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Arthroscopic near infrared 
spectroscopy enables simultaneous 
quantitative evaluation of articular 
cartilage and subchondral bone  
in vivo
Jaakko K. Sarin  1,2, Nikae C. R. te Moller3, Irina A. D. Mancini3, Harold Brommer3, 
Jetze Visser4, Jos Malda3,4, P. René van Weeren3, Isaac O. Afara  1 & Juha Töyräs1,2

Arthroscopic assessment of articular tissues is highly subjective and poorly reproducible. To ensure 
optimal patient care, quantitative techniques (e.g., near infrared spectroscopy (NIRS)) could 
substantially enhance arthroscopic diagnosis of initial signs of post-traumatic osteoarthritis (PTOA). 
Here, we demonstrate, for the first time, the potential of arthroscopic NIRS to simultaneously monitor 
progressive degeneration of cartilage and subchondral bone in vivo in Shetland ponies undergoing 
different experimental cartilage repair procedures. Osteochondral tissues adjacent to the repair sites 
were evaluated using an arthroscopic NIRS probe and significant (p < 0.05) degenerative changes were 
observed in the tissue properties when compared with tissues from healthy joints. Artificial neural 
networks (ANN) enabled reliable (ρ = 0.63–0.87, NMRSE = 8.5–17.2%, RPIQ = 1.93–3.03) estimation 
of articular cartilage biomechanical properties, subchondral bone plate thickness and bone mineral 
density (BMD), and subchondral trabecular bone thickness, bone volume fraction (BV), BMD, and 
structure model index (SMI) from in vitro spectral data. The trained ANNs also reliably predicted the 
properties of an independent in vitro test group (ρ = 0.54–0.91, NMRSE = 5.9–17.6%, RPIQ = 1.68–
3.36). However, predictions based on arthroscopic NIR spectra were less reliable (ρ = 0.27–0.74, 
NMRSE = 14.5–24.0%, RPIQ = 1.35–1.70), possibly due to errors introduced during arthroscopic 
spectral acquisition. Adaptation of NIRS could address the limitations of conventional arthroscopy 
through quantitative assessment of lesion severity and extent, thereby enhancing detection of initial 
signs of PTOA. This would be of high clinical significance, for example, when conducting orthopaedic 
repair surgeries.

Osteoarthritis (OA) is a disabling disease associated with joint pain and restricted mobility, especially in the 
elderly1,2. Post-traumatic OA (PTOA), however, affects people of all ages and is initiated by joint trauma2, e.g., 
cartilage, meniscus, and ligament tears. These traumas conventionally require arthroscopic intervention, which 
is a common technique in both human and equine medicine. Mechanisms involved in the degeneration of artic-
ular cartilage have been extensively researched, and several studies3,4 have suggested changes in the subchondral 
bone properties to contribute to the initiation and progression of OA. In addition, subchondral bone is suscep-
tible to morphological and compositional changes due to alterations in the stress distribution5,6; these changes 
can substantially influence joint functionality. Conventional arthroscopy is, however, based on qualitative visual 
and tactile assessment, rendering the technique subjective with suboptimal reliability7,8. Reliable evaluation of 
defects and the surrounding tissues is essential in choosing the optimal repair procedure and, thus, for halting the 
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progression of PTOA9,10. This highlights the need for novel quantitative arthroscopic techniques, such as ultra-
sound11, optical coherence tomography (OCT12), and near infrared spectroscopy (NIRS13).

NIRS is a non-destructive optical technique in which the sample is irradiated with light, and the scattered 
and reflected light is collected. The technique enables rapid evaluation of tissues in vivo and eliminates the need 
for invasive, destructive, and slow chemical analysis14. NIRS enables swift assessment of cartilage biomechanical 
properties13,15–18 and composition13, as well as subchondral bone structure19. The spectral range between 0.4 and 
2.5 µm enables assessment of the tissue at various depths due to the wavelength-dependent penetration depth20. 
The shorter wavelengths penetrate through the cartilage matrix into the subchondral and trabecular bone21, 
whereas longer wavelengths (closer to the mid infrared region) are restricted to the superficial layer of cartilage20. 
While there are several in vitro studies on the application of NIRS for cartilage assessment13,15–18,21,22, only a few 
have investigated the potential of this optical technique in vivo23–27. Furthermore, in these in vivo studies, cartilage 
condition was only evaluated using simple and poorly effective analytical approaches, such as determining the 
ratio of spectral peaks. Robust and effective analytical techniques, such as neural networks, could enable more 
accurate and reliable estimation of cartilage properties from the near infrared (NIR) spectral data.

