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Piazza della Scienza 3, I-20126 Milano, Italy
eINFN — Sezione di Milano-Bicocca,

Piazza della Scienza 3, I-20126 Milano, Italy.

E-mail: b.dewit@uu.nl, sameer.murthy@kcl.ac.uk,

valentin.reys@unimib.it

Abstract: We develop BRST quantization of gauge theories with a soft gauge algebra

on spaces with asymptotic boundaries. The asymptotic boundary conditions are imposed

on background fields, while quantum fluctuations about these fields are described in terms

of quantum fields that vanish at the boundary. This leads us to construct a suitable
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background fields and ghosts are then invariant under the equivariant transformations while
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1 Introduction

The standard quantization of gauge theories, especially in the context of perturbation the-

ory, is carried out by imposing suitable gauge conditions that require the introduction of

so-called ghost fields [1–3]. The theory is then no longer invariant under local gauge trans-

formations, but under a rigid fermionic nilpotent variation δbrst known as BRST symme-

try [4, 5]. When the generators of the gauge group close under commutation, the quantum

action involves terms that are bilinears of ghost and anti-ghost fields. The BRST variations

of the original fields can be directly expressed in terms of the original gauge transforma-

tions with their parameters replaced by the ghost fields. The partition function for BRST

invariant operators as well as the S-matrix are then independent of the gauge condition.1

The formal structure of BRST transformations can in certain cases also be used in

the study of topological theories, where one has a nilpotent fermionic operator δ, often

arising as a twisted supercharge of some supersymmetric theory [11, 12]. Here the ghosts

will usually not originate from quantizing the theory, but they are provided by the matter

fermions of the original theory. The functional integral then localizes to the δ-cohomology.

More generally, one can consider a fermionic symmetry operator δeq with algebra δeq
2 = δξ̊,

where δξ̊ is the generator of a compact bosonic symmetry. In this case one can apply the

powerful mathematical framework of equivariant localization [13–15], with the result that

the functional integral will localize to the δeq-cohomology. This technique has been used

to great effect in the context of supersymmetric gauge theories [16], by choosing δξ̊ to be

a combination of a compact isometry and internal symmetry variations. These techniques

can be extended to supersymmetric theories on curved manifolds admitting non-trivial

rigid symmetries [17].

1When the gauge algebra closes only modulo the equations of motion, then additional terms will be

required of higher order in the ghost and anti-ghost fields in both the action and the BRST transformations.

In that case one is dealing with an open BRST algebra [6–9]. For a review, see [10].
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These developments have led to a large number of applications, but essentially all of

them deal with rigid supersymmetry (see the review [18] for a collection of recent results).

In this paper we lay out a formalism for local supersymmetry, which can account for

the fluctuations of (super-)gravitons in the path integral. We were motivated to study

this problem in the context of applying localization to determine the exact entropy of

BPS black holes [19] in supergravity — a program which has already produced interesting

results [20, 21], but where the underlying formalism needs to be put on a more rigorous

footing. Hence the focus in this paper will be on the complications that one encounters

when attempting to apply localization to theories with fluctuating (super-)gravitons.

The power of the localization method is that it reduces an infinite-dimensional func-

tional integral to an integral over δeq-invariant field configurations. This is an enormous

reduction which, in lucky situations, could even lead to a finite-dimensional integral. Field

configurations that are δeq-invariant are necessarily δξ̊-invariant, and an appropriate choice

of the background bosonic symmetries δξ̊ constrains the field configurations to fluctuate

only along a restricted set of directions in space-time as well as in field space. In theories

of supergravity, however, the meaning of δeq and δξ̊ are not a priori clear, as both super-

symmetry as well as space-time translations are part of the gauge algebra of supergravity.

One situation in which we can make sense of a rigid symmetry in a gravitational theory is

to consider a space with a boundary and fix the behavior of all the fields near the bound-

ary.2 The functional integral is then performed over all the field fluctuations about a fixed

background field configuration that satisfies the boundary conditions.

A first natural step in this situation would be to recast the problem in the background

field formalism. In trying to work out the details, however, we run into a technical hurdle,

namely that a general understanding of the background field method is lacking for gauge

theories with soft algebras, i.e. theories in which the structure ‘constants’ of the gauge

algebra are functions of fields (as is the case for supergravity). We solve this problem

by constructing a nilpotent BRST operator for soft gauge algebras in a situation where

the fields have been split into background and quantum pieces, and by introducing two

corresponding sets of ghosts. The BRST operator then acts on both the classical and the

quantum fields, as well as on the two sets of ghosts. Subsequently we consider a func-

tional integral that only depends on the background fields (but not, as it turns out, on

the background ghosts), which is gauge independent provided the background fields are

invariant. As a next step we deform the BRST operator to an equivariant symmetry δeq,

by appropriately freezing the background fields and ghosts, so as to obtain a rigid super-

symmetry algebra of the boundary, with an action on the full space of classical as well

as quantum fields. Our construction is very general in that it provides a framework for

equivariant localization for any gauge algebra (including soft algebras) with some choice of

a rigid subalgebra that is picked by the boundary.

At a technical level, our problem involves setting up the action of δeq on the set of

all fields in the gauge-fixed theory, and computing the δeq-cohomology. Different methods

2In the context of AdS/CFT this is particularly natural, and, as is well-known, the space of boundary

configurations of the bulk gravitational theory couples to the non-gravitational theory and thus inherits its

rigid symmetries.
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have been used in the past to solve this cohomology problem, including BRST-based meth-

ods [22]. We refer the reader to [23] for a comprehensive review. The main new points

that we discuss in this paper are functional integrals in theories with soft gauge algebras,

and the general mechanism of how background symmetries act on quantum fields. The

application to localization in supergravity can then be accomplished by specializing to a

subalgebra of the background isometries that contains a supersymmetry which squares to

a compact background isometry. We then show that the functional integral localizes to the

space of δeq-invariant field configurations. This should, for instance, enable one to carry

out a first-principles calculation of the exact quantum entropy of half-BPS black holes

in N = 2 supergravity, thus completing the analysis of [20, 21]. Although the present

paper is inspired by thinking about localization for BPS black holes in supergravity, we

should stress that we present a rather general formalism that can equally well be used in

a broader context.

The plan of the paper is as follows. In section 2 we present a brief review of BRST

quantization for soft gauge algebras and establish the notation. For simplicity we restrict

ourselves to bosonic gauge invariances only, but at the end of the section we indicate how to

deal with the more general case. Subsequently we introduce the background field formula-

tion in section 3. We define a functional integral that only depends on the background fields

and that is independent of the gauge condition when the background fields are invariant.

In section 4 we discuss an equivariant cohomology that arises upon a specific deformation

where all the background fields and ghosts are invariant and the quantum fields and ghosts

transform under δeq, which squares to a background isometry δξ̊. Under certain conditions

the functional integral introduced in section 3 is also invariant under this equivariant al-

gebra. In the next section 5, we demonstrate how this equivariant algebra can be used for

localization. Finally in section 6 we present further details on how to apply our method

when determining BPS black hole entropy.

