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Introduction

The two cornerstones of modern fundamental physics are quantum field the-
ory and general relativity. Einstein’s general relativity as an extension of
Newton’s theory of gravity is based on the idea that matter and energy
densities curve its surrounding space-time as dictated by Einstein’s famous
equations. This accounts for phenomena on astrophysical scales like the grav-
itational red-shift, gravitational lensing or gravitational waves as detected in
2016 by the LIGO experiment [1]. The framework of quantum field theory is
tested to be realized in nature as the Standard Model of particle physics. This
theory elevates classical matter like electrons to quantum fields that interact
via mediating fields, for instance photons describing light in quantum elec-
trodynamics. Quantum electrodynamics is up to date the most well-tested
theory as its predictions were observed to an astonishing accuracy beyond
any other physical theory. The great success of quantum field theory in par-
ticle physics was crowned in 2012 with the discovery of the Higgs particle at
LHC [2, 3] as suggested by theorists in the 60s. This proves the realization
of the Higgs mechanism in nature accounting for the generation of masses of
particles.
Although both theories provided great achievements for theoretical physics,

unifying both into a single consistent theory of nature proves troublesome.
The difficulties arise from the fact that general relativity loses is predictive
power in the regime of high energies where a classical description of nature
breaks down and we enter the realm of quantum field theory. In nature this
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1 Introduction

occurs for instance in the vicinity of black holes where the extraordinary
mass density within the horizon makes a high energy description of gravity
necessary. Here the size of the black hole can theoretically be smaller than its
Compton wave-length requiring a full quantum treatment. In the quantum
description of gravity the gravitational force is mediated by gravitons, quan-
tized particles whose interactions with matter model the attractive forces
between the latter. Due to the positive mass-dimensions of the graviton
self-coupling in Einstein gravity, the graviton propagator is plagued by di-
vergences at high energies in the standard quantum field theory approach to
gravity. Therefore a field theoretic description of general relativity can only
be an effective theory at large distances which means that it only accounts for
phenomena up to a certain energy scale. At this scale new physics is needed
for a consistent quantum description of gravity dubbed quantum gravity.
This new physics will contain additional degrees of freedom that are too
massive to be observed at low energies and their interactions with the large
distance spectrum is hoped to render the full theory finite. Although many
alternative approaches to realize this new physics exist, the most promising
candidate for a well-behaved quantum gravity is string theory [4–9].

1.1 String theory as quantum gravity

String theory is the concept of modelling the fundamental constituents of
nature not via point-like, but extended objects, one-dimensional strings. The
extended nature of the string allows for rich dynamics that can be split into
center-of-mass movements as well as vibrational modes, similar to a violin
string vibrating at a specific eigenmode. The kind of the eigenmode of the
string determines its quantum numbers and hence the sort of particle it
represents to an observer agnostic about the strings’ extended nature. Among
this infinite number of eigenmodes is also a massless symmetric two-tensor
mode which behaves as a graviton in space-time. Furthermore, there are
modes corresponding to matter and non-abelian gauge fields. In this sense
string theory is a quantum theory of gravity, as it contains a gravitational
sector that is coupled to fermions or gauge-bosons. The infinite number of
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1.1 String theory as quantum gravity

massive eigenmodes of the string provides the additional degrees of freedom
for the new physics and resolves the high energy divergences. So far no
inconsistencies were found in the string theory framework, therefore it is
conjectured that string theory provides a unified framework for a quantum
description of the interactions between matter and gravity.

Common to all string theories is a massless real scalar field in their spec-
trum called the dilaton which can be viewed as a dynamical coupling constant
of the string interactions. For a weak string coupling, i.e. a small vacuum
expectation value of the dilaton, we can recover a perturbative description of
string theory. The interactions in perturbative quantum field theory of point
particles following their worldlines are described by one dimensional graphs
called Feynman diagrams. These are replaced in perturbative string theory
by two-dimensional Riemann-surfaces describing the worldsheet of a string,
the two-dimensional analogue of the worldlines of point particles. In this
sense perturbative string theories whose effective theories might describe our
world enjoy a twofold perturbative expansion in two scales, the string length
and the string coupling. The perturbative expansion of scattering amplitudes
of strings, perturbative in string coupling, can be viewed as summing over
all possible worldsheet topologies where the contribution from each topology
is suppressed by a power of string coupling corresponding to the number of
holes (and handles) of the two-dimensional worldsheet. This expansion is the
analogue of regular Feynman diagrams smearing out the localized interac-
tion points of point particles to the worldsheet of interacting strings, hereby
removing divergencies in the scattering amplitudes. The loops of Feynman-
diagrams correspond here to the holes and handles of the worldsheet of the
string.

These remarkable properties put, however, strong constraints on the con-
sistent string theories. To avoid tachyons rendering a possible vacuum un-
stable and to contain fermions in its spectrum, a string theory needs to
be supersymmetric. A quantum field theory endowed with supersymmetry
shows a symmetry between its bosonic and fermionic degrees of freedom. The
generators of these symmetries are called supercharges and map bosons to
fermions and vice versa enhancing the regular symmetry group of space-time
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1 Introduction

containing translations and rotations. The advantage of unbroken super-
symmetry in a theory is an improved stability of the underlying quantum
theory, as certain quantum corrections of fermions and bosons cancel due
to the restrictions imposed by their additional symmetry. In such theories
bosons and fermions combine into multiplets, irreducible representations of
the enhanced Lorentz group. The number of supercharges is usually denoted
by N -supersymmetry with N counting the number of irreducible represen-
tations in which the supercharges occur. In four space-time dimensions we
have minimal or N = 1 supersymmetry, if there are four supercharges in
the theory transforming as one real Majorana fermion or two chiral Weyl
fermions.

Further necessary constraints on such a superstring theory are the require-
ment of conformal symmetry on the world-sheet and the string propagating
in a ten dimensional space-time to avoid anomalies in the two-dimensional
conformal quantum field theory. The conformal symmetry is in part respon-
sible for the well-behaved nature of the string as it forbids the theory to have
any scale allowing for the same description at all energy scales. The scale set
by the string coupling only emerges by setting a vacuum expectation value
for the dilaton which we choose small to find a perturbative description of
the theory. The only scale left is the string length α′ that serves as an over-all
normalization of the world-sheet action. It is usually assumed to be of the
same order as the Planck length.

After imposing the constraints only five distinct perturbative superstring
theories are left: Type IIA and Type IIB string theory, the heterotic string
theory with gauge group either E8×E8 or SO(32) and Type I string theory.
As proposed by Witten in the mid 90s these five string theories are all related
by dualities and can be viewed as different limits of an eleven-dimensional
theory called M-theory [10–13]. The crucial insight that led to this devel-
opment was the realization that string theory contains (p + 1)-dimensional
extended objects called p-branes, see [14–16] and [17] for a modern review,
that are not included in the perturbative spectrum of the theory. The branes
are non-perturbative as their mass scales inversely with the string coupling.
For certain branes, the D-branes of Type II string theories, their fluctua-
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1.1 String theory as quantum gravity

tions around a background configuration are, however, described by open
strings ending on the D-branes that can be viewed as solitonic solutions of
the underlying theory. The massless open string degrees of freedom describe
a supersymmetric gauge theory, possibly non-Abelian, confined to the world-
volume of the brane. As the masses of the the open strings are determined
by their tension and the distance between branes, we can find massless states
at the intersection of branes. These intersections of branes can lead to chiral
fermions and Yukawa couplings in their massless spectrum localized on the
intersection of several branes where the open strings become massless. If we
stack several branes, we obtain non-Abelian gauge theories on their common
world-volume. This is a convenient way to realize the standard model on the
world-volume of a D-brane which is known in the literature as brane-world
scenario.

At large length scales or low energies when the extended nature of the
string can not be resolved by an observer, we recover point-particle physics.
In this limit the tension of the strings becomes infinitely high and therefore its
higher excitations infinitely massive. The states that survive this limit fit into
spectra of supergravities coupled to gauge fields, a unique ten-dimensional
theory for each string theory and one unique eleven-dimensional supergrav-
ity as the low-energy limit of M-theory. Supergravity is the gauged version
of supersymmetry and due to the fact that the (anti-)commutator of two
supercharges is proportional to the momentum operator of the underlying
space-time, gauging supersymmetry automatically implies diffeomorphism-
invariance of the entire theory and hence it necessarily includes gravity.
These supergravities are therefore effective low-energy descriptions of a UV-
complete theory, provided by string theory. In this sense we recovered an
effective description of the low-energy physics of a consistent theory of quan-
tum gravity.

Branes appear in this context as singularities of the space-time extend-
ing the notion of a black hole to higher dimensional objects. The extended
nature of a brane breaks the translation invariance of the underlying space-
time and therefore in general also some supersymmetry. Their perturbative
degrees of freedom are captured by the so called Dirac-Born-Infeld (DBI)
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action, coupling gravity to the world volume of the brane, and topological
Chern-Simons terms that model the interactions of the gauge-potentials with
the background. In the weak coupling description this gives rise to gauge po-
tentials coupled minimally to supergravity to leading order on the brane. The
DBI and Chern-Simons actions of a brane are just added to the supergravity
theory, in this sense we put branes into the supergravity theory by hand. The
higher order interactions of the DBI theory are very hard to compute and
unknown, but necessary to obtain a consistent theory. These corrections pro-
vide the interactions of the bulk or closed string degrees of freedom with the
brane or open string degrees of freedom. The emerging backreaction of the
branes onto the ambient geometry, however, is important to phenomenologi-
cal applications as they might be responsible for conjectured no-go theorems
constraining the validity of the perturbative low-energy description of string
theory. A possible solution to this problem is F-theory, a non-perturbative
description of type IIB string theory with seven-branes.

1.2 Dimensional reduction in string theory

Wait, we don’t live in ten space-time dimensions! So how does that fit with
the observation of a four dimensional space-time? One answer is compactifi-
cation, the idea that the additional dimensions predicted from string theory
are curled up in tiny compact dimensions that hence avoid detection. The
compact space is called the internal space, as we do not observe it, whereas
the extended dimensions are called external space of the compactification.
Truncating the theory to its massless content we recover an effective low-
energy description in four dimensional space-time, which is nicely described
in [18]. This process to obtain a low-energy effective theory from a higher
dimensional theory with small extra dimensions is called dimensional reduc-
tion.
We will illustrate this concept by considering a theory of a free massless

scalar φ(x0, . . . , x4) in five-dimensional space-time M4,1 with one compact
direction

S4,1 =

∫
M4,1

∂Mφ∂
Mφ , M4,1 = M3,1 × S1 . (1.1)
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1.2 Dimensional reduction in string theory

The compact direction parametrizes a circle S1 of radius R with periodic co-
ordinate y. Expanding φ(x0, . . . , x3, y) into its Fourier modes φk(x0, . . . , x3)

as
φ(x0, . . . , x4) =

∑
k∈Z

eiky/Rφk(x
0, . . . , x3) , (1.2)

we obtain an infinite number of four-dimensional scalars φk(x0, . . . , x3) with
mass-squares

m2
k =

( k

2πR

)2
. (1.3)

These fields φk are often called the tower of Kaluza-Klein (KK) modes, be-
cause their masses (the levels of the tower) increase with the internal mo-
mentum k ∈ Z along the circle. In an effective theory where the additional
dimension avoids detection, at energies E � 1/R only the lowest component
of the KK-tower φ0 can be excited and we find an effective four-dimensional
theory of a free scalar

S3,1,eff = 2πR

∫
M3,1

∂µφ0 ∂
µφ0 . (1.4)

This illustrates dimensional or Kaluza-Klein reduction that allows to derive
an effective theory for small additional dimensions. This effective theory
is a perturbation theory around a vacuum which is a solution of the full
equations of motion of the higher dimensional theory. In the above example
the vacuum solution is given by the space M3,1 × S1 where the field φ has a
zero vacuum expectation value.
The motivation of Kaluza [19] and Klein [20] for their original work was

somewhat different than our modern approach coming from string theory.
Their goal was to unify Einstein’s general relativity with Maxwell’s theory of
electro-magnetism or in today’s language a U(1)-gauge-field theory. Starting
from a five-dimensional theory of pure gravity, they compactified it on a circle
and derived the effective theory around a flat vacuum. In this construction
the five-dimensional metric g(5) splits into the four-dimensional metric g(4),
a massless four-dimensional vector A and a massless real scalar φ.

g(5) =

(
g(4) A
AT φ

)
. (1.5)
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1 Introduction

Remarkably, the five-dimensional diffeomorphism invariance descends to a
U(1) gauge-symmetry of the four-dimensional vector which can be traced
back to the periodicity of the circle. The real scalar is basically the radius
or size of the circle and controls the coupling of the four-dimensional gauge-
theory. In broader terms the size of the circle is a modulus of the internal
geometry, a field with no potential. This expectation value of the modulus,
here the radius of our background, determines the couplings in our effective
theory. We find in particular that the geometry of the internal space has a
crucial influence on the physics of the effective theory.

Although the reduction as proposed by Kaluza and Klein unifies indeed
gravity and electro-magnetism, it only does so on the classical level as the
five-dimensional quantum theory already suffered from inconsistencies. The
modern approach is to take as a starting point ten- or eleven-dimensional
supergravity which we argued to be UV-completed by string theory or M-
theory and perform the dimensional reduction on a six- or seven-dimensional
internal space.

In this work we will consider only compactifications to flat Minkowski-
space and the background values of the field strengths of the gauge-potentials
will be set to zero. Furthermore do we only consider classical space-times as
vacua where also the fermions have vanishing vacuum expectations value. For
the lower dimensional theory to retain a certain amount of supersymmetry
restricts the internal space to have a so called Killing spinor, i.e. the internal
geometry allows for fermionic symmetries. This restricts the holonomy of the
internal D-dimensional Riemannian manifold which we assume to allow for
spinors. In this case is the holonomy group generated by the transformations
of a spinor when parallel transported along closed curves in the manifold
and is in general Spin(D). To preserve supersymmetry we need to restrict
to subgroups of the holonomy group. In D = 6 dimensions Calabi-Yau
manifolds serve as convenient backgrounds for string compactifications [21–
24], as they have SU(3) ⊂ Spin(6) ' SU(4) holonomy allowing for Killing
spinors. They not only preserve supersymmetry, but are also Ricci-flat and
therefore solve Einstein’s equation for space-times without matter. The six-
dimensional Calabi-Yau manifolds which are complex manifolds are called
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1.2 Dimensional reduction in string theory

Calabi-Yau threefolds as they have three complex dimensions.
The effective low-energy descriptions of string theory in four flat space-

time dimensions M3,1 preserving supersymmetry are therefore chosen to be
perturbations around a supergravity background of the form

M9,1 = M3,1 × Y3 , e〈φ〉 = gs , (1.6)

where Y3 is a Calabi-Yau threefold of a very small length scale. The vacuum
expectation of the dilaton φ, the real scalar common to a all superstring
theories determines the string coupling gs of the perturbation theory. It can
be thought of as the radius in the compactification of M-theory on a cir-
cle. Giving the remaining fields background values breaks supersymmetry in
general spontaneously and generates a potential for the fields rendering them
massive. This fixes the fields at the minimum of the potential, i.e. stabi-
lizes them at their vacuum expectation values. Non-zero vacuum expectation
values of the various p-form field strengths are called fluxes. Compactifica-
tions on Calabi-Yau backgrounds usually leads to hundreds of massless fields
without potential, the moduli of the effective field theory. These moduli
need to be stabilized at high mass scales as they are not observed in the
four dimensional space-time. A convenient scenario to do so are called flux
compactifications, [25–29], where the non-zero field strength values of the
background generate a potential for the moduli. So far no dynamical mech-
anism to determine the correct vacuum for the effective low-energy theory is
known and therefore we need to construct these backgrounds by hand.
A convenient framework for these constructions are the Type II theories,

as a background of the form (1.6) preserves eight supercharges, N = 2 su-
persymmetry, which is then spontaneously broken by fluxes in the internal
space. This approach provides a certain amount of stability to corrections.
The downside is that these backgrounds do not allow for non-Abelian gauge
theories or chiral matter in the four-dimensional external space. This can
be cured by introducing space-time filling D-branes into the background.
The corresponding D-branes need to wrap non-trivial cycles of the internal
space to account for their tension and create a stable background. Since they
break translational invariance of the internal space, they also break part of

9



1 Introduction

the supersymmetry.
The tension of the D-branes and their charges sourcing the gauge fields

provide a non-trivial energy-momentum density of the background and hence
it can no longer be Ricci-flat to solve Einstein’s equations. There are two
solutions to this problem, either we consider a complex internal manifold
B3 with positive curvature which is no longer Calabi-Yau or we introduce
negative tension objects called orientifold planes or O-planes on the Calabi-
Yau space Y3. Both solutions are related by a so called orientifold-involution
σ, mapping Y3 holomorphically to itself with fixed point loci the O-planes.
The quotient of Y3 by the action of σ is precisely the positive curvature
background B3 which contains only D-branes. The four-dimensional effective
theories and their properties were derived in a series of papers [30–34].
Constructing these so called Type II orientifold flux backgrounds is a te-

dious task as we need to pay attention to various consistency conditions, like
tadpole constraints, anomaly cancellation and preserving a weak coupling
description. An elegant geometric solution to these complications is given by
F-theory.

1.3 F-theory on Calabi-Yau fourfolds

The F-theory framework as proposed by Vafa in 1996, see [35], is the best
understood description of string theory as it allows to include certain non-
perturbative effects not accessible by other approaches. Starting point is
Type IIB string theory whose massless bosonic spectrum contains a complex
scalar, called the axio-dilaton τ , defined as the combination

τ = C0 + ie−φ , eφ = gs . (1.7)

Here C0 is the zero-form gauge potential of Type IIB and φ the dilaton,
whose vacuum expectation value determines the string coupling gs. Type
IIB string theory and its low-energy supergravity obey a self-duality called
S-duality under which the axio-dilaton transforms as

τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,R) , (1.8)
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1.3 F-theory on Calabi-Yau fourfolds

which is further broken to SL(2,Z) in the full string theory due to quantum
effects. This duality contains in particular the mapping

τ → −1

τ
, (1.9)

which allows for a strongly coupled region in the ten-dimensional space-time
to have a dual weakly coupled description. The discrete duality in (1.8) is
the reparametrization invariance of the complex structure modulus τ of a
torus

T 2 = C/Z + τZ . (1.10)

Therefore, we can interpret the ten-dimensional Type IIB string theory as
a compactification of a putative twelve-dimensional F-theory on a torus T 2

with complex structure modulus τ varying over the ten-dimensional space-
time. This geometry is called a torus fibration over the space-time. The
problems with this picture are that there is no interpretation for the volume
of the torus, which should appear in a compactification as a modulus in the
effective theory, and the fact that there is no twelve-dimensional supergravity
with signature (1, 11).
The more practical approach is to understand F-theory as a certain limit

of M-theory. Here M-theory is compactified on a torus fibration with the
torus complex structure modulus τ , as for example described in [36]. We
call the two cycles of the torus A-cycle and B-cycle which are both circles.
M-theory on a circle can be interpreted as Type IIA String Theory with
coupling the radius of the circle. As we go to strong coupling in Type IIA we
decompactify the space-time and recover the eleven-dimensional M-theory
description. This can also be seen as the definition of M-theory. The second
duality we will exploit is the duality between Type IIA String Theory on
a cirlce and Type IIB String Theory on a circle with inverse radius. This
duality is known as T-duality and interchanges states with momentum along
the circle direction with stringy states that wind around the circle.
To obtain the desired F-theory vacuum, we first compactify M-theory on

the A-cycle of the torus leading to Type IIA String Theory and then com-
pactify further on the B-cycle and use T-duality to obtain a Type IIB vacuum
with axio-dilaton τ in nine dimensions. In the following we will restrict to
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1 Introduction

a nine-dimensional space-time of the form M2,1 × B3 with B3 a three com-
plex dimensional manifold which is Kähler. We further restrict to elliptic
fibrations for which τ depends on the coordinates of B3 holomorphically,
preserving a certain amount of supersymmetry in the effective theory. An
elliptic curve is a torus with a marked point, for example the origin in (1.10).
It can be shown in particular that due to the holomorphiciity of the fibra-
tion the volume of the elliptic fiber is constant over B3. Sending then this
volume modulus of the torus to zero, the B-cycle radius becomes infinite,
the vacuum decompactifies and we recover an effectively four-dimensional
Lorentz-invariant Type IIB vacuum with axio-dilaton τ . To preserve mini-
mal supersymmetry in four dimensions the total space of the elliptic fibration
over B3 needs to be Calabi-Yau. The resulting space has four complex dimen-
sions and is hence called an elliptically fibered Calabi-Yau fourfold Y4 whose
geometry and the effective physics of its string theory compactifications will
be the central topic of this thesis. They were first studied in [37–42] and
their effective theories were discussed in [43–47] for Type II string theories,
in [48, 49] for M-theory and in [50] for F-theory.

The advantage of this construction is that the elliptic fibration can degen-
erate, i.e. a cycle along the torus fiber may shrink to zero size over complex
codimension one loci. At these points τ has a pole indicating the presence of
a charged object which is called a space-time filling seven-brane. These are
eight dimensional objects in M3,1 × B3 that wrap four-cycles in B3 and are
charged magnetically under C0. If there is more then one seven-brane at the
same locus in the base B3, for example they stack or intersect, the elliptic
fiber degenerates further and the Calabi-Yau fourfold Y4 becomes singular.
At these degeneration loci in B3 we find non-Abelian gauge groups for stacks
of seven-branes where the number of branes in the stack corresponds to the
rank of the gauge group. At the intersection of two branes matter localizes
and at points where three branes intersect Yukawa couplings emerge. These
properties are captured by the geometry of the elliptic fibration of Y4. For
further details we refer to the great review [51].

These F-theory vacua allow in general only for local weakly coupled de-
scriptions due to the local SL(2,Z) symmetry of our theory. Vacua for which
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1.4 Novel features of Calabi-Yau fourfolds with non-trivial odd cohomology

such a global weak coupling limit exists are scarce and were first discussed
by Sen [52, 53]. This scarcity renders the F-theory framework much more
general than the regular weakly coupled Type IIB description. In the dual
M-theory picture on the Calabi-Yau fourfold Y4 the degrees of freedom of
the seven-branes are geometric moduli of Y4, geometrizing the seven-branes
and accounting for their full dynamics. This geometrization blurrs the dis-
tinction of closed (bulk) and open (brane) string degrees of freedom in the
dual type IIB orientifold compactifications and allows a description of the
effective four-dimensional physics of Type IIB string theory at finite coupling
(general τ).
From another point of view, there is no need any more for the Type IIB

interpretation that distinguishes between open and closed strings as both are
captured by the geometric deformations of the Calabi-Yau fourfold geometry.
In general this distinction does not even exist! This motivates the study of the
geometry of Calabi-Yau fourfolds and its deformations as it is essential to the
computation of the effective field theory dynamics as for example described
in [54,55]. In particular, it is possible to construct explicit examples of these
Calabi-Yau fourfolds and to derive the couplings of the theory in terms of
geometrical quantities. A simple class of these in general very complicated
constructions, toric hypersurfaces, will be central to the second part of this
work.

1.4 Novel features of Calabi-Yau fourfolds with
non-trivial odd cohomology

In this short subsection we want to highlight the novel results that were
obtained in course of our studies. As we conveyed so far, F-theory on el-
liptically fibered Calabi-Yau fourfolds provide an interesting arena for string
phenomenology, the study of the low-energy effective theories of string the-
ory. The goal of this active research field is to derive observable consequences
of string theory. As emphasized earlier, F-theory provides enough flexibility
to derive the details of its effective theory, but also contains brane dynam-
ics and is inherently non-perturbative. To achieve these features it uses the
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1 Introduction

machinery of algebraic geometry that provides us with powerful tools that
allow calculations of spectra and couplings.

As F-theory can be interpreted as a generalization of the weakly cou-
pled Type IIB orientifold vacua, it also contains novel features and unifies
complicated physics of the perturbative theory. The particular feature we
study in this work are non-trivial harmonic three-forms on the underlying
Calabi-Yau fourfold. The corresponding massless modes have no analogue
in Calabi-Yau threefolds that are characterized by their geometric moduli,
the Kähler moduli determining volumina and the complex structure moduli
that describe the shape of the underlying threefold. The three-form moduli
of the F-theory description, however, defy a simple geometric interpretation
and behave differently as they arise not from the metric of the theory, but
from the three-form gauge-potential of M-theory or Type IIA string theory.

Consequently, the inclusion in the topological string theory framework
like in [56,41,57] is elusive, even for type II compactifications on Calabi-Yau
fourfolds. This can be related to the fact that in the conformal field theory
approach, for example using orbifolds of Landau-Ginzburg vacua [58, 59],
the states corresponding to the three-forms arise from twisted sectors and
are not marginal deformations of the N = (2, 2) SCFT as they have R-
charges (2, 1). Consequently, the topological twists of the SCFT that lead
to the familiar A-model (Kähler deformations) and to the B-model (complex
structure deformations) do not apply. Therefore, their kinetic terms, usually
given by the metric on the moduli space of marginal deformations of the
SCFT can not be described by the Zamolodchikov metric [60, 61]. Due to
this complications and the fact that the simplest examples of Calabi-Yau
fourfolds have a trivial three-form cohomology, the inclusion of three-forms
is hardly discussed in the literature. In course of this thesis we will find that in
the models when non-trivial three-forms are present, we can no longer discuss
Kähler and complex structure deformations independently as the metric of
the three-form moduli depends on both.

Another approach to include the three-form moduli into the low-energy
effective theory is to start with a supergravity theory and perform a dimen-
sional reduction on a general Calabi-Yau fourfold. This was done first by
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Haack and Louis [43] that compactified Type IIA supergravity on a fourfold
with non-trivial non-trivial three-forms. For technical reasons it became ev-
ident that in the expansion of the three-form gauge-potential a three-form
basis depending on the complex structure moduli was necessary. This was
artificially solved by introducing tensors mapping a topological (constant)
harmonic three-form basis to a non-constant three-form basis. Consistency
required these tensors to depend in a complicated way on the complex struc-
ture moduli described by a set of differential equations. A geometric inter-
pretation of these tensors and a solution of the differential equations was,
however, not found.
First progress in this direction was made ten years later in [50] as a refined

ansatz for the harmonic three-forms was put forward. This enabled a clearer
derivation of the effective theory and showed that a certain subset of the
three-form moduli are dual to U(1) gauge-bosons in the weak coupling de-
scription of F-theory in four dimensions. The complex structure dependence
of this novel ansatz for the harmonic three-forms was captured by a matrix
valued function fAB(z) that depends on the complex structure moduli z and
determines the coupling of the resulting U(1) gauge-theory. In a later publi-
cation [62], it was observed that a different kind of three-form moduli gives
rise to axions in the effective theory and again fAB determined the coupling
and hence the axio-decay constant relevant for inflationary models. Due to
the crucial role of the matrix fAB as coupling in the effective theory, the
question we strive to answer in this thesis is

What is fAB ?

In course of this work we will not only give a beautiful geometric inter-
pretation of this function fAB, but also find the right field basis to include
the three-form moduli in the general supergravity framework and calculate
their couplings. Furthermore will we extend the usual toric constructions of
Calabi-Yau fourfolds to account for this novel three-form sector and discuss
the geometry of elliptic fibrations with non-trivial three-form cohomology.
As we go through our discussion we will encounter a number of interesting
and often puzzling features that deserve further research, as for instance the
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shift-symmetries of the effective theories investigated in [63]. In the upcom-
ing section we will give a brief outline of this thesis.

1.5 Outline

We start this thesis by introducing the geometric properties of Calabi-Yau
fourfolds and their harmonic forms in chapter 2 where we focus especially
on the harmonic three-forms whose physical properties are determined by
the complex structure dependence of their so called normalized period ma-
trix. The first part of the thesis focuses on effective theories of Calabi-Yau
fourfolds.
In chapter 3 we perform the dimensional reduction of Type IIA super-

gravity on a general Calabi-Yau fourfold and find a N = (2, 2) dilaton-
supergravity in two dimensions. Here we determine the massless spectrum
and the kinetic potential of the resulting supergravity. We conjecture an
extension of the usual Kählerpotential of supergravity theories by a term
depending on the dilaton of the theory to account for the kinetic coupling
of the novel three-form scalars. Subsequently we apply mirror symmetry in
chapter 4, a duality of the same supergravity theories for two different Calabi-
Yau fourfolds, to determine the structure of the normalized period matrix at
the large complex structure point in moduli space. Following this discussion
we extend our analysis to the dimensional reduction of eleven-dimensional
supergravity in chapter 5. Afterwards we lift the resulting three-dimensional
N = 2 supergravity to the effective theory of F-theory on elliptically fibered
Calabi-Yau fourfolds leading to an effective N = 1 supergravity description
in four dimensions. We close by discussing the implications of non-trivial
three-form cohomology and defer some technical details of the first part into
two appendices in A,B.
In the second part of this thesis we construct explicit Calabi-Yau fourfold

examples via hypersurfaces in toric varieties. We begin in chapter 6 with the
general construction of toric spaces and their hypersurfaces. We focus on
Calabi-Yau fourfolds realized as so called semi-ample hypersurfaces avoiding
the Lefschetz-hyperplane theorem that forbids non-trivial three-form coho-
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mology. This is followed by a discussion of the origin of non-trivial harmonic
forms on the hypersurface and we state well known formulas for the number
of the various harmonic forms in terms of toric data. We added several clar-
ifications and extensions of the published work to include also non-toric and
non-algebraic deformations of toric hypersurfaces. In chapter 7 we discuss the
moduli space of the three-form scalars which is called intermediate Jacobian
of a Calabi-Yau fourfold whose complex structure dependence reduces to the
complex structure dependence of Riemann surfaces. The Kähler dependence
is captured by a so called generalized sphere-tree that can be computed in
terms of the ambient space. We determine in this situation the geometrical
quantities necessary to derive the effective theories discussed before. This
part is completed by a lengthy discussion of two simple examples of Calabi-
Yau fourfold geometries with non-trival three-form cohomology in chapter 8.
We conclude the thesis in chapter 9 giving an outlook of possible future
research directions.
This thesis is based on two papers [64, 65] in collaboration with Thomas

W. Grimm and one proceedings article [66].

• S. Greiner and T. W. Grimm, “Three-form periods on Calabi-Yau four-
folds: Toric hypersurfaces and F-theory applications”,
JHEP 1705 (2017) 151, arXiv:1702.03217 [hep-th].

• S. Greiner and T. W. Grimm, “On Mirror Symmetry for Calabi-Yau
Fourfolds with Three-Form Cohomology”,
JHEP 1609 (2016) 073, arXiv:1512.04859 [hep-th].

• S. Greiner, “On Mirror Symmetry for Calabi-Yau Fourfolds with Three-
Form Cohomology”,
PoS CORFU 2016 (2017) 102, arXiv:1704.07658 [hep-th].
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2

Calabi-Yau fourfolds with non-trivial
three-form cohomology

In this section we lay the groundwork for our dimensional reductions int
the coming sections by introducing the central points of Calabi-Yau fourfold
geometries. Here we begin with a precise definition of Calabi-Yau fourfolds
and move then on to the geometric properties like the Kähler- and complex
structure. For the mathematical details we refer to [24, 67, 68]. In this first
part we will also account for the non-trivial harmonic forms of this class of
manifolds that will later determine the spectrum of our effective theories. In
the second part of this section we will discuss in detail the harmonic three-
forms for which we will choose a special and novel ansatz that will be central
to the whole body of this thesis.

2.1 Basic properties of Calabi-Yau fourfolds

We define in this thesis a Calabi-Yau fourfold Y4 as a eight-dimensional
Riemannian manifold with metric g and holonomy group the full special
unitary group SU(4). As a consequence, Y4 will be Kähler and hence admit
a closed Kähler two-form J compatible with both the complex structure and
the metric of Y4. In addition, as was conjectured by Calabi and shown by Yau,
there is a unique Ricci-flat Kähler metric within the class of J ∈ H1,1(Y4). On
such Calabi-Yau fourfolds exists a unique, up to rescaling by a holomorphic
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2 Calabi-Yau fourfolds with non-trivial three-form cohomology

function, nowhere-vanishing holomorphic (4, 0)-form Ω ∈ H4,0(Y4). This
holomorphic (4, 0)-form Ω only depends on the complex structure, whereas
the Kähler form J depends only on the Kähler moduli of the underlying
space. The complex structure moduli can be interpreted as defining the
shape of Y4 and the Kähler moduli specify the volumes of its cycles.
From Ω and J we can construct top-forms of degree eight, which have to

be related. This relation is given by

1

4!
J ∧ J ∧ J ∧ J =

1

|Ω|2
Ω ∧ Ω̄ , |Ω|2 =

1

V

∫
Y4

Ω ∧ Ω̄ (2.1)

where we defined indirectly the total volume of Y4 that only depends on J
and hence the Kähler moduli as

V =
1

4!

