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Spin field-effect transistor in a quantum spin-Hall device
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We discuss the transport properties of a quantum spin-Hall insulator with sizable Rashba spin-orbit coupling in a
disk geometry. The presence of topologically protected helical edge states allows for the control and manipulation
of spin polarized currents: When ferromagnetic leads are coupled to the quantum spin-Hall device, the ballistic
conductance is modulated by the Rashba strength. Therefore, by tuning the Rashba interaction via an all-electric
gating, it is possible to control the spin polarization of injected electrons.
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I. INTRODUCTION

Spintronics [1] is the field dedicated to studying how to
actively control and manipulate the electronic spin degree
of freedom in solid-state systems. When spin-orbit coupling
(SOC) is present, the electron’s spin and momentum are locked
to each other allowing us to study the interplay between charge
and spin degrees of freedom. This interplay is of central interest
since it opens the possibility to manipulate electric currents by
controlling the electronic spin and vice versa, paving the way
to the development of new devices of technological relevance.
The first proposal of a spintronic device with electrical spin
manipulation was the spin field-effect transistor, brought for-
ward by Datta and Das [2]. Since then, spin transistors have
been the subject of intense research and, to date, are still a
central problem in the field of spintronics. In recent years, much
attention has been drawn to exploit spin interference effects on
the electronic transport properties of mesoscopic devices with
loop geometries, such as semiconducting quantum rings [3–9].
In the presence of electromagnetic potentials, the conductance
of a semiconductor ring exhibits signs of quantum interference
due to the Aharonov-Bohm [10] (A-B) and Aharonov-Casher
[11] (A-C) effects. Being manifestations of the Berry phase,
these interference effects have been exploited to detect in the
laboratory the spin geometric phase [4,12].

An alternative setup for the detection of the π -Berry phase
was proposed in Ref. [13], with the interferometer based on a
quantum spin-Hall (QSH) insulator. The QSH insulator [14]
is a time-reversal symmetric topological state of matter which
possesses in gap helical edge states: At each edge of the system
there are two counterpropagating states with opposite spin
projections. The realization of QSH insulators in HgTe [15]
and InAs/GaSb/AlSb [16] quantum wells has since opened the
possibility to engineer new types of spin transistors. A notable
example has been discussed in Ref. [17] where by combining
the helical nature of the QSH edge states with the A-B effect, a
setup that behaves as a spin transistor has been proposed. One
of the main advantages of using a QSH insulator lies in the
fact that transport in the system is ballistic in nature and takes
place along the edges, making it effectively a one-dimensional
(1D) system.

In this paper we consider an alternative QSH-based setup
exploiting the effect of the Rashba spin-orbit coupling (SOC),
originating from structural inversion asymmetry. The presence
of Rashba SOC [18] breaks the axial spin symmetry of the
helical edge states, tilting their spin projection in the QSH
plane. Consequently, in a disk geometry the Rashba SOC yields
a local rotation of the spin projection of the helical edge states
along the disk. By further controlling the Rashba strength
through an additional external gate voltage it is possible to
both modulate electric currents which pass through the QSH
insulator and manipulate the spin projection of single incoming
electrons, similarly to the A-B based setup of Ref. [17]. By
studying the transport properties of the QSH insulator in the
presence of Rashba SOC we will indeed show how such a
system can be used as an all-electric spin transistor. It is inter-
esting to note that since there are only two counterpropagating
modes at the edge, the QSH insulator can be seen as a faith-
ful implementation of the original Datta-Das transistor: The
original device introduced in Ref. [2] drew inspiration from an
electro-optic modulator in which polarized light was split into
two beams that suffered different phase shifts. In this sense the
QSH is a true electronic analog of the electro-optic modulator.