2 BRST cohomology for soft algebras

To introduce our notation we first define the BRST transformations in the generic case of

a gauge theory of bosonic gauge transformations with a gauge algebra that closes off shell

(i.e. without the need of imposing the field equations). Hence we have gauge transforma-

tions expressed in terms of corresponding space-time dependent parameters ξα(x). The

infinitesimal gauge transformations of the fields φi are written as follows,

δφi = R(φ)iα ξ
α , (2.1)

where R(φ)iα may include derivatives acting on the parameters ξα(x) and may depend

non-linearly on the fields φi. They must satisfy the general closure relation

δ(ξ1) δ(ξ2)− δ(ξ2) δ(ξ1) = δ(ξ3) , (2.2)

with ξ3
α = fβγ

α ξ1
β ξ2

γ . The structure ‘constants’ fβγ
α may depend on φi and follow

directly from the closure relation (2.2). This leads to the following result,

Rj[α ∂jR
i
β] =

1

2
fαβ

γ Riγ . (2.3)
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Upon applying a third infinitesimal gauge transformation one derives the corresponding

Jacobi identity,

f[αβ
δ fγ]δ

ε +Rj[α ∂jfβγ]
ε = 0 . (2.4)

Gauge algebras with field-dependent structure constants are often called soft algebras.

Supergravity theories are usually based on a soft gauge algebra. The closure relation (2.3)

and the corresponding Jacobi identy (2.4) will play an important role throughout this paper.

The BRST transformations for the fields φi and the ghosts cα then take the follow-

ing form,

δbrstφ
i = R(φ)iα Λ cα ,

δbrstc
α =

1

2
fβγ

α cβ Λ cγ . (2.5)

Here we have introduced an auxiliary anti-commuting number Λ, so that the fields and their

variations have the same statistics. Its presence also helps to keep track of the various minus

signs that one will encounter in the calculations. It is straightforward to verify that the

above transformations are nilpotent when acting on φi or cα by virtue of (2.3) and (2.4),

δbrst
2 φi = 0 , δbrst

2 cα = 0 . (2.6)

To see this one applies two consecutive BRST transformations with anti-commuting pa-

rameters Λ1 and Λ2.

The gauge-invariant classical Lagrangian Lclass(φ) is obviously BRST invariant, be-

cause the BRST transformations on the fields φi take the form of an infinitesimal gauge

transformation with field-dependent parameters. We allow for an arbitrary Lagrangian of

this type, which may be formulated in space-times of various signatures. In addition we

must include an extra BRST invariant term denoted by Lg.f. to fix the gauge, which will

also provide the ghost-dependent terms in the full quantum action. This requires the intro-

ducion of anti-ghost fields bα and Lagrange multiplier fields Bα, which will also transform

under nilpotent BRST transformations that we will define momentarily. The invariance of

the action Lg.f. is then achieved by writing it as a BRST transformation of the so-called

gauge fermion,

Lg.f. = ∂Λ δbrst

[
bα F (φ)α

]
. (2.7)

When δbrstbα is proportional to Bα, then Bα will indeed act as a Lagrange multiplier for

the gauge choice F (φ)α = 0. Note that we have extracted the auxiliary anti-commuting

number Λ by a left derivative ∂Λ.

Choosing δbrstbα = ΛBα and δbrstBα = 0, one ensures that the BRST transformations

on bα and Bα are indeed nilpotent. Subsequently one obtains the following expression

for Lg.f.,

Lg.f. = Bα F (φ)α − bαR(φ)jβ c
β ∂jF (φ)α , (2.8)

where we also assumed that the φi are commuting fields. The last term is precisely the

Faddeev-Popov ghost Lagrangian [3]. Hence the BRST Lagrangian equals

Lbrst(φ
i, cα, bα, Bα) = Lclass(φi) + Lg.f.(φi, cα, bα, Bα) , (2.9)
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which is invariant under the combined BRST transformations

δbrstφ
i = R(φ)iα Λ cα , δbrstbα = ΛBα ,

δbrstc
α =

1

2
fβγ

α cβ Λ cγ , δbrstBα = 0 .
(2.10)

The action corresponding to the Lagrangian (2.9) can be used to define a corresponding

path integral by integrating over the various fields. Here it is important that the integral

measure is also invariant under the BRST transformations. The BRST cohomolgy is based

on the fact that the BRST transformations are nilpotent on all the fields.

The quantities F (φ)α are known as the gauge-fixing terms and ensure that the gauge

invariance is removed. In principle this implies that the number of degrees of freedom

will change, because the gauge fields will now acquire an additional degree of freedom.

However, at the same time we have included a Lagrange multiplier field Bα of the same

statistics as the corresponding gauge field, as well as a ghost field cα and an anti-ghost

field bα of opposite statistics. Hence the difference between the numbers of bosonic and

the number of fermionic degrees of freedom remains unchanged.

There may be additional problems when the gauge-fixing terms fail to fix all the gauge

degrees of freedom entirely. In that case the ghost system will have a secondary gauge

invariance which must be fixed by repeating the same procedure and introducing a next

generation of ghost fields. Such a phenomenon is known to occur, for instance, for anti-

symmetric tensor gauge fields [24, 25]. An elegant way to deal with this situation has

been described in [9]. Furthermore the expectation values of the gauge-fixing terms must

remain zero at the quantum level, so that the BRST symmetry will not be realized in a

spontaneously broken way [26].

What remains is to consider the extension to the case of a gauge algebra with both

bosonic and fermionic generators. In principle this extension is standard (see e.g. [10]), and

we briefly introduce the relevant notation. Let us first consider the matter fields φi, which

can refer to either commuting (bosonic) or anti-commuting (fermionic) fields. To each field

we assign a statistical index εi, equal to 0 when the field is bosonic and to 1 when the field

is fermionic, so that φiφj = (−)εiεjφjφi. Likewise we introduce similar indices εα for the

transformation parameters. Note that these indices are defined modulo 2. These definitions

now enable one to define statistical indices for all quantities involved. For instance we have

ε(Riα) = εi + εα , ε(fαβ
γ) = εα + εβ + εγ , fαβ

γ = (−)εα+εβfβα
γ . (2.11)

In the context of BRST the indices of the additional fields and the parameter follow directly

from the definitions above,

ε(cα) = ε(bα) = εα + 1 , ε(Bα) = εα , ε(Λ) = 1 . (2.12)

Finally we should point out that the derivative with respect to an anti-commuting quantity

is ambiguous when acting on a commuting composite. In that case one has to distinguish

between a right- and a left-derivative (whose sum will be vanishing).

Note that in the main body of the paper we assume that all the gauge field generators

are bosonic to avoid heavy notation and to keep the derivations as clear as possible. This
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means that, when considering theories with both bosonic and fermionic generators, one

cannot just copy the results from this paper, because we may have accidentally ordered

the terms in a way that is allowed for the purely bosonic case, but not for the mixed case.

3 The background field split

As already explained in the introduction we will be dealing with a gauge theory in the

presence of a boundary. At this boundary one must choose certain boundary conditions

and the obvious one is to require that the boundary will be invariant under a subgroup

of the full local gauge group. Hence one has to distinguish between the transformations

that leave the boundary invariant and the transformations that act in the bulk, which will

be integrated over in the path integral. This can be done systematically by first perform-

ing a background field split where the background refers to the boundary configuration

extended into the bulk. The quantum fields are then viewed as fluctuations about this

background and will eventually be integrated over in a path integral. At the boundary the

quantum fields will vanish, but for the moment we refrain from discussing the details of

these boundary conditions. For simplicity we restrict ourselves again to bosonic fields and

transformation parameters.

