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The common-enemy hypothesis of by-product mutualism proposes that organisms are more likely to co- 

operate when facing the common enemy of a harsher environment. Micro-foundations of this hypothesis 

have so far focused on the case where cooperation consists of the production of a pure public good. In 

this case, the effect of a harsher environment is ambiguous: not only a common-enemy effect is possible, 

but also an opposite, competing effect where the harsher environment reduces the probability of cooper- 

ation. This paper shows that unambiguous effects of a harsher environment are predicted when consider- 

ing the realistic case where the collective good produced is excludable (in the sense that whether or not a 

player benefits from the collective good depends on whether or not he is contributing) and/or congestible 

(in the sense that the benefits the individual player obtains from the collective good are affected by the 

number of contributing players). In particular, the competing effect is systematically predicted for club 

goods, where defectors are excluded from the benefits of the collective good. A common-enemy effect 

is instead systematically predicted for charity goods, where cooperators are excluded from the benefits 

of the collective good. These effects are maintained for congestible club goods and for congestible char- 

ity goods. As the degree to which a collective good is excludable can be meaningfully compared across 

different instances of cooperation, these contrasting predictions for public good, charity goods and club 

goods yield testable hypotheses for the common-enemy hypothesis of by-product mutualism. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

An important theme in evolutionary biology is to explain the

evolution of cooperation, as the existence of cooperation be-

tween organisms would at first sight seem at odds with indi-

vidual selection (for overviews, see Dugatkin, 2002a; Sachs et al.,

2004; Lehmann and Keller, 200 6; Nowak, 200 6 ). Key explana-

tions that have been provided for the evolution of cooperation in-

clude kin selection ( Hamilton, 1964 ) and reciprocity ( Trivers, 1971 ).

Yet, cooperation is also observed among non-related organisms

( Dugatkin, 2002b ), and evidence for the type of scorekeeping

linked to reciprocity is scarce ( Clutton-Brock, 2009 ). By-product

mutualism provides a simple alternative explanation for the evo-

lution of cooperation, and posits that organisms cooperate sim-

ply because this contributes to their individual fitnesses ( West

Eberhard, 1975; Brown, 1983 ). The common-enemy hypothesis of

by-product mutualism argues that in particular, organisms are

more likely to increase their individual fitnesses by cooperating

when facing “the common enemy of a sufficiently adverse envi-

ronment” ( Mesterton-Gibbons and Dugatkin (1992, p.273) ), where
E-mail address: k.dejaegher@uu.nl 
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he common enemy can both be biotic (e.g. a predator, Mesterton-

ibbons and Dugatkin 1992 , p.274) and abiotic (e.g. harsh weather

onditions, Dugatkin, 1997a , p.84). Put otherwise, this hypothesis

redicts that the higher the degree of adversity facing groups of

rganisms, the more likely they are to cooperate. 

Such a common-enemy effect has been independently proposed

cross several disciplines (e.g., Simmel (1908), Coser (1956), Hei-

er (1958), Muller and Opp (1986), Bornstein et al., 2002 )), high-

ighting its intuitive appeal. Yet, the underlying mechanism by

hich a harsher environment causes a common-enemy effect is

ot immediately clear. It is here that evolutionary game theory

s useful, which has so far modeled the common-enemy hypoth-

sis of by-product mutualism in two main ways. In a first model,

amely the private-good model (see Appendix B ), by-product mu-

ualism means that a cooperating player produces a private good

o himself, which happens to create a by-product benefit to play-

rs in the same group. In a second model, namely the collective-

ood model, which is the focus of this paper, by-product mutual-

sm takes the form of the production of a collective good by the

layers in a group. There are two main reasons for considering

uch a model on top of the private-good model. First, in some

f the key examples suggested for the common-enemy hypoth-

https://doi.org/10.1016/j.jtbi.2018.10.006
http://www.ScienceDirect.com
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Table 1 

Common-enemy effect and competing effect for players that produce a public good, as 

a function of the level of cooperation costs and of the degree of adversity. For more 

than two players, there is an additional rage of intermediate cooperation costs, where 

the effect of an increase in the degree of adversity is non-monotonic. 

Small degree of adversity Large degree of adversity 

Small cooperation costs Common-enemy effect Competing effect 

Large cooperation costs Competing effect Common-enemy effect 
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2 In standard taxonomies of collective goods, if a good is both excludable and 

congestible, it simply becomes a private good. Yet, as will become clear from the 

analysis, equivalence with a private good is only obtained for a congestible club 
sis of by-product mutualism ( Mesterton-Gibbons and Dugatkin

992; Dugatkin 1997b ), players clearly produce a collective good

ather than a private good, such as a prey to be consumed in the

ase of cooperative hunting (e.g. Scheel and Packer, 1991; Stander,

992 ), or a common territory in case of collective defense (e.g.

rinnell et al., 1995 ). Second, while the private-good model illus-

rates a case where a harsher environment systematically promotes

he evolution of cooperation, such an effect is unlikely to always

ccur given that cooperative behavior differs both across species

e.g., Packer and Ruttan, 1988 ), and within species across contexts

e.g., Muller and Mitani, 2005 ). A model is then needed that is

oth able to predict when a larger degree of adversity promotes

he evolution of cooperation, and when it does not promote it.

ore so, a plausible alternative hypothesis to the common-enemy

ypothesis is that a harsher environment makes it less likely that

ooperation evolves ( Krams et al., 2010 , p.513), which we refer to

s the competing hypothesis (in the sense of opposite hypothe-

is to the common-enemy hypothesis). Indeed, as pointed out by

andoval and Wilson (2012) , results on the effect of the risk of pre-

ation on the frequency of mobbing behavior are mixed. A compet-

ng hypothesis has also been proposed in other disciplines that for-

ulate a version of the common-enemy hypothesis ( Coser (1956);

uller and Opp (1986) ). 

De Jaegher and Hoyer (2016a) treat a public-good variant of the

ollective-good model. The degree of adversity here is specified as

he degree of complementarity between the players’ efforts in pro-

ucing the public good, namely the extent to which a last cooper-

ting player contributes to the value of the public good (referred

o as the added benefit of cooperating jointly), compared to a first

ooperating player (referred to as the added benefit of cooperating

lone). The reasoning is that a larger degree of adversity makes

ach player’s cooperative effort more pivotal in producing a pub-

ic good. It is shown that whether the common-enemy hypothesis

r the competing hypothesis applies, as represented in Table 1 , de-

ends on whether the degree of adversity is high or is low to start

ith, and on whether cooperation costs are small or large. 1 Addi-

ionally, when there are more than two players, the typical non-

inearities associated with multiple-player games arise (cf. Peña

t al., 2014; Gokhale and Traulsen, 2014; Broom and Rychtář, 2016 ),

nd the critical cooperation costs dividing the cases of large and

mall cooperation costs are themselves a function of the degree of

dversity. Because of this, for intermediate cooperation costs, the

ffect of the degree of adversity on the probability of cooperation

s non-monotonic in multi-player games ( De Jaegher, 2017 ). 

Looking at the literature so far, whereas the private-good model

ocuses on the extreme case with production of a good that is

oth excludable and congestible, the public-good variant focuses

n the other extreme with production of a good that is both

on-excludable and non-congestible ( Sandler, 1992; Dionisio and

ordo, 2006; Nunn and Lewis, 2001 ). A good is non-excludable

f no player in the group can be excluded from benefiting from

t, whether or not he cooperates. A good is non-congestible (also

eferred to as non-rivalrous, non-diminishable, or not subject to
1 For a precise definition of cooperation costs, see Section 3. 

g

g

n

f

rowding), if the fact that more group members are enjoying the

ood does not diminish its value. Yet, as indicated in Table 2 , one

an consider less extreme collective goods that are non-congestible

ut still excludable, or are non-excludable but still congestible. In-

eed, two key examples given for the common-enemy hypothesis

f by-product mutualism may not fit the scenario of a pure pub-

ic good. In cooperative hunting, it may be that only the preda-

ors in a group who participate in the hunt get benefits from

he large prey caught. If cooperative hunting involves chasing prey

ufficiently far away from the common territory, and if the prey

s consumed on the spot, then predators within a group who

o not leave the territory to join in the collective hunt, do not

enefit from the prey. Thus, in a game where predators decide

hether or not to participate in a collective hunt, the predators

ay decide whether or not to contribute to a so-called club good

 Sandler and Tschirhart, 1997 ; only cooperators benefit from the

ollective good), rather than to a public good. Also, in collective

efense, where defense may be produced by sentinels, it may be

nly the group members who do not act as sentinels that benefit

rom the collective good that sentinels produce by their behavior,

o that sentinels produce a charity good ( Peña et al., 2015 ; only

efectors benefit from the collective good) rather than a public

ood. The reasoning is that the individual sentinel produces a pri-

ate benefit to itself ( Bednekoff, 2001; Clutton-Brock et al., 1999 ),

amely being secure from predators, with a positive by-product

ollective good for the players who do not act as sentinels, namely

ollective security. The individual sentinel does not get better off

f the number of sentinels increases, if its own sentinel behavior

lready perfectly alerts this sentinel about approaching predators.

on-sentinels from their side may be alarmed when an individual

entinel flees; non-sentinels are better off the more sentinels there

re, if they do not always notice sentinels fleeing. 

Additionally, collective goods may be congestible: e.g. if the

rey predators catch in a collective hunt is not too large, more

articipating predators may mean that each predator consumes a

maller share of the prey ( Packer and Ruttan, 1988 ), so that a con-

estible public good is obtained (where as we will later show a

ongestible public good can be reframed as a so-called commons

ood). Also, in the defense of a collective territory, more non-

entinels in a group who rely on sentinels may cause congestion,

s a large number of non-sentinels may obstruct each other when

eeing in response to the fleeing of a sentinel. Finally, collective

oods may be both congestible and excludable, and private goods

re not the only goods that have both these properties. 2 Given the

elevance of these alternative types of collective goods, in the con-

ext of the common-enemy hypothesis of by-product mutualism,

t is important to analyze whether the common-enemy effect or

ompeting effect are predicted for such goods. While as illustrated
ood if the impact function relating the number of cooperators to the value of the 

ood is linear; this shows that the combination of congestion and excludability has 

on-trivial aspects as long as one deviates from the simple case of a linear impact 

unction. 
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Table 2 

Congestion, excludability, and types of goods. 

Excludable Non-excludable 

Congestible Private good/Congestible club good/Congestible charity good Congestible public good/Commons good 

Non-congestible Club good/charity good Public good 
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in Table 1 the effect of a harsher environment is ambiguous in the

case of public good, we will show that the effect of harsher envi-

ronment is straightforward for most of the alternative categories of

collective goods. 

The paper is structured as follows. We start with a general

framework in Sections 2 and 3 , and then shortly repeat the results

for a public good ( Section 4 ); as shown in Appendix C , the case of

a congested public good is qualitatively identical. Section 5 treats

the production of a club good, and Section 6 the production of a

charity good, with the corresponding congestible goods treated in

Appendices D and E . For all the goods we consider, we first look at

the simple case of two players in each group, which can be read

separately, and then at the more complex case of any number of

players. We end with a discussion in Section 7 . Appendix F con-

tains a list of symbols, and a list of definitions of the concepts

used. 

2. General framework: multiplayer cooperation and degree of 

adversity 

We start by providing a general framework for the different

model variants in this paper. Each player can do A ( = cooperate)

or B ( = defect). We consider an infinitely large, well-mixed popula-

tion reproducing asexually. Repeated and random matching of the

population in groups of n players takes place. 3 At each point of

time, the fraction of cooperating players is denoted as x , and the

fraction of defecting players as ( 1 − x ) . Denote by f A ( x ) a player’s

fitness of cooperating, and by f B ( x ) a player’s fitness of defecting,

each time when a fraction x of players in the population cooper-

ates. Then under continuous replicator dynamics, the change in the

fraction of cooperating players is given by 

˙ x = x ( 1 − x ) g ( x ) (1)

where g(x ) = [ f A (x ) − f B (x ) ] is referred to as the gain function

( Bach et al., 2006 ). 

More in detail, following the notation of Peña et al. (2014) , de-

note by a k a cooperator’s payoff when k other players in his group

cooperate, and denote by b k a defector’s payoff when k other play-

ers in his group cooperate, each time for k = 0 , 1 , . . . , n − 1 . Follow-

ing the approach of these authors, the gain the focal player makes

by switching from defecting to cooperating when k other play-

ers cooperate (or in short: the gain from switching) then equals

d k = a k − b k for k = 0 , 1 , . . . , n − 1 . Alternatively, following the ap-

proach of e.g. Mesterton-Gibbons and Dugatkin (1992, p. 269) ,

C k = b k − a k = −d k measures a cooperator’s net cost of cooperat-

ing rather than defecting when k other players cooperate. These

two approaches are equivalent, as the gain from switching may be

negative so that its absolute value measures a positive net cost,

and as the net cost may be negative so that its absolute value

measures a positive gain. The advantage of considering −d k as a

net cost is that this net cost of the focal player can then be com-

pared with the by-product benefits the other players obtain from

the fact that the focal player cooperates rather than defects. In
3 Our analysis in this sense relates to literature that considers multi-player evo- 

lutionary matrix games (e.g. Peña et al., 2014; Gokhale and Traulsen, 2014; Peña 

et al., 2015; Broom and Rychtář, 2016 ), rather than the stylized two-player matrix 

games that are often considered in evolutionary game theory. 

