terms of spanning the full

length of the haplotypes. Thereby, the increase in length comes at negligible or even no

losses in terms of sequential accuracy compared to the input contigs. Further, we find

our strain abundance estimates to be highly accurate. Finally, we find our method to

(substantially) outperform alternative approaches, all of which are reference based—we

recall that there are no alternative de novo approaches so far—both when working with

bootstrap (i.e. assembled from the data itself) and curated reference genomes.

Note on Related Work: RNA Transcript Assembly. Many RNA transcript assemblers

work in a similar way to Virus-VG: first enumerating all possible transcripts, then se-

lecting an ‘optimal’ set of transcripts using various optimization methods [40, 67, 81].

This has led to variations of the minimum path cover optimization problem that are—

regarding a few relevant aspects—similar in spirit to the optimization problem we



64 Chapter 4. Viral quasispecies assembly through variation graph construction

formulate [13, 93, 101, 117, 120]. Most importantly, [101] introduce node and edge

abundance errors and [117] show a minimum path cover with subpath constraints to

be polynomially solvable. However, to the best of our knowledge, no method simul-

taneously employs both subpath constraints and abundance error minimization in

its problem formulation. Moreover, applying these RNA transcript assemblers to the

viral quasispecies problem is not so straightforward: a collection of reference genomes

representing all possible haplotypes is required as input, while in our setting such

information is not available.

4.2 Methods

Notation. A variation graph (V ,E ,P ) is a directed graph that is constructed from a set

of input sequences, which represent members of a (evolutionarily coherent) population

of sequences. Each node v ∈V is assigned to a subsequence seq(v). An edge (u, v) ∈ E

indicates that the concatenation seq(u)seq(v) is part of one of the input sequences. P

is a set of paths (a sequence of nodes linked by edges) that represent genome-specific

sequences; thereby, P can, but need not, represent the input sequences themselves. A

node v ∈V with no incoming edges is called a source. A node v ∈V with no outgoing

edges is called a sink.

Workflow. Our method consists of two basic steps:

(1) The computation of a contig-variation graph V G ′ = (V ′,E ′,P ′) where each path

p ∈ P ′ represents an input contig. We refer to the path representing contig c

as p(c). Together with V G ′, we compute a function a′ : V ′ → R where a′(v ′) for

v ′ ∈V ′ represents the abundance of an individual node, measured by the amount

of original reads (from which the contigs were computed) that align to seq(v ′).

(2) The transformation of V G ′ into a genome-variation graph V G = (V ,E ,P ) where

each path p ∈ P reflects a full-length haplotype. We also compute a function a :

P →R where a(p) for p ∈ P reflects the abundance of the haplotype represented

by p. The set of paths P together with their abundances a(p) establish the final

output of our method.

The input for determining V G ′ in (1) are the contigs. For computation of a′, we make use

of the original reads from which the input contigs were computed; one can determine

the abundance a′(v ′) of single node v ′ ∈V ′ as the (length normalized) count of reads

whose alignments touch upon v ′.
The input for computation of V G and a in (2) are V G ′ and a′. Since V ⊆ V ′ and

E ⊆ E ′, as will become clear later, we can apply a′ also to nodes in V G . The computation

of V G is established as the solution of an optimization problem that aims to determine

full-length paths (paths formed by a concatenation of contigs of maximal length) such



4.2. Methods 65

G   A   G   C   T   A

G   A   C   C   T   A

T   A     -    -   A   T

T   A    C   G   A   T

A   T   A   C

A   T   C   C 

G   A   G   C   T   A   -    -    A   T   A   C
G   A   C   C   T   A   C   G   A   T   C   C

GA

G

C CTA CG AT A

C

C

G A

G

C C T A C G A T A

C

C

A

B

C

D

E

F

Viral haplotypes (ground truth)

Contigs (input)

Initial contig-variation graph

Contig-variation graph

Candidate paths

 

Genome-variation graph (output)

Multiple sequence alignment

Path enumeration

Path abundance optimization

Graph compactification

Figure 4.1: Virus-VG workflow. (A) Ground truth haplotypes from which

the sequencing reads originate; (B) Input contigs, obtained by de novo

assembly; (C) Initial contig-variation graph created from input contigs us-

ing multiple sequence alignment; (D) Contig-variation graph obtained by

collapsing non-branching paths (compactification); (E) Candidate paths

representing possible haplotypes; (F) Genome-variation graph representing

the haplotypes selected through path abundance optimization, capturing

the viral quasispecies.

that the difference of path abundances a(p) and node abundances a′(v) for paths p

of which v makes part is minimal. We emphasize here that the numbers a′(v) can be

directly computed from the input, whereas the a(p)’s correspond to decision variables

in an optimization problem.

We will describe the construction of the contig-variation graph (1) in full detail in

Section 4.2.1. The transformation into the (final) genome-variation graph (2) is divided

into two steps: (a) the enumeration of candidate paths, which is described in Section

4.2.2, and (b) the solution of an optimization problem that aims at selecting a subset of

candidate paths through their path abundance values which are optimal in terms of

being compatible with node abundances in Section 4.2.2. The complete workflow is

illustrated in Figure 4.1.

4.2.1 Contig-variation graph construction

Input. The input is a data set of next-generation sequencing reads and a set of contigs

assembled from them, for which we use the specialized de novo viral quasispecies tool

SAVAGE [7]. We assume that there are no contigs which are an exact subsequence of



66 Chapter 4. Viral quasispecies assembly through variation graph construction

another contig, which applies for SAVAGE (and commonly applies for the output of

many assembly programs); any such contigs are removed. The contig-variation graph

with its node abundances is constructed in three steps.

Step 1: Multiple Sequence Alignment (MSA). We construct the initial contig-variation

graph by building an MSA of the contigs using vg msga [43], which progressively com-

bines long sequences into a variation graph. For this construction to work on a col-

lection of contigs that do not all cover the same region, the order in which the contigs

are aligned and added to the graph is important: we need to add contigs such that

they overlap the existing graph as much as possible, to avoid creating more disjoint

components than necessary. Here, we sort the contigs by starting with the longest

contig, then iteratively selecting the contig with longest possible overlap with any of the

previously selected contigs, until all contigs have been selected. For finding all pairwise

overlaps between contigs we use minimap2 [66]. Determining the best sorting heuristic

in terms of speed and quality is subject to future work. After sorting the contigs, we

apply vg msga; the resulting MSA is represented as a variation graph and for every

contig the corresponding path through the graph is stored.

Step 2: Compactification and contig-path construction. We compactify the initial

contig-variation graph in a similar fashion as in the construction of a compacted de

Bruijn graph [70]. The absence of branches on a path ensures that every source-sink

path has to traverse it at full length. Therefore, each non-branching path (vi1 , . . . , vik )

can be merged (contracted) into a single node v ′
i , with in-neighbors N−(v ′

i ) = N−(vi1 )

and out-neighbors N+(v ′
i ) = N+(vik ). Also the contributing contig sets of vi1 , . . . , vik

are taken together and stored in the new node v ′
i . Note that after this step, a node can

represent a sequence instead of a single nucleotide.

In addition, we determine for each contig c the sub-path p(c) in this (compacted)

graph that represents c. Let p(c) = (vi1 , . . . , vik ) be this sub-path. Note that due to

the compression step, the sequence seq(c) represented by a contig c might only be a

subsequence of its path sequence seq(vi1 )...seq(vik ). However, this does not bear any

consequence on the definition of any haplotype the contigs make part of.

The resulting compacted graph, together with the contig paths P ′ is our contig-

variation graph V G ′ = (V ′,E ′,P ′), illustrated in Figure 4.1, panel D.

Step 3: Node abundance. We finally compute a′ : V ′ →R, which assigns node abund-

ances a′(v ′) to nodes v ′ ∈ V ′ of the contig-variation graph. These node abundances

a′(v ′) reflect the average base coverage of the piece of sequence seq(v ′). For computation

of a′(v ′) we make further use of the vg-toolkit [43], which allows to align the original



4.2. Methods 67

sequencing reads to our contig-variation graph. The abundance a′(v ′) is calculated as

the sum of all bases in all reads that align with seq(v ′), divided by the length of seq(v ′).

4.2.2 From contig to genome-variation graph

The input for the following procedure is the contig-variation graph V G ′ = (V ′,E ′,P ′)
together with a′ : V ′ →R that we have just described. The procedure for constructing

the genome-variation graph V G = (V ,E ,P ) from V G ′ and a′ consists of three steps. First,

we compute a set of candidate paths, which are all maximal-length paths in (V ′,E ′) that

are “concatenations” of paths from P ′. Second, we select a subset of candidate paths

that are optimal with respect to a minimization problem, which provides us with the

final, maximal-length paths P and path abundances a : P →R. Third, we remove nodes

and edges from (V ′,E ′) that are not traversed by paths from P , which yields the final

graph (V ,E). Since only paths in P are supposed to reflect true haplotypes, any node

not being included in a haplotype is most likely a sequencing artifact or an assembly

error (or it belongs to a missing strain). The third step is a straightforward procedure.

We will describe the first two steps in more detail in the following.

Candidate path generation.

The goal is to compute the set of all paths through (V ′,E ′) that are maximal-length

concatenations of paths from P ′, where we understand a concatenation of two paths

as the merging of them along a common substring. Thereby, this common substring

is a suffix of the first path and a prefix of the second path. We will refer to these paths

as candidate paths Pcand in the following (see also Figure 4.1, Panel E). Generating

candidate paths happens in five steps outlined below.

Step 1: Trimming paths p ∈ P ′. Due to common issues in contig computation, uncor-

rected sequencing errors are often located on the extremities of the contig. We therefore

shorten all paths p ∈ P ′ by their extremities and remove the tails if these contain nodes

v ′ for which a′(v ′) is below a given threshold. By default, we allow to trim paths p ∈ P ′

by a removal of nodes that together amount to no more than τ= 10 bp on either end.

Step 2: Enumerating pairwise concatenations. We allow concatenating pairs of paths

with matching suffix-prefix pairs. In more detail, let p1, p2 ∈ P ′, represented by series of

nodes (u1, ...,um) and (v1, ..., vn) from V ′. Then p1 can be concatenated with p2, written

p1 →c p2, if for some l we have um−l+1 = v1,um−l+2 = v2, ...,um = vl , that is, the suffix

of length l of p1 matches the prefix of length l of p2.

In order to enable correction of persisting sequencing errors, we further consider to

concatenate pairs of paths p1, p2 which do have one or more non-matching nodes, but



68 Chapter 4. Viral quasispecies assembly through variation graph construction

only under the following condition. Let u∗ := um−l+i 6= vi =: v∗ be the respective non-

matching nodes in p1, p2 respectively, then only if min{a′(u∗), a′(v∗)} <α, where α is a

user-defined threshold, we concatenate p1 and p2. This threshold reflects the minimal

node abundance a′(v) for which we trust node v ; for more details, see Appendix A.

Step 3: Removing concatenations lacking physical evidence. Subsequently, we re-

move concatenations p1 →c p2 if there are q1, q2 such that q1 →c q2, q1 →c p2, q2 →c p2,

but there is no q3 for which p1 →c q3 and q3 →c p2 and there is q4 such that p1 →c q4.

The situation reflects that the concatenation of paths q1 →c p2 enjoys corroborating

physical evidence, provided by q2, while there is no such corroborating evidence for the

concatenation p1 →c p2. At the same time, p1 concatenates well with q4 such that the

removal of p1 →c p2 does not turn p1 into a dead end.

Step 4: Enumerating maximal-length paths Pcand. In this step, the pairwise concat-

enations from step 2 that remain after step 3 are combined to paths of maximal length.

This is achieved through a breadth-first search type procedure. We maintain a set of

active paths Pact, which is the set of paths to be extended in the current iteration. We

also maintain a set of maximal paths Pmax that reflects the set of maximal-length paths

collected.

• Initialization: We determine all p ∈ P ′ for which there are no q →c p and put

them both into Pact and Pmax.

• Iteration: We replace each p ∈ Pact with all q ∈ P ′, for which p →c q without q∗

such that p →c q∗ →c q . Simultaneously, we extend each p̂ ∈ Pmax that ends in p,

by appending q (while respecting the overlap). In case q is already part of p̂, we

do not append q to p̂ but instead add q as a new path to Pmax, thereby breaking

any possible loops due to repetitive elements.

• Output: If for all p ∈ Pact there are no q with p →c q , we output Pmax as our

candidate path set Pcand.

The enumeration algorithm lists all candidate paths in time linear in the output size.

This can be (in the worst case) exponential in the number of paths p ∈ P ′, depending

on the structure of the contig-variation graph.

Step 5: Correcting paths for errors. After enumerating all candidate paths, we apply

a final correction step to every such path. Since we allow concatenating paths from P ′

where suffix-prefix pairs do not match in all nodes (see Step 2), we may have positions

in candidate paths where contig paths p ∈ P ′ do not agree on the underlying sequence.

All such ambiguous positions refer (by construction) to low abundance nodes v ′ (i.e.,



4.2. Methods 69

a′(v ′) < α). We resolve the ambiguity by selecting the node v∗ from all contributing

paths p ∈ P ′ with maximal abundance a′(v∗).

Minimization for haplotype selection and abundance estimation

Input. For this final part of the method, the input is the set of candidate haplotype

paths Pcand and the node abundances a′(v). In general this set of paths is much larger

than the actual number of haplotypes, so Pcand will contain many false haplotypes.

Here we filter them out by estimating the abundance a(p) for each path (haplotype)

p ∈ Pcand through solving a minimization problem. In a subsequent step, haplotype

paths with an abundance below a user defined threshold will be removed as being most

likely false haplotypes. This leaves the set of haplotypes to be output.

Determining path abundances a(p). We determine path abundance values a(p) for

every p ∈ Pcand, such as to minimize the sum of or, equivalently, the average of node

abundance errors. Let f (x, y) be an error function to be chosen later. Then for node v

the node abundance error is defined as the value of f (x, y) with x the node abundance

a′(v) and y the sum of the abundances of the haplotype paths going through the node

v , which is
∑

p3v a(p). Recall that the node abundance values a′(v) are obtained from

read alignments to the contig-variation graph (Section 4.2.1, Step 3). The objective then

becomes minimizing the sum of the node abundance errors over all nodes v ∈V ′:

min
∑

v∈V ′
f

(
a′(v),

∑
p3v

a(p)

)
.

We need to add non-negativity constraints a(p) ≥ 0 on the path abundances. Since we

have already taken all subpath constraints into account when enumerating the candid-

ate haplotype paths, the minimization problem does not need any further constraints.

Note that the effectiveness of this objective function depends heavily on the error

function used as well as the correctness of node abundances a′(v). These abundance

values are not exact measurements, but based on read alignments to the graph as

described above; coverage fluctuations can thus lead to under- or overestimated node

abundance values. In this case, a simple linear objective function is preferred over a

quadratic error function, because the former allows big errors in certain nodes to be

compensated by small errors in other nodes. We also observed that normalizing the

errors w.r.t. the true node abundance does not improve results, because this means that

errors in nodes with low abundance values are penalized very strongly. For this reason,

we use the error function f (x, y) = |x− y | in our objective and the optimization problem

becomes

min
∑

v∈V ′

∣∣∣a′(v)− ∑
p3v

a(p)
∣∣∣ s.t. 0 ≤ a(p) ∀p ∈ Pcand. (4.1)



70 Chapter 4. Viral quasispecies assembly through variation graph construction

This is a convex programming formulation, which can, by a standard transformation,

easily be linearized and solved using an LP solver.

Output: haplotype selection and final abundances. The outcome of the minimiza-

tion problem (4.1) yields for each p ∈ Pcand an optimal abundance value a∗(p). We

now select the set of haplotype paths as output of the procedure, by removing any

haplotypes with an estimated abundance below a user defined threshold γ. In other

words, as output we give the set P = {p ∈ Pcand | a∗(p) ≥ γ} (Figure 4.1, panel F). After

this haplotype selection step, we redo the optimization step on the selected haplotype

paths (prefixing a(p) to 0 for every path p with a∗(p) < γ), thus ensuring that our final

abundance estimates are as accurate as possible.

Note on related work. The minimization problem we are treating here can be con-

sidered as a combination of problems presented in [101] and [117]. The combination

of these problems would require an unambiguous way to have subpath abundances

contribute to cumulative abundances on the nodes. It is not immediately evident how

to do so. In our setting it is straightforward how path abundances a(p) contribute to

the estimated abundances of the nodes on the paths. Exploring these relationships is

interesting future work.

4.2.3 Software availability

Software and analysis scripts are publicly available at https://bitbucket.org/jbaaijens/

virus-vg.

4.3 Results

We present results for Virus-VG on four challenging simulated data sets and one real

benchmark. We compare our method with the viral quasispecies assemblers ShoRAH

[130] and PredictHaplo [97], which are widely approved and state-of-the-art in terms of

full-length reconstruction of viral haplotypes. On a shorter region (HIV pol gene) we

also compare our method to aBayesQR [3] and PEHaplo [22]. Although a comparison to

the RNA transcript assemblers from Rizzi et al. [101] and Tomescu et al. [117] would be

interesting, this is not so straightforward: these methods require as input a collection of

reference genomes representing all possible transcripts (or in our case, viral haplotypes).

Since we do not have such information, we could not apply these methods to our data.

For shell commands, parameters to be set, their default choices, and further reason-

ing, see the Supplementary Material.

https://bitbucket.org/jbaaijens/virus-vg
https://bitbucket.org/jbaaijens/virus-vg


4.3. Results 71

4.3.1 Data sets

For evaluating correctness of our algorithm and benchmark experiments on full-length

viral genomes, we selected the two most challenging simulated data sets (HCV, ZIKV)

presented by [7] and generated one additional data set (Poliovirus). These data sets

represent typical viral quasispecies ultra-deep sequencing data and consist of 2×250

bp Illumina MiSeq reads which were simulated using SimSeq [112]. In addition, we

simulated mixtures of HIV strains, considering only the 3kb pol region, at various

sequencing depths. Finally, we also consider a real Illumina MiSeq data set commonly

used for benchmarking, referred to as the labmix. More details about all data sets are

presented in the Supplementary Material.