∫
Y4

J ∧ J ∧ J ∧ J . (2.2)

Due to the SU(4) holonomy of the underlying space the existence of a
complex covariantly constant spinor with definite chirality. This allows to
obtain J and Ω as bilinear contractions of this spinor and hence to show their
existence. The invariant spinor is obtained from the splitting of the general
chiral spinor representation 8s of an eight-dimensional Riemannian manifold
that admits spinors as

Spin(8) → SU(4)

8s → 6⊕ 1⊕ 1 , (2.3)

where the two singlets combine to the complex covariantly constant spinor.
Therefore compactifications of Y4 without fluxes to a flat space-time preserve
1/8 of the supercharges in the effective theory.
Another important feature of Calabi-Yau fourfolds is the very restrictive

Hodge diamond displaying the dimensions of the complex cohomology groups

hp,q = dimHp,q(Y4) ,

n⊕
p=0

Hn−p,p(Y4) = Hn(Y4,C) , (2.4)
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in the following way:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h4,0 h3,1 h2,2 h1,3 h0,4

h4,1 h3,2 h2,3 h1,4

h4,2 h3,3 h2,4

h4,3 h3,4

h4,4

=

1

0 0

0 h1,1 0

0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1

0 h2,1 h2,1 0

0 h1,1 0

0 0

1

Due to the severe restrictions arising from the specific holonomy group
there can be no non-trivial holomorphic forms beside the trivial zero-form
and Ω. Hodge-duality and Poincaré duality lead to symmeties of Hodge
numbers between the horizontal and the vertical axis. The axis indicated on
the left hand side of the graphic is the symmetry axis of mirror symmetry,
a relation between two different manifolds with Hodge numbers symmetric
with respect to this axis. This will be discussed in great detail later in this
work.
Applying index theorems, one can show that also h2,2 can be calculated

from h1,1, h1,2 and h3,1 as

h2,2(Y4) = 2(22+2h1,1+2h3,1−h2,1) , χ(Y4) = 6(8+h1,1+h3,1−h2,1) (2.5)

where χ =
∑

p,q(−1)p+qhp,q is the Euler characteristic of Y4. This makes
h1,1, h1,2 and h3,1 the independent quantities of Y4 that will specify the spec-
trum of the resulting effective theory. The Hodge number h1,1 counts the
number of independent Kähler deformations denoted by δvΣ. We have the
expansion for the Kählerform

J = vΣωΣ , Σ = 1, . . . , h1,1 , (2.6)

where ωΣ are harmonic (1, 1)-forms. In contrast h3,1 counts the number of
complex structure deformations denoted by δzK and we use the complex
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2 Calabi-Yau fourfolds with non-trivial three-form cohomology

structure coordinates
zK , K = 1, . . . , h3,1 . (2.7)

This is very similar to the threefold case. In contrast to the threefold, how-
ever, also h2,1 counts the number of three-form moduli

NA , A = 1, . . . , h2,1 , (2.8)

which have no threefold analogue. These new deformations arise from the
expansion of a gauge three-form into a special ansatz for the harmonic three-
forms on Y4 which will be discussed in the next section.

2.2 Special ansatz for three-forms

In this section we want to discuss the ansatz for the harmonic three-forms
that will keep us busy throughout this work. In course of the upcoming
dimensional reductions, it will become necessary to calculate

∗ φ(3) ∈ H5(Y4,C) , φ(3) ∈ H3(Y4,C) . (2.9)

The problem with this ansatz is, that the Hodge-star operator ∗ of Y4 will
depend on the metric g and therefore also on the Kähler- and complex struc-
ture moduli in our theory. Therefore, even if we choose φ(3) topological, ∗φ(3)

will still depend on the other moduli. It can be shown that for a Calabi-Yau
fourfold Y4 we can calculate the Hodge star of a three-form if it has certain
Hodge type. For a Calabi-Yau fourfold the cohomology group of three-forms
splits as

H3(Y4,C) = H2,1(Y4)⊕H1,2(Y4) . (2.10)

The two subspaces correspond to ±iJ∧ subspaces of the Hodge-star operator
∗ on Y4 as

∗ ψ = iJ ∧ φ ψ ∈ H2,1(Y4) . (2.11)

Therefore it is desirable to choose a basis of three-forms with a definite
Hodge-type

ψA ∈ H2,1(Y4) , ψ̄A ∈ H1,2(Y4) , A = 1, . . . , h2,1 . (2.12)
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2.2 Special ansatz for three-forms

The split of H3(Y4,C) into these two subspaces is done via the induced
complex structure J that varies with the complex structure moduli zK. This
is a real endomorphism on H3(Y4,C) that squares to the identity. H2,1(Y4)

and H1,2(Y4) are the ±i eigenspaces of this endomorphism. Therefore we can
choose a real basis αA, βA ∈ H3(Y4,R) for a fixed complex structure that
satisfies

J (αB) = δBAβ
A , J (βB) = −δBAαA . (2.13)

From this we can construct the desired basis of (2, 1)-forms as

ψA = αA + iδABβ
B , ⇒ J (ψA) = δABβ

B − iαA = −iψA . (2.14)

From the general theory of complex structure variations it is known that
H2,1(Y4,z) varies holomorphically with the complex structure moduli zK.
Here and in the following we denote by Y4,z the Calabi-Yau fourfold with
a specific complex structure zK that is a small deformation around a refer-
ence point where we defined the topological basis (2.13). Therefore, we can
make the ansatz

ψA(z) = ΠA
B(z)αB + Π̃AB(z)βB ∈ H2,1(Y4,z) , (2.15)

and since both matrices are invertible as seen before (they are proportional
to the identity matrix at the reference point in complex structure space) we
can make the ansatz

ψA(z) = αA + ifAB(z)βB ∈ H2,1(Y4,z) , (2.16)

where the real part Re fAB of the holomorphic endomorphism-valued function
f(z)AB is invertible for small deformations around the reference complex
structure. The matrices ΠA

B and ΠAB are called period matrices and we
will refer to them as three-form period matrices. The three-form periods are
the column-vectors of these matrices. The quotient of these two matrices

fAB = (Π−1)A
C
Π̃CB (2.17)

is called the three-form normalized period matrix. This matrix is one of the
central topics of this thesis and we will explore both its physical applications
as well as calculate it for explicit examples.
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2 Calabi-Yau fourfolds with non-trivial three-form cohomology

In course of this work, it will also be important to calculate the Hodge
star of

∂

∂zK
ψA ∈ H2,1(Y4)⊕H1,2(Y4) . (2.18)

So we also want the first derivatives of our three-form basis to have a definite
Hodge-type. This can be achieved by a rescaling with the inverse of the real
part of fAB we denote by Re fAB = (Re f)−1AB

ΨA(z, z̄) =
1

2
Re fAB

(
αB − if̄BCβC

)
∈ H1,2(Y4) . (2.19)

This new basis is, however, not anymore (anti-)holomorphic in the complex
structure moduli. The 1/2 factor in front has only cosmetically reasons. The
advantage is that we can calculate

∂

∂zK
ΨA = −Re fAB∂zKRe fBCΨC , (2.20)

∂

∂z̄K
ΨA = −Re fAB∂z̄KRe fBCΨ̄C . (2.21)

and hence also the derivatives of ΨA have a definite Hodge type. In course
of this work, we will find that the complex scalars NA appear in the effective
actions of M -theory and Type IIA-string theory. These have kinetic terms
determined by a positive bilinear form

H(ΨA,ΨB) =

∫
Y4

ΨA ∧ ∗ΨB = ivΣ

∫
Y4

ωΣ ∧ΨA ∧ Ψ̄B . (2.22)

up to a constant factor. Here we used the Hodge-star operator ∗ on Y4 which
simplifies on a (1, 2)-form to ∗ΨA = −iJ ∧ΨA and we expanded the Kähler
form J as in (2.6). We can use the expansion of ΨA in (2.19) into topological
three-forms to find

H(ΨA,ΨB) = −1

2
Re fBCvΣ

(
MΣC

A + ifCDMΣ
DA) (2.23)

where we introduced the topological intersection numbers

MΣA
B =

∫
Y4

ωΣ ∧ αA ∧ βB , MΣ
AB =

∫
Y4

ωΣ ∧ βA ∧ βB , (2.24)
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2.2 Special ansatz for three-forms

that will play an important role throughout this thesis. Note that we can
choose without loss of generality a basis of topological three-forms with αA∧
αB = 0. In contrast the intersection numbersMΣ

AB do not vanish in general.
The form (2.23) will be important for the derivation of effective theories,
for the geometric calculations on Calabi-Yau hypersurfaces in toric ambient
spaces, however, evaluating H on the holomorphic (2, 1)-forms (2.15) is more
convenient. This is related to (2.23) via multiplication with appropriate
multiples of Re fAB and reads

H(ψA, ψB) = 2Re fACvΣ
(
MΣB

C + ifBDMΣ
DC) . (2.25)

From the previous analysis we see that not only the normalized period matrix
fAB, but also the intersection numbers MΣA

B,MΣ
AB need to be calculated

to fully understand the metric H. As we will see in the upcoming sections
these two quantities are related by mirror symmetry at certain points in
moduli space. To understand this further, we will first perform dimensional
reductions of Type IIA supergravity on a Calabi-Yau fourfold Y4 in the next
section.
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3

Dimensional reduction of Type IIA
supergravity

In this section we perform the dimensional reduction of Type IIA supergrav-
ity on a Calabi-Yau fourfold Y4. Such reductions have already been per-
formed in [43, 48, 45, 44]. Our analysis follows [43, 48, 45], but we will apply
in addition the improved understanding about the three-form cohomology of
section 2.2.

3.1 The effective action from a Calabi-Yau
fourfold reduction

The Kaluza-Klein reduction of Type IIA supergravity can be trusted in the
limit in which the typical length scale of the physical volumes of submanifolds
of Y4 are sufficiently large compared to the string scale. This limit is referred
to as the large volume limit. Furthermore, these typical length scales set the
Kaluza-Klein scale which we assume to be sufficiently above the energy scale
of the effective action. We therefore keep only the massless Kaluza-Klein
modes in the following reduction.

Our starting point will be the bosonic part of the ten-dimensional Type
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3 Dimensional reduction of Type IIA supergravity

IIA action in string-frame given by 1

S
(10)
IIA =

∫
e−2φ̌IIA

(
1

2
Ř ∗̌1 + 2dφ̌IIA ∧ ∗̌dφ̌IIA −

1

4
Ȟ3 ∧ ∗̌Ȟ3

)
− 1

4

∫ (
F̌2 ∧ ∗̌F̌2 + F̌4 ∧ ∗̌F̌4 + B̌2 ∧ F̌4 ∧ F̌4

)
, (3.1)

where φ̌IIA is the ten-dimensional dilaton, Ȟ3 = dB̌2 is the field strength
of the NS-NS two-form B̌2, and F̌p = dČp are the field strengths of the
R-R p-forms Č1 and Č3. We also have used the modified field strength
F̌4 = F̌4− Č1 ∧ Ȟ3. Here and in the following we will use a check to indicate
ten-dimensional fields.
The background solution around which we want to consider the effective

theory is taken to be of the form M1,1×Y4, where M1,1 is the two-dimensional
Minkowski space-time, and Y4 is a Calabi-Yau fourfold with properties in-
troduced in chapter 2. As pointed out there such a manifold admits one
complex covariantly constant spinor of definite chirality. This spinor can be
used to dimensionally reduce the N = (1, 1) supersymmetry of Type IIA
supergravity to obtain a two-dimensional N = (2, 2) supergravity theory. In
particular, the two ten-dimensional gravitinos of opposite chirality reduce to
two pairs of two-dimensional Majorana-Weyl gravitinos with opposite chiral-
ity. We will have more to say about the supersymmetry properties of the
two-dimensional action in section 3.2. Furthermore, recall that Y4 admits a
Ricci-flat metric g(8)

mn and one can thus check that a metric of the form

dš2 = ηµνdx
µdxν + g(8)

mndy
mdyn , (3.2)

solves the ten-dimensional equations of motion in the absence of background
fluxes.2 Note that in (3.2) we denote by xµ the two-dimensional coordinates
of the space-time M1,1, whereas the eight-dimensional real coordinates on
the Calabi-Yau fourfold Y4 are denoted by ym.

1 Note that for convenience we have set κ2 = 1.
2The inclusion of background fluxes complicates the reduction further. In particular,
it requires to introduce a warp-factor. The M-theory reduction with warp-factor was
recently performed in [69–71].
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3.1 The effective action from a Calabi-Yau fourfold reduction

The massless perturbations around this background both consist of fluc-
tuations of the internal metric g(8)

mn that preserve the Calabi-Yau condition
as well as the fluctuations of the form fields B̌2, Č1, Č3 and the dilaton φ̌IIA.
The metric fluctuations give rise to the real Kähler structure moduli vΣ,
Σ = 1, . . . , h1,1(Y4) that preserve the complex structure and are given by

gī + δgī = −iJī = −ivΣ (ωΣ)ī , (3.3)

where J is the Kähler form on Y4 and ωΣ comprises a real basis of harmonic
(1, 1)-forms spanning H1,1(Y4). The Kähler structure moduli appear also in
the expression of the total string-frame volume V of Y4 given by

V ≡
∫
Y4

∗1 =
1

4!

∫
Y4

J ∧ J ∧ J ∧ J . (3.4)

In addition to the Kähler structure moduli one finds a set of complex struc-
ture moduli zK, K = 1, . . . , h3,1(Y4). These fields parameterize the change
in the complex structure of Y4 preserving the class of its Kähler form J .
Infinitesimally they are given by the fluctuations δzK as

δgı̄̄ = − 1

3|Ω|2
Ω

lmn
ı̄ (χK)lmn̄ δz

K , (3.5)

where Ω is the (4, 0)-form, the χK form a basis of harmonic (3, 1)-forms
spanning H3,1(Y4), and |Ω|2 was already given in (2.1).
The Kaluza-Klein ansatz for the remaining fields takes the form

B̌2 = bΣωΣ , Č1 = A , (3.6)

Č3 = V Σ ∧ ωΣ +NAΨA + N̄AΨ̄A ,

where ΨA is a basis of harmonic (1, 2)-forms spanning H1,2(Y4) as introduced
in (2.19). A discussion of the properties of ΨA was already given in sec-
tion 2.2. Finally, we dimensionally reduce the Type IIA dilaton by dropping
its dependence on the internal manifold Y4. It turns out to be convenient to
define a two-dimensional dilaton φIIA in terms of the ten-dimensional dilaton
φ̌IIA as

e2φIIA ≡ e2φ̌IIA

V
. (3.7)
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3 Dimensional reduction of Type IIA supergravity

In summary, we find in the two-dimensional N = (2, 2) supergravity the-
ory the 2h1,1(Y4) + 1 real scalar fields vΣ(x), bΣ(x), φIIA(x) as well as the
h3,1(Y4) + h2,1(Y4) complex scalar fields zK, NA. In addition there are
h1,1(Y4) + 1 vectors A, V Σ, which carry, however, no physical degrees of
freedom in a two-dimensional theory if they are not involved in any gauging.
Since the effective action considered here contains no gaugings, we will drop
these in the following analysis.
To perform the dimensional reduction one inserts the expansions (3.3),

(3.5), (3.6), and (3.7) into the Type IIA action (3.1). It reduces to the
two-dimensional action

S(2) =

∫
e−2φIIA

(1

2
R ∗ 1 + 2dφIIA ∧ ∗φ IIA

)
(3.8)

−
∫
e−2φIIA

(
GKL̄ dz

K ∧ ∗dz̄L +GΣΛ dt
Σ ∧ ∗dt̄Λ

)
−
∫

1

2
vΣdΣ

ABDNA ∧ ∗DN̄B +
i

4
dΣ
ABdbΣ ∧

(
NADN̄B −DNBN̄A

)
.

We note that the NS-NS part, which is summarized in the first line of (3.1),
reduces to the first line of (3.8), while the R-R part, i.e. the second line of
(3.1), reduces to the second line of (3.8).
Let us introduce the various objects appearing in the action (3.8). First,

we have defined the complex coordinates

tΣ ≡ bΣ + ivΣ , (3.9)

which combine the Kähler structure moduli with the B-field moduli. Fur-
thermore, we have introduced the metric 3

GΣΛ =
1

4V

∫
Y4

ωΣ ∧ ∗ωΛ = − 1

8V

(
KΣΛ −

1

18V
KΣKΛ

)
, (3.10)

where V, KΣ and KΣΛ are given in terms of the quadruple intersection num-

3The second equality follows from the cohomological identity ∗ωΣ = − 1
2
ωΣ ∧ J ∧ J +

1
36
V−1KΣJ ∧ J ∧ J .
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3.1 The effective action from a Calabi-Yau fourfold reduction

bers KΣΛ as

KΣΛΓ∆ =

∫
Y4

ωΣ ∧ ωΛ ∧ ωΓ ∧ ω∆ , (3.11)

V =
1

4!
KΣΛΓ∆v

ΣvΛvΓv∆ , KΣ = KΣΛΓ∆v
ΛvΓv∆ , KΣΛ = KΣΛΓ∆v

Γv∆ .

With these definitions at hand, we can further evaluate the metric GΣΛ and
show that it can be obtained from a Kähler potential as

GΣΛ = −∂tΣ∂t̄Λ log V . (3.12)

Also the metric GKL̄ is actually a Kähler metric. It only depends on the
complex structure moduli zK and takes the form

GKL̄ = −
∫
Y4
χcK ∧ χ̄L∫
Y4

Ω ∧ Ω̄
= −∂zK∂z̄L log

∫
Y4

Ω ∧ Ω̄ . (3.13)

Note that both GΣΛ and GKL̄ are actually positive definite and therefore
define physical kinetic terms in (3.8). Both terms scale with the dilaton
φIIA and it is easy to check that this dependence cannot be removed using
a Weyl-rescaling of the two-dimensional metric. We will show in section 3.2
that this is consistent with the form of the N = (2, 2) dilaton supergravity.

Let us now turn to the R-R part of the action (3.1) and discuss the cou-
plings appearing in the second line of (3.8). First, we introduce the coupling
function

dΣ
AB ≡ i

∫
Y4

ωΣ ∧ΨA ∧ Ψ̄B = −1

2
(Ref)ACMΣC

B . (3.14)

Here and in the following we assume the second intersection numberMΣ
BC in

(2.24) to vanish for simplicity. This is in particular satisfied for the examples
we will consider in chapter 6. We have used the fact that we can choose the
three-form basis (αA, β

A) with αA ∧αB = 0 to evaluate the second equality,
and MΣ

BC = 0 to show the third equality. One also checks the relation

HAB ≡
∫
Y4

ΨA ∧ ∗Ψ̄B = i

∫
Y4

J ∧ΨA ∧ Ψ̄B = vΣdΣ
AB , (3.15)
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3 Dimensional reduction of Type IIA supergravity

where we have used (2.11) for the (1,2)-forms ΨA. This contraction gives
precisely the positive definite metric of the complex scalars NA in (3.8). It
turns out to be convenient to write

HAB = vΣdΣ
AB = −1

2
(Re f)ACvΣMΣC

B ≡ −1

2
(Re f)AC RehCB , (3.16)

where hCB = −itΣMΣC
B with the intersection number MΣC

B of (2.24). Note
that HAB thus depends non-trivially on the complex structure moduli zK

through the holomorphic functions fAB and on the Kähler structure moduli
tΣ through the holomorphic function hCB. HAB is the metric on the three-
form moduli space as defined in (2.23). Second, we note that the modified
derivative DNA appearing in (3.8) is a shorthand for

DNA = dNA − 2ReNC(Re f)CB∂zK(Re fBA) dzK . (3.17)

We use the notation DN̄A = DNA in the action of (3.8). Using this expres-
sion one easily reads off the coefficient function in front of dNA ∧ ∗dzK and
checks that it can be obtained by taking derivatives of a real function. In the
next subsection we show that this is true for all terms in (3.8) and discuss
the connection with two-dimensional supersymmetry.

3.2 Comments on two-dimensional N = (2, 2)
supergravity

Having performed the dimensional reduction we next want to comment on
the supersymmetry properties of the action (3.8). As pointed out already
in the previous subsection the counting of covariantly constant spinors on
the Calabi-Yau fourfold suggests that the two-dimensional effective theory
admits N = (2, 2) supersymmetry. It was pointed out in [44] that, at least in
the case of h2,1(Y4) = 0 one expects to be able to bring the action (3.8) into
the standard form of an two-dimensional N = (2, 2) dilaton supergravity. In
this work the dilaton supergravity action was constructed using superspace
techniques. Earlier works in this direction include [72–74]. In the following
we comment on this matching for h2,1(Y4) = 0 and then discuss the general
case in which h2,1(Y4) > 0.
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3.2 Comments on two-dimensional N = (2, 2) supergravity

In order to display the supergravity actions we first have to introduce two
sets of multiplets containing scalars in two-dimensions: (1) a set of chiral
multiplets with complex scalars φκ, (2) a set of twisted-chiral multiplets
with complex scalar σΣ. In a superspace description these multiplets obey
the two inequivalent linear spinor derivative constraints leading to irreducible
representations.
To discuss the actions we first focus on the case h2,1(Y4) = 0 and follow

the constructions of [44]. For simplicity we will not include gaugings or a
scalar potential. The superspace action used in [44] is given by

S
(2)
dil =

∫
d2xd4θE−1e−2V−K . (3.18)

Here E−1 is the superspace measure, V is a real superfield with V | = ϕ

as lowest component, and K is a function of the chiral and twisted-chiral
multiplets with lowest components φκ and σΣ, respectively. To display the
bosonic part of the action (3.18) we first set

e−2ϕ̃ = e−2ϕ−K , (3.19)

where K(φκ, φ̄κ, σΣ, σ̄Σ) is evaluated as a function of the bosonic scalars.
With this definition at hand one finds the bosonic action

S
(2)
dil =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃−Kφκφ̄λ dφκ ∧ ∗dφ̄λ (3.20)

+KσΣσ̄Λ dσΣ ∧ ∗dσ̄Λ − Kφκσ̄Λ dφκ ∧ dσ̄Λ −KσΣφ̄λ dφ̄
λ ∧ dσΣ

)
,

where Kφκφ̄λ = ∂φκ∂φ̄λK, Kφκσ̄Σ = ∂φκ∂σ̄ΣK with a similar notation for the
other coefficients. It is now straightforward to compare (3.20) with the action
(3.8) for the case h2,1(Y4) = 0, i.e. in the absence of any complex scalars NA.
One first identifies

ϕ̃ = φIIA , φκ = zK , σΣ = tΣ , (3.21)

and then infers that

K = − log

∫
Y4

Ω ∧ Ω̄ + logV . (3.22)
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3 Dimensional reduction of Type IIA supergravity

Note that we find here a positive sign in front of the logarithm of V. This is
related to the fact that there is an extra minus sign in the kinetic terms of the
twisted-chiral fields σΣ in (3.20). Clearly, the kinetic terms of the complex
structure deformations zK and complexified Kähler structure deformations
tΣ in the action (3.8) have both positive definite kinetic terms.4

Let us now include the complex scalarsNA. It is important to note that the
action (3.8) cannot be brought into the form (3.20). In fact, we see in (3.8)
that the terms independent of the two-dimensional metric do not contain an
φIIA-dependent pre-factor, while the terms of this type in (3.20) do admit an
ϕ̃-dependence. Any field redefinition in (3.8) involving the dilaton seems to
introduce new undesired mixed terms that cannot be matched with (3.20)
either. However, we note that the action (3.8) actually can be brought to
the form

S(2) =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃− K̃φκφ̄λ dφ

κ ∧ ∗dφ̄λ (3.23)

+ K̃σΣσ̄Λ dσΣ ∧ ∗dσ̄Λ − K̃φκσ̄Λ dφκ ∧ dσ̄Λ − K̃σΣφ̄λ dφ̄
κ ∧ dσΣ

)
,

where K̃ is now allowed to be dependent on ϕ̃ and given by

K̃ = K + e2ϕ̃S , (3.24)

Similar to K, the new function S is allowed to depend on the chiral and
twisted-chiral scalars φκ, σΣ, but is taken to be independent of ϕ̃. The action
(3.23) trivially reduces to (3.20) for S = 0. Note that the new terms induced
by S do not scale with e−2ϕ̃. Comparison with (3.8) reveals that one can
identify

ϕ̃ = φIIA , φκ = (zK, NA) , σΣ = tΣ , (3.25)

and introduce the generating functions

K = − log

∫
Y4

Ω ∧ Ω̄ + logV , (3.26)

S = HAB ReNAReNB , HAB ≡ vΣdΣ
AB .

4Our discussion differs here from the one in [44], where the sign in front of logV was
claimed to be negative.
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3.2 Comments on two-dimensional N = (2, 2) supergravity

To show this, it is useful to note that dΣ
AB can be evaluated as in (3.14) and

depends on the complex structure moduli through the holomorphic function
fAB(z) only.

Let us close this subsection with two remarks. First, note that (3.23)
is expected to be compatible with N = (2, 2) supersymmetry and gives
an extension of the two-dimensional dilaton supergravity action (3.18). A
suggestive form of the extended superspace action is

S(2) =

∫
d2xd4θE−1

(
e−2V−K + S

)
, (3.27)

where S is now evaluated as a function of the chiral and twisted-chiral super-
fields. It would be interesting to check that (3.27) indeed correctly reproduces
the bosonic action (3.23) with K̃ as in (3.24).

Second, the action (3.23) with the identification (3.25) can also be straight-
forwardly obtained by dimensionally reducing M-theory, or rather eleven-
dimensional supergravity, first on Y4 and then on an extra circle of radius
r. The reduction of M-theory on Y4 was carried out in [43, 48]. We give the
resulting three-dimensional action in (5.5) and briefly recall this reduction
in section 5.1 when considering applications to F-theory. Using the stan-
dard relation of eleven-dimensional supergravity on a circle and Type IIA
supergravity, one straightforwardly identifies

r = e−2φIIA , e2φIIAvΣ =
vΣ
M
VM
≡ LΣ , (3.28)

where vΣ
M and VM are the analogs of vΣ and V used in the M-theory re-

duction. Note that the scalars LΣ are the appropriate fields to appear in
three-dimensional vector multiplets. Inserting the identification (3.28) into
(3.24) together with (3.25), (3.26) one finds

K̃M =− log

∫
Y4

Ω ∧ Ω̄ + log
( 1

4!
KΣΛΓ∆L

ΣLΛLΓL∆
)

+ LΣdΣ
AB ReNAReNB , (3.29)

where we have dropped the logarithm containing the circle radius. Indeed
K̃M agrees precisely with the result found in [43,48,50] from the M-theory re-
duction. The general discussion of the circle reduction of a three-dimensional
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3 Dimensional reduction of Type IIA supergravity

un-gauged N = 2 supergravity theory to a two-dimensional N = (2, 2) su-
pergravity theory can be found in A.

3.3 Legendre transforms from chiral and
twisted-chiral scalars

In this subsection we want to introduce an operation that allows to translate
the dynamics of certain chiral multiplets to twisted-chiral multiplets and vice
versa. More precisely, we will assume that some of the scalars, say the scalars
λA, in the N = (2, 2) supergravity action have continuous shift symmetries,
i.e. λA → λA+ cA for constant cA. These scalars therefore only appear with
derivatives dλA in the action. By the standard duality of massless p-forms
to (D − p − 2)-forms in D dimensions, one can then replace the scalars λA
by dual scalars λ′ A. Accordingly, one has to adjust the complex structure on
the scalar field space by performing a Legendre transform. In the following
we will give representative examples of how this works in detail. We will
see that this duality, in particular as described in the first example, becomes
crucial in the discussion of mirror symmetry of chapter 4.
As a first example, let us consider the above theory with complex scalars

zK, NA in chiral multiplets and complex scalars tΣ in twisted-chiral multi-
plets. The kinetic potential for these fields K̃ was given in (3.24) with (3.26).
Two facts about this example are crucial for the following discussion. First,
the fields NA admit a shift symmetry NA → NA+ icA in the action, i.e. the
kinetic potential K̃ given in (3.26) is independent of NA − N̄A. Second,
the NA only appear in the term S of the kinetic potential and thus carry
no dilaton pre-factor in the action. One can thus straightforwardly dualize
NA− N̄A into real scalars λ′ A. The new complex scalars N ′ A are then given
by

N ′ A =
1

2

∂S
∂ReNA

+ iλ′ A , (3.30)

where we have included a factor of 1/2 for later convenience. Furthermore,
the new kinetic potential K̃ ′ is now a function of zK, tΣ, N ′ A and given by
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3.3 Legendre transforms from chiral and twisted-chiral scalars

the Legendre transform

K̃ ′ = K̃ − 2 e2ϕ̃ReN ′ AReNA , (3.31)

where ReNA has to be evaluated as a function of ReN ′ A and the other
complex fields by solving (3.30) for ReNA. One now checks that the scalars
N ′ A actually reside in twisted-chiral multiplets. Using the transformation
(3.30) and (3.31) in the action (3.23) simply yields a dual description in
which certain chiral multiplets are consistently replaced by twisted-chiral
multiplets. It is simple to evaluate (3.30), (3.31) for S given in (3.26) to find

N ′ A = HAB ReNB + iλ′ A , (3.32)

K̃ ′ = K − e2φIIAHAB ReN ′ AReN ′ B , (3.33)

where HAB is the inverse of the matrix HAB introduced in (3.15), (3.16). It
is interesting to realize that upon inserting (3.32) into (3.33) one finds that
K̃ ′ evaluated as a function of NA only differs by a minus sign in front of the
term linear in e2φIIA from the original K̃. This simple transformation arises
from the fact that K̃ is only quadratic in the NA. This observation will be
crucial again in the discussion of mirror symmetry in chapter 4.
As a second example, we briefly want to discuss a dualization that trans-

forms all multiplets containing scalars to become chiral. The detailed com-
putation for a general N = (2, 2) setting can be found in B. For the example
of section 3.2 we focus on the twisted-chiral multiplets with complex scalars
tΣ. These admit a shift symmetry tΣ → tΣ + cΣ for constant cΣ, such that
Re tΣ only appears with derivatives in the action. Accordingly, the kinetic
potential K̃ is independent of tΣ + t̄Σ as seen in (3.24) with (3.26). Due to
the shift symmetry we can dualize the scalars tΣ + t̄Σ to scalars ρΣ. However,
note that by using the kinetic potential (3.24), (3.26) there are couplings of
tΣ in (3.23) that have a dilaton factor eϕ̃, and others that are independent of
eϕ̃. This seemingly prevents us from performing a straightforward Legendre
transform to bring the resulting action to the form (3.23) with only chiral
multiplets. Remarkably, the special properties of the kinetic potential (3.24),
(3.26), however, allow us to nevertheless achieve this goal as we will see in
the following.
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3 Dimensional reduction of Type IIA supergravity

The action (3.23) for a setting with only chiral multiplets with complex
scalars M I takes the form

S(2) =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃−KMIM̄J dM I ∧ ∗dM̄J

)
, (3.34)

where KMIM̄J = ∂MI∂M̄JK. In other words, the potential K is in this
case actually a Kähler potential on the field space spanned by the complex
coordinatesM I . For our example (3.24), (3.26) the scalarsM I consist of zK,
NA, and TΣ, where TΣ are the duals of the complex fields tΣ. We make the
following ansatz for the dual coordinates TΣ

TΣ = e−2ϕ̃ ∂K̃

∂Im tΣ
+ iρΣ = e−2ϕ̃ ∂K

∂Im tΣ
+

∂S
∂Im tΣ

+ iρΣ , (3.35)

and the dual potential K

K = K̃ − e2ϕ̃ReTΣ Im tΣ . (3.36)

These expressions describe the standard Legendre transform for Im tΣ, but
crucially contain dilaton factors e2ϕ̃. This latter fact allows to factor out e−2ϕ̃

as required in (3.34), but requires to perform a two-dimensional Weyl rescal-
ing as we will discuss below. Using (3.24) with (3.26) one straightforwardly
evaluates

TΣ = e−2φIIA
1

3!

KΣ

V
+ dΣ

AB ReNAReNB + iρΣ , (3.37)

K = − log

∫
Y4

Ω ∧ Ω̄ + logV . (3.38)

Clearly, upon using the map (3.28) this result is familiar from the study of
M-theory compactifications on Calabi-Yau fourfolds [43, 48, 50]. Also note
that the contribution S present in the kinetic potential (3.24) is removed by
the Legendre transform in K and reappears in a more involved definition of
the coordinates TΣ.
At first it appears that (3.35) induces new mixed terms involving one dϕ̃

due to the dilaton dependence in front of the derivatives of K. Interestingly,
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these can be removed by a two-dimensional Weyl rescaling if K satisfies the
conditions

KtΣ Kt
Σ t̄Λ Kt̄Λ = k , KvΣ d Im tΣ = df , (3.39)

for some constant k and some real field dependent function f . In this ex-
pression KtΣ t̄Λ is the inverse of KtΣ t̄Λ and KvΣ ≡ ∂Im tΣK. In fact, one can
perform the rescaling g̃µν = e2ωgµν , which transforms the Einstein-Hilbert
action as ∫

e−2ϕ̃ 1

2
R̃ ∗̃ 1 =

∫
e−2ϕ̃

(
1

2
R ∗ 1− 2dω ∧ ∗dϕ̃

)
, (3.40)

while leaving all other terms invariant. Using (3.40) to absorb the mixed
terms one needs to chose

ω = −k
2
ϕ̃− f

2
. (3.41)

The details of this computation can be found in B. Indeed, for the example
(3.26) one finds f = log V and k = −4. Remarkably, the condition (3.39)
essentially states that K has to satisfy a no-scale like condition. A recent
discussion and further references on the subject of studying four-dimensional
supergravities satisfying such conditions can be found in [75].
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4

Mirror symmetry at large volume and
large complex structure

In chapter 3 we have determined the two-dimensional action obtained from
Type IIA supergravity compactified on a Calabi-Yau fourfold. We com-
mented on its N = (2, 2) supersymmetry structure which relies on the proper
identification of chiral and twisted-chiral multiplets in two dimensions. In
this section we are exploring the action of mirror symmetry. More precisely,
we consider pairs of geometries Y4 and Ŷ4 that are mirror manifolds [76,41,37].
From a string theory world-sheet perspective one expects the two theories
obtained from string theory on Y4 and Ŷ4 to be dual. This implies that after
finding the appropriate identification of coordinates the two-dimensional ef-
fective theories should be identical when considered at dual points in moduli
space. We will make this more precise for the large volume and large complex
structure point in this section. Note that in contrast to mirror symmetry for
Calabi-Yau threefolds the mirror theories encountered here are both arising
in Type IIA string theory.1

1This can be seen immediately when employing the SYZ-understanding of mirror sym-
metry as T-duality [77]. Mirror symmetry is thereby understood as T-duality along
half of the compactified dimensions, i.e. Y4 is argued to contain real four-dimensional
tori along which T-duality can be performed. Clearly, this inverts an even number of
dimensions for Calabi-Yau fourfolds.
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4.1 Mirror symmetry for complex and Kähler
structure deformations

Mirror symmetry arises from the observation that the conformal field theories
associated with Y4 and Ŷ4 are equivalent. It describes the identification of
Calabi-Yau fourfolds Y4, Ŷ4 with Hodge numbers

hp,q(Y4) = h4−p,q(Ŷ4) . (4.1)

Note that this particularly includes the non-trivial conditions

h1,1(Y4) = h3,1(Ŷ4) , h3,1(Y4) = h1,1(Ŷ4) , (4.2)

h2,1(Y4) = h2,1(Ŷ4) , (4.3)

The first identification (4.2) together with the observations made in chapter 3
implies that mirror symmetry exchanges Kähler structure deformations of Y4

(Ŷ4) with complex structure deformations of Ŷ4 (Y4). Accordingly one needs
to exchange chiral multiplets and twisted-chiral multiplets in the effective
N = (2, 2) supergravity theory. The second identification (4.3) seems to
suggest that for the fields NA the mirror map is trivial. However, as we will
see in section 4.2 this is not the case and one has to equally change from a
chiral to a twisted-chiral description.
To present a more in-depth discussion of mirror symmetry we first need

to introduce some notation. All fields and couplings obtained by compact-
ification on Y4 are denoted as in chapter 3. To destinguish them from the
quantities obtained in the Ŷ4 reduction we will dress the latter with a hat.
In particular for the fields we write

Y4 : φIIA , t
Σ , zK , NA , (4.4)

Ŷ4 : φ̂IIA , t̂
K , ẑΣ , N̂A .