3  

i  

w  

d  

o  

A

articular, when k other players currently cooperate, the individ-

al player who cooperates obtains a by-product benefit of B a,k =
 k +1 − a k when a defecting player switches to cooperating; for

he individual player who defects, this by-product benefit equals

 b,k = b k +1 − b k . It follows that, when a total of k players currently

ooperate in a group and one player now switches from defect-

ng to cooperating, the sum of the by-product benefits the other

layers obtain from this (referred to as the indirect gains from

witching in Peña et al., p.125) ) equals k B a,k −1 + ( n − k − 1 ) B b,k 

for k = 0 , 1 , . . . , n − 1 , where for k = 0 , B a,k −1 = 0 ). When d k < 0

positive net cost to the individual player from cooperating), but

 B a,k −1 + ( n − k − 1 ) B b,k + d k > 0 , it is not in the interest of the in-

ividual player to cooperate, even though this is in the interest of

he group as a whole. More generally, k B a,k −1 + ( n − k − 1 ) B b,k +
 k , denoted as D k , can be seen as the sum of the gains the n

layers obtains when one player switches from cooperating to de-

ecting (taking as a starting point the situation where a total of k

layers currently cooperate; these are referred to as the inclusive

ains from switching in Peña et al., p.125) ). When D k > d k , too lit-

le cooperation may take place in the evolutionary stable strategy

henceforth ESS, Maynard Smith and Price, 1973 ) from the group’s

erspective (i.e., considering the sum of the fitnesses in the group);

hen D k < d k , there may be too much cooperation from the group’s

erspective. 

The gain function in (1) can be rewritten as 

 ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k d k . (2)

For instance, consider the well-known two-player case ( n = 2 ),

epresented in (3) , where traditionally R denotes the reward payoff

hen both players cooperate, T the temptation payoff of defecting

hen the other player cooperates, S the sucker payoff of cooperat-

ng while the other player defects, and P the punishment payoff of

oth defecting. 

A B 

 

B 

(
R S 
T P 

)
(3)

Then a 1 = R , a 0 = S, b 1 = T , b 0 = P , d 1 = R − T , and d 0 = S − P .

lso, C 1 = T − R , C 0 = P − S, B a, 1 = R − S, B b, 0 = T − P . By (2) , the

ain function becomes 

 ( x ) = ( 1 − x ) ( S − P ) + x ( R − T ) . (4)

Consider now the sequence d = ( d 0 , d 1 , . . . , d n −1 ) , referred to as

he gain sequence. Define �d k = d k +1 − d k as the first forward dif-

erence of d k , where �d = ( �d 0 , �d 1 , . . . , �d n −2 ) is the sequence

f first forward differences. For instance, with n = 2 , d = ( d 0 , d 1 ) =
( S − P, R − T ) , and �d = ( �d 0 ) = ( ( R − T ) − ( S − P ) ) . In all the co-

peration games we consider, either �d > 0 (sequence d is increas-

ng), �d < 0 (sequence d is decreasing), or �d = 0 (sequence d is

onstant, in which case the so-called equal-gains-from-switching

roperty Nowak and Sigmund, 1990 ) applies). It follows that d has

ither zero or one sign changes. Given this fact, applying Result

 in Peña et al. (2014) (which makes use of the fact that ( (2)

s a polynomial in Bernstein form ( Farouki, 2012 )), depending on

hether d is increasing or decreasing, and depending on whether

 changes sign, the game takes on several forms, following tax-

nomies of cooperation games such as Doebeli and Hauert (2005),

rchetti et al. (2011) , or Archetti and Scheuring (2012) . 
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When d > 0 (meaning that the gain from switching is positive,

nd the net cost of cooperating negative, whatever the number of

ooperating players), the game has a single ESS where all players

ooperate (see Result 3.1(b) in Peña et al. (2014) ), and is referred to

s a Harmony Game ( Martinez et al., 1999 ; also referred to as by-

roduct mutualism ( Hauert et al., 2006 )). For n = 2 , such a case is

btained when ( R − T ) > 0 , ( S − P ) > 0 . When d < 0 (meaning that

he gain from switching is negative, and the net cost of cooper-

ting positive, whatever the number of cooperating players), the

ame has a single ESS where all players defect (see Result 3.1(a)

n Peña et al. (2014) ), and is referred to as a Prisoner’s Dilemma

 Tucker, 1950 ). 4 For n = 2 , such a case is obtained when ( R − T ) <

 , ( S − P ) < 0 . For �d = 0 (equal gains from switching), these first

wo cases are the only two possible cases. Yet, for �d � = 0, the

ame can take on further forms when d changes sign. 

When �d < 0 and d changes sign (meaning d 0 > 0 and d n −1 <

 ), the game is a Snowdrift game Sugden, 1986 ; also referred to as

hicken game ( Russell, 1959 ) or Hawk-Dove game ( Maynard Smith

nd Price, 1973 )), and as ∂ g ( x )/ ∂ x < 0 (Property 11 of polynomials

n Bernstein form ( Farouki, 2012 , p.391)) has a single interior ESS

or x ∗ ∈ [0, 1] such that g( x ∗) = 0 . In such a case, the gain from

witching is positive, and the net cost of cooperating negative,

hen few players cooperate; when many players cooperate the op-

osite is the case. x ∗ now measures the ESS fraction of cooperating

layers in the population (Result 3.2(b) in Peña et al. (2014) ). For

 = 2 , this case is obtained when ( S − P ) > 0 > ( R − T ) , in which

ase by ( (4) we obtain that x ∗ = ( S − P ) / [ ( S − P ) − ( R − T ) ] . Finally,

hen �d > 0 and d changes sign (meaning d 0 < 0 and d n −1 > 0 ),

he game is a Stag Hunt Skyrms 2004 ; also referred to as bistability

 Hauert et al., 2006 )), and as ∂ g ( x )/ ∂ x > 0 ( Farouki, 2012 ) has a sin-

le interior fixed point at x ∗ ∈ [0, 1] such that g( x ∗) = 0 , where this

nterior point is unstable (Result 3.2(a) in Peña et al. (2014) ); addi-

ionally the game has both an ESS where all players cooperate, and

ne where all players defect. In this case, the gain from switch-

ng is negative, and the net cost of cooperating positive, when few

layers cooperate; when many players cooperate the opposite is

he case. Assuming then that in the initial population, each initial

 is equally likely, the size of the basin of attraction of the joint

ooperation equilibrium equals ( 1 − x ∗) , and measures the prob-

bility that the joint cooperation ESS will evolve. For n = 2 , this

ase is obtained when ( R − T ) > 0 > ( S − P ) , in which case by ( (4)

e obtain that (1 − x ∗) = ( R − T ) / [ ( R − T ) − ( S − P ) ] . 

We are interested in the effect of the degree of adversity, de-

oted by a parameter α, on the probability of cooperation. The de-

ree of adversity may, first, affect the probability of cooperation,

ecause it has a game-changing effect, in the sense that the type

f the game is changed (in this sense, our paper relates to a strand

f literature (e.g., Hauert et al., 2006 ) that does not consider styl-

zed collective-action situations such as Prisoner’s Dilemmas, Stag

unts, and Snowdrift games in isolation, but considers them as

art of one and the same situation, with the type of game being

layed depending on one or more parameters (in our case the de-

ree of adversity). Second, the degree of adversity may affect the

robability of cooperation within a specific type of game. 

We separately look at the case with and without an interior

xed point. When there is an interior fixed point x ∗, the effect of

he degree of adversity on the probability of cooperation is deter-

ined by the sign of ∂ x ∗/ ∂ α. This sign can be derived by apply-

ng implicit differentiation to the condition g( x ∗) = 0 , from which

t follows that ∂ x ∗/∂ α = −[ ∂ g(x ) /∂ α] / [ ∂ g(x ) /∂ x ] | x = x ∗ . We repeat
4 Formally, to obtain a Harmony Game or a Prisoner’s Dilemma, it should addi- 

ionally be the case that R > P and that R > ( S + T ) . We will also use these terms 

o refer to games with a dominant strategy to cooperate or defect even when these 

dditional conditions are not valid, because we want to avoid defining even addi- 

ional categories of games. 

g  

f

P

d

hat ∂ g ( x )/ ∂ x < 0 when �d < 0, and ∂ g ( x )/ ∂ x > 0 when �d > 0. The

ollowing effects of an increase in α are now possible. When

d < 0 and d changes sign, the game is a Snowdrift game, and x ∗

easures the ESS fraction of cooperating players in the population,

o that there is a common-enemy effect when ∂ x ∗/ ∂ α > 0, and a

ompeting effect when ∂ x ∗/ ∂ α < 0. As ∂ g ( x )/ ∂ x < 0, an increase in

has a common-enemy effect iff ∂ g ( x )/ ∂ α > 0, and a competing

ffect iff ∂ g ( x )/ ∂ α < 0. When �d > 0 and d changes sign, the game

s a Stag Hunt game, and ( 1 − x ∗) measures the size of the basin

f attraction of the joint cooperation ESS, and therefore measures

he probability that cooperation will evolve. It follows that there

s now a common-enemy effect when ∂ x ∗/ ∂ α < 0, and a compet-

ng effect when ∂ x ∗/ ∂ α > 0. As ∂ g ( x )/ ∂ x > 0, an increase in α has a

ommon-enemy effect iff ∂ g ( x )/ ∂ α > 0, and a competing effect iff

 g ( x )/ ∂ α < 0. We conclude that whether the game is a Snowdrift

ame or a Stag Hunt, a common-enemy effect is obtained when

 g ( x )/ ∂ α > 0, and a competing effect when ∂ g ( x )/ ∂ α < 0. 

To determine the sign of ∂ g ( x )/ ∂ α, consider the sequence

 d/∂ α = ( ∂ d 0 /∂ α, ∂ d 1 /∂ α, . . . , ∂ d n −1 /∂ α) . The cases that will

rise once we model the micro-foundations behind the payoffs, are

he following: 

• Case 1. It is the case that ∂ d / ∂ α > 0. By (2) , it is clear that for

this case ∂ g ( x )/ ∂ α > 0, meaning that the common-enemy effect

always applies. 
• Case 2. It is the case that ∂ d / ∂ α < 0. By (2) , it is clear that for

this case ∂ g ( x )/ ∂ α < 0, meaning that the competing effect al-

ways applies. 
• Case 3. ∂ d / ∂ α is an increasing sequence and changes sign.

In this case, by (2) , for small x ∗ (i.e. small probability of co-

operation for a Snowdrift game and large basin of attrac-

tion of joint cooperation for a Stag Hunt), it is the case that

∂ g ( x )/ ∂ α < 0 (competing effect), whereas for large x ∗ (i.e. large

probability of cooperation for a Snowdrift game and small

basin of attraction of joint cooperation for a Stag Hunt), it

is the case that ∂ g ( x )/ ∂ α > 0 (common-enemy effect). 5 For

instance, for n = 2 , when it is the case that ∂ ( S − P ) /∂ α <

0 and ∂ ( R − T ) /∂ α > 0 , by (4) it follows that ∂ g(x ) /∂ α =
( 1 − x )[ ∂ ( S − P ) /∂ α] + x [ ∂ ( R − T ) /∂ α] , so that indeed the ex-

pression is negative for small x and positive for large x . 

When there is no interior fixed point for �d < 0 or �d > 0, it is

lear that a change in α can still have a game-changing effect, and

urn the game from a Harmony Game or a Prisoner’s Dilemma into

 Stag Hunt or Snowdrift game, but never directly from a Harmony

ame into a Prisoner’s Dilemma. Such cases may simply be treated

s limit cases of the cases with an interior fixed point, with the in-

erior solution approaching either x ∗ = 0 or x ∗ = 1 . When �d = 0

equal gains from switching), there is never an interior fixed point,

nd the game can only change from a Harmony Game into a Pris-

ner’s Dilemma, or vice versa. 

. Collective good production (complementarity, excludability 

nd congestion) 

We now model the micro-foundations of the payoffs in the pre-

ious section. In the collective-good model, players who cooperate

ontribute to the production of a collective good (such as the catch

f a large prey, or the defense of a common territory). Denote by

 the cost to the individual player of contributing to the collective

ood, or in short the cooperation costs. Also, denote by I (referred
k 

5 The result follows from the fact that ∂ g ( x )/ ∂ α is also a polynomial in Bernstein 

orm. By the variation diminishing property of these polynomials (Property 2 in 

eña et al., 2014 , p.26), when the sequence ∂ d / ∂ α has zero or one sign changes, so 

oes the polynomial. 
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6 When using our model to look at the effect of group size on the probability of 

cooperation, the impact function in (6) leads to counterintuitive results, where the 

probability of cooperation evolving may be larger the larger the number of players 

in a group. This is because with (6) , when the number of players is increased, the 

shape of the impact function is also inadvertently changed. A variant of (6) can be 

treated, with the only difference that the degree of complementarity is adjusted 

to the number of players, so as to preserve the shape of the impact function, and 

eliminate the counterintuitive results. As our focus is on the effect of the degree of 

adversity, we focus on the more straightforward model with an unadjusted degree 

of complementarity, as our focus is not on the effect of group size. 
to as the impact function) the value of the collective good pro-

duced when exactly k players within the group cooperate. In the

broadest setting we consider, the only restriction imposed on the

impact function is that I k it strictly increases in k , and weakly de-

creases in the degree of adversity α (meaning that ∂ I k / ∂ α ≤ 0). 

The focus in this paper is on how excludability and conges-

tion of the collective good affect the incidence of the common-

enemy and competing effects defined in Section 2 . Different types

of goods are obtained depending on whether or not the collective

good is excludable and/or congestible. It is useful for the analy-

sis of these collective goods to define δk as the added benefit a

focal player obtains from cooperating rather than defecting when

k other players cooperate; this is the gain from switching, ex-

cluding the cooperation costs c (i.e., δk = d k + c). When the col-

lective good is a public good , the collective good produced within

a group is neither excludable, in that players obtain the value

of the collective good whether or not they cooperate, nor con-

gestible, in the sense that if one player benefits from the collec-

tive good, this does not affect the benefits of any other player

within the group. We have a k = I k +1 − c, and b k = I k , so that the

gain from switching d k equals I k +1 − I k − c, and that δk = I k +1 − I k .

Furthermore, C k = c − ( I k +1 − I k ) , B a,k −1 = I k +1 − I k , B b,k = I k +1 − I k ,

and D k = n ( I k +1 − I k ) − c. As D k > d k , underprovision of the public

good may take place. We note that δk = B a,k −1 = B b,k : with a pub-

lic good, player i obtains the same added benefit from the fact that

player j cooperates rather than defects, no matter whether or not

players i and j are one and the same player, and when they are dif-

ferent players, no matter whether i cooperates or defects himself. 