10-strain HCV mixture. This is a mixture of 10 strains of Hepatitis C Virus (HCV),

subtype 1a, with a total sequencing depth of approximately 20,000x (i.e. 400,000 reads).

The haplotypes were obtained from true HCV genomes in the NCBI nucleotide database

and have a pairwise divergence varying from 6% to 9%. Paired-end reads were simulated

at relative frequencies between 5% and 13% per haplotype, i.e., a sequencing depth of

1000x to 4600x per haplotype.

15-strain ZIKV mixture. This is a mixture of 15 strains of Zika Virus (ZIKV), consisting

of 3 master strains extracted from the NCBI nucleotide database and 4 mutants per

master strain. The pairwise divergence varies between 1% and 12% and the reads were

simulated at relative frequencies varying from 2% to 13.3%. The total sequencing depth

for this data set is again 20,000x.

6-strain Poliovirus mixture. This is a mixture of 6 strains of Poliovirus (type 2), with

a total sequencing depth of approximately 20,000x. The haplotypes were obtained from

true Poliovirus genomes from the NCBI database. Paired-end reads were simulated at

exponentially increasing relative frequencies of 1.6% to 50.8%.

7-strain HIV mixture (pol gene). This is a mixture of 7 HIV-1 pol gene sequences with

a pairwise divergence of 1%, obtained by introducing random mutations into sequence

D86068.1 from the NCBI database. Paired-end reads (2×250 bp) were simulated for

each of the 7 strains at relative frequencies between 0.5% and 61.5%. We created 3 data

sets with sequencing depths of 500x, 1000x, and 5000x, respectively.

Labmix. This is a real Illumina MiSeq (2×250 bp) data set with an average coverage

of 20,000x, sequenced from a mixture of five known HIV-1 strains (HXB2, NL4-3, 89.6,

YU2, JRCSF) with relative strain frequencies between 10% and 30%. This data set

was presented as a benchmark by Di Giallonardo et al. [30] and is publicly available

at https://github.com/cbg-ethz/5-virus-mix. Currently, predictions of all methods,

including our own, are hampered by highly repetitive regions such as the long terminal

repeats on the HIV genome; see also Baaijens et al. [7]. Hence, we decided to follow

[30] in removing these a priori by excluding any reads that map to these known repeat

https://github.com/cbg-ethz/5-virus-mix


72 Chapter 4. Viral quasispecies assembly through variation graph construction

sequences.

4.3.2 Assembly evaluation criteria

We use QUAST [47] for evaluating our experiments and report the number of contigs, the

fraction of the target genomes that was reconstructed, the N50 and NGA50 measures,

and observed error rates. Here, the target genome consists of all true haplotypes known

to be present in a sample; a base is considered reconstructed if there is at least one

contig with an alignment to this base. The N50 measure, defined as the length for which

the collection of all contigs of that length or longer covers at least half the assembly,

gives an indication of assembly contiguity. The NGA50 measure is computed in a

similar fashion, but only aligned blocks are considered (obtained by breaking contigs

at misassembly events and removing all unaligned bases). This measure reports the

length for which the total size of all aligned blocks of this length or longer equals at least

50% of the total length of the true haplotypes; the NGA50 value is undefined if a target

coverage of 50% cannot be reached. Finally, the error rates we present are computed as

the sum of the N-rate (i.e. ambiguous bases) and mismatch- and indel rates (compared

to the ground truth), normalized by the number of assembled bases. Further details are

presented in the Supplementary Material.

4.3.3 Improvements of final haplotypes over input contigs

Table 4.1 presents assembly statistics for all methods on all benchmark data sets. The

first two rows, SAVAGE and Virus-VG, display the statistics for the input contigs and the

final, maximal-length haplotypes computed here, respectively, for the HCV data set.

While SAVAGE presents 26 fragmented contigs, Virus-VG presents 10 full-length haplo-

types, each of which represents one of the original haplotypes, thereby encompassing

the 10 original haplotypes that established the basis for simulating reads. Further,

Virus-VG covers 99.3% of the target genomes, similar to the original 99.4% provided by

the input contigs, and these full-length haplotypes come at a negligible error rate of

0.001%. In summary, our approach yields near-perfect results on this (supposed to be

challenging) data set.

For the 15-strain ZIKV data set we again achieve substantial improvements in terms

of haplotype assembly contiguity. We obtain 20 full-length haplotypes covering 14

out of 15 strains, while the original input contigs consisted of 89 highly fragmented,

and relatively short sequences. As a result, we observe an NGA50 value of 10210 for

Virus-VG, reflecting full-length haplotypes, compared to an N50 of 3801 for SAVAGE. For

the 6-strain Poliovirus mixture we obtain similar results, yielding a major improvement

of NGA50 values (1643 for SAVAGE compared to 7428 for Virus-VG) at the cost of a minor



4.3. Results 73

decrease in target haplotypes reconstructed (83.7% for SAVAGE compared to 80.7% for

Virus-VG).

On both the ZIKV and Poliovirus data, we observe a slight increase in error rate after

applying our method; however, Virus-VG leaves with an error rate of 0.115% (ZIKV) and

0.064% (Poliovirus), which is still extremely low. A thorough analysis turns up that this

increase is due to errors in the input contigs that become more expressed only after

having assembled the full-length haplotypes, so these errors are not primarily due to the

method presented here. Moreover, the full-length contiguity of the haplotypes clearly

offsets the minute shift in accuracy.

Finally, we analyze performance on a real benchmark, the labmix, and observe the

same behaviour for Virus-VG: a significant improvement in NGA50 values (1450 for

SAVAGE compared to 4642 for Virus-VG) but also an increase in error rate (0.066 for

SAVAGE compared to 0.324 for Virus-VG). However, it is important to realize that the

true sequences considered here may not fully represent the sample, because extremely

high mutation rates allow the virus to mutate and recombine in vitro before sequencing.

4.3.4 Comparison with the state-of-the-art

Rows 3 and 4 for every data set in Table 4.1 display results for state-of-the-art methods

PredictHaplo [97] and ShoRAH [130], run with default parameter settings. Both of these

methods are reference-guided, hence cannot immediately be compared with Virus-

VG, which operates entirely de novo. To simulate a de novo type scenario for these

reference-guided approaches, we provided them with a bootstrap reference genome

computed by running [129, VICUNA], a state-of-the-art tool for generating consensus

virus genomes, on the input reads. We also ran [3, aBayesQR] and [22, PEHaplo], but

found them unsuitable for reconstructing full-length genomes at ultra deep coverage:

they could not finish the job within 500 hours. Hence, we only present results for these

methods on the HIV pol region data sets (both simulated and real) in Section 4.3.5.

We first evaluated both PredictHaplo and ShoRAH on our simulated data and, in all

cases, we found our method to have (quite significant) advantages, in terms of accuracy,

number of strains, and strain-specific genomes covered. As was already observed earlier

[7], reference-guided methods greatly depend on the quality of the reference genome

provided and have to deal with biases towards the reference genome. This results in

error rates which are 1.1–59 times higher than Virus-VG for PredictHaplo, and more

than 12 times higher than Virus-VG for ShoRAH. At the same time, these methods miss

a big fraction of the target haplotypes on all data sets except the labmix.

PredictHaplo and ShoRAH both had difficulty processing the Poliovirus data. A

possible explanation is the high divergence between the virus strains and the reference

genome used, leading to gaps in coverage when considering alignments to the reference



74 Chapter 4. Viral quasispecies assembly through variation graph construction

# contigs∗ target (%) N50 NGA50 error rate (%)

10-strain HCV mix

SAVAGE 26 99.4 8964 8964 0.001

Virus-VG 10 99.3 9281 9203 0.001

PredictHaplo 9 73.8 7636 7608 0.059

ShoRAH 639 56.9 7570 7570 4.294

15-strain ZIKV mix

SAVAGE 100 98.8 2954 3801 0.023

Virus-VG 20 92.8 10202 10210 0.115

PredictHaplo 8 53.3 10270 10267 0.126

ShoRAH 493 26.3 10117 10117 4.392

6-strain Poliovirus mix

SAVAGE 59 83.7 1089 1643 0.019

Virus-VG 14 80.7 7316 7428 0.064

PredictHaplo 3 16.6 7461 - 1.825

5-strain HIV labmix

SAVAGE 68 97.9 1026 1450 0.066

Virus-VG 23 90.6 2130 4642 0.324

PredictHaplo 6 100.0 8825 8825 1.066

ShoRAH 250 100.0 8775 8775 3.910

Table 4.1: Assembly results per data set. Error rates are computed as the sum

of the fraction of ’N’s (ambiguous bases) and the mismatch- and indel rates.

ShoRAH could not process the Poliovirus data. ∗If contigs are full-length,

this number reflects the estimated number of strains in the quasispecies.

genome, which tends to confuse reference-guided methods. In particular, two of the six

strains have a big deletion (more than 1000 bp) compared to both the reference genome

and the other four strains; this may also explain the failure to run ShoRAH even using

a bootstrap reference genome, as well as the extremely low target reconstructed for

PredictHaplo. These results again highlight the advantage of a fully de novo approach

compared to reference-guided methods.

4.3.5 Gene sequence reconstruction

Although our main goal is to reconstruct full-length genomes, some studies also require

sequence reconstruction from data corresponding to shorter regions of the genome.

Therefore, we explored the ability of Virus-VG to reconstruct the HIV pol gene sequence,



4.3. Results 75

# contigs∗ target (%) N50 NGA50 error rate (%)

Coverage = 500x

SAVAGE 7 51.0 2291 930 0.005

Virus-VG 4 52.7 2974 2330 0.057

aBayesQR 6 55.7 3069 3069 0.249

PEHaplo 64 55.7 3048 3062 0.459

PredictHaplo 1 14.3 3068 - 0.392

ShoRAH 27 61.0 2680 2680 1.322

Coverage = 1000x

SAVAGE 12 57.2 1416 986 0.012

Virus-VG 6 61.3 2977 2907 0.116

aBayesQR 6 62.8 3070 3070 0.258

PEHaplo 59 61.7 3045 3063 0.449

PredictHaplo 2 21.4 3070 - 0.514

ShoRAH 27 59.8 2680 2680 1.304

Coverage = 5000x

SAVAGE 17 66.4 1612 1596 0.005

Virus-VG 7 64.7 2853 2864 0.089

aBayesQR 7 61.4 3074 3074 0.283

PEHaplo 469 97.0 3045 3072 0.519

PredictHaplo 2 28.5 3070 - 0.587

ShoRAH 32 51.4 2766 2766 1.404

Table 4.2: Assembly results for the simulated HIV pol region (∼3kb) at cov-

erage 500x, 1000x and 5000x. Error rates are computed as the sum of the

fraction of ’N’s (ambiguous bases) and the mismatch- and indel rates. ∗If

contigs are full-length, this number reflects the estimated number of strains

in the quasispecies.



76 Chapter 4. Viral quasispecies assembly through variation graph construction

a 3kb region coding for DNA polymerase. This also allowed us to compare our assem-

blies against aBayesQR[3] and PEHaplo [22], as these methods were unable to process

full-length genomes at deep coverage.

Table 4.2 presents results for all methods on simulated data, the 7-strain HIV pol

mixture, at sequencing depths of 500x, 1000x, and 5000x. This data set is very challen-

ging, with pairwise divergence of only 1% and relative abundances ranging from 0.5%

and 61.5%. Therefore, it is not surprising to see relatively low target reconstructed for all

methods; the only method that is able to find the strain of 0.5% abundance is PEHaplo

at 5000x coverage (see Supplementary Material). For all methods except ShoRAH, re-

constructed target values improve upon increasing coverage. Virus-VG shows similar

behaviour as on full-length genomes: it gives a major improvement in N50 and NGA50

values compared to SAVAGE, and while error rates are higher than for SAVAGE they

remain much lower than for other methods.

In addition, we selected reads from the pol region of the labmix (real data) and

subsampled this selection to 100x and 1000x coverage, respectively. Again, Virus-VG

achieves low error rates in combination with high N50/NGA50 values and improves as

sequencing depth increases. To ensure robustness, simulations and subsampling were

performed 10 times, methods were run on these 10 samples and results were averaged.

4.3.6 Haplotype abundance estimation

We also evaluated the accuracy of the abundance estimates obtained for each haplotype

of the simulated data sets, since we know the exact true frequencies for each of the

strains. The reconstructed sequences were aligned to the ground truth sequences and

assigned to the closest matching strain. For each ground truth strain, we summed the

abundance estimates of the sequences assigned to it, thus obtaining a total estimate

for this strain. Then we compared this estimate to the true strain abundance and

computed the absolute frequency estimation errors. In case of any missing strains,

the true frequencies were normalized first, taking only the assembled sequences into

account for a fair comparison. SAVAGE and PEHaplo assemblies are not evaluated as

these methods do not provide abundance estimates.

Our method predicts highly accurate abundances for the reconstructed strains, with

an average absolute estimation error of 0.1% on the HCV data, 0.3% on the ZIKV data,

and 0.6% on the Poliovirus data. In comparison, PredictHaplo achieves an average

absolute estimation error of 0.9% (HCV), 4.9% (ZIKV), and 10.6% (Polio), while ShoRAH

is even further off with 8.5% (HCV) and 39% (ZIKV). On the HIV pol data, we observe

higher estimation errors for all methods, with an absolute error of 2.6–5.8% for Virus-VG,

3.9–4.9% for aBayesQR, 8.2–22.1% for ShoRAH, and 6.4% for PredictHaplo (only evalu-

ated at 5000x). Relative estimation errors show a similar pattern. A likely explanation



4.3. Results 77

Figure 4.2: Relative errors for haplotype abundance estimation versus true

strain frequencies. Results were evaluated per method, per data set, and

binned by true frequency into bins of size 0.05. Plots show the average relat-

ive error per bin. True frequencies were normalized per assembly, taking

only the assembled sequences into account for a fair comparison. Only as-

semblies containing at least 2 strains were evaluated. Plots for the simulated

HIV data at 500x and 1000x are similar to HIV-5000x and presented in the

Supplementary Material.

for increased error rates on the HIV pol data is the complexity of the data set, with very

low frequency strains in combination with a low total coverage (500x–5000x). A more

detailed analysis can be found in the Supplementary Material.

Figure 4.2 shows the true haplotype frequencies versus the relative error1 per

method. Results are clustered by true abundance into bins of size 0.05 and average

errors are plotted for each bin. On the Poliovirus data there are no results for ShoRAH

or PredictHaplo, because the first could not process this data set while the latter found

less than a single strain. aBayesQR could only process the HIV pol data; on this data

set, Virus-VG, PredictHaplo, and aBayesQR have a similar error pattern, with values

well below the errors made by ShoRAH. On HCV and ZIKV data, however, we observe

that Virus-VG outperforms the other methods in terms of frequency estimation, with

estimates that are closest to the true values. An immediate interpretation of these

findings is that accuracy in estimating abundance is inevitably linked with accuracy in

haplotype reconstruction, which may explain our overall advantages.

4.3.7 Runtime evaluation

By their worst-case runtime complexity, both candidate path generation and minimiz-

ing for selecting optimal sets of haplotypes reflect exponential procedures in Virus-VG.

In practice, however, this is not an issue: on our benchmarks Virus-VG is 2.5–87 times

1| x −x∗ | /(0.5(x +x∗))



78 Chapter 4. Viral quasispecies assembly through variation graph construction

faster than SAVAGE, which together form our de novo assembly pipeline. Combined,

this pipeline takes 43–286 CPU hours on full-length data sets of 20,000x coverage. This

is slower than PredictHaplo (2.0–7.4 CPU hours) but faster than ShoRAH (351–814 CPU

hours), both of which are reference-guided. However, SAVAGE and Virus-VG can use

multiple cores while PredictHaplo does not, leading to comparable wall clock times

when multithreading. We present a more detailed runtime and memory analysis in the

Supplementary Material.

4.3.8 Summary

We have benchmarked three de novo assembly tools (SAVAGE, Virus-VG, and PEHaplo)

and three reference-guided methods (aBayesQR, PredictHaplo, and ShoRAH). The

only methods that are stable with respect to all data sets considered, both full-length

genomes and shorter regions, are SAVAGE and Virus-VG. Although SAVAGE achieves

lowest error rates, Virus-VG is able to build full-length haplotypes with error rates

slightly higher than SAVAGE, but still much lower than other methods. PredictHaplo

performs well on the labmix at 20.000x, full-length genome and pol region, but it misses

many haplotypes on all other data sets, with only 14–64% of the target genomes recon-

structed. Virus-VG yields most accurate frequency estimates on full-length genomes,

and performs similar to aBayesQR on the HIV pol region. In terms of CPU time, the

combination of SAVAGE and Virus-VG is on a par with or faster than all other methods

except PredictHaplo, which is consistently faster; in terms of wall clock time, however,

both SAVAGE and Virus-VG achieve a major speedup by using multithreading, while

PredictHaplo does not.

4.4 Discussion

We have presented an algorithm that turns viral strain-specific contigs, such as avail-

able from a de novo assembler like SAVAGE [7], into full-length, viral strain-specific

haplotypes, without the use of a reference genome at any point. We first construct a

contig-variation graph, which arranges haplotype-specific contigs sampled from a viral

quasispecies in a convenient and favorable manner. We then enumerate all maximal-

length paths through this graph that maximally concatenate the contig subpaths. Last,

we solve a minimization problem that assigns abundance estimates to maximal-length

paths that are optimal in terms of being compatible with abundances computed for the

nodes in the graph. We finally output the optimal such set of paths together with their

abundances, by which we have completed the de novo viral quasispecies assembly task.

