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We calculate the expectation value of the coincident product of two field strength tensors at two loop
order in scalar electrodynamics on de Sitter background. The result agrees with the stochastic formulation
which we have developed in a companion paper [T. Prokopec, N.C. Tsamis, and R. P. Woodard, Ann.
Phys. (N.Y.) 323, 1324 (2008)] for the nonperturbative resummation of leading logarithms of the scale
factor. When combined with a previous computation of scalar bilinears [T. Prokopec, N. C. Tsamis, and
R.P. Woodard, Classical Quantum Gravity 24, 201 (2007)], our current result also gives the two loop
stress-energy tensor for inflationary scalar electrodynamics. This shows a secular decrease in the vacuum
energy which derives from the vacuum polarization induced by the inflationary production of charged

scalars.

DOI: 10.1103/PhysRevD.78.043523

I. INTRODUCTION

This is the third and final paper in a series with the goal
of establishing a stochastic theory of inflation for scalar
quantum electrodynamics (SQED). Stochastic SQED is
outlined in Ref. [1]. In this paper and in Ref. [2] we
compare the predictions of stochastic SQED with explicit
and exact perturbative calculations. In particular, Ref. [2]
gives the mostly scalar contribution to the two loop stress
energy, and here we calculate the mostly photon
contribution.

Stochastic inflationary theory [3—6] was developed pri-
marily in order to capture the effects of small scale stress-
energy fluctuations (large momenta) onto large scale fluc-
tuations, which are observed by current large scale struc-
ture and cosmological microwave background radiation
measurements. Furthermore, stochastic inflation has also
been used to study global structure and dynamics [7,8] of
inflationary universe models. Even though corrections to
stochastic inflationary theories have not yet been system-
atically studied, these type of studies are feasible within the
in-in path integral formalism [9]. A phase space formula-
tion of stochastic inflationary theory is given in Ref. [10],
where a quantum Liouville equation for the Wigner func-
tion was obtained, which is the suitable quantum general-
ization of the Fokker-Planck equation for the (classical)
density function. More recently, a phase space formulation
has been used for computing the non-Gaussianity of cos-
mological perturbations [11-16] in various inflationary
models.

We are interested in the stochastic theory of inflation
mainly because it captures correctly the leading logarith-
mic behavior (in the scale factor) of quantum field theories
during inflation. In Ref. [1] we have proven that a stochas-
tic theory of scalar electrodynamics (obtained by integrat-

1550-7998/2008 /78(4)/043523(37)

043523-1

PACS numbers: 98.80.Cq, 98.80.Qc

ing out the photon field and by subsequently
stochasticizing the resulting effective scalar field theory)
correctly reproduces the leading secular logarithms to all
orders in perturbation theory. The agreement is made ex-
plicit by a comparison between the mostly scalar contri-
bution to the two loop stress-energy tensor in de Sitter
inflation and the corresponding stochastic prediction. The
stochastic theory of inflation goes far beyond perturbation
theory, in that it provides an effective means for resumma-
tion of the leading logarithm contributions [1]. Unlike full
quantum field theories, which cannot be generally solved,
stochastic theories are classical, and hence they are rela-
tively easily solved. Indeed, solving a stochastic theory is
tantamount to solving the corresponding Fokker-Planck
equation for the density function [5].

One of the important applications of stochastic theories
is that they permit one to address the question of gravita-
tional backreaction in accelerating space-times [17,18],
and can thus answer one of the fundamental unsolved
problems of inflationary cosmology: how do quantum
effects change the dynamics of space-time during inflation.
More broadly, this will teach us something about the
infrared sector of quantum gravity and the cosmological
constant problem. Ultimately one would like to understand
how quantum fluctuations of gravitons affect inflation. The
hope is that this question can be answered using a stochas-
tic theory of inflation [19].

Quite a lot is already known about quantum (radiative)
effects in inflationary space-times. Perturbative analysis of
scalar electrodynamics during de Sitter inflation shows that
the photon acquires a mass during inflation [1,20-25],
which can be of relevance for generation of the cosmologi-
cal magnetic fields [20,23,25-27]. The scalar field of
SQED also acquires a mass during inflation, but—unlike
the photon mass [1]—the scalar mass remains perturba-
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tively small [1]. Similarly, the fermions [28,29] of Yukawa
theory acquire mass while the scalars remain light [30,31].
In self-interacting scalar theories, the quantum loop effects
during inflation can contribute to the stress energy like a
phantom field [32,33], whose equation of state is even
more negative than the pressure of a vacuum filled with a
positive cosmological term. Although this generally beto-
kens instability [34], the phenomenon in this case is self-
limiting [35,36]. The quantum effects of gravitons on the
dynamics of fermions and scalars during inflation have also
been studied [37-40], and it is now known that gravity
induces a logarithmic correction to the fermionic wave
function at one loop while no such correction occurs to a
massless, minimally coupled scalar. The question of how
large quantum corrections to the inflationary observables
actually are has been addressed by a number of authors
[41-52], but as yet no definite answer can be provided to
that question.

This paper is organized as follows. In Sec. II we intro-
duce the relevant scalar and gauge field propagators for
de Sitter space and discuss some of their properties. In
Sec. III we compute the one loop expectation value of the
SQED stress-energy tensor in de Sitter space. In Sec. IV we
discuss some general properties of the stress-energy tensor
and its constituents. We also employ previous work [2] to
give the two loop contributions from the scalar kinetic and
potential energies. Section V is the central part of the paper,
where we compute the two loop field strength bilinear. In
Sec. VI we obtain the total, two loop stress-energy tensor
and we discuss the result. Appendixes A, B, and C give
identities and integrals useful to readers who wish to
reproduce the calculation.

II. THE PROPAGATORS IN DE SITTER SPACE

In this paper we approximate inflationary space-times by
de Sitter space. The de Sitter metric with flat spatial
sections is

ds* = a*(n)(—dn* + dx?), ¢))

where a = a(n) is the scale factor, which in de Sitter space
has the form

a=—-——  (n<0. 2)
n

Here H is the Hubble parameter and 7 denotes conformal
time. Furthermore, it is convenient to define a de Sitter
invariant function y = y(x;x’) between two space-time

points x* and x'*. In flat coordinates (1),
y = aa' H*Ax?,

3

A= —(g-nl-iepslz-zp

where a = a(n) and a’ = a(n’). There is a simple relation
between y and the geodesic distance € = €(x;x’) in
de Sitter space,
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HY{
y = 4Sin2<7). (4)

We work here in the Schwinger-Keldysh formalism [53—
56], which is suitable for describing quantum field theory
dynamics. In short, the vertices of Feynman diagrams have
two polarities: plus ( + ) and minus ( — ). Because pairs of
vertices have four possible polarities, there are four propa-
gators which we denote by iA, ,,iA, ,iA_,,andiA__,
respectively. They are obtained from the Feynman propa-
gator iA = iA,, by replacing y=y,, = y(x,;x/,) in
Eq. 3) by y4+_, y_4, and y__, respectively, defined by

yi_ =aad H*Ax% _,

Al =—(g—n' +ie+ || x—%| )
y_y =ad H*Ax*

A, = —(p—n —ier+i-#1, ©
y__ =aad' H*Ax%_,

A2 = —(n -yl +ier+ -, 7

A. The massless minimally coupled scalar propagator

The Feynman propagator for a minimally coupled mass-
less scalar field in de Sitter space obeys the differential
equation

V—gOiA(x; x') = i8P(x — X!), (8)

where O = (—g)"/29,8#",/~gd, denotes the scalar
d’Alembertian, g =det[g,,], and 6° is the
D-dimensional Dirac delta function. The addition of a
mass term to (8) results in a de Sitter invariant propagator
which was first constructed by Chernikov and Tagirov [57].
However, there is no de Sitter invariant solution in the
massless case [58].

The problem can be circumvented by adding de Sitter
breaking contributions to the propagator. A natural way of
obtaining the form of the de Sitter breaking term is to
consider quasi-de Sitter space in which the de Sitter sym-
metry is mildly broken, such that € = —H/H? < 1 and
€ =0 (here H= dH/dt). One can show [59] that the
scalar propagator in such a space can be represented as a
function of the de Sitter invariant distance suitably rescaled
by powers of the two scale factors. Remarkably, in the
de Sitter limit when € — 0, one recovers the massless
minimally coupled scalar propagator in D space-time di-
mensions [33] plus an infinite e-dependent constant.
Ignoring the constant, the propagator in de Sitter space
can be written in the form

iA(x;x") = A(y) + klIn(aa’), 9)
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Note that the function A = A(y) in Eq. (10) obeys the

equation
HP2 4F<D>{(y)1*(D/2) D — 2( )2 (0/2)
(4 @mP2 7 \2/1\4 2 \4

(11

K(y) =
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(4 —y)yA"(y) + D2 —y)A'(y) = (D — Dk.  (12)

This implies a relation which will have great importance
for this computation,

ey . KO
2—yA () —k D_2 (13)
where we define K(y) as
K(y) =@ —yyA'(y) + 2 -k (14)

The expansion of K(y) around y = 0 is

I'(D—1) D(D —2)(y\3-(/2) I'o-1) y
2F(Q)2 8 <4> TC-DIC+ 14

D(D — 2)(D + 2) (y\*—(D/2) I'(D) 2 y 2
6 e ) Z( ) u(3)+ oo - am}
_ HP? D\[(y\!-®/> D —4 In() e
e GG T o )}' (4>
f
Note that in D = 4 the function K(y) terminates at y! /2, gauge condition

In fact, up to the terms that are suppressed as (D — 4), K(y)
is just —2(D — 2) times the conformal scalar propagator.
Another important relation is

(4 —y)yK"(y) + D2 — y)K'(y) =

Also note that dimensional regularization implies the fol-
lowing coincidence limits (y — 0),

(D =2)K(y). (16)

D—-2
A0) = — (ZT)D e - or(1-2) a7
v HPTZ T(D)
A= ampr rG+1y 49
v, HPZ T(D—1)  K'(0)
240 = k= 24mP2TE+1)  D-2 (19

B. The vector propagator

The Lorentz gauge vector propagator in de Sitter space
was discussed by Allen and Jacobson [60], and a minor
error in their analysis was recently corrected [61]. The
propagator obeys the equation

J—8(@grr — R, A, ](x; x')
= 80idP(x — x) + /=gaPd,iA(x; x), (20)

where [ denotes the vector d’Alembertian, RP* is the
Ricci tensor, and iA(x; x") represents the scalar propagator
(9). The transversality of Eq. (20) follows from the Lorentz

V=EVHILLA N x) = 0,87 = gil LA, ](x; X)) = 0,
—g'V"il[ A J(x; ) = 948" 77 —g'i[ LA, 1(x; x) = 0,
2D

where gP# = gPh(x), g'7% = g?%(x’), and V* is the cova-
riant derivative operator.

On de Sitter background the photon propagator can be
written in the following de Sitter invariant form:

92

dy 9
A 53) = BO) 5+ CO) o 2 22)

We can use the Lorentz gauge condition (21) to express
B(y) and C(y) in terms of a single function y(y),

B(y) =

4D — DH?
X{=@=yyy() - (D - D2 -y} 23)
CO) = 3@~ 9Y0) (0~ Dy @4

The propagator equation will follow provided y(y) has the
right singularity at y = 0 and obeys the differential equa-
tion

@ =y)yy"() + D +2)2 =)y () —2(D - 1)yk)
= (D= D2 = yA'(y) — k] (25)
The unique solution for y(y) is [61]
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D—1
2(D — 3) (4m)P/?

Y0 = & T+ +1)

TR o

n=-—1

An important simplification for the vector propagator is
“the outer leg identity”

1 a9y 9%
. e = — 7
a[ﬂl[v]AP](x’x) 4H? gxle gxvlgxP
X [(2 = y)A'(y) — k]
_ K)oy %y
4D — 2)H? gxlr gxloxr’

(27)

Our convention throughout this paper is that square brack-
eted indices are antisymmetrized: Hy,,) = (H,, —
H,,) /2. The outer leg identity can be easily obtained by
making use of Egs. (22)—(25). Note that Eq. (27) allows us
to express the integrals entirely in terms of the A-type
propagator (9)—(11), without involving the complicated
function y(y). This is a very welcome simplification be-
cause the series for A(y) terminates in D = 4, whereas that
for y(y) does not.