To set up the background field split, let us consider a gauge theory with fields generi-

cally denoted by φi, which are decomposed into background fields φ̊ i and quantum fields φ̃ i.

The latter are the fields that one has to integrate over in a path integral. This integration

requires to make use of a standard quantization method such as BRST quantization. The

most straightforward decomposition between background and quantum fields is

φi = φ̊ i + φ̃ i , (3.1)

but in specific cases one may prefer to employ more sophisticated decompositions. Even-

tually the background fields are fixed at the boundary of the space and they are continued

into the bulk. We assume that the precise continuation is not important because the devi-

ation from their value in the bulk is characterized by the quantum fields which eventually

will be integrated out. The gauge transformations are as specified in (2.1) and they can

correspondingly be decomposed in two different ways. The background transformations δ̊

take the form,

δ̊φ̊ i = R(φ̊)iα ξ̊
α , δ̊φ̃ i = ∆R(φ̊, φ̃)iα ξ̊

α , (3.2)

where ∆R(φ̊, φ̃)iα ≡ R(φ̊ + φ̃)iα − R(φ̊)iα. The gauge transformations δ̃ that are relevant

when integrating over the fields φ̃ i must leave the background fields invariant and thus

take the form,

δ̃φ̊ i = 0 , δ̃φ̃ i = R(φ̊+ φ̃)iα ξ
α , (3.3)

and in the following we will keep referring to them as quantum transformations.

We start by considering the commutators of the quantum and background transfor-

mations acting on the background fields. For the background fields φ̊ i a straightforward

– 6 –
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calculation yields [
δ̃(ξ1) δ̃(ξ2)−

(
1↔ 2

)]
φ̊ i = 0 ,[̊

δ(ξ̊) δ̃(ξ)− δ̃(ξ) δ̊(ξ̊)
]
φ̊ i = 0 ,[̊

δ(ξ̊1) δ̊(ξ̊2)−
(
1↔ 2

)]
φ̊ i = f(φ̊)αβ

γ ξ̊1
α ξ̊2

β R(φ̊)iγ . (3.4)

Subsequently one determines the same commutators, but now acting on the quantum fields,[
δ̃(ξ1) δ̃(ξ2)−

(
1↔ 2

)]
φ̃ i = f(φ̊+ φ̃)αβ

γ ξ1
α ξ2

β R(φ̊+ φ̃)iγ ,[̊
δ(ξ̊) δ̃(ξ)− δ̃(ξ) δ̊(ξ̊)

]
φ̃ i = f(φ̊+ φ̃)αβ

γ ξ̊α ξβ R(φ̊+ φ̃)iγ ,[̊
δ(ξ̊1) δ̊(ξ̊2)−

(
1↔ 2

)]
φ̃ i = f(φ̊)αβ

γ ξ̊1
α ξ̊2

β ∆R(φ̊, φ̃)iγ

+
[
f(φ)− f(φ̊)

]
αβ
γ ξ̊1

α ξ̊2
β R(φ̊+ φ̃)iγ . (3.5)

It is clear that the combined quantum and background transformations generate a closed

algebra on φ̊ i and φ̃ i. Its global structure has the following form,

[ δ̊ , δ̊ ] = δ̊ + δ̃ , [ δ̊ , δ̃ ] = δ̃ , [ δ̃ , δ̃ ] = δ̃ . (3.6)

When the algebra is soft, meaning that the structure ‘constants’ depend on the fields, then

the background transformation will not form a subgroup. However, the closure of the full

algebra remains unaffected.

Therefore we can construct a BRST complex by introducing two sets of ghosts, c̊α

and cα, corresponding to the background and the quantum transformations, respectively.

Having introduced these variables, it is then straightforward to define the BRST transfor-

mations, which will eventually give rise to a nilpotent BRST charge. The BRST transfor-

mation on the fields φ̊ i and φ̃ i follows upon substituting ξα = Λ cα and ξ̊α = Λ c̊α. The

result reads as follows,

δbrstφ̊
i = R(φ̊)iα Λ c̊α ,

δbrstφ̃
i = R(φ̊+ φ̃)iα Λ (cα + c̊α)−R(φ̊)iα Λ c̊α . (3.7)

Here and in the remainder of this paper we will take into account that the theory contains

both commuting and anti-commuting fields and gauge parameters. As it turns out the

corresponding changes are rather minimal. As before the BRST transformations of the

ghost fields follow straightforwardly from the commutation relations given in (3.4) and (3.5)

and yield

δbrst c̊
γ =

1

2
f(φ̊)αβ

γ c̊αΛ c̊β ,

δbrst c
γ =

1

2
f(φ)αβ

γ cαΛ cβ + f(φ)αβ
γ c̊αΛ cβ +

1

2

[
f(φ)− f(φ̊)

]
αβ
γ c̊α Λ c̊β

=
1

2
f(φ)αβ

γ (c+ c̊)αΛ (c+ c̊)β − 1

2
f(φ̊)αβ

γ c̊α Λ c̊β , (3.8)
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where φi = φ̊ i + φ̃ i. An interesting observation is that (3.8) leads to

δbrst (c+ c̊) γ =
1

2
f(φ)αβ

γ (c+ c̊)αΛ (c+ c̊)β , (3.9)

which confirms the consistency of splitting the ghosts into background ghosts c̊α and quan-

tum ghosts cα, even in the case that the gauge algebra is soft! Note that the anti-ghosts bα
and the Lagrange multiplier fields Bα should be regarded as quantum fields, so that their

BRST transformations remain unchanged and are given by

δbrst bα = ΛBα , δbrstBα = 0 . (3.10)

The closure of the underlying gauge algebra expressed by the closure relations (3.4)

and (3.5) now guarantees that the BRST charge is nilpotent, which can also be verified by

explicit calculation,

δbrst
2 = 0 . (3.11)

The corresponding BRST invariant action is a generalization of (2.9). However, in this

case one introduces only anti-ghosts bα and Lagrange multipliers Bα associated with the

quantum fields; for the background fields there will be no gauge-fixing terms. The quantum

action then takes the form,

Sbrst[φ̃
i, cα, bα, Bα; φ̊ i, c̊α] =

∫
dnx

[
Lclass(φ̊+ φ̃) +Bα F (φ̊, φ̃)α (3.12)

− (−)εα+εβ+εj bαR(φ̊+ φ̃)jβ (c+ c̊)β ∂̃jF (φ̊, φ̃)α

− (−)εα+εβ+εj bαR(φ̊)jβ c̊
β (∂̊ − ∂̃)jF (φ̊, φ̃)α

]
.

With suitable boundary conditions this is a BRST invariant functional of both the quantum

and the background fields. Here we have assumed that the fields live in an n-dimensional

space, and ∂̊j and ∂̃j denote the derivatives with respect to φ̊ j and φ̃ j , respectively. In

the above equation they are defined as left-derivatives. Furthermore the gauge conditions

Fα should be non-singular, meaning that F (φ̊, φ̃)α = 0 must fix the values of the quantum

fields φ̃ i. Finally we observe that the ghosts cα and c̊α carry ghost number +1, whereas the

anti-ghosts bα carry ghost number −1, so that the action (3.12) carries zero ghost number.