In benchmark experiments, we have demonstrated that our method yields major

improvements over the input contigs in terms of assembly length, while preserving



4.4. Discussion 79

high accuracy in terms of error rates. Compared to state-of-the-art viral quasispecies

assemblers—all of which operate in a reference genome dependent manner—our

method produces haplotype-resolved assemblies that are both more complete, in terms

of haplotypes covered, and more accurate, in terms of error rates. We believe that (a)

this reflects the strength of a fully de novo approach, because we avoid to deal with

reference-induced biases. We also believe that (b) this is a result of directly integrating

haplotype abundance estimation into reconstruction of haplotypes.

Still, improvements are possible. Our current optimization problem employs the

absolute difference to determine the abundance estimation error. As future work, we

consider the exploration of probabilistic error models, e.g., by modelling path abun-

dance as being Poisson distributed [79] and calculating the likelihood of the observed

node abundances.

Further, we had already alluded to that the number of candidate paths is exponential

in the number of input contigs, which could theoretically be overwhelming when

dealing with highly fragmented assembly output. Our runtime benchmarks show that

this is not an issue with standard data sets. Nevertheless, we will consider more efficient

alternative solutions in future work, based on a flow formulation of the problem that

we recently found, yielding a yet to be implemented polynomial time algorithm.





CHAPTER 5

VIRAL QUASISPECIES RECONSTRUCTION VIA

CONTIG ABUNDANCE ESTIMATION IN VARIATION

GRAPHS

In this chapter we re-examine the combinatorial properties of the variation

graphs constructed in the previous chapter. While we have presented a

complete solution to the de novo viral quasispecies assembly problem,

there are still some practical problems to tackle in order to deal with data

sets of high complexity (such as large genomes or a great number of closely

related haplotypes).

Here, we overcome these hurdles by reformulating the combinatorial prob-

lem. We solve the contig abundance estimation problem and propose a

greedy algorithm to efficiently build full-length haplotypes. Finally, we ob-

tain accurate frequency estimates for the reconstructed haplotypes through

linear programming techniques. Together with the work in Chapters 2

and 4, this chapter presents the first de novo approach to successfully and

efficiently reconstruct viral quasispecies at full length.

Based on:

J.A. Baaijens, L. Stougie, A. Schönhuth. Strain-aware assembly of genomes from

mixed samples using variation graphs. bioRxiv 645721, 2019 (submitted).

Supplementary material: https://doi.org/10.1101/645721.

81

https://doi.org/10.1101/645721


82 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

5.1 Background

In comparison to bacteria and eukaryotes, viruses have relatively short genomes that

are subject to very high mutation rates; RNA viruses even more so than DNA viruses [35].

As a consequence, the virus particles within most RNA virus infections do not share a

single genomic sequence, but rather exist as a cloud of closely related mutant strains: a

viral quasispecies [32]. These mutant clouds enable viruses to adapt to their environ-

ment and possibly escape medical treatment or the host immune response [28, 125].

The mutant strains may show different phenotypic properties and appear at varying

frequencies within the population. Viral quasispecies assembly aims to reconstruct

each of these individual genomes (or haplotypes) and to estimate the corresponding

relative abundances.

Besides viral quasispecies, many other genomic data sets contain mixtures of closely

related sequences, such as bacterial mixtures or environmental samples (metage-

nomics). Again, strains may appear at varying frequencies, with some highly abundant

and others very rare. Reconstructing all of the individual haplotypes present in such

a scenario, more generally known as haplotype-aware genome assembly, is a major

challenge and requires specialized tools [107]. Here, we offer a solution to the viral

quasispecies assembly problem that has the potential to scale to bacterial-size genomes.

We present VG-flow, a method for haplotype reconstruction with integrated abun-

dance estimation. Because genomes from mixed samples are usually affected by sub-

stantial mutation rates, VG-flow avoids using standard linear reference genomes al-

together. Instead, VG-flow is based on variation graphs as underlying, flexible-to-

construct reference systems that account for haplotype-specific mutations in an un-

biased manner. We construct these variation graphs in a de novo manner, that is,

without resorting to any external means such as a reference genome.

VG-flow takes as input a next-generation sequencing (NGS) data set and a collection

of strain-specific contigs assembled from the data, and produces full-length haplotypes

and corresponding abundance estimates. Our method is centered on estimating contig

abundances in a contig-variation graph, a graph that captures all quasispecies diversity

present in the contigs [43, 90]. We build a flow network to accompany the variation

graph and estimate contig abundances by solving a flow-like optimization problem:

variables represent flow values on the edges of the flow network and we impose flow

constraints, while the objective function evaluates the difference between estimated

contig abundances and read coverage for every node in the variation graph. This

objective function is convex, hence the flow problem is polynomial time solvable [86].

The flow solution presents abundance estimates for the input contigs, which are

of value in its own right in various mixed sample applications [18, 41, 68]. We use the

contig abundance estimates in a combination of greedy algorithms to extract candidate



5.1. Background 83

haplotypes from the variation graph, where candidate haplotypes reflect concatenations

of subpaths associated with the input contigs. Finally, we solve an optimization problem

whose variables represent the haplotype abundances and the difference between read

coverage and haplotype abundance is minimized over all nodes. Thus, we obtain a

selection of candidate haplotypes that represents the quasispecies, along with haplotype

abundance estimates.

Existing viral quasispecies assemblers include widely evaluated tools like [97, 98,

130], as well a variety of methods introduced more recently [3, 7, 8, 10, 22, 57]. These

methods can be divided into two classes: reference-guided and reference-free (also

referred to as de novo). De novo approaches do not require any prior information,

such as a reference genome or knowledge of the quasispecies composition. This has

been shown to have advantages over reference-guided reconstruction, since using a

reference genome can induce significant biases. Especially at the time of a viral disease

outbreak, an appropriate reference genome may not be available due to high mutation

rates. However, most of the aforelisted tools are reference-guided; only [7], [8], and [22]

present de novo approaches.

Moreover, many of these specialized viral quasispecies assemblers aim at single

gene reconstruction, rather than whole genome assembly. In [8] we took a first step

towards full-length de novo viral quasispecies assembly. There, we have shown that

de novo haplotype reconstruction with integrated haplotype abundance estimation

yields assemblies that are more complete, more accurate, and provide better abundance

estimates. While this approach is guaranteed to find a selection of haplotypes that is

optimal in terms of being compatible with the read coverages, its runtime is exponential

in the number of contigs. Since the number of contigs generally increases on increasing

genome length, we found [8] unsuitable for genomes larger than ∼ 10 kb (depending on

the number of strains). With VG-flow, we provide a reference-free solution to the full-

length viral quasispecies reconstruction problem that scales well to longer genomes. As

another benefit of the theoretical rigorosity of our problem formulation and efficiency

of the solution, we also experience considerable improvements in terms of accuracy

compared to existing tools.

Some of the challenges that have to be dealt with in viral quasispecies assembly can

also be found in RNA transcipt assembly, where the goal is to reconstruct an unknown

number of transcripts and predict the relative transcript abundances. Not surprisingly,

many RNA transcipt assemblers define graph optimization problems similar to our

flow formulation [13, 93, 101, 117, 120]. Although dealing with related problems, these

methods cannot be applied in a viral quasispecies setting so easily: they require a

collection of reference genomes representing all possible haplotypes as input, which is

not available in our setting. Nevertheless, the theory behind these approaches is related

to what we do. In [117], node and edge abundance errors are used to define a min-cost



84 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

Contigs + sequencing 

       reads

Flow network

Contig

abundances

Candidate

paths

Contig-

variation graph

+ node abundances

Genome-variation graph

+ haplotype abundances

1. Contig-variation graph

    construction

    Multiple sequence alignment & read

    mapping

2. Flow network construction

3. Contig abundance estimation

    Flow computation

4. Greedy path extraction

5. Path abundance optimization

    Linear programming

1

2

3

4

5

Algorithmic components:
Input

Output

A G T T A T A 

A G T A A T A

A T A A T T G

A T A C T T G

T G C C A A T

T G  -  -  A A T

205x 792x

788x 796x

203x 204x

21% 79%

AGT

T

A

ATA AAT

CC

A

C

TTG

AGT

T

A

ATA AAT

CC

A

C

TTG

Figure 5.1: Algorithm overview

flow problem; note that this formulation does not take subpath constraints into account.

On the other hand, [101] describes how subpath constraints can be incorporated into

a minimum path cover formulation. This results in an optimization problem that is

solvable in polynomial time, but does not minimize node abundance errors. We use the

best of both worlds by defining an optimization problem that takes subpath constraints,

minimizes node abundance errors, and is polynomially solvable; this establishes a

theoretical novelty. Because this novelty gives way to different types of analyses in other

settings, and immediately connects to extensively treated theoretical issues [101, 117],

we feel that it is of value also in its own right.

Among more generic assemblers, SPAdes [9] has been shown to be capable of

reconstructing individual haplotypes from mixed samples, up to a certain degree. This

method was designed for bacterial genomes and scales well to human genomes, but

is unable to reconstruct low-frequent haplotypes [7]. Haplotype-aware assembly of

metagenomes is a big challenge, which tends to result in scattered genome fragments

and missing strains [107]. Metagenomic assemblers such as [15, 62, 89, 92] aim to

reconstruct mixtures of viral and bacterial populations at strain level. The contigs

obtained with these methods, or any other assembler, can also be used as input for

VG-flow. Although we focus on viral quasispecies reconstruction, the mathematical

framework presented here is generic and could be applied in other scenarios as well; as

such, VG-flow has the potential to make a big step ahead in haplotype-aware genome

assembly in general.

5.2 Results

We present VG-flow, a new approach to haplotype-aware genome assembly from mixed

samples. This algorithm takes as input a data set of next-generation sequencing reads



5.2. Results 85

and a collection of strain-specific contigs; note that de novo assembly into strain-

specific contigs can be performed using various tools (e.g. [7, 9, 22, 89], depending

on the application). The output of VG-flow consists of maximal length haplotypes

along with relative abundance estimates for each of these sequences. In addition, the

algorithm yields abundance estimates for each of the input contigs.

Our approach consists of five steps, as depicted in Figure 5.1:

(1) We construct a contig-variation graph V GC by performing Multiple Sequence

Alignment (MSA) on the input sequences. Node abundances are obtained by

mapping sequencing reads to the variation graph.

(2) We build a flow network FG using V GC .

(3) We define and solve a flow-like optimization problem on FG to obtain contig

abundance estimates.

(4) We generate a set of candidate haplotypes Pcand based on the estimated contig

abundances through multiple greedy heuristics.

(5) We obtain a selection of haplotypes H from Pcand by solving another linear op-

timization problem, defined on V GC . The solution to this problem presents es-

timates for the relative abundances of all candidate haplotypes in Pcand, thereby

eliminating any false haplotypes.

The final output is presented as a genome-variation graph V GH capturing the haplo-

types in H , along with the estimated relative abundances.

Steps (1) and (5) are based on the Virus-VG algorithm [8] and are used without

further adjustment. Steps (2), (3) and (4) are entirely novel. They incorporate a new

problem formulation, and based on the solution of this problem, provide a way to

estimate contig abundance, as part of an overall efficient alternative to the exponential

brute-force routines from [8]. VG-flow easily scales to data sets of higher complexity and

thus provides a clear view towards haplotype reconstruction for mixtures of bacterial

strains or even metagenomic data. Further details on algorithm design are presented in

Section 5.5.

5.2.1 Benchmarking preliminaries

We perform benchmark experiments where we compare VG-flow to existing methods

for full-length viral quasispecies reconstruction. In these experiments, we make use

of the specialized de novo viral quasipecies assembler SAVAGE [7] for generating a

set of strain-specific contigs. We compare performance of VG-flow to Virus-VG [8],

another de novo approach, and to reference-guided viral quasispecies reconstruction

tools PredictHaplo [97] and ShoRAH [130]. More recent viral quasispecies assemblers



86 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

Genome Strain Strain Pairwise
Data set Data type Virus type size (bp) count abundance divergence

HCV mix Simulated HCV-1a 9273–9311 bp 10 5–19 % 6–9 %

ZIKV mix Simulated ZIKV 10251–10269 bp 15 2–13 % 1–10 %

Poliovirus mix Simulated Poliovirus 7428–7460 bp 6 1.6–51 % 1.2–7 %

Labmix Real HIV-1 9478–9719 bp 5 10–30 % 1–6 %

Table 5.1: Quasispecies characteristics of benchmark data sets. All data

sets consist of Illumina Miseq reads with an average sequencing depth of

20.000x.

aBayesQR [3], QSdpR [10], and PEHaplo [22] focus on reconstruction of relatively short

genomic regions and were unable to process full-length quasispecies data sets at ultra-

deep coverage. We provide the reference-guided methods with a consensus reference

genome obtained by running VICUNA [129] on the data set. This procedure simulates a

de novo setting where the viral agent and its genome may be unknown. Moreover, the

consensus reference sequence may be a more accurate representation of the data set

under consideration than the standard reference genomes available.

We evaluate all assemblies by comparing the assembled contigs to the ground

truth sequences using QUAST [47]. This assembly evaluation tool aligns the assembled

contigs to the true haplotypes, which are provided as a reference, and calculates several

standard evaluation metrics. For each assembly, we report the number of contigs,

percent target genomes covered, N50, NG50, and error rate. If an assembly consists

of only full-length contigs, the number of contigs can be interpreted as the estimated

number of strains. Target genome coverage is defined as the percentage of aligned bases

in the true haplotypes, where a base is considered aligned if there is at least one contig

with at least one alignment to this base. The N50 and NG50 measures reflect assembly

contiguity. N50 is defined as the length for which all contigs in the assembly of at least

this length together add up to at least half of the total assembly size. NG50 is calculated

in a similar fashion, except that the sum of contig lengths is required to cover at least

half of the total target length. Error rates are equal to the sum of mismatch rate, indel

rate, and N-rate (ambiguous bases). We do not report unaligned bases or misassemblies

as we did not encounter any of these.

In addition to the above QUAST assembly metrics, we evaluate strain abundance es-

timates by comparing estimated values to true strain abundances. For each assembly, let

n be the number of true strains and let xi , x ′
i denote the estimated and true abundance,

respectively, of strain i . For each ground truth haplotype, the abundance estimates of

sequences assigned to this haplotype were summed to obtain the strain abundance

estimate xi . We only evaluate abundances for strains that are present in the assembly

(i.e. xi > 0) since we cannot expect an assembler to estimate the abundance of a missing



5.2. Results 87

strain. Therefore, the true strain abundance values x ′
i are also normalized, taking only

the assembled sequences into account. Then, we calculate the absolute frequency error

(AFE) and the relative frequency error (RFE) a follows:

AFE = ∑
i∈I

|xi −x ′
i |

|I | ,

RFE = ∑
i∈I

|xi −x ′
i |

|I | · x ′
i

, where

I = {i ∈ [n] : xi > 0}

5.2.2 VG-flow scales well to bacterial-size genomes

Our main goal of designing VG-flow was to enable generation of high-quality assemblies

for data sets of higher complexity compared to what is possible with other de novo

approaches. While Virus-VG [8] performs well on the quasispecies benchmark data sets,

the path enumeration step will quickly become too expensive as data sets become more

complex: the number of candidate haplotypes is exponential in the number of input

contigs. In particular, the number of haplotypes grows exponentially in the genome

size, making candidate path enumeration infeasible for larger haplotypes.

In order to explore the limits of VG-flow and to highlight its advantages over Virus-

VG, we simulated 28 data sets of increasing complexity using SimSeq [112] (2×250 bp

paired-end reads, Illumina MiSeq error profile). We created data sets with genomes of

increasing size (2500 bp, 5000 bp, 10.000 bp, 20.000 bp, 40.000 bp, 100.000 bp, 200.000

bp) and an increasing number of strains (2, 4, 6, 8). Each data set has a total coverage of

1000x. Each strain was created by randomly introducing mutations at a mutation rate

of 0.5% into a randomly generated nucleotide sequence of the desired length; hence,

haplotypes have a pairwise divergence of 1%. For data sets of 2, 4, 6, and 8 strains, the

relative strain abundances were set to ratios of 1:2, 1:2:3:4, 1:2:3:4:5:6, and 1:2:3:4:5:6:7:8,

respectively. Although the genome sequences are artificial (allowing us to vary genome

size and number of strains flexibly) the relative abundances and pairwise divergence

reflect plausible real-world, and challenging scenarios in metagenomics [107].

In Figure 5.2 we show VG-flow runtimes as a function of the genome size for a fixed

number of strains. As expected, runtime increases as the genome size and the number

of strains increase. Even the data sets with a genome size of 200.000 bp are easy to

process with VG-flow. Virus-VG, on the other hand, was unable to process any genomes

larger than 20.000 bp (2 strains), 5000 bp (4 strains), or 2500 bp (>4 strains).

Remark. Currently, the limiting factor for processing genomes larger than 200.000

bp with VG-flow is the pre-assembly step. VG-flow requires pre-assembled strain-

specific contigs as input and we use SAVAGE [7] for this. SAVAGE has proven to produce

assemblies of very high quality, but this assembler does not scale well to large genomes.



88 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

0 25 50 75 100 125 150 175 200
Genome size (kbp)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
CP

U 
tim

e 
(h

)

2 strains
4 strains
6 strains
8 strains

Figure 5.2: VG-flow runtime (CPU seconds) on data sets of increasing

genome size (2500, 5000, 10.000, 20.000, 40.000, 100.000, 200.000) and num-

ber of strains (2, 4, 6, 8). Note that these runtimes do not include SAVAGE

assembly time; a comparison of total runtime is shown in the Supplement-

ary Material.

Inspired by results from [7], we experimented with SPAdes [9] assemblies as input for

VG-flow. Although SPAdes does not produce strain-specific contigs as accurately as

SAVAGE, it performs reasonably well and VG-flow is able to build full-length haplotypes

from these contigs. Results and further details are shown in the Supplementary Material.