III. THE ONE LOOP STRESS-ENERGY TENSOR
FOR SQED

A. The SQED action

When expressed in terms of the renormalized fields, the
action of scalar electrodynamics is

SsQEp = deX[:SQED’ (28)
Lgep = —(1 + 62,)(D, ) (D, 0)g""/—¢
- Z&(l + 5Z3)F,U,VFpo'gMngU\/_g
— 8éRp o\ =g — 1AM )2 /8. (29)

Here D, = 9, + ieA, is the covariant derivative opera-
tor, A/L is the photon field, ¢ is the scalar field, g =
det[g,,] is the determinant of the metric tensor g,,, and
gP7 is its inverse, gtPg,, = o*,. Note that we have
chosen the renormalized values of the conformal coupling,
the scalar mass, and the scalar self-coupling to vanish.
There is no need for a mass counterterm because mass is
multiplicatively renormalized in dimensional regulariza-
tion. However, full renormalization does require a confor-
mal counterterm and a scalar self-coupling counterterm.
The various one loop counterterms are [1,2,22]

D2 {i (n+ 1DI'(n+ D — 1)[4/(2 B
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%) - 1//(% - 1) + g+ D—1)— hln + 2)](?—1)"

G T T -

(26)

2HP=4 2(D — D2 — 1)

62, = — @7 D=3 -9 + €28Z5, + O(e*),
(30)
B e?HP~4 22 —1)
0% = 4Pl (D - 1)(D2— 3)(D — 4)
+ 62523ﬁn + @(64), (€1))]
_, e*HP™ I'b-1)
8= UmPP 2D - IT@ + 1)
<[-wo -1+ pe+ w(g ~1) -2 g)]
+ O(e), (32)
_ etHP I'b+1)
A== (@4mP2 (D =3’ TE +1)
/ / _ / D _ _ / _ D
v -v+pe-w(Z-1)-v(2-3)
2 D
toms[ e - v w5 1)

- ¢<2 —g)] + [—z//(D — 1)+ )+ ¢<§— 1)

Do

One can see from these expressions that we have taken the
dimensional regularization scale to be about the Hubble
constant, u ~ H. Hence the renormalized electric charge e
is defined at this scale. Note that, while the finite parts of
the two field strength renormalizations are arbitrary, the
finite parts of 0¢ and 6A are fixed (at one loop order) by
requiring that the scalar effective potential be as flat as
possible [1].

From the action (28) one obtains the stress-energy tensor
in the standard manner, T,5 = —(2/,/=8)8Ssqen/88**.
Its expectation value in the presence of the Bunch-Davies
vacuum |{)) can be broken up into a part derived from the
Maxwell field strength and a part derived from the scalar
kinetic and potential energies,

(33)
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(QUT ()12 = (T o g () Domtaxwent + (T o g () DVscatar,
(QUTap () Ditaxwen = (82#85°8" — 18apg" 8”7 )1 + SZ3)(QUF 4, (X)F iy (1) 2), (34)
(QUT (D)D) catar = (8248 5" — 38ap8"")2(1 + 8Z2)QU(D () (D, (1))
+28&(Gap T 80p8""V,Vy = VoVl Qo) @()|Q) — 1818.5(QUe (0T o(1)P1Q).

Here G,3 = R, — % 8apR is.the Ein.stei.n curvature Fen-
sor, and V . denotes the covariant derivative. On de Sitter
background the various curvatures become

R.p = (D — 1)H?g,3 and R = D(D— 1)H~

B. One loop stress-energy tensor

At one loop order the various counterterms are irrele-
vant, and we have

(QUT 451D one 100p
= (885" 8" — 18apg"’g"")
X AQUF 1, (X)F 5 ()] €2) one 100p
+(2a"85" — 38058 )2, "0, @l Wone 100p- (36)

The electromagnetic contribution derives from the coinci-
dent product of two field strengths,

(QUF ,,(OF 55 ()| one 100p
= (9,051l A 106 X)) e + (9,061 LA 1065 X)) =0
= (9,051l A )06 X)) e = (9,060, A, )06 X)) =,
(37)

while the scalar contribution comes from the scalar kinetic
energy,

Q19,0 (x), () Q)one 100p = (9,97, IA(x; X)) = v
(38)
Making use of the outer leg identity (27) we find that the

nonvanishing terms are

<Q|F,uv(x)Fpo'(x)|Q>one loop
1
= m{(8;,8[My)(6,,]6$,y)K'(y)}X:xf
_ 4H?K'(0)
D -2
When this is inserted into Eq. (19) one arrives at

<Q|F/.w(x)Fp¢r(x)|Q>one loop

H T 1) )
= Sup8ve — 8uc8vp)-
(477.)0/2 1"(% + 1) Mmp 1 P

8plu8vlo- (39)

(40)

Similarly, we make use of relation (18) for the scalar
propagator (9) to find

[
<Q|8#go*(x)a,,go(x)lﬂ>one loop
_ HP  T(D)
(4m)P72 2@ + 1) 8

(41)

The one loop stress-energy tensor is easily obtained
from Eqgs. (36), (40), and (41). The electromagnetic con-
tribution is

<Q | Toz,B | Q)one loop,Maxwell

HPT(D) D—4 D—4
- o, @2
@mPPrR+1) 4 S 42

while the scalar contribution reads

<Q|Ta,B|Q> one loop,scalar
_ HP (D) D—2 p—43H*
GmPRTE+1) 2 87 168k

(43)

Summing the two contributions (42) and (43) results in the
final expression (36),

HP I'(D) p—a4 3H*
QIT,51Q T AmDP2 T (D) S8BT [g 2 8ak
Ql a,8| Jone loop (4m)P/2 21*(%) 8ap 1672 Bap

(44)

These one loop contributions to the stress-energy tensor in
de Sitter space are of the form a constant times g, ; hence
they can be absorbed in the cosmological term.

IV. GENERAL PROPERTIES

The one loop stress tensor and its constituents are
de Sitter invariant. Their tensor structures are comprised
entirely from products of the metric, and the coefficients of
these products are constants. That is not true of higher loop
contributions. These receive de Sitter breaking contribu-
tions from the undifferentiated scalar propagator (9) and
from vertex integrations that reach back to the finite initial
time. Spatial homogeneity and isotropy are preserved but
tensor structures can involve the unit timelike vector aS%,
and coefficients can depend upon In(a). Of course, it is the
temporal growth implied by factors of In(a) that gives this
computation its physical interest, and it was to reproduce
and sum up the leading powers of these logarithms to all
orders that the stochastic formulation was developed.

The expectation value of T, at a general order derives
from the expectation values of four composite operators:
Fu,Fye (D,@)*D, e, ¢* ¢, and (¢ @)% It is useful to
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parametrize these expectation values as follows:

<Q|FM,,FPO.|Q> = Eg’u[pga.],, + Fazéf’#g,,][USg], 45)

(QUD,e)'D,¢lQ) = Jg,, + La*5),5), (46)
. M

Qe plQ) = Ik (47)

SMQU(e"¢)?|Q) = N. (48)

The expectation value of the stress tensor can be given a
similar form,

QIT,,1Q) =

The coefficient functions E, F, J, L, M, N, p, and (p + p)
all take the form of HP/(47)P/? times functions of the
scale factor and the dimensionless loop counting parameter
e2HP~4/(47r)P/2. In SQED there can be at most one addi-
tional factor of In(a) for every additional loop [1], and it
turns out that the temporal coefficient functions F, L, and
(p + p) are always down from this limit by at least one
overall power of In(a). Note that we have already encoun-
tered this pattern at one loop where there are no powers of
e2HP~*/(47)P/2, the coefficient functions E, J, and p are
constant, and the three temporal coefficient functions ac-
cordingly vanish.

In addition to factors of In(a), the various coefficient
functions generally depend in a complicated way upon
inverse powers of a that redshift to zero at late times.
This can be illustrated by the two loop result for the
expectation value of the stress-energy tensor of a massless,
minimally coupled scalar with a quartic self-interaction
[32,33]. We report this with a minor change of the renor-
malization scheme to bring it into conformity with our
convention of not employing a mass counterterm,

P8uv + (p + p)a?8l,8).  (49)

A AH" YE
4 = — mn + 2 N e

(p)Aqo 387G (277)4{ 8 (a) (32 32)1 n(a)
HETY R TIE! Z < (n + 1)2 —1f T 0%,
(50)

+ 4= _ 2P _YeE B2

(p P)Mo (277_)4{ 2 In(a) — 588 o T 18 3

l «n+2 1

a _4 g n+1} + (9(/\2) (51)

The larger number of infrared logarithms—two for each
extra loop in this model, as opposed to one in SQED—is
simply explained by having four, as opposed to two, un-
differentiated scalars in the interaction [1]. What concerns
us at the moment is the terms which fall off like powers of
1/a. These terms derive from the lower limits of conformal
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time integrations. Because they are separately conserved, it
has been conjectured that these terms can be absorbed into
perturbative corrections of the initial state [33]. If so, they
are an artifact of the initial state rather than a universal
feature of inflationary particle production. Because these
sorts of terms fall off at late times, they play no role in the
stochastic formalism we are checking. Hence there is no
point in struggling to retain these terms, and we shall not
bother to do so. This allows vast simplifications from
partially integrating without concern for surface terms,
which we have already done in evaluating the scalar coef-
ficient functions J, L, and M at two loop order [2], and
which we shall be using throughout this work e.g. when
extracting d’ Alembertians from the inner loop.

An all-orders relation between the scalar coefficient
functions is implied by the operator equation [2]

26¢
1+ 62,

O(e*e) = 2g#"(D, @)D, ¢ + Ro™ ¢
SA

+ ——(¢*p)%
TF 522(90 ¢) (52)

Taking expectation values and substituting Egs. (46) and
(47) gives

2D(D — 1)8¢
1+ 62,

—-M" — (D — 1)M' =2DJ — 2L +

1

+—— N, 53
1 + 62, (53)

where a prime denotes differentiation with respect to In(a).
A slight rearrangement produces a key result,

—2D[(1 + 6Z,)J + 8&(D — 1)M]
=(1+Z)M" + (D — 1)M']—2(1 + 6Z,)L + N.
(54)

It is now time to work out the Maxwell and scalar
contributions to p and (p + p) in terms of the various
coefficient functions. We find the Maxwell contributions
from relations (34) and (35),

(1+68Z3)[—4(D —1)(D —4)E + XD — 3)F],
(55)

(p)Maxwell =

(p + p)Maxwell = (1 + 523)%(1) - 2)F (56)
The scalar contribution to (p + p) is almost as simple,
(P + p)scalar = (] + 622)2L + 8‘5[_2MN + 2M/] (57)

However, it is best to modify the scalar contribution to the
pressure using Eq. (54),

—(D = 2)[(1 + 8Z,)J + 6&(D — 1)M]
+ (14 8Z))L — 26¢[M" + (D — 2)M'] — N,
(58)

(p)scalar =
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D—2
= (1 + 8Z)(===)M" + (D — )M’
(1 + 0225 M + (0 = 1]
2
—28éM" + (D —2)M'] + 5(1 + 6Z,)L

+ (D 4; 4)N. (59)

This final form (59) is quite significant because it precludes
In(a) contributions from the scalar at two loop order. This
is a key prediction of the stochastic formalism [1].

Stress-energy conservation provides an important accu-
racy check,

VA{QIT,,|Q) = —Had[(p + p) — p'
+(D =D +p]=0 (60)
Recall that a prime denotes differentiation with respect to
In(a), and note that the powers of 1/a we ignore should be
separately conserved. The Maxwell and scalar contribu-
tions are not separately conserved but the Heisenberg
equations of motion for SQED relate their divergences to

the expectation value of a field strength contracted into a
current,

V7 OQUT o [ D Maxwen

= = V{QUT 4 | V)catar

= —ie(1 + 62Z,)g"(QIF,,[¢*D,¢ — (D,¢) ¢]|).
(61)

Although we shall not give the derivation, it is simple to

evaluate (61) at the order e? relevant to this analysis,

—ie(l + 8Z,)g"’(QF ,,[¢"Dyo — (D, )" ¢]|Q)

eZHZD—4

(4)P
x [—% — 10+ 0@ D - 4)] + (D(e4)}. 62)

— —Haag{ (D - 1)

This is probably the right point to discuss finiteness.
Conventional renormalization only serves to remove diver-
gences from noncoincident 1PI (one particle irreducible)
functions. Composite operators such as F,,,(x)F ,,(x) and
the others require additional, composite operator renormal-
ization to remove their divergences. This is evident from
the divergence of expression (62). One renormalizes com-
posite operators by adding a series of counteroperators
which remove the divergences order by order in the loop
expansion [62,63]. As with conventional renormalization,
there are ambiguities in finite parts, which are resolved by
imposing additional renormalization conditions. There is
absolutely no reason to burden an already formidable
analysis by bothering with any of this. The stochastic
formalism which we are trying to check provides unam-
biguous predictions for the dimensionally regulated expec-
tation values of composite operators [1], so we may as well
leave the regulator on and verify these predictions.
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A related point concerns the stress-energy tensor. Unlike
the other composite operators, its expectation value is a 1PI
function of an enlarged theory; specifically, it represents
matter contributions to the 1-graviton 1PI function in
gravity + SQED. It must therefore be that divergences in
the expectation value of the stress-energy tensor can be
absorbed with the addition of purely gravitational counter-
terms which all degenerate on de Sitter background to
changes in the bare cosmological constant. This was shown
at two loop order in A¢* theory by explicit computation
[32,33], and the ability to change the result by an addi-
tional, finite renormalization of the cosmological constant
is evident in expression (50). For SQED this means three
things:

(i) Divergences in the temporal coefficient functions F

and L must cancel when they are formed to give the
full (p + p);

(ii) The parts of p which contain factors of In(a) must

be finite; and

(iii) The parts of p which are constant can diverge.

The first two facts provide more accuracy checks; the third
means that there is no point in working very hard to
determine the constant contributions to p because any
constant part of p can be subsumed into a renormalization
of the cosmological constant.