The next step is to consider a functional integral over the quantum fields φ̃ i and cα,

bα and Bα,

Z[φ̊] =

∫
Dφ̃ iDcαDbαDBα exp

[
Sbrst[φ̃

i, cα, bα, Bα; φ̊ i, c̊α]
]
. (3.13)

One can show that the restricted functional integration measure is BRST invariant un-

der the same conditions as the full functional integral without background field split-

ting, namely

∂iR(φ)iα = 0 , f(φ)αβ
β = 0 . (3.14)

Since the indices on the fields include their space-time arguments, these two expressions

are proportional to δn(0), where δn(x) is an n-dimensional delta function. Consequently
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they are ill-defined. This is a known complication, which has been studied in the past (see,

for instance, [27, 28]). On the basis of that we will assume from now on that the path

integral in (3.13) is indeed fully consistent with regard to BRST transformations. Note

that the action may still contain additional terms that depend exclusively on Bα, because

this field is BRST invariant. Irrespective of this, the integration measure for the fields bα
and Bα is BRST invariant by itself, so that no further modifications are required.

As already anticipated in the notation, the path integral Z[φ̊] does not depend on the

background ghosts. This follows directly from the observation that the right-hand side

carries zero ghost number. Indeed, one can easily verify that the terms in (3.12) that

are proportional to bα c̊
β will not contribute to the functional integral. We have thus

established that

δbrstZ[φ̊] =
∂Z[φ̊]

∂φ̊ i
R(φ̊)iα Λ c̊α , (3.15)

so that the functional integral is fully BRST invariant when the background specified by

the fields φ̊ i is invariant. Clearly the background ghosts only play an ancillary role here as

the parameters that specify the background transformations. The existence of a consistent

BRST complex that involves both quantum and background fields with corresponding ghost

fields is a non-trivial result. It is remarkable that this result also holds for theories with a

soft gauge algebra, where the structure constants depend on the fields.

To prove that the path integral (3.13) does not depend on the gauge condition, we first

extend it by including external sources coupling to single fields or to composite operators.

In this way one obtains a generating functional for Green’s functions in a particular gauge,

which can be used to derive BRST Ward identities. Hence we include an exponential factor

with a variety of external sources into the integrand of the path integral (3.13),3

exp

∫
dnx

[
Jb
α(x) bα(x) + J̃i(x) φ̃ i(x) + Jcα(x) cα(x) + JB

α(x)Bα(x) + · · ·
]
. (3.16)

The expansion of the path integral in terms of the external sources defines the correspond-

ing Green’s functions. Shifting the fields in (3.16) by the BRST-transformed fields leads

to a rearrangement of Green’s functions, while, on the other hand, the extra terms can

be eliminated by making use of the fact that Sbrst and the integration measure of the

functional integral is BRST invariant, up to the transformations of the background fields.

In this way one thus obtains the Ward identities between Green’s functions. There is an

implicit assumption here, namely that BRST symmetry is manifest and not realized in a

spontaneously broken way. If that were not the case, then the invariant action would con-

tribute to the Ward identities in the form of the divergence of the BRST Noether current.

Let us now derive two Ward identities and discuss their consequences. In the first one

we put all sources to zero with the exception of Jb
α. The Ward identity then takes the form∫

Dφ̃ iDcαDbαDBα exp

[
Sbrst +

∫
dny Jb

γ(y) bγ(y)

] ∫
dnxJb

α(x) ΛBα(x) = 0 , (3.17)

3External sources coupling to background fields are not revelvant here as the path integral does not

involve an integration over these fields.
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where we used the BRST variation of the anti-ghost field. Only the term linear in Jb
α

can give a non-zero contribution, because the ghost fields in the action are all paired with

anti-ghost fields. Since the source is not subject to any restriction it thus follows that the

expectation value of Bα must vanish, i.e.∫
Dφ̃ iDcαDbαDBα exp

[
Sbrst

]
Bα(x) = 0 . (3.18)

On the other hand, whether or not the expectation value of Bα will vanish is eventually a

dynamical question that depends on the details of the action Sbrst. When the expectation

value does not vanish, the BRST symmetry will be realized in a spontaneously broken way

in view of the fact that the expectation value of δbrstbα will not vanish. In that case the

Ward identity will receive extra contributions as we already indicated previously. However,

it is obvious that this option is of no physical interest, and one has to insist that BRST

invariance is manifestly realized [26].

For the second Ward identity we keep the dependence on the source Jb
α but in addition

we now consider a second source coupling to a composite operator ∆F (φ̃, φ̊)β . The terms

of higher order in Jb
α will not contribute, just as in the previous case, and we will restrict

ourselves to the first-order contribution in the composite operator. By differentiating with

respect to the two external sources one thus derives the following Ward identity,∫
Dφ̃ iDcαDbαDBα exp

[
Sbrst

]
×
[
∆F (φ̃, φ̊)β(y) ΛBα(x) + δbrst∆F (φ̃, φ̊)β(y) bα(x)

]
= 0. (3.19)

Upon integrating this result over x and y with a delta function δn(x− y) and contracting

the indices with δαβ , one recognizes that this result is precisely the original result (3.13) for

Z[φ̊] but now with a gauge-fixing term equal to F (φ̃, φ̊)α + ∆F (φ̃, φ̊)α, expanded to first

order in ∆Fα. This proves that Z[φ̊] is independent of the choice of the gauge condition.4

An interesting observation in view of what will be discussed later, is that the gauge

independence is not affected when including extra terms in the action that are BRST

exact, i.e. terms that can be written as the BRST variation of functions of the fields φ̃ i

and φ̊ i. In the specific context of BRST quantization this observation is not particularly

useful, as these terms will violate ghost number conservation. Only the gauge-fixing term,

which is also BRST exact, will preserve ghost number by virtue of the presence of the

anti-ghost field.

4 Equivariant cohomology

In the previous section we have presented a consistent background field split in which the

original fields have been decomposed into background and quantum fields, denoted by φ̊ i

and φ̃ i, respectively, thus doubling all the fields. Correspondingly we have also doubled

4This particular argument is a slight generalization of the analysis presented in [29], which was used to

derive the gauge independence of the S-matrix in gauge theories with quadratic gauge fixing (where BRST

is not nilpotent on the anti-ghost fields bα).
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the gauge transformations in terms of background and quantum gauge transformations,

and we have shown that they can be incorporated consistently into an extended BRST

complex. This extension can be given irrespective of whether the gauge algebra is soft or

not. We only used that the gauge transformations close off shell.

This particular set-up was proposed in order to deal with gauge theories in the pres-

ence of a boundary. The boundary values of the original fields, which will be motivated

primarily by physical considerations, are carried by the background fields φ̊ i that will be

smoothly continued into the bulk. The quantum fields φ̃ i, on the other hand, describe the

fluctuations in the bulk about the selected background fields; obviously the quantum fields

must therefore vanish at the boundary. Their fluctuations will eventually be integrated

over in a suitable path integral as was shown in the previous section.

The background fields φ̊ i will typically be invariant under an isometry group that

is a subgroup of the full group of background transformations. In the continuation of

the background fields into the bulk, the isometry group has to remain manifest. The

background ghosts should then be restricted to take their values in the isometry algebra.