Note that we have exchanged the indices on t̂K and ẑΣ in accordance with
the fact that complex structure and Kähler structure deformations are in-
terchanged by mirror symmetry. In other words, K = 1, . . . , h1,1(Ŷ4) and
A = 1, . . . , h3,1(Ŷ4) is compatible with the previous notation due to (4.2).

42



4.1 Mirror symmetry for complex and Kähler structure deformations

Similarly we will adjust the notation for the couplings. For example, the
functions introduced in (3.26) and (2.17), (3.15) are

Y4 : fAB(z) , HAB(v, z) , (4.5)

Ŷ4 : f̂AB(ẑ) , ĤAB(v̂, ẑ) . (4.6)

The functional form of the various couplings will in general differ for Y4 and
Ŷ4. A match of the two mirror-symmetric effective theories should, however,
be possible when identifying the mirror map, which we denote formally by
M[·].
We want to focus on the sector of the theory independent of the three-

forms. Recall that in the two-dimensional effective theory obtained from Y4

the kinetic terms of the complex structure moduli zK and Kähler structure
moduli tΣ are obtained from the kinetic potential (3.22), (3.26) as

K(Y4) = log
( 1

4!
KΣΛΓ∆ Im tΣ Im tΛ Im tΓ Im t∆

)
− log

∫
Y4

Ω ∧ Ω̄ , (4.7)

when used in the action (3.20). Mirror symmetry exchanges the Kähler mod-
uli tΣ of Y4 with the complex structure moduli ẑΣ of Ŷ4. The expression (4.7)
was computed at the large volume point in Kähler moduli space, i.e. with the
assumption that Im tΣ � 1 in string units. Accordingly one has to evaluate
K(Ŷ4) at the large complex structure point as∫

Ŷ4

Ω̂ ∧ ˆ̄Ω =
1

4!
KΣΛΓ∆ Im ẑΣ Im ẑΛ Im ẑΓ Im ẑ∆ , (4.8)

where now Im ẑΣ � 1. Similarly, one has to proceed for the Kähler moduli
part of the kinetic potential K(Ŷ4) and evaluate K(Y4) at the large complex
structure point∫

Y4

Ω ∧ Ω̄ =
1

4!
K̂KLMN Im zK Im zL Im zM Im zN , (4.9)

where K̂KLMN are now the quadruple intersection numbers on the geometry
Ŷ4. Therefore, at the large volume and large complex structure point the two
effective theories obtained from Y4 and Ŷ4 are identified under the mirror map

M
[
tΣ
]

= ẑΣ , M
[
zK
]

= t̂K , (4.10)
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and
M
[
K(Y4)

]
= −K(Ŷ4) , M

[
φIIA

]
= φ̂IIA . (4.11)

It is important to stress that a sign change occurs when applying the mir-
ror map to K. This can be traced back to the fact that scalars in chiral
and twisted-chiral multiplets have different sign kinetic terms in the actions
(3.20), (3.23). The quantum corrections to K were discussed using mirror
symmetry in [76, 41, 37, 78] and localization in [79, 80] (using and extending
the results of [81–83]).

4.2 Mirror symmetry for non-trivial three-forms

Let us next include the moduli NA arising for Calabi-Yau fourfolds Y4 with
non-vanishing h2,1(Y4). In chapter 3 we have seen that these complex scalars
are part of chiral multiplets. Their dynamics was described by the real func-
tion S in the kinetic potential K̃ given in (3.24) and (3.26). For completeness
we recall that

S(Y4) = HAB ReNAReNB , HAB ≡ vΣdΣ
AB , (4.12)

where dΣ
AB is a function of the complex structure moduli of Y4. Mirror

symmetry should map the fields NA to scalars N̂A arising in the reduction
on the mirror Calabi-Yau fourfold Ŷ4, i.e. one should have

M
[
NA
]

= QA(N̂ , ẑ, t̂) , (4.13)

where we have allowed the image of NA to be a non-trivial function that
will be determined in the following. In fact, note that the map cannot be
as simple asM(NA) = N̂A. As already pointed out in [44] the mirror duals
M(NA) need to be, in contrast to the NA, parts of twisted -chiral multiplets.
To achieve this we need to use the results of section 3.3.
Let us therefore consider the reduction on Ŷ4 using the same notation as in

chapter 3 but with hatted symbols. The two-dimensional theory will contain
a set of complex scalars N̂A that reside in chiral multiplets. We can transform
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4.2 Mirror symmetry for non-trivial three-forms

them to scalars in twisted-chiral multiplets using (3.32) and (3.33). In other
words, we find a dual description with scalars N̂ ′A defined as

N̂ ′ A = ĤAB Re N̂B + iλ̂′ A , (4.14)

where ĤAB is a function of the mirror complex structure moduli ẑΣ and
Kähler moduli v̂K. The dual kinetic potential takes the form

K̃ ′(Ŷ4) = K(Ŷ4)− e2φ̂IIAĤAB Re N̂ ′ A Re N̂ ′ B . (4.15)

The mirror map (4.10), (4.11) and (4.13) exchanges chiral and twisted-chiral
states and therefore has to take the form

M
[
NA
]

= N̂ ′ A(N̂ , ẑ, t̂) , M
[
tΣ
]

= ẑΣ , M
[
zK
]

= t̂K , (4.16)

M
[
K̃(Y4)

]
= −K̃ ′(Ŷ4) , M

[
φIIA

]
= φ̂IIA . (4.17)

and is evaluated as a function of N̂A, ẑΣ and t̂K by using (4.14).
Using these insights we are now able to infer the mirror image of the

function HAB appearing in K̃(Y4). To do that, we apply the mirror map to
the kinetic potential K̃. Note that

M
[
K̃(Y4)

]
= −K(Ŷ4) + e2φ̂IIAM

[
S(Y4)

]
, (4.18)

where we have used (4.11). Furthermore, we insert (4.17) into (4.12) to find

M
[
S(Y4)

]
=
∑
A,B
M
[
HAB

]
Re N̂ ′ARe N̂ ′B . (4.19)

We next apply (4.17) together with (4.15) which requires∑
A,B
M
[
HAB

]
Re N̂ ′ARe N̂ ′B !

= ĤAB Re N̂ ′ A Re N̂ ′ B , (4.20)

and thus enforces
M
[
HAB

] !
= ĤAB . (4.21)

We therefore find that the mirror map actually identifies HAB with the in-
verse ĤAB of ĤAB. This inversion is crucial and stems from the exchange of
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4 Mirror symmetry at large volume and large complex structure

chiral an twisted-chiral multiplets under mirror symmetry. In the final part
of this section we evaluate the condition (4.21) at the large complex structure
point, since HAB given in (4.12) was computed at large volume.
Using the mirror map we are now able to determine the holomorphic func-

tion fAB appearing in the definition of HAB at the large complex structure
point. Note that (3.16) translates on Y4 and Ŷ4 to

HAB = −1

2
Re fAC RehCB , hC

B = −itΣMΣC
B , (4.22)

ĤAB = −1

2
Re f̂AC Re ĥCB , ĥC

B = −it̂KM̂KCB ,

where on the mirror geometry we introduced the intersection numbers

M̂KA
B =

∫
Ŷ4

ω̂K ∧ α̂A ∧ β̂B . (4.23)

Using (4.16), (4.17), (4.21), and (4.22) in the mirror map one infers that a
possible identification is 2

Re fAB = Im zKM̂KA
B . (4.24)

By holomorphicity of fAB we finally conclude

fAB = −izKM̂KAB . (4.25)

Having determined the function fAB at the large complex structure point
we have established a complete match of the two two-dimensional effective
theories obtained from Y4 and Ŷ4 under the mirror map M[·]. The result
(4.25) is not unexpected. In fact, from the variation of Hodge-structures one
could have expected a leading linear dependence on zK . Furthermore, we
will find agreement with a dual Calabi-Yau threefold result when using the
geometry Y4 as F-theory background and performing the orientifold limit.
This will be the task of the next section.

2Note that in general the basis (αA, β
A) might not directly map to (α̂A, β̂

A) on the
mirror geometry Ŷ4. In this expression we have assumed that there is no non-trivial
base change under mirror symmetry.
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5

Applications for F-theory and Type
IIB orientifolds

In this section we want to apply the result obtained by using mirror symme-
try to compactifications of F-theory and their orientifold limit. The F-theory
effective action is studied via the M-theory to F-theory limit. Therefore, we
will briefly review in section 5.1 the dimensional reduction of M-theory on
a smooth Calabi-Yau fourfold including three-form moduli. This reduction
was already performed in [48], but we will use the insights we have gained
in the previous sections to include the three-form moduli more conveniently.
In section 5.2 we will then restrict to a certain class of elliptically fibered
Calabi-Yau fourfolds and perform the M-theory to F-theory limit. This al-
lows us to identify the characteristic data determining the four-dimensional
N = 1 F-theory effective action in terms of the geometric quantities of the
internal space [50]. We note that for certain fourfolds the holomorphic func-
tion fAB lifts to a four-dimensional gauge coupling function. Starting from
these F-theroy settings we will then perform the weak string coupling limit
in section 5.3. In this limit fAB can be partially computed by using mir-
ror symmetry for Calabi-Yau threefolds and we show compatibility with the
fourfold result of chapter 4.
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5 Applications for F-theory and Type IIB orientifolds

5.1 M-theory on Calabi-Yau fourfolds

In this subsection we review the dimensional reduction of M-theory on a
Calabi-Yau fourfold Y4 in the large volume limit without fluxes. The ansatz
here is similar to the one used for Type IIA supergravity in section 3.1.
We start with eleven-dimensional supergravity as the low-energy limit of

M-theory. Its bosonic two-derivative action is given by

S(11) =

∫
1

2
Ř ∗̌ 1− 1

4
F̌4 ∧ ∗̌ F̌4 −

1

12
Č3 ∧ F̌4 ∧ F̌4 , (5.1)

with F̌4 = dČ3 the eleven-dimensional three-form field strength. This will be
dimensionally reduced on the background

dš2 = η(3)
µν dx

µdxν + g(8)
mndy

mdyn , (5.2)

where η(3) is the metric of three-dimensional Minkowski space-time M2,1 and
g(8) the metric of the Calabi-Yau fourfold Y4. This is the analog to (3.2) and,
as we briefly discussed at the end of section 3.2, the Type IIA supergravity
vacuum can be obtained by a circle-reduction of this Ansatz.
To perform the dimensional reduction one inserts similar expansions of

(3.3), (3.5) and (3.6) into the eleven-dimensional action (5.1). For the metric
deformations consisting of Kähler and complex structure deformations, this
is exactly the same as (3.3) and (3.5), hence we obtain h1,1(Y4) real scalars
vΣ
M by expanding the M-theory Kähler form JM as

JM = vΣ
MωΣ (5.3)

and h3,1(Y4) complex scalars zK in three dimensions. Since the eleven-
dimensional three-form Č3 is the common origin of the Type IIA fields
B̌2, Č3, we expand

Č3 = V Σ ∧ ωΣ +NAΨA + N̄AΨ̄A . (5.4)

This yields h2,1(Y4) three-dimensional complex scalars NA and h1,1(Y4) vec-
tors V Σ. The latter combine with the real scalars vΣ

M into three-dimensional
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5.1 M-theory on Calabi-Yau fourfolds

vector multiplets, whereas zK, NA give rise to three-dimensional chiral mul-
tiplets. Combining the expansions (3.3), (3.5) and (5.4) with the action
(5.1) by using the notation of section 3.1 and section 3.2 we thus obtain the
three-dimensional effective action 1

S(3) =

∫
1

2
R ∗ 1−GKL̄dzK ∧ ∗dz̄L −

1

2
d logVM ∧ ∗d logVM (5.5)

−GM
ΣΛdv

Σ
M ∧ ∗dvΛ

M − V2
MG

M
ΣΛdV

Σ ∧ ∗dV Λ

− 1

2
vΣ
M dΣ

ABDNA ∧ ∗DN̄B +
i

4
dΣ
ABdV Σ ∧

(
NADN̄B − N̄BDNA

)
.

Note the GM
ΣΛ takes the same functional form as (3.10), but uses the M-theory

Kähler structure deformations vΣ
M.

The three-dimensional action given in (5.5) is an N = 2 supergravity
theory. The proper scalars in the vector multiplets are denoted by LΣ and
are expressed in terms of the vΣ

M as LΣ =
vΣ
M
VM

, as already given in (3.28).
The complex scalars in the chiral multiplets are collectively denoted by φκ =

(zK, NA). The action (5.5) can then be written using a kinetic potential K̃M

as

S(3) =

∫
1

2
R(3) ∗ 1 +

1

4
K̃M
LΣLΛdL

Σ ∧ ∗dLΛ +
1

4
K̃M
LΣLΛdV

Σ ∧ ∗dV Λ (5.6)

− K̃M
φκφ̄λ dφ

κ ∧ ∗dφ̄λ + dV Σ ∧ Im(K̃M
LΣφκdφ

κ) ,

where K̃M
LΣLΛ = ∂LΣ∂LΛK̃, K̃M

φκφ̄λ
= ∂φκ∂φ̄λK̃

M, and K̃M
LΣφκ

= ∂LΣ∂φκK̃
M.

Comparing (5.5) with (5.6) the kinetic potential obtained for this M-theory
reduction therefore reads

K̃M =− log

∫
Y4

Ω ∧ Ω̄ + log
( 1

4!
KΣΛΓ∆L

ΣLΛLΓL∆
)

(5.7)

+ LΣdΣ
AB ReNAReNB ,

and was already given in (3.29). Recalling the discussion at the end of sec-
tion 3.2 it is not hard to check that (5.5) reduces to the Type IIA result found
in section 3.1 upon a circle compactification. The detailed circle reduction is
performed for a general three-dimensional un-gauged N = 2 theory in A.

1The action has been Weyl-rescaled to the three-dimensional Einstein frame by introduc-
ing gnew

µν = V−2gold
µν
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5 Applications for F-theory and Type IIB orientifolds

5.2 M-theory to F-theory lift

Let us now lift the result (5.6) of the M-theory reduction on a general smooth
Calabi-Yau fourfold Y4 to a four-dimensional effective F-theory compactifica-
tion. To do so, we need to restrict Y4 to be an elliptic fibration π : Y4 → B3

over a base manifold B3 which is a three-dimensional complex Kähler man-
ifold. This four-dimensional theory exhibits N = 1 supersymmetry. In the
following we will not need to consider the full four-dimensional theory, but
will rather focus on the kinetic terms of the complex scalars and vectors
without including gaugings or a scalar potential. Supersymmetry ensures
that these can be written in the form [84]

S(4) =

∫
1

2
R ∗ 1−KF

MIM̄J dM
I ∧ ∗ dM̄J (5.8)

−
∫

1

2
Re fΛΣF

Λ ∧ ∗FΣ +
1

2
Im fΛΣF

Λ ∧ FΣ .

In this expression we denoted byM I the bosonic degrees of freedom in chiral
multiplets, and by FΛ the field strengths of vectors AΛ. The metric KF

MIM̄J

is Kähler and thus can be obtained from a Kähler potentialKF viaKF
MIM̄J =

∂MI∂M̄JKF. The gauge-kinetic coupling function fΛΣ is holomorphic in the
complex scalars M I .
In order to determine the Kähler potential KF and the gauge coupling

function fΛΣ via M-theory one next would have to compactify (5.8) on a
circle. The resulting three-dimensional theory then has to be pushed to the
Coulomb branch and all massive modes, including the excited Kaluza-Klein
modes of all four-dimensional fields, have to be integrated out. The resulting
three-dimensional effective theory can then, after a number of dualizations,
be compared with the M-theory effective action (5.5). Performing all these
steps is in general complicated. However, a relevant special case has been
considered in [50] and will be the focus in the following discussion.2 Despite
the fact that we could refer to [50] we will try to keep the derivation of KF

and fΛΣ in this subsection self-contained.
2The geometries of the other two cases will be considered later in chapter 8. They require
more involved geometries as we will see.
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5.2 M-theory to F-theory lift

Let us therefore assume that Y4 is an elliptically fibered Calabi-Yau four-
fold that satisfies the conditions

h2,1(Y4) = h2,1(B3) , h1,1(Y4) = h1,1(B3) + 1 . (5.9)

It is not hard to use toric geometry to construct examples that satisfy these
conditions (see, for example, refs. [85]). From the point of view of F-theory,
or Type IIB string theory, the first condition in (5.9) implies that all scalars
NA in (5.5) lift to R-R vectors AA in four dimensions. In other words, one
can compactify Type IIB on the base B3 and obtain vectors Al by expanding
the R-R four-form as

C4 = AA ∧ αA − ÃA ∧ βA + . . . . (5.10)

The vectors ÃA are the magnetic duals of the AA and can be eliminated by
using the self-duality of the field-strength of C4.
The second condition in (5.9) implies that there are no further vectors

in the four-dimensional theory, i.e. there are no massless vector degrees of
freedom arising from seven-branes. The two-forms used in (5.3) and (5.4)
split simply as

ωΣ = (ω0, ωσ) , (5.11)

where ω0 is the Poincaré-dual of the base divisor B3 and ωσ is the Poincaré-
dual of the vertical divisors Dσ = π−1(Dσ

b) stemming from divisors Dσ
b of

B3. Accordingly one splits the three-dimensional vector multiplets in (5.6)
as

LΣ = (R,Lσ) , V Σ = (A0, Aσ) . (5.12)

One can now evaluate the kinetic potential (5.7) for the special case (5.9).
The only relevant non-vanishing quadruple intersection numbers are given
by

K0σλγ =

∫
Y4

ω0 ∧ ωσ ∧ ωλ ∧ ωγ ≡ Kσλγ , (5.13)

which are simply the triple intersections Kσλγ of the base B3. Crucially, for
an elliptic fibration one has Kσλγδ = 0. Furthermore, note that due to (5.9)
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5 Applications for F-theory and Type IIB orientifolds

all non-trivial three-forms come from the base B3 and we can chose the basis
(αA, β

A) such that

M0A
B =

∫
Y4

ω0 ∧ αA ∧ βB = δBA , MσA
B = 0 , (5.14)

with MΣA
B introduced in (2.24). Inserting (5.13) and (5.14) into (5.7) one

finds

K̃M =− log

∫
Y4

Ω ∧ Ω̄ + log
( 1

3!
KσβγLσLβLγ

)
+ log(R) (5.15)

− 1

2
RRe fAB ReNAReNB ,

where we have used that LΣdΣ
AB = −1

2L
ΣMBΣARe f

AB = −1
2RRe fAB, and

we have dropped terms in the logarithm that are higher order in R.
In order to compare this kinetic potential with the result of the circle

reduction of (5.8) we next have to dualize (Lσ, Aσ) into three-dimensional
complex scalars Tσ, and NA into three-dimensional vectors (ξA, AA). Due
to our assumption (5.9) leading to (5.14) we can perform these dualizations
independently. The change from (Lσ, Aσ) to ReTσ = ∂LσK̃

M is similar to
(3.37). It is conveniently parameterized by the base Kähler deformations vσb
and the base volume Vb defined as [32,50]

Lσ =
vσb
Vb

, Vb =
1

3!
Kσβγvσbv

β
bv

γ
b . (5.16)

The dualization of the complex scalars Nk into three-dimensional vectors is
similar to the dualization yielding (3.30), (3.31) and (3.32), (3.33). First,
one introduces

ξA = ∂ReNAK̃
M , K̃M→F = K̃M − ξAReNA , (5.17)

and then dualizes the field ImNA with a shift symmetry into the vector AA.
Together both Legendre transforms yield

K̃M→F = − log

∫
Y4

Ω ∧ Ω̄− 2 log Vb + log R+
1

2R
Re fAB ξAξB , (5.18)
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5.2 M-theory to F-theory lift

which has to be evaluated as a function of zK, ξA and

Tσ = ∂LσK̃
M + iρσ =

1

2!
Kσβγvβbv

γ
b + iρσ . (5.19)

The kinetic potential (5.18) is now in the correct frame to be lifted to four
space-time dimensions.
To derive KF, fAB one reduces (5.8) on a circle of radius r with the usual

Kaluza-Klein ansatz the four-dimensional metric and vectors as

g(4)
µν =

g(3)
pq + r2A0

pA
0
q r

2A0
q

r2A0
p r2

 , AAµ = (AAp +A0
pζ
A, ζA) , (5.20)

where we introduced the three-dimensional indices p, q = 0, 1, 2 and the
Kaluza-Klein vector A0. Note that we use for three-dimensional vectors the
same symbol AA as in four dimensions. Furthermore, we introduced the new
three-dimensional real scalars r, ζA into the theory. We next define

R = r−2 , ξÂ = (R,RζA) , AÂ = (A0, AA) . (5.21)

The three-dimensional theory obtained by reducing (5.8) has thus the field
content: chiral multiplets with complex scalars M I and vector multiplets
(ξÂ, AÂ). Its action can be written in the form (5.6) with a kinetic potential

K̃(M, M̄, ξ) = KF (M, M̄) + log(R)− 1

R
Re fAB(M)ξAξB , (5.22)

when replacing LΣ → ξÂ, V Σ → AÂ, and φκ → M I . Finally, comparing
(5.22) with (5.18) implies that one finds M I = {Tσ, zK}

KF = − log(

∫
Y4

Ω ∧ Ω̄)− 2 logVΛ , (5.23)

fAB =
1

2
fAB . (5.24)

In the next section, we want to derive the orientifold limit of this result
relating the data of F-theory on Y4 to Type IIB supergravity with O7/O3-
planes on the closely related Calabi-Yau three-fold Y3, a double cover of B3.
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5 Applications for F-theory and Type IIB orientifolds

5.3 Orientifold limit of F-theory and mirror
symmetry

In this final subsection we investigate the orientifold limit of the F-theory
effective action introduced above. More precisely, we assume that the F-
theory compactification on the elliptically fibered geometry Y4 admits a weak
string coupling limit as introduced by Sen [52,53]. This limit takes one to a
special region in the complex structure moduli space of Y4 in which the axio-
dilaton τ = C0 + ie−φIIB , given by the complex structure of the two-torus
fiber of Y4, is almost everywhere constant along the base B3. The locations
where τ is not constant are precisely the orientifold seven-planes (O7-planes).
In the weak string coupling limit the geometry Y4 can be approximated by

Y4
∼= (Y3 × T 2)/σ̃ (5.25)

where we introduced the involution σ̃ = (σ,−1,−1) with σ being a holo-
morphic and isometric orientifold involution such that Y3/σ = B3. The two
one-cycles of the torus are both odd under the involution, but its volume
form is even. It was shown in [52, 53] that the double cover Y3 of B3 is ac-
tually a Calabi-Yau threefold. The location of the O7-planes in Y3 is simply
the fixed-point set of σ. More refined picture of the weak coupling limit will
be developed in chapter 8 that holds for the examples considered there.

In the limit (5.25) we can check compatibility of the mirror symmetry
results of chapter 4 with the mirror symmetry of the Calabi-Yau threefold
Y3. By using the mirror fourfold Ŷ4 of Y4 we have found that the normalized
period matrix fAB is linear in the large complex structure limit of Y4. Here
we recall that the weak string coupling expression gives a compatible result.
Using the mirror Ŷ3 of Y3 one shows that the period matrix fAB is linear in
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5.3 Orientifold limit of F-theory and mirror symmetry

the large complex structure limit of Y3. This can be depicted as follows:

F-theory on Y4
weak coupling−−−−−−−−−−−−→ Type IIB orientifolds Y3/σ

l physical mirror duality

Type IIA orientifolds Ŷ3/σ̂

(5.26)

Note that mirror symmetry of Y3 and Ŷ3 gives a physical map between Type
IIB and Type IIA orientifolds. The mirror map between Y4 and Ŷ4 has no
apparent physical meaning in F-theory. Nevertheless, using the geometry Y4

in Type IIA compactifications it can be used to calculate fAB as we explained
in chapter 4.
Let us now introduce the function fAB for the geometry (5.25). In the

orientifold setting one splits the cohomologies of Y3 as Hp,q(Y3) = Hp,q
+ (Y3)⊕

Hp,q
− (Y3), which are the two eigenspaces of σ∗. We denote their dimensions as

hp,q± (Y3). As reviewed, for example, in [36] the complex structure moduli zK

of Y4 split into three sets of fields at weak string coupling. First, there is the
axio-dilaton τ , which is now a modulus of the effective theory as it is constant
over the internal space. Second, there are h2,1

− complex structure moduli zα

of the quotient Y3/σ. Third, the remaining number of complex structure
deformations of Y4 correspond to D7-brane position moduli. The last set are
open string degrees of freedom and are not captured by the geometry of Y3.
For simplicity, we will not include them in the following discussion. With
this simplifying assumption one finds that the pure complex structure part
of the F-theory Kähler potential (5.23) splits as

− log(

∫
Y4

Ω ∧ Ω) = − log
[
− i(τ − τ̄)

]
− log

[
i

∫
Y3

Ω3 ∧ Ω̄3

]
+ . . . , (5.27)

where Ω3 is the (3, 0)-form on Y3 that varies holomorphically in the complex
structure moduli zα. The dots indicate that further corrections arise that are
suppressed at weak string coupling −i(τ− τ̄)� 1. Taking the weak coupling
limit for the Kähler potential (5.23) of the Kähler structure deformations is
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5 Applications for F-theory and Type IIB orientifolds

more straightforward. The deformations are counted by h1,1
+ (Y3) and identi-

fied with the Kähler structure deformations vσb of the base B3 introduced in
(5.16). The orientifold Kähler potential for this set of deformations is then
simply the second term in (5.23) and the Kähler coordinates are given by
(5.19).
Turning to the gauge theory sector, we note that the number of R-R vectors

AA arising from C4 as in (5.10) are counted by h2,1
+ (Y3) in the orientifold set-

ting. The gauge coupling function for these vectors is determined as function
of the complex structure moduli zα of Y3 in [32].3 It is given by

fAB(zα) = −iFAB|(zα) ≡ ∂zA∂zBF|(zκ) , (5.28)

where F is the pre-potential determining the moduli-dependence of the Ω3

of the geometry Y3. To evaluate (5.28) one first splits the complex structure
moduli of Y3 into h2,1

− (Y3) fields zα and h2,1
+ (Y3) fields zA. The pre-potential

F(zκ, zA) of Y3 at first depends on both sets of fields. Then one has to take
derivatives of F with respect to zA and afterwards set these fields to constant
background values compatible with the orientifold involution σ. This freezing
of the zA is indicated by the symbol | in (5.28). Using mirror symmetry for
Calabi-Yau threefolds it is well-known that the pre-potential at the large
complex structure point of Y3 is a cubic function of the complex structure
moduli zα and zA. Taking derivatives and evaluating the expression on the
orientifold moduli space one thus finds

fAB(zα) = −izαK̂αAB , (5.29)

where K̂αAB =
∫
Ŷ3
ω̂α ∧ ω̂A ∧ ω̂B are the triple intersection numbers of the

mirror threefold Ŷ3. This result agrees with the one for Type IIA orientifolds,
which have been studied at large volume in [33]. Hence, we find consistency
with the F-theory result (4.25) obtained by using mirror symmetry for Y4 at
the large complex structure point. To obtain a complete match of the results
the intersection matrix M̂αA

B of Ŷ4 is identified with the triple intersection
K̂αAB of Ŷ3.

3Note that we have slightly changed the index conventions with respect to [32] in order
to match the F-theory discussion.
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5.3 Orientifold limit of F-theory and mirror symmetry

To close this section we stress again that we have only discussed the match-
ing with the orientifold limit for special geometries satisfying (5.9). Further-
more, we have not included the open string degrees of freedom on the ori-
entifold side. Clearly, our result for fAB obtained in chapter 4 can be more
generally applied. For example, a simple generalization is the inclusion of
h1,1
− (Y3) moduli GA into the orientifold setting, which arise in the expansion

of the complex two-form C2− τB2. In F-theory the same degrees of freedom
appear from the expansion (5.4) into non-trivial three-forms ΨA that have
two legs in the base B3 and one leg in the torus fiber, i.e. are not present
in the geometries satisfying (5.9). In the orientifold setting one finds that
the fields GA correct the complex coordinates (5.19). We read off the result
from [32] to find 4

Tσ =
1

2!
Kσβγvβbv

γ
b +

1

2 Imτ
KσAB ImGAImGB + iρσ . (5.30)

Comparing this expression with (3.37) we read off that

NA = iGA , dσAB =
1

2

1

Imτ
KσAB , fAB(τ) = iτδAB , (5.31)

in order to match the F-theory result as already done in [34]. Again we find
that the result is linear in one of the complex structure moduli, namely the
field τ , of the Calabi-Yau fourfold Y4 in the orientifold limit (5.25).
In chapter 8 we will generalize these results further and also include Wilson

line moduli in the discussion. These are proper open string degrees of freedom
that can also be derived from the three-forms of the fourfold geometry. In
order to gain intuition about the general situation we will study explicit
examples using toric techniques that we will introduce in the next section.