Advances in multivariate analysis techniques and the increase in available computational resources have ena-
bled accurate modelling of the relationships between complex NIR spectral data and reference parameters, such 
as cartilage biomechanical properties. Partial least squares regression (PLSR) is currently the most common tech-
nique in chemometrics for analysis of NIR spectral data28. However, artificial neural networks (ANN) combined 
with variable selection methods have recently been introduced for analysis of cartilage spectral data22,29,30 and 
have shown potential for evaluation of tissue properties.

We hypothesize that arthroscopic NIRS enables reliable simultaneous evaluation of articular cartilage and 
subchondral bone in vivo via adaptation of ANN. To test this hypothesis, arthroscopic and in vitro NIRS measure-
ments were conducted on tissue surrounding experimental cartilage repair sites in equine joints at the 12-month 
end-point and compared with unaffected tissue harvested from matching sites in healthy control ponies. As refer-
ences, articular cartilage biomechanical properties and subchondral bone microstructure and density were deter-
mined via indentation testing and computed tomography, respectively. To investigate the relationship between the 
spectral data and reference parameters, ANN with forward variable selection technique was adapted.

Methods
Two cylindrical (d = 9 mm) chondral lesions were surgically created on the medial femoral ridges of both femo-
ropatellar joints of Shetland ponies (N = 7, 6 females and 1 male, Age = 8.8 ± 3.5 years, total of 28 lesions). Each 
lesion was treated by filling it with Gelatin Methacryl (GelMA) hydrogel (3 varieties) or fibrin glue31. The repair 
procedure (fibrin glue, GelMA cap, GelMA, or reinforced GelMA) was randomized (proximal or distal lesion site 
and left or right knee) for each defect. A mixture of allogeneic mesenchymal stem cells (MSCs) and chondrons 
(80/20% ratio) at different concentrations was implanted in each defect. In the fibrin glue group, a low cell con-
centration (2 million cells/ml) was used, whereas the GelMA cap group had 1 million cells in a small volume of 
GelMA on the bottom of the defect, covered by a layer of cell free GelMA. In the last two groups, a high con-
centration (20 million cells/ml) was implanted in GelMA gel, and in the reinforced GelMA group, GelMA was 
reinforced with a 3D printed scaffold (melt electrospun polycarpolactone mesh)32.

After 12 months, the ponies were sacrificed and the osteochondral defects, together with the surrounding tis-
sues, were examined via conventional and NIRS arthroscopes. Subsequently, osteochondral blocks were extracted 
for further analysis. As control, a similar osteochondral block was extracted from both femoropatellar joints of 
healthy ponies (Ncontrol = 3, Age = 10.3 ± 4.7 years), ensuring an overall representative sample population. The 
animal studies were approved by the Ethics Committee of Utrecht University for Animal Experiments in compli-
ance with the Institutional Guidelines on the Use of Laboratory Animals and carried out in a surgical theatre at 
the Department of Equine Sciences, Utrecht University, The Netherlands (Permission DEC 2014.III.11.098). The 
control ponies were acquired from a slaughterhouse in Utrecht, The Netherlands.

Arthroscopic near infrared spectroscopy. Near infrared (NIR) spectral measurements (Nponies = 7, 
Nper joint = 12, Ntotal = 164, 4 locations arthroscopically unreachable) were acquired arthroscopically in vivo by an 
experienced board-certified equine surgeon (>500 arthroscopies, Diplomate European College of Veterinary 
Surgeons) at the 12-month time-point immediately upon sacrifice. The arthroscopies were performed by utilizing 
a traditional arthroscope (4 mm, 30° inclination, Synergy HD3, Arthrex, Naples, FL, USA) as a monitoring tool 
and a novel, robust, and reusable arthroscopic NIRS fibre probe as a measurement tool (Fig. 1a). Twelve locations 
surrounding cartilage repair sites were measured (Fig. 1b) by orientating the fibre probe in perpendicular con-
tact with cartilage surface. At each measurement point, 15 spectra were recorded, each being the average of ten 
successive spectra; the total duration of data acquisition was 2.4 seconds per measurement location. Arthroscopic 
images were recorded with a conventional arthroscope during the operation to enable reliable location tracking. 
Ringer’s solution (Fresenius, Bad Homburg v.d.H., Germany) containing sodium chloride (8.6 g/L), potassium 
chloride (0.3 g/L), and calcium chloride (0.33 g/L) was used for joint distension. Following the measurements, 
osteochondral samples were extracted after removing the skin and overlying tissues of the joint (Fig. 1b). The 
samples were frozen (−20 °C) until required for laboratory NIRS, biomechanical, and computed tomography 
(CT) measurements.