We deviate now from the public good model to consider ex-

cludability in two forms, following Peña et al. (2015) . When the

collective good is a club good , excludability takes the form that

only cooperating players benefit from the collective good; in this

case, a k = βk +1 − c, and b k = 0 , so that d k = I k +1 − c and δk = I k +1 .

Also, C k = c − I k +1 , B a,k −1 = I k +1 − I k , and B b,k = 0 . We note that

δk > B a,k −1 > B b,k = 0 : with a club good, defectors do not obtain

by-product benefits, and the added benefit to a player from one

extra player cooperating is larger when it is the player himself

who switches to cooperation. As D k = I k +1 + k ( I k +1 − I k ) − c, which

is larger than d k , there may be underprovision of the club good. 

When the collective good is a charity good , excludability takes

the form that only defecting players benefit from the collective

good (while it continues to be the case that the value of the collec-

tive good from which the defecting players benefit, depends on the

number of cooperating players). Cooperating players do not bene-

fit from the collective good, but cooperation costs c are negative,

so that a cooperating player obtains a fixed benefit −c from co-

operating. With a charity good, a k = −c and b k = I k , so that d k =
−I k − c, and δk = −I k . It is the case that C k = c + I k , B a,k −1 = 0 , and

B b,k = I k +1 − I k . We note that B b,k > B a,k −1 = 0 > δk : with a char-

ity good, cooperators do not obtain by-product benefits, and the

added benefit to a player from one extra player cooperating is

larger when it is another player who switches to cooperation. As

D k = −I k − c + ( n − k − 1 )( I k +1 − I k ) , which is larger than d k , there

may again be underprovision of the charity good. 

In much of our analysis, we specifically consider the impact

function I k = βk , with βk defined in (5) below ( De Jaegher, 2017 ).

With this impact function, the value of the collective good is 0

when all players defect ( k = 0 ), and V when all players cooperate

( k = n ). For both public goods and club goods, whether congested

or not, we assume for this case that V > c (meaning that if coop-

erating leads a player to get the maximal value of the collective

good rather than nothing, this player is better off cooperating). For

charity goods, whether congested or not, we assume that V > −c,

so that a player who by cooperating would forego the full value

of the collective good, would prefer keeping this value rather than

obtaining the benefit from cooperating. The impact function βk is
efined as follows: 

0 = 0 , βk = 

V 

(
w + w 

2 + . . . + w 

k 
)

w + w 

2 + . . . + w 

n 
for 1 ≤ k ≤ n. (5)

In (5) , w is the degree of complementarity, and ranges from 0

o + ∞ . Our interest then is in the effect of the degree of com-

lementarity on the probability of cooperation, and in this sense

ur analysis relates to literature investigating the effect of the

hape of the impact function of the collective good on the type of

ooperation game played, such as Motro (1991), Bach et al. (2006),

auert et al. (2006), Peña et al. (2014) and Peña et al. (2015) (see

irshleifer (1983) for an early treatment). The impact function in

5) is a variant of the geometric impact function introduced by

auert et al. (2006) , where our impact function differs from the

ne of these authors because of the addition of the denominator. 6 

n order to write (5) more concisely for w � = 1, we note first that
 ∞ 

i =1 w 

i = w [ 1 + 

∑ ∞ 

i =1 w 

i ] , meaning that 
∑ ∞ 

i =1 w 

i = w/ ( 1 − w ) . Fur-

hermore, 
∑ z 

i =1 w 

i = 

∑ ∞ 

i =1 w 

i − ∑ ∞ 

i = z+1 w 

i = 

∑ ∞ 

i =1 w 

i − w 

z 
∑ ∞ 

i =1 w 

i ,

eaning that 
∑ z 

i =1 w 

i = w ( 1 − w 

z ) / ( 1 − w ) . Applying this to

5) for z = t and z = n , the first part of (6) below follows. The

pecification for w = 1 in (6) follows simply by substituting w = 1

nto (5) . 

k = 

V 

(
1 − w 

k 
)

1 − w 

n 
for w � = 1 , βk = 

kV 

n 

for w = 1 ( with 0 ≤ k ≤ n ) .

(6)

As shown in De Jaegher (2017) , the impact function in (6) is

oncave for w < 1, linear for w = 1 , and convex for w > 1. Moreover,

he impact function lies lower the higher w . Fig. 1 compares the ef-

ect of an increase in the degree of complementarity to an increase

n the degree of synergy ( Hauert et al., 2006 ). With a larger de-

ree of synergy, adding one extra cooperating player increases the

uantity of the collective good to a larger extent, because the ef-

orts of the cooperating players reinforce each other to a larger ex-

ent. A larger degree of synergy therefore makes the impact func-

ion to a larger extent convex (or, at first, less concave), and at the

ame time shifts the impact function upwards, as illustrated in the

ight part of Fig. 1 . An increase in the degree of complementar-

ty also makes the impact function more convex (or less concave),

ut on the contrary shifts the impact function downwards, as illus-

rated in the left part of Fig. 1 . 

The reasoning for a larger degree of complementarity being

n line with a harsher environment is the following. First, in the

ontext of collective-good production, a harsher environment may

ake the impact function to a larger extent convex (or less con-

ave), because a harsher environment makes each player’s role in

ontributing to the collective good more pivotal. When all play-

rs contribute, as each player’s contribution becomes more pivotal,

ne deviating player who defects makes the amount of the collec-

ive good produced decrease to a larger extent (boomerang effect;

esterton-Gibbons and Dugatkin 1992 ). At the same time, as each

layer’s contribution becomes more pivotal, when all players de-

ect, the first player to contribute makes the level of the collec-

ive good increase to a lesser extent (sucker effect; De Jaegher and

oyer 2016a ); this is because, when each player’s role in contribut-
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Fig. 1. Value of the public good as a function of the number of cooperating players for several degrees of complementarity (left), and for several levels of synergy/discounting 

(right), where w 1 < w 2 < w 3 < w 4 < w 5 < w 6 < w 7 . The example represents the case n = 20 . 
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f  
ng to the collective good becomes more critical, a single cooperat-

ng player will be able to contribute less. Second, a necessary con-

ition for the degree of complementarity to serve as a measure of

he degree of adversity, is that it shifts the impact function down-

ards, meaning that for the same number of cooperating players,

 lower level of the production good is typically produced. Indeed,

he environment could hardly be seen as having become harsher if

ore is produced for an equal number of cooperating players. This

ecessary condition is valid for the degree of complementarity, as

or any number of cooperating players from 1 to ( n − 1 ) , less is

roduced the higher w . 

In this way, the least harsh environment is obtained as w ap-

roaches zero, in which case a single cooperating player in a group

uffices to produce a large value of the collective good; the col-

ective good is then produced through a best-shot impact function

 Hirshleifer, 1983 ). The harshest environment is obtained as w ap-

roaches infinity, in which case no value of the collective good is

roduced unless all players in a group cooperate; this is known as

 weakest-link impact function (ibid). For an intermediate level of

arshness we have w = 1 , and we obtain summation (or: linear)

mpact function. 7 

The impact function in Eq. (5) is normalized such that, what-

ver the degree of complementarity, zero value of the collective

ood is produced when no player cooperates, and the same value V

f the collective good is produced whenever all players cooperate.

he former normalization makes sense, as nothing should be pro-

uced if nobody does any effort. The reasoning behind the latter

ormalization is that an increase in the degree of complementarity

orresponds to each of the players in a group taking on to a larger

xtent specialized roles, in a division of labor (e.g., in the case of

ion cooperative hunting, drivers and catchers, or wings and cen-

res ( Stander, 1992 )). When a larger prey makes the predators con-

ributions more complementary, the prey may still be caught when

ach predator contributes, but is less likely to be caught when one
7 De Jaegher (2017) also treats a model where contributing to a collective good 

onsists of taking defensive efforts against random attacks directed at a pre-existing 

ollective good (such as a common territory). As shown there, an increase in the 

umber of random attacks has a similar effect as the degree of complementarity in 

he production model. Indeed, it can be checked that all results in the current pa- 

er, extend to the defense model when n = 2 . While it is difficult to provide results 

n closed form in the defense model when n > 2, this suggests that the results in 

his paper extend to the defense model. 

d

i

w

(

H

e

t

p

m

o

f

n

fi

redator defects, because one of the critical roles in cooperative

unting is not filled in. 8 

We now treat the different types of goods one by one, where

n the body of the paper we focus on the case without con-

estion. Congestible goods are confined to the Appendices C ,

 and E. While congestible goods have some unique features,

he comparative-statics results for the degree of complementarity,

hich are the main focus of this paper, are similar as for the cor-

esponding non-congestible goods. 

. Public good 

As a benchmark, we shortly repeat the results for the public-

ood case in De Jaegher (2017) . Cases fitting a pure public good

nclude cooperative hunting when the prey is sufficiently large for

ne predator’s consumption of the prey not to affect any other

redator’s consumption, and when prey are caught in the proxim-

ty of the territory of the group, so that it is not possible to exclude

redators not participating in the hunt from consuming prey. An-

ther example may be collective defense, where cooperating takes

he form of being vigilant to predators. The benefits players obtain

rom collective defense are the benefits of being able to forage.

f both vigilant and non-vigilant players are predated upon with

he same probability, and if vigilant players can continue to for-

ge equally well as non-vigilant players (which is possible if being

igilant is not incompatible with foraging; Caro, 2005 , p.127), the

layers may be seen as producing a public good when being vigi-

ant. A final example is siderophore production by bacteria, which

s costly to produce for the individual but equally benefits all indi-

iduals in the group, including oneself ( Griffin et al., 2004 ). 

For the public good, with a generic impact function I k , the gain

rom switching d k equals I k +1 − I k − c, and thus depends on the
8 In economics, the most commonly-used impact function that allows for varying 

egrees of complementarity is the so-called constant-elasticity-of-substitution (CES) 

mpact function ( Solow, 1956 ). Applied to the current model, this function can be 

ritten as V { [ 1 
n 

∑ n 
i =1 ( y i + 1 ) 

π
] 

1 /π − 1 } ( De Jaegher and Hoyer, 2016b ), where y i = 1 

 y i = 0 ) means that player i cooperates (defects). As pointed out by McAvoy and 

auert (2016) , this impact function takes the form of a Hölder, or generalized av- 

rage. When π approaches minus infinity, we obtain a weakest-link impact func- 

ion; when π approaches one, we have a summation impact function; when π ap- 

roaches plus infinity, we have a best-shot impact function, making π an inverse 

easure of the degree of complementarity ( Ray et al., 2007 ). Just as is the case in 

ur impact function, it is the case that the value of the collective good is not af- 

ected by the degree of complementarity if all players take the same action. We do 

ot use the CES impact function, because it does not allow us to derive the interior 

xed point in closed form. 
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Fig. 2. Public good: for the case of two players, added benefit ( δk ) of cooperat- 

ing jointly ( k = 1 ) and of cooperating alone ( k = 0 ) as a function of the degree of 

complementarity w . Areas where, as a function of cooperation costs, the game is a 

Prisoner’s Dilemma, a Stag Hunt, a Harmony Game, or a Snowdrift game. 
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change in the value of the public good as one extra player coop-

erates. As the direction of this change is not restricted by the fact

that impact function increases, the type of the public-goods game

is thus also ambiguous. Moreover, the fact that increases in the de-

gree of adversity decreases production, also does not imply any re-

strictions on the effect of the degree of adversity on the gains from

switching, and therefore it is ambiguous whether the common-

enemy effect or the competing effect applies. Focusing on the case

I k = βk , since d k = 

V w 

k +1 

w + w 

2 + ... + w 

n − c, it is clear that �d > 
< 

0 for w 

> 
< 

1 ,

meaning that by the analysis in Section 2 , if d changes sign, the

game is a Snowdrift game 9 for w < 1, and a Stag Hunt for w > 1. 10

The results for the effect of the degree of complementarity on the

probability of cooperation are summarized in Proposition 1 below.

A useful starting point to understand these results is the case of

two players in each group ( n = 2 ) ( De Jaegher and Hoyer, 2016a ):

A B 

A 

B 

(
V − c V/ (1 + w ) − c 

V/ (1 − W ) 0 

)
(7)

With two players, it is the case that δ1 = V w/ ( 1 + w ) , and δ0 =
/ ( 1 + w ) . As represented in Fig. 2 , the former increases in w , and

the latter decreases in w , where δ0 
> 
< 
δ1 iff w 

< 
> 

1 ; this corresponds

to Case 3 in Section 2 . For the effect of an increase in the degree

of complementarity, four quadrants can now be distinguished in

Fig. 2 as a function of the relation between cooperation costs c

(measured along the Y-axis), and δ0 and δ1 . For w > 1, a common-

enemy effect (switch from Prisoner’s Dilemma to Stag Hunt) ap-

plies for c > 

1 / 2 V (large cooperation costs in Proposition 1 below),

and a competing effect (switch from Harmony Game to Stag Hunt)

for c < 

1 / 2 V (small cooperation costs in Proposition 1 below); for

w < 1, a competing effect (switch from Snowdrift game to Pris-

oner’s Dilemma) applies for c > 

1 / 2 V (large cooperation costs), and

a common-enemy effect (switch from Snowdrift game to Harmony

Game) for c < 

1 / 2 V (small cooperation costs). These game-changing

effects of the degree of complementarity are confirmed for the

probability of cooperation within the Snowdrift and Stag Hunt

games, given the fact that x ∗ = 

V −c( 1+ w ) 
V ( 1 −w ) 

, where it is the case that

∂ x ∗/w 

> 0 iff c < 1 / 2 V ( De Jaegher and Hoyer, 2016a ). 