4Note that compared with [32] we have redefined ρσ to make the terms in Tσ involving
the GA real.
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6

Geometry of toric Calabi-Yau
fourfold hypersurfaces

In this section we will introduce the basic notions of Calabi-Yau fourfold
hypersurfaces in toric varieties as already studied in [41,37]. A variety is the
algebraic equivalent of a manifold that allows for singularities and is hence
a more flexible geometric object. We start out with some basic definitions
in section 6.1 introducing concepts like toric varieties, their homogeneous
coordinate rings and the Newton polyhedron of a divisor. In section 6.2 we
explain how to use the Gysin-sequence to deduce the non-trivial cohomol-
ogy groups of a semi-ample Calabi-Yau fourfold hypersurface from its toric
subvarieties. The geometry of these toric subvarieties is then explained in
section 6.3 and reduced to the study of toric divisors that have certain fibra-
tion structures. Introducing the Poincaré residue in section 6.4 to represent
non-trivial forms as rational functions of the homogeneous coordinates allows
us to study the complex structure dependence of these forms in section 6.5.
The fibration structures combined with the Gysin-sequence arguments al-
low us to compute the Hodge numbers of the fourfold in section 6.6 which
determines the massless spectrum of the effective theories derived in pre-
vious sections. The field of toric geometry is a broad subject and we give
the condensed treatment necessary to construct Calabi-Yau fourfolds. For
a more thorough introduction and conventions we refer to [86, 87] for the
basics of toric geometry and for general algebraic geometry to [88]. Great
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

introductions are also given in [89,24]

6.1 Basic construction of toric Calabi-Yau
hypersurfaces

Let us start with the basic construction of hypersurfaces with trivial anti-
canonical class in five dimensional toric varieties, i.e toric Calabi-Yau four-
fold hypersurfaces. We begin with the d-dimensional complex ambient space
Ad which will be a toric variety. The special cases we will consider are d ≤ 5

as we will later also discuss the toric subvarieties Ad of A5.
This toric ambient space is defined by a convex polyhedron ∆∗ ⊂ NQ

in the rational extension of a lattice N ' Zd. The integral points of the
polyhedron will be denoted ν∗i ∈ ∆∗∩N and the rays from the origin through
ν∗i we denote by τi. A toric variety is constructed from a so called fan Σ,
as for example explained in detail in [86]. A fan Σ is in our definiton a set
of convex rational polyhedral cones σ that are spanned by one-dimensional
rays τ = Q+ν∗ where τ is a ray from the origin of the lattice N through a
lattice point ν∗ ∈ N ∩∆∗ of the polyhedron ∆∗ as

σ = {r1ν
∗
1 + . . .+ rsν

∗
s | ν∗ ∈ N ∩∆∗ , ri ∈ Q+} . (6.1)

A cone is called simplicial if it is generated by linearly independent vectors.
The simplest example is the cone spanned by the unit vectors ei in N . The
dual lattice M of N is defined as

M = Hom(N,Z) (6.2)

with MQ its rational extension. Identifying M ' Zd we have m(n) =

〈m,n〉 =
∑

imini using the standard inner product on Zd. The dual cone
σ∨ of σ is

σ∨ = {u ∈MZ | 〈u, v〉 ≥ 0 , ∀v ∈ σ} . (6.3)

To the integral points in Sσ = σ∨∩M we can associate abstract characters χν

satisfying χν1 · χν2 that form a commutative algebra C[Sσ] with unit 1 = χ0

and therefore gives rise to a complex affine variety

Aσ = Spec(C[Sσ]) , Sσ = σ∨ ∩M . (6.4)
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6.1 Basic construction of toric Calabi-Yau hypersurfaces

The characters χν can be interpreted as monomials of a polynomial ring.
The cone σ generated by the unit vectors e∗i of Zd, the dual cone is also
generated by the unit vectors e∗i of the dual and we can associate to them
the coordinates Xi = χei and hence we have

Aσ = Cd = Spec(C[Xi]) . (6.5)

Simplicial cones will in general result in affine varieties with orbifold singu-
larities along a toric subvariety. A simple example is given by the cone σ
spanned by 2e1 + e2, e2 in Q2 leading to

C[Sσ] = C[X,Y 2X−1] ' C[X,Y, Z]

XY − Z2
, Aσ = C2/Z2 , (6.6)

with the singularity at (0, 0) ∈ C2/Z2. which is a cone. These affine toric
varieties Aσ can be glued together to form a toric variety Ad and the cor-
responding information is contained in the fan Σ. To ensure a well-defined
gluing of the cones and hence the affine varieites Aσ, σ ∈ Σ need to intersect
each other only in faces that are cones that are also part of Σ. If we want to
obtain a compact or rather complete toric variety Ad, the cones of Σ need to
cover the full space NQ. We will denote the fan Σ(∆∗) a fan that is defined
by the polyhedron ∆∗ and the lattice N . Another interpretation is to view
Ad as a compactification of (C∗)d with C∗ = C − {0} an algebraic torus
giving the toric variety its name.
For simplicity we will assume in the following that all cones are simplicial

and hence each correspond to a simplicial subpolyhedron of a face of ∆∗.
In higher dimensions d > 3 this can not be guaranteed, but will simplify
our discussion. The polyhedron ∆∗ is triangulated, i.e. it is divided into
subpolyhedra with integral vertices that generate together with the origin
the convex cones for the fan Σ(∆∗). This is called a star-triangulation of ∆∗,
since all cones have their tip at the same point in the lattice, the origin. We
will work with a maximal star-triangulation of ∆∗ with all rays τ through
integral points ν∗ ∈ N ∩ ∆∗. Such a triangulation is in general not unique
and we will assume henceforth that all cones arise from such a maximal
star-triangulation and are simplicial and hence Ad will only have Zn-orbifold
singularities along subspaces of codimension greater or equal to one.
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

The Calabi-Yau fourfold hypersurface Y4 in A5 will be described via the
language of divisors and line-bundles over a toric variety Ad. A Weil-divisor
DWeil is a formal sum of codimension one irreducible subvarieties Vi

DWeil =
∑

biVi , codim(Vi) = 1 , bi ∈ Z . (6.7)

A Cartier divisor D is a set of non-zero rational functions over each affine
coordinate patch that can be glued together to form a line-bundle O(D) over
Ad. If this line-bundle is trivial, i.e. defined by a global non-zero rational
function on Ad, the divisor is principal. A Cartier-Divisor defines a Weil-
Divisor as

DCartier =
∑

codim(V )

ordV (D) · V , (6.8)

where ordV (D) is the order of vanishing of the defining function of D along
the subvariety D. Two Weil-divisors are linear equivalent if they differ by a
principal divisor and their group of equivalence classes is called Chow-group
Ad−1(Ad). The T-invariant principal divisors are given by the global rational
functions χu, u ∈M which is therefore d-dimensional. A T-invariant Cartier
divisor is given by a set (Aσ, χu(σ)) where u(σ) ∈ Sσ and Aσ cover Ad. As
the toric divisors Di of codimension one are defined by the rays τi = ν∗i · Q
in ν∗i ∈ ∆∗ ∩N , we have

[div(χu(σ))] =
∑
i

〈u(σ), ν∗i )〉Di , (6.9)

we will discuss the toric subvarieties of Ad later in more detail. On the toric
varieties we consider we have the isomorphisms

Pic(Ad)⊗ C ' Ad−1(Ad)⊗ C ' H2(Ad,C) . (6.10)

Therefore, each toric divisor Di, ν∗i ∈ ∆∗ ∩ N modulo rational equivalence
defines an element of H2(Ad,C) and a line bundle O(D) ∈ Pic(Ad). The
principal divisors defined by one global rational function are give rise to
trivial line-bundles.
The defining rational function of a divisor [D] can hence be viewed as a

global section of a line-bundle L∆ ∈ Pic(Ad) over Ad. The global sections
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6.1 Basic construction of toric Calabi-Yau hypersurfaces

H0(Ad, L∆) of L∆ are defined via a so called Newton-polyhedron ∆ ⊂ MQ.
A basis of global sections of L∆ is given abstractly by

χν ∈ H0(Ad, L∆) , ν ∈ ∆ ∩M . (6.11)

The relation to a divisor D∆ =
∑

i biDi with Di the toric divisors is given
by

∆ = {u ∈MQ | 〈u, v〉 ≥ −bi , ∀v ∈ ∆∗} . (6.12)

A specific global section of the line bundle L∆ is hence defined by the linear
combination

p∆(aj) =
∑

νj∈∆∩M
ajχ

ν ∈ H0(Ad, L∆) , aj ∈ C . (6.13)

Varying the aj preserves hence the class [D∆] ∈ Ad1(Ad) of the divisor, but
changes in general its representative D. This enables us to describe a family
of hypersurfaces by one divisor-class.
To each of the toric divisors Di we can associate a coordinate Xi such that

Di = {Xi = 0}. These coordinates form the ring of homogeneous coordinates
of Ad as defined in [90] we denote it by

Sd = C[Xi , ν
∗
i ∈ ∆∗ ∩N ] . (6.14)

This ring has a natural grading by divisor classes α ∈ Ad−1(Ad). For a given
monomial

f =
∏
i

Xbi
i , deg(f) = α , α = [

∑
i

biDi] . (6.15)

We can interpret the elements of Sd of degree β as the global holomorphic
section vanishing over β as

H0(Ad,OAd(D)) = Sβ , β ∈ [D] (6.16)

as for example shown in [91,90]. The coordinate ring Sd and the toric variety
Ad are related by the proj-construction

Ad = Proj(Sd) = Proj(C[Xi , ν
∗
i ∈ ∆∗ ∩N ]) , (6.17)
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

relating a graded ring to a projective variety. The projective toric varieties
we consider are therefore in particular Kähler. This ring is called the ho-
mogenous coordinate ring of Ad, since we can choose global homogeneous
coordinates, denoted by

[X1 : X2 : . . .] = [Xi] = [λ`iXi] ,
∑
i

ν∗i `i = 0 . (6.18)

These are equivalence classes under rescalings by powers of a non-zero com-
plex number λ ∈ C∗ = C − {0} which is an algebraic torus from which the
name toric variety is derived. The `i ∈ Z`(∆∗)−1−d induce the grading of
Sd and generate a cone in Q`(∆∗)−1−d where `(∆∗) − 1 denotes the number
integral points in the boundary of ∆∗.
It can be shown [86,92] that Ad−1(Ad) the Chow group of Âd is given by

Ad−1(Ad) =
C[Di]

〈P [Σ(∆∗)]〉
(6.19)

with the projective equivalence

P [Σ(∆∗)] = 〈
∑

ν∗i ∈∆∗∩N
〈m, ν∗i 〉Di : m ∈M〉 (6.20)

which is a d-dimensional sub-module of Ad−1(Ad). The equivalence classes
are denoted by [Di]. We note here that it can be shown that the toric divisors
generate the full cohomology of a complete simplicial toric variety Ad which
reads

H∗(Ad,C) =
C[Di]

〈P [Σ(∆∗d)]⊕ SR〉
(6.21)

where the [Di] have grading (1, 1) viewed as their dual two-forms ωi ∈
H1,1(Ad). In particular, all non-trivial cohomology classes of toric varieties
have Hodge-type and can be represented by the intersection of p toric divi-
sors. The Stanley-Reissner ideal SR provides the information for the product
in the cohomology corresponding to the intersection of divisor-classes.

SR = {Di1 · · ·Dik | {τi1 , . . . τik} 6⊂ σ , ∀σ ∈ Σ(∆∗)} . (6.22)

64



6.1 Basic construction of toric Calabi-Yau hypersurfaces

In addition, we note that from description we can calculate h1,1(Ad) as

h1,1(Ad) = `(∆∗)− (d+ 1) . (6.23)

Here `(∆∗) counts the number of integral points in ∆∗ ⊂ N and subtracts
the dimension of P [Σ(∆∗)] which is d and the −1 corresponds to the origin,
the integral point of ∆∗ to which no divisor is associated.

Let us illustrate this with a simple example, the two dimensional complex
projective space P2. The polyhedron is spanned by e1, e2,−e1−e2 ∈ N ' Q2

and each two of these give rise to a simplicial cone, isomorphic to C2. Another
way to see this is to define

S2 = C[X1, X2, X3] , A2 = Proj(S2) = P2 , (6.24)

where Xi all have the same degree. All the [Di] are linearly equivalent as

P [Σ(∆∗)] = 〈(D1 −D3), (D2 −D3)〉 (6.25)

and can be represented by the hyperplane class [H] = [Di] ∈ A1(P2). The
SR-ideal is simply given by H3 ' D1D2D3 and the full cohomology is there-
fore

H∗(P2,C) = C[H]/H3 . (6.26)

This is a first example of a weighted projective space that we will consider
in more detail in section 7.3.
The special divisor class that will give rise to a Calabi-Yau hypersurface

is the so called anti-canonical divisor class of Ad given by

D∆ = −KAd =
∑

ν∗i ∈∆∗∩N
Di . (6.27)

The details of this construction were established in the seminal paper of
Batyrev [93]. The corresponding anti-canonical hypersurface D∆ and all
members of the same class are Calabi-Yau if the associated anti-canonical
line-bundle L∆ is reflexive or equivalently, if both polyhedra are convex and
contain only one interior point. This interior point can then always be shifted
to the origin of M . In the second case, we can describe ∆ as

∆ = (∆∗)∗ = {u ∈MQ
∣∣ 〈u, v〉 ≥ −1 , ∀v ∈ ∆∗} . (6.28)
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

The resulting hypersurface will in general be singular and we denote it by
Y sing
d−1 . This is the vanishing set of a global section of −KAd given by

p∆(aj , Xi) =
∑

ν∈∆∩M
aj

∏
ν∗i ∈∆∗∩N

X
〈νj ,ν∗i 〉+1
i ∈ Sd(−KAd) . (6.29)

We have chosen implicitly a maximal star-triangulation of ∆∗ by associating
to every integral point ν∗i ∈ ∆∗ ∩ N a homogeneous coordinate Xi. Due
to the Bertini-theorem, that basically states that we can always change the
aj infinitesimally varying the hypersurface in its divisor-class, we can as-
sume that all singularities of Y sing

d−1 arise from the ambient space Ad. The
n-dimensional toric subvarieties An of Ad along which we have singularities
are then intersected by Y sing

d−1 also in hypersurfaces of codimension one.

We can resolve these singularities by adding new homogeneous coordinates
corresponding to integral points of N that will also change ∆∗, its triangula-
tion and therefore also the fan ofAd. Adding a new ray corresponding to such
an additional integral point in N that is not contained in the boundary of ∆∗

will also affect the number of integral points in ∆. Hence this will change the
number of possible deformations of the hypersurface. If the chosen integral
point is in the boundary of ∆∗ the resolution is called crepant, preserving the
anti-canonical class −KAd . We will henceforth assume that we can resolve
the singularities of Ad that will be inherited by the hypersurface via crepant
resolutions. 1 In addition, we are going to assume that we can always choose
a transverse and quasi-smooth hypersurface in the anti-canonical hypersur-
face class, intersecting all toric subvarieties of the ambient space in smooth
varieties of codimension one. The resolved smooth Calabi-Yau hypersurface
will be denoted by Yd−1 and the fully resolved ambient space Âd.
With the most important basics and notations introduced, we will discuss

the precise origin and representations of the non-trivial cohomology classes
of the Calabi-Yau hypersurface Y4 in A5 in the upcoming section.

1For d > 4 this is in general not possible, but it simplifies our discussion.
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6.2 Cohomology of Y4 via the Gysin-sequence

In this subsection, we want to describe the origin of the non-trivial coho-
mology classes that will give rise to the massless fields in the spectrum of
our effective field theories. The key-point here is that we need to circumvent
the Lefschetz-hyperplane theorem for quasi-smooth Fano-hypersurfaces to
obtain non-trivial three-form cohomology on Y4. This is done via quasi-Fano
or semiample hypersurfaces as discussed by Mavlyutov in [94].
The standard way to calculate the cohomology groups of the hypersurface

Y4 is to apply the Lefschetz-hyperplane theorem as for example stated in
[91]. This theorem states that for a quasi-smooth hypersurface D of a (d +

1)-dimensional complete simplicial toric variety Ad+1 defined by an ample
divisor we have the isomorphism

ι∗ : Hj(Ad+1,C)
'−−−−→ Hj(D,C) , j ≤ d− 1 (6.30)

This is the induced map of the inclusion ι : D ↪→ Ad+1. Furthermore, we
have the inclusion

ι∗ : Hd(Ad+1,C) ↪→ Hd(D,C) . (6.31)

This implies basically that all non-trivial cohomology of degree less than d
is induced from the ambient toric variety Ad+1. Combing this with (6.21)
which implies

H i,j(Ad+1) 6= 0 ⇒ i = j , (6.32)

we see that this imposes strong restrictions on the cohomology of the hy-
persurface. In particular, it follows that a quasi-smooth four-dimensional
Calabi-Yau hypersurface in a toric ambient space with ample anti-canonical
line-bundle can not have non-trivial three-forms. A variety with ample anti-
canonical line-bundle is called a Fano variety. A line-bundle over a variety is
ample, iff for every point we can find a global section that doesn’t vanish over
that point. An example for this is the sextic, the anti-canonical hypersurface
in P5 which does not support odd cohomology, as studied in [95]. Therefore,
we want to consider ambient spaces more general than regular projective
spaces.
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

As was shown in [96] the non-trivial cohomology classes of degree less than
d in a semiample hypersurface D∆ in a complete simplicial toric variety Ad+1

arise from the toric divisors Di of Ad+1

Di = {Xi = 0} , D′i = Di ∩D∆ , ν∗i ∈ ∆∗ ∩N . (6.33)

In toric geometry, see [86] section 3.4. it can be shown that for an ample
Cartier divisor over a complete toric variety with polyhedron ∆∗ we have a
one-to-one correspondence between vertices of ∆ and maximal-dimensional
cones in ∆∗. Due to the fact that crepant resolutions of a Calabi-Yau hyper-
surface subdivide the maximal cones of ∆∗, but leave the dual polyhedron ∆

invariant, a crepant resolution renders the resulting ambient space non-Fano.
The exceptional divisors of the toric resolutions are the Di that will induce
non-trivial cohomology on the hypersurfaces D∆. These divisors carry them-
selves non-trivial cohomology that lifts to the full Calabi-Yau hypersurface.
Therefore, we call a hypersurface semiample if it is obtained from crepant
resolutions of an ample hypersurface in a possibly singular Fano toric am-
bient space. This can be viewed as starting from a polyhedron ∆∗ with a
triangulation that only contains rays through the vertices defining the sin-
gular space Ad+1. Then we add subsequently the rays through all integral
points of ∆∗ such that we resolve all singularities on the hypersurface which
leads to the new toric ambient space Ad+1 that is simplicial and complete.
In terms of n-dimensional polyhedra ∆∗n, we hence call a hypersurface k-
semiample, k ≤ n, if the Newton-polyhedron ∆k of the hypersurface class
has dimension k. A semiample hypersurface of An is therefore n-semiample.
The precise composition of the cohomology groups of a Calabi-Yau fourfold

Y4 realized as a semiample divisor in the toric simplicial complete ambient
space A5 is given by a number of exact sequences as found in equation (7)

of [96]. The first one, inducing non-trivial two-forms is given by⊕
ν∗i

H0,0(D′i)
⊕iιi,∗−−−−−−−→ H1,1(Y4) , ιi : D′i ↪→ Y4 . (6.34)

We note that
⊕

ν∗i
H0,0(D′i) basically provides a two-form for every toric

divisor class of Y4. It is, however, possible to obtain h0,0(D′i) > 1 after
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intersecting with the hypersurface, but we always have h0,0(Di) = 1 for the
purely toric setting. We will see this in more detail in the next section, when
we discuss the cohomology of toric divisors of a Calabi-Yau hypersurface.
The map ιi,∗ is the Gysin-map induced by the inclusion of the toric divisor
D′i into Y4, which we will discuss shortly. It can be viewed as dual to taking
the non-trivial cycles of D′i as cycles of Y4.

The next sequence clarifies the origin of non-trivial three-forms in Y4 and
reads ⊕

ν∗i

H1,0(D′i)
⊕iιi,∗−−−−−−−→ H2,1(Y4) . (6.35)

The requirement that a toric divisor D′ hosts non-trivial one-forms will be a
severe restriction, as we will discuss in the next section.

The next sequence we want to mention will allow us to count the (3, 1)-
forms of Y4, which correspond to the complex structure deformations that
preserve the Calabi-Yau structure. This is, however, a true exact sequence
that does not collapse to one isomorphism

0 −→
⊕
ν∗i

H2,0(D′i)
⊕iιi,∗−−−−→ H3,1(Y4) −→ GrW4 H3,1(Y4 ∩ T) −→ 0 . (6.36)

We will later see, that GrW4 H3,1(Y4 ∩ T) can be interpreted as the bulk
complex structure deformations corresponding to the deformations of the
defining section p∆ of the hypersurface. Therefore, these are called algebraic
complex structure deformations. The torus T is the open torus (C∗)5 ⊂ Â5 of
which A5 is a compactification. The union of toric divisors is the complement
of T in Â5. The other deformations arise from holomorphic (2, 0)-forms on
toric divisors and are therefore called non-algebraic divisors, since they leave
p∆ invariant.

The Gysin map ι∗ of a inclusion ι : N →M of an n-dimensional subman-
ifold of a compact manifold M of dimension m is best described with the
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

following diagram

Hn−p(N,C) Hn−p(M,C)

Hp(N,C) Hm−n+p(M,C)

ι

PD

ι∗

PD

(6.37)

Here PD is Poincaré duality and from this we see that the Gysin-map is
the dual map of the inclusion of cycles of submanifolds. This is a purely
topological construction of topological manifolds and hence also applies to
our setting of varieties. In general there is no reason why this map should be
surjective or injective. In our case the toric divisors have the real dimension
n = 2d− 2 and m = 2d. This implies for example that for p = 1 we have

H5(D′i,C) H5(Y4,C)

H1(D′i,C) H3(Y4,C)

ιi

PD

ιi,∗

PD

(6.38)

Here we note that due to the fact that all maps are topologically and in-
dependent of the metric or the complex structure on Y4. Therefore, the
Gysin-map is compatible with the splitting into Hodge-type and we obtain
the exact sequences we stated before.
In the two upcoming sections, we will discuss the geometry of toric divisors

further and also see, how the algebraic deformations of a hypersurface can
be desribed in detail via chiral rings and the Poincaré residue.

6.3 The geometry of toric divisors of a Calabi-Yau
hypersurface

So far we have established that we can obtain the non-trivial forms of various
types on a semiample hypersurface D∆ in a simplicial toric ambient space
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Â5 from toric divisors. These toric divisors correspond to the rays through
integral points ν∗ in the boundary of the polyhedron ∆∗ defining Â5. The
corresponding rays can be classified by the codimension codim(θ∗) of the face
θ∗ ⊂ ∆∗ such that ν∗ ∈ int(θ∗)∩N . This was already suggested in [37] where
this idea was used to determine the Hodge-numbers of Calabi-Yau fourfolds.
In our case, since we are interested in the precise moduli dependence of the
harmonic forms, we will be more explicit.
First, we note that since the toric divisor D′i = Di ∩ Y4 of the semi-

ample hypersurface Y4 in the simplicial toric space Â5 is again a semi-ample
hypersurface in a toric variety Di, we review first the construction of the
n-dimensional toric subvarieities An of A5. The subvariety An corresponds
to a (4−n)-dimensional face θ∗ of ∆∗ ⊂ NQ. We construct An starting from
the (5−n)-dimensional cone σ ⊂ NQ over the face θ∗ with apex at the origin.
This cone enables us to define new n-dimensional lattices Nn,Mn via

Nn = N(σ) = N/Nσ , Nσ = N ∩Q · σ ⊂ N (6.39)

Mn = M(σ) = M ∩ σ⊥ , σ = θ∗ ·Q+ .

Here we denoted by Q ·σ ⊂ NQ the (5−n)-dimensional vector space spanned
by the elements of σ over Q. The elements in MQ that pair to zero with
σ ⊂ NQ are denoted by σ⊥.

σ⊥ = {m ∈M | 〈m,n〉 = 0 , ∀n ∈ σ} . (6.40)

This is a n-dimensional vector space in MQ. The fan of the toric subvariety
An,θ∗ is given by the set Star(σ) of all cones over faces of ∆∗ that share a
face with θ∗ projected to N(σ). The image of these adjacent faces under the
projection form again a star subdivison of a polytope ∆∗n in N(σ) and all of
σ ·Q gets projected to the origin of the quotient lattice N(σ). For details we
refer to [86].
Consequently, we can associate a homogeneous coordinate ring to An,θ∗ as

follows

Sn,θ∗ = C[Xi , ν
∗
i ∈ ∆∗n] ⊂ C[Xi , ν

∗ ∈ ∆∗]/〈Xi , ν
∗
i ∈ θ∗〉 (6.41)

= S5/〈Xi , ν
∗
i ∈ θ∗〉 .
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

These rings inherit the grading structure of the homogeneous coordinate ring
S5 of A5, since the other toric divisors either intersect An,θ∗ transversely or
not at all. If the divisor Di intersects An,θ∗ the coordinate Xi is also in Sn,θ∗ ,
if it does not intersect we can set Xi = 1 in Sn,θ∗ . If ν∗i ∈ θ∗, the coordinate
Xi gets projected out, since it is equivalent to zero in Sn,θ∗ .
Let us now discuss, how the hypersurface intersects the toric subvariety
An,θ∗ . We have seen that the polynomial p∆ defining the hypersurface is
built from global sections of the anti-canonical bundle of the ambient space
−KÂ5

. Therefore, p∆ ∈ S(−KÂ5
) and its monomials have degree [

∑
iDi]

where we sum over all toric divisors Di of Â5. Restricting now to An,θ∗ where
the divisors Di vanish for which ν∗i ∈ θ∗ ∩N , we obtain from the projection

S5(−KÂ5
) → Sn,θ∗(−KÂ5

) , p∆ 7→ pθ = p∆|An,θ∗ , (6.42)

the hypersurface equation pθ = 0 on An,θ∗ . Homogeneous coordinates in
p∆ corresponding to divisors not intersecting An,θ∗ will be set to one. The
monomials of pθ correspond to the global sections of −KÂ5

that do not vanish
over An,θ∗ determined by the integral points of the dual face θ of θ∗ given by

θ = {v ∈ ∆ | 〈v, w〉 = −1 , ∀w ∈ θ∗} . (6.43)

As was discussed in [92], the toric divisorsD′i ∈ Di∩Y4 are so called dim(θ)-
semiample hypersurfaces of the toric varieties Di where ν∗i ∈ int(θ∗)∩N . In
the following we will denote pairs of faces as

(θ∗α, θα) , dim(θ∗α) = n , α = 1, . . . , kn . (6.44)

To each of such pairs we can associate divisors Dlα with

Dlα : ν∗lα ∈ int(θ∗α) ∩N , lα = 1, . . . , `′(θ∗α) , (6.45)

where `′(θ∗α) counts the number of interior points of θ∗α. Let us first consider
the toric divisors Dlα of Â5. The cones corresponding to this subvariety are
the rays

τlα = ν∗ ·Q+ , Dlα = V (τlα) = A4,ν∗lα
. (6.46)
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Here we introduced the alternative expression Dlα = V (τlα) to make contact
with the literature. The divisors Dlα admit a fibration structure, which
can be seen as follows. For ν∗lα an inner point of a n-dimensional face θ∗α,
the ray τlα is contained in the cone σα over θ∗α. This we project to N(τlα)

to obtain the polyhedron ∆∗4 ⊂ N(τlα) of the toric variety A4,ν∗lα
= Dlα .

Due to the convexity of ∆∗ and ν∗lα int(θ
∗
α) ∩ N , we find that θ∗α maps to a

subpolyhedron of ∆∗4 containing the origin and defining the subvariety Dlα .
This subpolyhedron of dimension (4− n) has an induced triangulation from
∆∗ and defines a simplicial irreducible (connected) and complete (compact)
toric variety Elα . As described in the literature, for example in [86], this
implies that Dlα is a fibration over Aθ∗α,n = V (σα) = Aα with fiber given by
Elα . This can be summarized in the following fibration diagram:

Elα Dlα = V (τlα)

Aα = V (σα)

ilα

πlα

(6.47)

Here πlα denotes the projection of Dlα to the base Aα and ilα the inclusion
of the fiber.
The semiample hypersurface D′lα = Dlα ∩ Y4 inherits this fibration struc-

ture, since the defining polynomial pθα = pα is obtained from p∆ by setting
all homogeneous coordinates corresponding to integral points in θ∗α to zero.
From this we can deduce that the hypersurface equation is independent of
the homogeneous coordinates of Elα and therefore, we find a similar fibration
structure

Elα D′lα = V ′(τlα)

Rα = V ′(σα)

ilα

πlα

(6.48)

Here we denoted by Rα = V (σα) the dim(θ)-semiample hypersurface Aα ∩
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

Y sing
4 defined by the polynomial pα. We used here Y sing

4 because without
adding the rays through the integral inner points of θ∗α the hypersurface is
general and contains singularities along Rα. Only after resolving the singu-
larities via the introduction of the exceptional divisors Elα is Â5 and therefore
Y4 resolved. After the resolution, Rα is not a subvariety of Y4, because the
fibration D′lα may not have a section.

Having established the fibration structure of the toric divisors D′lα , we
can calculate its cohomology. The fibration structure enables us to use the
Leray-Hirsch theorem, [97, 67], since due to the toric fibration structure of
Dlα , one can show that the fiber does not degenerate and is locally trivial.
The inclusion ilα : Elα → D′lα satisfies furthermore the necessary condition
that the elements i∗lα(cj) for cj ∈ H∗(D′lα ,C) generateH∗(Elα ,C). Therefore,
we find the induced isomorphism of C-modules

H∗(Rα,C)⊗C H
∗(Elα ,C)

'−−−−→ H∗(D′lα ,C) (6.49)

given by the map
bi ⊗C i

∗
lα(cj) 7→ π∗lα(bi) ∧ cj . (6.50)

Note that this is an isomorphism of C-modules and not of rings. Alle mor-
phisms appearing in this construction are independent of the Hodge structure
and therefore the Hodge numbers arise from products of Hodge numbers of
the base space Rα and Elα . Due to the fact that Elα is toric and irreducible,
i.e. connected, its Hodge numbers are restricted to

hp,q(Elα) = 0 , p 6= q , h0,0(Elα) = hn,n(Elα) = 1 , n > 1 , (6.51)

For the regular n-semiample hypersurface Rα of dimension n − 1, implying
that it is ample, we find that

h0,0(Rα) = 1 , hn−1,0(Rα) = `′(θα) , n > 1 . (6.52)

This will be discussed in more detail in the upcoming section. We denoted
by `′(θα) the number of interior integral points of θα in NQ.
Let us now go through the various cases of face dimensions (4 − n) =

dim(θ∗). For n = 0, we find that A0 is a set of points in Â5 and hence the
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6.4 Poincaré Residue of toric hypersurfaces

corresponding singularities in A5 will be avoided by a general hypersurface.
In the case n = 1, we find that Aα ' P1 and the hypersurface will intersect
these one-dimensional subvarieties in a number of points counted with multi-
plicity. The number of points ptα is the degree of pα and is equal to `′(θα)+1.
Resolving the singularities along Rα introduces complex three-dimensional
toric varieties Elα that are irreducible. We have that

dim(θα) = 1 , H0,0(ptα) = `′(θα) + 1 . (6.53)

The next case is n = 2, here we find that the toric divisors Dlα are fibrations
over Riemann surfaces Rα with fibers two-dimensional toric varieties Elα .
The Hodge numbers in this case satisfy

dim(θα) = 2 , H1,0(Rα) = `′(θα) . (6.54)

In the case n = 3 we have that Rα are surfaces Rα = Sα that are ample
hypersurfaces of toric varieties and hence satisfy

dim(θα) = 3 , H2,0(Sα) = `′(θα) , H1,0(Sα) = 0 . (6.55)

as we will see in the next subsection. The hypersurfaces Sα are ample divi-
sors of A3 and hence for them the Lefschetz-hyperplane theorem holds and
h1,0(S) = 0. Contrary, if h1,0(S) 6= 0, the hypersurface needs to satisfy
h2,0(S) = 0 and we are in the n = 2 case. We note in particular, that the
divisors giving rise to non-algebraic deformations and three-forms can not
intersect.
In this section we have reduced the complex structure dependence of semi-

ample divisors to their ample bases, which are ample hypersurfaces in toric
varieties. In the next section, we will give an explicit description of the
non-trivial holomorphic forms on these hypersurfaces.

6.4 Poincaré Residue of toric hypersurfaces

Let us now discuss the holomorphic (n − 1)-forms on semi-ample hypersur-
faces in projective and simplicial toric varieties An, following [98] for ample
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

hypersurfaces. This was generalized to semiample hypersurfaces in [96, 92].
The insight here is that we express the holomorphic (n−1)-forms Ωn−1

R of the
hypersurface R as global rational holomorphic forms Ωn

An(R) of the ambient
space An with poles along R. This will enable us to express the algebraic
deformations of the polynomial pθ to explicit forms on the hypersurface, the
periods.
A global rational and holomorphic n-form on An with poles of first order

along the hypersurface R that is a restriction of the anti-canonical hypersur-
face in A5 is given by

H0(An,Ωn
An(R)) = {g dωAn

pθ

∣∣ g ∈ Sn(−KA5|An +KAn)} (6.56)

' Sn(−KA5|An +KAn) .

We introduced the following notation for this: the Cartier divisors class of the
restriction of the anti-canonical divisor of A5 to An is denoted by −KA5 |An ∈
An−1(An). In An we have the hypersurface R ⊂ An defined as the vanishing
locus of pθ ∈ Sn(−KA5 |An). Similarly, we introduced the anti-canonical
divisor −KAn of the subvariety An of A5. Furthermore, we introduced the
holomorphic volume-form dωAn of An that has degree [−KAn ] as we will
show shortly. Finally, we denoted by Sn(−KA5 |An + KAn) the elements of
the homogeneous coordinate ring Sn of An with degree [−KA5 +KAn ] as we
introduced in (6.41).
For the above expression we introduced the holomorphic volume-form

dωAn of An. To define this, we introduce a fixed integral basis {m1, . . . ,mn}
of Mn and define for each index set I = {i1, . . . , in} of n-integral points
ν∗i1 , . . . , ν

∗
in in ∆∗n ∩Nn the determinant

det(ν∗I ) = det(〈mi, ν
∗
j 〉1≤i,j≤n) , (6.57)

which can be thought of as the volume of the simplex spanned by the integral
points ν∗i and the origin. From this we can construct the holomorphic volume-
form as

dωAn =
∑
|I|=n

det(ν∗I )
(∏
i/∈I

Xi

)
dXi1 ∧ . . . ∧ dXin . (6.58)
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6.4 Poincaré Residue of toric hypersurfaces

Here the sum runs over all index sets I with n elements {i1, . . . , in}. If we
assign the one-forms dXi the same degree as their coordinate counterparts
Xi, we see that the degree of dωAn is given by

degSn(dωAn) = [
∑

ν∗i ∈∆∗n∩Nn

Di] = −KAn . (6.59)

Note that the holomorphic volume-form is only unique up to a multiple of a
constant. Having introduced the notation, we can now establish the Poincaré
residue construction to find representations for the holomorphic (n−1)-forms
of the Cartier divisor R with degree [−KA5 |An ] defined by pθ = 0 in the toric
ambient space An. We define the Poincaré residue as the map

H0(An,Ωn
An(R)) → H0(R,Ωn−1

R ) (6.60)
g dωAn
pθ

7→
∫

Γ

g dωAn
pθ

.