5.2.3 VG-flow outperforms existing tools

We evaluate performance of VG-flow on three simulated viral quasispecies data sets

from [8] and one real HIV benchmark presented in [30], also referred to as the labmix.

The simulated data sets are based on true genomic sequences from the NCBI nucleotide

database; the characteristics of all data sets (virus type, genome size, number of strains,

relative strain abundances, and pairwise divergence) are described in Table 5.1. All data

sets consist of Illumina Miseq reads with an average sequencing depth of 20.000x. For

each data set, including the labmix, the true haplotypes and their relative abundances

are known.

Table 5.2 presents assembly statistics for all methods on the three simulated data

sets (HCV, ZIKV, and Poliovirus) and Table 5.3 presents results on the labmix. The de

novo approaches VG-flow and Virus-VG both use the contigs obtained with SAVAGE as

input. We observe that both methods produce full-length haplotypes for all simulated



5.2. Results 89

# contigs∗ target (%) N50 NG50 ER(%) AFE(%) RFE(%)

10-strain HCV mix

SAVAGE 26 99.4 8964 8964 0.001 - -

Virus-VG 10 99.3 9281 9203 0.001 0.1 0.9

VG-flow 10 99.3 9281 9203 0.001 0.0 0.2

PredictHaplo 9 73.8 7636 7608 0.059 0.9 11.3

ShoRAH 639 56.9 7570 7570 4.294 8.5 64

15-strain ZIKV mix

SAVAGE 100 98.8 2954 3801 0.023 - -

Virus-VG 20 92.8 10202 10210 0.115 0.3 6.0

VG-flow 21 92.8 10193 10210 0.108 0.3 5.4

PredictHaplo 8 53.3 10270 10267 0.126 4.9 69

ShoRAH 493 26.3 10117 10117 4.392 39 229

6-strain Poliovirus mix

SAVAGE 59 83.7 1089 1643 0.019 - -

Virus-VG 14 80.7 7316 7428 0.064 0.6 12.8

VG-flow 12 90.2 7316 7428 0.036 0.3 3.5

PredictHaplo 3 16.6 7461 - 1.825 - -

Table 5.2: Assembly results on simulated data (Illumina MiSeq, 20.000x

coverage). ER = Error Rate (N’s + mismatches + indels), AFE = Absolute

Frequency Error, RFE = Relative Frequency Error. Frequency errors were

only computed for assemblies containing at least 2 full-length haplotypes.
∗If contigs are full-length, this number reflects the estimated number of

strains in the quasispecies.

data sets, with much higher N50 and NG50 values than SAVAGE. The improved assembly

contiguity comes with only slightly higher error rates compared to the SAVAGE contigs.

Table 5.2 shows that VG-flow builds contigs with even lower error rates than Virus-VG

(0.108% versus 0.115% on ZIKV data and 0.036% versus 0.064% on Poliovirus data for

VG-flow and Virus-VG, respectively). On the Poliovirus data set we do not only observe

a lower error rate for VG-flow compared to Virus-VG, but also a higher target coverage

(90.2% for VG-flow versus 80.7% for Virus-VG). The frequency estimation errors (AFE

and RFE) in Table 5.2 show that the increase in assembly accuracy also leads to lower

frequency estimation errors.

On real data (Table 5.3) we observe that VG-flow produces the same number of con-

tigs as Virus-VG, leading to identical target coverage and N50 values; the only difference

between the assemblies is a slightly lower NG50 for VG-flow (4608 versus 4642) and a

slightly higher error rate (0.535% versus 0.324%). These differences may be explained

by the highly uneven coverage of this data set, which affects the contig abundance



90 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

# contigs target (%) N50 NG50 ER(%)

SAVAGE 68 97.9 1026 1450 0.066

Virus-VG 23 90.6 2130 4642 0.324

VG-flow 23 90.6 2130 4608 0.535

PredictHaplo 6 100.0 8825 8825 1.066

ShoRAH 250 100.0 8775 8775 3.910

Table 5.3: Assembly results on the labmix (5-strain HIV mixture, real Illu-

mina MiSeq, 20.000x coverage).

estimation and hence also the greedy path extraction (see Figure 5.1). However, the

contigs produced by VG-flow are much longer than the input contigs, with the N50

value more than doubled.

Compared to the state-of-the-art for full-length viral quasispecies reconstruction, we

notice a clear advantage for VG-flow in terms of target coverage and error rate. Table 5.2

shows that PredictHaplo and ShoRAH are unable to reconstruct all haplotypes in any

of the simulated data sets. The strains that could be reconstructed have higher error

rates than VG-flow, as well as much higher frequency estimation errors. On the labmix,

PredictHaplo and ShoRAH both achieve a target coverage of 100%. In other words, they

assemble each of the five HIV strains at full length. However, PredictHaplo does so

at almost twice the error rate of VG-flow (1.066% for PredictHaplo versus 0.535% for

VG-flow) and the ShoRAH assembly has an even higher error rate of 3.910%. Moreover,

ShoRAH greatly overestimates the number of strains in all data sets considered.

Figure 5.3 shows the relative frequency estimation errors per method as a function

of true abundance per strain, for each of the simulated data sets. Results are divided into

bins (binsize=0.05) and average errors are shown. Figure 5.3 highlights the advantage of

de novo methods VG-flow and Virus-VG, which have much smaller relative errors than

PredictHaplo and ShoRAH. On the HCV and ZIKV data sets, VG-flow and Virus-VG show

nearly identical performance; on the Poliovirus data, we observe a small advantage for

VG-flow.

5.2.4 De novo approaches achieve highest precision and recall

In addition to the standard assembly quality metrics presented in the previous section,

we analyze relevance of the reported solutions and the amount of similarity between

true and reconstructed haplotypes. In the following, we define true positives by their

relative edit distance to the corresponding true haplotype (i.e., edit distance divided by

alignment length). A contig is considered a true positive if it aligns to a true haplotype

with relative edit distance ≤α; a haplotype is considered correctly reconstructed if at



5.2. Results 91

0.0 0.2 0.4 0.6
true abundance

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

er
ro

r
Dataset = HCV

0.0 0.2 0.4 0.6
true abundance

0.0

0.5

1.0

1.5

2.0
Dataset = ZIKV

0.0 0.2 0.4 0.6
true abundance

0.0

0.1

0.2

0.3

0.4
Dataset = Poliovirus

Method
PredictHaplo
ShoRAH
Virus-VG
VG-flow

Figure 5.3: Abundance estimation results per data set. Abundances were

only evaluated for assemblies containing at least 2 full-length haplotypes.

least one contig aligns to it with relative edit distance ≤α. Figure 5.4 presents precision,

recall, and F-measure per data set. These measures evaluate the number of true positive

contigs relative to the total number of contigs (precision), the number of correctly recon-

structed haplotypes relative to the total number of haplotypes (recall), and the harmonic

average of precision and recall (F-measure = 2*precision*recall/(precision+recall)). We

consider various thresholds for the relative edit distance and plot precision, recall,

and F-measure as a function of the threshold α. Each of these measures takes values

between 0 and 1, with 0 the worst possible score and 1 the best possible score.

We observe that, in general, SAVAGE achieves high values for all three measures

already at low relative edit distance. However, SAVAGE only assembles short contigs.

VG-flow and Virus-VG show very similar performance, with slightly better values for VG-

flow on the ZIKV and Polio data sets, and slightly better performance of Virus-VG on the

labmix. All other methods are outperformed by these de novo approaches: PredictHaplo

and ShoRAH do not achieve comparable F-measure scores on the simulated data. On

the labmix these methods obtain similar scores only at an allowed relative edit distance

of 4%, which is nearly as high as the maximal pairwise divergence between strains in

this data set.

5.2.5 Runtime and memory usage

The haplotype reconstruction steps used in VG-flow are highly efficient: on the bench-

mark data sets presented in Table 5.1 we measured a decrease in haplotype reconstruc-

tion time of 9.2–92% compared to Virus-VG. However, total runtime for VG-flow is

mostly determined by the contig-variation graph construction step, which involves

multiple sequence alignment and read mapping. This graph construction step is shared

by VG-flow and Virus-VG. Hence, when considering the complete approach on the

simulated quasispecies benchmarks, we observe identical runtime and memory us-



92 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

HCV ZIKV Poliovirus Labmix

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

0 1 2 3 4 5
max % edit distance

0.0

0.2

0.4

0.6

0.8

1.0

F-
m
ea
su
re

0 1 2 3 4 5
max % edit distance

0 1 2 3 4 5
max % edit distance

0 1 2 3 4 5
max % edit distance

savage
virus-vg
vg-flow
predicthaplo
shorah

Figure 5.4: Precision, recall, and F-measure per data set.

age for VG-flow and Virus-VG: runtime varies between 3.6–12.5 CPU hours and peak

memory usage is between 0.6–0.9 GB. Both approaches require as input pre-assembled

contigs, for which we used SAVAGE. This de novo assembler constructs an overlap graph

from the sequencing reads, which is an expensive procedure (30.6–276 CPU hours). In

comparison, PredictHaplo is faster (2.0–7.4 CPU hours) and ShoRAH is slower (209–814

CPU hours, unable to process the Poliovirus data set). However, it is important to realize

that all methods except PredictHaplo are able to profit from multithreading, leading

to competitive wall clock times on sufficiently large computing clusters. Moreover,

constructing a consensus reference genome to be used for reference-guided methods

ShoRAH and PredictHaplo also incurs some additional costs (0.07–0.44 CPU hours).

More details are presented in the Supplementary Material.

5.2.6 Analysis of an HCV patient sample

In order to demonstrate utility of VG-flow on real data, we ran our method on a patient

sample (plasma) of a Hepatitis C virus infection (subtype 1a). This sample is part of a

deep sequencing initiative of HCV genomes [48]. It consists of 349268 reads (2×250 bp,

Illumina MiSeq), covering the HCV reference genome (NC_004102.1) from position 2296

to 7328 with an average sequencing depth of 34704x. We performed de novo assembly

with SAVAGE and obtained 133 contigs varying in length from 152 to 1238 bp, with an



5.3. Discussion 93

N50 value of 472. After running VG-flow on this set of contigs, we obtained 33 contigs

with an N50 value of 2342. Among the contigs were 7 full-length haplotypes (>4500 bp),

in agreement with the analysis performed by [48] using single genome amplification.

The estimated relative frequencies varied between 6.0% and 33.3%. Two of the full-

length haplotypes show a large insertion of 573 bp at position 3546 of the HCV reference

genome; this insertion falls into the NS3 gene, which is involved in viral RNA replication

through helicase activity. Overall, the 7 full-length haplotypes have 98.8–99.4% pairwise

sequence identity, while they share only 93.8–94.7% of their sequences with the HCV

reference genome. The overall assembly process took 92 minutes using 12 CPUs (51

minutes for SAVAGE, 41 minutes for VG-flow) and used 1.2 GB of RAM.

5.3 Discussion

Many genomic data sets contain mixtures of closely related sequences, such as viral

quasispecies or bacterial populations, where the number of haplotypes is generally

unknown and relative abundances may differ per haplotype. VG-flow addresses these

challenges: we successfully reconstructed haplotypes from several mixed samples,

both simulated and real, and obtained highly accurate frequency estimates for each

haplotype.

VG-flow performs full-length haplotype-aware genome assembly, without using

existing linear reference genomes, but by constructing variation graphs from pre-

assembled contigs. This approach establishes a reference system that allows for analyses

that do not suffer from any kind of haplotype-specific mutation-induced biases. We

compute abundance estimates for the input contigs, which are of value in its own right.

We also enable haplotype reconstruction in polynomial time, with runtimes depending

linearly on genome size in practice. We have shown that VG-flow scales well to bacterial-

size genomes, hence proving its potential to contribute also to metagenomic assembly.

In benchmark experiments on simulated viral samples, our method outperformed the

state-of-the-art in full-length viral quasispecies reconstruction in terms of assembly

completeness, assembly accuracy, and abundance estimation quality. Finally, we also

demonstrated the value of our method on real HIV and HCV data sets.

In view of the general benefits of Virus-VG [8] and the fact that its brute-force solu-

tion experiences severe limitations with respect to genome size and the number of

contigs, our main goal was to find a polynomial time solution producing high quality

assemblies like Virus-VG. In addition to decisive speed-ups, our algorithm also im-

proved on Virus-VG in terms of assembly accuracy. Virus-VG and VG-flow both aim to

reconstruct individual haplotypes from pre-assembled contigs and perform abundance

estimation, but VG-flow uses a radically different approach to generating candidate

haplotypes. Our results show that the greedy path extraction step in our algorithm



94 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

selects a subset of possible haplotypes that represents the quasispecies sufficiently well.

By limiting the path abundance optimization to this subset of haplotypes, many false

haplotypes are excluded from optimization and hence the algorithm gets less confused

by false haplotypes.

Interestingly, for some data sets VG-flow was able to improve on the input contigs

in terms of target coverage. A possible explanation is that for haplotypes which are not

fully represented by pre-assembled contigs, VG-flow is able to reuse contigs from other

strains in the same region. This hypothesis is supported by the fact that error rates for

VG-flow are higher than for the input contigs constructed using SAVAGE.

The results in Figure 5.2 show that VG-flow has the potential to process larger

genomes. Currently there are two limiting factors that prevent us from processing

bacterial or metagenomic data. First, our method requires as input a collection of

pre-assembled, strain-specific contigs. We obtained best results using SAVAGE [7] to

generate these input contigs; however, in its current state SAVAGE does not scale well to

larger genomes. Experiments using SPAdes to generate input contigs have shown that

VG-flow can also generate full-length haplotypes from these assemblies. In fact, any

haplotype-aware assembler could be used to generate the input contigs, but the quality

of the input contigs has a significant impact on the quality of the output.

Another limiting factor is that VG-flow depends on multiple sequence alignment for

constructing the contig-variation graph. This step can become quite expensive as the

number of contigs grows, which could lead to difficulties when processing metagenomic

data sets. Nevertheless, we have moved to a much wider range of feasible genome sizes

than what was possible before. Note that variation graph construction is part of a

current, very active area of research, such that improvements on that end are to be

expected [43, 74, 90].

Note finally that each of these factors imposes the same limitations to the approach

in [8]. Addressing these challenges would make VG-flow truly capable of processing

bacterial or metagenomic data. Therefore, each of the points discussed above provides

an interesting starting point for future work.

5.4 Conclusions

While multiple approaches to reference-free viral quasispecies assembly have been

introduced recently, efficient reconstruction of full-length haplotypes without using

a reference genome is a major challenge. Although de novo methods have shown

advantages over reference-guided tools, the resulting assemblies often consist of rather

short contigs. In this chapter we have proposed VG-flow as an efficient solution to

extend pre-assembled contigs into full-length haplotypes, based on variation graphs

as reference systems that allow for a bias-free consideration of all haplotypes involved.



5.5. Methods 95

Benchmark experiments have shown that VG-flow outperforms the state-of-the-art

in viral quasispecies reconstruction in terms of accuracy of haplotype sequences as

well as abundance estimates. Moreover, we have shown that our method scales well to

bacterial-size genomes, thus proving its potential for processing larger data sets like

bacterial mixtures or metagenomic data.

5.5 Methods

5.5.1 Variation graphs

Variation graphs are mathematical structures that capture genetic variation between

haplotypes in a population [43, 90]. These graphs provide a compact representation

of a collection of input sequences by collapsing all shared subsequences between

haplotypes.

Definition. Let S be a collection of sequences. We define the variation graph V GS as

a tuple (V ,E ,P, a). The nodes v ∈V store sequences seq(v) of nucleotides (of arbitrary

length) which appear as a substring of some s ∈ S. The edges (v1, v2) ∈ E indicate that

the concatenation seq(v1)seq(v2) also appears as a substring of some s ∈ S. In addition

to nodes V and edges E , a variation graph stores a set of paths P representing the input

sequences: for every s ∈ S there is a path p ∈ P (i.e. a list of nodes, linked by edges) such

that the concatenation of node sequences equals s. Finally, we store path abundances

using an abundance function a : P →R which assigns an absolute abundance value to

each path in P .

Approach. Following [8], we distinguish between two types of variation graphs:

contig-variation graphs and genome-variation graphs. Let C be a set of pre-assembled

contigs and let H be the collection of haplotypes we aim to reconstruct. The contig-

variation graph V GC = (VC ,EC ,PC , aC ) organizes the genetic variation that is present

in the input contigs and the abundance function aC gives contig abundance values

for every input contig. The genome-variation graph V GH = (VH ,EH ,PH , aH ) stores

the haplotypes within a population and the abundance function computes haplotype

abundances. Constructing a genome-variation graph is the goal of our method; the key

idea is to use the contig-variation graph to get there.

5.5.2 Contig-variation graph construction

We construct a contig-variation graph from pre-assembled contigs C using existing

techniques for variation graph construction, similar to [8]. This entails three steps:

(1) Multiple sequence alignment (MSA). We run vg msga [43] on the input contigs;

the resulting MSA is represented as a graph (V ,E ,P ).



96 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

(2) Compactification. We compactify the graph by contracting any non-branching

path into a single node. For every contig, we update the corresponding path p ∈ P

such that it stores the path through the compacted variation graph. Thus, we

obtain a graph (VC ,EC ,PC ).

(3) Node abundance computation. We use vg map [43] to align the sequencing

reads to the compacted variation graph. From these alignments we compute the

average base coverage for every node in the graph, also referred to as the node

abundance.

Note that the computed node abundances do not yet give us the abundance function

aC : PC → R. To complete the construction of V GC , we construct a flow network and

solve a minimum-cost flow problem as described below.