The paper is organized as follows: In Sec. II we study
the Bernevig-Hughes-Zhang [14] (BHZ) Hamiltonian with the
addition of a linear Rashba SOC term. We find the in gap
eigenstates and eigenvalues of the system in a disk geometry
and show how the Rashba coupling is responsible for the
tilting of the spin projection of the two helical edge states. In
Sec. III we study an effective 1D model of the QSH disk and
calculate the conductance of the system through the Landauer
approach. We show that the QSH disk behaves as a spin field-
effect transistor. Finally in Sec. IV, by using the microscopic
tight-binding BHZ model, we validate our findings through a
numerical calculation of the conductance.

II. IN GAP STATES OF THE BHZ HAMILTONIAN IN THE
PRESENCE OF RASHBA SPIN-ORBIT COUPLING

We begin by studying the properties of the helical edge
states of a QSH insulator disk in the presence of Rashba
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SOC [19–21]. It is well known [15] that the QSH phase
occurs in the “inverted” regime of HgTe/CdTe semiconductor
quantum wells, which is achieved by tuning the thickness
of the HgTe well above a critical thickness dc � 6 nm.
The occurrence of this topological phase transition can be
captured using conventional k · p theory. Starting from the
six-band Kane model [22] and using perturbation theory
near the � point one can obtain an effective four band
model (|E1, jz = ± 1

2 〉, |H1, jz = ± 3
2 〉) for the subbands of

the quantum well structure [14]. The |E1, jz = ± 1
2 〉 subbands

are a linear combination of s-like |�6, jz = ± 1
2 〉 and the light

hole |�8, jz = ± 1
2 〉 bands while the |H1, jz = ± 3

2 〉 come
about from the |�8, jz = ± 3

2 〉 heavy hole bands. The electronic
structure is then described by the effective BHZ Hamiltonian,

HBHZ =

⎛
⎜⎝

εk + Mk Ak+ 0 0
Ak− εk − Mk 0 0

0 0 εk + Mk −Ak−
0 0 −Ak+ εk − Mk

⎞
⎟⎠.

(1)

Equation (1) is written in the basis |E1, jz = + 1
2 〉,

|H1, jz = + 3
2 〉, |E1, jz = − 1

2 〉, and |H1, jz = − 3
2 〉. We have

defined εk = C − D(k2
x + k2

y ), Mk = M − B(k2
x + k2

y ) and
A, B, C, D and M are model parameters. We have also
introduced k± = kx ± iky with kx,y = −i∂x,y . For simplicity,
we set C = D = 0. The Hamiltonian above preserves time-
reversal symmetry, with the time reversal symmetry operator
defined as � = −i(σy ⊗ σ0)K, where K stands for complex
conjugation and σα are the Pauli matrices. When sgn(B ) =
sgn(M ) the system is in the QSH phase and is characterized
by a nontrivial Z2 topological invariant.

The presence of structural inversion asymmetry gives rise
to Rashba terms [18] which couple the two spin blocks in
Eq. (1) and break the axial spin symmetry. At linear order
in k the Rashba Hamiltonian only couples the |E1, jz = ± 1

2 〉
bands,

HR =

⎛
⎜⎝

0 0 −iαRk− 0
0 0 0 0

iαRk+ 0 0 0
0 0 0 0

⎞
⎟⎠.

It is easy to see that unlikeHBHZ, HR breaks the effective two-
dimensional inversion symmetry, HR (k) �= I2D HR (−k) I2D ,
where I2D = σz ⊗ σ0 is the inversion operator.

To find the helical edge states dispersion of the full Hamil-
tonian H = HBHZ + HR in a disk geometry, we write H in
polar coordinates (r, φ):

H =

⎛
⎜⎝

B � + M −iA�+ −αR �− 0
−iA�− −B � − M 0 0
αR �+ 0 B � + M iA�−

0 0 iA�+ −B � − M

⎞
⎟⎠,

(2)

where

� =
(

∂2
r + 1

r
∂r + 1

r2
∂2
φ

)
,

�+ = eiφ

(
∂r + i

r
∂φ

)
,

�− = e−iφ

(
∂r − i

r
∂φ

)
.

