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Abstract

We study the propagation of electrical signals in neurons by numerically solving the
Hodgkin & Huxley cable equations of action potential propagation for the squid giant axon.
For this we represent the biological membrane as an equivalent circuit containing voltage-
gated ion channels that selectively open depending on the voltage. The presence of these
voltage-gated channels turn out to be critical for obtaining the standard action potential
form. The results that we obtain from simulations are in good agreement with experimental
recordings done by Hodgkin & Huxley. We numerically solved the Hodgkin & Huxley
equations for the squid giant axon at different temperatures and studied the obtained action
potentials and ionic currents as a function of time and position.
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1 Introduction

The Nervous system and its regulation of bodily function and activity is a fascinating area of
study. Ages of evolution have optimized our body into a machine which is able to transmit
and receive information at a very rapid pace. A necessary requirement for our survival. Aside
from the fact that it is fascinating to know how it works, understanding the workings of the
nervous system could not only provide us with possible solutions for those that suffer from
neurological disorders (a disorder of the nervous system), but it could, for instance, also lead
to the development of arti�cial muscle �bres or even teach us ways to optimize transmission of
electrical currents through conductors. So it is very relevant to study the propagation of signals
through the nervous system. Questions that arise when thinking about its functions are how
these signals propagate through the nervous system, what ensures their fast propagation and
whether it is possible to model them by simple principles. We have set out to answer these
questions by studying physical models of currents through excitable cells. An outline of this
thesis will then be as follows:
First we will introduce the object of interest which is the neuron. We will brie�y describe its
various components and illustrate their scales by providing some experimentally measured
lengths. Next we take a closer look at the membrane of our cells and introduce its various com-
ponents. Having done this, we turn our attention to modelling the �ow of current in excitable
cells. For this, we start by representing the membrane as an equivalent circuit which we use to
write down expressions for the membrane currents. Next, Using this equivalent circuit form,
we derive the standard model for describing current �ow in neurons called the cable model.
We �rst look at a simple form of this cable model, in which we consider a passive membrane,
and solve this to study the passive �ow of current in cells. After having studied the passive
�ow of current in cells, we extend the model to account for the voltage dependent properties of
the membrane [6]. This will lead us to the active cable model provided by Hodgkin & Huxley
[6]. Finally, by solving the Hodgkin & Huxley model, we study the current �ow in excitable
cells and compare these results with experiments.

2 The Neuron

In Fig. 1, the structure of a neuron is represented schematically. Neurons are electrically ex-
citable cells which are specialized in long-distance transmission of electrical signals. A neuron
consists of a cell body (soma), dendrites and a single axon. Electrical impulses enter the neuron
through the dendrites, into the soma and leave through the axon to excite other dendrites. The
number of inputs a neuron can receive is dependent on how big its dendritic tree is. While
some neurons may lack dendrites, others have a very complex dendritic tree (see Fig. 2). The
axon may have branches as well, but they are not as elaborate as those made by dendrites.
The object of interest to us however, is the axon (see 3, 1). The axon is the portion of the nerve
cell specialized in relaying electrical signals over long distances. Depending on the type of
neuron and the size of the animal, the axon can extend from a few micrometers all the way to
meters. In most animals, the axons are periodically covered by fat layers called myelin sheets
(1). These myelin sheets consist of multiple layers of fat pressed on top of each other (3, [15]).
The primary function of these myelin sheets is to increase the conduction velocity of signals by
insulating the axon. One can compare the axon with the myelin sheets as an electric wire(axon)
surrounded by insulating material (myelin). However, unlike plastic covering a typical electric
wire, myelin sheets do not extend continuously along the axon, but have periodic gaps called
the nodes of Ranvier (1). These gaps turn out to be the reason for the long-distance quick signal
transmission. The general idea behind this faster conductive velocity is saltatory conduction
[24]. However, in the following we will be working with the squid giant axon as did Hodgkin
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& Huxley. The squid giant axon is an unmyelinated axon which means that we wont be delving
into the precise effects of the myelin on signal propagation. Instead we will brie�y come back
to it after our discussion of the current �ow in unmyelinated excitable cells.

Figure 1: A schematic diagram of a neuron. The different components and some size ranges
are displayed. Source(modi�ed): [26].

Figure 2: Neuron morphology in different human cells. The drawings are tracings of actual
nerve cells stained by impregnation with silver salts. The asterisks indicate that the axon runs
on much farther than shown. The drawings are not at the same scale. Source: [18].

3 The membrane

Having discussed the neuron, we now zoom in on the cell membrane. The key components of
the membrane that we will be considering are shown in Fig. 4. The inside(intracellular) and
outside(extracellular) solutions are separated by an insulating lipid bilayer with a thickness of
approximately 5 nm. This lipid bilayer is impermeable to ions which means that there need to
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