In vitro near infrared spectroscopy. The in vitro NIRS measurements (Nponies = 10, Nper joint = 12, Ntotal = 236; 
same 4 locations excluded as during arthroscopy) were acquired in similar conditions as in arthroscopy, i.e., hard-
ware, immersion solution, and temperature, apart from using the conventional arthroscope for navigation. At each 
measurement point, three successive spectra were acquired, each consisting of 10 co-added scans.
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The NIRS system consisted of spectrometers (AvaSpec-ULS2048L, λ = 0.35–1.1 µm, resolution = 0.6 nm and 
AvaSpec-NIR256-2.5-HSC, λ = 1.0–2.5 µm, resolution = 6.4 nm, Avantes BV, Apeldoorn, The Netherlands), 
a light source (AvaLight-HAL-(S)-Mini, λ = 0.36–2.5 µm, Avantes BV), and a custom arthroscopic fibre probe 
(Avantes BV). The reusable stainless-steel fibre probe (d = 3.25 mm) is sterilisable in an autoclave at 121 °C and its 
tip resembles the shape of a traditional arthroscopic hook. The probe tip window (d = 2 mm) contains 114 optical 
fibres (d = 100 µm), with 100 fibres emitting and 14 fibres (7 + 7) collecting light to the spectrometers. Avasoft 
software (version 8.7.0, Avantes BV) was used for spectral acquisition.

Spectral preprocessing. A 3rd order Savitzky-Golay filter was applied for smoothing of spectral data sepa-
rately for the two spectrometers due to differences in their wavelength resolution. For cartilage and subchondral 
bone properties, the smoothing points were 25 and 13, and 45 and 13 points, respectively. The spectral region 
1.9–2.5 µm was discarded from the analyses due to spectral saturation caused by high absorption of water.

In the arthroscopic NIRS measurements, interference from the light source of the conventional arthroscope 
was observed in the visible spectral region (λ ≈ 0.42–0.75 µm, Fig. 1d). Therefore, this region was applied only as 
an indicator for probe orientation and not used in the modelling. For arthroscopic NIRS, sufficient contact of the 
probe with cartilage surface is essential, as the irrigation fluid (i.e., saline) is an effective absorber of NIR light. To 
evaluate contact between the probe and cartilage surface, the area between a two-point linear fit and the meas-
ured spectrum (in a spectral region of 0.42–0.75 µm) was calculated (Fig. 1c). Four measurement locations were 
excluded due to high contribution from the arthroscope light source. Additionally, seven spectra (with the largest 
area between a linear fit and measured spectrum) out of the fifteen measured spectra from all measurement 
locations were excluded. Coefficient of variation was determined between the arthroscopic and in vitro spectra in 
spectral region 0.75–1.9 µm (3.7 ± 1.9%)17.

Optical coherence tomography. After in vitro NIRS measurements, the measurement locations were 
marked with a felt tip pen. These points were imaged with OCT (λ = 1305 ± 55 nm, axial resolution < 20 µm, 
lateral resolution 25–60 µm; Ilumien PCI Optimization System, St. Jude Medical, St. Paul, MN, USA) by aligning 

Figure 1. The novel fibre optic probe in an equine knee joint in vivo (a) with the probe tip in contact with 
cartilage surface (inset). Locations of NIRS measurements conducted in vivo during arthroscopy and in vitro 
in the laboratory (b). Comparison of average smoothed (c) and first derivative pre-processed (d, not used for 
modelling) spectra collected in vivo and in vitro with two separate spectrometers to cover the wide spectral 
region. NIRS measurement locations indicated with white and black dots were subjected to biomechanical and 
micro-CT reference measurements (b). For the red dots, values of reference parameters were only predicted 
based on ANN models. In subfigure (c), calculation of area between a two-point linear fit and measured 
spectrum was applied to detect outlier spectra. In subfigure (d), the 1st derivative spectra (not used for analysis) 
highlight the contribution of light from the conventional arthroscope at the spectral region of 0.42–0.75 µm.
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a catheter (C7 Dragonfly, St. Jude Medical) over the measurement points (Fig. 1b) and performing a pullback 
imaging, thus imaging the NIRS measurement locations and the surrounding tissue (Fig. 2a–c). The samples 
were submerged in phosphate-buffered saline (PBS) during the imaging. Cartilage thickness was then determined 
from the OCT images of each location for biomechanical measurements.