We introduced here a small one-dimensional curve Γ ∈ H1(An−R,R) around
R in the complement of R in An. This integral expression defines a holomor-
phic (n−1)-form, as applied to a (n−1)-cycles α ∈ Hn−1(R), we fiber Γ over
α and integrate the rational (meromorphic) form inH0(An,Ωn

An(R)) over the
resulting n-cycles to obtain a complex number. This map is well-defined, but
not injective, since we can partially integrate∫

Γ

gi∂Xipθ dωAn
pθ

= 0 , (6.61)

which constitutes the kernel of the residue map which can also be denoted by
the residue symbol ResR( · ). Therefore, modding out the partial derivatives
of pθ of Sn and define the Jacobian or chiral ring

Rθ =
Sn

〈∂Xipθ〉
. (6.62)

Here we denoted by 〈∂Xipθ〉 the ideal spanned by the partial derivatives of
the defining polynomial pθ. The ring Rθ inherits the grading of Sn. This
renders the map

Rθ(−KA5 |An +KAn) ↪→ H0(R,Ωn−1
R ) (6.63)
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

defined by the Poincaré residue injective, as was shown in [92]. In the case
that the Calabi-Yau hypersurface Y sing

4 has only singularities of codimension
two arising from the ambient space A5, as is the case for our semiample
situation of the previous section, we see that for n = 1 the residue just gives
a constants over disjoint points, whose location is defined by pθ. In this
case we find `(θ) + 1 distinct points over which we have a three-dimensional
exceptional divisor. the points are the zeroes of pθ. The `′(θ) count the
moduli, the differences between the zeroes in P1 = A1.

n = 1 : R = {pt | pθ(pt) = 0} , h0,0(R) = `′(θ) + 1 . (6.64)

In the case n = 2, we find the holomorphic one-forms of Riemann-surfaces

n = 2 : Rθ(−KA5 |A2 +KA2) ' H0(R,Ω1
R) = H1,0(R) . (6.65)

Similarly, we constructed all the holomorphic two-forms of a surface S as

n = 3 : Rθ(−KA5 |A3 +KA3) ' H0(S,Ω2
S) = H2,0(S) . (6.66)

The trivial case is now n = 5 which is the full Calabi-Yau fourfold Y4 in
the space Â5 and since we are only considering complex structure dependent
quantities, it doesn’t matter if we resolve via blow-ups of the ambient space.
Therefore, we find that

n = 4 : R∆(0) ' H0(Y4,Ω
4
Y4

) = H4,0(Y4) . (6.67)

It is easy to see that
R∆(0) = S5(0) = 〈1〉 . (6.68)

Note that p∆ can not be linear in any homogeneous coordinate Xi, since the
generic monomial in p∆ has degree

∏
ν∗i ∈∆∩N Xi. Therefore, this element has

to correspond to the holomorphic four-form Ω on Y4 and can be represented
as

Ω ∼
∫

Γ

dωA5

p∆
∈ H4,0(Y4) . (6.69)

up to a function holomorphic in the complex structure moduli aj .
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Let us now determine the number of holomorphic (n − 1)-forms of the
hypersurfaces R, i.e. hn−1,0(R), in terms of the toric data. Given a divisor
D∆ with Newton-Polyhedron ∆ over a toric variety A with polyhedron ∆∗,
the degree [D∆] submodule S(D∆) of its homogeneous coordinate ring S is
given by

S(D∆) =
⊕

νi∈∆∩M
C ·

∏
ν∗i ∈∆∗∩N

X
〈νj ,ν∗i 〉
i . (6.70)

It can be shown, that the dimension of the quotient R∆(D∆) with D∆

represented by a transverse polynomial p∆ as a C-module is the given by the
number of interior integral points of ∆

R∆(D∆) =
⊕

νj∈int(∆)∩M

C ·
∏

ν∗i ∈∆∗∩N
X
〈νj ,ν∗i 〉
i . (6.71)

Therfore, we find that

hn−1,0(Rn−1) = `′(θ) , dim(θ) = n . (6.72)

From this we have now seen, how to represent the holomorphic forms on
the various toric hypersurfaces we encountered in the Gysin-sequences of the
previous sections. In the next section, we will use these representations to
gain further insights into the behaviour of these holomorphic forms under
complex structure variation.

6.5 Hodge variation in semi-ample hypersurfaces

In this section, we want to investigate the complex structure variations of the
semiample hypersurface Y4 in the simplicial toric variety A5. Due to the fact
that these are independent of the Kähler moduli and hence the volumina of
the blow-up divisors resolving singularities, it does not matter if we blow-up
the singularities for the complex structure variations.
The variations around a point a ∈Mc in complex structure moduli space
Mc of the Calabi-Yau fourfold Y4,a can be parametrized by

H1(Y4,a, T Y4) ' H3,1(Y4,a) , (6.73)
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

where the isomorphism is given by contraction with the no-where vanishing
holomorphic four-form Ω(a). We will drop the a-dependence in the notation
for Y4,a and just write Y4 in the following. From the Gysin-sequence (6.36)
we can deduce the splitting (we are dealing with free groups)

H3,1(Y4) ' GrW4 H3,1(Y4 ∩ T)⊕
⊕
ν∗i

H2,0(D′i) . (6.74)

The first part corresponds to the deformations of the polynomial p∆ via
monomials pν with ν ∈ ∆ ∩ M , therefore we will refer to it as algebraic
deformations of the complex structure. It can be shown, [92, 94] that these
are given by

H3,1(Y4)alg ' GrW4 H3,1(Y4 ∩ T) ' R∆(−KA5) . (6.75)

They are represented by the Poincaré residue construction as

H0(A5,Ω
5(−2KA5))→ H3,1(Y4)⊕H4,0(Y4) (6.76)

pν
p2

∆

dωA5 7→
∫

Γ

pν
p2

∆

dωA5 .

Note that
H0(A5,Ω

5(−2KA5)) = S5(−KA5) , (6.77)

and the kernel is given by 〈∂ip∆, ν
∗
i ∈ ∆∗〉. It was shown by Batyrev in

[99] that the dimension of the space of these algebraic complex structure
deformations is

h3,1
alg = `(∆)− 6−

∑
dim(θ)=4

`′(θ) . (6.78)

Due to the residue representation we can see that

∂

∂aν
Ω =

∂

∂aν

(∫
Γ

1

p∆
dωA5

)
= −

∫
Γ

pν
p2

∆

dωA5 . (6.79)

The remaining complex structure deformations arise from divisors that are
blow-ups of singular surfaces Sα

H3,1(Y4)non−alg '
⊕

dim(θα)=3

H2,0(Sα) ' Rα(−KA5 |A3,α +KA3,α) . (6.80)
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6.5 Hodge variation in semi-ample hypersurfaces

The number of these deformations is `′(θα), the number of holomorphic (2, 0)-
forms on the toric divisors Dlα times the number of necessary blow-ups `(θ∗α):

h3,1
non−alg =

∑
dim(θα)=3

`′(θα)`′(θ∗α) . (6.81)

Note that we have in general the map

H0(Ad,Ωd(pD) ' Sd(pβ +KAd)→ F
p
alg =

p⊕
k=0

Hd−1−k,k
alg (D) (6.82)

q

pp∆
dωAd 7→

∫
Γ

q

pp∆
dωA5 ,

for a quasi-smooth semiample divisor D∆ with Newton-polyhedron ∆ the
zero set of p∆ ∈ Sd[D∆] with degree [D∆] ∈ Ad−1(Ad) and Γ the usual
one-dimensional curve in the complement of D∆ in Ad. This generates the
algebraic part of the (d − 1)-dimensional cohomology group of D∆, called
horizontal cohomology of D∆. 2

This divisor D∆ needs not to be Calabi-Yau and hence we can also use this
construction for bases B3 of elliptically fibered Calabi-Yau fourfolds that are
toric hypersurfaces with h2,1(B3) > 0 as considered in section 5.2. A simple
example is given by the cubic hypersurface B3 = P4[3] in P4, for which p∆

is just a general degree three homogeneous polynomial in the coordinates
[X1, . . . , X5]. In this case ∆ is not reflexive and its vertices are not integral,
but the same construction applies. The (2, 1)-forms can be represented as

γi =

∫
Γ

Xi

p2
∆

dωP4 ∈ H2,1(B3) , (6.83)

In particular, we find the non-trivial Hodge numbers h0,0 = h1,1 = h2,2 =

h3,3 = 1 (generated by the hyperplane class of P4) and h2,1 = 5. These three-
forms do not correspond to the complex structure deformations, as there is
no holomorphic no-where vanishing three-form. Note that we have h3,0 = 0

2Note that in GrW4 H3,1(Y4 ∩ T) the GrW4 is a weight grading up to order four which
corresponds to the pole order of the rational forms necessary to produce all four-forms
that arise from the residue construction.
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6 Geometry of toric Calabi-Yau fourfold hypersurfaces

which can be seen from the positive degree of dωP4/p∆. The geometry of this
hypersurface was discussed in detail by Clemens and Griffiths in [100].
In the following we will focus on the three-forms of Calabi-Yau hypersur-

faces for which a similar construction can be considered. First, however,
we will use the obtained representations to count the Hodge numbers of a
Calabi-Yau fourfold hypersurface.

6.6 Counting the Hodge numbers of a semiample
Calabi-Yau fourfold hypersurface

The number of components of an n-semiample toric divisors D′ is given by

h0,0(D′) = 1 , n = 2, 3 h0,0(D′) = `′(θ) + 1 , n = 1 . (6.84)

For each face θ∗ we have `′(θ∗) toric divisors, where `′(θ∗) counts the number
of interior integral points of the (4 − n)-dimensional face θ∗ of ∆∗, n < 4

corresponding to the blow-up divisors necessary to resolve the ambient space
A5. Combining now the insights from the Gysin-sequence of the previous
section and the Poincaré representation of the holomorphic forms, we can
deduce the Hodge numbers of smooth Calabi-Yau fourfold Y4. This was
already discussed in [37].
We find for the number of (1, 1)-forms that we have three parts. The

first arises from the ambient space Ad+1 as seen in (6.21) with h1,1(Ad+1) =

`(∆∗) − 6, to obtain the cohomology of the hypersurface, however, we need
to substract the blow-up divisors over points that do not lie on the general
hypersurface Y4, which are the zero-semiample divisors. To account for non-
toric divisors arising from one-semiample divisors we need to add the `∗(θ)
components over `∗(θ∗) points:

h1,1(Y4) = `(∆∗)− 6−
∑

dim(θ)=0

`′(θ∗) +
∑

dim(θ)=1

`′(θ)`′(θ∗) , (6.85)

where `(∆∗) denotes all integral points of ∆∗. This turns out to be ex-
actly dual to the formula for h3,1(Y4) which combines the algebraic and non-
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algebraic complex structure deformations as

h3,1(Y4) = `(∆)− 6−
∑

dim(θ)=4

`′(θ) +
∑

dim(θ)=3

`′(θ)`′(θ∗) , (6.86)

counting the number of elements of chiral rings with a certain degree as
described in section 6.5. The duality between the two Hodge numbers of h1,1

and h3,1 is a first manifestation of mirror symmetry on Calabi-Yau fourfolds,
as described in [76, 41] and we have already seen in chapter 4. The mirror
symmetry of toric hypersurfaces can be simply expressed as the exchange
of the dual polyhedra ∆ and ∆∗, as first realized by Batyrev [93]. Due to
the fact that the non-trivial three-forms arise solely from toric divisors as
discussed around (6.48), the Hodge number h2,1 per two-dimensional face θα
is the product of one-forms on the the Riemann surface Rα given by `′(θα)

and the number of blow-up divisors necessary to resolve the singularity along
Rα given by `′(θ∗). The result is

h2,1(Y4) =
∑

dim(θ)=2

`′(θ)`′(θ∗) , (6.87)

which is invariant under the exchange of ∆ and ∆∗ as predicted by mirror
symmetry. The remaining non-trivial Hodge number h2,2 can be computed
from the other three via index theorems as already seen in (2.5). These split
into four orthogonal parts.3 The first two parts a horizontal, they arise from
the complex structure variations of algebraic and non-algebraic (3, 1)-forms
and are also primitive, i.e. their product with the Kählerform J vanishes.
The second part is the vertical cohomology that arises form wedge products
of (1, 1)-forms corresponding to intersections of toric and non-toric divisors.

In the next section we will focus more on the origin and complex struc-
ture dependence of the non-trivial three-forms of toric Calabi-Yau fourfold
hypersurfaces in toric varieties which was not studied before.

3As we do not prove these statements here, this should be interpreted as a conjecture. It
is the Calabi-Yau fourfold version of the cohomology splitting shown in [92] for general
semi-ample hypersurfaces in toric varieties.
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7

The intermediate Jacobian of a
Calabi-Yau fourfold hypersurface

Using the arguments presented in chapter 6, we deduced that the three-
form cohomology of a semiample Calabi-Yau fourfold hypersurface of a toric
variety is induced by the holomorphic one-forms of a Riemann surface. The
relevant notions of the Riemann surface will be introduced in section 7.1 and
then lifted to the full fourfold geometry in section 7.2. In course of this we
will identify the quantities of section 2.2 of the toric hypersurface setting
and introduce a class of simple example geometries, the weighted projective
spaces in section 7.3.

7.1 Three-form periods from Riemann surfaces

We want to specify now to the toric divisors of the Calabi-Yau fourfold hy-
persurface Ŷ4 providing non-trivial three-forms. The fibration structure of
these divisors with base a Riemann surface will enable us to apply the well-
established theory of periods of Riemann surfaces to find a description of the
periods of the three-forms on a Calabi-Yau fourfold realized as a toric hyper-
surface. To do so, we first introduce the general theory of Riemann surfaces
necessary to understand the period construction, as is by now textbook ma-
terial [88]. Then we will use the representation of holomorphic one-forms on
ample toric hypersurfaces as used in [98, 91, 92] to find the periods of these
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Riemann surfaces. These periods satisfy a set of second order differential
equations, the Picard-Fuchs equations, as was derived similarly in [101].
In the speical case of two-semiample toric divisorsD′lα with two-dimensional

Newton-polyhedron θα, the fibration structure described in (6.48) reads

Elα D′lα ⊂ Dlα

Rα ⊂ A2,α

ilα

πlα

(7.1)

where Rα is a (compact) Riemann surface embedded in a two-dimensional
simplicial complete toric ambient space A2,α by the polynomial pα. The fiber
Elα is two-dimensional and toric and the Hodge types of its cohomology is
independent of the complex structure of Ŷ4. In particular, we see that the
full complex structure dependence of the non-trivial three-forms is captured
by the holomorphic one-forms of the Riemann surfaces Rα. Therefore we
will now discuss the general theory of periods on Riemann surfaces R.

A Riemann surface R is a compact Kähler manifold of complex dimen-
sion one and we are interested in its non-trivial cohomology, the non-trivial
one-forms and their complex structure dependence. To do this, we introduce
appropriate bases for the one-forms, first a topological and then a holomor-
phic basis.
The Riemann surface R we consider has genus g = h1,0(R) and is equipped

with a basis of integral one-cycles Âa, B̂a ∈ H1(R,Z) with indices a =

1, . . . , g and dual one-forms α̂a, β̂a ∈ H1(R,Z). We can choose this basis
to satisfy canonically∫

R
α̂a ∧ β̂b = δba ,

∫
R
α̂a ∧ α̂b = 0 ,

∫
R
β̂a ∧ β̂b = 0 . (7.2)

For a n-dimensional Kähler manifold we can choose the holomorphic n-forms
to vary holomorphically with the complex structure, [67]. In particular, we
can choose a basis of holomorphic one-forms onR denoted by γa ∈ H0(R,Ω1

R)

depending holomorphically on the the complex structure of R. The so called
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period matrices are obtained by integrating these one-forms over the basis of
one-cycles as

(Π̂a)
b =

∫
Âb

γa , (Π̂a)b =

∫
B̂b
γa . (7.3)

These g × g matrices are holomorphic in the complex structure. The period
vectors Π̂b and Π̂b are the column vectors of these matrices. These vectors
are obtained by integrating the full basis of holomorphic one-forms over one
fixed one-cycle. These 2g vecotrs are linearly indpendent over R and therefore
generate a lattice

Λ̂ =
⊕
a

(
Π̂aZ⊕ Π̂aZ

)
. (7.4)

in Cg ' H1,0(R). The period matrices allow to expand the holomorphic
one-forms into the topological basis as

γa = (Π̂a)
bα̂b + (Π̂a)bβ̂

b , (7.5)

and define the projection of the integral cohomology, the lattice H1(R,Z),
to the eigenspace of complex structure H1,0(R) ⊂ H1(R,C). The object we
want now to study is the Jacobian variety J 1(R) of the Riemann surface R
given by

J 1(R) =
H1,0(R)

H1(R,Z)
' Cg/Λ̂ . (7.6)

We can normalize the basis γa, since one of the two period matrices will
be invertible, we choose (Π̂a)

b. This enables us to introduce the normalized
basis γ̃a ∈ H1,0(R) of holomorphic one-forms on R:

γ̃a = (Π̂−1)a
b
γb ,

∫
Âb
γ̃a = δba , (7.7)

which now depends meromorphically on the complex structure captured by
the normalized period matrix

if̂ab = (Π̂−1)a
c
(Π̂c)b ⇒ γ̃a = α̂a + if̂abβ̂

b . (7.8)

In the following we will assume our basis of holomorphic one-forms to always
be of this form and hence we drop the tilde and write for the normalized
basis γa ∈ H1,0(R).
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7 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

It can now be shown that this holomorphic (in general meromorphic) nor-
malized period matrix f̂ab of the Riemann surface R satisfies the relations

f̂ab = f̂ba , Re f̂ab > 0 , (7.9)

the period matrix is symmetric and its real part is positive definite. There-
fore, we can find a positive definite quadratic form on H1,0(R) that is given
in the normalized basis as

− i
∫
R
γa ∧ γ̄b = 2Re f̂ab . (7.10)

This normalized period matrix f̂ab will be the physical quantity we are inter-
ested in. Especially its complex structure dependence will be of interest and
we will study this by giving an explicit representation of the holomorphic
one-forms for Riemann surfaces as hypersurfaces R in simplicial complete
toric varieties A2.

Here we specialize to the more general construction as discussed in sec-
tion 6.4 of mapping rational two-forms on A2 with poles along the hypersur-
face R of order r denoted by Ω2

A2
(rR) to the middle cohomology of R via the

Poincaré residue. The general description of these rational forms that arise
from the restriction of the anti-canonical hypersurface on a ambient space
A5 to A2 reads

H0(A2,Ω
2
A2

(rR)) = {g dωA2

prθ
: g ∈ S2(−rKA5 |A2 +KA2)} (7.11)

' S2(−rKA5 |A2 +KA2) .

We denoted here by −KA5 |A2 ∈ A1(A2) the divisor class of the restriction
of the anti-canonical divisor class −KA5 of A5 to A2. The representative of
this divisor is given by R which is the zero set of pθ = p∆|A2 ∈ S2(−KA5 |A2).
Similarly we denoted by −KA2 the anti-canonical divisor class of A2 and as
we already seen in (6.58) the holomorphic volume form dωA2 of A2 has the
same degree as the anti-canonical divisor class −KA2 .
Using now the theory outlined in section 6.4 we can express the (anti-
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7.1 Three-form periods from Riemann surfaces

)holomorphic one-forms via the residue construction as

Rθ(−rKA5 |A2 +KA2) → H2−r,r−1(R) , r = 1, 2

q 7→
∫

Γ

q

prθ
dωA2 . (7.12)

Here Γ is a small one-dimensional curve winding around the Riemann surface
R in A2.
Moving on to the study of the complex structure dependence of these forms,

we see that due to the fact that R is an ample hypersurface its holomorphic
one-forms are entirely determined by the polynomial pθ which is a restriction
of p∆ to A2. This implies that the complex structure of H1(R,C) can only
depend on algebraic deformations of the Calabi-Yau fourfold and only the
very few surviving the projection of the full polynomial p∆ to pθ. Recall
that the family of Calabi-Yau hypersurfaces in the toric simplicial complete
ambient space A5 was given as the zero set of

p∆ =
∑

νj∈∆∩M
aj

∏
ν∗i ∈∆∗∩N

X
〈νj ,ν∗i 〉+1
i (7.13)

∈ S5(−KA5) ' H0(A5,OA5(−KA5)) .

The restriction to A2 is simply given by

p∆|A2 = pθ =
∑

νj∈θ∩M2

aj
∏

ν∗i ∈θ∗∩N2

X
〈νj ,ν∗i 〉+1
i (7.14)

∈ S2(−KA5 |A2) ' H0(A2,OA2(−KA5 |A2)) .

Therefore, the complex structure of R is fixed by the vector of the prefactors
a = (aj) of the monomials deformations pj corresponding to integral points νj
of ∆. Therefore, we can denote the Riemann surface with complex structure
at a point a in complex structure moduli space by Ra, this is the induced
complex structure of the full Calabi-Yau fourfold Y4,a. From the previous
analysis, we deduce that a one-form γ ∈ H1(Ra,C) on Ra will only depend
on complex structure moduli corresponding to integral points in the interior
of θ:

∂

∂aj
γ(a) = 0 , ∀ γ ∈ H1(Ra,C) , νj /∈ int(θ) . (7.15)
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7 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

In the following we will therefore consider only deformations of pθ by mono-
mials pb corresponding to the integral points νb ∈ int(θ) and similar the
corresponding complex structure coordinates ab. As we have seen the ex-
plicit representations of (1, 0)-forms γ̂b(a) ∈ H1,0(Ra) depend holomorphic
on the coordinates ab. This makes the normalized period matrix f̂ab(a) a
holomorphic function of the complex structure moduli ab. Note that we will
find f̂ab(a) to be a rational function of the moduli a, but we will only con-
sider the normalized period matrix in a region of moduli space where it is
holomorphic.

In more mathematical language we can interpret the residue representation
of the one-forms as local trivializations of the Hodge bundles with base the
complex structure moduli spaceMc of Y4 and fibers given by H1,0(Ra) and
H1(Ra,C), respectively. These are holomorphic bundles, for details we refer
to [67]. This will enable us to derive the complex structure dependence of
the holomorphic (1, 0)-forms

γb(a) =

∫
Γ

p′b
pθ
dωA2 ∈ H1,0(Ra) , νb ∈ int(θ) ∩M . (7.16)

Here we denoted by p′b = pb/
∏
ν∗i ∈θ∗

Xi ∈ S2(−KA5 |A2 +KA2). This is still
a monomial, since the corresponding integral point νb ∈ int(θ)∩M . We have

p′b =
∏

ν∗i ∈θ∗∩N2

X
〈ν∗i ,νb〉
i ∈ S2(−KA5 |A2 +KA2) , νb ∈ int(θ) ∩M . (7.17)

We can now see easily what happens if we vary the complex structure by
taking derivative with respect to the moduli ab. The first derivative is given
by

∂

∂ac
γb(a) =

∂

∂ab
γc(a) = −

∫
Γ

p′bpc
p2
θ

dωA2 ∈ H1(Ra,C) . (7.18)

The ring structure of the chiral ring Rθ = S2/〈∂ipθ〉 determines the Hodge
type of this form. Note that although S2 does not depend on a, Rθ does
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7.1 Three-form periods from Riemann surfaces

depend on a through pθ. We have

∂

∂ac
γb(a) = −

∫
Γ

p′bpc
p2
θ

dωA2 ∈ H1,0(Ra) , p′bpc ∈ 〈∂ipθ〉 , (7.19)

∂

∂ac
γb(a) = −

∫
Γ

p′bpc
p2
θ

dωA2 ∈ H1(Ra,C) , p′bpc 6∈ 〈∂ipθ〉 . (7.20)

It can be shown in general that the one-forms γb and its first derivatives
are sufficient to generate all of H1(Ra,C) as a C-module. This implies in
particular, that we can express the second derivatives of the γb in terms of
lower derivatives. This can be seen from

∂

∂ad

∂

∂ac
γb(a) = 2

∫
Γ

p′bpcpd
p3
θ

dωA2 ∈ H1(Ra,C) (7.21)

⇒ p′bpcpd ∈ 〈∂ipθ〉 .

Expressing the monomials of the second derivatives p′bpcpd in terms of lower
degree monomials and partial derivatives of pθ introduced coefficients de-
pending rationally on the complex structure moduli ab. These coefficients
are structure constants of the chiral ring Rθ. Therefore, we can write

∂

∂ac

∂

∂ad
γb(a) =

(
c(1)(a)cdb

ef ∂

∂ae
+ c(0)(a)cdb

f)
γf (a) . (7.22)

Here we denoted the structure constants of Rθ as c(1)(a)cdb
ef and c(0)(a)cdb

f ,
respectively. These are rational functions in the complex structure moduli
ab determined by modding out the partial derivatives of pθ from the ho-
mogeneous coordinate ring S2 of the ambient space A2. From the previous
considerations, it is easy to see that these structure constant are symmetric
in their lower and upper indices. The relations between the second deriva-
tive and the lower derivatives are Picard-Fuchs equations which are central
in the derivation of the complex structure dependence of the holomorphic
one-forms γb and the normalized period matrix f̂ab.
Due to the fact the Picard-Fuchs equations are determined by the structure

constants of the chiral ring Rθ which is a quotient of the full Jacobian R∆

of the Calabi-Yau fourfold Y4, the flat complex structure coordinates zK(a)
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7 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

for which the structure constants of R∆ trivialize, as described in [89, 41],
are also flat coordinates for the Hodge bundles of R trivializing the structure
constants in (7.22), and we find

∂

∂zL
∂

∂zK
γb(a(z)) = 0 . (7.23)

This implies that in the flat coordinates γa(z) depend at most linearly on the
complex structure moduli zK. Integrating these over a basis of topological
one-cycles as introduced in (7.2) we obtain the period matrices (Π̂b)a and
(Π̂b)a also depending at most linearly on the flat coordinates zK. Therefore
we find that the normalized period matrix f̂ab(z) can be expanded around
the large complex structure point z � 1 as

f̂ab(z) = zKM̂Kab + Ĉab +O(z−1) . (7.24)

The constants M̂Kab, Ĉab ∈ C can be determined from boundary conditions
as found in [65] for the large complex structure point. There we found that
the numbers M̂Kab correspond to certain intersection numbers of the mir-
ror Calabi-Yau fourfold. The coefficients of (7.24) are likely to be further
restricted by shift-symmetries of the intermediate Jacobian (7.6).
In the next section we will lift these holomorphic one-forms to the full

Calabi-Yau fourfold realized as a semiample hypersurface in a complete sim-
plicial toric variety using the Gysin-map.

7.2 The intermediate Jacobian of a Calabi-Yau
fourfold hypersurface

In this section we will lift the previously established theory for Riemann
surfaces and their intermediate Jacobian to the three-form cohomology of the
full Calabi-Yau fourfold realized as a semiample hypersurface in a simplicial
complete toric variety. This will enable us to define the intermediate Jacobian
of the Calabi-Yau fourfold hypersurface and express its metric in terms of
the normalized period matrices of Riemann surfaces and certain intersection
numbers of divisors inducing the three-form cohomology via the Gysin-map.
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7.2 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

In the following we consider a smooth and semiample Calabi-Yau fourfold
hypersurface Y4 embedded in a complete and simplicial toric variety A5. As
we have already seen, in this case the non-trivial three-form cohomology of Y4

is induced by the Gysin-map, (6.38). This is a topological mapping induced
by the inclusion ιi of toric divisors D′i into Y4 and hence respects the complex
structure induced on the cohomology. We have the isomorphism

H2,1(Y4) '
⊕

ν∗i ∈∆∗∩N
H1,0(D′i) . (7.25)

In section 6.3 we have seen that a toric divisor D′i of Y4 can only have
non-trivial one-forms if it is two-semiample, i.e. the integral point ν∗lα of ∆∗

defining the toric divisor D′l∗α is contained in a two-dimensional face θ∗α of ∆∗,
ν∗lα ∈ int(θ∗α). These divisors are fibration over Riemann surfaces Rα defined
by the dual face θα of θ∗α. The fibers Elα of these divisors are connected toric
surfaces and can be assumed to not depend on the complex structure of Y4,
since they are toric. Therefore, we argued that

H2,1(Y4) '
⊕

dim(θ∗α)=2

⊕
ν∗lα∈int(θ∗α)

H1,0(Rα)⊗C H
0,0(Elα) . (7.26)

Since we are now dealing with several Riemann surfaces Rα with genus gα we
will denote their respective holomorphic one-forms for which we constructed
representatives in the previous section by

γaα ∈ H1,0(Rα) , aα = 1, . . . , gα = `′(θα) . (7.27)

These lift to holomorphic (2, 1)-forms ψA of Y4 by first pulling them back
via π∗α to the full toric divisor D′lα with the projection πlα : D′α → Rα
and then pushing forward via the Gysin-map ιlα∗ induced by the inclusion
ιl∗ : D′lα → Y4. Explicitly this is given by

ψA = ιlα∗(π
∗
lαγaα) , (7.28)

A = (α, lα, aα) = (1, 1, 1), . . . , (k2, `
′(θ∗α), `′(θα)) ,

where we made use of a multi-index A keeping track of the base Riemann
surface Rα the toric fiber Elα and the holomorphic one-form γaα ∈ H1,0(Rα).
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7 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

Recall that k2 is the number of two-dimensional faces θ∗α of ∆∗ and hence
counts the Riemann surfaces Rα. The projection πlα as well as the inclu-
sion ιlα are both topological maps independent of the complex structure
or the metric of Y4. Therefore, also a basis of topological integral one-forms
(α̂aα , β̂

aα) as introduced in (7.2) for each Rα will be pushed forward to a basis
of topological three-forms (αA, β

A) of H3(Y4,Z), via the same construction(
αA = ιlα∗(π

∗
lαα̂aα) , βA = ιlα∗(π

∗
lα β̂

aα)
)
∈ H3(Y4,Z) . (7.29)

These also satisfy the canonical properties of (7.2) which will simplify the
upcoming discussion. Note that we do only consider here integral cohomology
without torsion. This implies that the intermediate Jacobian J 3(Y4) also
splits as a topological space using (7.26) into a direct product of intermediate
Jacobian of Riemann surfaces as

J 3(Y4) =
H2,1(Y4)

H3(Y4,Z)
'

k2∏
α=1

(J 1(Rα))`
′(θ∗α) . (7.30)

This is the intermediate Jacobian we already introduced in section 2.2. In
the upcoming discussion we will derive the normalized period matrix fAB(z)

of Y4, which can be seen to be a block-diagonal matrix with the blocks
being the normalized period matrices of the Riemann surfaces Rα. Due to
the direct sum in (7.26) these blocks are independent. At special points in
complex structure, however, the lattice in H2,1(Y4) induced by H3(Y4,Z)

may degenerate. This will require an extension of the diagonal ansatz we
consider here and we hope to come back to this situation in the future. In
this work we will restrict ourselves to the non-degenerate case. As we have
already seen in section 2.2, we can find a positive quadratic form Q on the
intermediate Jacobian J 3(Y4) given by

Q(ψA, ψB) =

∫
Y4

ψA ∧ ∗ψ̄B (7.31)

= −ivΣ

∫
Y4

ωΣ ∧ ψA ∧ ψ̄B , ψA, ψB ∈ H2,1(Y4) .
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7.2 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

Here we inserted the expansion of the Kählerform J = vΣωΣ into real har-
monic two-forms ωΣ ∈ H1,1(Y4) as already introduced in (2.6). The two-
forms ωΣ can be chosen to be Poincaré dual to a set of homologically inde-
pendent divisors D′Σ of Y4. As we have seen around (6.53) we can assume
these divisors to be induced by toric divisors of the ambient space and for
simplicity we will assume that all the toric divisors of Y4 are connected.
Therefore, we can also obtain the non-trivial two-forms as a push-forward of
the generator 1Σ of the constant functions on the toric divisors D′Σ via the
Gysin map as

ωΣ = ιΣ∗(1Σ) ∈ H1,1(Y4) , 1Σ ∈ H0,0(D′Σ) . (7.32)

In the case where the toric divisor D′Σ has several components, H0,0(D′Σ)

has several generators, one for each component of D′Σ. The generalization to
non-connected toric divisors is straightforward, but will just clutter up the
notation. Let us now evaluate Q for the constructed (2, 1)-forms of (7.28).
The key insight that will allow us to reduce to Q to quantities accessible

to calculation is to analyze the intersection structure implied by the integral
in (7.31). Since all three of the appearing forms ωΣ, ψA, ψB arise from toric
divisorsD′Σ, D

′
lα
, D′lβ it is natural to consider the intersection of these divisors

which will result in a curve C in Y4

C = D′Σ ∩D′lα ∩D
′
lβ
⊂ Y4 . (7.33)

Evaluating the integral of (7.31) will hence only have a non-vanishing result
if the homology class of C is the same as Rα and Rβ , respectively. This can
be deduced from the fact that the three-forms ψA are induced by one-forms
γaα that have support on Rα. Another way to see this is that C is again a
hypersurface in the toric ambient space DΣ ∩Dlα ∩Dlβ . If the one-forms on
this C lift to Y4 the hypersurface has to be two-semiample which requires C to
be homologous to one of the Riemann surfaces Rα. Note that this also implies
D′Σ to be two-semiample which is a severe restriction on the number of Kähler
moduli Q can depend on. Consequently, all three divisors are fibrations over
the same Rα, but with possibly different fibers Elα corresponding to integral
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7 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

points of int(θ∗α). Therefore the intersections have the form

D′lα ∩D
′
nα ∩D

′
mα = M̂lαnαmα ·Rα . (7.34)

The intersection numbers M̂lαnαmα account for possible multi-components
of the intersection. These intersection numbers can be computed in the so
called generalized Hirzebruch-Jung Sphere-Tree,

⋃
lα
Elα , which is the union

over all fibers Elα at a point of Rα. Two components of this sphere-tree
only intersect in codimension one subvarieties. The intersection numbers
M̂lαnαmα are given by

Elα ∩ Enα ∩ Emβ = M̂lαnαmα . (7.35)

We depicted the intersection structure in figure 7.1. In practice we can
calulate these intersection numbers from the intersection numbers of Y4 by
taking an intersection of four toric divisors with three of them as above
fibrations over Rα and the fourth one being transverse to Rα intersecting it
in a single point (or several points, but then we have to take multiplicities
into account). The easiest choice for the fourth divisor is the dual of Rα, we
can call it Dα, which satisfies Dα ·Rα = 1. Therefore, we find that

M̂lαnαmα = D′lα ∩D
′
nα ∩D

′
mα ∩Dα , Dα ·Rα = 1 . (7.36)

This implies that we can compute the intersection numbers M̂lαnαmα by
standard techniques, for example by calculating the intersection numbers
of five divisors of the ambient space A5 and then choosing the fifth divisor
the anti-canonical divisor class of the Calabi-Yau fourfold Y4. From this
analysis we see that there is a convenient expansion of the Kählerform suited
to calculate Q.