< > 

9 For w approaching 0, the game then approaches a Volunteer’s Dilemma 

( Diekmann, 1985 ), where a single cooperating player produces the maximal value 

of the public good, and the dilemma is which player will cooperate. 
10 For w = 1 , the game is equivalent to a linear public good game (e.g., 

Archetti et al., 2011 ). 
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Proposition 1 shows that the same results apply for n > 2, with

he exception that for intermediate cooperation costs, the effect of

he degree of complementarity is non-monotonic (for a detailed

ormulation of Proposition 1 , and the proof of Proposition 1 , see

e Jaegher (2017) , Results 1 and 2 

roposition 1. Consider the production of a public good with the

mpact function βk in (5) , and with n > 2. As the degree of comple-

entarity is increased: 

with low complementarity ( w < 1): 

- for large cooperation costs , the competing effect applies (first

Snowdrift game with decreasing probability of cooperation,

then Prisoner’s Dilemma); 

- for intermediate cooperation costs , first the common-enemy

effect applies, and then the competing effect (first Snowdrift

game with increasing, and then decreasing probability of coop-

eration; finally, Prisoner’s Dilemma); 

- for small cooperation costs , the common-enemy effect applies

(first Snowdrift game with increasing probability of coopera-

tion, then Harmony Game). 

ith high complementarity ( w > 1): 

- for large cooperation costs , the common-enemy effect applies

(first Prisoner’s Dilemma, then Stag Hunt with increasing prob-

ability of cooperation); 

- for intermediate cooperation costs , first the common-enemy

effect applies, and then the competing effect (first Prisoner’s

Dilemma, then Stag Hunt with first increasing, and then de-

creasing probability of cooperation); 

- for small cooperation costs , the competing effect applies (first,

Harmony game, then Stag Hunt with increasing probability of

cooperation). 

Intuitively, when we make each player’s cooperative effort more

ivotal (i.e., when we increase w ), this makes it less attractive to

eviate from joint cooperation, as the defector then becomes to a

arger extent the victim of his own defection (boomerang effect;

esterton-Gibbons and Dugatkin 1992 ). Applied e.g. to the con-

ext of cooperative hunting, where the public good is the catch of

 prey, when all predators initially cooperate and one predator in

he group defects, this causes a larger reduction in the probabil-

ty of catching the prey ( = added benefit of cooperating jointly))

he larger the prey, where the size of the prey reflects the de-

ree of adversity. In particular, the common-enemy effect occurs

hen cooperation costs c are close to the added benefit of coop-

ration jointly ( δn −1 ). The fact that the added benefit of cooper-

ting jointly increases in the degree of complementarity explains

hy the common-enemy effect occurs for low cooperation costs

hen the degree of complementarity is low, and for high coopera-

ion costs when the degree of complementarity is high. 

At the same time, when we make each player’s cooperative

ffort more pivotal, it becomes less attractive to deviate from

oint defection, and unilaterally cooperating will have less im-

act (sucker effect; De Jaegher and Hoyer 2016a ). Again applied

o cooperative hunting, when all predators initially defect and

ne predator in the group deviates by cooperating, this causes a

maller increase in the probability of catching the prey ( = added

enefit of cooperating alone) the larger the prey. The competing

ffect occurs when cooperation costs c are close to the added ben-

fit of cooperating alone ( δ0 ). The fact that the added benefit of

ooperating alone decreases in the degree of complementarity ex-

lains why the competing effect occurs for high cooperation costs

hen the degree of complementarity is low, and for low coopera-

ion costs when the degree of complementarity is high. 

For n = 2 , these are the only effects of the degree of comple-

entarity, as these are the only added benefits (given the fact
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Fig. 3. Public good: added benefits of cooperating ( δk ) when k players in a group 

of 7 players cooperate, as a function of the degree of complementarity w . 
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hat δn −1 = δ1 ). Yet, for n > 2, there are additional intermediate

dded benefits δk for k between 1 and ( n − 1 ) , and these deter-

ine the non-monotonic effect of the degree of complementar-

ty for intermediate cooperation costs. The added benefits are rep-

esented as a function of w in Fig. 3 for the case n = 7 . Define

= ( δ0 , δ1 , . . . , δn −1 ) as the added benefit sequence. For w = 1 , δ
s constant, with each δk equal to V / n . For w < 1, δ is decreasing,

nd for w > 1, δ is increasing. δn −1 is increasing in w , and δ0 de-

reasing in w . Moreover, for intermediate k , as a function of w, δk 

eaches a maximum for intermediate w . The effect of the degree

f complementarity on the probability of cooperation can now be

nferred by fixing a c along the Y-axis, and increasing w . When an

dded benefit turns from being smaller than c into being larger

han c , this suggests an increase in the probability of cooperation;

or a change from being larger than c to being smaller than c , the

pposite is obtained. For a fixed intermediate c , it can be seen now

hat as we increase w , for w < 1, first δ1 and δ2 become larger than

 , suggesting that more players will act in the ESS, but then again

ecome smaller than c , suggesting that fewer players will act in

he ESS; for w > 1, as we increase w , first δ4 and δ5 may become

arger than c , suggesting a larger basin of attraction of the joint

ooperation ESS, and then again become smaller than c , suggest-

ng a smaller basin of attraction of the joint cooperation ESS. Thus,

ecause the intermediate added benefits are non-linear, for inter-

ediate cooperation costs a non-monotonic effect of the degree of

omplementarity is possible (cf. Case 3 in Section 2 ). 11 In order to

tudy the effect of excludability and congestion, we now consecu-

ively investigate how the results for the public good are modified

or club goods and for charity goods, where the treatment of con-

estible public goods, congestible club goods and congestible char-

ty goods is relegated to Appendices C to E , as the results for these

oods are similar. 
11 Our model is binary, in the sense that players can only either take a fixed co- 

perative effort, or t ake no effort. The probability that cooperation evolves is mea- 

ured by the size of the basin of attraction of the equilibrium where all players 

ake the fixed cooperative effort, or by the equilibrium fraction of players that take 

he fixed cooperative effort. Yet, one may expect that in a model with continuous 

nstead of discrete effort s, the degree of complementarity also affects the level of 

he equilibrium cooperative effort itself. The CES impact function (see Footnote 8) 

ith continuous effort s, which shares characteristics with the impact function in 

5) , suggests that this expectation is invalid; as shown by Cornes (1993) , the level 

f the mutual best-response nonzero effort s with a CES impact function are not af- 

ected by the degree of complementarity. From this perspective, it makes sense to 

ocus on a binary model. 
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. Club good 

When the collective good is a club good, it is the case that

ooperators obtain the value of the collective good produced,

hereas defectors do not obtain anything. Examples of club goods

ay include the cooperative hunting of a prey, if consuming the

rey is only possible when participating in the hunt. This may oc-

ur if the prey is caught at a sufficiently large distance from the

ommon territory of the group, so that the prey is consumed on

he spot, meaning that defectors who stay behind do not benefit

rom the prey. In the context of collective defense, an example may

e found in circular defense ( Jolivet et al., 1990 ), where individuals

n the group can be seen as forming a circle to cover each other’s

acks. When the size of the group is large, it may be possible to

ake up position on the inside of the circle, and benefit from the

ffort s of those positioned on the circumference of the circle; as

efectors benefit from the effort s of cooperators, circular defense

as public-good features in this case. When the group is instead

mall, there may be insufficient space on the inside of the circle,

nd it may only be possible to benefit from collective defense by

aking up a position on the circumference of the circle; in this case,

ircular defense is a club good. 

With a club good, for generic impact function I k , as the gains

rom switching consist of the full value of the club good, it is clear

hat levels for the cooperation costs exist such that the game is

 Stag Hunt; in this case, as increases in the degree of adversity

ean that weakly less is produced, if such increases have any ef-

ect, this can only take the form of a competing effect. 12 Specif-

cally with impact function βk , as d k = 

V ( 1 −w 

k ) 
1 −w 

n − c, it is the case

hat �d > 0, and by the analysis in Section 2 , when �d changes

ign, the game is a Stag Hunt. When all other players cooperate, a

ocal player who switches from defecting to cooperating obtains

 benefit V at a cost c , and is therefore better off cooperating;

t follows that when �d does not change sign, the game cannot

e a Prisoner’s Dilemma, but can only be a Harmony Game. In-

uitively, as a player who does not cooperate does not obtain any

enefit from the collective good, the added benefit of cooperating

ncreases (or: the net cost of cooperating decreases) the larger the

umber of cooperating players in the population, and this indepen-

ently of whether the impact function is convex, linear, or concave.

o look at the effect of the degree of complementarity on the prob-

bility of cooperation, we again look first at the simple case n = 2 ,

hich is represented in Eq. (8) : 

A B 

 

 

(
V − c V/ (1 + w ) − c 

0 0 

)
(8) 

We now have δ1 = V , and δ0 = V/ ( 1 + w ) . As represented in

ig. 4 , δ1 is fixed at V , whereas δ0 decreases in w , with δ0 = δ1 

hen w = 0 . Considering now the relation between δ0 and δ1 and

ooperation costs c (as measured on the Y-axis), it follows that,

s the degree of complementarity is increased, the game switches

rom a Harmony Game to a Stag Hunt, meaning that there is there-

ore a competing effect. 

This game-changing competing effect of the degree of comple-

entarity is general for any n , and is confirmed by the marginal ef-

ect of the degree of complementarity within the Stag Hunt. To see

hy this is so, note that the benefit part of the gain from switching

s the value of the collective good itself. As this value decreases in

he degree of complementarity, it follows that ∂ d / ∂ w < 0, so that

ase 2 in Section 2 applies. Graphically, as represented in Fig. 5

or the case n = 7 , for any given w , each δk decreases in w (with
12 I am grateful to one of the anonymous referees for encouraging me to express 

he results for club goods and charity goods for generic impact functions. 
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Fig. 4. Club good: for the case of two players, added benefit ( δk ) of cooperating 

jointly ( k = 1 ) and of cooperating alone ( k = 0 ) as a function of the degree of com- 

plementarity w . Areas where, as a function of cooperation costs, the game is a Har- 

mony Game, or a Stag Hunt. 

Fig. 5. Club good: added benefits of cooperating ( δk ) when k players in a group of 

7 players cooperate, as a function of the degree of complementarity w . 
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the exception of δn −1 , which is flat at V ). Fixing a c on the Y-axis

in Fig. 5 , for small w , it is the case that c < δ0 , and the game is

a Harmony Game. 13 As w is increased such that c ≥ δ0 , the game

becomes a Snowdrift game; as w is further increased, consecu-

tively δ0 , δ1 ,… become smaller than c , in line with the compet-

ing effect. Intuitively, given that each added benefit decreases in

the degree of complementarity, a sucker effect is the only possible

mechanism: when each player’s cooperative effort becomes more

critical, there is always less reason to cooperate. Moreover, as the

club-good feature means that a player who switches from defect-

ing to cooperating can gain anything from a minimal added benefit

to the maximal value of the collective good, the sucker effect ap-

plies over the entire range of cooperation costs. Our results for the

club good are summarized in Proposition 2 (for a precise statement

of Proposition 2 and for the proof, see Appendix A ). 

Proposition 2. Consider the production of a club good with n ≥ 2.

Then, with any impact function I k that strictly increases in the num-

ber of cooperating players k, if an increase in the degree of adver-

sity has any effect on the probability of cooperation, it is a competing

effect. Specifically with impact function βk in (5) , as the degree of
13 This differs from the standard definition of a Harmony Game. Consider 

the two-player case. Then in the standard definition of a Harmony Game 

( Martinez et al. 1999 ), we have R > T > S > P , so that for any mixed group, defec- 

tors are better off than cooperators. In general, this means that for any intermediate 

number k of cooperating players in a group, defectors are better off than coopera- 

tors (as is the case with a public good). With a club good, however, R > S > P = T , 

and in mixed groups cooperators are better off than defectors. 

A  

 

t  

t  

t  

m

omplementarity is increased, the competing effect applies where at

rst we have a Harmony Game and then a Stag Hunt with decreasing

robability of cooperation. 

. Charity good 

When the collective good is a charity good, cooperators (which

an be seen as contributors) obtain an invariable benefit, whereas

efectors (which can be seen as recipients) obtain a value of the

ollective good that depends positively on the number of contribu-

ors. An example in the context of collective defense may be found

n sentinel behavior ( Bednekoff et al., 2001; Clutton-Brock et al.,

999 ). If a sentinel needs to take up a high position to be vigilant,

hen acting as a sentinel means foregoing the benefits of other

ctivities such as foraging; at the same time, a sentinel may ob-

ain the fixed benefit of always being safe from predation. Non-

entinels can continue foraging, and are more likely to notice flee-

ng sentinels, the more individuals in their group act as sentinels.

t the same time, the individual sentinel does not benefit from

he presence of other sentinels in the group, if he is completely

afe from predation by acting as a sentinel. Sentinels then produce

 charity good for non-sentinels, as each non-sentinel is attacked

ith the same probability, and therefore obtains the same benefits.

eña et al. (2015) offer as examples of charity goods eusociality in

ymenoptera, with sterile workers providing a benefit to queens;

urthermore, several instances of microbial cooperation involving

acrifice and self-destruction. Yet, relatedness may be the driving

actor behind these examples, where the payoff obtained from co-

perating consists of inclusive fitness, and depends on how many

ndividuals are benefiting within the same group. For this reason,

e consider sentinel behavior as the motivating example for this

ection. 

With a charity good, for generic impact function I k , as switching

rom defecting to cooperating causes the loss of the full value of

he collective good, and as more is lost the more players currently

ooperate, it is clear that levels for the cooperation costs exist such

hat the game is a Snowdrift game. If the game indeed takes this

orm, as an increase in the degree of adversity mean that weakly

ess is produced, if such an increase has any effect, it can only take

he form of a common-enemy effect, because weakly less is lost

hen switching from defecting to cooperating. 