It remains to summarize what is already known about the
coefficient functions. The Maxwell coefficient functions
(45) take the form

2HD4
(4m)P/2

£ HP {ZF(D—I)
C @mPRITE+1)

% [E, In(a) + Ey + O(a~")] + @(e4)}, (63)

eZHD*4
(4m)P/?

D
F= (4?)0/2 {O + [F) + O(a™ "]+ (9(64)}'
(64)

The point of this paper is to compute the D-dependent
numbers E;, E,, and F;. They give the order
e2HP~*/(47)P/? electromagnetic contributions to p and
(p + p),

eZHD—4
(447)P/2

) _HP [ (D-4)T(D)
P)Maxwell = (47T)D/2{ 41—~(% i 1)

x I:—%(D ~ (D — 4)E, In(a)

2T(D — 1) 1
" DD-2)(D-3) g0~ DD~k

+ %(D —3)F, + O, D - 4)] + @(e4)},

(65)
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HD €2HD74
(,D + p)Maxwell = (47T)D/2{ (47T)D/2
x[?p—mn+@mﬂq+@w%

(66)
Note that Eq. (62) implies a relation between the coeffi-
cients E; and Fy,
1 1
g(D —1)(D—-4)E, + Z(D — 1)(D — 2)F,

O ES ~
— = 20+ 0D - 4) (67)

The stochastic formalism predicts [1],

__ 8rw-1y r_.( D D
= —are+ 1>r<§)[ *”(2 E) * ‘”(E 1)
— YD -1+ 111(2)], (68)
160D - 1) ~
=SS T O 4. (69)

So we can use Eq. (67) to infer what F; should be,

16T(D — 1)

F=—-0-7t0-9

+ O(D — 4). (70)
No comparable check involves E,, and we see from (65)
that £, has no physical relevance because it can be ab-
sorbed into a renormalization of the cosmological constant.

The coefficient functions (46) associated with the scalar
kinetic energy are [2]

_m [ T(D)
J_@wWJ re+n %
I'(D D
X F((%)) [—2ln(a) + WCOt<T)i| + 67,
(D) e2HD—4[ ero-1n
2r2+1)  @mP2L(D - 1)(D —4)
+zwﬂ+@mﬂl>—@]+@@ﬂ} 1)
[ — HP { e2HD—4[ 10 (D — 1) 8
(4m)P/2 4mP2LD - 1D —4) 3
+@m4J)—®]+@@ﬂ} 72)

Recall that §Z, and 8¢ are of order e2HP~*/(47)P/? and
are given in expressions (30) and (32), respectively. The
coefficient function M was defined in Eq. (47) and takes
the form [2]
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M= (45)1;/2 {F(?(%_) 2 [21n(a) - wcot(?)]
+ Szzr(?(ig_l)[—ﬂn(a) + 7rcot<%D>]
L LRI R
+ M+ 0@, D~ 4)] + (9(5‘)}. (73)

The constant M, has not been determined but it drops out
because only derivatives of M enter expression (59) for the
stress-energy tensor. Note that even the lowest order con-
tribution to M contains an infrared logarithm, so the € loop
result can have up to € factors of In(a), as opposed to only
€ — 1 in J. This is entirely in conformity with the rule that
each additional loop brings at most one additional factor of
In(a) [1]. The final coefficient function (48) is

SAHP =4 2I2(D — 1)
@mP2 T3

HD
N =Gl

~ 4mPn
X [zm@ _ ﬂ'cot(%D):Iz " @(eé)}. (74)

Because 8A in (33) is of order [e2HP~*/(4)P/22, the
function N does not affect the two loop stress-energy
tensor.

We infer the scalar contribution to the stress-energy
tensor by substituting these coefficient functions into ex-
pressions (57) and (59),

EZHD_4
(4)P/2
2D —1) 94
D-1)MD-4) 3

D —
(P)scalar = H {(D Z)F(D)

@mP2 1 2r@ +1)

X [0 X In(a) +

—4ﬁ+4mmko—®]+@wﬂ, (75)

8I'(D — 1)
(D—-1)(D -4

HD €2HD_4
(4m)P/2 { (4m)P/? [

+?+@mip—®]+mw4 (76)

(,0 + p)scalar =

Note that there are no infrared logarithms in (75) at this
order. Note also that (76) obeys the partial conservation
identity (61) and (62), which represents an additional
check of the two loop scalar stress-energy calculation of
Ref. [2].

V. THE TWO LOOP GAUGE FIELD STRENGTH
BILINEAR

Three diagrams contribute to the vacuum expectation
value (VEV) at two loop order. They are depicted in Fig. 1.
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FIG. 1. Two loop contributions to (Q|F,,(x)F ,,(x)|).

A. The counterterm diagram

The diagram on the far right of Fig. 1 derives from the
photon field strength renormalization. Covariance and in-
dex symmetries dictate its form,

I.. = 4i5Z3dex/{a[#i[V]Aa]++(x§x/)

X ’_gl[g/aﬁg/yé _ g/aﬁglﬁy]
X v/yvga[pi[(,]Ag]++(x§x/) —(+-)} (77)

where V', stands for the covariant derivative operator with
respect to x'#. To evaluate this diagram we first interchange
the order of covariant differentiation in the term propor-
tional to g’*® ¢’#7 and then use the Lorentz gauge condition
to get

V _g/[g/aﬂglya - g/aﬁgl'gy]vlyvisa[pi[U]AB]+1(x§ x')
= V _g/[gm'gD/ - Rlaﬁ]a[pi[,r]Aﬁ]+i(X; x').

Now we use the appropriate Schwinger-Keldysh general-
izations of the propagator Eq. (20),

V=gl — RPIL, Mgl (i)

=id626P(x — x) +

(78)

_glgmﬁalﬁa(riA++(x§ x), (79)

V=gl = RePUL, gl () = 0.

The antisymmetrized derivative with respect to x” makes
the second term in (79) drop out, so the result for the far
right diagram (77) of Fig. 1 is [cf. Equations (37), (39), and
(40)]

(80)

I, = —46Z, ]de’a[Mi[V]AaLJr(x;x’)a[pé‘f‘r]é’)(x —x)
= _5Z3ij£{aualpi[VA0']++(X;xl)

BT Ay () + 0,38, ] ()

- ap,airi[VAp]Jr+(x; xl)}

2SZ3H2[2A/(0) - k](g,upgmr - g/urgup)

= _823 X <Q|F,uu(x)Fpa-(x)|Q>oneloop'

1)

From expression (55) we see that the contribution of I, to
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the stress-energy tensor is exactly canceled by the contri-
bution from 6Z5 times the one loop result.

B. The figure 8 diagram
The middle diagram of Fig. 1 is

I, = —8ie? [ dP ¥y~ g ol A o] + (33 )
X il A gl (1) — (+ g PiA (s 1) (82)

Making use of the outer leg identity (27) transforms this to

I, = m/dl) ' —g'IA( XK' (y4 )]
Y )
_ B
(+ )}a [ 9xloxa®  axBoxle gxe) 83)
Now use the contraction identity [2,61,64],
92 %y dy 9y
—y lap 18 o = 4H4g1/0' 2 v a0 (84)
oxYox'® Ix'Pox Jax¥ ox

The final term drops out owing to the antisymmetrizations,
so the middle diagram becomes

—2ie

je® — dy dy

— D/ | o/; /o ! -

]oo (D _ 2)2 [d X 8 ZA(X 5 X aX[IJ’ gV][a' axp]
XK' (y++)F — (+—)}

—Zle

K(y ). (85)

X ax—[MK(eri)gv][O' ax p]

From Eqgs. (10), (11), and (17) we can read off the coinci-
dence limit of the scalar propagator,

iA(x';x") = A(0) + 2k1n(a’)

_ HP2 T(D-1)
 (@4mP2 TG
X [— cos(% D)F(?)F(l — g) + 21n(a’)].
(36)

We will see that the leading logarithm contribution E;
derives entirely from the 2k In(a’) term in the integral (85).

C. The two leg diagram

The far left diagram of Fig. 1 is the most difficult in any
gauge. To simplify it we must derive new identities for
contracting adjacent basis tensors into one another. Let us
first make the following definitions for the three coordinate
separations and their associated length functions,

Axt = xt — x'* =y = y(x;x') = aa’ H?Ax?,  (87)
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Ax'# =yt — X =y = y(x';x") = a'a” H2Ax?,
(88)
Ax'"™ = xt — X't =y = y(x;x") = aa’ H*Ax'?. (89)

The three fundamental ““adjacent” contractions we require
are

0 ay’'
8T = HM2y 2y =y =2y 0)

2 ay' d ay"
B H2{<2 — ) - 2i}, 1)
IxH dx!P ax axH dxH
azy Ipo azy’ = — hﬂﬂ_ zﬂ 9y’

IxHax'P ax'79x" axtax'" ax* ox'"’

92)

For x'"* — x* these relations degenerate to the well-known
identities [2,61,64]

Y pe 9

axr PTG = (4 — y)yH?, 93)
2 0 0
Y g S =2y, (94)
axlu’axlp ax ax”'
2
azy laB 9%y = 4H4 g2 ady a_y (95)
ax’ox'® ax'PaxT Eva ax¥ 0x7’

Note that the last of these is just the contraction identity
(84). The contractions on the “other” site x” are trivial to
obtain from these by interchanging x’# and x"#, which
interchanges y and y”, while leaving y’ unchanged. Two
other useful identities are

9
V,—y=H*(2—-y)g,, and Oy= D@2 - yH?

Y oxt
(96)

where V,, is the covariant derivative and [ is the scalar
d’ Alembertian.

We are now ready to tackle the leftmost (two leg)
diagram of Fig. 1,

=323 ()) [yl 8. (i)

% [de// [_g//a[pi[U]Ay]Jri(x;x//)g/aﬂg//ys
XADgiA s (3 XA (")
- iAtr(xl§x”)algagiArt(xl§x”)}- O7)
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The Lorentz gauge condition (21) allows us to partially
integrate the a'ﬁ so that the inner loop consists of just a

single term,
1=160 3 (£)(=) [ Pyl AL ()

X '[de”\/ —g”a[pi[a]Ay]Jri(x; x'")

X g’“ﬂg”y‘sa’BiAii(x’;x”)a’éiAii(x’;x”) + O(a™).
(98)

The surface terms we have neglected can only involve the
initial time surface in the Schwinger-Keldysh formalism
[65]. As explained in Sec. III, these surface terms fall off
like powers of 1/a and play no role in the check we are
making of the stochastic formalism. We shall consistently
ignore them.

Expression (98) is already a significant simplification
because it means we do not have to worry about either the
undifferentiated logarithm term or the local contribution. It
also simplifies the tensor algebra. The next step is to act
with the derivatives on the two inner loop propagators and
expand,

IpiA .« (s X")FIA L 1+ (x5 x")

ay’
ax//ﬁ

ay’  ay'

— AR ()
A (y)(:)x/ﬁ axlIS

+ kHa’S%A’(y’)
150 gy 0 277211180 S0
+ kHa" 63A (y)ax—/ﬁ-i-k H4d'a 5555. (99)

The term proportional to k> drops out in the polarity sum,
so we really only have three terms from the inner loop.

Let us define I[f(y)] as the indefinite integral of f(y)
with respect to y. By making use of the identity

8 a 2 27 ayl ayl 2
ax? g | A= 5 gAY
azy/
+ WI[A/(YWI (100)

we can rewrite Eq. (99) as
il + o+ (s X")5IA L+ (x'; )

0%y ) o 9
== I[A/ (yl)] + (:).XlB ax/,5

axlﬂ axllﬁ
d
o8 Lk a"83A'(y")]

[k*In(a’) In(a")].

PIAR("]

0
+ s kHa SRA' ()] +
d d

axlﬂ axl/ﬁ

(101)

Observe that when Eq. (101) is inserted into Eq. (98), all
terms but the first vanish upon partial integration as a
consequence of the Lorentz condition (21), again up to
1/a surface terms. With this, Eq. (98) becomes
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_ —e DI It
I E ) (* [d x'a]—g'K -
(D_2)2H4ti( )( ) g ()’+,)

dy 82y
D .1l | 1!
fd K axln ax”]ax’“g

82 ! 9y 32 "
58" sy X [TAR0)]

axle axolax!r

laf

(102)

where we used the outer leg identity (27) twice.

Note that one can add an integration constant to the first
term in (101): I[A?(y')] — I[A”*(y")] + ¢,, provided the
appropriate change is also made in the second term,
I[A%(y")] — IP[A”(Y')] + ¢;y'. We have just seen that
I’[A”%(y")] in (101) can be partially integrated to zero as
a consequence of the Lorentz condition (21), up to 1/a
surface terms. Hence it must be that any constant term in
I[A”(y")] must fall off like powers of 1/a.

Equation (102) can be further simplified by making use
of the identities (84) and (91) and the antisymmetry in u
and v and in p and o to obtain

862H2 / /! //
T D- 2)22( )= )/dD 8 [dD ax[“

DAY )]+ O™
(103)

X K(y++)gy][a KON

We shall often encounter integrals of this general form,

S j a> =g -2 K )

]dD //

Our basic strategy for evaluating them is to extract
d’ Alembertians for the y’-dependent terms using the pro-
cedure described in Appendix A. In addition to
d’ Alembertians, this procedure will generally also produce
a delta function and a finite remainder for which D can be
set to 4,

— K(") X F(y'). (104)

D/
F(') = 77 [G0N] + const X 82(x' — 2) + R(Y).