All this implies that the BRST transformations on the background fields are necessarily

constrained to vanish,

δbrstφ̊
i = R(φ̊)iα Λ c̊α = 0 . (4.1)

Consequently the background ghosts c̊α, which play the role of symmetry parameters

associated to the background transformations, should vanish with the exception of those

that parametrize the isometry group of the background field configuration. Since the

isometry group is a subgroup of the full background symmetry group, this ensures that

the above restriction can be imposed consistently. Here we are implicitly assuming that

the isometry group is defined for the global background field configuration (i.e. also in

the bulk), which poses a restriction on how the background fields are continued into the

bulk. The non-vanishing background ghosts c̊α that parametrize the isometry group will

in general be subject to differential constraints that are implied by the appropriate Killing

equations associated with the background isometries. Under these conditions the structure

constants of the background isometry algebra follow obviously from the original structure

constants f(φ̊)αβ
γ upon considering the explicit embedding of the isometry group into the

full background symmetry group. As far as the BRST transformations are concerned the

possible field-dependence of f(φ̊)αβ
γ is not relevant in view of the constraint (4.1). Because

of this constraint the BRST transformations of the quantum fields φ̃ i simplify and take

the form

δbrstφ̃
i = R(φ̊+ φ̃)iα Λ (c+ c̊)α . (4.2)

Note that one can subsequently consider a possible subalgebra of the isometry algebra

by further restricting the number of background ghosts. In the subsequent discussion it

will be important that some of the background ghosts remain present and will generate a

non-trivial subgroup of the background isometries, so that (4.1) remains valid.

Let us now continue and consider the BRST transformation on the background ghosts,

δbrst̊c
α =

1

2
f(φ̊)βγ

α c̊βΛ c̊ γ . (4.3)
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This variation is consistent with the reduction of the background ghosts to the isom-

etry algebra. Therefore there is no need for introducing any additional constraints on

f(φ̊)αβ
γ c̊αΛ c̊β . As a result the BRST transformations on the quantum ghosts remain

unchanged,

δbrst c
α =

1

2
f(φ)βγ

α (c+ c̊)βΛ (c+ c̊)γ − 1

2
f(φ̊)βγ

α c̊β Λ c̊ γ . (4.4)

It is now straightforward to verify that the BRST symmetry is still nilpotent. As before

this requires to use the Jacobi identity (2.4), which simplifies for the background structure

constants because φ̊ i is now BRST invariant. Furthermore it follows from (3.15) that the

path integral (3.13) is BRST invariant as well.

None of the quantum fields are constrained, and therefore they will appear as before

in the functional integral (3.13); this integral now involves a coupling to a restricted set of

background fields, φ̊ i and c̊α, but nevertheless it remains well-defined, also in view of the

fact that the functional integral did not include an integration over the background fields

and ghosts.

Until now we did not change the original BRST algebra, but rather we adopted a special

field representation by requiring that the background fields φ̊ i were BRST invariant. This

implied that the background ghosts c̊α had to be restricted to take their values in the

corresponding isometry subalgebra. As a next step we now introduce a deformation of the

BRST algebra by imposing the condition that also background ghosts will remain invariant

under the algebra, without implying that the right-hand side of (4.3) must vanish. Upon

imposing this deformation both the background fields and the background ghosts will thus

remain invariant, while the transformations of the quantum fields are unchanged. We

denote the resulting variations by δeq, which take the following form,

δeq φ̊
i = 0 , δeq c̊

α = 0 ,

δeq φ̃
i = R(φ̊+ φ̃)iα Λ (cα + c̊α) ,

δeq c
α =

1

2
f(φ)βγ

α (c+ c̊)βΛ (c+ c̊)γ − 1

2
f(φ̊)βγ

α c̊β Λ c̊ γ . (4.5)

As the reader can verify these transformations are no longer nilpotent. Instead they define

an equivariant map. The relevant relations, which follow again by making use of the closure

relation (2.3) and the Jacobi identity (2.4), are

δeq
2 = δξ̊ , [δeq , δξ̊] = 0 . (4.6)

The new transformation δξ̊ acts on the quantum fields according to

δξ̊ φ̃
i = R(φ̊+ φ̃)iα ξ̊

α ,

δξ̊ c
α = f(φ̊+ φ̃)βγ

α (c+ c̊)β ξ̊γ , (4.7)

with the transformation parameter ξ̊α equal to

ξ̊α ≡ Λ[2 f(φ̊)βγ
α c̊β Λ1] c̊

γ . (4.8)
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Note that the ξ̊α take their values in the isometry algebra. The background fields and

ghosts are obviously invariant under δξ̊.

The equivariant algebra (4.6) must also be defined on the anti-ghosts and the Lagrange

multiplier fields. Assuming that δeq bα coincides with δbrst bα, one deduces the form of

δeqBα,

δeq bα = ΛBα ,

δeqBα =
1

2
f(φ̊)δε

β c̊ δ Λ c̊ ε f(φ̊)αβ
γ bγ . (4.9)

The action of δξ̊ on both bα and Bα then follows from imposing the algebra (4.6). The

result is

δξ̊ bα = ξ̊β f(φ̊)αβ
γ bγ ,

δξ̊ Bα = ξ̊β f(φ̊)αβ
γ Bγ . (4.10)

The variations δeq defined in (4.5), (4.9), and δξ̊ defined in (4.7), (4.10), have a well-defined

ghost number equal to 1 and 2, respectively.

One expects that the boundary should be invariant under both δeq and δξ̊. This is

directly confirmed by applying the generators of the equivariant algebra on the quantum

fields φ̃ i, cα, bα, and Bα, which themselves vanish at the boundary. Indeed it is easy to

verify that their variations under δeq and δξ̊ vanish also at the boundary by virtue of (4.1)

and the Jacobi identity for the structure constants of the background isometry algebra.

Note that this is a local result. The global boundary can only be invariant provided it

contains no singular points. Especially for spaces of Minkowskian signature this may be an

issue. Here we will ignore this subtlety and assume that the boundary is indeed regular.

The above considerations provide us with a special background isometry δξ̊ obeying

δξ̊ = δeq
2 that acts on all the quantum fields while leaving the background fields and ghosts

invariant. Hence the quantum fields do transform under the isometries of the background

and their transformation rules are specified by the terms in δeq proportional to the back-

ground ghosts c̊α.5

We already concluded that the functional integral Z[φ̊] in (3.13) is a BRST invariant

functional of the background fields φ̊ i, so that the BRST invariance of Z[φ̊] seems to

imply its invariance under δeq, and therefore also under δξ̊. This expectation is indeed

confirmed by explicit computations. According to (4.5) and (4.9) the operator δeq differs

from its nilpotent ancestor δbrst only in its action on the background ghosts c̊α and the

Lagrange multiplier fields Bα. Bearing in mind that φ̊ i is invariant, δeq(φ̊+ φ̃)i is identical

to the original BRST transformation so that the classical Lagrangian Lclass is also invariant

under δeq. However, the gauge-fixing term Lg.f. does explicitly depend on c̊α and Bα, so let

us take a closer look. First we note that the last line present in (3.12) will now vanish by

virtue of (4.1). Therefore the gauge-fixing term that appears in (3.12) becomes identical to