5.5.3 Flow network construction

We construct a flow network FG = (V ,E ,c,d), which allows us to compute contig abund-

ances by solving a variant of the minimum-cost flow problem. Network flows are

defined on directed graphs, where every edge has a given capacity and receives a certain

amount of flow [4]. A flow network has a source node and a sink node, which have only

incoming and outgoing flow, respectively. For all other nodes, the amount of incoming

flow must always equal the amount of outgoing flow, so-called flow conservation. We

define our graph as follows.

Nodes: we start by creating a source s and a sink t . Then, we introduce two vertices for

every contig ci ∈C , thus obtaining the vertex set V = {s, t }∪ {v−
i , v+

i | ci ∈C }.

Edges: we introduce directed edges (arcs) of three types: contig-arcs, overlap-arcs, and

auxiliary-arcs. For each contig ci we add a contig-arc ei : v−
i → v+

i . For each pair of

contigs ci and c j there is an overlap-arc ei j from vertex v+
i to vertex v−

j if a suffix of ci

has a non-conflicting overlap with a prefix of c j . In other words, the sequences of ci

and c j are identical on their overlap. Finally, we add auxiliary-arcs s → v−
i for any v−

i

which has no incoming overlap-arcs, and auxiliary-arcs v+
i → t for any v+

i which has no

outgoing overlap-arcs.

Capacities: all edges have infinite capacity.

Costs: to every edge e ∈ E , we assign a cost de where

de =


1, for contig-arcs;

−1, for overlap-arcs;

0, for auxiliary-arcs.

The intuition behind this construction is that haplotypes can be found as s − t paths in

FG and flow along the edges reflects accumulated haplotype abundances. The edge



5.5. Methods 97

s t

contig-arc

overlap-arc

auxiliary-arc

+ +- - +-

+- +- +-

Figure 5.5: Flow network construction: source (s), sink (t ), vertices (v−
i , v+

i ),

contig-arcs, overlap-arcs, and auxiliary-arcs.

costs in the flow network allow for the definition of a minimum-cost flow problem that

computes contig abundances that are optimal in terms of being compatible with the

node abundances in the contig-variation graph, as described in the next section. The

construction of the flow network is illustrated in Figure 5.5.

5.5.4 Contig abundance computation

The problem of estimating contig abundances has applications in metagenomics [64]

and RNA transcript assembly [26]. Existing methods make use of read mapping, either

to a reference genome [68] or to the contigs [18, 41]. Such techniques may cause

ambiguous alignments when contigs overlap or share identical sequence. Here, we

avoid these issues by mapping reads to the contig-variation graph and solving a flow-like

optimization problem.

Problem formulation. Candidate haplotypes in the contig-variation graph V GC

can be obtained by concatenating overlapping contig subpaths. Therefore, any maximal-

length path in the variation graph corresponds to an s-t path in FG . We denote by δ+(v)

and δ−(v) the set of arcs, respectively, entering and leaving v ∈V . Recall that VC denotes

the set of nodes in V GC and let a′
u denote the abundance of node u ∈VC , as computed

from the read alignments. For a node u ∈VC and edge e ∈ E , we write u ∈ e if the contig

(or overlap) associated with the contig-arc (or overlap-arc) passes through node u in the

contig-variation graph. We define the following flow problem, in which the variables xe

decide the amount of flow going through arc e ∈ E :

min
∑

u∈VC |a′
u −∑

{e∈E |u∈e} de xe | (5.1)

s.t.
∑

e∈δ+(v) xe =∑
e∈δ−(v) xe , ∀v ∈V \ {s, t }

xe ≥ 0, ∀e ∈ E .

Motivation. The objective function evaluates the node abundance errors, defined

as the absolute difference of the node abundance and the sum of contig abundance

estimates of all contigs whose path passes through the node under consideration.

However, contigs belonging to the same haplotype may have overlaps due to conserved

regions between haplotypes; we need to avoid double-counting the contig abundances



98 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

for nodes corresponding to such overlaps. The edge costs de ensure that for any pair

of overlapping contigs, for any node u ∈VC in the overlap, the estimated abundance is

only added to the sum once.

Solution. The objective function is convex in the flow-variables xe (Supplementary

Material, Lemma 3.1), so we have the problem of minimizing a convex function over a

set of linear constraints. Such problems can be solved in polynomial time [86]. Given a

solution to this optimization problem, the flow values on the contig-arcs reflect contig

abundance estimates. We use these values to define the abundance function aC on the

contig-variation graph. An evaluation of abundance estimates for all simulated data

sets is presented in the Supplementary Material. Below, we explain how to use these

contig abundances to extract candidate haplotypes for further optimization.

5.5.5 Greedy path extraction

The outcome of the above algorithm gives us a flow value for each edge in the flow

network. In the biological context of the problem, we are interested in a decomposition

of this flow into a set of s-t paths representing the reconstructed haplotypes. Finding

such a flow decomposition can be done in polynomial time, as follows from any con-

structive proof of the Flow Decomposition Theorem [4]. In general, we are interested

in a parsimonious solution (i.e. a solution with a small number of paths). Finding

a decomposition with a minimal number of paths, however, is NP-complete. Many

approximation algorithms have been developed for finding a minimum path flow de-

composition, e.g. [56, 108], but these algorithms could not even handle our smallest

data set (a mixture of 2 haplotypes of length 2500 bp). Therefore, we resort to other,

more efficient means for obtaining a set of haplotypes from the given flow solution

[122].

We consider a generic greedy heuristic to obtain a selection of candidate paths

(Algorithm 1). This approach iteratively selects an s − t path p from the flow network,

then updates the flow solution by subtracting the largest possible flow on contig-arcs in

p. It terminates when all flow on contig-arcs is below a user-defined threshold for the

minimal haplotype abundance. The order in which paths are selected depends on the

optimality criterion: we consider maximum capacity paths, minimum capacity paths,

and shortest paths—this essentially gives rise to three heuristics. Note that we do not

take the flow values on overlap-arcs or auxiliary-arcs into account, because we want to

avoid any preliminary restrictions on the contig overlaps used.

It varies per data set which optimality criterion gives best results: the maximal

capacity criterion extracts paths in order of decreasing abundance, hence leads to

paths which are most reliable. However, if a sample contains low-frequency strains,

it can be beneficial to select haplotypes in order of increasing abundance (minimum



5.5. Methods 99

Algorithm 1 Greedy path extraction from a given flow solution

Input: flow network FG , contig-arcs E ′, flow solution x, min abundance m, optimality

criterion OC

Output: a selection of candidate paths Pcand

1: function GREEDYPATHS(FG ,E ′, x,m,OC )

2: R ← x

3: Pcand ←;
4: FGR ← FG

5: while FGR has at least one s − t path do

6: Find an s − t path p in FGR that is optimal w.r.t. OC

7: w ← mine∈p∩E ′ {Re }

8: R ← R −w p

9: FGR ← FG \ {e ∈ E ′ : Re < m}

10: Pcand ← Pcand ∪ {p}

11: return Pcand

capacity). Since we do not know the composition of the quasispecies beforehand,

we combine the results of all three heuristics into one set of candidate haplotypes

for further optimization. Earlier work has shown that merging a pool of high quality

approximations allows for efficient solutions to well-known optimization problems [16,

27]. We compare performance of our combined approach and the individual greedy

heuristics in the Supplementary Material.

5.5.6 Path abundance optimization

Given a collection of candidate haplotypes Pcand in the form of paths through the contig-

variation graph, the only task remaining is to compute relative abundances for these

haplotypes. Although the greedy path extraction algorithm produces preliminary path

abundance estimates, these can be improved by the following linear programming

approach, also described in [8].

Problem formulation. Let a′
v denote the abundance of node v ∈ VC , which was

computed from the read alignments to V GC . We define variables xp ∈R≥0 for p ∈ Pcand,

representing the estimated abundance for haplotype p, and consider the following

optimization problem:

min
∑

v∈VC

∣∣∣a′
v −

∑
p3v

xp

∣∣∣ s.t. xp ≥ 0 ∀p ∈ Pcand. (5.2)

The objective function is similar in spirit to the objective in Equation (5.1), where

abundance estimation errors are evaluated per node in the contig-variation graph. Only



100 Chapter 5. Viral quasispecies reconstruction via contig abundance estimation

now, we compute the absolute difference between the node abundance value and the

sum of abundance estimates for all haplotypes passing through this node. This is a

convex programming formulation, which can be linearized and solved using an LP

solver.

5.5.7 Genome-variation graph construction

Given the candidate haplotypes Pcand and the abundance estimates xp for p ∈ Pcand, we

obtain a final selection of haplotypes H = {p ∈ Pcand : xp ≥ m}. Here, m is a user-defined

minimal path abundance, by default set to 1% of total sequencing depth. Given H , we

can transform the contig-variation graph V GC into the genome-variation graph V GH , a

complete representation of the viral quasispecies.

5.5.8 Data simulation

All synthetic data sets were generated using the software SimSeq [112] to simulate Illu-

mina MiSeq reads from the genome of interest. In order to obtain realistic sequencing

error profiles, we used the MiSeq error profile provided with the software. The genomes

used for each data set are listed in the Supplementary Material.

5.5.9 Availability of data and material

Software and analysis scripts are publicly available at https://bitbucket.org/jbaaijens/

vg-flow. The synthetic benchmark data sets analysed during the current study are

available at https://bitbucket.org/jbaaijens/savage-benchmarks. The real HIV data set

(labmix) is available at https://github.com/cbg-ethz/5-virus-mix. The real HCV data

set is available in the Sequencing Read Archive under accession number SRR3951347.

https://bitbucket.org/jbaaijens/vg-flow
https://bitbucket.org/jbaaijens/vg-flow
https://bitbucket.org/jbaaijens/savage-benchmarks
https://github.com/cbg-ethz/5-virus-mix


CHAPTER 6

DISCUSSION

101



102 Chapter 6. Discussion

6.1 Overview

The aim of haplotype-aware genome assembly is to reconstruct the copy-specific ge-

nomic sequences (haplotypes) of an organism from sequencing reads. This has many

applications: from analyzing virus infections to patient-donor matching for organ trans-

plantation, and from environmental studies to cancer tumor analysis. Haplotypes may

show a lot of variation within a population, leading to problematic reference-induced

biases in reference-guided assembly. Reference-free (de novo) haplotype reconstruction

provides a valuable alternative.

De novo computation of haplotype-specific sequences is a complex task. Sequences

within a single sample are often closely related, making it difficult to distinguish between

haplotypes and to identify co-occurring mutations. In many application scenarios, the

number of haplotypes in a sample is unknown, and relative abundances differ per

haplotype. An important component of any algorithm performing haplotype-aware

genome assembly is to distinguish sequencing errors from true genomic variation. Bey-

ond this task, a de novo algorithm needs to combine sequencing reads into contiguous

sequences (contigs) of maximal length; haplotype-specific contigs are also referred

to as haplotigs. These steps become particularly challenging when haplotypes are

represented by reads only at low sequencing depths.

These difficulties have left de novo haplotype reconstruction in a rather immature

state for a long time. Recently, significant advances were made using the long reads

produced by TGS machines [23, 53, 96, 127]. Be that as it may, the majority of sequencing

machines installed worldwide performs short read sequencing, largely dominated by

Illumina machines [109]. Enormous quantities of NGS reads have been generated, but

these data sets have not yet been fully exploited in terms of haplotype reconstruction. To

address this issue, we have presented four methods, each solving a specific component

of the haplotype-aware genome assembly problem from NGS reads.

In Chapter 2 we addressed the viral quasispecies assembly problem, aiming to

reconstruct all virus strains present in an infection. Viral quasispecies are polyploid, but

in general the exact number of haplotypes (ploidy) is unknown. In contrast, the method

in Chapter 3 was designed specifically for polyploid genomes of known ploidy, where

data sets are typically of much lower sequencing depths. Both methods make us of the

overlap graph assembly paradigm, and succeed in generation of high quality haplotigs

that give a complete representation of the individual haplotypes present in the sample.

In Chapter 4 we extended the strain-specific contigs in viral quasispecies assemblies

into full-length haplotypes and assigned relative abundances to each haplotype. In

many cases, there are conserved regions between different strains in a quasispecies. If

these identical pieces of sequence are longer than the read length, the surrounding vari-

ants cannot be assigned to haplotypes by traditional assembly algorithms. Contigs can



6.2. Contributions 103

therefore not be extended beyond the conserved region and do not grow into full-length

haplotypes. We have shown that these ambiguities can be resolved by taking the relative

strain abundances into account. By arranging the strain-specific contigs in the form of

a variation graph, enumerating candidate haplotypes as maximal-length paths through

this graph, and solving a minimization problem that assigns abundance estimates to

each of these paths, we were able to complete the viral quasispecies assembly task.

Although Chapter 4 already enables highly accurate reconstruction of full-length

viral genomes, this solution suffers from practical limitations in terms of genome size

and number of strains. In Chapter 5, we overcame these issues by reformulating the

combinatorial problem in such a way that it became polynomially solvable. Through

this new solution, we got rid of the practical limitations regarding de novo assembly of

viral haplotypes.

6.2 Contributions

The methodology presented in this thesis directly contributes to the reconstruction

of viral quasispecies from patient samples. Another immediate application of our

methods is in haplotype reconstruction of highly divergent genomic regions, such as

the MHC region. In addition to practical contributions, this thesis brings a theoretical

contribution in the form of overlap graph construction and variation graph-based

optimization. Each of these is described in more detail below.

6.2.1 Viral quasispecies assembly

Determining the individual haplotypes that cause a viral infection can play an important

role in therapy selection [32, 39]. In this, another relevant piece of information is the

distribution of strain frequencies: which haplotypes are most abundant, and which are

very rare? Low-frequency strains are easily suppressed by high-frequency strains within

the infection. However, when high-frequency strains are eliminated through a given

treatment, the quasispecies composition may change completely. This may have a great

impact on the patient’s health.

In order to reconstruct low-frequency strains in a viral quasispecies sample, special-

ized assembly tools are required. As viral genomes are relatively short, one can afford

sequencing at ultra-deep coverage (>10.000x), thus (theorically) enabling reconstruc-

tion of rare strains. In practice, however, it is very difficult to distinguish sequencing

errors from true variation in low-frequency strains. We have made this possible by

constructing overlap graphs as the basis of our assembly algorithm in Chapter 2—see

also Section 6.2.3. Subsequently, the methods in Chapters 4 and 5 extend these contigs

into full-length haplotypes while estimating relative haplotype abundances. Together,



104 Chapter 6. Discussion

Chapters 2, 4 and 5 form the first de novo approach to successfully and efficiently recon-

struct viral quasispecies at full length.

We have illustrated the advantages of a de novo approach in several benchmark

experiments, considering a variety of virus types, genome sizes, and quasispecies

compositions. After evaluating the performance of reference-guided approaches using

high-quality reference sequences as well as ad-hoc (“bootstrap”) reference genomes,

we observed that reference-guided approaches suffer from severe reference-induced

biases. Although (generic) de novo assemblers avoid such biases, these methods proved

unable to reconstruct low-frequency haplotypes. As a result, our specialized de novo

approach outperformed the state-of-the-art in viral quasispecies assembly, as well as in

standard de novo assembly.

6.2.2 Haplotype reconstruction in the MHC region

The major histocompatibility complex (MHC) encodes for molecules that are involved

in the acquired immune system: the MHC molecules display peptide fragments derived

from pathogens on their cell surface, to be recognized and dealt with by immune cells.

Therefore, the MHC region plays an important role in infectious, immune-mediated,

and autoimmune diseases [24, 77]. Pathogens can evade immune responses if their

genomes have mutated such that they are no longer recognized by MHC molecules.

However, the MHC is highly polymorphic, meaning that each gene exists in many

different variants within the population—in the human genome, there is no region

known to be more diverse than the MHC region [54]. The MHC genes are usually

divided into two classes; every individual possesses multiple genes for each class, thus

representing a wide range of different peptides. While these properties make it difficult

for pathogens to escape immune responses, they also render assembly of the MHC

region particularly challenging, leaving many secrets still to be discovered.

Similar to our observations in viral quasispecies, the high degree of polymorphism

in the MHC asks for a de novo approach to haplotype assembly. In Caskey et al. [19] it

has been shown that the methods from Chapter 2 can be applied directly to assemble

MHC genes in rhesus macaques. However, the MHC region is three orders of mag-

nitude longer than most RNA virus genomes, and sequencing depths are typically much

lower. It is also important to realize that, when the ploidy of a genome is known, one

can use this information during the assembly process. In Chapter 3 we presented an

algorithm designed specifically for genomes of known ploidy, sequenced at low to me-

dium coverage. Benchmark experiments on simulated data sets containing human

MHC haplotypes showed that our method was able to reconstruct these sequences

to a high degree of accuracy, thus outperforming all other approaches to haplotype-

aware assembly from NGS reads. Since our advancements allow for a more detailed



6.2. Contributions 105

and accurate analysis, we hope for a deeper understanding of the MHC region through

application of our algorithms in medical practice.

An opportunity for future research is the assembly of full-length haplotypes for

genomes of fixed ploidy, thus continuing the work in Chapter 3. Although these as-

semblies were shown to be of very high quality regarding error rates and assembly

completeness, there is great potential for algorithms that extend these haplotigs into

full-length haplotypes. The approaches presented in Chapters 4 and 5 do not apply to

the case of genomes of fixed ploidy: these methods make use of the fact that haplotype

abundances vary within a quasispecies, while in genomes of fixed ploidy the haplo-

types usually appear at identical frequencies. Hence, adaptation of the methods from

Chapters 4 and 5 to the fixed ploidy case provides most interesting future work.

6.2.3 Overlap graph construction

Two commonly used data structures in genome assembly, de Bruijn graphs and overlap

graphs, make the foundation of the two most popular paradigms in genome assembly.

Nearly all of the NGS based genome assemblers rely on de Bruijn graphs. Thereby, reads

are decomposed into k-mers, where k is usually considerably smaller than the read

length. In these approaches, sequencing reads are not used to their full potential before

the post-processing stages. As mentioned above, it is imperative in haplotype-aware

genome assembly to distinguish low-frequency mutations from sequencing errors.