(105)
|

MA'()] =

_HP Fz(g){ 1 (y_’)1—0+ D (y_’)Z—D+
@mP 4 |D-1\4 D—2\4

_D+6 T(D+1)
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We partially integrate the (1’ to act upon K(y), ignoring the
order 1/a surface terms. To see the effect of acting [’ on
K(y), note first that, up to delta function contributions
arising from factors of y! =2/,

D/
?f(y) =@ =yf"y)+ D2 —y)f'(y.  (106)
In view of relation (16), and the coefficient of y!~(P/2) in
the expansion (15) of K(y), we have

2D —2)

Py i8P(x —

H ko= - ) + (D — DK()

H
ml

and K(y+ )= (D = 2)K(y). (107)

Hence the general reduction (105) will produce four sorts
of terms:

(1) A less divergent, 2-vertex integral from the factor of

(D = 2)K(y) in (107);
(2) A potentially divergent, 1-vertex integral from the
delta function in (107);

(3) A potentially divergent, 1-vertex integral from the

delta function in (105); and

(4) A finite, 2-vertex integral from the remainder R(y’)

in (105).

Our strategy is to extract another d’Alembertian from
the type-1 terms and continue in this way until the limit
D = 4 can be taken in all 2-vertex integrals. Appendix C
explains how to evaluate these. It turns out that the 1-vertex
integrals of type-3 can be usefully combined with the
figure 8 diagram (85) to cancel an overlapping divergence.

Note that the integral (103) is symmetric under the
exchange of the inner legs, x’ — x', under which y < y”
and y' < y'. Because the integral is quartically divergent, it
suffices to keep the three most divergent terms in the
expansion of I[A”%(y’,..)]. From

HP=2 | ad F(n-i—%-i— 1) vy n—(D/2)+1
AG) = @mPr2 4{ ,,; T(n +2) (Z)
I'n +D — 1) fy\n—1
+,§1 T(n+ D) @)} (108)
we find

D(D + 1) (y\3-D 4I'(D) y\1-(D/2)
2(D - 3) <Z> IrQre+1)mo -2) (Z)

D(D + 1)(D + 2) (y'\4-D
so- (1)

Note that the terms of the order y"*~2, y2~P/2

" D-4TOr2+2)

\N2—(D/2)
(yZ) + @(y/57D’ y/3fD/2’ y/l)}' (109)

or higher in Eq. (109) are suppressed by (D — 4)!. We are now ready to

extract d’ Alembertians from I[A’(y’ )2] deﬁned in Eq. (109). Making use of relations in Appendix A, we obtain
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HPP=4 1T2(D) 0 2 "\2-D 2(D+ 1 \3-D \1-(D/2)

e O S GRS Oy
4m? 4 |H*L(D - 1D -2)2\4 (D — 1)(D - 3)(D —4)\\4 4

+w%%&?®Q®Q$—w_6b_®X®“D

2 D(D —2)(D + 1) 4 I'(D) y\2-(D/2)
D- 4<2<D ~DD-3)D-4 D-2TOTE+ 1))(‘) ]
2(D + 1) @mpr2 500 — x)
D —1)(D-3)(D-HTEC-)HHP' " "
DD+ 1)(D+2) 6D+1)( 4 D y_’ 4=D
o9 =5 "o-vo=5" -3)\3)
~D+6 T'(D+1) 4 D+2 DD+1)D-2) 4 I'(D) y\2—(D/2)
[ D—-4TERrE+2) 2 (2(D -DD-3)(D-4 D-2THTE+ 1))]<_) }
(110)
When inserted into the integral (103) the last two lines in Eq. (110) result in the finite, type-4 integral,
I = H2D 2 Fz( )Z(+)(+)/de’a’D[dDX" ”D—K( ) K( )
fin, 1 2(4 )D < — )= Y+ gv][(r y++
X [101n<y*f) + 0@, D- 4)], (111)

where we dropped the order D — 4 terms as well as an irrelevant constant. The delta function in (110) leads to the type-3
integral,

., HP™2 ré-nm+1) y
Tt = i€ b m (b= (D = 3)D = 4)Z(+)fd0 D—K(y“)g”][" KOs (12)

The d’Alembertian terms, Eq. (110), produce a type-1 integral,
sz 2 ;
1= e T ((F - )X [ [aren e ke o KO
% [;G*)z b 2(D+1) (<y7>3 D <X)l_(D/2)>
(D= 1)(D—-2)*\4 (D — 1)(D —3)(D — 4)\\4 4

(D%ZZJZQ[_@%ﬁ;D—4Y+ﬂ5%3JGD4D

2 DD —2)(D +1) 4 I'(D) "\2-(D/2)
~B-9l30- 0305 D TOre@ + 5l L (>
and a type-2 integral,
o= o (O - S a7
2 y\2-D 2(D+ 1) y\3-D y\!1-(/2)
X[w—4XD—2VG) ‘+w—wxD—$urﬂn«ﬁ _<ﬁ )
2(D+1) _ 4 N D y\4-D
(D—M@—@[(D—D@—M %D—@Kﬂ
2 DD —2)(D + 1) 4 (D) 20/
_D—4bw—»ww<m0—®_D—zr®ng+nkg .. (1
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We have seen that the total integral (103) breaks up to the sum

I = ‘Ifin,l + Isg,l + Isg,Z + Il + (Q(Clil).

(115)

The next step is to extract another d’ Alembertian from the y’-dependent terms of Eq. (113). The result is

I=—e fﬁ)lf r(G)NE - )E @@ [any=g [any=g Ko g, Ko

8 {%[(D - DD — 2)421(D —3)(D —4) ((%)*D - %)HM))

RrENG : D - 6) (- D - " = ;><Z)4 D

RCER & 3)(D — 47 (DIi A ”)( )2 (Dm]

2 (4m)P/?
"O-1DD-2D - 30D~ I'&)a'H)P

20 36 23 5 0y
_ + _ =~ Z )14+ = 2( 7 + _
3D—42 9D -4 27 51“(4) 3 (4) oD 4)Li’

i8P(x' — x')

(116)

where we expanded the terms in the last line in powers of D — 4. Just like T in Eq. (115), I, can be decomposed into four

sorts of integrals,

Il = ]fin,Z + Isg,3 + Isg,4 + ]2 + @(Clil). (1]7)
The contributions of type-4, type-3, and type-2 are, respectively,
H*=2 _(D\ (D ] ]
) =~ = D ./ 1D D /1 /1D v i
Tinr = =555 ~ )@ [arwa? e Ko, ;o Kot
Vi 10 <y++) 1 :I
x| - + —In +
[ IOIn( ) ) 31 4 O(a',D —4) (118)
, HP™2 24 - ) 3
JTo3=— 2 +de'— 8o 77 K02), 119
and
HZD 4 2 D D / 9
I§g4 (4 )D (5)§(i)[d Xy (9 ['u I{(y+“')gy:|[o-‘3 ol

X {<D “ DD - 2)‘2‘(1) ~3D-4) (G) - @HDM)
4—
"= 1><Df4>2<o—6>(_<0f2>2 +D+§)< ) ’

“D-DD : 3D — 47 (Dlz ;AP ”)G)Z_(Dm}g

The type-1 integral is
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H2D- 2 ( )Z(+)(+ [dD ’H/dD ”

— _,2
12 e (47T)D

PHYSICAL REVIEW D 78, 043523 (2008)

9
K(y++)8ujfo — P TGS+

3[#

8 {(D R 2)j(D —=3)(D —4) [(D - 4)2(D —6) %(%)4 T+ ﬁ %%)2 (D/Z)] ! ﬁ

35 8 2 Y\ 2. (Y
- 4+ —+ZIn[= ——12<—>+(9D—4} 121
oD —4) 27 3“(4) i) T OP Yy az1)
This time there is no type-3 integral,
Iy,=1Tys+ Ins + Igpa + O(a™). (122)
The contributions of type-4, type-1 (with D = 4 taken), and type-3 are, respectively,
H2D—2 D P
Tin = ¢ 3o T(5) ) [arxa® [dovram K g, KO
8 /++ 8 ++
X [g ln(%> ~3n <y4 )+ O, D — 4)] (123)
and
, HP72 D -2
Tins = =€ 5y T(5) S [arxa® [aara® ko g o K04
X [g 1n<yzi) 2 ( ) (a',D — 4)] (124)
and
HZD 4 ) b / 9
—+ _
IsgS (4 )D4(D 2)F< )Z( )fd g a (y+ )gu][a'a ol
8 1 y\4-D y)2—(D/2):| }
X = + (= . 125
{(D o= =I5 6(4) G (129

The finite, 2-vertex integrals Jg, 1, T2, T3, and Jg, 4 in Egs. (111), (119), (123), and (124) can be summed to give

SLE2D2
(4m)P

/
X KOy, [m(yzi) + 0@, D — 4)]

Tiin = Tginy + Thno + Tpins + Tgina = —2

In the last line we expanded around D = 4 and made use of
Eq. (15),

(128)

In Appendix C we evaluate the integral (127). The result
(C35) is a de Sitter invariant which does not contribute a
leading logarithm,

2 Z(+>(+)fd“ o [ atwan( i ) ( 0 1 )m(y/ £)+ 0.0~ 4),
—e X a
1287 Ay )8\ g v )N

D d
1'*2(5_ 1>Z(i)(i)[dD X! /D[dD ! 411D K(y+ )g”][Ua .
(126)
(127)
[

HD e2HD—4

fin ™ (47T)D/2 (47T)D/2
X {=2 X gulp8olw T O@@',D—-4)}) (129

We are now going to evaluate the 1-vertex integrals I, ,

(n=1,2,...,5). In order to do so, we shall need the basic
integrals
= foeeleli) ()]
4 (130)

(n = 17 2«' 3))
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W, = [ dPx'a’ 1n(a')[1n"(y+T+) - 1n"(y+T‘)] o

(n=12),
Bo = [dD ' /D[<Y++) a _<yTT_)w],
- farvamml(5) - (5) }

The Y, and W, integrals are evaluated in Appendix B. In
the asymptotic regime when a — oo, these integrals are
given by Eqs. (B29)—(B31) and by (B32) and (B33). The
E, integrals can be found in Appendix B 3, Egs. (B41)—
(B51), while the A, integrals (@ = D —4,D —3,D — 2,
D — 1) are in Appendix B 4, Egs. (B53)—(B58).

Recall that the single leg integral (85) and (56) is

-Ioo - -Ioo,sg + Ioo,fin:
HP™2 2cos(ZD)I'(D —2)T'(1 —2)

(132)

= o2
Joo = ie amPr D=3
d
D /
X Z(+)[d a [M K(y++)gv][(ra ol
X K(ys+)
HP=2 4AT'(D -2

Ioo,fin = _lez ( )

@mP2 (D -2IH)
X Z(i)[de’ -g ln(a')iK(y +)g
4 ax[“ ++)8v]o

K(y;s) (134)

aﬂ]

The singular part of this integral J,,,, can be combined
with the singular one leg integrals J; and I3 in
Egs. (112) and (119) to yield

:-Ioosg+]sg1 +]sg,3

.y (Z:-))Dz/lez{Zcos(z )F(D 2)F( ?)

-Isg,A
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where K(y,+) is given by Eq. (15). The terms in curly
brackets can be expanded in powers of D — 4. The result is

5+ (D - 4)(—4 - % - —'yE) + O(D — 4)). (136)

5
2

This means that the most divergent contributions from the
two left diagrams in Fig. 1 cancel. This is an example of a
general phenomenon of cancellation of overlapping diver-
gences and simplifies our calculation considerably.