J = vΣωΣ =

n2∑
α=1

∑
lα

v
α
ωlα + . . . , ωlα = PD[Dlα ] . (7.37)

Here we only displayed the expansion in two-forms that will contribute to Q
and used Poincaré duality to relate the divisor classes [Dlα ] and two-forms
ωlα ∈ H1,1(Y4) in the natural way. Combining now the insights on the
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Rα

A2,αγaα

Elα Emα

Enα

Figure 7.1: Intersection structure of the divisors D′lα that are fibration over
Rα with fiber Elα and holomorphic one-forms γaα .
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intersection structure, we can express the positive bilinear form Q in a part
depending on the intersection pattern independent of the complex structure
and a second part only depending on the positive bilinear form on a Riemann
surface

Q(ψA, ψB) = −iδαβvlαM̂lαmαnβ

∫
Rα

γaα ∧ γ̄bβ , (7.38)

where we used the multi-indices A = (α,mα, aα) and B = (β, nβ, bβ). Geo-
metrically this can be interpreted in the following picture. For fixed Riemann
surface Rα, the El-fibers form a generalized Hirzebruch-Jung sphere-tree,
which is usually used for the resolution of codimension two orbifold singu-
larities, where a chain of P1’s (the spheres of the tree) are fibered over the
singularity locus. The intersection matrix of these spheres is then related to
the symmetry group of the orbifold. We use here the resolution of codimen-
sion three singularities requiring complex two-dimensional resolution fibers
El that intersect in a more complicated pattern which is captured by the fully
symmetric three-tensor Mlmn. The intersection number Mlmn are indepen-
dent of the hypersurface and can also be computed directly in the ambient
space geometry A5, but depends well on the triangulation of ∆∗ as well as
the Kähler moduli. The codimension three-singularity we also assume to be
an orbifold singularity and it would be interesting to find a group theoretic
interpretation of the intersection matrices Mlmn.

Let us now connect the result for Q in (7.38) to the general formula of
section 2.2 given by (2.25). Therefore, we need to identify the intersection
numbers (2.24) with (7.36) as

MΣA
B =

 M̂lαmαnαδ
bα
aα for α = β and Σ = lα

0 otherwise ,
(7.39)

with mulit-indices A = (α,mα, aα) and B = (β, nβ, bβ). The second inter-
section number MΣ

AB vanishes,

MΣ
AB = 0 , (7.40)

since we showed that we can choose a canonically normalized basis of topo-
logical three-forms as in (7.29) induced by the canonical basis of one-cycles
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(7.2) on the Riemann surfaces Rα. This implies that the bilinear form Q

will only depend on the real part of the normalized period matrix fAB as in
(7.38) in contrast to the general form (2.25).
As already mentioned, the normalized period matrix of (2.17) has on its

diagonal the normalized period matrices f̂ (α)
aαbα

of the Riemann surfaces Rα.
This can be read off by inserting (7.10) into (7.38)

Q(ψA, ψB) = 2 δαβv
lαM̂lαmαnβRe f̂

(α)
aαbα

, (7.41)

and comparing to (2.25). The precise identification is given by

fAB =

 f̂
(α)
aαbα

δmαnα for α = β

0 otherwise ,
(7.42)

where we used again the multi-indices A = (α,mα, aα) and B = (β, nβ, bβ).
Combining the identifications (7.39), (7.40) and (7.42) with the results

on Picard-Fuchs equations of (7.22) we found the quantities of section 2.2
relevant for the three-form moduli dynamics on Calabi-Yau fourfold hyper-
surfaces in toric varieties. The normalized period matrix fAB shows a block
structure, one block for each Riemann surface that serves as a basis of several
toric divisors giving rise to the non-trivial three-forms on the hypersurface.
The relations of the divisors forming a generalized sphere tree fibered over
a fixed Riemann surface are encoded by the topological intersection num-
ber MΣA

B that obtain a similar block-structure. Some of the important
physical quantities relevant for effective theories can be computed with this
information as was done in [62, 102]. In contrast, some applications require
a more general class of geometries. The non-Abelian structures discussed
in [63, 103, 104] are not covered by the block-diagonal structures appearing
in the hypersurface scenario and are likely to make an extension of our con-
siderations to complete intersections necessary. This is an interesting topic
that will provide exciting opportunities for the next generation of students.
In the next section we will illustrate the previously encountered structures

on the simplest non-trivial examples of Calabi-Yau fourfold hypersurfaces
in simplicial complete toric ambient geometries. We will consider Fermat
hypersurfaces in weighted projective spaces.
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7.3 Calabi-Yau fourfold hypersurfaces in weighted
projective spaces

We end our discussion of the construction of three-form periods on Calabi-
Yau fourfold hypersurfaces by giving simple examples. A particular well-
suited class of geometries are Fermat hypersurfaces in weighted projective
spaces providing both simplicity as well as non-trivial features illustrated in
the previous sections. These are examples of hypersurfaces in toric varieties
and hence we can apply what we learned before directly in this context. The
discussion here lays the groundwork for our examples we will discuss in the
following section that also fit into this scheme.

The focus of our discussion will be on the calculation of the normalized
period matrix fAB of (7.42) that was shown to only depend on Riemann
surfaces that serve as bases for fibrations of blow-up divisors resolving singu-
larities along the Riemann surfaces. Therefore it is not necessary to blow-up
the singularities and explicitly resolve them for the calculation of fAB, which
is very practical to simplify our analysis. For the derivation of the intersec-
tion numbers MΣA

B as in (7.39) the structure of these blow-ups is crucial.
We close this section by specifying to geometries whose three-forms are all
induced by a single toric divisor and hence by only one Riemann surface.

A weighted projective space AD = PD(w1, . . . , wD+1) is a simplicial com-
plete toric space whose geometry is determined by its weights wi ∈ N. These
spaces are in general singular and require blow-ups to resolve these singular-
ities. For our ambient space A5 we will consider a weighted projective space
with one weight w6 = 1 whose defining polyhedron ∆∗ ⊂ Q5 = NQ can be
represented by the simplex with the six vertices

ν∗i = ei ∈ Z5 , i = 1, . . . , 5 , ν∗6 = (−w1,−w2,−w3,−w4,−w5) ∈ Z5 .

(7.43)
These vertices are integral, i.e. elements of the lattice N = Z5 with genera-
tors the unit vectors ei. Choosing w6 = 1 allows us to relate the toric divisor
classes Di corresponding to the vertices to each other, as all of these divisors
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are rational equivalent to multiples of the divisor D6 = H as

[Di] = wi[H] . (7.44)

The divisor class [H] can be interpreted as a generalization of the hyperplane
class of classical projective spaces. The homogeneous coordinate ring of A5

S5 = C[X1, . . . , X6] (7.45)

has therefore the usual grading of a monomial by a positive number

degS5

(∏
i

Xki
i

)
=
∑
i

wiki ∈ Z≥0 . (7.46)

In particular, we can choose globally quasi-homogeneous coordinates, de-
noted by

[X1 : . . . : X6] = [λw1X1 : . . . : λw6X6] (7.47)

that are invariant under a rescaling by a non-zero factor λ ∈ C− {0}.
The polynomial p∆ ∈ S5(−KA5) defining the anti-canonical hypersurface

Y sing
4 ⊂ A5 has therefore degree d determined by

−KA5 =
∑
i

[Di] =
(∑

i

wi
)
[H] , d =

∑
i

wi . (7.48)

A polynomial p is called of Fermat type, if it is the sum of monomials con-
taining only one variable Xi raised to certain power ki. Schematically this
reads

pFermat =
∑
i

Xki
i , ⇒ ki = d/wi ∈ N , (7.49)

where we indicated already the condition on the degree d of our anti-canonical
hypersurface p∆. Choosing p∆ a deformation of a Fermat type polyhedron,
we can represent the dual polyhedron ∆ as a simplex in Q5 = MQ with
integral vertices νi ∈ Z5 = M corresponding to the monomials of (7.49).
They are given by

νi = −
∑
j

ej +
d

wi
ei ∈ Z5 , i = 1, . . . , 5 , ν6 = −

∑
j

ej ∈ Z5 . (7.50)
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7 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

We denoted again by ei, i = 1, . . . , 5 the unit vectors generating the lat-
tice Z5 ⊂ Q5. Note that the assumptions that we can find a anti-canonical
hypersurface that allows for a Fermat representative of its class is a very
restrictive assumption that will, however, simplify our calculations consider-
ably. In general ∆ will not be a simplex and have more vertices. We will in
the following consider small deformations of Fermat hypersurfaces that will
make them non-degenerate. Pure Fermat hypersurfaces have a high degree
of symmetry and hence will introduce orbifold singularities that do not stem
from the ambient toric space. Small deformations by monomials in p∆ will
resolve these singularities. Therefore, we consider p∆ of the form

p∆ =
∑
i

Xki
i +

∑
ν∈θ,codim(θ)>1

aνpν (7.51)

where we have chosen a set of inequivalent deformations by restricting to
monomials that correspond to integral points ν not contained in vertices
or edges of ∆. These monomials can be reabsorbed by linear coordinate
redefinitions and hence are equivalent to the remaining monomials up to
derivative ∂ip∆. We will denote a degree d hypersurface in the weighted
projective space by PD(w1, . . . , wD+1)[d]. In particular we will consider

Y sing
4 = PD(w1, . . . , w5, w6 = 1)[d] , wi | d , d =

∑
i

wi . (7.52)

For the resolved smooth fourfold Y4 to have non-trivial three-form coho-
mology, we need Y sing

4 and hence also A5 to have codimension three orbifold
singularities. A toric surface A2 of C3/Zn singularities in the ambient space
A5 exists if and only if exactly three of the six weights wi have a common
divisor n. Up to renaming the coordinates we can assume that

n |w3, w4, w5 , n 6 |w1, w2, w6 . (7.53)

Therefore A2 is the subspace of A5 given by X1 = X2 = X6 = 0 which is the
intersection of three toric divisors

A2 = D1 ∩D2 ∩D6 ⊂ A5 . (7.54)
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7.3 Calabi-Yau fourfold hypersurfaces in weighted projective spaces

The hypersurface Y sing
4 will intersect A2 in general transversely and hence

inherit the C3/Zn singularities along a Riemann surface R. To resolve the
hypersurface Y sing

4 we will need to blow-up the ambient space several times in
general. This will introduce the toric divisors that give rise to the three-forms
of Y4, their complex structure dependence is, however, completely captured
by R ⊂ Y sing

4 which justifies to work with the singular geometry in order to
obtain the normalized period matrix fAB.
In the special situation of Fermat hypersurfaces of degree d in the weighted

projective space A5, it is easy to see that n divides d, n | d for n the order of
the cyclic orbifold group Zn. From (7.54) it is easy to see that A2 is also a
weighted projective space

A2 = P2(w3, w4, w5) , S2 = C[X3, X4, X5] . (7.55)

From the homogeneous coordinate ring S2 and the fact that X3, X4, X5 have
a common divisor n, it is easy to see that we can represent A2 also as

A2 ' P2(w3/n,w4/n,w5/n) , (7.56)

since they have the same homogeneous coordinate ring S2 = C[X3, X4, X5].
Restricting p∆ to A2 produces pθ where θ is the face with vertices ν3, ν4, ν5.
The restricted polynomial pθ has the same degree d and therefore, we can
represent the Riemann surface R of singulalarites in Y sing

4 by

R = P2(w3/n,w4/n,w5/n)[d/n] . (7.57)

This is still a Fermat hypersurface, since we obtain it from (7.51) by setting
X1 = X2 = X6 = 0 and this can be written as

pθ = Xk3
3 +Xk4

4 +Xk5
5 (7.58)

+X3X4X5

( ∑
deg(p′b)=w1+w2+w6

ab p
′
b(X3, X4, X5)

)
,

where we made contact with the notation introduced in section 7.1 using the
monomials

p′a ∈ S2(−KA5 |A2 +A2) = S2(w1 + w2 + w3) , νa ∈ int(θ) ∩M , (7.59)
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7 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

whose equivalence classes in Rθ = S2/〈∂ipθ〉 form a basis of the monomials
of degree w1 + w2 + w6 up to linear transformations. These monomials
correspond to the integral interior points νa ∈ int(θ) ∩M . Recall that the
number of these interior points `′(θ) is the genus g of the Riemann surface
R.
With construction of the holomorphic one-forms of R outlined in sec-

tion 7.1 in mind, we will now proceed with the holomorphic volume form of
A2 defined in (6.58). This simplifies in the situation of A2 = P2(w3, w4, w5)

drastically to

dωA2 = w3X3dX4∧dX5−w4X4dX3∧dX5 +w5X5dX3∧dX4 ∈ Ω2
A2
, (7.60)

which has degree w3 + w4 + w5 or in terms of divisors classes −KA2 =

(w3 + w4 + w5)[H]. This holomorphic volume-form enables us to define the
global meromorphic two-forms of A2 with first order poles along R as

p′a
pθ
dωA2 ∈ H0(A2,Ω

2
A2

(R)) . (7.61)

These forms have degree zero, therefore they are independent of the quasi-
projective equivalences of the weighted projective space and hence they are
globally well-defined on A2. The first order pole facilitates the residue con-
struction which enables us to associate to the monomials p′a the holomorphic
(1, 0)-forms

γa =

∫
Γ

p′a
pθ
dωA2 ∈ H1,0(R) , νa ∈ int(θ) ∩M , (7.62)

where Γ is as usual a small one-dimensional curve winding around R in
A2. To derive the Picard-Fuchs equations of (7.22), we need to apply the
relations in the Jacobian ring Rθ of the Riemann surface to relate the second
derivatives of γa with the respect to the complex structure moduli ab to its
lower derivatives. This is, however, connected with a tremendous amount of
work (at least O(g2)) for which an adapted algorithm needs to be found and
implemented into a computer program. We will outline the simplest case
g = 1 in the upcoming section.
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R

A2

π7

α̂a

E

Figure 7.2: Fibration structure of D′7. The Riemann surface R is a hyper-
surface of the toric space A2 over which the toric surface E is fibered.

For general orbifold singularities along a curve R in a toric Calabi-Yau four-
fold hypersurface Y4, the toric blow-up divisors will intersect in complicated
patterns, we need to understand, how to calculate the intersection numbers
MΣA

B of (7.39). The number of three-tensors grows with O(`′(θ∗)3), where
`′(θ∗) is the number of toric divisors necessary to resolve the orbifold singu-
larity along R.

To illustrate the concept, let us consider the simplest codimension-three
orbifold singularity C3/Z3 leading to n = 3. This simple singularity can
be resolved by a single toric blow-up, with coordinate X7 and divisor D′7 =

{X7 = 0}. This will be a fibration over a Riemann surface R as before, but
with only a single exceptional fiber E. The divisor D′7 corresponds to the
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7 The intermediate Jacobian of a Calabi-Yau fourfold hypersurface

integral interior point ν∗7 of the face θ∗ spanned by ν∗1 , ν∗2 , ν∗6 given by

ν∗7 =
1

3
(ν∗1 + ν∗2 + ν∗6) . (7.63)

Following the construction of section 6.3 one can show that the exceptional
fiber E of D′7 is

E = P2(w1, w2, w6) . (7.64)

The fiber E is for general w1, w2 not smooth, but resolving these singularities
will not lead to new three-forms, as only H0,0(E) contributes in the formula
(7.26), and this is unaffected by blow-ups.
In the special situation of a single divisorD′7 inducing the non-trivial three-

forms ψA on the smooth fourfold Y4 the discussion of section 7.2 simplifies
a lot. First, since we have only one divisor D′7 with fiber E the intersection
numbers MΣA

B of (7.39) reduce to a single number M . This number M is
for a smooth ambient space a positive integer, depending on normalization
this can be set to one M = 1. The holomorphic three-forms ψA correspond
in this scenario exactly to the holomorphic one-forms γa of the Riemann
surface R which is the base of the fibration of D′7. The multi-index A =

(α, lα, aα) = (1, 7, 1), . . . , (1, 7, g) of ψA can be replaced here by the index
a = 1, . . . , g labeling the holomorphic one-forms γa ∈ H1,0(R). The formula
(7.28) relating one-forms of R with three-forms of Y4 reads here

ψA = ι7∗(π
∗
7γa) ∈ H2,1(Y4) , a = 1, . . . , g . (7.65)

For the positive bilinear form Q of (7.41) we calculate

Q(ψA, ψB) = 2 v7M · Re f̂ab , (7.66)

where f̂ab is the normalized period matrix (7.10) of R and v7 the volume
modulus of D′7 in the expansion of the Kähler form J as we have seen in
(7.37). We conclude this section by a depiction of the encountered fibration
structure of D′7 as seen in Figure 7.2. This should serve the reader as a
guideline for the next section, where we will discuss explicit examples of
Calabi-Yau fourfold hypersurfaces in weighted projected spaces of Fermat
type.
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Calabi-Yau fourfold examples

In the this section we will apply the previously introduced concepts to con-
struct two simple examples of Calabi-Yau fourfold with non-trivial fourfold
cohomology. These two geometries are elliptically fibered and hence allow
to serve as a background for an effective description of F-theory in four
dimensions. We will highlight the implications of non-trivial three-form co-
homology in these F-theory geometries and focus especially on the weak cou-
pling limit following Sen. Tracing the three-form moduli and their couplings
through the F-theory and weak coupling limits we strengthen the case for
the necessity to extend the weakly coupled Type IIB orientifold framework
to strongly coupled regions in complex structure space provided by F-theory
compactifications.

8.1 General aspects

In order to describe the F-theory examples in the upcoming sections, we first
need to introduce some general aspects of F-theory on elliptically fibered
Calabi-Yau fourfolds realized as hypersurfaces in weighted projective spaces
as we discussed in section 7.3. In the four-dimensional effective theory we will
find that the three-form modulie NA yield complex scalar fields for general
hypersurfaces in toric varieties. In a general F-theory compactifications these
can have two possible origins. First, the NS-NS and R-R two-forms can
have non-trivial zero-modes and for a second, the seven-branes may have
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8 Calabi-Yau fourfold examples

continuous Wilson-line moduli. These two types of moduli are in general
indistinguishable on a Calabi-Yau fourfold as they both arise in the same
way as we have seen before. They can only be separated after performing
the F-theory limit and the weak coupling limit which we will describe in
detail. After introducing the general aspects we will discuss simple examples
that exhibit both types of moduli.

8.1.1 Weierstrass-form and non-trivial three-form
cohomology

We start our discussion be specifying to a possibly singular Calabi-yau hy-
persurface Y sing

4 in a weighted projective space

Y sing
4 ⊂ A5 = P5(w1, . . . , w5, w6 = 1) , (8.1)

as already discussed in section 7.3. Furthermore, we will assume that we
can find a resolution by toric blow-ups of the ambient space A5 to a toric
ambient space Â5 with at most point-singularities that will have a anti-
canonical hypersurface Y4 that is in general smooth and has a non-trivial
three-form cohomology. As already discussed in [93] such a resolution is
not always possible for Calabi-Yau fourfolds, which is in contrast to the
threefold situation where resolutions always exist. We made the complex
structure dependence of the three-forms explicit in previous sections and we
can derive this dependence from the induced complex structure variations of
holomorphic one-forms on Riemann surfaces along which we have orbifold
singularities in Y sing

4 . To discuss the three-form cohomology it will only be
necessary to be able to resolve the singularities along these Riemann surfaces.
In order to have a valid F-theory background we will restrict our consid-

erations in the following to elliptically fibered Calabi-Yau fourfolds with a
section. To do so, we use a so called Weierstrass-models with the elliptic fiber
a hypersurface in the weighted projective space Afiber = P2(2, 3, 1). The full
five-dimensional space A5 will be a fibration with fiber Afiber over a toric
basis B3 that will be a (blow-up of a) weighted projective space.

Bsing
3 = P3(w1, w2, w3, w6 = 1) . (8.2)
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Allowing B3 to be a blow-up of a weighted projective space enables us to
consider for example generalized Hirzebruch surfaces that are P1-fibrations
over two-dimensional toric varieties. Due to the basis B3 of the fibration
being toric it cannot carry a non-trivial three-form cohomology itself. Fur-
thermore do we not restrict the polyhedron ∆∗base of the toric base to be
convex and hence it is in general non-Fano (the anti-canonical bundle is not
semiample in previous terminology). This requires often toric resolutions of
A5 corresponding to adding integral vertices in the exterior or interior of ∆∗.
In contrast to the crepant resolutions we discussed before such a resolution
will alter the geometry of the Calabi-Yau fourfold and hence also change the
properties of the effective field theory.
The weights of the full toric ambient space A5 in which our elliptically

fibered Calabi-Yau fourfold Y sing
4 will be embedded is completely determined

by the geometry of the base Bsing
3

A5 = P5(w1, w2, w3, w4 = 2w,w5 = 3w,w6 = 1) , (8.3)

w = w1 + w2 + w3 + w6 .

Here w is the degree of the anti-canonical divisor class of the base in its
homogeneous coordinate ring S3(−K

Bsing3
) = S3(w). As is common in the

literature, we will denote the homogeneous coordinates of A5 with weight
2w and 3w by X4 = x and X5 = y, respectively. Imposing the Calabi-
Yau condition on the hypersurface requires Y sing

4 to be a hypersurface with
defining polynomial p∆ of degree d = 6w that has so called Tate form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (8.4)

with aj global sections of various multiples of the anti-canonical bundle−KB3

of the base B3:
aj ∈ H0(B3,−jKB3) ' S3(−jKB3) , (8.5)

where S3 is the homogeneous coordinate ring of the base B3. On the singular
base Bsing

3 , a weighted projective space, being a global section of −jK
Bsing3

is equivalent to being a quasi-homogeneous polynomial in the homogeneous
base coordinates of degree deg(aj) = w · j. After performing toric blow-ups
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the grading of S3 becomes more complicated and we need to use the grading
by divisor classes. Performing blow-ups of the base that do not preserve the
anti-canonical divisor class will hence also change the global sections aj and
hence the structure of the full elliptically fibered Calabi-Yau fourfold Y4.

8.1.2 Sen’s weak coupling limit

To make contact with the regular type IIB orientifold picture as for example
discussed in [34], we will introduce next the weak string coupling limit by
Sen [105,53] for which also more refined versions exist [106]. Going to weak
string coupling amounts to moving to a special point in complex structure
moduli space of the fourfold geometry as we will now describe. Redefining
the variables of (8.4), we can always obtain the standard Weierstrass form
given by

y2 = x3 + fx+ g . (8.6)

To analyze the underlying geometry we make this redefinition more explicit.
First, we see that we can write the global sections f, g in this form as

f = − 1

48
(b22 − 24εb4) ∈ S3(−4KB3) , (8.7)

g = − 1

864
(−b32 + 36εb2b4 − 216ε2b6) ∈ S3(−6KB3) , (8.8)

where also bi ∈ S3(−iKB3) are global sections of −iKB3 that are related to
the aj of the Tate form (8.4) as

b2 = a2
1 + 4a2 , b4 = a1a3 + 2a4 , b6 = a2

3 + 4a6 . (8.9)

We also introduced in (8.7) the parameter ε that can be thought of as the
coordinate of the complex structure moduli space measuring the distance to
the weak coupling region. Sending ε to zero will provide us with the weak
coupling description of the considered system whose details we consider next.
Starting from an F-theory compactification on the smooth elliptically fibered

Y4 we can find a weak string coupling configuration whose seven-branes are
purely D7-branes or O7-planes. This configuration can be found by send-
ing ε → 0 as we will now argue. The complex structure τ of the elliptic
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fiber is a function that depends on the base coordinates and is related to the
Weierstrass-form (8.6) as

j(τ) =
4(24f)3

∆
∈ S3(0) , ∆ = 27g2 + 4f3 ∈ S3(−6KB3) . (8.10)

Here j is Klein’s j-function and ∆ is the discriminant whose zero-set is the
degeneration locus of the elliptic fiber. Combining (8.10) with (8.7) we can
expand ∆ and j to leading order in small ε as

∆ =
1

64
ε2b22(b2b6 − b24) , j(τ) = − 32b42

(b2b6 − b24)ε2
. (8.11)

Using the expansion j(τ) = exp(−2πiτ) + . . . for j around its single pole,
we see that in the limit ε → 0 we have Im τ ∝ −log ε everywhere except at
the vanishing locus of b2. In Type IIB supergravity the axio-dilaton is given
by τ = C0 + ie−φ with e〈φ〉 = gs the string coupling. This τ is geometrized
in F-theory by the complex structure τ of the elliptic fiber and therefore we
conclude that the limit ε→ 0 can be interpreted as the weak string coupling
limit gs → 0.

As mentioned before, the non-perturbative seven-branes allow in this limit
a global description by a configuration of D7-branes and O7-planes. The
factorisation of the discriminant in (8.11) allows to identify the locations of
these seven-branes as

O7 : b2 = 0 , D7 : b2b6 − b24 = 0 . (8.12)

The Calabi-Yau threefold Y3 of the corresponding weakly coupled Type IIB
orientifold set-up can be constructed as a double-cover of the toric base B3

with branching locus the O7-planes. This can be done in the simplest fashion
by representing Y3 as a hypersurface in the anti-canonical line bundle −KB3

of the base B3 with fiber cooridinate ξ and general defining equation

Y3 : Q = ξ2 − b2 = 0 . (8.13)

In this description we can easily identify the holomorphic orientifold involu-
tion σ : Y3 → Y3 with σ2 = id (id being the identity map) whose fixed point
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loci are the O7-planes. By construction σ acts only on the coordinate ξ as
σ : ξ → −ξ which implies that σ = b2 = 0 is indeed the fixed-point set given
by (8.12). These involutions were in detail discussed in [107].
In the situation where the base B3 is a blow-up of a weighted projective

space Bsing
3 = P3(w1, w2, w3, w6 = 1) the double-cover Y3 can be embedded

in a corresponding toric ambient space Â4 which is a blow-up of

A4 = P4(w1, w2, w3, w6 = 1, w) , w = w1 + w2 + w3 + 1 , (8.14)

as an anti-canonical hypersurface with Y sing
3 of degree 2w. After toric res-

olutions the ambient space Â4 will be a P1-fibration over B3 that can be
interpreted as a compactification of the anti-canonical line-bundle −KB3 of
B3. This hypersurface description enables us in particular to apply the pre-
viously developed techniques also for the Calabi-Yau threefold Y3.
Let us now also discuss the fate of the toric divisors inducing the non-trivial

three-form cohomology of Y4 under the weak coupling limit. The geometric
interpretation works best in the Poincáre dual picture of non-trivial five-
cycles of the divisors that are non-trivial five-cycles on the full fourfold Y4.
Since the bases B3 of the elliptic fibrations we consider are all toric, the
non-trivial three-forms of Y4 need to have at least one-leg in the fiber and
therefore the dual five-cycles need to be circle fibrations over divisors in the
base with its circle a cycle of the elliptic fiber. Expanding the M-theory
three-form potential C3 as in [36] leads in this case to

C3 = B2 ∧ α+ C2 ∧ β + . . . (8.15)

where α and β are a real basis of one-forms on the elliptic fiber dual to its two
one-cycles A,B as we used for the general Riemann surfaces in (7.2). Having
a toric divisor D′lα of section 6.3 that is an elliptic fibration and induces non-
trivial three-forms immediately implies that it has the form D′lα = Rα×Elα
where Rα is the elliptic fiber over a toric divisor Elα of the toric B3. Since
Rα is a fibration over Eα but also vice versa, the divisor D′lα needs to be a
direct product. From the direct product structure, we can deduce that Rα
the normalized period matrix f̂ (α) = iτ which simplifies to a single number
needs to be constant over Elα . This single number is by construction the
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axio-dilaton. In the weak coupling limit the three-form moduli NA can be
identified with the so called odd moduli NA = Glα or two-form scalars that
arise from the expansion of the complexified two-form

G = Glαωlα = B2 + iτC2 ∈ H1,1
− (Y3) . (8.16)

Here we denoted by H1,1
− (Y3) the subspace of two-forms ωlα of H1,1(Y3) that

are odd under the orientifold involution σ as σ∗ωlα = −ωlα . Geometrically
this means that there are two four-cycles in Y3 that get interchanged under
σ and map under projection to the base B3 to the same four-cycle Elα . For
finite τ in (8.16) the Elα we have constructed will not intersect the O7-
planes and hence their double-cover in Y3 are two disjoint copies of Elα ⊂ B3

denoted by E±lα ⊂ Y3 and the two-forms ωlα ∈ H
1,1
− (Y3) are the Poincaré dual

two-forms to their difference

ωlα = PD[E+
lα
− E−lα ] ∈ H1,1

− (Y3) . (8.17)

For further details on the physics of odd moduli we refer to [34]. This is just a
different point of view on the situation we already encountered in section 5.3.
We can, however, also find a second kind of five-cycle. Starting with a

four-chain in the base we can have a circle-fibration that degenerates at the
boundaries of this four-chain which are three-cycles. An easy example of
this phenomenon is to represent a two-sphere as a circle fibation over an
interval, the one-chain, which degenerates at the boundaries of the interval.
Taking the circle of the fibration as a cycle of the elliptic fiber, we see that at
the loci in the base where this cycle and hence the elliptic fiber degenerates
the five-cycle induces three-cycles. The degeneration loci are associated to
seven-branes by constructios and hence this kind of five-cycle induces possi-
bly non-trivial three-cycles on seven-branes. On these seven-branes, which
are geometrically divisors in the base, we can dualize these three-cycles to
one-forms. Taking into account the monodromy properties of the resulting
cohomology classes we hence deduce that the three-forms on the elliptically
Calabi-Yau fourfold hypersurface split in the weak coupling limit into two
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classes

H2,1(Y4) −→

H1,1
− (Y3) ,

H1,0
− (S) ,

(8.18)

where S denotes a divisor in Y3 wrapped by a D7-brane. Both one-cycles of
the elliptic fibration are odd under the orientifold involution, as explained
in [36], therefore also their linear combinations are odd and hence also the
five-cycles with one leg in the fiber. There is a priori no reason why these ar-
guments should not work for general elliptically fibered Calabi-Yau fourfolds
Y4 and therefore we conjecture that (8.18) holds in general for the three-form
splitting in the weak-coupling limit. In the two subsequent sections we will
give examples for the two-form scalar moduli in section 8.2 and an example
of the second kind will be presented in section 8.3.

8.2 Example One: An F-theory model with
two-form scalars

In this subsection we present the first example of an elliptic Calabi-Yau
fourfold geometry with non-trival three-form cohomology. In this simple ge-
ometry there will only be one non-trival (2, 1)-form whose complex structure
dependence is therefore induced by a genus one Riemann-surface, a two-torus.
In the specific case we discussed before this two-torus can be identified with
the elliptic fiber over a divisor in the base over which the elliptic fibration
factors as a direct product as discussed at the end of the previous section.
Due to the simple geometric structure of this example, we will be able to
derive the Picard-Fuchs type equations for the periods explicitly and disucss
the weak coupling limit in detail.