We are now interested in solving the Schrödinger equation
Hψ (r, φ) = Eψ (r, φ) for energies inside the insulating bulk
gap. In order to diagonalize the Hamiltonian of Eq. (2) we
first show that the problem is separable in the two variables r

and φ. The total electronic angular momentum is given by the
composition of the spin angular momentum with the orbital
angular momentum, J = L + S, plus the angular momentum
Lφ due to the rotation around the disk. Its projection along the
ẑ axis is given by the operator �z = Lφ + Jz, with Lφ = −i∂φ

and Jz = diag[ 1
2 , 3

2 ,− 1
2 ,− 3

2 ]. It is straightforward to show that
[H,�z] = 0, and hence our wave functions can be written as
eigenvectors of �z. The in gap solutions for Eq. (2) take the
form,

ψξ
m(r, φ) =

⎛
⎜⎜⎜⎜⎝

ei(m− 1
2 )φc1(ξ )Im− 1

2
(ξr )

ei(m− 3
2 )φc2(ξ )Im− 3

2
(ξr )

ei(m+ 1
2 )φc3(ξ )Im+ 1

2
(ξr )

ei(m+ 3
2 )φc4(ξ )Im+ 3

2
(ξr )

⎞
⎟⎟⎟⎟⎠,

where m is the half-integer eigenvalue of the operator �z

ensuring the 2π periodicity of the wave functions, whereas
Im(r ) are the modified Bessel functions of the first kind,
necessary to have a normalizable solution. Finally, c and ξ

are constants which depend on the system’s parameters and
energy. For a given in gap energy E we find four values of ξ

for which the wave functions ψ
ξ
m are linearly independent: The

total wave function can then be written as a linear combination,

�m(r, φ) =
4∑

i=1

ai ψ
ξi

m (r, φ). (3)

To find the in gap eigenvalues we impose fixed boundary
conditions at the edge of the disk: �m(r = r0, φ) = 0. Figure 1
shows the energy dispersion of the helical edge states in the
QSH phase. Away from the energy bulk the dispersion is
practically linear as conventionally found in ribbon geometries
[20,23].

The presence of the Rashba SOC breaks the axial spin
symmetry of the BHZ Hamiltonian and tilts the electronic
spin towards the QSH plane. This can be seen by computing
the out-of-plane spin component Sz = 1

2σ0 ⊗ σz: The local
expectation value 〈Sz〉 decreases monotonically by increasing
the Rashba strength. Moreover, in the current disk geometry,
the in-plane spin component is reversed under a π rotation. For
instance, at φ = 0 and φ = π the only in-plane component
corresponds to Sx = 1

2σ0 ⊗ σx , and as shown in Fig. 2 it is
completely reversed after half a turn.

We are now interested in using this spin-tilt effect to study
the electronic transport through the disk when the Fermi
energy is in the bulk band gap. In this case the QSH behaves
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FIG. 1. Energy dispersion of the two in-gap helical edge states of
a QSH insulator in a disk geometry as a function of the half-integer
eigenvalue m of the operator �z. E± indicate, respectively, clockwise
movers and counterclockwise movers. The dashed lines represent the
bulk bands. The value of the Rashba strength is set to αR = |A|/2. The
maximum value of the Rashba strength compatible with the presence
of a full bulk band gap is αmax

R = 2|A|. Energies have been measured
in units of |A2/B|.

effectively as a 1D single mode ballistic conductor with only
two counterpropagating states at the edge. For this reason it
is inherently different from a quasi-1D semiconductor ring
[5]. In the latter, for all Fermi energies, there are two clock-
wise movers and two counterclockwise movers (neglecting
transverse modes). As we will show, the difference in number
of propagating channels between the two systems will result
in distinct transport properties. A qualitative understanding
of electronic transport through the QSH can be achieved by
considering an effective 1D model that retains the helical nature
of the edge states and the spin-tilting mechanism of the Rashba
SOC.