Specifically with impact function βk , as d k = −V ( 1 −w 

k ) 
1 −w 

n − c, it is

he case that �d < 0, and by the analysis in Section 2 , when �d

hanges sign, the game is a Snowdrift game. When all players de-

ect, a single player who switches to cooperating does not forego

ny benefits as no value of the collective good is produced, but ob-

ains a benefit −c. it follows that the game cannot be a Prisoner’s

ilemma; therefore, if �d does not change sign, the game is a Har-

ony Game. Intuitively, as only a player who defects benefits from

he collective good produced by any cooperators, the added benefit

f cooperating decreases (or: the net cost of cooperating increases)

he larger the number of cooperating players in the population, be-

ause cooperating means foregoing a larger and larger value of the

ollective good. This is true independently of whether the impact

unction is convex, linear, or concave. To look at the effect of the

egree of complementarity, we again take the case n = 2 as a start-

ng point: 

A B 

 

B 

(
−c −c 

V/ (1 + w ) 0 

)
(9)

Fig. 6 represents the benefits foregone when contributing rather

han receiving for the case n = 2 . When the other player con-

ributes, this is −δ1 = V/ ( 1 + w ) ; when the other player receives,

his equals −δ0 = 0 . The type of the game played is now deter-

ined by the relation between the fixed benefit of cooperating −c
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Fig. 6. Charity good: for the case of two players, benefit foregone when cooperating 

instead of defecting ( −δk ) when one player currently cooperates ( k = 1 ) and when 

all players currently defect ( k = 0 ), as a function of the degree of complementar- 

ity w . As a function of the benefit of cooperating ( −c) , areas where the game is a 

Harmony Game, or a Snowdrift game. 

Fig. 7. Charity good: benefit foregone when contributing rather than receiving 

( −δk ) when k players in a group of 7 players contribute, as a function of the de- 

gree of complementarity w . 
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measured on the Y-axis), and −δ0 and −δ1 . It follows that as the

egree of complementarity is increased, the game switches from a

nowdrift game to a Harmony Game, leading to a common-enemy

ffect. 

This game-changing common-enemy effect of the degree of

omplementarity is general for any n , and is confirmed by the

arginal effect of the degree of complementarity within the Snow-

rift game. This is because the benefit foregone when switching

rom defecting to cooperating is the value of the collective good

tself. As this value decreases in the degree of complementarity, it

ollows that ∂ d / ∂ w > 0, so that Case 1 in Section 2 applies. Graph-

cally, as represented in Fig. 7 for the case n = 7 , for any given w ,

ach −δk decreases in w (with the exception of −δ0 , which is flat

t 0). Fixing a benefit of cooperating −c along the Y-axis in Fig. 7 ,

or small w it is the case that −c < δ1 , and the game is a Snow-

rift game. As w is further increased, consecutively −δ1 , −δ2 , δ3 ,…

ecome smaller than −c, in line with the common-enemy effect

where the game becomes a Harmony Game for −c > δ6 ) . Intu-

tively, given that each benefit foregone decreases in the degree

f complementarity, a common-enemy effect is the only possible

ffect: when each player’s cooperative effort becomes more criti-

al, less value of the collective good is foregone when cooperat-

ng. Moreover, by the charity-good feature of the collective good,

 player who switches from defecting to cooperating can lose any-
hing from a minimal to a maximal value of the collective good;

he common-enemy effect therefore applies over the entire range

f cooperation costs. Our results for the charity good are summa-

ized in Proposition 3 (for a precise statement of Proposition 3 and

or the proof, see Appendix A ). 

roposition 3. Consider the production of a charity good , with

 ≥ 2. Then, with any impact function I k that strictly increases in the

umber of cooperating players k, if an increase in the degree of adver-

ity has any effect on the probability of cooperation, it is a common-

nemy effect. Specifically with impact function βk in (5) , as the de-

ree of complementarity is increased, the common-enemy effect ap-

lies, where at first we have a Snowdrift game with increasing prob-

bility of cooperation, and then a Harmony Game. 

. Discussion 

In a model where organisms produce a public good, a harsher

nvironment can both have a common-enemy effect or a compet-

ng effect, in that depending on the level of the cooperation costs

nd on whether the initial degree of complementarity is high or

ow, the probability that cooperation evolves may either increase

r decrease when the environment becomes harsher ( De Jaegher

nd Hoyer, 2016a ; for a summary, see Table 1 above). Moreover,

hen cooperating groups contain more than two players, for inter-

ediate cooperation costs the effect of a harsher environment on

he probability of cooperation is non-monotonic ( De Jaegher, 2017 ).

s shown in the current paper, in a model where organisms in-

tead produce a club good (only cooperators benefit from the col-

ective good), or produce a charity good (only defectors benefit

rom the collective good), the effect of a harsher environment on

he probability of cooperation is straightforward and unambiguous.

hese results are not changed when the club good or the charity

ood is additionally congestible. 

A first manner in which the analysis in the current paper is

seful, is that it helps to a better understanding of the ambigu-

us effects of harsher environments that are obtained for public

oods. With a public good, the added benefit of cooperating alone

perates in the same manner as with a club good, as no previ-

usly obtained benefit is foregone when switching from zero coop-

rating players to one cooperating player. This is why for a public

ood, a competing effect similar to the one for a club good is ob-

ained when the costs of cooperation are close to the added ben-

fit of cooperating alone. With a concave impact function for the

roduction of the public good, as the added benefit of cooperat-

ng alone is larger than the other added benefits, a competing ef-

ect is therefore obtained for large costs of cooperation, whereas

ith a convex impact function, as the added benefit of cooper-

ting alone is smaller than the other added benefits, a compet-

ng effect is obtained for small costs of cooperation. Also with a

ublic good, the added benefit of cooperating jointly (i.e., with all

layers) operates in the same manner as with a charity good, as

he benefit obtained when all players cooperate is fixed (namely

he maximal value of the public good), but the benefit that would

ave been obtained when one player defects is variable. This is

hy for a public good, a common-enemy effect similar to the one

or a charity good is obtained when the costs of cooperation are

lose to the added benefit of cooperating with all players. With a

oncave impact function for the production of a public good, as

he added benefit of cooperating jointly is smaller than the other

dded benefits, a common-enemy effect is therefore obtained for

mall costs of cooperation, whereas with a convex impact function,

s the added benefit of cooperating jointly is larger than the other

dded benefits, a common-enemy effect is obtained for large costs

f cooperation. 
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14 For a recent model that studies the interplay between relatedness, responsive- 

ness as a measure of reciprocity, and the degree of synergy, see Van Cleve (2017) . 
A second way in which the analysis is useful, is that it may lead

to predictions that are more straightforward to test. As illustrated

in Table 1 , for public goods the predictions on the incidence of the

common-enemy and competing effects depends both on the level

of the cooperation costs, and on the initial harshness of the envi-

ronment. In principle, one could try to test these predictions across

species, or within species across several contexts (say, cooperative

hunting, and collective defense by the same species such as lions

( Panthera leo ; Grinnell et al., 1995, Scheel and Packer, 1991 )), by

looking for instances fitting the four scenarios in Table 1 . But here,

one hits upon the problem that one cannot with a species, say,

compare the height of cooperation costs in cooperative hunting,

to this same height in collective defense, and across species can-

not compare cooperation costs in cooperative hunting. One there-

fore needs to focus on a single cooperative instance within a sin-

gle species in order to test the public-good model. Yet, as the

public-good model allows for several directions of the effect of in-

creases in the degree of adversity on the probability of cooperation

(increasing, decreasing, inverse U-shaped), finding one such effect

does not confirm the theory, and one needs enough variance in the

degrees of adversity and in the cooperation costs to cover all the

cases in Table 1 . This may be difficult to achieve: for instance, in

a specific cooperative context such as the cooperative hunting of

a particular large prey, it may be difficult to find enough variance

in prey characteristics for it both to be possible that a single hunt-

ing predator suffices to catch the prey (low adversity), or that all

predators need to hunt (high adversity); also, it may be difficult to

find sufficient variance in predator contextual variables such that

for low degrees of adversity, either cooperative hunting is evolu-

tionarily stable (small cooperation costs), or it is not (large cooper-

ation costs). 

As our analysis shows, relaxing the assumptions that collec-

tive goods are non-excludable and non-congestible leads to un-

ambiguous predictions. While some authors recognize that in re-

ality collective goods produced by organisms may not be pure

public goods, they consider only pure public goods for simplic-

ity ( Archetti et al., 2011 , p.1305; Nunn and Lewis, 2001 ), arguing

that this simplification does not lead to different results. Our anal-

ysis, however, shows that in the context of the common-enemy

hypothesis of by-product mutualism, it can be essential to devi-

ate from the model of a pure public good. In particular, while

adding congestion does not make any difference in that the re-

sults for the public good and the congestible public good are anal-

ogous, adding excludability means that the competing effect is al-

ways predicted for club goods (e.g., situations of cooperative hunt-

ing where one can only benefit from the prey when participating

in the hunt), and the common-enemy effect is always predicted

for charity goods (e.g., sentinel behavior when the individual sen-

tinel does not benefit from other sentinels). The importance of

these predictions is that, while it may be difficult to compare co-

operation costs or degrees of adversity across different instances

of cooperative behavior, there are qualitative differences between

cases with and without excludability, and with different types of

excludability (club goods, charity goods). These qualitative differ-

ences make it possible to test our predictions by comparing the

effect of the degree of adversity across several instances of cooper-

ative behavior. 

For instance, in the case of cooperative hunting, one should be

able to identify the extent to which defectors do or do not ben-

efit from a successful hunt: if the prey is caught in the proxim-

ity of the territory of the group, it will not be possible to exclude

defectors (public good); if cooperating instead means participating

in a hunt that takes place at a distance from the territory, where

the prey is locally consumed, defectors are automatically excluded

(club good). Also, in the case of collective defense, where cooperat-

ing means being vigilant to intruders or predators, one should be
ble to identify the extent to which vigilant group members ben-

fit from any other group members’ vigilance: if being vigilant is

ncompatible with other activities such as foraging, as is the case

or sentinel behavior, the individual sentinel does not benefit from

ny other sentinels, and only non-sentinels obtain by-product ben-

fits (charity good); if being vigilant does not exclude other ac-

ivities such as foraging, individual vigilance is more likely to be

mperfect, and vigilant individuals benefit from other group mem-

ers’ vigilance (public good). In this manner, one should be able to

dentify instances where club goods, charity goods or public goods

re produced, and one can then test whether indeed a harsher en-

ironment has an opposite effect for club goods and for charity

oods, and has an opposite effect when comparing club goods to

ublic goods, and charity goods to public goods. 

A third way in which our results in this paper are useful, is

hat they show that our predictions for (congested) club goods

nd (congested) charity are less restrictive, in that they apply for

 wider range of harsher environments than is the case for public

oods. Indeed, in the broadest sense, in the context of collective-

ood production, a harsher environment (or: higher degree of ad-

ersity) may be defined as any circumstance that decreases the

roduction of the collective good, all else equal (in particular, hold-

ng fixed the number of cooperating players in a group). For public

oods, this concept of harsher environment is too broad to come

o unambiguous predictions about the incidence of the common-

nemy effect and the competing effect. This is because for pub-

ic goods, it is important to know how the shape of the impact

unction changes, as a harsher environment shifts it downwards.

t is for this reason that our analysis of public goods is focused

n specific instances where the harsher environment makes each

layer’s contribution to the public good more pivotal, so that the

mpact function becomes more convex when it shifts downwards.

et, with (congested) club goods and (congested) charity goods, the

anner in which the shape of the impact function changes as a

arsher environment shifts it down, does not matter for the re-

ults. This suggests that the common-enemy effect and the com-

eting effect are more robust in the context of such goods. 

We end by noting that we have deliberately focused on harsh

nvironments as a rationale for the evolution of cooperation, and

ave excluded either relatedness or repeated interaction as ratio-

ales, in order to identify the effect of a harsher environment in

solation. In reality, multiple of these rationales may be at work at

he same time. For instance, providers of charity goods may ben-

fit from providing such a good because they are related to other

roup members. Integrating the effect of harsh environments into

odels of kin selection and reciprocity, may be the subject of fu-

ure research. 14 
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ppendix A: Exact formulation of Propositions in the body the 

aper, and proofs 

This Appendix formulates more detailed versions of

ropositions 2 and 3 in the body of the paper, and proves

hese propositions. To read the more detailed version of the

ropositions, define w 0 as degree of complementarity such that

 = δ0 , and w n −1 as the degree of complementarity such that

 = δn −1 
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roposition 2 ∗. Consider the production of a club good with n ≥ 2.

hen for any impact function I k that strictly increases in k and for

hich ∂ I k / ∂ α ≤ 0, if an interior fixed point x ∗ exists, we have a Stag

unt (the fixed point is unstable), and it is the case that ∂ x ∗/ ∂ α ≥ 0.

pecifically with impact function βk in (5) , when w ≤ w 0 , the game

s a Harmony Game; when w > w 0 , the game is a Stag Hunt and

 x ∗/ ∂ w > 0 (where x ∗ approaches 1 as w → + ∞ ). It is the case that

 0 
< 
> 

1 for c > 
< 

V/n . 

roof. For generic I k , given that d k = I k +1 − c, and given that I k 
trictly increases in k , it follows that �d > 0 and (by the shape-

reserving properties of polynomials in Bernstein form) that g ( x )

ncreases in x , meaning that the game is a Stag Hunt if d changes

ign (Result 3.2(a) in Peña et al. (2014) ). Moreover, as ∂ I k / ∂ α ≤ 0,

eaning that ∂ d k / ∂ α ≤ 0, it follows from (2) that ∂ g ( x )/ ∂ α ≤ 0. As

 ( x ) decreases in x , and may shift down as α is increased, if there

s any effect of the degree of adversity, it is a competing effect in

he form of a decrease in the size of the basin of attraction of the

oint cooperation ESS. 