A further simplification is facilitated by the identity

dy dy
dx* oxP f( )=

—H?g,,2 = WI[f1y) + V,V,Pf1)

(137)

where I[ f](y) stands for the indefinite integral with respect
to y. By making use of this identity and Eq. (136), we can
express the integral in (135) in terms of two relatively
straightforward integrals as follows,

D
Isg,A = - ez(éliwl) 1_ 2{2cos<2 )F(D 2)
D D]"(Q_ 1)
X F(l - 5) - m}
X [gﬂ[pga]yZ(i)[de/‘/_g/(z )
\Y \Y
XI[(K/)Z](Y+r) _%

(138)

x 3 [ @ =g P |

In order to accurately extract both the divergent and
finite contributions from this integral, we shall keep the

DF(D — l) + D ../ ID
" D-3)D-4a) 4) ( ) | dPx D dimensional form of the terms in K up to y*~2/2 and y?;
in higher order terms y” (n = 3), we set D = 4, since these
X K(y,+)g, o K . 135 yield contributions that are suppressed linearly in D — 4.
G+s)g I Ges) (135) Making use of Eq. (15) we find
|
K'(y) = H*7* (D —2) 2)2 (_) {(X) . D - 4)<X)'*D N D?>—71D +38 (X)H’ 4ar(p —2) (X) (D/2)
VT mP T a 4 4 2 4 e -Dre+1n\4
D(D —2)(D —7) (¥\3~ I'o—-1) y\!1-(D/2) _ _
+ =) +([D+8 = + OO P,y (P2 40, } 139
o (4) ( )r(%_l)r(%+2)(4) 0"y ) (139)

from which it follows that
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2 = PIK"?](y) = ZZD): 4D - 2)2F2< ){Z(Dl— ) \4 (y)H) * [Z(DD_—42) D 1— I]G)H)

e e N O

DD —2)(D—7) D*—7D+87y\*> [(D—2*D+38)
[ 12(D — 4) 20D — 3) ](Z) * [W 2D + 2)]
I(D—-2) (y\2-©/2) b s
“rorgeal) o) (140)
and
’ H>P 1 y\*P (D —4) Y3-D  D>—7D +8 [y\4D
PIKP]() — = — 4D — 2)2r2< ){(D D= 2)( ) T (Z) D=3 =3 (Z)
8T(D — 2) Y\2-(0/2) o
(D~ HTOTE + 1)(1) OGPy Y )}- (141)

When these expressions (140) and (141) are inserted into Eq. (138) and one makes use of the integrals (B41)—(B51)
evaluated in Appendix B 3, one arrives at the following expression for I, 4 (138),

Tgs= ﬂgn(l)){cos( )F(D — 1)r( 9) ~ M}

(477)31)/2 2 2) (D-3)D-—4)
x{ [ 1 = +<D—4 1 ): (D2—7D+8_D—4>:
Sule8ol| ap—1)7P ' " \a(p=2) D-1)7P? 4D—-3) D-2)7P
2I'(D —2) D(D —2)(D—7) D?>—17D + 8\ (D —2)*D +8)
T =+ — = = = = 7T _2D+2
rQre+ 1)~ ( 12(D — 4) 2(D - 3) ) b ( 2(D - 4) ( )>
I'(D - 2) - :| n V[Mg,,][(rvp]l: 1 - n D -4 -
TR +2) P22 H? DOD-1)D-2) P 2" Db-2D-3) "3
D*-—7TD+8 _ 8I'(D —2)
+ Ep_s+ = 142
2D-3)D-4 " (D-4Hr@re+1) Ewp)- 2]} (142)
Recalling that the operator
V8o Vol _ 250 0 24 d
"‘TZP a 5 y][oép]a a7 g#[pg,,],,a%, (143)

Eq. (142) can be evaluated and expanded in powers of D — 4. Here we provide an intermediate result, which also shows the
terms linear in (D — 4),

Iy, = HzD 48r3(D)[ (WD)F(D B 1)F< 9) &]{gﬂ[,}g(r]y[r(m D—6 6

(47T)D I'(D) 2 (D — 3)(D 4) F2(D) 2(D - 3)(D 4-)
13 19 .
+(D— 4)( D) + D@+ + E)] @80, 81,80 (D - 4)(ln(a) )} + O, (D - 4)).
(144)
The final result is
_ HP _ eHP200(D - 1) 4 _
.Isg,A = (477)]_)/2 (47T)D/2[ D—4 —72—5772]81#[,,80];/4- (9((1 I,D—4). (145)

The second part of the singular contribution to the one leg integral is the sum of Egs. (114), (120), and (125),
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Isg,B = ]sg2 + Isg4+ IsgS

L L S P X

% {m <§)2_D " (D - 2)(02? 3)(D—4) ((2)3_13 - (%)1_(1)/2)) " (D — 2i(DD—+4§zD —6) (2)4_D

_ D 8 I'(D) y\2-(2/2)
+|: (D—=3)(D—-4) i (D-2)(D—-4)THIrE+ 1)](4) Li’ (146)

This can be expressed in terms of the (), ; integrals evaluated in Appendix B 5 (as usual, the expression below is
antisymmetrized in both pairs of indices [u, v] and [p, o),

., H3DP76 D\..(/D 2 D—-2
-Isg,B = —le W8r2(§>r(5 - 1)8»[0{m[QD—2,(D/2)—1 + 2 QD—Z,(D/Z)—Z

D(D - 2) (D -1) DD - 2)(D + 2)
+ TQsz,(D/2)73 - F(g — 1)I‘(§ ) D-2,—1 48 QD*Z,(D/2)74
I'(D) 2D
- TC—DIC+2) D-2 2] + (D =2)(D = 3)(D - 4) [(90—3,(1)/2)—1 = Qp)-1,0/2)-1)
D-2 D(D —2)
+ Qp-3/2-2 = Qp)-1.0/2-2) + ———— Qp_31/2-3 — Q1/2)-3.1/2)-1)
I'D-1) @ _a )] D(D +2)
CT@-Dr@+ 1) P RO T (D —9) (D — 4)(D - 6)
(D —-2) D 8 I'(D)
X N o+ , L+ - +
[”D s/ Ty Boson) 2] [ (D-3)(D-4 (D-2D-4HTRrE+ 1>]
D —
X [Q<D/2)—1,(D/2)—2 + Q(D/z) 2.(0/2)- z]} " (147)
plu
The result is
1 H2D L8 OIr@ -1 { [ (D) 1
w8 = 4m)p (D) AeSr I TR — 1) 3D — 10)(D — 3)(D — 4)

(_ 2-5D+2 N D(2D —7) ) 1 3
20-1)(D—-2) (D—-3)(D—-4)) 2D—-4)
67 97 191 5772
+ (D —4)-3In*@) +(——+—=)In —+ 1
(0 =4 =31 (@) + (27 ) nta) — 2+ + 2~ 1820))
145 1372
a8 g,1,80,(D 4)( An’(a) + ? In(a) — ?5 + 36—“>} + 0, (D - 47). (148)
Upon expanding this in powers of D — 4, one obtains
HP e2HP48I'(D — 1) 40I(D — 1) 67 2
Typ= - +——= 2] + O(a!,D — 4). 14
seB = (072 (4Pl [ D_4 D-DD-4 3 37 [t T Ola ) (149)

What remains to calculate is the integral (134). This integral can be expressed in terms of the A, integrals (B52). First,
we make use of Eq. (137) to write (134) as

D
Lo = i€ G (40( i 2 [y ) g0, 3 [ a2 )
vV
MC.Ulad) Z<+) [ =g y1e.. | (150)
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Second, we make use of Egs. (140) and (141) and the definition of A, integrals (B52) to obtain [cf. Eq. (142)]

H3D 4
Ioo,fin -

D -4

(4 Gy 6T - 1)r<§){gﬂ[pgg]y[2wl TR (2(1) =5 L 1) Apos

(DZ{J? L T R G R P
(P 20+ ) o o2

o (o=t B =5t 2(]1)32—_ 55 =8 o

e ]

This can be evaluated by making use of Eq. (143) and Egs. (B53)—(B58). Keeping the terms up to order (D — 4), we have

_ 2 161%(9) I'(D) 1 D—6 2D -3 3 3
T =€z 51 (ko [P o mm a7 " o ) e 1)
+ (- 4)(- () + —1n2(a) + (ii 20" )1 () + % - 7% + 4g(3))]

o) 1 119 272
+ a*s! 50[— -2+ (D~ 4<12 —1 )]}
oA TR Do - -4 PTG T
+ O(a™',D —4). (152)
Upon rearranging the divergent contributions and dropping the O(D — 4) terms, one obtains
HP e?HP~4 16I'(D — 1) 40I'(D — 1) 104 16
.= X — + - - J 47
.Ioo,fm (47T)D/2 (47T)D/2 {[( D—4 16) ln(a) (D — 1)(D — 4) 3 3 wu ]g,u[pgo']v
16I'(D — 1) _
- X a%§? 80}+(9 I,D —4). 153
(D _ 1)(D _ 4) a [/LgV][O' p] (Cl ) ( )

Summing the integrals (81), (129), (145), (149), and (153) we finally get

<Q|FM,,(X)FPU(X)|Q>two loop —

IC.L + -Iﬁn + Isg,A + Isg,B + Ioo,fin + (O(ail) = _523 X <Q|Fp,y(x)Fpo-(x)|Q>0ne loop

oG

12
303

This corresponds to the following values for the
D-dependent quantities £, E,, and F defined in expres-
sions (45), (63), and (64),

1=—%+16+@(0—4), (155)
-~ (4m)P/2 2T(D —1)  8I(D —1)
Br= m0n X g X oy T - ey
_ 20— 1122,
D-nD-4 3 37 0P
(156)

2
]g#[pga]v - (

16I(D — 1) 8O(D — 1)  200(D — 1)
D—4 16]1n(a) Y o=ar " D-nD-4a)
16I'(D — 1) B
m X 61250 gu][u’ p]} + (9( 1 D 4) (154)
[
~ 160D - 1) -
F=~pono_a o0 4). (157)

Our result for E; agrees with the stochastic prediction (69)
[1], and our result for F; agrees with the prediction (70)
based upon conservation.

VI. DISCUSSION

By substituting (155)—(157) into expressions (65) and
(66) we obtain two loop results for the field strength
contributions to the pressure p and to (p + p),
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eQHD74
(47T)D/2

) _ HP {_(D—4)F(D)
P )Maxwell (47T)D/2 4F(% + 1)

1o -1 1
+ 0D 4]+ o) (158)
HD €2HD_4
(p + p)Maxwell = (477_)D/2{ + (477_)]_)/2

_ 8r(b-1) 8
[ D-1D)Db-4) 3

+ 0@ D - 4)] + (9(34)}. (159)

The In(a) term in (158) agrees exactly with the stochastic
prediction [1]. Together with the two loop results for the
expectation values of (D, ¢)"D,¢ and ¢*¢ [2], this con-
stitutes an impressive verification of the stochastic
formalism.

Note that we have not bothered to work out the terms
which fall off like powers of 1/a. Just as for the stress-
energy tensor of A¢*—expressions (50) and (51)—these
terms are separately conserved and play no role at late
times. It has been conjectured that the 1/a contributions
can be subsumed into a perturbative correction of the initial
state [33]. Such a correction is in any case inevitable
because a free vacuum cannot be a very realistic initial
state of an interacting theory.

We have also not bothered to renormalize the composite
operators F,,F,,, (D,¢)'D,¢, and ¢"¢. Recall that
conventional renormalization only removes divergences
from noncoincident 1PI functions. One would need to
additionally subtract a series of counteroperators from
F,,F,, and the others to remove their divergences, and
there would be the usual ambiguities about the finite part
[62,63]. This is neither necessary nor desirable. The sto-
chastic formalism, which it was our purpose to check,
makes unique predictions for the leading logarithm con-
tributions to the dimensionally regulated expectation val-
ues of the three composite operators [1], and these
predictions agree in each case.

Accuracy is always an issue in such an intricate compu-
tation. Our result essentially consists of three numbers: E;,
E,, and F;, which were defined in expressions (45), (63),
and (64) and reported in (155)—(157). An obvious check on
E, is that it agrees with the stochastic formalism for which
a compelling and independent theoretical justification ex-
ists [1]. A powerful check on F; is provided by partial
conservation within the electromagnetic sector (61) and
(62). No direct check exists for E, but it was of course
computed using the same reduction strategy and many of
the same integrals that produced correct results for £; and
F,.

PHYSICAL REVIEW D 78, 043523 (2008)

Combining the field strength contributions (158) and
(159) with the corresponding scalar results (75) and (76)
gives the total for the stress-energy tensor of SQED (49),

€2HD74
(4ar)P/2

30(D - 1)
(D —4)

D
(P)SQED = 1 {F(D)

(4m)P2 12I(D)

X [121n(a) - + 33 — 472

+ 0@, D - 4)] + @(e4)}, (160)

HD
(p + P)sgep = ——57

(47T)D/2
<o+ S ople + O™ D~ 4)]

+ @(e4)}.

eZHD74

(161)

Note that the divergent field strength and scalar contribu-
tions to (p + p) have canceled. This is required by the fact
that the expectation value of T, gives the matter contri-
butions to the 1-graviton 1PI function in gravity + SQED.
Hence the expectation value of T, can be renormalized by
purely gravitational counterterms, and all of these degen-
erate to constants times g,, on de Sitter background.
Because the expectation value of T,, takes the form
P&uv + (p + p)a*89 89, we see that expression (160) for
p can contain divergent constants, but the In(a) terms in p
and all of (p + p) must be finite. Because the constant
contribution to the pressure can be absorbed into a renor-
malization of the cosmological constant, this term has no
physical significance—which is reassuring because it is the
least well checked.

Although this exercise was undertaken to check the
stochastic formalism, our results (160) and (161) have
considerable physical interest in their own right. After
many e-foldings the In(a) contribution to the pressure
(160) must dominate, and we see that SQED induces a
growing, negative vacuum energy. Note that there is no
simple renormalization group interpretation for (160) and
(161) in terms of some time-dependent, running coupling
constant, just as there is none for the similar time depen-
dence of the VEV of the stress tensor of massless, mini-
mally coupled Ag* [66]. This is obvious from the fact that
the zeroth order energy density and pressure are indepen-
dent of the coupling constant, while the stress tensor is
unaffected by field strength renormalization. The physical
interpretation of our result (160) is instead that the vacuum
becomes polarized by the inflationary production of
charged scalars. Just as a dielectric slab will be drawn
into the region between the plates of a charged capacitor,
the production of additional scalars seems to be favored by
the electric fields of those that came before.
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It is natural to wonder how far this progresses, both at
higher orders in the loop expansion and in time. Recall that
the two loop In(a) derived entirely from the field strength
contributions. That is not true at higher orders; however,
only the field strength contributions act to decrease the
vacuum energy [1]. At € loop order, one gets € — 1 factors
of e?/(47)?, and there can be up to £ — 1 factors of In(a)
[1]. The leading logarithms at all loops become order 1
after In(a) ~ (47)%/e? e-foldings. At this point perturba-
tion theory breaks down and one must employ a nonper-
turbative resummation scheme to evolve further. It was to
solve this sort of problem that the stochastic formulation of
SQED was developed, and the answer is known [1],

3H* A
lim p(¢) = 0.6551 X 5~ o X 0.2085 X GH?>.
—o0 87 8

TG

(162)

Here A = 3H? is the bare cosmological constant and G is
Newton’s constant.