While low-frequency mutations are genetically linked, hence co-occur within different

reads, sequencing errors do not exhibit patterns of co-occurrence. Examining the full

read span decisively enhances the detection of patterns of co-occurrence. For this

reason, we opt for overlap graphs as the basis of haplotype-aware genome assembly.

Chapters 2 and 3 present de novo assembly algorithms based on overlap graph

construction. These graphs make use of the full read span and do not decompose reads

into smaller parts, leading to accurate distinction between sequencing errors and true

variants to be assigned to haplotypes. In particular, we calculate an overlap quality

score that reflects the probability that a pair of overlapping reads originates from the

same haplotype.

The use of efficient indexing techniques has been key to reference-free construc-

tion of overlap graphs. We have implemented the most recent version of an algorithm

for finding all approximate suffix-prefix overlaps within NGS data [59]. Although this

approach is substantially faster and more space efficient than previous algorithms,

constructing overlap graphs remains an expensive process. Given the ultra-deep se-

quencing data sets for viral quasispecies, we have tailored our algorithm in Chapter 2

towards dividing the data into chunks of 500 to 1000x, and merging the contigs of the

chunks in subsequent steps. While this works well, it sets certain limits on the frequency



106 Chapter 6. Discussion

of strains it can recover—haplotypes with frequencies below 1% remain difficult to

reconstruct. Further improvements may be achieved by considering alternative index-

ing techniques or approximation algorithms, thus allowing for faster overlap graph

construction.

When processing large genomes in Chapter 3, we make use of a reference genome

for binning reads in an initial step; after binning, we discard the reference genome and

any related information entirely such that the algorithm operates in full de novo mode.

While this binning step does not require a high-quality reference genome, as long as

reads get mapped, a truly reference-free approach requires alternative algorithms for

computing all-pairs approximate suffix-prefix overlaps.

6.2.4 Variation graph-based optimization

Variation graphs are mathematical objects that can be used as a compact representa-

tion of haplotypes within a population, to serve as a reference system that includes all

genetic variation. Using such genome structures instead of standard linear reference

genomes has been shown to reduce reference-induced bias [31, 90] and to allow for

efficient subhaplotype match queries [88] and haplotype modelling [103]. However,

variation graph construction has been focused on a linear reference genome as a point

of departure. In Chapters 4 and 5, we construct variation graphs from pre-assembled

sequences completely de novo : first, we sort the contigs in an appropriate way and

then we apply progressive multiple alignment techniques [43]. The resulting variation

graphs enable full-length haplotype reconstruction through combinatorial optimiza-

tion, without using any prior information (such as a reference genome).

In Chapter 4, we obtain full-length haplotypes as a selection of maximal-length

paths in the variation graph, each of which reflects a concatenation of subpaths asso-

ciated with the input contigs. The selected paths are optimal in terms of differences

between their estimated abundances and the read coverages computed for the nodes

they traverse. This approach requires exhaustive path enumeration, where the number

of candidate paths is exponential in the number of input contigs; this could theoretically

be overwhelming when dealing with highly fragmented assembly output.

Chapter 5 shows how to avoid exhaustive path enumeration by introducing an

appropriate flow formulation of the problem. The solution to this optimization problem

yields abundance estimates for the input sequences, which are of value in their own

right in various mixed sample applications [18, 41, 68]. Note that in both chapters, we

minimize differences between estimated haplotype abundances and observed read

coverages, while taking the subpaths defined by the input contigs into account.

Although similar optimization problems have been formulated in previous work on

viral quasispecies assembly [6, 111], these methods make use of read graphs rather than



6.3. Future applications 107

variation graphs and define optimality for path abundance estimation in a very different

way. Also in RNA transcript assembly, similar problem formulations exist [13, 40, 67, 81,

93, 101, 117, 120]. Most importantly, [101] introduce node and edge abundance errors

and [117] show a minimum path cover with subpath constraints to be polynomially

solvable. However, none of these approaches simultaneously employs both subpath

constraints and abundance error minimization in its problem formulation. Hence, the

theoretical work in Chapters 4 and 5 establishes a theoretical novelty which may also

contribute to the field of RNA transcript assembly—see also Section 6.3.2.

6.3 Future applications

In addition to the immediate contributions described above, there are several future

applications and possible extensions of the work presented in this thesis.

6.3.1 Metagenome assembly at strain resolution

Environmental samples usually contain a diverse collection of genomes, also referred

to as a metagenome. These sequences come from many different organisms, most

of which are of viral or bacterial origin. The complexity and diversity of microbial

communities, as well as low divergence between related strains, make assembly of

metagenomes a difficult task. In particular, strain-aware assembly is one of the current

major challenges in the field of metagenomics.

As a consequence of the efficiency of the algorithms presented in Chapter 5, these

techniques have the potential to process larger genomes. By scaling from viral-size

genomes to bacterial-size genomes, we take a big step towards strain-aware assembly of

metagenomes. However, metagenome assembly brings along a new range of challenges:

not only are the genomes larger, they also have a more complicated structure show-

ing repeats and other structural variation. This requires specialized strain-aware de

novo assemblers for constructing strain-specific contigs from metagenomic data, and

modification of the variation graph construction process. Nonetheless, the methods in

Chapter 5 provide an exciting starting point for work on metagenome assembly.

6.3.2 Transcriptome assembly

Some of the challenges that have to be dealt with in viral quasispecies assembly can

also be found in RNA transcipt assembly, where the goal is to reconstruct an unknown

number of RNA transcripts and predict the relative transcript abundances. Not sur-

prisingly, many RNA transcipt assemblers work in a similar way to the approaches

described in Chapters 4 and 5 [13, 93, 101, 117, 120]. As described in Section 6.2.4,

some of these methods evaluate node abundance errors in a min-cost flow problem



108 Chapter 6. Discussion

similar to Chapter 5, while others describe how to incorporate subpath constraints

into a minimum path cover formulation. However, none of these methods succeeds

in combining these features. In Chapter 5, we use the best of both worlds by defining

an optimization problem that takes subpath constraints, minimizes node abundance

errors, and is polynomially solvable. This establishes a theoretical novelty, of which the

value in transcriptome assembly remains to be explored.

6.3.3 Haplotype reconstruction in tumors

Another application of great interest is haplotype reconstruction in tumor samples.

Cancer cells are driven by mutations that cause cells to replicate and proliferate at

much higher rates than healthy cells. Further mutations can occur as the tumor grows,

leading to a heterogeneous population of haplotypes. Analysis of individual haplotypes

within a tumor may contribute to a further understanding of tumor evolution and

development of effective cancer treatments. Cancer genomes are often completely

rearranged compared to the reference genome, making an important argument for de

novo assembly.

Haplotype reconstruction in cancer genomes has much in common with the viral

quasispecies assembly problem, the main difference being the genome size: ∼ 103 bases

for RNA virus genomes versus ∼ 3 ·109 bases for the human genome. Although the al-

gorithms described in Chapter 2 do not scale well to such large genomes, the theory and

techniques presented here may prove useful in this application as well. The assembly

algorithm in Chapter 3, on the other hand, can process complete human chromosomes,

but specializes in genomes of known ploidy. In the future, a combination of techniques

from Chapters 2 and 3 may enable overlap graph-based haplotype assembly for cancer

genomes.

6.4 Perspectives on third-generation sequencing

Sequencing technologies are evolving quickly and the long reads produced by TGS

machines have led to significant advances in de novo haplotype assembly. In genomes

of fixed ploidy (e.g. human and plant genomes) TGS has already made a great impact

[53, 58, 61]. Long reads enable improved reconstruction of repeat-rich genomic regions,

and allow bridging haplotypes across variant deserts. However, while this resolves

existing problems, a new challenge arises: with sequencing error rates still above 10%,

error correction becomes the main hurdle for any assembly algorithm.

In case of viral quasispecies, TGS technologies are able to cover an entire genome

with a single read, thus transforming the assembly problem into a clustering problem.

This does not necessarily make it an easier task, as high sequencing error rates lead to



6.4. Perspectives on third-generation sequencing 109

even greater difficulties when constructing low-frequency strains. This area of research

remains largely unexplored, with many problems still to be tackled. In order to apply

techniques such as maximal clique enumeration in overlap graphs, not only substitution

errors but also sequencing errors in the form of insertions and deletions need to be

taken into account by the algorithms. We believe that adaptation of the approaches

presented in this thesis could be a first step towards viral quasispecies reconstruction

from TGS data.





Bibliography

[1] 1000 Genomes Project Consortium, Abecasis, G., Auton, A., Brooks, L., DePristo,

M., Durbin, R., . . . McVean, G. (2012). An integrated map of genetic variation

from 1,092 human genomes. Nature, 491(7422), 56–65.

[2] Aguiar, D. & Istrail, S. (2012). HapCompass: a fast cycle basis algorithm for ac-

curate haplotype assembly of sequence data. Journal of Computational Biology,

19(6), 577–590.

[3] Ahn, S. & Vikalo, H. (2018). aBayesQR: a bayesian method for reconstruction

of viral populations characterized by low diversity. Journal of Computational

Biology, 25(7), 637–648.

[4] Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. (1993). Network flows: theory, algorithms,

and applications. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

[5] Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. (1990). Basic local align-

ment search tool. Journal of Molecular Biology, 215, 403–410.

[6] Astrovskaya, I., Tork, B., Mangul, S., Westbrooks, K., Mandoiu, I., Balfe, P. &

Zelikovsky, A. (2011). Inferring viral quasispecies from 454 pyrosequencing reads.

BMC Bioinformatics, 12(Supp 1), S1.

[7] Baaijens, J. A., Zine El Aabidine, A., Rivals, E. & Schönhuth, A. (2017). De novo

assembly of viral quasispecies using overlap graphs. Genome Research, 27(5),

835–848.

[8] Baaijens, J., van der Roest, B., Köster, J., Stougie, L. & Schönhuth, A. (2019). Full-

length de novo viral quasispecies assembly through variation graph construction.

Bioinformatics, to appear.

[9] Bankevich, A., Nurk, S., Antipov, D., Gurevich, A., Dvorkin, M., Kulikov, A., . . .

Alekseyev, M. (2012). SPAdes: a new genome assembly algorithm and its ap-

plications to single-cell sequencing. Journal of Computational Biology, 19(5),

455–477.

[10] Barik, S., Das, S. & Vikalo, H. (2018). Qsdpr: viral quasispecies reconstruction via

correlation clustering. Genomics, 110(6), 375–381.

111



112 Bibliography

[11] Beerenwinkel, N., Günthard, H. F., Roth, V. & Metzner, K. J. (2012). Challenges

and opportunities in estimating viral genetic diversity from next-generation

sequencing data. Frontiers in Microbiology, 3, 239.

[12] Berger, E., Yorukoglu, D., Peng, J. & Berger, B. (2014). HapTree: a novel bayesian

framework for single individual polyplotyping using ngs data. PLOS Computa-

tional Biology, 10(3), 1–10.

[13] Bernard, E., Jacob, L., Mairal, J. & Vert, J. (2014). Efficient RNA isoform identifica-

tion and quantification from RNA-Seq data with network flows. Bioinformatics,

30(17), 2447–2455.

[14] Besenbacher, S., Liu, S., Izarzugaza, J. M. G., Grove, J., Belling, K., Bork-Jensen,

J., . . . Rasmussen, S. (2015). Novel variation and de novo mutation rates in

population-wide de novo assembled Danish trios. Nature Communications, 6,

5969.

[15] Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F. & Corbeil, J. (2012). Ray

meta: scalable de novo metagenome assembly and profiling. Genome Biology,

13(12), R122.

[16] Bosman, T. (2015). A solution merging heuristic for the steiner problem in graphs

using tree decompositions. In E. Bampis (Ed.), Experimental algorithms (pp. 391–

402). Cham: Springer International Publishing.

[17] Bradnam, K. R., Fass, J. N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I.,

. . . Korf, I. F. (2013). Assemblathon 2: evaluating de novo method of genome

assembly in three vertebrate species. GigaScience, 2, 10.

[18] Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. (2016). Near-optimal probabil-

istic RNA-seq quantification. Nature Biotechnology, 34, 525–527.

[19] Caskey, J., Wiseman, R., Karl, J., Baker, D., Lee, T., Raveendran, M., . . . O’Connor,

D. (2019). MHC genotyping from rhesus macaque exome sequences. bioRxiv.

[20] Castel, S. E., Mohammadi, P., Chung, W. K., Shen, Y. & Lappalainen, T. (2016). Rare

variant phasing and haplotypic expression from rna sequencing with phaser.

Nature Communications, 7.

[21] Chaisson, M. J., Sanders, A. D., Zhao, X., Malhotra, A., Porubsky, D., Rausch, T.,

. . . Lee, C. (2019). Multi-platform discovery of haplotype-resolved structural

variation in human genomes. Nature Communications, 10.

[22] Chen, J., Zhao, Y. & Sun, Y. (2018). De novo haplotype reconstruction in viral

quasispecies using paired-end read guided path finding. Bioinformatics, bty202.

[23] Chin, C., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A.,

. . . Schatz, M. C. (2016). Phased diploid genome assembly with single molecule

real-time sequencing. Nature Methods, 13, 1050–1054.

[24] Choo, S. Y. (2007). The HLA system: genetics, immunology, clinical testing, and

clinical implications. Yonsei Medical Journal, 48(1), 11–23.



Bibliography 113

[25] Compeau, P., Pevzner, P. & Tesler, G. (2011). How to apply de Bruijn graphs to

genome assembly. Nature Biotechnology, 29, 987–991.

[26] Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPh-

erson, A., . . . Mortazavi, A. (2016). A survey of best practices for RNA-seq data

analysis. Genome Biology, 17, 13.

[27] Cook, W. & Seymour, P. (2003). Tour merging via branch-decomposition. IN-

FORMS Journal on Computing, 15(3), 233–248.

[28] Crotty, S., Cameron, C. & Andino, R. (2001). RNA virus error catastrophe: dir-

ect molecular test by using ribavirin. Proceedings of the National Academy of

Sciences, 98(12), 6895–6900.

[29] Das, S. & Vikalo, H. (2015). SDhaP: haplotype assembly for diploids and poly-

ploids via semi-definite programming. BMC Genomics, 16(1), 260.

[30] Di Giallonardo, F., Töpfer, A., Rey, M., Prabhakaran, S., Duport, Y., Leemann, C.,

. . . Metzner, K. (2014). Full-length haplotype reconstruction to infer the structure

of heterogeneous virus populations. Nucleic Acids Research, 42, e115.

[31] Dilthey, A., Cox, C., Iqbal, Z., Nelson, M. & McVean, G. (2015). Improved genome

inference in the MHC using a population reference graph. Nature Genetics, 47,

682–688.

[32] Domingo, E., Sheldon, J. & Perales, C. (2012). Viral quasispecies evolution. Mi-

crobiology and Molecular Biology Reviews, 76(2), 159–216.

[33] Dudley, D. M., Aliota, M. T., Mohr, E. L., Weiler, A. M., Lehrer-Brey, G., Weisgrau,

K. L., . . . Friedrich, D. H., Thomas C. O/’Connor. (2016). A rhesus macaque

model of Asian-lineage Zika virus infection. Nature Communications, 7, 12204.

[34] Duffy, S., Shackelton, L. A. & Holmes, E. C. (2008). Rates of evolutionary change

in viruses: patterns and determinants. Nature Reviews Genetics, 9, 267–276.

[35] Duffy, S. (2018). Why are rna virus mutation rates so damn high? PLOS Biology,

16(8), 1–6.

[36] Edge, P., Bafna, V. & Bansal, V. (2017). HapCUT2: robust and accurate haplotype

assembly for diverse sequencing technologies. Genome Research, 27(5), 801–812.

[37] EMBL-EBI. (2017). Vega genome browser. Retrieved September 28, 2017, from

http://vega.archive.ensembl.org/info/data/MHC_Homo_sapiens.html

[38] Eppstein, D., Löffler, M. & Strash, D. (2010). Listing all maximal cliques in sparse

graphs in near-optimal time. In Proc. 21st int. symp. isaac (Vol. 6506, pp. 403–

414).

[39] Farci, P., Strazzera, R., Alter, H., Farci, S., Degioannis, D., Coiana, A., . . . Purcell, R.

(2002). Early changes in hepatitis C viral quasispecies during interferon ther-

apy predict the therapeutic outcome. Proceedings of the National Academy of

Sciences, 99(5), 3081–3086.

http://vega.archive.ensembl.org/info/data/MHC_Homo_sapiens.html


114 Bibliography

[40] Feng, J., Li, W. & Jiang, T. (2010). Inference of isoforms from short sequence reads.

In B. Berger (Ed.), Research in computational molecular biology (pp. 138–157).

Berlin, Heidelberg: Springer Berlin Heidelberg.

[41] Fischer, M., Strauch, B. & Renard, B. (2017). Abundance estimation and differen-

tial testing on strain level in metagenomics data. Bioinformatics, 33(14), i124–

i132.

[42] Garg, R., Shankar, R., Thakkar, B., Kudapa, H., Krishnamurthy, L., Mantri, N., . . .

Jain, M. (2016). Transcriptome analyses reveal genotype- and developmental

stage-specific molecular responses to drought and salinity stresses in chickpea.

Scientific Reports, 6, 19228.

[43] Garrison, E., Sirén, J., Novak, A., Hickey, G., Eizenga, J., Dawson, E., . . . Durbin, R.

(2018). Variation graph toolkit improves read mapping by representing genetic

variation in the reference. Nature Biotechnology, 36, 875–879.

[44] Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., . . .

Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome.

Science, 312(5778), 1355–1359.

[45] Glusman, G., Cox, H. & Roach, J. C. (2014). Whole-genome haplotyping ap-

proaches and genomic medicine. Genome Medicine, 6(9), 73.