Biomechanical measurements. Biomechanical properties of cartilage surrounding the repairs 
(Nponies = 10, Nper joint = 12, Ntotal = 236) were determined via indentation testing. The samples were glued on a 
custom-made sample holder, which was mounted on a goniometer (Model #55-841, Edmund Optics Inc., 
Barrington, NJ, USA) to align the cartilage surface perpendicular with the face of a plane-ended non-porous 
cylindrical indenter (d = 0.53 mm). Measurements were performed with the samples submerged in PBS. The 
indentation system consisted of a 250 g load cell (accuracy ± 0.25%, Model 31, Honeywell Sensotec Sensors, 
Columbus, OH, USA) and an actuator (displacement resolution 0.1 µm, PM500-1 A, Newport, Irvine, CA, USA).

First, the indenter was driven into initial contact with the sample. The contact was then ensured by indenting 
the sample five times using 2% strain. The measurement protocol consisted of four stress-relaxation steps (each 
of 5% strain) with a ramp velocity of 100%/s and a relaxation time of 600 seconds between the steps, followed 
by dynamic sinusoidal loading (f = 1.0 Hz) with a strain amplitude of 1%. The equilibrium modulus (Eeq) was 
determined from the linear region of the stress-relaxation curve by assuming Poisson’s ratio of ν = 0.1, whereas 
the dynamic modulus (Edyn) was calculated as a ratio of the stress and strain amplitudes of the sinusoidal loading 
assuming a Poisson’s ratio of ν = 0.533,34.

Computed tomography and segmentation. Samples were imaged while submerged in PBS with a 
micro-CT scanner (Skyscan 1172, Skyscan, Kontich, Belgium) to determine subchondral bone plate and trabecu-
lar bone bone volume fraction (BV), bone mineral density (BMD), bone thickness, and trabecular bone structure 
model index (SMI). The samples were imaged using an isotropic voxel size of 12.15 × 12.15 × 12.15 µm3 and 
100 kV tube voltage, along with hydroxyapatite phantoms (500, 1000, and 1250 mg/cm3). To ensure reliable loca-
tion tracking for the segmentation, plastic cubes of approximately 8 mm3 were set on the NIRS measurement loca-
tions (Fig. 1b). From each measurement location, a cylindrical (diameter = 4.0 mm, height = 5.0 mm) region of 
interest (ROI) was virtually extracted, and the subchondral plate and trabecular bone were segmented (Fig. 2d–f).  
The extraction, segmentation, and analysis of bone properties were performed with DataViewer (Skyscan) and 
CTAn (Skyscan) programs. A global segmentation threshold (BMD = 0.46 g/cm3) was determined by comparing 
the binarized and original grayscale images.

Artificial neural network. The relationship between NIR spectra and reference parameters was investigated 
using ANN. The ponies were divided into calibration (60%, N = 4 and Ncontrol = 2, 142 spectra), validation (30%, 
N = 2 and Ncontrol = 1, 70 spectra), and test (10%, N = 1, 24 spectra) groups. For each reference parameter, in vitro 
models with spectral regions 0.75–1.90 µm (Model 2) and 0.40–1.90 µm (Model 3) were developed based on in 
vitro NIR spectra and optimized by determining the most reliable wavelengths via the forward variable selection 
technique22,29. The optimal model was chosen based on the smallest root mean square error (RMSE) of the test 
group. Additionally, a model (0.75–1.90 µm, Model 1) was developed in which the most reliable wavelengths were 
determined by evaluating RMSE values of two sets: the test group and the arthroscopic measurements. For each 
location of the arthroscopic measurements, the final predicted value was resolved as an average of non-negative 
predicted values. During ANN modelling, the Levenberg-Marquardt backpropagation algorithm was used, while 
hyperbolic tangent and linear activation functions were employed in the hidden and output layers, respectively. 
To avoid overfitting, model training was halted after the validation error did not decrease in six successive iter-
ations. The neural network architecture was limited to a maximum of eight neurons in the hidden layer and 
the analysis was performed in MATLAB (Matlab R2017b, MathWorks Inc., Natick, MA, USA) using the neural 
network toolbox (Version 11.0). To further evaluate model performance and reliability, the normalized RMSE 
(NRMSE) and ratio of performance to inter-quartile range (RPIQ)35 were calculated for in vitro training set (cali-
bration and validation), independent test group, and arthroscopic predictions separately. The NRMSE is deter-
mined as RMSE relative to the reference parameter range, whereas RPIQ is determined as

=RPIQ IQR
RMSE

, (1)

where IQR is the inter-quartile range of the measured data. The RPIQ was chosen due its suitability for 
non-normally distributed data35 and the threshold for reliable models was set to RPIQ ≥ 2, based on previous 
studies36,37.