8.2.1 Toric data and origin of non-trivial three-forms

A list of elliptically fibered Calabi-Yau fourfolds in weighted projective spaces
was already presented in [37]. Amongst them was also a particular simple
example constructed from the weighted projective space

A5 = P5(1, 1, 1, 3, 12, 18) . (8.19)
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This space has two kinds of singularities that will be inherited by the anti-
canonical hypersurface Y sing

4 , that can be resolved by moving to a toric space
Â5 with at most point singularities. The singularity can easily be seen from
the weights of A5, since two of them have a common divisor 2, leading to
C4/Z2 singularities along a curve in A5 and three of the weights have a
common divisor three leading to C3/Z3 along a toric surface A2 in A5. In
the singular ambient space A5 the anti-canonical hypersurface is given by a
polynomial p∆ that has a quasi-homogeneous degree of 36. We can introduce
complex homogeneous coordinates on A5 denoted by [u : w : x : y] with the
abbreviation u = (u1, u2, u3) and identifications with the usual homogenous
coordinates Xi given in the table below. We can always bring the most
general hypersurface equation of the type of p∆ into the form

psing∆ = y2 + x3 + â1 xy + â2 x
2 + â3 y + â4 x+ â6 , (8.20)

highlighting the elliptic fibration structure and the coefficient functions ân
that only depend on the coordinates u = (u1, u2, u3) and w which can be
further split into

ân =
2n∑
m=0

w2n−mcn,m(u) , (8.21)

where cn,m(u) are general homogeneous polynomials of degree 3m in u. In
this description we can already find the Riemann surface R of C3/Z3 singu-
larities in Y sing

4 that will give rise to the non-trivial three-form cohomology
after resolving the singularities. It is simply given by restricting (8.20) to
A2 ⊂ A5 given by u1 = u2 = u3 = 0 with equation

R : psingθ = y2 +x3 + ĉ1 xy+ ĉ2w
4x2 + ĉ3w

6 y+ ĉ4w
8 x+ ĉ6w

12 = 0 . (8.22)

Here we denoted by ĉn = cn,0 the constant non-zero coefficients that remain
after restricting (8.21) to A2.
The Z2-and Z3-singularities of the toric spaceA5 can be resolved by moving

to the toric space Â5 whose fan is uniquely determined by the cones generated
from the rays through the integral points ν∗i of the following polyhedron ∆∗
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Example One: Toric data of Â5 coords `1 `2 `3

ν∗1 = ( 1 0 0 0 0) X1 = u1 0 1 0

ν∗2 = ( 0 1 0 0 0) X2 = u2 0 1 0

ν∗3 = ( 0 0 1 0 0) X3 = w 0 0 1

ν∗4 = ( 0 0 0 1 0) X4 = x 2 0 0

ν∗5 = ( 0 0 0 0 1) X5 = y 3 0 0

ν∗6 = ( −1 −1 −3 −12 −18) X6 = u3 0 1 0

ν∗7 = ( 0 0 −1 −4 −6) X7 = v 0 −3 1

ν∗8 = ( 0 0 0 −2 −3) X8 = z 1 0 −2

. (8.23)

In this table we also noted the three projective relations `i between the
homogeneous coordinates of A5. These are chosen to highlight the fibration
structure of the blown-up ambient space Â5 and not necessarlily comprise
the minimal set of generators, as is usual for the Mori-cone, the cone of all
equivalence relations. This new ambient space Â5 has only point singularities
and therefore a general anti-canonical hypersurface in Â5 will be smooth.
This was already shown in [93].
In the resolved ambient space Â5 we can construct a smooth Calabi-Yau

hypersurface Y4 as the zero-locus of a polynomial p∆ ∈ S5(−KA5). A general
polynomial of this kind can always be brought into Tate form via coordinate
transformations

p∆ = y2 + x3 + a1 xyz + a2 x
2z2 + a3 yz

3 + a4 xz
4 + a6 z

6 , (8.24)

psing∆ = p∆|v=1,z=1 ,

where we used the homogeneous coordinates of (8.23). The coefficient func-
tions âi depend on the remaining variables. The ambient space Â5 can be
seen to have a fibration structure with fiber given by P2(2, 3, 1) and coordi-
nates [x : y : z] and coordinates for the base B3 are [u1 : u2 : u3 : v : w]. Due
to the form of (8.24) we find an elliptic curve embedded in P2(2, 3, 1) over
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8.2 Example One: An F-theory model with two-form scalars

every point in B3 and hence we constructed an elliptically fibered Calabi-Yau
fourfold Y4. The coefficient function of (8.24) are explicitly given by

an =
2n∑
m=0

cn,m(u)w2n−mvm , ân = an|v=1 (8.25)

where the coefficient functions cn,m(u) are the same homogeneous polyno-
mials of degree 3m in the variables u = (u1, u2, u3) as in (8.21). The toric
base B3 is itself a fibration over P2 with coordinates [u] and fiber a P1 with
coordinates [v : w]. Therefore we can also interpret Y4 as a fibration over P2

with fiber an elliptically fibered K3 surface.
The Hodge-numbers of Y4 can be calculated as shown in section 6.6 and

are given by

h1,1(Y4) = 3, h2,1(Y4) = 1, h3,1(Y4) = 4358 . (8.26)

The Calabi-Yau fourfold Y4 has therefore a single non-trivial (2, 1)-form
whose origin we will describe in more detail in the following.
As we have seen in chapter 7 we need an integral point in the interior of

a two-dimensional face θ∗ of ∆∗ to obtain a toric divisor with holomorphic
one-forms. From the toric data in (8.23) we infer that the only integral point
satisfying this condition is

ν∗7 =
1

3
(ν∗1 + ν∗2 + ν∗6) , D7 = {v = 0} , (8.27)

and the corresponding toric divisor of Â5 is D7. The induced toric divisor D′7
on Y4 is hence a hypersurface in D7 with equation p∆|v=0 = pθ = 0, where θ
is the dual face of θ∗. Using the scaling relation `3 to set w = 1 we find the
equation for D′7 to be

D′7 : pθ = y2 + x3 + ĉ1 xyz + ĉ2 x
2z2 + ĉ3 yz

3 + ĉ4 xz
4 + ĉ6z

6 = 0 , (8.28)

which is of the same form the hypersurface equation of R, (8.22), along which
we had Z3-singularities. Similarly, we have the same constant coefficients
ĉn = an(u, v = 0, w = 1) = cn,0 that are constant on all of Y4, but depend
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8 Calabi-Yau fourfold examples

on the complex structure moduli. This illustrates the fact that in order to
determine the complex structure dependence of the non-trival three-forms
it does not matter if we deal with the full divisor D′7 or only its base R.
The equation (8.28) is in Tate form1 and hence the Riemann surface is a
torus and in particular the elliptic fiber over the base divisor v = 0. Due to
the fact that the coefficients ĉn of this equation do not depend on the base
coordinates, it is easy to see that

D′7 = R× E , R ' T 2 , E ' P2 , (8.29)

as already advocated in subsection 8.1.2. The divisor v = 0 in the baseB3 can
easily be seen to be P2 with coordinates [u1 : u2 : u3]. The single holomorphic
(2, 1)-form is therefore induced by the single holomorphic one-form on R for
which we will determine its Picard-Fuchs equation in the upcoming section.

8.2.2 Picard-Fuchs equations on T 2

In this section we encounter the simplest example of theory we developed in
section 7.1 and section 7.3 to calculate the Picard-Fuchs equations from which
we can learn about the behavior of the normalized period matrix fAB. This
section serves as an illustration of the general toric conecpts we introduced
before.
The form of pθ in (8.28) already implies that the toric ambient space
A2 = P2(2, 3, 1) of the Riemann surface R has coordinates [x : y : z] with
weights 2, 3, 1, respectively. Therefore, its homogeneous coordinate ring S2

and the Jacobian ring Rθ are given by

S2 = C[x, y, z] , Rθ =
C[x, y, z]

〈∂xpθ, ∂ypθ, ∂zpθ〉
, (8.30)

and deg(pθ) = 6. From the Poincaré residue construction, we find therefore
that

H1,0(R) ' Rθ(0) , H0,1(R) = Rθ(6) , (8.31)

1We will later see that it can also always be brought into Weierstrass form y2 +x3 +fx+
g = 0.
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8.2 Example One: An F-theory model with two-form scalars

and it can be shown that both are one-dimensional. The holomorphic one-
forms H1,0(R) can be generated by

γ =

∫
Γ

1

pθ
dωA2 ∈ H1,0(R) , (8.32)

with Γ a small one-dimensional curve in A2−R winding around R and dωA2

the holomorphic volume-form of A2 as found in (7.60) for weighted projective
spaces which can be represented by

dωA2 = zdx ∧ dy − 2xdy ∧ dz + 3ydx ∧ dz . (8.33)

We choose for pθ the representation in Weierstrass form (8.6), but other
representations are possible using reparametrizations. This is equivalent to
choosing an element of S2(6) to represent the generator of Rθ(6). We use
the Weierstrass form, since it allows for a comparison with the weak coupling
description of the next section

pθ = y2 + x3 + z6 + a xz4 , (8.34)

with a = f the complex structure modulus. The function g is here just a
constant that we can choose to be g = 1. The derivatives of the holomorphic
one-form with respect to the complex structure modulus a are

∂aγ = −
∫

Γ

xz4

p2
θ

dωA2 ∈ H1,0((R)a) , (8.35)

∂2
aγ = 2

∫
Γ

x2z4

pθ
dωA2 ∈ H1(R,C) . (8.36)

Using the equivalence relations in Rθ we can derive the identity

(27 + 4a3)x2z8 = 9z8∂xpθ + (−3

2
az7 + a2z5x)∂zpθ , (8.37)

which we can use to find the Picard-Fuchs equation of γ at the vacuum
configuration with a = 0

(27 + 4a3)γ′′ + 12a2γ′ +
7

4
aγ = 0 . (8.38)
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This is a well known differential equation appearing in the literature for
example in [101] and combining these results with the boundary conditions
derived in chapter 4 allows to find a solution around a = 0. Due to the fact
that the Weierstrass-form is so well studied, as for example reviewed in [36]
we know already that we can find the normalized period matrix f̂(a) of the
corresponding elliptic curve satisfies

j(if̂(a)) =
24(4a)3

∆
, ∆ = 27 + 4a3 . (8.39)

Close to the three distinct zeroes of the discriminant ∆ given by ai =

3/41/3ξi, with ξ3 = 1 the roots of a3 = 1, we find

if̂(a) ∼ 1

2πi
log(a− ai) (8.40)

up to SL(2,Z)-transformations. The boundary conditions derived in [65] are
here trivially satisfied, f̂ = iτ , since the genus of the Riemann surface is one,
and hence the coefficient of the linear term is the triple intersection number
of the one blow-up divisor in the mirror geometry. Due to the fact that the
mirror is also smooth, this number is one.
Another way to interpret this result stems from Seiberg-Witten theory,

like reviewed in [108]. There the exact coupling of an SU(2) gauge theory
was calculated using an elliptic curve and we find here the same result as a
coupling of scalars. The three singularities ai can be used as points around
which we can expand the period-matrix f and these three coordinate patches
couple the full moduli space of the gauge theory. However, two of these ai
describe in SW language points of gauge enhancement. In contrast to this, we
expand around the large complex structure point of the Calabi-Yau fourfold
Y4 after transforming to the proper complex structure coordinates zK. In
the SW theory this corresponds to the solution at infinity in moduli space,
i.e. deep in the Coulomb branch of the gauge theory.
We have found that pθ is the equation for the elliptic fiberR over the divisor

v = 0 in the base. This implies in particular, that pθ defines the complex
structure τ |v=0 of the elliptic fiber R over this divisor. This is defined such
that up to SL(2,Z)-transformations we have a holomorphic one-form

γ = α̂+ τ β̂ ∈ H1,0(R) , (8.41)
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for α̂, β̂ a canonical basis of H1(R,Z) as introduced in Equation 7.2. This
τ is the axio-dilaton of Type IIB string theory varying over the base B3.
The important observation here is that τ |v=0 is constant along the divisor
v = 0 in B3, i.e. does not depend on the base coordinates, but does vary
non-trivially with the complex structure moduli. To see this, we evaluate

j(τ)
∣∣
v=0

=
4(24f)3

27g2 + 4f3

∣∣∣
v=0

= C(ĉn) . (8.42)

In order to do that we determine f |v=0, g|v=0 using (8.7), (8.9) with the
an|v=0 determined from pθ given in (8.34). The result is a non-trivial function
of the coefficients ĉn of pθ, these are constants on Y4, but do depend on the
complex structure moduli zK of Y4. Note that there are 4358 such complex
structure moduli and we will not attempt to find the precise map to the
five coefficients ĉn. Putting everything together, we can thus use τ |v=0 as
normalized period matrix of the curve R that induces the non-trivial three-
forms in the fourfold Y4. Therefore, we have just shown that

f̂(z) = iτ |v=0(ĉn) , (8.43)

on the full complex structure moduli space of the Calabi-Yau fourfold.

8.2.3 Weak string coupling limit: a model with two-form
scalars

We next examine the weak string coupling limit of the geometry introduced in
subsection 8.2.1. Using Sen’s general procedure described in subsection 8.1.2
we add an additional coordinate ξ to the homogeneous coordinate ring of the
base B3. The scaling weight of ξ is the degree of the monomials associated
to the anti-canonical bundle −KB3 , i.e. ξ has the degree of half the anti-
canonical class in the homogeneous coordinate ring of Â4. Therefore, we
find Y3 ⊂ A4 as the Calabi-Yau hypersurface obtained as the blow-up of
the singular hypersurface Y sing

3 = P4(1, 1, 1, 3, 6)[12]. Recalling that B3 is a
P1-fibration over P2, the double-cover Y3 turns out to be the double-cover of
P1 fibered over P2. The double-cover of the P1-fiber is a two-torus, or rather
an elliptic curve, P2(1, 1, 2)[4].
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To make this more explicit we again use a toric description. The fan of
the ambient space for the three-fold is given by the cones generated by the
rays through the points

Example 1: Toric data of A4 coords `1 `2

ν∗3 = ( 0 0 1 0) z3 = w 1 0

ν∗4 = ( 0 0 0 1) z4 = ξ 2 0

ν∗6 = ( 0 0 −1 −2) z6 = v 1 −3

ν∗1 = ( 1 0 0 0) z1 = u1 0 1

ν∗2 = ( 0 1 0 0) z2 = u2 0 1

ν∗5 = ( −1 −1 −3 −6) z5 = u3 0 1

(8.44)

The hypersurface equation is then denoted by Q = 0 and from subsection
8.1.2 we can deduce that it has the form

Q = ξ2 − b2(u, v, w) (8.45)

in the fully blown-up ambient space with

b2 = a2
1 + 4a2 (8.46)

specified by the Weierstrass-form of the corresponding fourfold in (8.25).
One computes the Hodge-numbers to be

h1,1(Y3) = 3, h2,1(Y3) = 165 . (8.47)

This example was already discussed in the context of mirror symmetry in [89].
The resulting threefold is an elliptic fibration over P2 with two sections. It
should be stressed that despite the fact that h1,1(Y3) = 3 the toric ambient
space only admits two non-trivial divisor classes. In fact, we will discuss in
the following that this can be traced back to the fact that the divisor v = 0

yields two disjoint P2 when intersected with the hypersurface constraint.
These are the two sections, i.e. two copies of the base. This is also noted
in [107], where a classification of orientifold involutions suitable for Type IIB
orientifold compactifications is presented.
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To make this more precise, let us analyze the singularities of Y sing
3 =

P4(1, 1, 1, 3, 6)[12] and their resolutions via blow-ups further. The ambient
space A4 = P4(1, 1, 1, 3, 6) has C3/Z3-singularities along a curve P1 given
by [0 : 0 : 0 : w : ξ]. The hypersurface intersects this curve in two points,
which are identified as double cover of the point of the not yet blown up
base Bsing

3 = P3(1, 1, 1, 3), where we find C3/Z3-singularities. Blowing up
this curve of singularities in the ambient space by adding ν∗6 leads to an
exceptional divisor v = 0, which is a P2 fibration over two points of the
hypersurface. On the hypersurface Y3 we find that the ambient space divisor
v = 0 splits into two parts

D′6 = {v = 0, Q(1) = 0} ∼ P2 t P2 (8.48)

with coordinates [u1, u2, u3, v = 0, w,±
√
cw2]. Note that c is a constant, but

depends on complex structure moduli. It is given by

c = b2|v=0 = c2
1,0 + 4c2,0 . (8.49)

The modulus c measures the separation between the two P2 in which D6

splits when intersecting the threefold hypersurface. For ĉ2,0 = 0 we find that
c is a perfect square.
We next investigate the action of the orientifold involution σ : ξ → −ξ.

From the coordinate description of D′6 we find that the two disjoint P2 are
interchanged by the involution σ. Therefore, we introduce the two non-toric
holomorphic divisors D′6,1 and D′6,2 that are the two disjoint P2 such that
D′6 = D′6,1 + D′6,2 and σ∗(D′6,1) = D′6,2. It is now straightforward to define
an eigenbasis for the involution σ as

K+
1 = D′4 , K+

2 = D′6 , K− = D′6,1 −D′6,2 . (8.50)

Therefore, we conclude that

h1,1
+ (Y3) = 2, h1,1

− (Y3) = 1 , (8.51)

which shows that there is one negative two-from which yields zero-modes for
the R-R and NS-NS two-forms of Type IIB supergravity. Furthermore, we
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can evaluate the intersection ring to be

IY3 = 18(D′6)3 + 144(D′4)3 = 18(D′6)3 − 6D′1(D′6)2 + 2(D′1)2D′6 (8.52)

Note that D′6,1 ∩ D′6,2 = ∅. Due to the symmetry between the components
of D′6 and D′4 being exactly the fixed point of this symmetry, we find that
the intersections of K− appearing linearly vanish. We learn that (D′6,1)3 =

(D′6,2)3 = 9, (D′6,1)2D′4 = (D′6,1)2D′4 = 0 and D′6,1(D′4)2 = D′6,2(D′4)2 = 0.

From this analysis we see that all toric divisors are invariant under the
involution σ. Therefore, we can choose the divisor basis of the base B3 =

P̂3(1, 1, 1, 3) obtained from Â4 = P̂4(1, 1, 1, 3, 6) by setting ξ = 0 . This
corresponds on the lattice level to projecting to Z3, i.e. dropping the fourth
coordinate of every vertex.

Toric data of B3 coords `1 `2

ν∗3 = ( 0 0 1) z3 = w 1 0

ν∗6 = ( 0 0 −1) z6 = v 1 −3

ν∗1 = ( 1 0 0) z1 = u1 0 1

ν∗2 = ( 0 1 0) z2 = u2 0 1

ν∗5 = ( −1 −1 −3) z5 = u3 0 1

(8.53)

As a consequence, we can use D6 and D1 as a basis for the divisors on B3.
For Y3 we can choose the corresponding basis via D′4 = 2D′6 + 6D′5 and find

IB3 = 9D3
6−3D1D

2
6 +D2

1D6 =
1

2
(18D3

6−6D1D
2
6 + 2D2

1D6) ∼ 1

2
IY3 . (8.54)

This fits the fact that Y3 double-covers B3 and D′6,1 and D′6,2 project down
to the same P2 in B3.
Let us now discuss what happens to the normalized period matrix f̂ =

iτ |v=0 that we have derived in subsection 8.2.2, in the weak coupling limit of
complex structure space. In this orientifold limit the field τ0 = C0 + ie−φ is
actually constant everywhere on Y3/σ and becomes an independent modulus.
The identification f̂ = iτ0 then precisely yields the known moduli N = c−τ0b
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of the orientifold setting, where c, b are the zero-modes of the R-R and NS-NS
two-forms along K− introduced in (8.50).

We close by pointing out that it is important to have c = ĉ2
1 + 4ĉ2 6= 0 for

this weak coupling analysis to apply. Indeed, if we go to the limit c→ 0 we
find a spliting of the O7-plane located at b2 = 0 into v = 0 and b′2 = 0. Not
only would we find intersecting O7-planes, but also the simple identification
f̂ = iτ0 would no longer hold.

8.3 Example Two: An F-theory model with
Wilson line scalars

In this subsection we construct a second example geometry that we argue
to admit Wilson line moduli when used as an F-theory background. In
this example the three-forms of the Calabi-Yau fourfold stem from a genus
seven Riemann surface. It turns out that this example features also other
interesting properties, such as a non-Higgsable gauge group and terminal
singularities corresponding to O3-planes.

8.3.1 Toric data and origin of non-trivial three-forms

Our starting point is the anti-canonical hypersurface in the weighted projec-
tive space A5 = P5(1, 1, 3, 3, 16, 24) of degree d = 48. This space is highly
singular, but admits an elliptic fibration necessary to serve as an F-theory
background. It is easy to see that we have a curve R along which we find
C3/Z3-singularities. In contrast to the first example this curve R is not the
elliptic fiber. It rather arises as a multi-branched cover over a P1 of the
singular base Bsing

3 .

We can resolve part of the singularities of the ambient-space A5 by moving
to a toric space Â5 whose fan is obtained by the maximal subdivision of the
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polyhedron ∆∗ of A5:

Example 2: Toric data of Â5 coords F P2 B E

ν∗1 = ( 1 0 0 0 0) z1 = w 0 0 1 1

ν∗2 = ( 0 1 0 0 0) z2 = u1 0 1 0 0

ν∗3 = ( 0 0 1 0 0) z3 = u2 0 1 0 0

ν∗4 = ( 0 0 0 1 0) z4 = x 2 0 0 1

ν∗5 = ( 0 0 0 0 1) z5 = y 3 0 0 0

ν∗6 = ( −1 −3 −3 −16 −24) z6 = v 0 0 1 1

ν∗7 = ( 0 −1 −1 −5 −8) z7 = e 0 0 0 −3

ν∗8 = ( 0 −1 −1 −6 −9) z8 = u3 0 1 −3 0

ν∗9 = ( 0 0 0 −2 −3) z9 = z 1 −3 1 0

(8.55)

Note already at this point, that the new ambient space Â5 still contains
singularities of the form

C4/Z2 : (v, w, u3, y) → (−v,−w,−u3,−y) (8.56)

and hence the hypersurface inherits singular points that do not allow for
any crepant resolution as pointed out in [109]. This can be related to the
presence of O3-planes. 2

A number of intriguing features of this model arises due to the geometry
of the base B3. It arises as a non-crepant blow-up of the weighted projective
space Bsing

3 = P3(1, 1, 3, 3) with toric data given by

Toric data of B3 coords P1 P2

ν∗1 = ( 1 0 0) z1 = ṽ 1 0

ν∗2 = ( 0 1 0) z2 = ũ1 0 1

ν∗3 = ( 0 0 1) z3 = ũ2 0 0

ν∗4 = ( −1 −3 −3) z5 = w̃ 1 1

ν∗5 = ( 0 −1 −1) z6 = ũ3 −3 1

. (8.57)

2 Various aspects of O3-planes have been discussed recently for example in [110,111]
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It can be interpreted as a generalization of a Hirzebruch surface, i.e. a P2-
fibration over P1. We note in particular, that the point ν∗5 does lie in the in-
terior of the convex hull of the remaining points and correspondingly the new
polyhedron is no longer convex. The consequence is that the anti-canonical
bundle −KB3 of the base has only global sections that vanish over the locus
{ũ3 = 0} ' P1×P1, i.e. −KB3 is not ample. In the F-theory picture this will
lead to a non-Higgsable cluster as described in [112, 113], i.e. to the generic
existence of a non-Abelian gauge group in this setting. The base B3 has been
analyzed recently in detail in [114].
The ambient space Â5 has the fibration structure given by the projection

π : Â5 → B3, which reads in homogeneous coordinates

π : [v : w : u1 : u2 : u3 : x : y : z : e]

7→ [ṽ = v : w̃ = w : ũ1 = u1 : ũ2 = u2 : ũ3 = eu3] . (8.58)

Due to the non-Higgsable gauge group, Y4 can only be written in Tate
form after blowing down the exceptional divisor e = 0, i.e. setting e = 1:

p∆ = y2 + ex3 + â1 xy + â2 x
2 + â3 y + â4 x+ â6 = 0 , (8.59)

with âi global sections of K−iB3
. Due to the properties of K−1

B3
these ân have

common factors of u3e = ũ3 independently of the point in complex structure
space. This shows that the non-Higgsable cluster with the enhanced gauge
group is located on the divisor ũ3 = 0 in the base. The singularity type
can be easily read of by translating (8.59) into Weierstrass form using (8.7),
(8.9). We then obtain a singularity of orders (2, 2, 4) = (f, g,∆), where ∆ is
the discriminant as above. This leads to a type IV singularity and the exact
gauge group, which is either Sp(1) or SU(3), can be derived from monodromy
considerations as we recall below. The generic anti-canonical hypersurface
Y4 of the ambient space Â5 has Hodge numbers

h1,1(Y4) = 4, h2,1(Y4) = 7, h3,1(Y4) = 3443, h2,2(Y4) = 13818 . (8.60)

This implies that Y4 indeed has seven (2, 1)-forms and we claim that these
arise from a single Riemann surface of genus g = 7.
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There is only one two-dimensional face θ∗ of the polyhedron spanned by
ν∗1 , ν

∗
4 , ν
∗
6 that contains an interior integral point. This interior point is ν∗7

and we add this point to resolve the C3/Z3-singularity along the surface
A2 = P2(1, 1, 8) given as the subspace of A5 with w = v = x = 0. The
anti-canonical hypersurface Y4 intersects A2 in a Riemann surface R given
by

R = P2(1, 1, 8)[16], g = 7 . (8.61)

This can also be seen from the dual face θ whose inner points correspond to
the monomials

p′a = ua1u
6−a
2 ∈ Rθ(6), a = 0, . . . , 6 (8.62)

where we already divided out the common factor u1u2y as described in sec-
tion 7.1. The exceptional divisor resolving this singularity is a fibration over
R with fiber E = P2(1, 1, 16).

Expanding the Weiserstrass form (8.6) of Y4 around the singular divisor
De = {e = 0}, we find

g = g2e
2 +O(e3) , g2 = g2(u1, u2) (8.63)

and this g2 is precisely the degree 16 polynomial in u1, u2 defining the Rie-
mann surface R by

R : pθ = y2 − g2 = 0 . (8.64)

The resulting gauge group over D3 = {ũ3 = 0} in B3 is Sp(1) for general
g2 and if g2 = γ2, i.e. for g2 a perfect square, we have an enhancement to
SU(3).

8.3.2 Comments on the weak string coupling limit

So what happens to this curve in the weak coupling limit? For a IV singular-
ity, there should be no straightforward perturbative limit in which τ can be
made constant and Im τ can be made very large over the base. The general
hypersurface equation derived from the naive Sen limit is

Q = ξ2 − b2 = ξ2 − ũ3 · b′2 = 0 , (8.65)
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8.3 Example Two: An F-theory model with Wilson line scalars

implying that the O7-plane splits in two intersecting branches, ũ3 = 0 and
b′2 = 0. At the intersection of the O7-planes perturbative string theory breaks
down and hence there is no weak coupling description. However, we can still
try to learn some of the aspects of the D7-branes in this setting.
In fact, in the following we want to connect the curve (8.64) and Wilson

line moduli located on D7-branes. As explained in [115] the number of Wilson
line moduli arising from a D7-brane image-D7-brane on a divisor S ∪ σ(S)

of the threefold Y3 is given by

Number of Wilson line moduli on S : h1,0
− (S ∪ σ(S)) . (8.66)

These are the (1, 0)-forms on the union of S and its image that get projected
out when considering the orientifold quotient. Therefore, we suggest that
the Wilson lines arise in S ∪ σ(S) as arcs in S that connect two components
of S∩σ(S). These arcs close to one-cycles in S∪σ(S), but get projected out
when we take the quotient Y3/σ = B3. Note here that S ∩ σ(S) is equal to
O7∩S. In our situation Y3 is still a fibration over P1 with coordinates [v : w]

and hence this will also hold for S ∩ σ(S), i.e. we suggest that S ∩ σ(S) is a
covering space of the base P1 given by

S ∩ σ(S) = {ξ = 0, ũ3 = 0, g2 = 0} ⊂ Y3 , (8.67)

where ξ = ũ3 = 0 is the location of one branch of the O7-plane in Y3. We also
note that the divisor inducing the three-forms in the fourfold projects down
to the ũ3 = 0 divisor of B3. Recall that the locations of the seven-branes in
a general F-theory model are given by the zeroes of the discriminant ∆. We
can expand ∆ around ũ3 = 0 to

∆ ≈ b22(b2b6 − b24) = ũ5
3(b′2)3g2 +O(ũ6

3) . (8.68)

This implies that in the weak coupling limit g2 describes the intersection
of the D7-brane in the form of a Whitney-Umbrella explained in [116] with
the O7-branch given by ũ3 = 0. For our considerations, it is just important
that a D7-brane is path connected, but the shape away from the O7-plane is
irrelevant for our analysis of Wilson lines. Therefore, we find that

S ∩ σ(S) =

16⋃
i=1

(
{pi} × P1

)
, g2(pi) = 0 . (8.69)
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8 Calabi-Yau fourfold examples

The points pi can be interpreted as branching loci of the auxiliary hyper-
elliptic curve which is given by (8.64). Hence we find

h1,0
− (S ∪ σ(S)) = 7 . (8.70)

Choosing a normalized basis α̂a, β̂a for the cocycles arising from this proce-
dure we can give a basis for H1,0

− (S ∪ σ(S)) as

γa = α̂a + if̂abβ̂
b ∈ H1,0

− (S ∪ σ(S)) , (8.71)

with f̂ab the normalized period matrix of the curve R discussed in section 7.1.
The coupling of the corresponding fields, the Wilson moduli NA = Na, is
given by the the normalized period matrix fAB = f̂ab of R.
Let us close by making one final observation for this example geometry.

We can also resolve the Z2-singular points of the fourfold by blowing-up the
ambient space A5. This requires adding the exterior point

ν∗10 = (0,−2,−2,−10,−15) . (8.72)

This has, however, drastic consequences. As already mentioned before, there
is no way to resolve the Z2-singular points in a crepant way, i.e. preserving
the anti-canonical bundle of the ambient-space. Closer inspection of the
blow-up tells us that this blow-up is not crepant, but leads to a Calabi-Yau
hypersurface in a new ambient-space that has a different triangulation not
compatible with the old triangulation structure. This leads to a change in
topology, which can be seen from the Hodge-numbers

h1,1
new = 5, h2,1

new = 0, h3,1
new = 3435, χ = χold = 20688 , (8.73)

with the Euler number χ being preserved. This extremal transition between
the two fourfolds follows a similar pattern as the conifold transition along
curves described in [117]. The relations to the non-trivial three-form coho-
mology can also be made precise: the blow-up obstructs precisely the com-
plex structure deformations described by g2 setting it to zero and hence also
obstructing the three-form cohomology. This obstruction leads to a further
gauge-enhancement to G2 along D3 and also the weak coupling limit is no
longer singular, i.e. the O7-plane does no longer branch.
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9

Conclusions and Outlook

In the first part of this work we studied the two-dimensional low-energy
effective action obtained from Type IIA string theory on a Calabi-Yau four-
fold with non-trivial three-form cohomology. The couplings of the three-
forms were shown to be encoded by two holomorphic functions fAB and
hA
B, where the former depends on the complex structure moduli and the

latter on the complexified Kähler structure moduli. Performing a large vol-
ume dimensional reduction of Type IIA supergravity, we were able to derive
hA
B explicitly as a linear function. We argued that fAB and hAB computed

on mirror pairs of Calabi-Yau manifolds will be exchanged, at least, if one
considers the theories at large volume and large complex structure. In order
to show this, we investigated the non-trivial map between the three-form
moduli arising from mirror geometries and argued that it involves a scalar
field dualization together with a Legendre transformation. This can be also
motivated by the fact that chiral and twisted-chiral multiplets are expected
to be exchanged by mirror symmetry. We thus established a linear depen-
dence of the function fAB on the complex structure moduli near the large
complex structure point and determined the constant topological pre-factor.
In this part we also included a discussion of the superymmetry properties of

the two-dimensional low-energy effective action. This action is expected to be
an N = (2, 2) supergravity theory, which we showed to extend the dilaton su-
pergravity action of [44]. The bosonic action was brought to an elegant form
with all kinetic and topological terms determined by derivatives of a single
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9 Conclusions and Outlook

function K̃ = K + e2ϕ̃S, where K and S can depend on the scalars in chiral
and twisted-chiral multiplets, but are independent of the two-dimensional
dilaton ϕ̃. In the Type IIA supergravity reduction the three-form scalars
only appeared in the function S and are thus suppressed by e2ϕ̃ = e2φIIA . In
this analysis the complex structure moduli and the three-form moduli were
argued to fall into chiral multiplets, while the complexified Kähler moduli
are in twisted-chiral multiplets. However, due to apparent shift symmetries
of the three-form moduli and complexified Kähler moduli a scalar dualiza-
tion accompanied by a Legendre transformation can be performed in two
dimensions. This lead to dual descriptions in which certain chiral multiplets
are replaced by twisted-chiral multiplets and vice versa. Remarkably, if one
dualizes a subset of scalars appearing in K, we found that the requirement to
bring the dual action back to the standard N = (2, 2) dilaton supergravity
form imposes conditions on viable K. These constraints include a no-scale
type condition on K. The emergence of such restrictions arose from general
arguments about two-dimensional theories coupled to an overall e−2ϕ̃ factor.
For Calabi-Yau fourfold reductions we checked that these conditions are in-
deed satisfied. It would be interesting to investigate this further and to get
a deeper understanding of this result.

Having shown that in the large complex structure limit the function fAB is
linear in the complex structure moduli, we discussed the application of this
result in an F-theory compactification. By assuming that the Calabi-Yau
fourfold is elliptically fibered and that the three-forms exclusively arise from
the base of this fibration, we recalled that fAB is actually the gauge-coupling
function of four-dimensional R-R vector fields. This gauge-coupling function
was already evaluated in the weak string coupling limit in the orientifold
literature. In this orientifold limit one can double-cover the base with a
Calabi-Yau threefold. We found compatibility of the fourfold result with the
expectation from mirror symmetry for Calabi-Yau threefold orientifolds. In
this analysis we only included closed string moduli in the orientifold setting.
Clearly, the results obtained from the Calabi-Yau fourfold analysis are more
powerful and it would be interesting to further investigate the open string
dependence in orientifolds using our results. Additionally we commented
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briefly on the case in which the three-forms have legs in the fiber of the
elliptic fibration. In this situation the inverse of RefAB sets the value of decay
constants of four-dimensional axions [62]. Again we found compatibility in
the closed string sector at weak string coupling in which fAB ∝ iτ . It would
be interesting to include the open string moduli in the orientifold setting
and derive corrections to fAB without restricting to the weak string coupling
limit. The latter task requires to compute fAB away from the large complex
structure limit for elliptically fibered Calabi-Yau fourfolds.

In the second part of this thesis we introduced a framework to explicitly
derive the moduli dependence of non-trivial three-forms on Calabi-Yau four-
folds. Our focus was on geometries realized as hypersurfaces in toric ambient
spaces for which we argued that properties of the non-trivial cohomology
groups can be split into two parts, one arising from the ambient space and
one part from the toric divisors using the Gysin-sequence. We have explicitly
shown, how to obtain algebraic and non-algebraic complex structure defor-
mations and also Kähler deformations that arise from toric and non-toric
divisors. The special tool we used to do so was the homogeneous coordinate
ring of the ambient space that enabled us to derive explicit expressions of
non-trivial holomorphic forms using the chiral ring of the hypersurface and
the Poincaré residue. We recovered in particular the well known formulas to
calculate the spectrum of the effective theories from toric data.