Specifically for I k = βk , using (2) , and substituting for d k =
k +1 − c, for w � = 1, it follows that 

 ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

[ 

V 

(
1 − w 

k +1 
)

1 − w 

n 
− c 

] 

Given that by the binomial theorem, 
∑ n −1 

k =0 
( 
n − 1 

k 
) x k 

( 1 − x ) n −1 −k = 1 , this is re-expressed as: 

 ( x ) = 

V 

1 − w 

n 
− wV 

1 − w 

n 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
( wx ) 

k 
( 1 − x ) 

n −1 −k − c 

Again applying the binomial theorem, note that
 n −1 
k =0 

( 
n − 1 

k 
) ( wx ) k ( 1 − x ) n −1 −k = ( wx + 1 − x ) n −1 . We conclude

hat: 

 ( x ) = 

V 

[
1 − w ( wx + 1 − x ) 

n −1 
]

1 − w 

n 
− c for w � = 1 (A.1)

Using (2) , and plugging in the value for d k calculated in

ection 3 for the club good, for w = 1 , it follows that 

 ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

[
( k + 1 ) V 

n 

− c 

]

Applying again the binomial theorem, this is re-expressed as: 

 ( x ) = 

V 

n 

− c + 

V 

n 

n −1 ∑ 

k =1 

(
n − 1 

k 

)
k x k ( 1 − x ) 

n −1 −k 

Using the fact that ( 
n − 1 

k 
) k = ( n − 1 )( 

n − 2 

k − 1 
) , it follows that: 

 ( x ) = 

V 

n 

− c + 

V 

n 

x ( n − 1 ) 

n −2 ∑ 

( k −1 ) =0 

(
n − 2 

k − 1 

)
x k −1 ( 1 − x ) 

n −2 −( k −1 ) 

hich applying once again the binomial theorem, we finally write

s 

 ( x ) = 

V [ 1 + ( n − 1 ) x ] 

n 

− c for w = 1 (A.2)

Using the fact that for any interior fixed point x ∗, it must be

he case that g( x ∗) = 0 , solving for x ∗ in (A.1) and (A.2) , we obtain

hat: 

 

∗ = 

1 

1 − w 

− 1 

1 − w 

[
V − c ( 1 − w 

n ) 

V w 

]1 / ( n −1 ) 

for w � = 1 (A.3)
nd 

 

∗ = 

cn − V 

V ( n − 1 ) 
for w = 1 (A.4) 

In both (A.3) and (A.4) , it is the case that x ∗ < 1 given our as-

umption that V > c . Also, x ∗ > 0 as long as c > 

V ( 1 −w ) 
1 −w 

n = δ0 . It fol-

ows that for 0 < w ≤ w 0 , the game is a Harmony Game, and for any

 > w 0 , the game is a Stag Hunt. As δ0 = 

V ( 1 −w ) 
1 −w 

n = 

V 
( 1+ w + ... + w 

n −1 ) 
,

hich equals V / n for w = 1 , it follows that w 0 
< 
> 

1 for c > 
< 

V/n . Once

 is large enough for the game to be a Stag Hunt, given the fact

hat ∂ d / ∂ w < 0, it follows that ∂ g ( x )/ ∂ w < 0, which along with the

act that ∂ g ( x )/ ∂ x > 0 means that ∂ x ∗/ ∂ w > 0 (see Section 2 ); this

mplies a competing effect where an increase in w decreases the

ize of the basin of attraction of the joint cooperation ESS. The

ame only approaches a Prisoner’s Dilemma in the limit, as w ap-

roaches infinity. �

roposition 3 ∗. Consider the production of a charity good with

 ≥ 2. Then for any impact function I k that strictly increases in k

nd for which ∂ I k / ∂ α ≤ 0, if an interior fixed point x ∗ exists, we

ave a Snowdrift game (the fixed point is stable), and it is the case

hat ∂ x ∗/ ∂ α ≥ 0. Specifically with impact function βk in (5) , when

 < w n −1 , the game is a Snowdrift game and ∂ x ∗/ ∂ w > 0 (common-

nemy effect); when w ≥ w n −1 , the game is a Harmony Game. It is

he case that w n −1 
< 
> 

1 for −c > 
< 

[ ( n − 1 ) /n ] V . 

roof. For generic I k , given that d k = −I k − c, and given that I k 
trictly increases in k , it follows that �d < 0 and (by the shape-

reserving properties of polynomials in Bernstein form) that g ( x )

ecreases in x , meaning that the game is a Snowdrift game if

 changes sign (Result 3.2(b) in Peña et al. (2014) ). Moreover,

s ∂ I k / ∂ α ≤ 0, meaning that ∂ d k / ∂ α ≥ 0, it follows from (2) that

 g ( x )/ ∂ α ≥ 0. As g ( x ) increases in x , and may shift upwards as α
s increased, if there is any effect of the degree of adversity, it is

 common-enemy effect in the form of an increase the fraction of

ooperating players in the unique interior ESS. 

Specifically for I k = βk , using (2) , and plugging in the value for

 k calculated in Section 3 for the charity good, for w � = 1, it follows

hat 

 ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

[ 

−
V 

(
1 − w 

k 
)

1 − w 

n 
− c 

] 

Using the binomial theorem, this is re-expressed as: 

 ( x ) = − V 

1 − w 

n 
− c + 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
( wx ) 

k 
( 1 − x ) 

n −1 −k 

Applying once more the binomial theorem, we finally obtain

hat 

 ( x ) = −
V 

[
1 − ( wx + 1 − x ) 

n −1 
]

1 − w 

n 
− c for w � = 1 (A.5)

Using (2) , and plugging in the value for d k calculated in

ection 3 for the charity good, for w = 1 , it follows that 

 ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

[
−kV 

n 

− c 

]

Applying again the binomial theorem, this is re-expressed as: 

 ( x ) = −c − V 

n 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
k x k ( 1 − x ) 

n −1 −k 

From the proof of Proposition 2 ∗, we know that
 n −1 
k =0 

( 
n − 1 

k 
) k x k ( 1 − x ) n −1 −k = x ( n − 1 ) , so that we finally ob-
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15 Analytically, it does not make a difference whether u is considered as the ben- 

efit of producing the private good, or is considered as a cost that is incurred when 

not producing the private good (e.g., cost of facing possible predation). Considering 

u as the cost of not producing the private good, makes it clear why an increase in 

u can be considered as an increase in the degree of adversity. 
tain 

g ( x ) = −V ( n − 1 ) x 

n 

− c for w = 1 (A.6)

Using the fact that for any interior fixed point x ∗, it must be

the case that g( x ∗) = 0 , solving for x ∗ in (A.5) and (A.6) , we obtain

that: 

x ∗ = 

1 

1 − w 

− 1 

1 − w 

[
V + c ( 1 − w 

n ) 

V 

] 1 
n −1 

for w � = 1 (A.7)

and 

x ∗ = 

−cn 

V ( n − 1 ) 
for w = 1 (A.8)

It follows from (A.7) and (A.8) that x ∗ > 0 as soon as c < 0;

clearly, taking joint defection as a starting point, a first player al-

ways has an incentive to contribute, as this means obtaining pos-

itive benefit −c without foregoing any benefits from the collec-

tive good. At the same time, as follows from (A.7) , x ∗ < 1 as soon

as −c < 

V ( 1 −w 

n −1 ) 
( 1 −w 

n ) 
= −δn −1 (the benefit foregone by being the n -

th player who cooperates exceeds the benefit obtained from con-

tributing to the collective good). As δn −1 equals V for w = 0 and

decreases in w , and given our assumption that 0 < −c < V , it fol-

lows that for any c we consider, there is always a range of smaller

w for which there is an interior fixed point. As δn −1 = 

V ( 1 −w 

n −1 ) 
( 1 −w 

n ) 
=

V ( 1+ w + ... + w 

n −2 ) 

( 1+ w + ... + w 

n −1 ) 
, which equals [ ( n − 1 ) /n ] V for w = 1 , it follows that

w n −1 
< 
> 

1 for −c > 
< 

[ ( n − 1 ) /n ] V . For w < w n −1 , given the fact that

∂ d / ∂ w > 0, it follows that ∂ g ( x )/ ∂ w > 0, which along with the fact

that ∂ g ( x )/ ∂ x < 0 means that ∂ x ∗/ ∂ w > 0 (see Section 2 ); this im-

plies a common-enemy effect where an increase in w increases the

ESS fraction of cooperating players. �

Appendix B: Private good 

Mesterton-Gibbons and Dugatkin (1992) provide the example

of a sparrow ( Passer domesticus ) that finds a food source, and

makes a chirrup call to attract other sparrows ( Elgar, 1986; New-

man and Caraco, 1989 ). The private good that the sparrow pro-

duces is a reduction in its vulnerability to predation (caused by

having a larger number of sparrows at the food source); the by-

product benefit produced is letting the other sparrows share in

the food source. The degree of adversity is specified as the risk

of predation, where a higher risk of predation means that a spar-

row that does not make a chirrup call is more likely to face pre-

dation. With a higher risk of predation, an individual sparrow

that fails to cooperate becomes the victim of its own defection, a

mechanism that Mesterton-Gibbons and Dugatkin (1992) refer to

as the boomerang effect. It is this mechanism that leads to the

common-enemy effect. As the benefit from producing the private

good does not depend on the extent to which other players coop-

erate ( Newman and Caraco, 1989 ), the boomerang effect applies

no matter how many players currently cooperate. A further ex-

ample proposed by Mesterton-Gibbons and Dugatkin (1992) refers

to communally breeding birds, which feed non-related fledglings

to ensure that their begging does not attract predators, as these

could otherwise attack the birds’ own fledglings. Finally, Detto

et al. (2010) propose as another example fiddler crabs ( Uca mjoe-

bergi ), who assist neighboring crabs in their defense against intrud-

ers in order to avoid the risk that the current neighbor is replaced

by a strong crab. 

The private-good model may be seen as a multi-player version

of the donor-recipient game (also referred to as mutual aid game,

or donation game). In this game, the net cost of cooperating when

k other players cooperate is independent of k , and is denoted as C
(where the subscript is dropped). The by-product benefit the focal
layer obtains from the fact that another player cooperates rather

han defects, does not depend on whether the focal player coop-

rates or defects himself, and does not depend on the number of

ther cooperating players; this benefit is denoted as B (where the

ubscript is again dropped). A focal player who defects does not

ncur any cost, and does not produce any benefit for the other

layers in her group. It follows that a k = k B − C, b k = k B, d k = −C,

nd D k = ( n − 1 ) B − C, where we assume that ( n − 1 ) B > C. The

et cost C can be further decomposed into the cost c of producing

he private good, minus the benefit u the focal player obtains from

he private good, so that C = c − u . This illustrates the fact that the

et cost C can be negative ( McAvoy and Hauert, 2016 ). The private-

ood model has the equal-gains-from switching property, and fol-

owing the general framework in Section 2 is a Prisoner’s Dilemma

or positive net cost ( C > 0 ) and a Harmony Game for negative net

ost ( C < 0 ). An increase in the degree of adversity increases the

enefit u the focal player obtains from the private good, 15 mean-

ng that the gain from switching increases (boomerang effect), and

an thus turn the game from a Prisoner’s Dilemma into a Harmony

ame, resulting in a common-enemy effect. 

ppendix C: Congestible public good 

With a congestible public good , the value of the collective good

s divided equally over the n players in the group, so that a k =
 k +1 /n − c, and b k = I k /n , meaning that the gain from switching

quals d k = ( I k +1 − I k ) /n − c, so that the added benefit of cooper-

ting equals δk = ( I k +1 − I k ) /n . Furthermore, C k = c − ( I k +1 − I k ) /n ,

 a,k −1 = ( I k +1 − I k ) /n , and B b,k = ( I k +1 − I k ) /n . It is the case that

k = B a,k −1 = B b,k , and that D k = I k +1 − I k − c > d k . Thus, this case

s comparable to the public good, except that benefits are divided

y n . For I k = βk , all results are therefore analogous to those of the

ublic good; however, because the value of the congested public

ood is divided by n , the case of large cooperation costs quickly

ecomes the dominant one, with all other cases vanishing. 

We further point out that in the standard taxonomy of col-

ective goods, a good which is congestible but which is non-

xcludable is usually referred to as a commons good (e.g., Dionisio

nd Gordo, 2006; Rankin et al., 2007 ). The congestible public good

an easily be reframed as a commons good in the following way.

et defecting correspond to an individually beneficial action such

s polluting, and let this yield an individual benefit θ . Let cooper-

ting correspond to refraining from pollution. Let the value of the

ommons good be equal to I k / n if k players refrain from polluting.

aking now θ = c (where c can be seen as the opportunity cost of

ot polluting), the analysis is identical as for a congestible public

ood. 

ppendix D: Congestible club good 

With a congestible club good , only cooperating players bene-

t from the value produced of the collective good, and addition-
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Fig. D.1. Congestible club good: for the case of two players, added benefit ( δk ) of 

cooperating jointly ( k = 1 ) and of cooperating alone ( k = 0 ) as a function of the 

degree of complementarity w . Areas where, as a fucntino of cooperation costs, the 

game is a Prisoner’s Dilemma, a Stag Hunt, a Harmony Game, or a Snowdrift game. 
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16 Formally, in a Harmony Game, total fitness is maximized when all players coop- 

erate. This is not the case when w < 1, as congestion is the dominating factor in this 

case. Also, formally, in a Prisoner’s Dilemma, total fitness is again maximized when 

all players cooperate. This is not the case with a congestible club good as long as 

c > V /2 . As noted in Footnote 3, to avoid having to formulate further categories of 
lly, the value of the collective good is divided over them. In the

ase of cooperative hunting, such a case is obtained if the prey

s not only caught at a distance from the common territory of

he group, but is also sufficiently small such that one cooperator’s

onsumption of the prey diminishes the consumption possibilities

f the other cooperators. It is the case that a k = I k +1 / ( k + 1 ) − c,

 k = 0 , meaning that d k = I k +1 / ( k + 1 ) − c and δk = I k +1 / ( k + 1 ) .

lso, C k = c − I k +1 / ( k + 1 ) , B a,k −1 = I k +1 / ( k + 1 ) − I k /k , and B b,k =
 . Just as with the standard club good, it is the case that δk >

 a,k −1 > B b,k = 0 . Moreover, it is the case that D k = I k +1 / ( k + 1 ) +
 [ I k +1 / ( k + 1 ) − I k /k ] − c. 