5Alternative ways of modifying the BRST algebra have been described in the literature (see e.g. [30–33]),

but they are conceptually different from the present proposal.
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(for convenience we specialize again to commuting gauge transformations and commuting

fields φ̊ i, φ̃ i),

Lg.f. = Bα F (φ̊, φ̃)α − bα δeqF (φ̊, φ̃)α . (4.11)

It is now clear that δeqLg.f. does not vanish. Instead it will be proportional to bα, resulting

from the variation of Bα given in (4.9) and from the fact that δeq
2Fα is non-vanishing and

equal to δξ̊ F
α. Not surprisingly these terms combine into the δξ̊ variation of the gauge

fermion bα F (φ̊, φ̃)α. Therefore we conclude that the action

Seq[φ̃ i, cα, bα, Bα; φ̊ i, c̊α] =

∫
dnx

[
Lclass(φ̊+ φ̃) + ∂Λ δeq

[
bα F (φ̊, φ̃)α

]]
(4.12)

satisfies

δeq Seq = δξ̊

∫
dnx

[
bα F (φ̊, φ̃)α

]
, (4.13)

where we wrote the variation δξ̊ outside the integral in view of the fact that the boundary

is invariant.

The functional integral Z[φ̊] can now also be written as

Z[φ̊] =

∫
Dφ̃ iDcαDbαDBα exp

[
Seq[φ̃ i, cα, bα, Bα; φ̊ i, c̊α]

]
, (4.14)

because the right-hand side of (4.13) will cancel under the functional integral over the ghost

fields for the simple reason that it generates terms proportional to the anti-ghosts without

corresponding ghosts. Furthermore the functional integration measure is also invariant

under δeq since the contributions of the variation from the ghosts and quantum fields

vanish by our earlier assumptions (3.14), and the transformations of the anti-ghosts bα and

Lagrange multipliers Bα have a trivial Jacobian. Putting these facts together, we reach

the conclusion that indeed δeq is a symmetry of the functional integral (3.13), i.e.,

δeq Z[φ̊] = 0 . (4.15)

Although there was no need for requiring that (4.13) must vanish in order to prove that

Z[φ̊] is invariant under δeq, we should point out that the situation will be different when

considering deformations of the integrand. Therefore we will assume henceforth that the

background ghosts are chosen such that the background isometry δξ̊ is compact, so that

integrals as in (4.13) will generically vanish.

Finally we consider the dependence of the functional integral on the gauge condition.

As it turns out, one can use the same strategy as followed at the end of section 3 to show

that the functional integral is gauge independent. One can also verify that deformations of

the functional integral associated with δeq-exact terms will leave the gauge independence

unaffected, provided that δξ̊ is compact. In this respect, the situation is similar to that of

the BRST complex, discussed in section 3.

5 Localization of the functional integral

The formulation developed in the previous sections seems ideally suited for applying local-

ization in a large class of theories that admit local supersymmetry transformations as part
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of their gauge algebra. In particular, we are now able to generalize previous applications

of localization, which so far have mainly been confined to gauge theories with rigid su-

persymmetry, to theories of supergravity. To do so, consider the functional integral (4.14)

where Lclass is a supergravity Lagrangian.6 The formalism does not rely on the particular

form of the classical Lagrangian, and we are able to discuss supergravity theories which

also include higher-derivative couplings, such as those discussed in [34–36]. Observe that

in an off-shell formulation of supergravity, the gauge-fixing described in sections 2 and 3

results in an equal number of bosonic and fermionic degrees of freedom. The manipula-

tions described in section 4 will only affect the number of background fields and ghosts, so

that the quantum fields will still comprise an equal number of bosonic and fermionic fields.

This is a useful feature of the covariantly quantized off-shell theory that we will use below.

Concerning the background fields and ghosts, we assume that the background isometries

constitute a rigid superalgebra. The invariance under these isometries then allows one to

consider a purely bosonic background.

Let us now turn to the localization strategy for evaluating (4.14). The main idea is

to deform the functional integral to reach a convenient point in field space where we can

evaluate it exactly by using semiclassical methods. Such a deformation Z[φ̊] = Z[φ̊; 0] →
Z[φ̊;λ] is defined by a corresponding deformation of the action Seq given in (4.12), by

Seq = S(0) → S(λ) = S(0) + λ δeqV, where λ is a real deformation parameter. The

expression for V is chosen to satisfy δeq
2 V = 0, so that the deformation is δeq-exact and

δξ̊V = 0. Differentiating with respect to the parameter λ pulls down a factor of δeqV in the

functional integral, so that we can write

d

dλ
Z[φ̊;λ] =

∫
Dφ̃ iDcαDbαDBα δeq

[
V exp[Seq + λ δeqV]

]
. (5.1)

Here we have used that Seq vanishes under the action of δeq, based on the restriction that

the background isometry δξ̊ should be compact (see the comment at the end of section 4).

Assuming that δeq can be represented as a differential operator in field space [37], we

conclude that
d

dλ
Z[φ̊;λ] = 0 . (5.2)

It is important to mention that one of the conditions for localization is that the manifold

on which the theory is defined is compact, which can only be achieved in the situations

we will be considering by introducing a cut-off on the asymptotics, as is for instance done

in AdS/CFT calculations. Our formalism enables us to consider such a boundary in a

systematic way that is consistent with supersymmetry, but one still has to investigate

whether sending the cut-off to infinity will not introduce any undesirable effects. Assuming

that this is not the case, then Z[φ̊;λ] will be independent of the deformation parameter.

An immediate consequence of the property (5.2) is that we can evaluate the original

functional integral by taking the parameter λ to be very large in order to reach a con-

6The functional integral in quantum field theory is, of course, only a formal physical concept that is not

well-defined, especially not in quantum gravity, because of severe short-distance singularities. As in many

supersymmetric theories, the hope is that supersymmetry holds at all scales, and that the formal procedure

based on localization will be valid, irrespective of the serious complications in the perturbative context.
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venient point in field space. In this regime, Z[φ̊;λ] localizes to the critical points of the

deformation δeqV. To explain how this limit works in detail, we make a convenient choice

for the deformation by adopting the following definition7

V =

∫
dnx

∑
ı̄

√
g̊ ψı̄ δeqψ

ı̄ , (5.3)

where we have introduced a suitably chosen background space-time metric and the sum

involves all fermion fields belonging to the quantum fields φ̃ i, with the notable exception

of the ones already present in the gauge-fixing conditions used to quantize the fermionic

gauge symmetries in the original functional integral. Correspondingly, we have split the

index i and denote the fermions entering V by an index ı̄. We also remind the reader that

we have previously imposed the condition that δeq
2 V must vanish. Indeed

δeq
2V = δξ̊

∫
dnx

∑
ı̄

√
g̊ ψı̄ δeqψ

ı̄ = 0 (5.4)

is satisfied based on the fact that the background isometry δξ̊ is compact. The deformed

action corresponding to (5.3) now takes the form,

S(λ) = Sclass[φ̊+ φ̃] +

∫
dnx

[
BαF (φ̊, φ̃)α + (−)εαbα δeqF (φ̊, φ̃)α

]
(5.5)

+ λ

∫
dnx

∑
ı̄

√
g̊
[
δeqψı̄ δeqψ

ı̄ − ψı̄ δeq
2ψı̄

]
.