[46] Gregor, I., Schönhuth, A. & McHardy, A. (2016). Snowball: strain aware gene

assembly of metagenomes. Bioinformatics, 32(17), i649–i657.

[47] Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. (2013). QUAST: quality assess-

ment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075.

[48] Hedegaard, D., Tully, D. C., Rowe, I. A., Reynolds, G. M., Bean, D. J., Hu, K., . . .

McKeating, J. A. (2017). High resolution sequencing of hepatitis C virus reveals

limited intra-hepatic compartmentalization in end-stage liver disease. Journal

of Hepatology, 66(1), 28–38.

[49] Hobbs, M., Pavasovic, A., King, A. G., Prentis, P. J., Eldridge, M. D., Chen, Z.,

. . . Timms, P. (2014). A transcriptome resource for the koala (Phascolarctos

cinereus): insights into koala retrovirus transcription and sequence diversity.

BMC Genomics, 15(1), 786.

[50] Huang, A., Kantor, R., DeLong, A., Schreier, L. & Istrail, S. (2012). QColors: an

algorithm for conservative viral quasispecies reconstruction from short and

non-contiguous next generation sequencing reads. In Silico Biology, 193–201.

[51] Hunt, M., Gall, A., Ong, S. H., Brener, J., Ferns, B., Goulder, P., . . . Otto, T. D. (2015).

IVA: accurate de novo assembly of RNA virus genomes. Bioinformatics, 31(14),

2374–2376.

[52] Hunt, M., Newbold, C., Berriman, M. & Otto, T. D. (2014). A comprehensive

evaluation of assembly scaffolding tools. Genome Biology, 15(3), R42.



Bibliography 115

[53] Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., . . . Loose, M.

(2018). Nanopore sequencing and assembly of a human genome with ultra-long

reads. Nature Biotechnology, 36, 338–345.

[54] Janeway, C. J., Travers, P., M., W. & M.J., S. (2001). Immunobiology: the immune

system in health and disease. New York: Garland Science.

[55] Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., . . .

Itoh, T. (2014). Efficient de novo assembly of highly heterozygous genomes from

whole-genome shotgun short read. Genome Research, 24(8), 1384–1395.

[56] Kloster, K., Kuinke, P., O’Brien, M., Reidl, F., Villaamil, F. S., Sullivan, B. & van der

Poel, A. (2017). A practical fpt algorithm for flow decomposition and transcript

assembly. CoRR, abs/1706.07851.

[57] Knyazev, S., Tsyvina, V., Melnyk, A., Artyomenko, A., Malygina, T., Porozov, Y. B.,

. . . Zelikovsky, A. (2018). Cliquesnv: scalable reconstruction of intra-host viral

populations from ngs reads. bioRxiv.

[58] Koren, S., Rhie, A., Walenz, B., Dilthey, A., Bickhart, D., Kingan, S., . . . Phillippy,

A. (2018). De novo assembly of haplotype-resolved genomes with trio binning.

Nature Biotechnology, 36(12), 1174–1182. cited By 8.

[59] Kucherov, G. & Tsur, D. (2014). Improved filters for the approximate suffix-prefix

overlap problem. In E. Moura & M. Crochemore (Eds.), Proceedings of the 21st In-

ternational Symposium on String Processing and Information Retrieval (pp. 139–

148). Cham: Springer International Publishing.

[60] Kuleshov, V. (2014). Probabilistic single-individual haplotyping. Bioinformatics,

30(17), i379–85.

[61] Kyriakidou, M., Tai, H. H., Anglin, N. L., Ellis, D. & Strömvik, M. V. (2018). Current

strategies of polyploid plant genome sequence assembly. Frontiers in Plant

Science, 9, 1660.

[62] Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. (2015). MEGAHIT: an ultra-

fast single-node solution for large and complex metagenomics assembly via

succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676.

[63] Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with

bwa-mem. arXiv:1303.3997.

[64] Li, H. (2015). Microbiome, metagenomics, and high-dimensional compositional

data analysis. Annual Review of Statistics and Its Application, 2(1), 73–94.

[65] Li, H. & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, 25(14), 1754–1760.

[66] Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioin-

formatics, bty191.

[67] Li, W., Feng, J. & Jiang, T. (2011). Isolasso: a lasso regression approach to rna-seq

based transcriptome assembly. Journal of Computational Biology, 18, 1693–707.



116 Bibliography

[68] Lindner, M. & Renard, B. (2012). Metagenomic abundance estimation and dia-

gnostic testing on species level. Nucleic Acids Research, 41(1), e10.

[69] Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., . . . Wang, J. (2012). Soapden-

ovo2: an empirically improved memory-efficient short-read de novo assembler.

GigaScience, 1(1), 18.

[70] Mäkinen, V., Belazzougui, D., Cunial, F. & Tomescu, A. (2015). Genome-scale

algorithm design: biological sequence analysis in the era of high-throughput

sequencing. Cambridge University Press.

[71] Malhotra, R., Mukhopadhyay, M., Poss, M. & Acharya, R. (2016). A frame-based

representation of genomic sequences for removing errors and rare variant detec-

tion in NGS data. arXiv:1604.04803.

[72] Malhotra, R., Wu, S., Mukhopadhyay, M., Rodrigo, A., Poss, M. & Acharya, R.

(2016). Maximum likelihood de novo reconstruction of viral populations using

paired end sequencing data. arXiv:1502.04239.

[73] Mangul, S., Wu, N., Mancuso, N., Zelikovsky, A., Sun, R. & Eskin, E. (2014). Accur-

ate viral population assembly from ultra-deep sequencing data. Bioinformatics,

30, i329–i337.

[74] Marschall, T., Marz, M., Abeel, T., Dijkstra, L., Dutilh, B., Ghaffaari, A., . . . Schön-

huth, A. (2018). Computational pan-genomics: status, promises and challenges.

Briefings in Bioinformatics, 19(1), 118–135.

[75] Marschall, T., Costa, I., Canzar, S., Bauer, M., Klau, G., Schliep, A. & Schönhuth,

A. (2012). CLEVER: clique-enumerating variant finder. Bioinformatics, 28(22),

2875–2882.

[76] Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet.journal, 17(1), 10–12.

[77] Matzaraki, V., Kumar, V., Wijmenga, C. & Zhernakova, A. (2017). The MHC locus

and genetic susceptibility to autoimmune and infectious diseases. Genome

Biology, 18(1), 76.

[78] Medvedev, P., Pham, S., Chaisson, M., Tesler, G. & Pevzner, P. (2011). Paired de

bruijn graphs: a novel approach for incorporating mate pair information into

genome assemblers. Journal of Computational Biology, 18(11), 1625–1634.

[79] Medvedev, P., Fiume, M., Dzamba, M., Smith, T. & Brudno, M. (2010). Detecting

copy number variation with mated short reads. Genome Research, 20(11), 1613–

1622.

[80] Meyerson, M., Gabriel, S. & Getz, G. (2010). Advances in understanding cancer

genomes through second-generation sequencing. Nature Reviews Genetics, 11,

685–696.



Bibliography 117

[81] Mezlini, A. M., Smith, E., Fiume, M., Buske, O., Savich, G., Shah, S., . . . Brudno, M.

(2013). iReckon: simultaneous isoform discovery and abundance estimation

from RNA-seq data. Genome Research, 23(3), 519–29.

[82] Mikheenko, A., Saveliev, V. & Gurevich, A. (2016). Metaquast: evaluation of meta-

genome assemblies. Bioinformatics, 32(7), 1088–1090.

[83] Myers, E. W. (1995). Toward simplifying and accurately formulating fragment

assembly. Journal of Computational Biology, 2(2), 275–290.

[84] Myers, E. W. (2016). A history of DNA sequence assembly. it - Information Tech-

nology, 58, 126–132.

[85] Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan,

M. J., . . . Venter, J. C. (2000). A whole-genome assembly of drosophila. Science,

287(5461), 2196–2204.

[86] Nesterov, Y. & Nemirovskii, A. (1994). Interior-point polynomial algorithms in

convex programming. SIAM.

[87] Nishant, K. T., Singh, N. & Alani, E. (2009). Genomic mutation rates: what high-

throughput methods can tell us. BioEssays, 31(9), 912–920.

[88] Novak, A., Garrison, E. & Paten, B. (2017). A graph extension of the positional Bur-

rows–Wheeler transform and its applications. Algorithms for Molecular Biology,

12(18).

[89] Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. (2017). metaSPAdes: a new

versatile metagenomic assembler. Genome Research, 27(5), 824–834.

[90] Paten, B., Novak, A. M., Eizenga, J. M. & Garrison, E. (2017). Genome graphs and

the evolution of genome inference. Genome Research, 27(5), 665–676.

[91] Patterson, M., Marschall, T., Pisanti, N., Van Iersel, L., Stougie, L., Klau, G. &

Schönhuth, A. (2015). WhatsHap: Weighted haplotype assembly for future-

generation sequencing reads. Journal of Computational Biology, 22(6), 498–

509.

[92] Peng, Y., Leung, H., Yiu, S. & Chin, F. (2012). Meta-IDBA: a de novo assembler for

metagenomic data. Bioinformatics, 27(13), i94–i101.

[93] Pertea, M., Pertea, G., Antonescu, C., Chang, T., Mendell, J. & Salzberg, S. (2015).

StringTie enables improved reconstruction of a transcriptome from RNA-seq

reads. Nature Biotechnoly, 33, 290–295.

[94] Pevzner, P. A., Tang, H. & Waterman, M. S. (2001). An Eulerian path approach

to DNA fragment assembly. Proceedings of the National Academy of Sciences,

98(17), 9748–9753.

[95] Pirola, Y., Zaccaria, S., Dondi, R., Klau, G., Pisanti, N. & Bonizzoni, P. (2016).

HapCol: accurate and memory-efficient haplotype assembly from long reads.

Bioinformatics, 32(11), 1610–1617.



118 Bibliography

[96] Porubsky, D., Garg, S., Sanders, A. D., Korbel, J. O., Guryev, V., Lansdorp, P. M. &

Marschall, T. (2017). Dense and accurate whole-chromosome haplotyping of

individual genomes. Nature Communications, 8, 1293.

[97] Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N. & Roth, V. (2014). HIV

haplotype inference using a propagating dirichlet process mixture model. IEEE

Transactions on Computational Biology and Bioinformatics, 11(1), 182–191.

[98] Prosperi, M. C. F. & Salemi, M. (2012). QuRe: software for viral quasispecies

reconstruction from next-generation sequencing data. Bioinformatics, 28(1),

132–133.

[99] Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. (2011). Removing

noise from pyrosequenced amplicons. BMC Bioinformatics, 12, 38.

[100] Ribeiro, F. J., Przybylski, D., Yin, S., Sharpe, T., Gnerre, S., Abouelleil, A., . . . Jaffe,

D. (2012). Finished bacterial genomes from shotgun sequence data. Genome

Research, 22(11), 2270–2277.

[101] Rizzi, R., Tomescu, A. & Mäkinen, V. (2014). On the complexity of minimum path

cover with subpath constraints for multi-assembly. BMC Bioinformatics, 15(9),

S5.

[102] Rose, R., Constantinides, B., Tapinos, A. & Robertson, D. (2016). Challenges in

the analysis of viral metagenomes. Virus Evolution, 2(2).

[103] Rosen, Y., Eizenga, J. & Paten, B. (2017). Modelling haplotypes with respect to

reference cohort variation graphs. Bioinformatics, 33(14), i118–i123.

[104] Safonova, Y., Bankevich, A. & Pevzner, P. (2015). DipSPAdes: Assembler for Highly

Polymorphic Diploid Genomes. Journal of Computational Biology, 22(6), 528–

545.

[105] Salzberg, S., Phillippy, A., Zimin, A., Puiu, D., Magoc, T., Koren, S., . . . Yorke,

J. (2011). GAGE: A critical evaluation of genome assemblies and assembly al-

gorithms. Genome Research, 22, 557–567.

[106] Sanger, F., Nicklen, S. & Coulson, A. (1977). DNA sequencing with chain-terminating

inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467.

[107] Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Dröge, J., . . .

McHardy, A. (2017). Critical assessment of metagenome interpretation - a bench-

mark of metagenomics software. Nature Methods, 14, 1063–1071.

[108] Shao, M. & Kingsford, C. (2017). Theory and a heuristic for the minimum path

flow decomposition problem. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, PP(99), 1–1.

[109] Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss,

J. A. & Waterston, R. H. (2017). DNA sequencing at 40: past, present and future.

Nature, 550, 345–353.



Bibliography 119

[110] Simpson, J. & Durbin, R. (2012). Efficient de novo assembly of large genomes

using compressed data structures. Genome Research, 22, 549–556.

[111] Skums, P., Mancuso, N., Artyomenko, A., Tork, B., Mandoiu, I., Khudyakov, Y. &

Zelikovsky, A. (2013). Reconstruction of viral population structure from next-

generation sequencing data using multicommodity flows. BMC Bioinformatics,

14(Suppl 9), S2.

[112] St. John, J. (2014). An illumina paired-end and mate-pair short read simulator.

Retrieved February 12, 2015, from https://github.com/jstjohn/SimSeq

[113] Sudmant, P. H., Rausch, T., Gardner, E. J., Handsaker, R. E., Abyzov, A., Huddle-

ston, J., . . . Korbel, J. O. (2015). An integrated map of structural variation in 2504

human genomes. Nature, 526, 75–81.

[114] Tewhey, R., Bansal, V., Torkamani, A., Topol, E. & Schork, N. (2011). The import-

ance of phase information for human genomics. Nature Reviews Genetics, 12(3),

215.

[115] The Genome of the Netherlands Consortium. (2014). Whole-genome sequence

variation, population structure and demographic history of the dutch popula-

tion. Nature Genetics, 46, 818–825.

[116] The UK10K Consortium. (2015). The UK10K project identifies rare variants in

health and disease. Nature, 526, 82–90.

[117] Tomescu, A. I., Kuosmanen, A., Rizzi, R. & Mäkinen, V. (2013). A novel min-cost

flow method for estimating transcript expression with RNA-Seq. BMC Bioin-

formatics, 14(5), S15.

[118] Töpfer, A., Marschall, T., Bull, R., Luciani, F., Schönhuth, A. & Beerenwinkel,

N. (2014). Viral quasispecies assembly via maximal clique enumeration. PLoS

Computational Biology, 10(3), e1003515.

[119] Töpfer, A., Zagordi, O., Prabhakaran, S., Roth, V., Halperin, E. & Beerenwinkel, N.

(2013). Probabilistic inference of viral quasispecies subject to recombination.

Journal of Computational Biology, 20(2), 113–123.

[120] Trapnell, C., Williams, B., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.,

. . . Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq re-

veals unannotated transcripts and isoform switching during cell differentiation.

Nature Biotechnology, 28, 511–515.

[121] Välimäki, N., Ladra, S. & Mäkinen, V. (2012). Approximate all-pairs suffix/prefix

overlaps. Information and Computation, 213, 49–58.

[122] Vatinlen, B., Chauvet, F., Chrétienne, P. & Mahey, P. (2008). Simple bounds and

greedy algorithms for decomposing a flow into a minimal set of paths. European

Journal of Operational Research, 185(3), 1390–1401. cited By 19.

https://github.com/jstjohn/SimSeq


120 Bibliography

[123] Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen,

J. A., . . . Smith, H. O. (2004). Environmental genome shotgun sequencing of the

sargasso sea. Science, 304(5667), 66–74.

[124] Victoria Wang, X., Blades, N., Ding, J., Sultana, R. & Parmigiani, G. (2012). Es-

timation of sequencing error rates in short reads. BMC Bioinformatics, 13(1),

185.

[125] Vignuzzi, M., Stone, J., Arnold, J., Cameron, C. & Andino, R. (2006). Quasispecies

diversity determines pathogenesis through cooperative interactions in a viral

population. Nature, 439, 344–348.

[126] Weirather, J., de Cesare, M., Wang, Y., Piazza, P., Sebastiano, V., Wang, X. J., . . .

Au, K. F. (2017). Comprehensive comparison of Pacific Biosciences and Ox-

ford Nanopore Technologies and their applications to transcriptome analysis.

F1000Research, 6, 100.

[127] Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. & Jaffe, D. (2017). Direct determ-

ination of diploid genome sequences. Genome Research, 27, 757–767.

[128] Xie, M., Wu, Q., Wang, J. & Jiang, T. (2016). H-PoP and H-PoPG: heuristic parti-

tioning algorithms for single individual haplotyping of polyploids. Bioinformat-

ics, 32(24), 3735–3744.

[129] Yang, X., Charlebois, P., Gnerre, S., Coole, M., Lennon, N., Levin, J., . . . Henn, M.

(2012). De novo assembly of highly diverse viral populations. BMC Genomics,

13(1), 475.

[130] Zagordi, O., Bhattacharya, A., Eriksson, N. & Beerenwinkel, N. (2011). ShoRAH:

estimating the genetic diversity of a mixed sample from next-generation sequen-

cing data. BMC Bioinformatics, 12(1), 119.

[131] Zagordi, O., Geyrhofer, L., Roth, V. & Beerenwinkel, N. (2010). Deep sequencing

of a genetically heterogeneous sample: local haplotype reconstruction and read

error correction. Journal of Computational Biology, 17(3), 417–428.

[132] Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. (2014). PEAR: A fast and accurate

Illumina Paired-End reAd mergeR. Bioinformatics, 30, 614–620.



Summary

Many genomes come in copies, where each copy stems from one of the ancestors. The

number of copies determines the ploidy of the organism: haploid denotes a single

copy, while diploid relates to two copies, and polyploid refers to more than two copies

(depending on the context, polyploid may also include diploid). For example, the

human genome is diploid, encoded as DNA within 46 chromosomes which come in 23

pairs, one copy from each parent.