Note that there is no simple renormalization group in-
terpretation for the late time limit (162). Because scalar
QED runs to the trivial fixed point in the far infrared, the
renormalization group prediction would be (160) with e>
set to zero, just as would be the case for the coupling
constant of massless, minimally coupled A@* [66]. The
failure of the renormalization group prediction is even
more evident when one examines the highly non-
Gaussian expectation values of other quantities using
Egs. (171-172) of Ref. [1]. What we are seeing is not a
renormalization group flow but rather the effect of infla-
tionary particle production filling an initially empty uni-
verse with very long wavelength, charged scalars.

Although (162) is a nonperturbatively large decrease in
the vacuum energy, it is suppressed by GH? relative to the
vacuum energy of the bare cosmological constant. The
largest value of GH? consistent with the current upper
limit on the tensor-to-scalar ratio for anisotropies in the
cosmic microwave background is about 107'2 [67], so
(162) does not represent a significant decrease of the
vacuum energy. On the other hand, it is an enormous
amount of vacuum energy by current scales. Further, the
shift is dynamic; it was caused by inflationary particle
production and it would presumably dissipate, on some
time scale, after the end of inflation. This may well have
important consequences for cosmology [23].
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APPENDIX A: EXTRACTING D’ALEMBERTIANS

Here we list the results of extracting the d’ Alembertians
from powers of y/4 which reduce the degree of divergence
by 2.

When a d’Alembertian acts on a nonsingular function
F = F(y), one obtains (106),

%F@) — (4 — y)yF'(y) + D2 — YF'(y).

(AD)
(A nonsingular function F of y = y(x;x’) is a function
which, when expanded in powers of y, does not contain
the power y!'~?/2.) Equation (A1) is helpful for establish-
ing the relations

I P ) N e () I

(e # D/2), (A2)
D y 1-(D/2) _ (47T)D/2 1)) o
el - e nwap Y
D(D — 2) (y\I-(0/2)

For example, for « = 3D/2 — 3,3D/2 — 4,3D/2 — 5, D,
D—1,D—2,D—3,D—4,(D/2) —1,(D/2) — 2, these
give

(£>3_(3D/2) - [(31) = 8§(D =3 =t

D—-6 ]

2(D — 3)
y\4-(3D/2)
) ad)
PYiere 2 O, D-§
(Z) B [(3D —10)(D — 4) H? * 2(D — 4)]
y 5—-(3D/2) 2
% (Z) * (3D — 10)(D — 4)
O DD —2)1/y\!-©/2
8 [‘ w1 ](z)
N 2 (4m)P2 8P (x — x')
BD-100D -4 TE~-1) (aH)?
(A5)
y\5-(D/2) B 2 E D — 10
<Z> - [3(1) “HD -5 2D- 5)]
v 6—(3D/2)
() o
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(y)-D 2 O (y)l—D (A7) which, when applied to B = (D/2)—1, (D/2) -2,

4) " DD-1)H\4 (D/2) = 3,(D/2) — 4, =2, —1, yields
y\!-D 2 O (y)sz 2 <y)sz O <y)l—(D/2) (477-)D/2 <D .
- = @ | e = — | = + - - J—
(4) (D —2)” H*\4 p-2\4) A 07 7ml I'G- Diap )
— 1-(D/2
<X)27D _ [ 2 E 4 ](X)%D + y(%) / )’ (A15)
4 (D—-3)(D—-4)H> D-4]\4
N 2 [_ o N D(D — 2)]
(D-3)(D—-4)L|L H? 4 o (X)“D/z) _ D-—4 (X)'(D/z)
(y)]*(D/Z) o) (41r)P/2 H*\4 2 \4
4 - - D _ — + 2-(D/2)
4 (D-3)D-4HTC-1) . (D —4)(D +2) (X) (AL6)
i6P(x — x') (A9) 4 4
(aH)?
3—-(D/2) 2—(D/2)
)2 Dy e pyr () - meme()
4 (D —4)(D —6) H>\4 D —6\4 ' (D — 6)(D + 4) (y\-(0/
(A10) + —(X) . (A7)
4 4
(y)4—D 2 [l <y)5—D 8 (y)S—D
) T oDO-sb-s9m\s) b3\
(AD ?(4) B 2 (4)
_ _ - + 4-(D/2)
(X)l ®m 2 E()_;)z (D/2) N D+2 N (D —8)(D +6) (X) . (AIS)
4 D—4H*\4 2 4 4
y 2—(D/2)
X (—) , (A12)
4 U (Y\? Y\? y
_2(—) — 2D+ 1)(—) D+ z)(-), (A19)
(y)HD/z) 1O (y).HD/z) L D+4 H?\4 4 4
4 D—6H*\4 4
y\3-(D/2) O D
() (A13) S0)= o) +2
1 3 D)+ (A20)
When the d’ Alembertian acts on a power of y, one gets
Next we make use of the identity (96),
O /y\8 D y\—8-1
7)) = oG e 1)0) :
, V,V,y=Q2-yHg,, (A21)
Y\~
+B8D-B-1 (—) Al4
Al A )4 (Al to obtain (a + B+ 1 # D/2)

n(5) () e mer el oy

% [_ (@ + B)(oj IRy %G)_(M) " @—W)} (A22)

The relevant cases are (a, B)=(D/2—-1,D—-2), (D/2—-1,D—-3), (D/2—-1,D—4), (D/2—-1,D—5)X
(D/2—-1,D/2—-1),(D/2—-1,D/2—2),(D/2—1,D/2 — 3), and (D/2 — 1, —1). From Eq. (A22) we have

y\1-(0/2) (y)%D 2(D - 2) [ (y)sf@/zm] [ 1 O <y>3*(3/2)D D-2 (y)3*(3/2)Di|
9= a(z) === v v, |(2 +Hg, | — (2 = (2 ,
"<4> o\4 36p—4) 7 L\4 Sur|3GD —4) H2\4 i \a

(A23)
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y\1-(D/2) (y)3—D 2(D - 3) [<y>4—(3/2)D] [ 1 O (y>4—(3/2)D D — 2<y)4—(3/2)D]
= = =—_ vV V,|(z + H? — (= -—=(2
a“(4) “\4 33D—38) " HL\4 80| 33D — 8) H> \4 4 \4 ’
(A24)
y\!-(D/2) (y)4—D _ 2(D—=2)(D—4) [(y)S—(3/2)D]
‘9#<4) In\y GD 103D —8) '*'*
1 O /y\5-G/2D 1 (y\5-G/2D
+ (D — 2)H? —(= ——(= A2
(D =2) g“”[(3D—IO)(3D—8) H2(4) 4(4) ] (A25)
y\L-(P/2) (X)S_D _ 2(D—=2)(D-5) [( )6—(3/2>D]
aM(4) 90\4 36D~ 100 -4 VL \a
1 O /y\6-G/2D 1 [y\6—(/2D
+ (D — 2)H? — (= -—= A2
(D -2) g“p[3(3D—10)(D—4) H2<4> 4(4) ] (A26)
y\!-(D/2) (y)lf(D/Z) D -2 I:( )sz:l 5 B 1 O (y)sz D — z(y)sz:l
N E a,(= — Vv,V +H — () === . (A27
“(4) "\4 4D—-1) " *H 8wl aD — 1) B2 \4 4 \4 (A27)
y\!-(D/2) (y)z—(p/z) D —4 [( )3—0] B 1 O (y)3—D D — 2(y)3—1)]
Z 4 ———_V,V +Hg, | — —(2) - =—Z=(2 A2
a“(4) A 4D - 3) Sur| 4D - 3) H2\4  \a) | @AW
y\!-(D/2) (y)3—(D/2) (D—-2)(D —6) i (y)4—D]
d,.0= = = Vv,V (=
"(4) "\4 4D-3)(D—-4) " H*L\4
(D —2)H?g,,, 1 O (Y2 (y\+-P
+ —(= — (= A2
e e b ) B v I (A29)
Y\ -(D/2) <y) 2 [(y)Z*(D/Z)] [ 1 O (y)HD/z) - 2< )2 <D/z>]

a,l% alz)=——"—V, V,|(= + H? — (= S . (A30
“(4) "\4 D—4 r *\4 Sur|p—4 12 \4 4 \4 (A30)
[

APPENDIX B: SOME USEFUL INTEGRALS A2, = —(n—7l-iel+ 13 -7 (B5)

1. The Y integrals
Here we evaluate the basic integrals of the form
Axi_=—-(n—n'+ieP+ | x-XI. (B6)

)l

In order to perform the integrations, the following relations
are needed,

In(u?Ax% ;) = In(u?Ax3 ) = 2mi6(An)6(An* — 1),

Y — dPx! /D[ (y"'_‘*'
-/ ;

(n=0,1,273). (B1)

(B2)
In2(u?Ax% ) — In?(u?Ax% )
= 47i0(An)0(An* — ) In|u*(An? — )|, (B3)
In(u2A22,) — In(u2A2 )
~ miomoiant — Al - A1 - T
(B4)

where r =|| X — X' || , w> = aa’H?/4 and we made use of

We shall also need the polylogarithm functions, defined as

Li,(z) = PolyLog[n, z] = (n=223). BT

>
i=1!

Note that the natural logarithm is a special case of the Li
function, In(1 — z) = —Li;(z). Moreover, we shall make
use of the properties of polylogarithms,

2

Li,(2) = —Liy(1 — 2) +ln( )111(1 —9+ T, @)

1 a?
—In%(z) + —
ZH(Z) 6

(B9)

Liy(z) + In(z)In(1 — z) = Liz(l _ %) +
(z & [—o0,0]),
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. 1 © (1 — L choose a(ny) = 1, An = 5 — 1y, and we made use of the
L13(1 - Z) = Z n3z surface area of the D — 2 dimensional sphere,
n=0
21 3 a1, I\ 1 2a7(P=D/2 2(4qr)P/D-IT(2
=3) - - (— - ln<—))—2 sp2r =" — 4m) 5% (B13)
6 z \4 12 2 \z/)z NG I'b-1)
9, —Z) 0
+ (Izl > 1) (B10) The integral (B12) can be expressed in terms of a hyper-
geometric function. Since we are ultimately interested in
Of course, expanding in powers of D — 4, it is more convenient to
Yo =0 (B11) expand the integrand in powers of D — 4,

The simplest nontrivial integral (n = 1) in Eq. (B1) is
A
Y, = dn’ ’Df ndD*lx’[Zm']
Mo 0

T
L a a ’

HP T(D)
where 7, denotes an initial conformal time for which we

(B12)

(1 - %I)D_l = (1 - %/)3 +(D - 4)(1 - %/)3 ln(l - %I)

4 %(D - 4)2<1 - ‘;')31#(1 - ‘;/)
+ O(D — 4)3) (B14)

and then to integrate. The result is

(4mP2 T (%) {[ 11 3 3 1 ] [(49 w11 7 1 )
Y, = In(a) = —+>—-5+-——|+(D—4 S T S ———
LT D T(D) @) =t T T g G~ 6 6 122 0
2
L e P A e B (e
6 a 2a 3a a a 2 108 18a 36a 27a a
49 72 11 7 2 1 11 3 3 1 1 1 1
+ (- - T (1 -2 )+ (——+ 2+ 21— )+ 2Liy( = )In[1 - =
<18 3 3a . 6a2 9a3> n( a ( 6  a 242 34 “( a) 12<a> n( a)

(- 1))

(B15)

The next integral in Eq. (B1) is Y,. With the help of Egs. (B3), (B14), and (B83), we can write (x = r/An, v = d'/a,

u=1-v)
e O [44( 2 [ ET c
o () (- ) - ml() 3]
+ (- 4)[21n2<1 - %/) - ln<1 - %) ln<%/) 31 ( ) T (20 T)] +o(D - 4)2)}
= i(417_717)§/2 %2 01_(1/a) ld_uuu3{|:2ln(u) In(1 — u) — g]