After the general considerations we focused on the three-form cohomol-
ogy, essentially inherited from one-forms on Riemann surfaces along which
we have orbifold singularities supplemented by topological information about
the corresponding resolution divisors. The three-form scalars were argued to
parametrize the intermediate Jacobian of the Calabi-Yau fourfold which was
shown to arise as a product of Jacobian varieties of Riemann surfaces. We
derived how to obtain the Picard-Fuchs operators from the data of the chiral
ring of a Riemann surface embedded in a toric variety which then lift to the
Picard-Fuchs operators of the three-form cohomology of the fourfold. From
this and the boundary conditions derived in the first part of this work a
calculation of the normalized period matrix of three-forms is possible. This
normalized period matrix combined with topological intersection numbers
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9 Conclusions and Outlook

of a generalized sphere-tree used to resolve the singularities along the Rie-
mann surface comprise the metric on the intermediate Jacobian and hence
determine the couplings of the three-form scalars.

In the following we discussed the three-form cohomology in hypersurfaces
that are elliptic fibrations in weighted projective spaces and explained the
fate of these three-forms under Sen’s weak coupling limit. The three-forms
give rise to two-form scalars or Wilson-line moduli in the weakly coupled IIB
theory. We concluded with two explicit examples for the two types of three-
forms on elliptically fibered Calabi-Yau fourfolds and discussed in detail their
weak coupling limit. In the first example we found that the Riemann surface
inducing a non-trivial three-form is the elliptic fiber over a base divisor. In
this case the normalized period matrix of the three-form cohomology maps to
the axio-dilaton which is constant over the same base divisor. In the second
example the Riemann surface is a double cover over a P1 in the base and
the normalized period matrix contains the information about the location of
the branching points on this P1. In the Calabi-Yau threefold of the weakly
coupled description this normalized period matrix can be interpreted as as
the coupling of Wilson-line moduli on D7 branes. This intricate second
example has many non-trivial features like O3-planes and a non-Higgsable
gauge-group and deserves further study. In the following we would like to
point out several directions for future research.

A first interesting direction is to further extend and interpret the calcula-
tions outlined in chapter 7 in the context of mirror symmetry for Calabi-Yau
fourfolds [76, 41, 57]. In particular, it would be desirable to derive a general
expression for the Picard-Fuchs equations for three-form periods in terms of
the toric data of the ambient space in analogy to the discussion of [89]. Fur-
thermore, one striking observation to exploit mirror symmetry can be made
by recalling the construction of the period matrix of the intermediate Jaco-
bian. We note that mirror symmetry exchanges the two-dimensional faces θα
with their duals θ∗α and hence maps the one-forms on the Riemann surface
Rα to the resolution divisors D′lα . Indeed the number of (1, 0)-forms, given
by `′(θα) in (6.87), and the number of resolution divisors, given by `′(θ∗α) in
(6.87), are exchanged. This implies that the relevant intersection data for
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the D′lα must be captured by the period matrix of three-forms on the mirror
geometry, at least at certain points in complex structure moduli space, as we
have seen in the first part of this work. This observation is further supported
by basic facts from Landau-Ginzburg orbifolds [59, 58, 118], since in these
constructions both the intersection data and periods are determined by the
structure of the chiral rings of the fourfold and its mirror. One can thus con-
jecture that the complex structure dependent three-form periods calculate
on the mirror geometry the Kähler moduli dependent quantum corrections
to the intersection numbers between integral three-forms and two-forms. It
is then evident to suggest that these Kähler moduli corrections already cover
world-sheet instanton corrections to the three-form couplings, when using
the Calabi-Yau fourfold as a string theory background. It would be very
interesting to access these corrections directly on the Kähler moduli side
and establish their physical interpretation. As the three-form cohomology
was shown to be localized on divisors a consideration of local Calabi-Yau
fourfolds and local mirror symmetry would be sufficient to do so.

A second promising direction for future research is to apply our results
in the duality between F-theory and the heterotic string theories. The rel-
evance of three-forms in this duality was already pointed out, for example,
in [119–121]. Indeed, in heterotic compactifications on elliptically fibered
Calabi-Yau threefolds with stable vector bundles, the moduli space of cer-
tain vector bundle moduli also admits the structure of a Jacobian variety.
By duality this Jacobian turns out to be isomorphic to the intermediate Ja-
cobian of the corresponding K3-fibered Calabi-Yau fourfold. The described
powerful techniques available for analyzing the three-form periods on four-
folds might help to shed new light on the derivations required in the dual
heterotic setting. Our first example describes a simple case of such an F-
theory compactification with non-trivial intermediate Jacobian for which the
comparison to its heterotic dual geometry can be performed explicitly. It is
an interesting task to analyze several such dual settings in detail.

The possibility of a direct calculation of the three-form metric also has im-
mediate applications in string phenomenology. The scalars arising from the
three-form modes can correspond to scalar fields in an F-theory compactifica-
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tion to four space-time dimensions. These scalars are naturally axions, since
the shift-symmetry is inherited from the forms of the higher-dimensional
theory. The axion decay constants are thus given by the three-form metric
and determines the coupling to the Kähler and complex structure moduli
and thus can be derived explicitly for a given fourfold geometry. Since these
geometries might not be at the weak string coupling limit of F-theory, one
might be lead to uncovered new possibilities for F-theory model building. For
example, our second example is admitting, if at all, a very complicated weak
string coupling limit, but can be analyzed nevertheless using the presented
geometric techniques. In this example also non-Higgsable clusters and O3-
planes are present and it is interesting to investigate the physics of these ob-
jects in the presents of a non-trivial three-form cohomology. It is important
to stress that consistency of Calabi-Yau fourfold compactifications generi-
cally require the inclusion of background fluxes [122]. It is well-known that
these are also relevant in most phenomenological applications. Therefore, it
is of immediate interest to generalize our discussion to include background
fluxes. This will be particularly interesting in singular limits of the geome-
try, which are relevant in the construction of F-theory vacua. In particular,
the intermediate Jacobian plays an important role in the computation of the
spectrum of the effective theory as, for example, suggested by the construc-
tions of [123, 124]. The generalization to include fluxes will also be relevant
in discussing extremal transitions in Calabi-Yau fourfolds that change the
number of three-forms [117].

To conclude this list of potential future directions, let us also mention
the probably most obvious generalization of the discussions presented in this
work and its immediate relevance for F-theory compactification. In fact, in
this thesis we have only considered hypersurfaces in toric ambient spaces.
A generalization to complete intersections [125, 126], i.e. Calabi-Yau man-
ifolds described by more then one equation, would be desirable. This is
particularly evident when recalling that in F-theory compactifications on
elliptically fibered fourfolds, the non-trivial three-form cohomology of the
base yields U(1)-gauge fields in the four-dimensional effective theory [50] as
we discussed in the first part. Since the function fAB then corresponds to
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the gauge coupling function, it is an interesting task to use geometric tech-
niques for Calabi-Yau fourfolds to study setups away from weak coupling.
For bases that are toric hypersurfaces the same techniques as we developed
apply directly and enable a calcualtion of the Picard-Fuchs equations which
we outlined in section 6.4.
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A

Three-dimensional N = 2 supergravity
on a circle

In this appendix we consider N = 2 supergravity compactified on a circle
of radius r. Our goal is to derive the resulting N = (2, 2) action. We also
briefly discuss the dualization of vector multiplets in three dimensions and
point out the relation to B.
We start with a three-dimensional N = 2 supergravity theory coupled to

chiral multiplets with complex scalars φκ and vector multiplets with bosonic
fields (LΣ, AΣ). HereLΣ is a real scalar and AΣ a vector of an U(1) gauge
theory. The bosonic part of the ungauged N = 2 action takes the form

S(3) =

∫
1

2
R(3) ∗ 1− K̃φκφ̄λdφ

κ ∧ ∗dφ̄λ +
1

4
K̃LΣLΛdLΣ ∧ ∗dLΛ

+
1

4
K̃LΣLΛ dAΣ ∧ ∗dAΛ + dAΣ ∧ Im(K̃LΣφκdφ

κ) (A.1)

where the kinetic terms of the vectors and scalars are determined by the
single real kinetic potential K̃.

We want to put this on a circle of radius r and period one, i.e. the back-
ground metric is of the form

ds2
(3) = gµνdx

µdxν + r2dy2 (A.2)

where we already drop vectors, since in an un-gauged theory they do not
carry degrees of freedom in two dimensions. Similarly, the vectors AΣ are
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only reduced to real scalars dAΣ = dbΣ ∧ dy. The resulting two-dimensional
action thus reads

S(2) =

∫
1

2
rR ∗ 1− rK̃φκφ̄λdφ

κ ∧ ∗dφ̄λ +
1

4
rK̃LΣLΛdLΣ ∧ ∗dLΛ

+
1

4r
K̃LΣLΛdbΣ ∧ ∗dbΛ − dbΣ ∧ Im(K̃LΣφκdφ

κ) , (A.3)

with a two-dimensional R and Hodge star ∗. Note that the last term is
topological and does not couple to the radius r of the circle. We can perform
Weyl rescaling of the two-dimensional metric setting g̃µν = e2ωgµν . This
transforms the Einstein-Hilbert term as∫

1

2
rR̃ ∗̃1 =

∫
1

2
rR ∗ 1 + dω ∧ ∗dr , (A.4)

while leaving all other terms in the action (A.3) invariant. We then find the
action

S(2) =

∫
r

(
1

2
R ∗ 1 + d log r ∧ ∗dω − K̃φκφ̄λdφ

κ ∧ ∗dφ̄λ

+
1

4
K̃LΣLΛdLΣ ∧ ∗dLΛ +

1

4r2
K̃LΣLΛdbΣ ∧ ∗dbΛ

)
− dbΣ ∧ Im(K̃LΣφκdφ

κ) (A.5)

To make contact with the N = (2, 2) dilaton supergravity action (3.23) we
set

LΣ = r−1vΣ , r = e−2ϕ̃ , (A.6)

σΣ ≡ bΣ + ivΣ . (A.7)

Inserted into (A.5) we then obtain

S(2) =

∫
e−2ϕ̃

(
1

2
R ∗ 1

− 2dϕ̃ ∧ ∗
(
dω − 1

2
K̃vΣvΛvΣdvΛ − 1

2
K̃vΣvΛvΣvΛdϕ̃

)
− K̃φκφ̄λdφ

κ ∧ ∗dφ̄λ + K̃σΣσ̄ΛdσΣ ∧ ∗dσ̄Λ

−dReσΣ ∧ Im(K̃vΣφκdφ
κ)
)
. (A.8)
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In order to match the action (3.23) one therefore has to find an ω such that

dω = −dϕ̃+
1

2
K̃vΣvΛvΣdvΛ +

1

2
K̃vΣvΛvΣvΛdϕ̃ . (A.9)

To solve this condition, we first notice that any term in K̃ that is linear in
vΣ drops out from this relation, i.e. K̃ can take the form

K̃ = K + vΣSΣ , (A.10)

with an arbitrary function SΣ(φ, φ̄). Furthermore, we can solve (A.9) by
assuming that K = K1 +K2 splits into a vΣ-independent term K1(φ, φ̄) and
a term K2(v) that only depends on vΣ. Then (A.9) is satisfied if

vΣKvΣ = −k , ω = −ϕ̃+
k

2
ϕ̃− K2(v)

2
, (A.11)

It is easy to check that the conditions (A.10) and (A.11) are actually satisfied
for the M-theory example (3.29) of K̃. One finds

K1(z) = − log

∫
Y4

Ω ∧ Ω̄ , K2(v) = logV ,

SΣ = e2ϕdΣ
AB̄ ReNAReNB , (A.12)

such that k = −4. Finally, in order to show that (A.8) is indeed identical
to the action (3.23), we still have to complete the last term in (A.8) to
Im(dσΣ ∧ K̃vΣφκdφ

κ). In order to do that we use

dImσΣ ∧ Re(K̃vΣφκdφ
κ) =

1

2
dImσΣ ∧ dK̃vΣ , (A.13)

which follows from the fact that dK̃vΣ = 2Re(K̃vΣφκdφ
κ) + K̃vΣvΛdvΛ. This

implies that these terms simply yield a total derivative and shows that the
reduction of N = 2 supergravity of the form (A.1) indeed yields the extended
form of N = (2, 2) dilaton supergravity suggested in (3.23) coupled to the
chiral multiplets with scalars φκ and twisted-chiral multiplets with scalars σΣ.
Interestingly, we had to employ the conditions (A.10) and (A.11), which hints
to the fact that the action (3.23) might admit further interesting extensions.
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Let us end this appendix by pointing out that we could also have first
dualized the vectors AΣ to real scalars in three dimensions and then per-
formed the circle reduction. The dual multiplets to the vector multiplets
(LΣ, AΣ) are three-dimensional chiral multiplets with bosonic parts being
complex scalars TΣ given by

TΣ = ∂LΣK̃ + iρΣ . (A.14)

The metric is determined now from a proper Kähler potential given by

K(T + T̄ ,M) = K − ReTΣ L
Σ , (A.15)

such that the final action reads

S(3) =

∫
1

2
R(3) ∗ 1−KMIM̄JdM I ∧ ∗dM̄J , (A.16)

with M I = (TΣ, φ
κ). We can again reduce this theory on a circle (A.2) and

perform a Weyl-rescaling (A.4) to find

S(2) =

∫
1

2
rR ∗ 1 + dr ∧ ∗dω − rKMIM̄JdM I ∧ ∗dM̄J . (A.17)

With the choices r = e−2ϕ̃ and ω = −ϕ̃ this reads

S(2) =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃−KMIM̄JdM I ∧ ∗dM̄J

)
. (A.18)

This result should also be obtainable from (A.8) by dualizing the chiral mul-
tiplets with scalars σΣ. This is possible since bΣ appears only with its field-
strength dbΣ. The details of this dualization in two dimensions will be dis-
cussed in B.
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B

Twisted-chiral to chiral dualization
in two dimensions

In this appendix we present the details of the dualization discussed in sec-
tion 3.3 of a twisted-chiral multiplet to a chiral multiplet in two dimensions.
The starting point is the action

S
(2)
C-TC =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃− K̃φκφ̄λ dφ

κ ∧ ∗dφ̄λ

+ K̃σΣσ̄Λ dσΣ ∧ ∗dσ̄Λ − K̃φκσ̄Λ dφκ ∧ dσ̄Λ

−K̃σΣφ̄λ dφ̄
λ ∧ dσΣ

)
, (B.1)

where K̃ is given by
K̃ = K + e2ϕ̃S . (B.2)

In the following we use sub-scripts to indicate derivatives with respect to
fields, e.g. K̃φκ ≡ ∂φκK̃. K̃ depends on a number of chiral multiplets with
complex scalars φκ and a number of twisted-chiral multiplets with complex
scalars σΣ.
In order to perform a dualization, we assume that ReσΣ has a shift sym-

metry and only appears via dReσΣ in (B.1). This implies that ReσΣ can
be dualized into a scalar ρΣ by the standard procedure. One first replaces
dReσΣ → FΣ in (B.1) and then adds a Lagrange multiplier term promo-
tional to FΣ ∧ dρΣ. Then FΣ can be consistently eliminated from (B.1).
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Denoting the imaginary part of σΣ by vΣ = ImσΣ the resulting action reads

S
(2)
C =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃− K̃φκφ̄λ dφ

κ ∧ ∗dφ̄λ

+ K̃vΣvΛ(
e2ϕ̃dρΣ − Im (K̃vΣφκdφ

κ)
)
∧ ∗
(
e2ϕ̃dρΛ − Im (K̃vΛφλdφ

λ)
)

+
1

4
K̃vΣvΛ dvΣ ∧ ∗dvΛ

)
(B.3)

To compute the dualized action we make the following ansatz for the Legen-
dre transformed variables TΣ

TΣ = e−2ϕ̃ ∂K̃

∂vΣ
+ iρΣ = e−2ϕ̃ ∂K

∂vΣ
+

∂S
∂vΣ

+ iρΣ , (B.4)

and the dual potential K

K = K̃ − e2ϕ̃ReTΣ v
Σ . (B.5)

We want to derive the conditions on K̃ under which the action (B.3) can be
brought to the form

S
(2)
C =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃−KMIM̄J dM I ∧ ∗dM̄J

)
, (B.6)

with M I = (φκ, TΣ).
We first determine from (B.4) and (B.5) that

∂vΣ

∂TΛ
=

1

2
e2ϕ̃K̃vΣvΛ

,
∂vΣ

∂φκ
= −K̃vΣvΛ

K̃vΛφκ , (B.7)

KTΣ
= −1

2
e2ϕ̃vΣ , Kφκ = K̃φκ ,

where K̃vΣvΛ is the inverse of K̃vΣvΛ ≡ ∂vΣ∂vΛK̃ = 4K̃σΣσ̄Λ . Crucially, one
also derives from (B.4) that

dReTΣ = e−2ϕ̃
(
K̃vΣvΛdvΣ + 2Re(K̃vΣφκdφ

κ)− 2KvΣdϕ̃
)
. (B.8)

Note that there is the additional dϕ̃-term, which is absent in the standard
dualization procedure. The conditions on K̃ arise from demanding that the
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dual action can be brought to the form (B.1) and no additional mixed terms
involving dϕ̃ appear. To evaluate (B.1) one uses (B.7) to derive the identities

KTΣT̄Λ
= −1

4
e4ϕ̃K̃vΣvΛ

, KTΣφ̄κ
=

1

2
e2ϕ̃K̃vΣvΛ

K̃vΛφ̄κ , (B.9)

Kφκφ̄λ = K̃φκφ̄λ − K̃φκvΣK̃vΣvΛ
K̃vΛφ̄λ .

Inserting (B.8), (B.9) into (B.6) one finds the following terms involving dϕ̃

S
(2)
dϕ̃ =

∫
e−2ϕ̃

((
2 +KvΣKv

ΣvBKvΛ

)
dϕ̃ ∧ ∗dϕ̃+KvΣdvΣ ∧ ∗dϕ̃

)
. (B.10)

These terms can be removed by a Weyl rescaling of the three-dimensional
metric if certain conditions on K are satisfied. To see this, we perform a Weil
rescaling

g̃µν = e2ωgµν (B.11)

which transforms the Einstein-Hilbert term as∫
e−2ϕ̃ 1

2
R̃ ∗̃1 =

∫
e−2ϕ̃

(
1

2
R ∗ 1− 2dω ∧ ∗dϕ̃

)
, (B.12)

while leaving all other terms invariant. Hence we can absorb the extra terms
in (B.10) by a Weyl rescaling iff

− 2dω = KvΣKv
ΣvBKvΛdϕ̃+KvΣdvΣ . (B.13)

Clearly, a simple solution to this equation is found if K satisfies

KvΣKv
ΣvBKvΛ = k , K = K1(φ, φ̄) +K2(v) , (B.14)

for a constant k, a function K1(φ, φ̄) independent of vΣ, and a function K2(v)

independent of φκ. In this case one can chose

ω = −k
2
ϕ̃− 1

2
K2(v) . (B.15)

Note that (B.14) is satisfied for the result found in a Calabi-Yau fourfold
reduction (3.26), i.e. k = −4 and K2 = logV.
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Summary

In this summary we will give a short overview of the content of this thesis.
The introduction chapter 1 explains the role of string theory in modern par-
ticle physics as a candidate for quantum gravity. We explain how to derive
the effective low-energy supergravity description of string theory and how to
make contact with the observable world via dimensional reduction. A spe-
cial class of such theories is given by F-theory that allows for an inclusion
of non-perturbative effects of stringy physics. F-theory is here understood
as a decompactification limit of M-theory on elliptically fibered Calabi-Yau
fourfolds. This elegant description of string theory is a powerful branch of
string phenomenology and motivates the study of the geometry of Calabi-
Yau fourfolds.
We start the main body of this thesis by introducing the geometric proper-
ties of Calabi-Yau fourfolds and their harmonic forms in chapter 2. Here we
focus especially on the harmonic three-forms whose physical properties are
determined by the complex structure dependence of their so called normal-
ized period matrix fAB, which was not well understood before. The next
part of the thesis focuses on effective theories of Calabi-Yau fourfolds.
In chapter 3 we perform the dimensional reduction of Type IIA supergravity
on a general Calabi-Yau fourfold and find a N = (2, 2) dilaton-supergravity
in two dimensions. Here we determine the massless spectrum and the kinetic
potential of the resulting supergravity. We conjecture an extension of the
usual Kählerpotential of this dilaton-supergravity by a term depending on
the dilaton of the theory to account for the kinetic coupling of the novel
three-form scalars.
Subsequently we apply mirror symmetry in chapter 4, a duality of the same
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supergravity theory resulting from two different Calabi-Yau fourfolds, to de-
termine the structure of the normalized period matrix at the large complex
structure point in moduli space. We see that it is mirror to a function hAB

holomorphic in the mirror Kähler moduli at the large volume point. The
linear leading order behavior of fAB at the large complex structure point is
specified by topological intersection numbers MΣA

B of the mirror.
Following this discussion we extend our analysis to the dimensional reduc-
tion of eleven-dimensional supergravity in chapter 5. Afterwards we lift the
resulting three-dimensional N = 2 supergravity to the effective theory of
F-theory on elliptically fibered Calabi-Yau fourfolds leading to an effective
N = 1 supergravity description in four dimensions. We close this part by dis-
cussing the implications of non-trivial three-form cohomology and defer some
technical details of the first part into two appendices in A,B. Three-forms
located on the base of the elliptically fibered fourfold lead to a U(1)-gauge
theory in the effective four-dimensional theory whose coupling is determined
by fAB. If the harmonic three-forms have a leg in the fiber they lead to
scalars in the effective theory whose coupling is determined by their normal-
ized period matrix fAB. We also show consistency of our results with the
known weakly coupled IIB orientifold description.
In the second part of this thesis we construct explicit Calabi-Yau fourfold
examples via hypersurfaces in toric varieties. We begin in chapter 6 with the
general construction of toric spaces and their hypersurfaces. We then focus on
Calabi-Yau fourfolds realized as so called semiample hypersurfaces avoiding
the Lefschetz-hyperplane theorem that forbids non-trivial three-form coho-
mology on ample hypersurfaces. This is followed by a discussion of the origin
of non-trivial harmonic forms on the hypersurface and we state well known
formulas for the number of the various harmonic forms in terms of toric data.
We also include in our discussion so called non-toric and non-algebraic defor-
mations of the hypersurface that are easy to describe in the same framework.
The derived description via chiral rings and Poincaré residues allows not only
to determine the spectrum of the effective theory upon compactification, but
also sets the stage for a calculation of the couplings.
In chapter 7 we discuss the moduli space of the three-form scalars which is
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called intermediate Jacobian of a Calabi-Yau fourfold whose complex struc-
ture dependence reduces to the complex structure dependence of Riemann
surfaces. The normalized period matrices of these Riemann surfaces are the
building blocks of the three-form normalized period matrix fAB of the Calabi-
Yau fourfold. The Kähler dependence is captured by a so called generalized
sphere-tree that can be computed in terms of the ambient space intersection
theory and provides us with the aforementioned intersection numbersMΣA

B.
We determine in this situation the map between the geometrical quantities,
necessary to derive the effective theories discussed before.
This part is completed by a lengthy discussion of two simple examples of
Calabi-Yau fourfold geometries with non-trival three-form cohomology in
chapter 8. Here we introduce the mathematical basics of elliptic fibrations
and discuss the corresponding F-theory physics including the weak coupling
limit of Sen. The first example contains one non-trivial three-form that gives
rise to a so called two-form scalar in the weak coupling limit and in this
case the normalized period matrix fAB reduces to the axio-dilaton τ of type
IIB supergravity. In the second example we have a geometry with multiple
non-trivial three-forms that we argue to give rise to so called Wilson-line
scalars on a seven-brane. This example is in particular interesting as it in-
cludes many non-trivial features, like O3-planes and non-Higgsable clusters
and deserves further investigation.
We conclude the thesis in chapter 9 giving an outlook of possible future re-
search directions. After recalling the results of our work, we point out that a
further study of the N = (2, 2)-supergravity theory is necessary to fully set-
tle the inclusion of three-form moduli in type IIA reductions on Calabi-Yau
fourfolds, as we only derived a dilaton-dependent correction to the kinetic
potential of the effective theory which is therefore not Kähler in an obvious
way. Furthermore, we argue that a better understanding of mirror symmetry
of Calabi-Yau fourfold hypersurfaces with non-trivial three-form cohomology
is desirable. This may enable a direct expression of the normalized period-
matrix fAB in toric terms. Furthermore, we argue that this matrix deter-
mines the couplings of axions in effective theories and hence is relevant for
string phenomenology. Therefore it is in particular necessary to determine
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fAB in more complicated geometries, for instance complete intersections in
toric varieties.
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Samenvatting

In deze samenvatting geven we een kort overzicht van de inhoud van dit
proefschrift. In the introductie, sectie 1, leggen we uit wat de rol is van
snaartheorie in de moderne deeltjesfysica als de kandidaat voor een theorie
van kwantumzwaartekracht. We leggen uit hoe een effectieve lage-energie
supergravitatie beschrijving van snaartheorie kan worden afgeleid en hoe
contact kan worden gemaakt met de wereld om ons heen via dimensie re-
ductie. Een speciale klasse van zulke theorieën wordt gegeven door F-theorie
dat ook niet-perturbatieve effectieve effecten van snaartheorie beschrijft. We
zien F-theorie hier als een decompactificatie limiet van M-theorie op ellip-
tisch gevezelde Calabi-Yau viervariëteiten. Deze elegante beschrijving van
snaartheorie is een krachtige tak van snaarfenomenologie en geeft een moti-
vatie voor de studie van de geometrie van Calabi-Yau viervariëteiten.
Daarna introduceren we in sectie 2 de geometrische eigenschappen van Calabi-
Yau viervariëteiten en hun harmonische differentiaalvormen. Hier focussen
we ons op de harmonische drie-vormen waarvan de fysische eigenschappen
bepaald worden door de afhankelijkheid van hun zogenoemde genormaliseerde
periode matrix fAB van de complexe structuur. Deze afhankelijkheid is niet
voldoende begrepen in de eerdere literatuur. Het volgende deel van het proef-
schrift richt zich op de effectieve theorieën van Calabi-Yau viervariëteiten.
In sectie 3 doen we de dimensionale reductie van Type IIA supergravitatie op
een algemene Calabi-Yau viervariëteit en vinden we een N = (2, 2) dilaton-
supergravitatie in twee dimensies. We bepalen het spectrum van massa-
loze deeltjes en de kinetische potentiaal van de resulterende supergravitatie
theorie. Om de kinetische koppeling van de nieuwe drie-vorm scalairen te
verklaren, doen we een voorstel voor een uitbreiding van de gebruikelijke
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Kählerpotentiaal van deze dilaton-supergravitatie door een term toe te voe-
gen die afhangt van de dilaton.
Daarna, in sectie 4, passen we spiegelsymmetrie toe, dat een dualiteit is
van dezelfde theorie van supergravitatie op twee verschillende Calabi-Yau
viervariëteiten, om de structuur van de genormaliseerde periode matrix te
bepalen op het grote complexe structuur punt (Engels: large complex struc-
ture point) in de moduliruimte. We zullen zien dat het gespiegeld wordt
naar een holomorfe functie hAB in de gespiegelde Kähler moduli op het grote
volume punt (Engels: large volume point). Het lineaire hoogste orde gedrag
van fAB op het grote complexe structuur punt wordt gespecificeerd door de
topologische intersectie getallen MΣA

B van de spiegelvariëteit.
Na deze discussie breiden we in sectie 5 onze analyse uit naar de de dimen-
sionale reductie van elf-dimensionale supergravitatie. Daarna liften we de
resulterende drie-dimensionale N = 2 supergravitatie op naar de effectieve
theorie van F-theorie op elliptisch gevezelde vier-variëteiten. Dit geeft een
effectieve N = 1 supergravitatie beschrijving in vier dimensies. We sluiten
dit deel af met een discussie van de implicaties van niet-triviale drie-vorm
cohomologieën. We verwijzen naar twee addendums in sectie 9 voor een aan-
tal technische details van het eerste deel van de thesis. Drie-vormen die zich
zich in de basis van de elliptisch gevezelde Calabi-Yau viervariëteit bevin-
den, geven een U(1)-ijktheorie in de effectieve vier-dimensionale theorie. De
koppeling wordt bepaald door fAB. Als de harmonische drie-vormen zich ook
deels op de vezel bevinden, geven ze scalairen in de effectieve theorie waar-
van de koppeling bepaald is door hun genormaliseerde periode matrix fAB.
We laten ook zien dat onze resultaten consistent zijn met de bekende zwak-
gekoppelde IIB orientifold beschrijving.
In het tweede deel van dit proefschrift construeren we expliciete Calabi-Yau
viervariëteit voorbeelden via hyperoppervlakken in torische variëteiten. We
beginnen in sectie 6 met een algemene constructie van torische ruimten en hun
hyperoppervlakken. We richten ons daarna op Calabi-Yau viervariëteiten die
gerealiseerd worden als zogenoemde semiampel (Engels: semiample) hyper-
oppervlakken. Deze oppervlakken vermijden de Lefschetz-hypervlak stelling
dat stelt dat het onmogelijk is een niet-triviale drie-vorm cohomologie op am-
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pel (Engels: ample) hyperoppervlakken te hebben. Dit wordt gevolgd door
een discussie over de oorsprong van niet-triviale harmonische vormen op het
hyperoppervlak en we geven bekende formules waarin het aantal harmonis-
che vormen uitgedrukt wordt in torische data. In onze discussie behandelen
we ook de zogenoemde niet-torische en niet-algebraïsche deformaties van het
hyperoppervlak die gemakkelijk te beschrijven zijn in hetzelfde kader. De
beschrijving die we afleiden via chirale ringen en Poincaré residuen, geeft ons
niet alleen het spectrum van de effectieve theorie dat we krijgen na compact-
ificatie, maar maakt ook de weg vrij voor een berekening van de koppelingen.
In sectie 7 behandelen we de moduli ruimte van de drie-vorm scalairen dat de
tussen-Jacobiaan van de Calabi-Yau viervariëteit genoemd wordt. De com-
plexe structuur afhankelijkheid van de tussen-Jacobiaan reduceert naar de
complexe structuur afhankelijkheid van Riemann-oppervlakken. De genor-
maliseerde periode matrices van deze Riemann oppervlakken zijn de bouwste-
nen van de drie-vorm genormaliseerde periode matrix fAB van de Calabi-Yau
viervariëteit. De Kähler-afhankelijkheid wordt beschreven door een zoge-
noemde gegeneraliseerde sfeer-boom die uitgedrukt kan worden in de inter-
sectietheorie van de omgevende ruimte. Dit geeft ons bovendien de eerder
genoemde intersectiegetallen MΣA

B. We bepalen ook de afbeelding tussen
de geometrische grootheden die nodig is om de effectieve theorieën, waar we
het eerder over gehad hebben, af te leiden.
We eindigen dit deel in sectie 8 met een lange discussie van twee simpele voor-
beelden van Calabi-Yau viervariëteit geometrieën die een niet-triviale drie-
vorm cohomologie hebben. Hier introduceren we de wiskundige basiskennis
van elliptische vezelingen en bediscussiëren we de corresponderende F-theorie
natuurkunde, inclusief de zwakke koppelings limiet van Sen. Het eerste voor-
beeld heeft een niet-triviale drie-vorm dat een zogenoemde twee-vorm scalair
geeft in de zwakke-koppelinglimiet. In dit geval reduceert de genormaliseerde
periode matrix fAB naar de axio-dilaton τ van type IIB supergravitatie. In
het tweede voorbeeld hebben we een geometrie met meerdere niet-triviale
drie-vormen en we beargumenteren dat ze zogenoemde Wilson-lijn scalairen
geven op een zeven-braan. Dit voorbeeld is interessant omdat het heel veel
niet-triviale eigenschappen heeft, zoals O3-vlakken en clusters die je niet
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kunt Higgsen. Daarom zou het goed zijn als er meer onderzoek naar gedaan
wordt.
We eindigen dit proefschrift in sectie 9 door vooruit te kijken naar mogeli-
jke toekomstige onderzoeksrichtingen. Na het samenvatten van de resultaten
van dit werk, beargumenteren we dat een verdere studie van de N = (2, 2)-
supergravitatie theorie nodig is om de inclusie van drie-vorm moduli in type
IIA reducties op Calabi-Yau viervariëteiten volledig te begrijpen. Dit om-
dat we alleen een dilaton-afhankelijke correctie voor de kinetische potentiaal
van de effectieve theorie afgeleid hebben, waardoor het niet duidelijk is of
deze nog Kähler is. We beargumenteren ook dat het wenselijk is een beter
begrip te krijgen van de spiegelsymmetrie van Calabi-Yau viervariëteit hy-
peroppervlakken met niet-triviale drie-vorm cohomologie. Dit zou het mo-
gelijk kunnen maken om de genormaliseerde periode matrix fAB direct uit te
drukken in torische data. Bovendien beargumenteren we dat deze matrix de
koppelingen van axions in effectieve theorieën bepaalt en daarom relevant is
voor snaarfenomenologie. Daarom is het in het bijzonder nodig om fAB te
bepalen in gecompliceerdere geometrieën, bijvoorbeeld complete intersecties
in torische variëteiten.
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