III. EFFECTIVE 1D MODEL

A. 1D Hamiltonian

In order to have two counterpropagating helical modes
which mimic the QSH edge states and a Rashba spin-tilting

FIG. 2. Local expectation value of Sx for different counterclock-
wise moving states as a function of the Rashba strength αR . The spin
projection is measured at two opposite points of the disk, φ = 0 and
φ = π , where the only nonzero in-plane spin component is given
by Sx . The values of 〈Sx〉 have been computed numerically and are
represented by dots in the above graph; lines joining the dots are
present only as a guide for the eye.

mechanism we study the following effective 1D Hamiltonian,

Heff = − ih̄

2
{ωzσz + ωRσr , ∂φ}, (4)

where{ , } is the anticommutator, necessary to have a hermitian
Hamiltonian [24,25]. In Eq. (4) we have defined the two
characteristic frequencies ωz = vF

r0
(with vF Fermi velocity

of the edge states and r0 disk radius) and ωR = 2αR

h̄r0
. The

radial Pauli matrix is defined as σr = cos φσx + sin φσy . The
eigenvalues of Eq. (4) are,

E±(m) = h̄ωz

⎡
⎣−1

2
± m

√
1 +

(
ωR

ωz

)2
⎤
⎦. (5)

The spectrum, much like the one in Fig. 1, is linear in m and
obeys time-reversal symmetry: At each energy E there are two
corresponding eigenstates with opposite spin projections and
opposite velocities. The eigenstates of Eq. (4) are,

ψ+
m (φ) = eimφ

(
e−i

φ

2 cos γ

2

ei
φ

2 sin γ

2

)
(6)

ψ−
m (φ) = eimφ

(
− e−i

φ

2 sin γ

2

ei
φ

2 cos γ

2

)
, (7)

where m is the half-integer eigenvalue of the operator �eff
z =

−i∂φ + σz

2 . The angle γ = arctan( ωR

ωz
) measures the spin tilt

with respect to the quantization axis ẑ: At zero Rashba (γ =
0) the spinors in Eqs. (6) and (7) simply reduce to | ↑,↓〉
eigenstates of σz. This is in agreement with the zero Rashba
behavior of the BHZ Hamiltonian of Eq. (1), where the edge
states are eigenstates of Sz = 1

2σ0 ⊗ σz. In the following we
will take into account eigenstates which lie far from the bulk
bands, close to zero energy, where the dispersion is mostly
linear. For these states the spin tilting effect is larger, as shown
in Fig. 2. Under these assumptions we can safely describe the
BHZ helical edge states with the effective 1D Hamiltonian of
Eq. (4).

B. Scattering matrix approach

The transport properties of the system at zero temperature
are studied by coupling symmetrically the QSH disk to two
semi-infinite ballistic leads. By applying a low bias we calcu-
late the unpolarized conductance using the Landauer formula
[26],

G = e2

h

∑
σ,σ ′

Tσσ ′, (8)

where e is the electron charge, h is the Planck constant, and Tσσ ′

denotes the transmission probability between incoming σ and
outgoing σ ′ states in the leads. Following closely the setup
of Ref. [17], we consider ferromagnetic leads with in-plane
magnetization in order to inject polarized spins in the left
lead and detect spins polarized along the polar angle θ̂ in
the right lead. A schematic picture of the setup is shown in
Fig. 3. The Hamiltonian of the ferromagnetic leads, HFM =
p2

2m
σ0 + M(θ ) · σσσ , contains a Zeeman-splitting term propor-

tional to the magnetization vector M(θ ) = M (cos θ, sin θ, 0)
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FIG. 3. (a) QSH spin field effect transistor setup. The two semi-
infinite ferromagnetic leads are coupled symmetrically at φ = 0 and
φ = π . Magnetizations in the left and right leads are given by the
direction of M . Inside the disk, the electron spin is tilted by an angle
γ in the direction of the Rashba field. (b) Schematic energy dispersion
of HFM and Heff .