It is important to stress that the above action is properly quantized and therefore free

of gauge redundancies, owing to the presence of the gauge-fixing terms. As a result, all

quantum corrections derived from it are well-defined for any value of the deformation

parameter λ. We also remind the reader that the functional integral is independent of the

gauge choices. This can be shown by following the same arguments as used at the end of

section 3 in the context of BRST cohomology.

In the limit λ → ∞ the critical points of the deformation dominate the functional

integral. We assume that this critical locus is bosonic, i.e. we can set all the anti-commuting

fields and ghosts to zero. The resulting localization manifold is

M =
{
δeqψ

ı̄ = 0 for all fermions ψı̄ ∈ φ̃ i
/
F (φ̊, φ̃)α = 0

}
≡
{
ta
}
, (5.6)

where the parameters ta are appropriately chosen coordinates on the solution set M. As

indicated, the localization manifold is subject to the bosonic gauge-fixing conditions which

ensure that quantum corrections are properly quantized on M, and (5.6) instructs us to

impose the vanishing of the δeq-variations for the fermion fields ψı̄.

To appreciate what the consequences are of the conditions δeqψ
ı̄ = 0, we remind the

reader that the purely bosonic terms of δeqψ
ı̄ take the form R(φ̊ + φ̃)ı̄ᾱ Λ(̊c + c)ᾱ, where

7Here the bar on the fermions ψ indicates an appropriate conjugation. The action of this conjugation

on the fields of the theory is known to be subtle even in gauge theories with rigid supersymmetry, as there

is always some tension between the reality conditions of fields and positive-definiteness of δeqV. The recent

work [38] on Euclidean supergravity may help in clarifying this issue.
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the index ᾱ refers to fermionic gauge parameters so that their corresponding ghosts are

commuting fields.8 For a bosonic localization manifold the dependence of R(φ̊ + φ̃)ı̄ᾱ on

the fermion fields is suppressed so that this manifold will involve the bosonic fields φ̃ ı̂,

subject to gauge conditions, and c ᾱ. Both types of fields must vanish on the boundary.

The background fields φ̊ i and c̊α are subject to the invariance condition (4.1). The back-

ground ghosts c̊α that parametrize the background isometries must be restricted such that

the square of the corresponding δeq variation yields a compact δξ̊ (cf. the discussion be-

low (4.15)). The equations R(φ̊+φ̃)ı̄ᾱ Λ(̊c+c)ᾱ = 0 then impose relations between the fields

φ̃ ı̂ and c ᾱ that lead to the localization manifold. This manifold will be parametrized in

terms of the independent coordinates ta that we have introduced in (5.6). Not surprisingly,

the same type of equations are encountered when determining supersymmetric field config-

urations in classical supergravity, where the ghost fields are replaced by the parameters of

the supersymmetry transformations. There are various ways to solve such equations, and

we will discuss a specific application in the next section by way of an illustration.

The localization manifoldM thus corresponds to the set of critical points of the defor-

mation with certain values for the bosonic fields φ̃ ı̂ and cᾱ, which we denote by φ̃ ı̂(t)|M and

cᾱ(t)|M. Fluctuations around the localization manifold also contribute to the functional

integral, and in the large-λ limit the one-loop contribution becomes exact. To see this, we

can expand the quantum fields as follows

φ̃ i = φ̃ i(t)
∣∣
M +

1√
λ
φ̃ i ′ , cα = cα(t)

∣∣
M +

1√
λ
cα ′ , (5.7)

where the fermionic fields φ̃ ı̄(t)|M and cα̂(t)|M vanish. As alluded to above, the anti-ghost

fields do not appear in the δeq-variation of the fermionic fields ψı̄. They are therefore not

part of the localization manifold and should be regarded as quantum fluctuations. Since,

as we stressed, the action (5.5) has no gauge degeneracy to begin with, we should also

rescale the anti-ghost and Lagrange multiplier fields as

bα =
√
λ bα

′ , Bα =
√
λBα

′ . (5.8)

This ensures that the propagators for the fluctuations around M scale appropriately and

remain well-defined. In this way, the gauge-fixing of the original undeformed functional in-

tegral naturally guarantees that the theory describing fields along the localization manifold

as well as their fluctuations is also free of gauge redundancies.

With these definitions one can expand the action (5.5) according to (5.7) and (5.8),

taking into account that the localization manifold is purely bosonic. The result is then equal

to the classical action evaluated on the localization manifold and all the terms from the

deformation and the gauge-fixing terms proportional to the anti-ghosts that are quadratic

in the fluctuations φ̃i ′, cα ′ and bα
′, up to terms that vanish in the large-λ limit. Integrating

over these fluctuations then gives rise to the following result for the functional integral,

Z[φ̊] =

∫
M

µ(t) dta exp
[
Sclass[φ̊, c̊ ; ta]

]
Z1-loop[φ̊, c̊ ; ta] , (5.9)

8We remind the reader that Λ is only present to keep track of the relative signs between the contributions

from fermionic and bosonic fields. When writing the various expressions explicitly in terms of fermionic

and bosonic fields, the presence of Λ can be avoided.
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where we have assumed the presence of a measure µ(t) induced by the embedding of the

localization manifold into the field configuration space. This measure can in principle be

evaluated from the explicit expressions for φ̃ ı̂(t)|M and cᾱ(t)|M.

The last term Z1-loop[φ̊, c̊ ; ta] under the integral contains the semiclassical correction

caused by the integration over the quantum fluctuations of the fields about the localiza-

tion manifold,

Z1-loop[φ̊, c̊ ; ta] =

∫
D(φ̃ i ′)D(cα ′)D(bα

′)D(Bα
′)

× exp
[
δeq

[
V + bα

′F (φ̊ ; ta, φ̃
′)α
]]∣∣∣

quad.
. (5.10)

The only contribution to the integrand above comes from terms quadratic in the fluctua-

tions, so the gaussian integration over these oscillations will lead to a super-determinant.

Because the localization manifold is purely bosonic, this super-determinant is simply equal

to the ratio of two determinants, one associated with the fermionic fluctuations and the

other with the bosonic fluctuations. These determinants can then be computed by ex-

plicit diagonalization, or by making use of powerful fixed-point formulas [39]. Of course,

obtaining explicit expressions must be done in the context of a specific application.

We have presented the formula (5.9) including only the contributions from smooth field

configurations. In addition, one must also allow for field configurations that are singular

precisely at the fixed point in space-time of δξ̊, which in super-Yang-Mills theories, for

instance, correspond to point-like instantons [16, 17].

6 Application to exact quantum entropy of supersymmetric black holes

In the previous sections we have been very general about the nature of the theory that we

may wish to consider. In this closing section we therefore turn to a specific direction of

interest that demonstrates how our construction of the equivariant algebra naturally lends

itself to computing supersymmetric gravitational functional integrals in asymptotically AdS

spaces, where the boundary conditions on the fields are dictated by the conformal boundary

of the space [40]. The background can be chosen to be supersymmetric with an AdSn×Sm

geometry and the commuting background ghosts are restricted to a particular supercharge

on this background, and characterized by a generalized Killing spinor. This supercharge

must be chosen such that its square leads to the compact background transformation δξ̊.