Statistical analyses. Reference properties had a non-normal distribution (Shapiro-Wilk normality 
test, p < 0.0003) and, thus, non-parametric tests were employed in statistical analysis. Statistical significance 
of differences in tissue properties between cartilage repair and control ponies was investigated by using the 
Mann-Whitney U test in SPSS (Version 23, SPSS Inc., IBM Company, Armonk, NY, USA); p < 0.05 was set as the 
limit for statistical significance. Two-tailed Spearman (ρ) correlation coefficients were determined between the 
measured and NIRS predicted reference parameter values.

Data of the current study is available from the corresponding author on reasonable request.
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Results
Significant differences (p < 0.05) between the cartilage repair and control groups were observed in values of meas-
ured cartilage biomechanical properties (adjacent to the repair site), subchondral bone plate BV, and BMD (Figs. 2, 3, 
and Supplementary Figs. S1–5). Nevertheless, no significant differences (p = 0.16–0.93) were observed in cartilage  
thickness between the groups (Supplementary Fig. S1). The optimal predictive models (Model 1, ρCalibration&Validation =  
0.63–0.87, RPIQCalibration&Validation = 1.93–3.03) reliably predicted the tissue properties (ρTest = 0.54–0.91, 
RPIQTest = 1.68–3.36) of the independent test group apart from subchondral bone BV (ρCalibration&Validation = 0.69, 
RPIQCalibration&Validation = 1.34, ρTest = 0.58, RPIQTest = 1.30) from in vitro spectral data (Table 1) for the four loca-
tions at different distances from the repaired lesion (Fig. 3), thus accurately differentiating between healthy and 
post-traumatic tissue. Furthermore, cartilage models (average RPIQCalibration&Validation = 2.76, RPIQTest = 3.26) were 
superior to subchondral bone plate (average RPIQCalibration&Validation = 1.99, RPIQTest = 1.95) and trabecular bone 
models (average RPIQCalibration&Validation = 2.09, RPIQTest = 2.27). In addition, arthroscopic predictions with opti-
mal predictive models (Model 1) also enabled differentiation between healthy and post-traumatic tissue (Fig. 3).  
Although, the prediction performance (ρ = 0.27–0.74, RPIQ = 0.81–1.70) was inferior when compared to in vitro 

Figure 2. Optical coherence tomography (OCT) images from 3 locations, including cartilage thickness (a–c) 
along with corresponding micro-CT images of the underlying subchondral bone plate and subchondral 
trabecular bone (d–f). Subchondral plate thickness, bone volume fraction (BV), and bone mineral density 
(BMD) (d–f, top-right corner), and trabecular bone thickness, BV, BMD, and structural model index (SMI) 
(d–f, bottom-right corner) are presented. In addition, the optimal wavelengths for ANN models (Model 1) are 
presented (g–i). The width of each bar is 10 wavelengths (i.e., maximum number of variables in subfigure (g) is 
20, as two variables are displayed). The dashed line indicates a separation of the spectral measurement regions of 
the two spectrometers.
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predictions, possibly due to errors (e.g., non-perfect contact of the probe and cartilage surface) introduced during 
arthroscopic spectral acquisition.

For the locations with only arthroscopic measurements (Methods: Fig. 1b, red dots), the trends of predicted 
values (Model 1) were consistent with those of measured values at other locations (Supplementary Figs. S1–5). 
Additionally, predictive models based on in vitro spectral data from the 0.75 to 1.9 µm region (Model 2) were 
optimal for estimating cartilage and subchondral bone plate properties, whereas models with a wider spectral 
region (0.4–1.9 µm, Model 3) incorporating the visible region were optimal for predicting subchondral trabecular 
bone properties (Table 1).

Discussion
Currently, no quantitative arthroscopic tools are available for evaluation of cartilage and subchondral bone and 
thus orthopaedic surgeons have to manage with subjective visual scoring of injury severity and tissue probing 
with a metallic hook7. Although several arthroscopic instruments for biomechanical assessment of cartilage (e.g., 
Artscan38) have been introduced, several practical issues (e.g., poor inter-observer reliability) have limited their 
usage during routine arthroscopies38. In addition, ultrasound and OCT imaging have been suggested, but these 
have not yet gained wide acceptance for arthroscopic evaluation of cartilage11,12. For arthroscopic evaluation of 