For the congestible club good, with a generic impact function I k ,

ecause of congestion, the effect of a larger number of cooperators

n the value of the club good is ambiguous, and we may have a

tag Hunt, a Snowdrift game, or a more complex game with mul-

iple interior fixed points and both Stag Hunt and Snowdrift-game

eatures. Yet, as shown in the first part of Proposition D.1 below,

ecause it continues to be the case that only cooperators obtain

alue from the congested club good, and because this value de-

reases in the degree of adversity, a higher degree of adversity de-

reases the probability that cooperation evolves. 

We further focus on the case I k = βk . We first show that

k +1 / ( k + 1 ) − βk /k > 
< 

0 for w 

> 
< 

1 . For w < 1, 
βk +1 

k +1 
− βk 

k 
< 0

 

1 −w 

k +1 

k +1 
< 

1 −w 

k 

k 
⇔ k w 

k ( 1 − w ) < 1 − w 

k . Given that the

ight-hand side of the latter inequality can be seen

s a difference of k -th powers, it can be rewritten as

 w 

k ( 1 − w ) < ( 1 − w )( 1 + w + w 

2 + . . . + w 

k −1 ) ⇔ k w 

k <

( 1 + w + w 

2 + . . . + w 

k −1 ) . Note now that in this inequality we

ave k terms on the left-hand side ( k times w 

k ), and we have

 terms on the right-hand side. Given that w < 1, each of the

erms on the left-hand side is smaller than each of the terms

n the right-hand side. For w > 1, 
βk +1 

k +1 
− βk 

k 
> 0 ⇔ 

w 

k +1 −1 
k +1 

> 

w 

k −1 
k 

 k w 

k ( w − 1 ) > w 

k − 1 . Given that the right-hand side of the

atter inequality can be seen as a difference of k -th powers, it can

e rewritten as k w 

k ( w − 1 ) > ( w − 1 )( 1 + w + w 

2 + . . . + w 

k −1 )

 k w 

k > ( 1 + w + w 

2 + . . . + w 

k −1 ) . Given that w > 1, each of the

erms on the left-hand side is larger than each of the terms on the

ight-hand side. 

A first implication of the fact that βk +1 / ( k + 1 ) − βk /k > 
< 

0 for

 

> 
< 

1 , is that D k 
> 
< 

d k iff w 

> 
< 

1 . With a congestible club good, un-

erprovision is therefore possible when the impact function is con-

ex, but overprovision is possible when the impact function is con-

ave; in the latter case, the fact that an additional cooperator in-

reases the value of the good is more than compensated by the

act that the cooperator creates extra congestion. A second impli-

ation is that, as d k = 

V ( 1 −w 

k +1 ) 
( k +1 )( 1 −w 

n ) 
− c, for w > 1 it is the case that

d > 0, and by the analysis in Section 2 when �d changes sign,

he game is a Stag Hunt. For w > 1, when �d does not change sign,

he game cannot only be a Harmony Game, but can also be a Pris-

ner’s Dilemma, because when all other players cooperate, cooper-

ting rather than defecting only yields a benefit of V / n . Intuitively,

or w > 1, the fact that additional cooperating players add increas-

ngly to the collective good, more than compensates for the fact

hat there is increased congestion, and the added benefit of coop-

rating increases (i.e., the net cost of cooperating decreases) in the

umber of players. For w < 1 it is the case that �d < 0, and by the

nalysis in Section 2 when �d changes sign, the game is a Snow-

rift game. In this case, the fact that additional cooperating players

dd increasingly to the collective good, is more than compensated

y the fact that there is increased congestion, and the added ben-

fit of cooperating decreases (i.e., the net cost of cooperating in-

reases) in the number of players. For w < 1, when �d does not

hange sign, the game can again both be a Harmony Game and a

risoner’s Dilemma. 
g

(

To look at the effect of the degree of complementarity, we again

ake the case n = 2 as a starting point, represented in ( D.1 ): 

A B 

 

 

(
V/ 2 − c V/ (1 + w ) − c 

0 0 

)
(D.1) 

It is now the case that δ1 = V/ 2 , and δ0 = V/ ( 1 + w ) . As repre-

ented in Fig. D.1 , δ1 is now fixed at V /2, whereas δ0 decreases in

 , with δ0 = δ1 when w = 1 . Again, the type of the game played

s determined by the relation between cooperation costs c , and

0 and δ1 . It follows that, as the degree of complementarity is

ncreased, with low complementarity, for sufficiently large coop-

ration costs, the game switches from a Snowdrift game to a

risoner’s Dilemma, leading to a competing effect; for sufficiently

mall cooperation costs, the game is a Harmony Game, whatever

he degree of complementarity. With high complementarity, for

ufficiently small cooperation costs, the game switches from a Har-

ony Game to a Stag Hunt, leading again to a competing effect; for

ufficiently large cooperation costs, the game remains a Prisoner’s

ilemma. 16 

These game-changing competing effects of the degree of com-

lementarity are general for any n , and are confirmed by the

arginal effect of the degree of complementarity within the Stag

unt and the Snowdrift game. To see why this is so, note that with

 congestible club good, the benefit part of the gain from switch-

ng is the value of the collective good divided by the number of

ooperators. As this benefit part decreases in the degree of comple-

entarity, it follows that ∂ d / ∂ w < 0, so that Case 2 in Section 2 ap-

lies. Graphically, as represented in Figure B.2 for the case n = 7 ,

or any given w , each δk decreases in w (with the exception of

n −1 , which is flat at V / n ). For w < 1, fixing a c (with c > V / n ) on

he Y-axis in Fig. D.2 , as w is increased, gradually added benefits

or a smaller initial number of cooperating players become smaller

han c , in line with a competing effect within the Snowdrift game;

hen finally δ0 < c , the game becomes a Prisoner’s Dilemma. For

 > 1, fixing a c (with c < V / n ) on the Y-axis in Fig. D.2 , for small w,

nitially all added benefits exceed c (Harmony Game). As w is in-

reased, consecutively δ , δ ,… become larger than c , in line with
ames, we talk of a Harmony Game (Prisoner’s Dilemma) as soon as cooperating 

defecting) is the dominant strategy. 
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Fig. D.2. Congestible club good: added benefits of cooperating ( δk ) when k players 

in a group of 7 players cooperate, as a function of the degree of complementarity 

w . 
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w  
the competing effect within the Stag Hunt Game. Our results for

the congestible club good with I k = βk are summarized in the sec-

ond part Proposition D.1 . We note that, given that as shown in

Section 3 for w < 1, because of congestion, the sum of the gains

the n players obtain when a focal player switches from defecting

to cooperating is lower than the gain the focal player makes by

switching from defecting to cooperating. As the game is a Snow-

drift game, this means that from a group perspective, the fraction

of cooperating players is inefficiently large. For this reason, the fact

that the competing effect reduces the fraction of cooperating play-

ers, may be beneficial from a group perspective. 

Proposition D.1. Consider the production of a congestible club good

with n ≥ 2. Then for any impact function I k that strictly increases in k

and for which ∂ I k / ∂ α ≤ 0, for any unstable interior fixed point x ∗, it

is the case that ∂ x ∗/ ∂ α ≤ 0, and for any stable interior fixed point x ∗,

it is the case that ∂ x ∗/ ∂ α ≥ 0. Specifically with impact function βk in

(5) : 

For w < 1 (low complementarity): 

- for V 
n < c < V (large cooperation costs), when 0 < w < w 0 , the

game is a Snowdrift game and 

∂ x ∗
∂w 

< 0 (competing effect);

when w 0 ≤ w < 1, the game is a Prisoner’s Dilemma; 

- for 0 < c < 

V 
n (small cooperation costs), the game is a Harmony

Game (no effect). 

For w > 1: 

- for V 
n < c < V (large cooperation costs), the game is a Prisoner’s

Dilemma (no effect); 

- for 0 < c < 

V 
n (small cooperation costs), when 1 < w ≤ w 0 , the

game is a Harmony Game; when w > w 0 , the game is a Stag

Hunt and 

∂ x ∗
∂w 

> 0 (competing effect). 

Proof. With a generic impact function I k , as the effect of k on

d k = I k +1 / ( k + 1 ) − c is ambiguous, d k can have one or more sign

changes as k is increased, and because of the variation dimin-

ishing property of polynomials in Bernstein form (Property 2 in

Peña et al. (2014) ), this means that g ( x ) can also have one or more

sign changes, and therefore can have any combination of stable

fixed points ( g ( x ) decreases around x ∗) and unstable fixed points

( g ( x ) increases around x ∗). Because ∂ I k / ∂ α ≤ 0, it is the case that

∂ d k / ∂ α ≤ 0, and therefore by (2) , it is the case that ∂ g ( x )/ ∂ α ≤ 0.

As around a stable fixed point x ∗ it is the case that g ( x ) locally de-

creases in x , as ∂ g ( x )/ ∂ α ≤ 0, and as g ( x ) is continuous for any given

α, it follows that g ( x ) must continue to locally decrease in x , mean-

ing that ∂ x ∗/ ∂ α ≤ 0. Similarly, as around an unstable fixed point x ∗

it is the case that g ( x ) locally increases in x , as ∂ g ( x )/ ∂ α ≤ 0, and
s g ( x ) is continuous for any given α, it follows that g ( x ) must con-

inue to locally increase in x , meaning that ∂ x ∗/ ∂ α ≥ 0. 

For I k = βk , using (2) , and plugging in the value for d k for the

ongested club good, for w � = 1, it follows that 

 ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

[ 

V 

(
1 − w 

k +1 
)

( k + 1 ) ( 1 − w 

n ) 
− c 

] 

Given that by the binomial theorem,
 n −1 
k =0 

( 
n − 1 

k 
) x k ( 1 − x ) n −1 −k = 1 , this is re-expressed as: 

 ( x ) = 

V 

1 − w 

n 

n −1 ∑ 

k =0 

1 

k + 1 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

(
1 − w 

k +1 
)

k + 1 

− c 

(D.1)

here we note that 1 
k +1 

( 
n − 1 

k 
) = 

1 
n ( 

n 

k + 1 
) . Given that 

∑ n −1 
k = −1 

( 
n 

k + 1 
) x k +1 ( 1 − x ) n −k −1 = ( 1 − x ) n + x 

∑ n −1 
k =0 

( 
n 

k + 1 
) x k ( 1 − x ) n −k −1 = 

 , it follows that 
∑ n −1 

k =0 
( 

n 

k + 1 
) x k ( 1 − x ) n −k −1 = 

1 −( 1 −x ) n 

x . We there-

ore obtain that: 

n −1 
 

k =0 

1 

k + 1 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k = 

1 − ( 1 − x ) 
n 

nx 
(D.2)

Similarly, note that 
∑ n −1 

k = −1 
( 

n 

k + 1 
) ( wx ) k +1 ( 1 − x ) n −k −1 

 ( 1 − x ) n + wx 
∑ n −1 

k =0 
( 

n 

k + 1 
) ( wx ) k ( 1 − x ) n −k −1 = ( wx + 1 − x ) n , 

eaning that 
∑ n −1 

k =0 
( 

n 

k + 1 
) ( wx ) k ( 1 − x ) n −k −1 = 

( wx +1 −x ) n −( 1 −x ) n 

wx .

t follows that 
∑ n −1 

k =0 
( 
n − 1 

k 
) x k ( 1 − x ) n −1 −k w 

k +1 

k +1 
= w 

∑ n −1 
k =0 

1 
k +1 

( 
n − 1 

k 
) ( wx ) k ( 1 − x ) n −1 −k = 

w 

n 

∑ n −1 
k =0 

( 
n 

k + 1 
) ( wx ) k ( 1 − x ) n −1 −k = 

( wx +1 −x ) n −( 1 −x ) n 

nx . Using this fact and using ( D.2 ) to substitute into

 D.1 ), we conclude that 

 ( x ) = 

V 

[
1 − ( wx + ( 1 − x ) ) 

n 
]

nx ( 1 − w 

n ) 
− c for w � = 1 (D.3)

Using (2) , and plugging in the value for d k calculated in

ection 3 for the club good, for w = 1 , it follows that 

 ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 
[ 

V 

n 

− c 

] 
Applying the binomial theorem, it directly follows that 

 ( x ) = 

V 

n 

− c for w = 1 (D.4)

While we cannot solve ( D.3 ) for x ∗ explicitly, and x ∗ is only im-

licitly given by the value of x such that the right-hand side in

 D.3 ) equals zero, we note that g ( x ) is continuous function that

ither monotonically increases or decreases in x . As g(0) = δ0 − c

nd as g(1) = δn −1 − c = 

V 
n − c, and given the fact that δn −1 < δ0 

or w < 1 and δn −1 > δ0 for w > 1, from the intermediate value the-

rem, it follows that for w < 1 an interior fixed point exists when
V 
n < c < δ0 , and that for w > 1 an interior fixed point exists when

0 < c < 

V 
n . Denoting by w 0 the degree of complementarity such

hat c = δ0 , given the fact that δ0 is decreasing in w, it follows

hat for w < 1 an interior fixed point exists when 0 < w < w 0 , and

or w > 1 an interior fixed point exists when w > w 0 . 