and a vector of Pauli matrices σσσ . Eigenstates in the left
lead have the form |x〉± = eikx√

2
(1,±1)T , while in the right

lead |θ〉± = eikx√
2

(e−iθ ,±1)T . The QSH region is described
by Eq. (4), where in the open geometry setup the quantum
number m labeling the eigenstates in Eqs. (6) and (7) will
no longer be quantized. The scattering matrix of the system
can be obtained from the knowledge of the scattering matrices
at the QSH-injector interface SL and at the QSH-detector
interface SR . To calculate them we first notice that if both
the spin majority and spin minority bands are occupied there
are two right-moving states and two left-moving states in
the ferromagnetic leads. The same number of propagating
states are found in the QSH disk: Each arm of the disk has
one clockwise mover and one counterclockwise mover with
opposite spin projections (Fig. 4). Hence SL and SR are 4 × 4
matrices whose elements can be calculated imposing current

FIG. 4. Schematic representation of the incoming and outgoing
modes in the left junction of the system.

conservation for each scattering state at the interface. This
condition leads to 16 equations for the 16 elements of SL,R .
For example the scattering ansatz for a right-moving state in
the left junction can then be written as,

φλ
FM,R(x) = χλ

FM,R√∣∣vλ
FM

∣∣eikλx +
∑
λ′

rλ,λ′
χλ′

FM,L√∣∣vλ′
FM

∣∣e−ikλ′ x

φλ
QSH,R(x) =

∑
λ′

tλ,λ′
χλ′

QSH,R√∣∣vλ′
QSH

∣∣eikλ′ x,

where λ = ± labels the two possible modes, which in general
will have different spinorial parts χλ [see Eqs. (6) and (7)] and
velocities vλ. The indices R,L discriminate between right-
moving and left-moving states. Since the lead and the disk are
parametrized by two different coordinate systems we choose
to label the eigenstates with their wave number k, which can
be simply written as the ratio between the angular momentum
m and the disk radius r0. The coefficients rλ,λ′ and tλ,λ′ are
the probability amplitudes that a state λ will be reflected or
transmitted in a state λ′. Each propagating state is normalized
to unit flux in order to obtain a unitary S matrix. A similar
ansatz holds for the right junction.

Once both S matrices are calculated, they can be combined
to obtain the full scattering matrix of the device,

(
bL

i

bR
i

)
=

(
r t ′
t r ′

)(
aL

i

aR
i

)
,

where b
L,R
i and a

L,R
i (i = 1, 2) are, respectively, the wave

amplitudes of the two outgoing and ingoing states in the
left L and right R lead. We define r and t as the 2 × 2
matrices whose elements are the spin-dependent reflection
and transmission amplitudes. The transmission coefficients in
Eq. (8) are just the modulus square of the elements of t . The
unpolarized conductance from left to right lead can be then
simply expressed as [26] G = e2

h
tr (t t†).

At zero Rashba, γ = 0, and with both ferromagnets aligned
we find perfect transmission, T = diag[1, 1], when the mo-
menta of the states in the QSH disk satisfy the condition
kr0 = Z

2 , with Z an integer. This resonance effect can be
understood by noticing that for m = Z

2 the state inside the
QSH disk is also an eigenstate of the closed system, as shown
in Sec. III A. In the remainder, we will fix the Fermi energy
of the system to fulfill the resonance condition in the disk.
We emphasize that for a sufficiently large disk radius the in
gap eigenstates of Eq. (5) are close enough that resonance is
achieved for almost any value of the Fermi energy. Calculating
G under this assumption yields the density plot in Fig. 5, where
the unpolarized conductance is modulated as a function of the
Rashba strength γ and the relative magnetization θ between
the two leads. Here the Fermi energy has been fixed close to
the bottom of the upper band in the leads, in order to have a
large modulation of the unpolarized conductance. If we were
to raise the Fermi energy in the leads such that the wave
numbers of the two spin-polarized injected electrons were
comparable, then the modulation of the conductance would be
largely suppressed, and the ballistic conductance, independent
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FIG. 5. Density plot of the unpolarized conductance as a func-
tion of the spin tilt γ and the magnetization angle θ of the right
ferromagnetic lead.

of the Rashba strength and the relative magnetization between
injector and detector, would be quantized to 2e2/h.