+ (D 4)[2]n2(u) () In(1 — 1) — () + ( - %)] +O(D - 4)2)} (B16)

where we introduced a new variable, u = 1 — a’/a. These integrals can be integrated to give
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(4mP2 T(®) {[ ( 16 6 3 2 ) (21 27 52 53 2)
Y, = In?(a) + 3t ot In(a) + ———t ==
2 o o)™ @ 3 el L e S e
22 2 6 4 1 1 40 72 11 7 2
+{-=4+Z—— + 1 +4Li,(-) [+ (D -4 B
< 3 a @ 3d3 ) n( a> 12(61)] ( )[( 2 3a 64> 94°
+( 13 6 3 N 2 )ln(l 1))1 ( )+< 313 4377' +461 372 94 37* 20 772)
LT ST n(a bl _om _Ca w7
3 a 2238 a 18¢ 2a 94*> 4d®> 94° 64
287 47* 74 67 22 1 2 12 6 4 1 1
+ (2L -2 7 In(1— 41 S 4+ )n?(1 - =)+ 2In(a)Liy(—
( 1 3 3a 642 9a ) ( ) ( n(a) = 3 a a* 343 )n ( ) n(a) 12((1)

- gL (61[) +8In ( é)Liz(;) —27(3) + 2L13(1) + 8L13<

The last integral in Eq. (B1) is Y3. Similarly as in the case

et

r'®
T(D-1)

_(@m)P2
- i

—%2+(9(D—4):|

/

1

Bl

(B17)

of Y,, we take account of Eq. (B4) and get

/HZA 2 IHZA 2
dx[ln%%) + 21n<%) In(1 — x2) + (1 — x2)

4 D/2 I D a da’ 3 ! 16
_ W)D @, —a<1 - ”—) [4ln2<1 - “—) - 41n<“—> ln(l —) +1n ("—) - —(21n(1 - —) - 1n(“—))
H o)y J, o a a a a a a a
104 27T2]
4+ -
9 3
(@AmPRT®  r1-0/a du 3[
= 41n%() — 41n(u) In(1 — u) + In>(1 —
HD TD) =, [4n (u) n(u) In( u) + In*( u)
16 104 2
— 5 @In() = In(1 = w) + == %] (B18)
Upon performing the integrals in (B18), we finally obtain
(4mP2 T(®) 9 9 104 52 53 6
= In? +[—8~|———— ]12 +[ —2m - =+ = ]1
3 HP I‘(D){ n(a) a 222 21" (@) [y R n(a)
2495 1672 115 67> 237 37> 122 27°
# [0 - Gl Loy
3 a a 4a> a*> 94 3d°
i 36 18 4 1
+l-2+——-—=+ —{I ln(l — —) In(a) — 12ln2<1 )ln(a) + 12L12< )ln(a)
i a a* a a
104 53 12 1 1 36 18 4 1 1
rle3—am 222 1y 24Li2(7)i| ln(l - 7> + [—22 +2 -2+ 73]1112(1 = 7) - 10Li2(7)
i a a a a a a a* a a a

1 1
+ 24Li3<1 - —) + 12Li3<—)}.
a a

2. The W integrals

The following class of basic integrals we need [these
integrals we calculate only up to order (D — 4)?] is of the

) ws)]

w, = [de’a’D ln(a’)[ln"<
(n=0,1,2).

Y++

4

Y+
4
(B20)

04352

(B19)

|
The trivial integral is W, = 0. The first nontrivial integral
can be written as

W, = dex’a’D In(a")[2im0(An)0(An* — r*)]. (B21)

After the radial integration is performed, this integral can
be reduced to

3-24
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w, — W2 TG feda (1 - %/)3 ln(a’)[l (D -4 ln(l - %/)] L O(D — 4

HP T(D)
(477')D/2 r® n
HP T(D) l/a_(l — v)3[In(v) + In(a)][1 + (D — 4)In(1 — v)] + O((D — 4)?). (B22)
This can be integrated to give
_ @mPP TR {[ 8 3.3 1
W, = In? — 1 — =t — - —]
: HP T(D) (a) = n(a) + 36 a 4a> 94
395 1172 151 11 2 8 3 3 1 1
+(D—4 In(a) + + + -+ )+ |(=—+-=——])In[1 ——
( )[(3 ) (@) ( 108 36 36a  18a* 27a3) (36 a 4a’ 9a3) n< a)
11 1
- ?Lb(a) Lh( ) + 5(3)]} + O((D - 4)). (B23)
The second integral W, in (B20) we only need to leading order in the D — 4 expansion. We begin with
TH2(Am? — 12
W, = [de'a’D 1n(a’)[4i#6(An)0(An2 - r?) ln<aa ( 477 il ))] (B24)

After the radial integration this integral becomes
(477')D/2 F(D) ada a'\3 a a 8
W. 21 —(1——) In(@)|2In{1l ——)—=In{— ) —= [+ OD - 4
TP T(D)” ) a’( a) n(“)[ n( a) n(a) 3] L9

)Pz T2 v
-(4H)D r(%)) : d—(1 — )[In(v) +1n(a)][21n(1 — v) — In(v) - ]+ oD —4). (B2

When integrated this gives

W, =

(4mP2 T®) 1 20 22 6 3 2
HD F(D){ In*(a) — 71 2(a)+<2 Z+2712—@)1n(a)

3
895 1l#* 187 89 5 12 3 4 1 22 1 1
P~ el P 22 P (1= 2) = ZLiy(~) - 4Lis(- ) + 4¢3
( 54 9 9a 1842 27a) (9 a a> 9a3) n( a) 3 12(61) l3<a) 4 )]}

+ O — 4). (B26)

We shall now act with d’Alembertians on the basic integrals (B15), (B17), and (B19). For simplicity, we neglect the
terms that are suppressed as In?(a)/a or more since they vanish in the limit when a — 0. Since Y,, are functions of the
scale factor only, the d’ Alembertian operator simplifies to

. p-2q — _ 209 pd
ﬁ - - aDH2 Goa 80 = —a %a % (B27)
Considering that the d’ Alembertian does not increase the power of a,
O (lnz(a)) _ (D—2)n*(a) 2(D—3)In(a) 2 E(ln(a)) _(D—=2)ln(a) D-3 E(l) D=2
H2\ a a a ’ H’\ a a a ’ H>\a a ’
(B28)

we can use the asymptotic form of the basic integrals (B12), (B17), and (B19) to calculate the late time behavior. In the
limit when a — oo, the integrals become

o O D o 0) (8 )10 Z )+ o) o0 -0}

(B29)
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= G IO )~y + 2127 o))
(- 4)[(40 7;2>1n(a) T (— % 4;’ ) + @(ln(“))] + oD - 4)2)}, (B30)
Yy = '(4;)5 - ﬁ(%)) {1n3(a) — 8In*(a) + (% - 2772)1n(a) + (— % 16377 125(3)) + (o(lnz(“)) + 0D — 4)}.
(B31)

The asymptotic forms of the W,(n =

W, — l(477)D/2 re {[ n%(a) — —ln(a) +8_Z:| + (- 4)[<39

HP T(D)

and

_.(@mPrT®)
" HP T(D)13

2

The asymptotic forms for the corresponding (nonvanish-
ing) d’Alembertians are

O @nPRT®),
R R v
+ O((D — 4)%))],

1) + O(1/a)

(B34)

O, @I
=i mg){[ 61In(a) + 14]

+ (D — 4)[ 21In(a) — 8 + 3%] n @(ln(a))

a

+mm—®ﬂ, (B35)

(52)21/2 = im:; . 11:((%) {18 +12(D —4) + (o(ln;“))

+ O((D — 4)2)}, (B36)
0 (4 D/2 F(Q)
+6m + @(lnz(“)) + 0D — 4)], (B37)
a

[ =S + (3 =27 Y + (- 5224 11T

1, 2) integrals (B23) and (B26) are

6

)m>—ﬁ§1?'g@ﬂ+mw og)

(B32)

1 9 (3)) + 0D — 4)}. (B33)

0\2 (4mP2 T'(B)
(E) Vi = i iy [54n() — 108

+ O(In*(a)/a) + O(D — 4)], (B38)
O\,  .(@mP2T®
(m) Y, =i D F(g)[—162 + O(In*(a)/a)
+ O(D — 4)], (B39)

and similarly for W, ’s.

3. The E integrals

We are now ready to calculate the intermediate integrals
that we need for evaluation of the 1-vertex integrals. They
are of the general form

= - feorfl) ()
= :
with @ =32 —

5 6,37D—5,37D—4,3—3TD,D—2,D—3,
D —4,%2—1,and & — 2. All of the B, integrals can be
represented in terms of the basic integrals Y, given in
Egs. (B29)—(B31) and the associated d’Alembertians
(B34)—(B39).
Let us begin with a = 371) —
powers of D — 4, yields

(B40)

6 which, when expanded in
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—(3/2)(D—4) v, _\"6G/2D-4
B = | 4Px /D[(y++> _( + ) ]
(3D/2)—6 f xXa 4 4

—%(D — 4y, + g(o 4y, — %(D — 4y, + O(D — 4%

_(amP2T®)
" HP T(D)

{(D - 4)[—% In(a) + %] - 4)2[ In2(a) — 6In(a) + % - %2] © (D — 4y

576 32

29 977)1() (12191 53
16 2 16

X[~ @) + ) + (-2 42T -3e@)]+ o -4}
(B41)

The next integral we need corresponds to « = % -2,

~D-H2 [y, \-(D-4)/2
= = [ary /D[(y++) _( n ) ]
(D/2)=2 [ ra 4 4

= —%(D —4)Y, + é(D —4)2Y, — i(D —4)3Y; + O((D — 4)%)

(4m)P2 T(3)
HP  T(D)

91

{(0—4)[ 1n(a)+11]+(D 4)2[ In?(a) — ln(a)—i-m:l

ZIn2(a) + ( 1 )m( )+ ( 257 | Ulart )] +O(D - 4)4)}. (B42)

+ (D — 4)3[— 41—81n3(a)

6 6 48 1728 288

The following integral is = 3p/2)—s, which we can rewrite with the help of Eq. (A6) as

— 2 [ D—10 7

=060/2-5 = [3(1) “ D -5 2D= 5)]”(3”2)‘6
_(amP2T® 85 32
" HP T(D) 16 T]

+(D—4)3[ i; 3()+%1 2()+< 629 2777) n(a) + (8139727 ]5312772_25(30]

{3—-(1) H+ D - 4)2[

+ oD - 4)4)}. (B43)

The next integral we calculate is @ = % — 1. With the help of Eq. (A12), we arrive at

- B 2 0O, D+27-
o= poam e
_ @mPP TR (-1

HP T(D) 16 8
1 7 1 2 89 T7?
+ (D — 43| ——1n(a) + —1n? +<————)1 +(——+—)]+(f) D—44}. B44
(0 =4~ 0@+ ett(@) + (= = Tt + (— o0+ o) | F o - 9] Bay
In order to evaluate the integral @ = 32 — 4, one needs to subtract the divergent contribution according to Eq. (A5). The

result is

- =[ 2 o, D—S]: . 2 [ o, Do~ 2)]
PR BD 100D —4) H2  2(D - 4) 7P T 3D —10)(D - 4)L H? 4 |7e
1 2 477) /D
b (4) (B45)

HP (3D — 10)(D — 4) TC - 1)
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- D/2 T D T
= .(4H)D r((zz))){lz +(D - 4)[4 +—2 ] +(D - 4)2[ (@) ~ & lnz( )+ (661 72 )ln(a)
19 1372 (D) 2 2
(250 mrg-n om0 ) .

Furthermore, for @ = 37’3 — 3 we make use of Eq. (A4) to obtain

= = [ 2 O, D=6 ]:
TOPAS B -8) (D —3) 2 2(D —3) |70

_ @mPPTE [ B s B L 13 107 | 772
IO o afis T B o + (51475
115 572 I'(D) D—6 -
" (_ ERE %(3))] rore-—no-360-10o-a  °@ 4)3)}‘ (B47)

The next class of integrals begins with &« = D — 4. The integral is of the form

I
|

ps= —(D =¥, + 3D = 4PV, — (D = 47Y; + O(D - 4"

(4mP2 T(®) 11 35 a2
- i F(LZ)){(D - 4)[—ln(a) e ] + (- 4)2[ In2(a) — ln(a) + 3 F]
32 2 217 T2
+ (D — —In*(a) + = 1n%(a) + + + 4 }
(D — 4)° [ 1n*(a) ln (a) ( I 12)m(a) (54 ki )] oD — a9} Bag)
With the help of Eq. (A10) we calculate the next integral,
- _ [ 2 O 6 ]:
b3 | b-4)D-6H D-6]"P*
(4mP2 T'(®) { [ 772]
=i —3—4D—-4)+(D— 4> -1-=—
""HP  T(D) D=4+ (D=4 4
S 1, 7., 1172 .
+ (D - 4) [_Eln (@ + 5 1a) + ( 3+ )ln(a) + ( = )] + 0D - 4) )} (B49)
The next integral corresponds to &« = D = 2, and can be calculated by means of Eq. (A9). The result is
- _[ 2 O 4 ]: 2 [ D+D(D 2)]
P2 ID-3)D-49H> D-41""7 " (D-3)(D-4L H 4 |Tem-
2 (4m)Pr2

* (D-3)(D—-4)TE-1)HP
_.4mPP T 35 1 57 25 537>
- i mz)){lz + (- 4)[4 + 7] + (- 4)2[ In'(a) = In*(a) + ( . )m( )+ (12 + 2 )]
T(D) 2
“rpre- o a9 0@} (B50)

The final integral corresponds to &« = D — 1, and it evaluates to
- _ [ 2 o 2 ]:
Pl -22H2 D-2]7P7
_ .(4mP2 T(B) 193 52

7D F(é){—lz + (D — 4)[2 - 7;2] + (D — 4)2[ 71n3(a) 1 2(a) + (ﬁ + T) In(a)

37 I'(D) 4 ‘
G B e e e 0@ 4)3)}' (B51)
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4. The A integrals

There is one more class of integrals to be evaluated which are based on the basic integrals (B20) that are needed to
evaluate the 1-vertex integral contributing to the central diagram in Fig. 1. The general form of these integrals is

= [awvarma| ()" - () ] (B52)

withaea=D—1,D — —3,D —4, D — 1, and D — 2. All of these integrals can be represented in terms of the W,
functlons given in Egs. (B23) and (B26). We give these integrals to order (D — 4)2, which is also what we need for the
evaluation of the integral (134).