Genomes within a population show genetic variation as a result of mutation and

recombination. Also the copies of the genome in a single individual will differ in terms

of the genetic variants affecting them. These copy-specific sequences are referred to

as haplotypes. The genetic differences between individuals play an important role

in evolution, as genomic alterations can affect gene expression levels and enable the

development of novel gene functions.

Sequencing technologies enable reading genomic sequences, but only for relatively

short pieces of sequence, called reads. The majority of sequencing machines installed

worldwide perform so-called next-generation sequencing (NGS) and have filled up data-

bases with these traditional, short NGS reads. The goal of haplotype-aware genome

assembly is to reconstruct each of the individual haplotypes from a given set of sequen-

cing reads, such as a human genome (diploid), a potato plant genome (tetraploid), or a

mixture of genetically related virus strains in an infection (“viral quasispecies”, unknown

ploidy). Haplotype-aware genome assembly is an important step in genetics, medicine,

and various other disciplines.

However, generation of haplotype-resolved de novo assemblies is a major challenge.

Beyond distinguishing between errors and true sequential variants, one needs to assign

the true variants to the different genome copies. Reference-genome-independent (“de

novo”) approaches have yielded benefits over reference-guided approaches, because

reference-induced biases can have a great impact on assembly quality when dealing

with divergent haplotypes. We present several new approaches to de novo assembly of

individual haplotypes from mixed samples.

After a brief introduction to the field of haplotype-aware genome assembly in

121



122 Summary

Chapter 1, we explore the possibilities of overlap graph-based the novo assembly in

Chapters 2 and 3. In these overlap graphs, nodes represent reads, while edges reflect

that two reads represent identical haplotypic sequence (based on sound statistical

considerations). We introduce two new overlap assembly algorithms, each following an

iterative scheme where reads or contigs are joined in such a way that contigs grow while

preserving their haplotype identity. Chapter 2 focuses on viral quasispecies assembly:

we use overlap graphs for accurate reconstruction of viral haplotypes within an infec-

tion. In Chapter 3, on the other hand, we develop an overlap graph-based assembly

algorithm for a scenario of low sequencing depth where the ploidy of the genome is

known.

Both chapters highlight the strength of overlap graph-based assembly when aiming

to distinguish between haplotypes. While assembling a consensus sequence usually

works favorably based on data structures known as de Bruijn graphs, this requires

sequencing reads to be decomposed into k-mers, where k is usually considerably

smaller than the read length. We point out that using reads at their full length is key in

assembling individual haplotypes; examining the full read span enhances the correction

of sequencing errors and the reconstruction of low-frequency haplotypes. In addition,

we illustrate the advantages of de novo assembly over reference-guided approaches in

various benchmarking experiments.

Chapter 4 continues the search for a de novo solution to the viral quasispecies

assembly problem. Although Chapter 2 presents a solution to the core problem, the

assembly of strain-specific contigs, these contigs do not yet reflect full-length viral hap-

lotypes. In a viral quasispecies, each haplotype can appear at a different frequency, with

some strains being highly abundant while others are very rare. An important component

of the viral quasispecies assembly problem is the estimation of relative abundances for

the reconstructed haplotypes. In Chapter 4, we extend the contigs obtained previously

into full-length haplotypes and compute haplotype abundances, by making use of

variation graph-based principles and defining an appropriate optimization problem.

Finally, in Chapter 5 we resolve the remaining practical problems regarding full-

length viral quasispecies reconstruction. With increasing genome sizes and increasing

complexity of the data set, the solution in the previous chapter experience serious limi-

tations. We overcome these computational issues by reformulating the mathematical

problem, allowing for more efficient optimization techniques. This chapter completes

our solution to the de novo viral quasispecies assembly problem; the mathematical

framework presented here has the potential to make a big step ahead in haplotype-

aware genome assembly in general.

Overall, this thesis presents the first de novo approach to full-length viral quasi-

species assembly, as well as a novel solution to the haplotype-aware assembly of

genomes of known ploidy. These methods have proved valuable in many applica-



123

tions, among which the analysis of viral infections from patient samples (e.g. Zika

virus, human immunodeficiency virus (HIV), Ebola virus, and hepatitis C virus) and the

accurate reconstruction of heavily divergent regions in long genomes (such as the MHC

region in human genomes).





Samenvatting

Algoritmen ten behoeve van haplotype assemblage zonder referentiegenoom

Vaak bestaat een genoom uit meerdere kopieën, waarbij iedere kopie van één van de

directe voorouders komt. Het aantal kopieën bepaalt de ploïdiegraad van het organisme:

haploïdie betekent slechts één kopie, diploïdie betekent twee kopieën en polyploïdie

betekent meer dan twee kopieën (afhankelijk van de context valt diploïdie in sommige

gevallen ook onder polyploïdie). Ter illustratie, het menselijk genoom is diploïde,

gecodeerd in de vorm van DNA verdeeld over 46 chromosomen; deze chromosomen

vormen 23 paren, waarvan één kopie van de vader en één kopie van de moeder komt.

Door wijzigingen van het erfelijk materiaal (mutaties) onstaat er binnen een po-

pulatie genetische variatie. Ook de kopieën binnen een specifiek genoom verschillen

genetisch gezien van elkaar. Deze verschillende kopieën worden haplotypen genoemd.

De genetische verschillen tussen individuen spelen een belangrijke rol binnen de evolu-

tie, omdat ze kunnen zorgen voor veranderingen in eigenschappen en het ontwikkelen

van nieuwe functies.

Met behulp van sequencing kunnen we het erfelijk materiaal uitlezen. Dit werkt

echter alleen voor stukken van beperkte lengte, ook wel reads genaamd. Het merendeel

van alle sequencing machines wereldwijd maakt gebruik van next-generation sequen-

cing (NGS) technieken, gekenmerkt door relatief korte reads. Het doel van haplotype

assemblage is om de individuele haplotypen te reconstrueren vanuit de sequencing

reads. Bijvoorbeeld de twee haplotypen van een menselijk genoom, de vier haplotypen

van het genoom van een aardappelplant, of alle verschillende stammen van een virus

binnen het lichaam van een patiënt (een virale quasi-soort). Haplotype assemblage is

een belangrijk onderdeel van de genetica, de geneeskunde en andere disciplines.

Het is echter een grote uitdaging om haplotypen te reconstrueren zonder gebruik te

maken van een referentiegenoom. Dit vereist dat er onderscheid gemaakt wordt tussen

fouten van de sequencing machine en werkelijke genetische variatie. Bovendien moeten

de verschillende varianten toebedeeld worden aan de verschillende haplotypen. Omdat

het gebruik van een referentiegenoom onzuiverheden in het resultaat kan veroorzaken,

presenteren we hier verschillende referentievrije (“de novo”) methoden ten behoeve

125



126 Samenvatting

van haplotype assemblage.

Dit proefschrift begint met een korte introductie tot het onderzoek rondom hap-

lotype assemblage in hoofdstuk 1. Vervolgens gaan we in hoofdstuk 2 en 3 in op de

mogelijkheden tot het gebruik van een overlap graaf bij de novo haplotype assemblage.

Dit type graaf bevat een knoop voor iedere read in de dataset en heeft een gerichte

zijde tussen twee knopen wanneer de bijbehorende reads, op basis van statistische

overwegingen, tot hetzelfde haplotype behoren. We beschrijven twee nieuwe algorit-

men die beiden gebruik maken van deze overlap graaf. Hierin worden herhaaldelijk

sequenties samengevoegd tot langere stukken (contigs), zodanig dat deze specifiek

blijven voor één haplotype. In hoofdstuk 2 richten we ons op het reconstrueren van

een virale quasi-soort met behulp van een overlap graaf. In hoofdstuk 3 ontwikkelen

we vervolgens een algoritme dat zich richt op organismen waarvan de ploïdiegraad wél

bekend is (in tegenstelling tot virale quasi-soorten).

Beide hoofdstukken laten zien hoe waardevol een overlap graaf is wanneer je in-

dividuele haplotypen van elkaar wilt onderscheiden. Voor het reconstrueren van een

consensus genoom (in plaats van individuele haplotypen) is een zogenaamde de Bruijn

graaf over het algemeen een efficiënt alternatief. Hierbij worden alleen alle deelreeksen

van de reads van lengte k (de k-mers) opgeslagen. Wij laten zien dat het gebruik van

de volledige reads cruciaal is vanuit het oogpunt van haplotype assemblage, omdat dit

helpt bij het corrigeren van fouten gemaakt door de sequencing machine. Hierdoor

kunnen we ook haplotypen reconstrueren die erg zeldzaam zijn binnen de populatie.

Tenslotte laten we via verschillende experimenten het voordeel van een referentievrije

aanpak zien ten opzichte van referentiegestuurde methoden.

In hoofdstuk 4 wordt de zoektocht naar een de novo oplossing voor het reconstru-

eren van virale quasi-soorten vervolgd. In hoofdstuk 2 is al aangetoond hoe reads

samengevoegd kunnen worden tot contigs van maximale lengte, zodanig dat iedere

contig specifiek is voor een bepaald haplotype. Deze contigs zijn echter nog niet van

dezelfde lengte als het genoom, ze moeten nog verder verlengd worden. In een virale

quasi-soort komen de verschillende haplotypen ook in verschillende verhoudingen

voor: in een infectie komen sommige stammen van het virus veel voor, terwijl andere

erg zeldzaam zijn. Een belangrijk deel van het probleem rondom virale quasi-soorten is

ook het schatten van deze verhoudingen. In hoofdstuk 4 continueren we de assemblage

zodat iedere contig een volledig haplotype weergeeft, terwijl we ook de verhoudingen

van de stammen bepalen. Dit doen we met behulp van technieken gebaseerd op variatie

grafen, waarbij we een geschikt optimalisatieprobleem definiëren.

Tenslotte nemen we in hoofdstuk 5 de laatste stap tot het efficiënt en volledig re-

construeren van een virale quasi-soort. De methoden uit het vorige hoofdstuk zijn

theoretisch afdoende, maar in de praktijk mogelijk problematisch vanwege de com-

plexiteit van de oplossing. In dit hoofdstuk herformuleren we het combinatorische



127

probleem, zodat deze een polynomiale oplossing toestaat. Daarmee is onze referentie-

vrije oplossing voor het reconstrueren van een virale quasi-soort compleet. Bovendien

is deze oplossing dusdanig efficiënt dat ook grotere genomen tot de mogelijkheden

behoren.

Samengevat presenteert dit proefschrift de eerste referentievrije methode tot volle-

dige assemblage van virale quasi-soorten, alsook een oplossing voor het reconstrueren

van haplotypen wanneer de ploïdiegraad bekend is. Deze methoden zijn waardevol in

verschillende toepassingen, waaronder het analyseren van virale infecties (bijvoorbeeld

Zika, HIV, Ebola en hepatitis C) en het reconstrueren van regionen in het menselijk

genoom gekenmerkt door een grote genetische diversiteit, zoals het major histocompa-

tibility complex.





Publications

• J.A. Baaijens, L. Stougie, and A. Schönhuth (2019). Strain-aware assembly of

genomes from mixed samples using variation graphs. Submitted manuscript.

• J.A. Baaijens, B. van der Roest, J. Köster, L. Stougie, and A. Schönhuth (2019). Full-

length de novo viral quasispecies assembly through variation graph construction.

Bioinformatics, btz443 (in press).

• J.A. Baaijens and A. Schönhuth (2019). Overlap graph-based generation of hap-

lotigs for diploids and polyploids. Bioinformatics, btz255 (in press).

• T. Marschall, M. Marz, T. Abeel, L. Dijkstra, B.E. Dutilh, A. Ghaffaari, P. Kersey, W.P.

Kloosterman, V. Mäkinen, A.M. Novak, B. Paten, D. Porubsky, E. Rivals, C. Alkan,

J.A. Baaijens, P.I.W. De Bakker, V. Boeva, R.J.P. Bonnal, F. Chiaromonte, R. Chikhi,

F.D. Ciccarelli, R. Cijvat, E. Datema, C.M. Van Duijn, E.E. Eichler, C. Ernst, E. Eskin,

E. Garrison, M. El-Kebir, G.W. Klau, J.O. Korbel, E.W. Lameijer, B. Langmead, M.

Martin, P. Medvedev, J.C. Mu, P. Neerincx, K. Ouwens, P. Peterlongo, N. Pisanti,

S. Rahmann, B. Raphael, K. Reinert, D. de Ridder, J. de Ridder, M. Schlesner, O.

Schulz-Trieglaff, A.D. Sanders, S. Sheikhizadeh, C. Shneider, S. Smit, D. Valenzuela,

J. Wang, L. Wessels, Y. Zhang, V. Guryev, F. Vandin, K. Ye, A. Schönhuth (2018).

Computational pan-genomics: status, promises and challenges. Briefings in

Bioinformatics, 19(1):118–135.

• J.A. Baaijens, A. Zine El Aabidine, E. Rivals, and A. Schönhuth (2017). De novo

assembly of viral quasispecies using overlap graphs. Genome Research, 27(5):835–

848.

• J.Y. Hehir-Kwa, T. Marschall, W.P. Kloosterman, L.J. Dijkstra, J.A. Baaijens, L.J.

Dijkstra, A. Abdellaoui, V. Koval, D.T. Thung, R. Wardenaar, I. Renkens, B.P. Coe,

P. Deelen, J. de Ligt, E. Lameijer, F. van Dijk, F. Hormozdiari, The Genome of

the Netherlands Consortium, A.G. Uitterlinden, C.M. van Duijn, E.E. Eichler,

P.I.W. de Bakker, M.A. Swertz, C. Wijmenga, G.B. van Ommen, P.E. Slagboom,

D.I. Boomsma, A. Schönhuth, K. Ye, V. Guryev (2016). A high-quality human

129



130 Publications

reference panel reveals the complexity and distribution of genomic structural

variants. Nature Communications, 7:12989.

• J.A. Baaijens and J. Draisma (2016). On the existence of identifiable reparametri-

zations for linear compartment models. SIAM Journal on Applied Mathematics,

76(4):1577–1605.

• J.A. Baaijens and J. Draisma (2015). Euclidean distance degrees of real algebraic

groups. Linear Algebra and its Applications, 467:174–187.

Selected conference presentations

• De novo viral quasispecies assembly using overlap graphs (highlight talk). An-

nual International Conference on Research in Computational Molecular Biology

(RECOMB), Paris, France, 2018.

• Full-length de novo viral quasispecies assembly through variation graph construc-

tion. RECOMB Satellite Workshop on Massively Parallel Sequencing (RECOMB-

Seq), Paris, France, 2018.

• De novo viral quasispecies assembly using overlap graphs (highlight talk). Confer-

ence on Intelligent Systems for Molecular Biology (ISMB), Prague, Czech Republic,

2017. Best talk award.

• De novo viral quasispecies assembly using overlap graphs. Dutch Bioinformatics

& Systems Biology Conference (BioSB), Lunteren, the Netherlands, 2017.

• De novo assembly of viral quasispecies (poster presentation). Annual Interna-

tional Conference on Research in Computational Molecular Biology (RECOMB),

Los Angeles, U.S.A., 2016.



Curriculum vitae

Jasmijn Anne Baaijens was born in Alphen aan den Rijn, the Netherlands, on the 10th

of December, 1990. In 2008, she started her studies in mathematics at Utrecht Uni-

versity, the Netherlands. During this time she also enjoyed organizing many student

activities through the study association A-Eskwadraat. Besides her passion for mathem-

atics, Jasmijn always had an interest in biology; thus, in 2010, she spent a semester at

Université Paul Sabatier in Toulouse, France, to follow several courses in biology.

After obtaining her bachelor’s degree (cum laude) in February 2012, Jasmijn de-

cided to continue on a more applied course. She enrolled in the master’s programme

Industrial and Applied Mathematics at Eindhoven University of Technology (TUe), in

the Discrete Mathematics and Applications track. She conducted two extra-curricular

research projects as part of the honours programme: first, on secure multiparty com-

putation of a logarithmic function, under the supervision of dr. Berry Schoenmakers;

and second, on euclidean distance degrees of real algebraic groups, with prof.dr. Jan

Draisma. She continued the latter collaboration for her graduation project. In 2014, she

presented her master’s thesis "On the existence of identifiable reparametrizations for

compartment models" and obtained her master’s degree, cum laude.

Immediately after, Jasmijn started her PhD in bioinformatics at CWI, under the

supervision of prof.dr. Alexander Schönhuth. During her time as a PhD student, she

got the opportunity to attend and present her work at several international conferences

and workshops, the highlight being ISMB 2017 in Prague: there, Jasmijn won a “best

talk award”. Besides attending workshops, she also co-organized the 2017 edition of

the workshop Data Structures in Bioinformatics (DSB) in Amsterdam. Subsequently,

Jasmijn was invited to join the DSB steering committee and thus remains associated

with this workshop. In addition to research and related activities, she spent her time at

CWI organizing social events for trainees, PhD’s, and postdocs, as a member and chair

of the PhD Activity Committee. Jasmijn currently lives in Alphen aan den Rijn with her

husband Michiel and her daughter Senna.

131


	Table of contents
	Preface
	Introduction
	DNA, RNA, and genetic variation
	Genome sequencing
	Genome assembly
	Haplotype reconstruction
	Applications
	Outline and contribution
	Final remarks

	De novo assembly of viral quasispecies using overlap graphs
	Introduction
	Results
	Discussion
	Methods

	Overlap graph-based generation of haplotigs for diploids and polyploids
	Introduction
	Methods
	Results
	Discussion

	Full-length de novo viral quasispecies assembly through variation graph construction
	Introduction
	Methods
	Results
	Discussion

	Viral quasispecies reconstruction via contig abundance estimation in variation graphs
	Background
	Results
	Discussion
	Conclusions
	Methods

	Discussion
	Overview
	Contributions
	Future applications
	Perspectives on third-generation sequencing

	Bibliography
	Summary
	Samenvatting
	Publications
	Curriculum vitae