The density plot of the unpolarized conductance shows that
when the ferromagnetic leads have opposite magnetizations
(θ = π ), the maximum conductance is reached as the Rashba
field is strong enough to completely flip the spin of the
incoming electrons, that is for γ → π

2 . Hence for sufficiently
large Rashba couplings the electron spin is reversed: This effect
is due to the phase accumulated after half a turn by the two
eigenstates in the QSH. From the elements of the t matrix
we can also compute the contribution to the conductance of
an injected spin polarized current. This polarized conductance
turns out to be half the value of the unpolarized one, regardless
of the sign of the spin of the injected carrier. This suggests
that at the resonance condition the conductance modulation is
dominated by the spin texture of the helical edge states inside
the QSH: At resonance the injected electrons always enter the
QSH, but they can only transfer to the right lead if their spin
projections can match the ones of the detector. By making use
of these observations we can now calculate analytically the
spin-polarized conductance.

C. Spin-polarized conductance

Having established that at resonance carriers with opposite
spin polarization contribute equally to the conductance, we
can restrict ourselves to investigate the modulation of the spin
polarized conductance and assume that only the lowest Zeeman
band is occupied. Since at resonance injected electrons enter
the QSH unimpeded, transmission is then determined by the
spin projection of electrons upon exiting the disk at φ = π .
Hence, the conductance modulation is controlled solely by the
spin structure of the helical edge states, greatly simplifying
the description of the transmission coefficient and leading to a
clear analytic understanding of the physics of the system.

To calculate the transmission coefficient Tσσ ′ we follow the
steps of Ref. [5]. The spin eigenstates |x〉 incoming from the
left lead propagate coherently in the disk, through the helical
edge states, and leave the disk in a mixed spin state |σout〉 =∑

λ=±〈ψλ
m(0)|x〉|ψλ

m(λπ )〉. The transmission coefficient can

then be obtained from the overlap between |σout〉 and the
outgoing eigenstate |θ〉 in the right lead, Txθ = |〈θ |σout〉|2. The
polarized conductance takes the form,

Gxθ (γ, θ ) = e2

2h
(1 + cos 2γ cos θ ). (9)

The above conductance has the same modulation pattern of
the one found in Fig 5. As expected at strong Rashba SOC,
γ → π

2 , the incoming electron spin is completely reversed.
To calculate the unpolarized conductance one must sum

over all possible spin polarizations in the left and right leads.
The calculation yields a conductance G = 2e2

h
, which is simply

the inverse contact resistance of a single mode conductor. Since
the wave numbers of the injected and detected electrons do
not play a role in this calculation, this result follows only
from the helical nature of the two propagating edge modes:
The two modes are orthogonal and cannot interfere with each
other. Contrary to a conventional 1D semiconductor ring, an
interference pattern is therefore absent. This is due to the fact
that in each arm of the semiconductor ring there are double
the movers than the ones in the QSH. When the two arms of
the ring recombine at φ = π , electrons coming from different
arms, with the same spin projection, can interfere leading to
a modulation of G. We point out that, as mentioned earlier,
this result is in agreement with the scattering matrix approach
analysis assuming the Fermi energy in the leads is such that the
wave numbers of the incoming electrons are comparable. We
now validate numerically our results by studying a microscopic
tight-binding model corresponding to a regularized version of
Eq. (1).