Figure 3. Boxplots for experiment (post-traumatic) and control (healthy) groups with median (red line), 
quartiles (25% and 75%), and outliers (red cross) of in vitro measured (white bars) cartilage equilibrium 
modulus (a), dynamic modulus (b), and subchondral bone plate BMD (c) for the four locations at increasing 
distances from the lesion. Additionally, predictions based on the optimal model (Model 1) for in vitro and 
arthroscopic NIRS measurements are presented (grey and black bars, respectively). For each location, 
experiment and control groups had 12–14 and 6 measurements, respectively.
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subchondral bone, there are currently no clinical tools available; nevertheless, arthroscopic ultrasound imaging 
has been shown to provide information on the subchondral bone39. CT and MRI are widely used for diagnos-
tics of joint injuries, but these techniques cannot be utilized during arthroscopic repair surgery. As a result, the 
presently introduced NIRS probe could be used to accurately localize cartilage and bone defects, as well as the 
spread of tissue degeneration from an injury during arthroscopy, therefore potentially leading to better outcome 
of the tissue repair. Predictive models based on ANN provided accurate estimates of reference parameters for 
an independent in vitro test group. Although predictions based on spectra collected during in vivo arthrosco-
pies had slightly higher errors (i.e., weaker performance), they were able to discriminate between healthy and 
post-traumatic tissue. These findings suggest that NIRS is a promising technique for in vivo assessment of articu-
lar cartilage and subchondral bone properties.

Near infrared spectroscopy has been applied previously in human arthroscopies by Spahn et al. and Hofmann 
et al. to evaluate the condition of cartilage23–27. However, no study has applied NIRS for evaluation of subchondral 
bone properties in vivo, or for simultaneous assessment of cartilage and subchondral bone integrity, or for pre-
diction of tissue properties based on in vivo NIRS arthroscopy. In the aforementioned studies, a spectral region 
of 0.9–1.7 µm was utilized, whereas a wider region of 0.4–1.9 µm was utilized in the present study. Furthermore, 
the previous studies applied a simple univariate approach based on the ratio of spectral peaks for assessments 
of cartilage condition25,27, while a more advanced analytical approach based on ANN was adopted in this study.

The spectral region 0.75–1.9 µm was optimal for prediction of cartilage biomechanical and subchondral bone 
plate properties (i.e., subchondral plate thickness, BV, and BMD), while models that also incorporated the vis-
ible region (0.4–0.75 µm) enhanced the reliability of predicting subchondral trabecular bone properties (i.e., 

Mean (95% 
Confidence 
interval)

Spectral 
region (µm)

Number 
of 
variables

In vitro

ArthroscopicCalibration and Validation Test

ρ NRMSE RPIQ ρ NRMSE RPIQ ρ p NRMSE RPIQ

Cartilage

Eeq (kPa) 579 (506, 652)

0.75–1.90* 74 0.873 8.5% 3.14 0.890 5.9% 3.36 0.736 <0.0001 14.5% 1.46

0.75–1.90 85 0.874 9.0% 2.96 0.835 7.0% 2.85 0.466 <0.0001 23.5% 0.90

0.40–1.90 52 0.699 17.6% 1.51 0.876 7.2% 2.76 — — — —

Edyn (Mpa) 7.25 (6.61, 7.89)

0.75–1.90* 214 0.775 16.5% 2.38 0.910 14.0% 3.16 0.692 <0.0001 19.7% 1.70

0.75–1.90 61 0.793 15.8% 2.50 0.943 12.2% 3.63 0.544 <0.0001 21.8% 1.53

0.40–1.90 133 0.853 12.4% 3.19 0.963 7.3% 6.07 — — — —

Subchondral bone 
plate

BV (%) 98.4 (98.1, 98.7)

0.75–1.90* 133 0.689 7.1% 1.34 0.582 23.2% 1.30 0.384 <0.0001 10.4% 0.81

0.75–1.90 171 0.790 4.7% 2.03 0.867 9.5% 3.17 0.358 0.0002 18.5% 0.46

0.40–1.90 110 0.737 3.8% 2.45 0.697 10.3% 2.93 — — — —

BMD (g/cm3) 1.00 (0.99, 1.02)

0.75–1.90* 39 0.632 17.2% 2.18 0.539 17.6% 1.68 0.268 0.0063 24.0% 1.61

0.75–1.90 88 0.725 15.0% 2.49 0.732 16.0% 1.85 −0.179 0.07 31.3% 1.23

0.40–1.90 18 0.544 18.3% 2.04 0.757 15.6% 1.90 — — — —

Thick. (µm) 174 (166, 182)

0.75–1.90* 27 0.729 14.0% 2.45 0.896 9.9% 2.86 0.507 <0.0001 22.0% 1.45

0.75–1.90 182 0.750 18.9% 1.81 0.950 12.0% 2.36 0.364 0.0002 32.8% 0.97

0.40–1.90 143 0.794 18.5% 1.85 0.896 12.9% 2.19 — — — —

Trabecular bone

BV (%) 30.5 (29.8, 31.3)