Given the fact that ∂ d / ∂ w < 0, it follows that ∂ g ( x )/ ∂ w < 0. For

 > 1, along with the fact that ∂ g ( x )/ ∂ x > 0 means that ∂ x ∗/ ∂ w > 0
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see Section 2 ), this implies a competing effect where an in-

rease in w decreases the basin of attraction of the joint cooper-

tion ESS. For w < 1, along with the fact that ∂ g ( x )/ ∂ x < 0 means

hat ∂ x ∗/ ∂ w < 0 (see Section 2 ), this implies a competing effect

here an increase in w decreases the ESS fraction of cooperating

layers. �

ppendix E Congestible charity good 

With a congestible charity good , it is not only the case that only

efecting players benefit from the value produced of the collec-

ive good, but this value is divided equally over the defecting play-

rs. Applied to sentinel behavior, it is conceivable that the more

on-sentinels there are in a group, the more they obstruct each

ther when attempting to flee after seeing a sentinel fleeing, so

hat one obtains a congestible charity good instead of a charity

ood. Formally, it is the case that, a k = −c, b k = I k / ( n − k ) , meaning

hat the gain from switching equals d k = −c − I k / ( n − k ) , and that

k = −I k / ( n − k ) . Moreover, C k = I k / ( n − k ) + c, B a,k = 0 , and B b,k =
 k +1 / ( n − k − 1 ) − I k / ( n − k ) . Just as is the case with a standard

harity good, B b,k > B a,k −1 = 0 > δk . Finally, D k = −c − βk / ( n − k ) +
( n − k − 1 )[ I k +1 / ( n − k − 1 ) − I k / ( n − k ) ] , which is larger than d k .

n spite of the presence of congestion, overprovision is not

ossible; this is because additional cooperators reduce conges-

ion, as the congestible charity good is only enjoyed by the

efectors. 

With a generic impact function I k , the gains from switching de-

rease in the number of cooperating players because more value

f the collective good is foregone by cooperating the more players

ooperate, which is further reinforced by the fact that defectors

uffer less from congestion the larger the number of cooperating

layers. For this reason, the results for a generic impact function

ummarized in the first part of Proposition E.1 below, are similar

s for charity goods. 

For I k = βk , we again additionally assume for this case that

 > −c, so that a player who by cooperating would forego the

ull value of the collective good (and who is presently alone to

efect, so that there is no congestion), would prefer keeping this

alue rather than obtaining the benefit from cooperating. As d k =
V ( 1 −w 

k ) 
( n −k )( 1 −w 

n ) 
− c, it follows that �d < 0, and by the analysis in

ection 2 , when �d changes sign, the game is a Snowdrift game.

ust as with standard charity good, when all players defect, a single

layer who switches to cooperating does not forego any benefits

s no value of the collective good is produced, but obtains a bene-

t −c. It follows that the game cannot be a Prisoner’s Dilemma;

herefore, if �d does not change sign, the game is a Harmony

ame. 

Again taking the case of two players as a starting point to look

t the effect of the degree of complementarity, we immediately

ote that the case of two players is indistinguishable for the char-

ty good and the congestible charity good. This is because a fixed

enefit is obtained when contributing. Moreover, when one player

ontributes and the other receives, with a congestible charity good,

he value of the charity good is divided over one player, so that we

et the same value as with a non-congestible charity good. Finally,

t continues to be the case that when no player contributes, both

layers obtain zero. Therefore, we continue to obtain that as the

egree of complementarity is increased, the game switches from a

nowdrift game to a Harmony Game, leading to a common-enemy

ffect. 

When looking at the effect of increases in the degree of

omplementarity for generic n , it is clear that the direction of

he effect of w on d k is the same, whether or not the char-

ty good is congestible. The only difference with Fig. 6 (char-

ty good), is that because of congestion the benefits foregone
hen a low number of players cooperates are smaller be-

ause of congestion. We therefore immediately move to Propo-

ition C.1, which shows similar results as for standard charity

oods. 

roposition E.1. Consider the production of a congestible charity

ood with n ≥ 2. Then for any impact function I k that strictly in-

reases in k and for which ∂ I k / ∂ α ≤ 0, if an interior fixed point x ∗

xists, we have a Snowdrift game (the fixed point is stable), and

t is the case that ∂ x ∗/ ∂ α ≥ 0. Specifically with impact function βk 

n (5) , when w < w n −1 , the game is a Snowdrift game and ∂ x ∗
∂w 

> 0

common-enemy effect); when w ≥ w n −1 , the game is a Harmony

ame. It is the case that w n −1 
< 
> 

1 for γ > 
< 
( n − 1 ) V/n . 

roof. For generic I k , given that d k = −I k / ( n − k ) − c, and given

hat I k strictly increases in k , and given that furthermore more co-

perating players means less congestion among recipients, it fol-

ows that �d < 0, with the rest of the analysis qualitatively iden-

ical to the one for standard charity goods (cf. Result 3.2(b) in

eña et al. (2014) ). 

For I k = βk , using (2) , and plugging in the value for d k calcu-

ated in Section 3 for the congestible charity good, for w � = 1, it fol-

ows that 

 ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

[ 

−
V 

(
1 − w 

k 
)

( n − k ) ( 1 − w 

n ) 
− c 

] 

Using the binomial theorem, this is re-expressed as: 

 ( x ) = −c − V 

1 − w 

n 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

(
1 − w 

k 
)

( n − k ) 
(E.1) 

Note now that ( 
n − 1 

k 
) 1 

( n −k ) 
= 

1 
n ( 

n 

k 
) . Using the fact that

 n 
k =0 ( 

n 

k 
) x k ( 1 − x ) n −k = 1 , so that 

∑ n −1 
k =0 

( 
n 

k 
) x k ( 1 − x ) n −k = 1 − x n , we

an write 

n −1 
 

k =0 

(
n 

k 

)
x k ( 1 − x ) 

n −1 −k = 

1 

1 − x 

n −1 ∑ 

k =0 

(
n 

k 

)
x k ( 1 − x ) 

n −k = 

1 − x n 

1 − x 

We conclude that 

n −1 
 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 1 

( n − k ) 
= 

1 − x n 

n ( 1 − x ) 
(E.2) 

In the same way, note that 
∑ n 

k =0 ( 
n 

k 
) ( wx ) k ( 1 − x ) n −k =

( wx + 1 − x ) n , so that 
∑ n −1 

k =0 
( 
n 

k 
) ( wx ) k ( 1 − x ) n −k = ( wx + 1 − x ) n −

( wx ) n . It follows that 

n −1 
 

k =0 

(
n 

k 

)
( wx ) 

k 
( 1 − x ) 

n −1 −k = 

1 

1 − x 

n −1 ∑ 

k =0 

(
n 

k 

)
( wx ) 

k 
( 1 − x ) 

n −k 

= 

( wx + 1 − x ) 
n − ( wx ) 

n 

1 − x 

We conclude that 

n −1 
 

k =0 

(
n − 1 

k 

)
( wx ) 

k 
( 1 − x ) 

n −1 −k 1 

( n − k ) 
= 

( wx + 1 − x ) 
n − ( wx ) 

n 

n ( 1 − x ) 

(E.3) 
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Table F.1 –F.2 . 
Using (E.2) and (E.3) and substituting into (E.1) , it follows that:

g ( x ) = − V 

1 − w 

n 

(wx ) 
n + ( 1 − x n ) − ( wx + ( 1 − x ) ) 

n 

n ( 1 − x ) 
− c for w � = 1 

(E.4)

Using (2) , and plugging in the value for d k calculated in

Section 3 for the congestible charity good for w = 1 , it follows

that 

g ( x ) = 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k 

[
− kV 

n ( n − k ) 
− c 

]

which using the binomial theorem can be written as 

g ( x ) = −V 

n 

n −1 ∑ 

k =0 

(
n − 1 

k 

)
x k ( 1 − x ) 

n −1 −k k 

n − k 
− c 

Note now that ( 
n − 1 

k 
) k 

n −k 
= 

( n −1 )! 
k !( n −1 −k )! 

k 
n −k 

= 

( n −1 )! 
( k −1 )!( n −k )! 

=

( 
n − 1 

k − 1 
) , so that g ( x ) can be rewritten as 

g ( x ) = −V 

n 

n −1 ∑ 

k =1 

(
n − 1 

k − 1 

)
x k ( 1 − x ) 

n −1 −k − c (E.5)

Also, 
∑ n 

k =1 ( 
n − 1 

k − 1 
) x k −1 ( 1 − x ) n −1 −( k −1 ) = 

1 −x 
x 

∑ n 
k =1 ( 

n − 1 

k − 1 
)

x k ( 1 − x ) n −1 −k = 

1 −x 
x 

∑ n −1 
k =1 

( 
n − 1 

k − 1 
) x k ( 1 − x ) n −1 −k + x n −1 = 1 . 
Table F.1 

List of Symbols Used. 

Symbol Definition 

A strategy of cooperating 

a k cooperator’s fitness when k other group players cooperate 

B strategy of defecting 

b k defector’s fitness when k other group players cooperate 

B a,k by-product benefit the focal player obtains from the fact that anoth

focal player currently cooperate, and when the focal player coop

B b,k by-product benefit the focal player obtains from the fact that anoth

focal player currently cooperate, and when the focal player defec

c cooperation costs (assumed negative for charity goods) 

C k net cost of cooperating rather than defecting when k other players

c ∗( w, n ) level of cooperation costs separating large from small cooperation 

d k gain the focal player makes by switching from defecting to coopera

D k taking as a starting point the case where a total of k players in a g

player switches from defecting to cooperating (equal to d k + k B a,

d gain sequence, or ( d 0 , d 1 , . . . , d n −1 ) 

�d k first forward difference of d k , or d k +1 − d k 
�d sequence of first forward differences, or ( �d 0 , �d 1 , . . . , �d n −2 ) 

f A ( x ) fitness of cooperating 

f B ( x ) fitness of defecting 

g ( x ) gain function, equals f A (x ) − f B (x ) 

I k impact function ( = value of collective good when k group players c

n number of players in group 

P punishment payoff when n = 2 , payoff when both players defect 

R reward payoff when n = 2 , payoff when both players cooperate 

S sucker payoff when n = 2 , payoff cooperating player when other 

T temptation payoff when n = 2 , payoff defecting player when othe

V value of the collective good when all players cooperate 

w degree of complementarity 

w 0 degree of complementarity such that c = δ0 

w n −1 degree of complementarity such that c = δn −1 

x fraction of cooperating players 

x ∗ fixed point fraction of cooperating players, such that g( x ∗) = 0 

α degree of adversity 

βk impact function with specific functional form 

δk added benefit ( = fitness net of cooperation costs) to individual play

cooperate 

θ fixed benefit from defecting (relevant for commons good) 
It follows that 

n −1 
 

k =1 

(
n − 1 

k − 1 

)
x k ( 1 − x ) 

n −1 −k = 

x 
(
1 − x n −1 

)
1 − x 

(E.6)

Plugging ( E.6 ) into ( E.5 ), we obtain that 

 ( x ) = −
V x 

(
1 − x n −1 

)
n ( 1 − x ) 

− c for w = 1 . (E.7)

 E.4 ) and ( E.7 ) cannot be solved for x ∗ explicitly, and therefore x ∗ is

nly implicitly given by the value of x such that the right-hand side

n ( E.4 ) and ( E.7 ) equals zero. Still, we know that g(0) = −c + δ0 =
c, and that g(1) = −c − V ( 1 −w 

n −1 ) 
1 −w 

n = −c + δn −1 . Given that δn −1 

quals −V for w = 0 , given our assumption that V > −c > 0 , and

iven that δn −1 increases in w , we conclude that for any consid-

red −c, we can always find a sufficiently small w such that g ( x )

hanges sign from g (0) to g (1). It follows that, for w < w n −1 (where

 n −1 denotes the level of w such that −δn −1 = −c), an interior

oint exists. For such an interior point, just as is the case with

 charity good, given the fact that ∂ d / ∂ w > 0, it follows that

 g ( x )/ ∂ w > 0, which along with the fact that ∂ g ( x )/ ∂ x < 0 means

hat ∂ x ∗/ ∂ w > 0 (see Section 2 ); this again implies a common-

nemy effect where an increase in w increases the ESS fraction of

ooperating players. �

ppendix F: List of symbols used, and list of terminology used 
er player cooperates rather than defects when k other players than the 

erates himself (equal to a k +1 − a k ) 

er player cooperates rather than defects when k players other than the 

ts himself (equal to b k +1 − b k ) 

 cooperate (equal to −d k ) 

costs 

ting when k other players cooperate 

roup cooperate, the sum of the gains the n players obtain when one 

k −1 + ( n − k − 1 ) B b,k ) 

ooperate) 

player defects 

r player cooperates 

er of cooperating rather than defecting when k other group players 
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Table F.2 

List of Definitions. 

Term Definition 

boomerang effect effect whereby defecting player becomes victim of own defection, in obtained reduced benefits 

charity good good that is non-congestible, but excludable (only defectors benefit) 

club good good that is non-congestible, but excludable (only cooperators benefit) 

common-enemy effect/ hypothesis effect/hypothesis saying that a harsher environment (higher degree of adversity) makes cooperation more likely 

commons good good that is not excludable, but congestible (referred to as congestible public good in most of the paper) 

competing effect/ hypothesis effect/hypothesis saying that a harsher environment (higher degree of adversity) makes cooperation less likely 

congestible property of a good that the individual players’ benefits are affected by number of benefits enjoying the good 

degree of adversity any measure that, when increased,decreases the fitness of an individual, holding the behavior of this individual fixed 

and of any individuals with whom the individual interacts 

degree of complementarity extent to which the last players to cooperate in a group increase the value of the collective good compared to the first 

cooperating players, with the value of the collective good when all players cooperate fixed 

degree of synergy extent to which the last players to cooperate in a group increase the value of the collective good compared to the first 

cooperating players, with the value of the collective good when one player cooperates fixed 

excludable property of a good that the individual can be excluded from benefiting from the good depending on his strategy 

Harmony Game game with a dominant strategy to cooperate 

impact function function relating number of cooperating players to value of the collective good produced 

Prisoner’s Dilemma game with a dominant strategy to defect 

private good good that is both excludable and congestible (equivalent to a congestible club good with a linear impact function) 

public good good that is both non-excludable and non-congestible 

Snowdrift game game where individual player is better off defecting when all players cooperate, and better off cooperating when all 

players defect 

Stag Hunt game where individual player is better off defecting when all players defect, and better off cooperating when all 

players cooperate 

sucker effect effect whereby cooperating player benefits less from cooperating 
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