IV. 2D TIGHT-BINDING MODEL

To corroborate our findings we perform a numerical calcu-
lation of the transport properties of our device. The QSH disk
is described using the BHZ tight-binding model on a square
lattice,

Htb =
∑
i, j

c
†
i, j ci, j V̂ +

∑
i, j

c
†
i+1, j ci, j T̂x

+
∑
i, j

c
†
i, j+1ci, j T̂y + H.c.

where,

V̂ = μ I4×4 +
(

M − 4B

a2

)
σz ⊗ σ0,

T̂x =

⎛
⎜⎜⎜⎝

B
a2 − iA

2a
−αR

2a
0

− iA
2a

− B
a2 0 0

αR

2a
0 B

a2
iA
2a

0 0 iA
2a

− B
a2

⎞
⎟⎟⎟⎠,

T̂y =

⎛
⎜⎜⎝

B
a2

A
2a

iαR

2a
0

− A
2a

− B
a2 0 0

iαR

2a
0 B

a2
A
2a

0 0 − A
2a

− B
a2

⎞
⎟⎟⎠.
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FIG. 6. Rashba modulated conductance when θ = π in the right
lead. In order to inject spin polarized electrons we consider an in-
plane magnetic field H0. The plot shows different modulations of the
conductance when varying the chemical potential (μ ∈ [μ1, μ2]) in
the leads. All energies are normalized to |A2/B|.

Here, μ is the chemical potential and a is the lattice spacing.
The operators c

†
i,j and ci,j create and annihilate an electron in

the lattice site (i, j ).
The ferromagnetic leads are similarly modelled by Htb

BHZ

with A = 0 and αR = 0 in order to decouple |E1,mj = ± 1
2 〉

and |H1,mj = ± 3
2 〉 bands. The ferromagnetic properties of

the leads are captured by including a Zeeman splitting term
V̂Z [18],

V̂Z = H0

⎛
⎜⎝

0 0 e−iθ 0
0 0 0 0
eiθ 0 0 0
0 0 0 0

⎞
⎟⎠,

where H0 is the strength of the magnetic field and θ is
the relative in-plane magnetization angle between the two
ferromagnetic leads. The magnetic field only couples to the
|E1,mj = ± 1

2 〉 bands, and hence we can tune H0 and the
chemical potential in the leads in such a way to only occupy
a majority of |E1,mj = + 1

2 〉 bands. In this way, even if both

spin polarized carriers are injected, we produce effectively a
spin polarized current.

The conductance of the system has been calculated by using
the KWANT code [27]. In Fig. 6 we plot the conductance as a
function of the Rashba strength, when the two ferromagnetic
leads have opposite magnetizations. For chemical potentials
μ ∼ μ1, the occupied energy bands contain mostly one type
of spin polarized carriers. This causes a larger suppression of
the conductance for small values of αR , in agreement with the
modulation found in Sec. III B. For sufficiently large couplings
the conductance is again 2e2

h
signaling that the incoming

electronic spin is being reversed. The spin tilting of the edge
states studied in Sec. II reflects directly onto the transport
properties of the system. As expected, we observe the same
enhancement of the conductance as the one found along the
cut at θ = π in the density plot in Fig. 5. Indeed this numerical
modulation of the conductance matches perfectly with the
results obtained in Secs. III B and III C.

V. CONCLUSIONS

In this paper we have shown how a QSH insulator with
Rashba SOC can be used to modulate an electric current
and manipulate the spin of injected electrons. The setup we
propose allows for an all-electric control of the outgoing
spin current making it an interesting possibility for a spin
field-effect transistor. It is important to stress that system
geometry and size are not particularly relevant as long as the
two paths are symmetric and shorter than the phase relaxation
length. Moreover, since the QSH edge states are topologically
protected, transport is not affected by (weak) nonmagnetic
disorder. Electrons will always fully transmit across the QSH
and the conductance will only depend on the scattering at the
interface between the QSH disk and the leads.
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