This can be directly verified from the supersymmetry algebra of the supergravity under

consideration and is required to be compact. The observables in our BRST cohomology in

this case would be the holographic analogs of protected calculations in the boundary gauge

theory,9 which leads to an exciting possibility for an exact AdS/CFT correspondence.

To illustrate this idea in a concrete example, we revisit the analysis of [20, 21] of the

quantum entropy of dyonic four-dimensional half-BPS black holes in N = 2 supergravity in

the context of the formalism of this paper. Our construction of the equivariant algebra (4.6)

9Some classical aspects of a special class of such observables have been recently discussed in [46]; related

ideas in a slightly different context of topological strings are discussed in [47].
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provides a proper framework for applying localization of the path integral for supergravity

theories defined on spaces with an asymptotic boundary, as outlined in section 5. Hence

it can in principle be applied to the path integral that defines the quantum entropy [19].

Further details of actual computations are reported in [45], but here our aim is to present

an overview of this application in order to further clarify the formal discussions of the

previous sections.

Let us start by specifying the δeq-variations as derived in section 4 of the most relevant

fermion fields in a purely bosonic field configuration in the context of the superconfor-

mal formulation of N = 2 supergravity [49, 50]. These fermions belong to the Weyl and

the vector supermultiplets. Here we will make use of the off-shell gauge algebra of Eu-

clidean N = 2 superconformal gravity presented in [38]. The Weyl supermultiplet contains

the gravitino fields whose δeq-variation in a bosonic field configuration equals

δeq ψ
i
µ± = 2Dµ(εi + cQ

i)± +
1

16
iTab γ

abγµ(εi + cQ
i)∓ − i γµ (ηi + cS

i)∓ , (6.1)

where the subscript ± on the fermions and ghosts denote chiral projections. The quantum

ghosts associated with Q- and S-supersymetry are cQ
i and cS

i; at this point we leave the

corresponding background ghosts εi and ηi unrestricted. Here and henceforth the indices

i, j, . . . refer to the SU(2) R-symmetry. Note that we have suppressed the universal anti-

commuting parameter Λ since, in a bosonic field configuration, there are no subtleties with

relative signs of the various contributions. The other bosonic fields in these equations are

the metric, the auxiliary tensor Tab as well as related gauge connections that are part of

the off-shell Weyl multiplet. All these fields must be decomposed into background and

quantum fields, as we have explained in previous sections. The off-shell Weyl multiplet

also contains another fermion field, which we will ignore here because it only plays a minor

role in what follows.

To describe the electric and magnetic charges of the black hole, the supergravity must

include a number of vector supermultiplets labeled by I = 0 . . . nv. Their corresponding

fermions ΩI i have the following δeq-variation in a bosonic field configuration,

δeq Ωi I
± = 2i /DX±I (εi + cQ

i)∓ +

[
1

2
δj
iF̂ab

∓ Iγab + εkjY
ik I

]
(εj + cQ

j)±

− 2X±
I (ηi + cS

i)± . (6.2)

The right-hand side of the above equation contains the real scalar fields X±
I and the

auxiliary SU(2) triplets Y ij I , whereas the gauge fields enter through the (anti-)selfdual

projections of the modified field strength F̂ab
I . The covariant derivative on the scalars

contains the various connections belonging to the Weyl multiplet.

Although the equations (6.1) and (6.2) represent the equivariant variations δeq of the

quantum fermions, they reduce to the standard Q- and S-supersymmetry transformations

of the fermions prior to the background field split upon identifying the fields on the right-

hand side with the background fields and, at the same time, suppressing the quantum

ghosts cQ
i and cS

i, and keeping only the background ghosts εi and ηi. Hence they can

be used to exhibit the consequences of full supersymmetry for the near-horizon geometry.
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Since the background must be fully supersymmetric the truncated equations (6.1) and (6.2)

must vanish for all values of the background ghosts εi and ηi (up to certain gauge choices).

The result of this analysis is that the background geometry must be AdS2 × S2 and that

the full background is invariant under eight supersymmetries generated by particular linear

combinations of εi and ηi that define eight independent Killing spinors associated with the

fermionic isometries of the full background configuration. Such spinors are not normalizable

in the asymptotic AdS2 space.

Obviously the above analysis leads precisely to the fully supersymmetric near-horizon

geometry AdS2 × S2 with fixed electric and magnetic fluxes [34, 48]. Here we should add

that the background values of the gauge fields are constrained by the background values of

the scalars X±
I . The gauge fields carry fixed electric and magnetic charges, corresponding

to the microcanonical ensemble. The condition of fixed magnetic charges is implemented on

the gauge field components along the S2 in the asymptotic region. The condition of fixed

electric charges is implemented in the classical theory by a Legendre transform with respect

to the electric fields. In the quantum theory this requires the introduction of a Wilson line

at the boundary of the near-horizon region, and we must compute the expectation value of

this operator by integrating all fluctuations of all the supergravity fields around the above

background [19].

Now we turn to the computation of the functional integral by following the localization

procedure explained in section 5.10 For that purpose we have to determine the localiza-

tion manifold, which follows from requiring the δeq-variations of the quantum fermions,

given by (6.1) and (6.2), to vanish. The background ghosts in these variations are then

restricted to those associated to a particular supercharge. The latter can be identified with

a supercharge generated by a Killing spinor of the background that asymptotes to a par-

ticular near-horizon Killing spinor. We note that the background and the quantum ghosts

entering the δeq-variations provide us with a structure analogous to the one in [17], where

localization was conducted using a combination of the BRST transformation and a specific

background supersymmetry transformation. In our situation where gravity is dynamical,

both these supercharges are naturally unified and encoded in a single δeq transformation.

In the presence of a single background ghost the δeq-variations simplify. For the fully

supersymmetric background under consideration, the associated Killing spinor can be cho-

sen so that the square of the equivariant variations generates a background transformation

δξ̊ = L−J , where L and J are compact abelian rotations of the AdS2 and S2 factors in the

background geometry, respectively. Thus, we can reduce the final problem to finding all

geometries and bosonic matter field configurations that asymptote to the near-horizon fully

supersymmetric AdS2×S2 background, and that admit a Killing spinor which asymptotes

to the above near-horizon Killing spinor. This is precisely the problem addressed in [20]

and solved in [41] for smooth field configurations. In order to complete the calculation of

the functional integral (5.9), we then need to evaluate the physical action of the theory on

these localizing configurations [20, 21, 42], and we need to compute the one-loop fluctu-

10For AdS2 one has to take into account an additional subtlety coming from the fact that there are

normalizable gauge transformations with corresponding non-normalizable gauge parameters [51].
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ation determinant [43–45]. Finally, as mentioned above, the smoothness assumption that

we made in supergravity should be removed in string theory, wherein a class of orbifold

configurations also contribute to the functional integral [52, 53].

It is clear that the quantum entropy problem for BPS black holes in asymptotically

flat space is but one application of our ideas. The formalism constructed in this pa-

per is quite general in that it can be defined around an arbitrary background that ad-

mits (super-)isometries. Our discussion gives a precise physical realization of the idea

of equivariant cohomology, and of the corresponding equivariant localization using the

background supersymmetry ghosts, in the variables of supergravity. We hope that the

framework outlined in this paper will prove useful in a variety of other physical situations.
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