0.75–1.90* 56 0.781 11.2% 2.26 0.871 12.7% 2.15 0.547 <0.0001 20.8% 1.46

0.75–1.90 28 0.703 12.4% 2.04 0.911 10.5% 2.60 0.325 0.0008 32.3% 0.94

0.40–1.90 39 0.742 12.3% 2.06 0.949 10.6% 2.57 — — — —

BMD (g/cm3) 0.247 (0.237, 0.258)

0.75–1.90* 69 0.735 13.2% 2.08 0.856 14.7% 1.89 0.346 0.0003 22.9% 1.35

0.75–1.90 103 0.739 13.3% 2.06 0.795 16.0% 1.73 0.266 0.0066 25.4% 1.22

0.40–1.90 36 0.763 11.8% 2.30 0.929 11.6% 2.40 — — — —

Thick. (µm) 169 (167, 172)

0.75–1.90* 34 0.679 14.4% 1.86 0.816 16.9% 2.46 0.442 <0.0001 17.6% 1.50

0.75–1.90 69 0.776 12.4% 2.16 0.850 13.3% 3.12 −0.065 0.51 25.7% 1.03

0.40–1.90 63 0.628 14.8% 1.81 0.821 14.0% 2.98 — — — —

SMI 0.367 (0.316, 0.417)

0.75–1.90* 13 0.728 11.8% 2.15 0.889 12.9% 2.59 0.465 <0.0001 19.8% 1.64

0.75–1.90 104 0.844 10.6% 2.38 0.906 11.1% 3.02 0.217 0.028 37.0% 0.88

0.40–1.90 52 0.825 10.9% 2.33 0.886 9.9% 3.40 — — — —

Table 1. Two-tailed Spearman (ρ) correlation coefficients between the measured and predicted values of 
cartilage: equilibrium (Eeq) and dynamic moduli (Edyn), subchondral bone plate: bone volume fraction (BV), 
bone mineral density (BMD), and thickness, and trabecular bone: BV, BMD, thickness, and structure model 
index (SMI). Calibration and Validation indicates the correlation coefficient for both calibration and validation 
groups (nine ponies, N  = 212), whereas the Test indicates the correlation coefficient for the independent 
test group (one pony, N = 24). In addition, the normalized root mean square error (NRMSE) and ratio of 
performance to inter-quartile range (RPIQ) are presented for these groups as well as for the arthroscopic 
data. The upmost row (*) of each parameter, indicates the model with optimized wavelength selection for 
arthroscopic predictions (Model 1). For all in vitro correlations, p-values were <0.01.
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trabecular thickness, BV, BMD, and SMI). This is due to better penetration of visible light through cartilage and 
into subchondral bone20. Nevertheless, the errors of arthroscopic predictions were higher for subchondral bone 
plate and trabecular bone properties compared to cartilage biomechanical properties, possibly due to contri-
butions from the overlying cartilage matrix. Furthermore, since probe contact with the cartilage surface affects 
the transmission of light into the tissue, this is possibly the reason for the weaker prediction of bone properties 
based on arthroscopic spectral measurements. Detailed understanding of wavelength-dependent light penetra-
tion would provide insight that enables quantification of the effect of the overlying cartilage in future studies.

The overall errors of prediction based on spectral data collected during arthroscopies were higher compared 
to those based on in vitro measurements. This is probably due to the difficulty in ensuring perfect probe contact 
with cartilage surface during arthroscopic spectral acquisition due to the geometrical constraints in the live sit-
uation. In the analysis, predictions based on the best 8 arthroscopic spectra (out of 15 recorded for each meas-
urement location) resulted in the most reliable predictions; however, these spectra were not necessarily obtained 
through perfect probe contact. To enhance the identification of optimal spectra for each measurement location, 
additional indicators or classification algorithms, e.g., support vector machines and decision trees, could be uti-
lized. However, this was beyond the scope of the current investigation. Additionally, for future studies the pres-
sure between the arthroscopic NIR probe and cartilage surface should be quantitatively measured in order to 
minimize its effect on the resulting NIR spectra and consequently the prediction accuracy40,41.

The gold standard multivariate technique used in multiple applications (e.g., determining soil properties) is 
PLSR; however, ANN has in many occasions outperformed PLSR42,43. Furthermore, ANN modelling does not 
require extensive preprocessing22, whereas PLSR often requires scatter correction and derivative pre-processing 
for optimal performance. Generally, ANNs, in particular deep neural networks (≥2 hidden layers), are consid-
ered to require more data. However, only shallow neural networks (with single hidden layer) were utilized in 
this study. Therefore, similar estimates of minimum number of observations can be applied for shallow ANN 
models as multivariate models, such as PLSR and multiple linear regression (MLR). Consequently, we deem over 
hundred observations to be sufficient with more being always better. In addition, roughly 200 observations were 
recommended by Bujang et al. when applying MLR44. Although the number of spectra (N = 24) in the independ-
ent test set was low, this test provides an unbiased evaluation of model performance. Furthermore, the relatively 
small prediction errors ensured that the models were well-generalized for new samples. As expected, the forward 
variable selection technique improved the performance and robustness of the models by reducing the number of 
wavelengths; this is consistent with our previous study22. The prediction errors in cartilage biomechanical proper-
ties based on arthroscopic spectra were substantially lower with the variable selection technique employed in the 
present study compared to the genetic algorithm approach applied in our previous study30.

The correlations demonstrated by the models arise from overtone vibrations of chemical bonds in the main 
constituents of articular cartilage and subchondral bone, i.e., water, proteoglycans, collagen (types I and II), and 
hydroxyapatite. The most common bonds in these tissue constituents are OH, SH, NH, CH, and PO4

45,46. Water 
is the most abundant constituent (up to 80%) in cartilage45 and thus the OH bond has a substantial influence on 
the spectral response of cartilage. The main peaks associated with the tissue water content appear between 0.95–
1.10 µm, 1.40–1.55 µm, and 1.80–2.00 µm due to second overtone OH stretching, first overtone OH stretching, 
and second overtone OH bending vibrations, respectively47. The spectral regions 0.95–1.10 µm and 1.40–1.55 µm 
also include contributions from the second and first overtones of NH stretching vibrations47, respectively. In addi-
tion, overtones of CH stretching vibrations can be observed at spectral regions 0.85–0.95 µm, 1.10–1.25 µm, and 
1.65–1.80 µm47. Spectral data from regions of stronger vibrations (first overtones) contribute more to model per-
formance as observed from the histograms of selected wavelengths (Fig. 2g–i). The spectral region associated with 
the first overtone OH stretching vibration (1.40–1.55 µm) contributes substantially to the models, particularly for 
articular cartilage and subchondral bone plate parameters. For subchondral trabecular bone, the emphasis shifts 
towards the lower wavelengths (1.05–1.2 µm) due to better penetration depth of the light20.

The relationship between NIR spectra and cartilage biomechanical properties has been previously investigated 
in vitro with univariate15,18 and multivariate13,16,17 analysis (i.e., PLSR). These studies utilized relatively narrow 
spectral regions with moderate and good correlations, whereas in this study a wider region was utilized along 
with ANN combined with a variable selection technique. Afara et al. investigated subchondral bone properties 
with a similar spectral region in a rat model with promising results19. However, cartilage in a rat knee joint is 
substantially thinner than in human and equine knee joints48,49. Thus, the findings in the present study indicate 
that NIRS is a feasible technique for assessment of subchondral bone properties, even through thicker human 
and equine cartilage. Nevertheless, additional studies are required to confirm the validity of the NIRS technique 
in human patients.

No statistically significant difference was observed in cartilage thickness between control ponies and ponies 
with repaired cartilage defects. However, significant variation in cartilage biomechanical properties was observed 
between the groups. In PTOA, cartilage surrounding the site of a defect experiences higher strains6, therefore 
altering the tissue’s biomechanical competence and possibly leading to remodelling of the subchondral bone50. 
For subchondral plate properties, statistically significant differences were observed in values of BV and BMD 
between the groups, which is consistent with current knowledge on early-stage subchondral bone changes in 
OA50,51.

A possible limitation of this study is the potential effect of dependency as arthroscopic and in vitro measure-
ments were conducted on the same ponies (the experimental group); however, this enabled comparison between 
the in vitro and in vivo environments, and provided valuable information for further development of in vivo 
NIRS applications. An additional limitation is that the arthroscopic spectra were found to include contributions 
from the conventional arthroscope light source, thereby limiting the useful spectral range to the NIR region 
(0.75–1.90 µm) because of interference in the visible spectral region.
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Outlook. Near infrared spectroscopy is a promising quantitative technique for simultaneous arthroscopic 
assessment of cartilage biomechanical properties and subchondral bone structure and density. This technique 
could substantially enhance assessment of the clinical status of joints by enabling quantitative detection of initial 
signs of PTOA around chondral lesions. This would be of high clinical significance, e.g., when conducting artic-
ular repair surgery.
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