When expanded in powers of D — 4, the A,—p_, integral can be written as

Apy = f dPx'qP 1n(a')[(y+T+)_(D_4) - (ij*)_(D_“)] — —(D-HW, + l(D — 42W, + O((D — 4)%)

(4mP2 T (®) 1 11 85 35 72
- {(D _ 4)[—51112(61) + o Ina) - %] + (D - 4)2[ () — Hn2(a) + (9 a >1n(a)
- 12275 + 1;” + 5(3)] + oD — 4)*)} (B53)
Similarly, for the other integrals that we need, we have
_ _ 2
ANppy—2=— DT4W1 + %Wz + O((D — 4)*)
_@mPrT® T 85
— i = (g){(p 4)[ T in2(a) + 1 ln(a) 72]
+ (- 4)2[ 1n*(a) — —lnz(a) + %1 () - %] + oD - 4)3)}, (B54)
2 O 6
Apos = [—(D T LR LTS 6)]AD_4 + O((D - 4))

(4m)P2 T(B)
HP  T(D)

+ (D 4)2[ In*(a) — 1n2(a)+(

{[—3ln(a) + g] + - 4)[—4ln(a) +6- %2]

22) In(a) — 7 + %2 + 35(3)] + oD - 4)3)}, (B55)

2 O D+2
A(D/2)71=[_D_4H2+ ) ]A(D/z)z

_ (47T)D/2 F(D) { 31n ( ) + + (D 4)[ ln(a) + i] + (D 4)2[ 1n (a) 1[12([1) + @ ln(a) 118]

HP T(D) 8 43
+ O((D — 4)° )} (B56)
B 2 O 4 2 O _DD-2
N (e T N ] S e oy A el WO
§Ume 1 2 In(a) + O((D — 4)?)
HP T@—-1)(D—3)(D—4)
- '(427);/2 rr((i)) {[121n(a) 12+ 272+ (D - 4)[ §1n*(a) 4 45 In2(a) + (% 4 2772)1n(a) - %
b2 - 12;(3)] - 4)2[— %ln3(a) + %lnz(a) - % In(a) + 25;; 2 2]
(D) 2 e
O B0 =9 ln(a)} LoD — 4)), (B57)
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2 O 2
Ap_y = — = Ap_y + O(D — 4)}
v =[G gt O~ 4)
(4m)P2 T(3) 13 169
= T {[ 121In(a) — 6 — 222] + (D — 4)[ In*(a) + 3In%(a) + (_E P )ln(a) +
324 125(3)] +(D- 4)2[— 3y — 2w (a) + (@ T 772)1n(a) + 28 6{(3)]
24 48 144 288
I'(D) 2 I'(D) 2(D—-1)
— 1 - + O(D — 4)° } B58
rero-a0-4 " T@o 20 -a0-4 JP7Y (B3%)
. The Q i 1
S e integrals VMVP _ _gﬂpaaa + (azagag)QZa%’ (B60)
We can now use these results to calculate the following H?
class of integrals we need, which are of the form
\YAY
Q= de / /D[ (y++) “ap<y+_+)"’ = M’I’;—f = —a>Py,aP,. (B61)

4

() "a(5) ]
[erperarn
aBHngp
D—2a+B+1)

X(—( 1 ]

a+B)a+pB+1) H?
where we made use of Eq. (A22) and assumed o + 8 +
1# %. These integrals can be evaluated with a help of
Eqgs. (A23)-(A30) and the Ey integrals (B41)—(B50). We
need the integrals corresponding to the pairs («, 8) = (% —
1,D —2), (%— 1,D —2), (%— 1, D — 3), (%— 1,D —4),

4

V-
4

yi-
4

—%1)]Ea+&

(B59)

@-1D-5, @-1D-6)., ©@-2D-2), @-
2D-3),2-2D-4),2-5D-5.2-12-2),
@-12-3),2-22-2)

Note that when V,V, acts on a function of time (or
equivalently of a, which is a scalar function), one obtains
|

Making use of these relations and of Eq. (A22) (and
assuming that & + 8 + 1 # 2), Eq. (B59) reduces to

ap
B~ HngPI:

Q,

af
1) [Ears
250 50) ap

D—2a+B+1)
( 2 Da aDa
292
10 (a ¥ B)a + B+ 1) aZars
(B62)

(a+ﬁ)(a+ﬂ+1)
+
(a+ B)a+B+1)
+ H*(a

Note that the last term breaks the Lorentz symmetry. The
1, p integrals are symmetric under a=.

Since the 1-vertex integrals are at least linearly divergent
in D — 4, to extract the finite contribution, we only need
terms up to linear order in the D — 4 expansion

We begin with the 1ntegrals oftheforma =% —n, 8 =
D—nla+B=L—-—(m+n);m= 1,2,34n 2,3,
4, 5]. We get

_ (@mPPT® m’ I'(D) (D =2)(D—-6)
Qo102 = 8up “pp=2 Tip) {6 + - 4)(_4 " T) " T@IC—1)4(D —3)3D — 10)(D — 4)}
+0((D —4)%), (B63)
(4mP2 T3 7 (D) D-2
Q-2 = s iy 0+ = (5~ 5) " rprep - mo 9l T 0@
(B64)
D/2 T(D

Qo104 = it s |2t g 2~ 9]+ 0D - 47 (B65)
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#D/ZFD 47)P2 T(2
Qopr1ps = lgﬂp(:l))z F((D))[ %(D—4):|+i(a25%52)( ) (2)[ |+ (D— 4)( In(a) — )]

HP=2 T(D)
+ O((D — 4)?), (B66)
. @mPPT® 2 I'(D) D-2
Q(D/2)—2,D—2 I8up D2 F(D){ 6(D - 4) + (D - 4)2(1 - Z) - F(%)F(g — 1) 2(3D — 10)(D — 3)}
+ O((D - 4)%), (B67)
, 4m)P2 T(®) 3 185 3
Qo aos = 8 os a0 =+ 0 -2+ DY op - a7, men)

D/2 T D/2 T D
i R e O L B R CTE RO N

47)P/2 T(2) 325 73 37
Qo302 = ’gﬂﬂ(;’ 2 F(D){ p—4 4P~ 4)( 16 %)
27 135 33 27 1009 357 9
+(D— 4)2[ ~in (a)+3—21n2(a)+<—§ = )m( R _55(3)] + @((D—4)3)},
(B70)
4P T(2 133
Qa1 = 8 g i+ 5 0=+ 0=+ T
D/2 T(L
T i(a?80,80) (‘2272 r((f)))[ - 4)( In(a) — )
+ - 4)2(— gm (a) + 2_7 In(a) %7 + 3%)] - 0D - 4)), B71)
47)P/2 T(2 3 2
Qpja)-sp-2 = igMp(H? ; F((D)){2+5(D 4+ (D - 4)2( ! 717—6)}
/ D
+i(a289,89) (‘Z;)iz 11:(%)) [—4 + (D —4)(61In(a) — 17)
+ (- 4)2<— n2(a) + _1 (a) — @ + 31)] + 0D - 4?). (B72)
2
The following integrals are also useful,
4702 T( 6 »
Q 1poa=igu, (h;;) 5 F((D)){ ST+ (D - 4)(—6 - 777)
+(D— 4)2(—1n3(a) + gan(a) + (2 + 7’;) In(a) — 2 — 47”2)} + 0D - 4), (B73)

722 T(2 72
Q—l,D—3 i8up (213) 3 F((D))[ Z(D —4)+ (D — 4)2(§ + ﬁ)]

P2 TR 2
T 808 (‘;D) . F((D))[ 1+(D- 4)(ln(a) 31) - 4)2(— lnz(a)-i-—ln( )—§+ 12)]
+ O((D — 4)%), (B74)
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@m)P2 T(3)
I8up 1 p=2~ HD2 T(D)
10 50 42 TO)
LA & (O 2 F(D)
+ O((D — 4)%).

QZDZ

The next class of {) integrals is of the form a = 2 — m,

B=%—nla+B=D-(n+m);mn=1,2,3]. Since
the coefﬁcwnt of these integrals is not singular when D =
4, actually we need only the O((D — 4)°) contribution. The
integrals are

D/2 T
Qp/)-1,0/2-1 = 18up (:;) 5 F((D)) {[—6 + (D —4)
R ) D )
“(=5-%)] TOrE - 1)
(D —-2)
w-3m-4 " 2P 4)2)}’
(B76)
) 4 D/2 F(D)
Qop)-1w/-—2 =1 g#p(HT)) 5 F(D)[ —(D 4)]
+ O((D — 4)%), (B77)

 GmPRTe)
s T2 30 9]

@42 TR
HD—2 m

X [—1 + (D — 4)<ln(a) - 2)]

+O((D - 4)%),

Qpp-1m/2-3 =

+ i(a?59,9)

(B78)

Qo222 =0+ O(D — 4)), (B79)

. (@mP2T®)
= 8up pp1 r(D)[z ﬁ(D 4)]

(4mP2 T(H)
HP~2 T(D)

[—1+(D 4)( In(a) — “)]

+ O((D — 4)?).

Q -1 =

+ i(a?89,89)

(B80)

6. The radial integrals

The radial integrals are of the form

J, = fl dxxP~?[In(1 — x®)]" (B81)
0

[2 + —(D 4+ (D - 4)2(

[—4 + (D - 4)(4 In(a)
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2+§)]

—?)+(D—4)2< 22(@) + > Inta )—%6+%2):|
(B75)
Iand when evaluated result in
Jo = ﬁ, (B82)
=g [P o]
(- 0o
+ O(D - 47 )] (BS3)

el () ) ()

=—[% %—Eln(4)+ln2(4)+(9(D 4)],
(B84)

1 640 , 87 104
e R SRE LTRSS Sl

— 8In*(4) + In*(4) + 12§(3):| + O(D — 4). (B85)

APPENDIX C: THE FINITE TWO LEG INTEGRAL

In this appendix we evaluate the two leg finite integral
(127). The relevant part of the integral is of the form

— +\(+ 4! g 4l 114
Top = 32 fatwat [awan( o)
a 1 Vs
X 2=,
<8x” y++>ln< 4 )

The integral can be naturally split into spatial and timelike
parts, each of which we evaluate separately. The spatial
part of (C1) can be written as

(CDH

/ 3 11,113

ij 2H4Z )= ),[(A ++)4 (Ax,;i)4

//H2
XA)?-A)'E”ln( ) Ax? . )

(C2)

It is natural to introduce the coordinates r = |[x — ¥'||,

=||[x = *%"|l, in terms of which ||¥ —x”||2 =
r2+ "% — 2rr' cos(f), where 6= (3—% %—3").
The angular integral over € can be easily performed. The
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result is

i ()

1 2 4
H Mo

o0 drr 00
dn/ 3 d,n// //3[ [
(7 An? Jo @

PHYSICAL REVIEW D 78, 043523 (2008)

dr/l /!
— An//2+i)2

x {(;»2 T = A (r + Y2 - An’z](ln[H—z((r Ty - An’z)] - 1)

_ %[(r + R - An’z]z(ln[H ((r + "2 = A”'z)] - l)}

where we also used the symmetry of the resulting integrand
under the exchange r — —r to extend the limit of integra-
tion of the r integral from [0, c0) to (—o0, 00). Finally, we
made use of the fact that temporal integrals extend from
1no = —1/H to 7, and that the symmetry allows us to
constrain the n integral up to n’, thus gaining a factor 2.
With this we have achieved an important time ordering,
1" = n' = n, which we will find useful below. Next we

split the integral (C3) into two integrals, I;; = I +7 Ef),
as follows,
167> &
T — ij d Iq/3 d g3
Y 3 azH4 7o K 7o K
// //
1
X ”Z( )ﬁ e A Ly JU, (4
167> &
J® — ij d Iq'3 d g3
Y 3 a2H4 7o K 7o K
// //2 5
X ,,Z( )ﬁ 7= A oy J@,  (CH)
where
0 drr
J = (i)[ 7{[(r+r”)2—An’2++]2
xgt e (P —AN%L)? ==
1. [H? 3
x (s ey -ant] )} o

Jo = Z (+)f

x (—ZInI:HT((r Ly - An’zii)] + z)} )

i e = e

Before we begin evaluation of these integrals, we recall the
i€ prescription,

Axi = [IAXIP = (1Al — ie)* — IAZIP — (An — ie)?,

A = IAFIP = (An + ie),

AR, = IAFIP — (A — ie),

A = [|ARI2 — (An] + i) — AP — (A + ie)?
(C8)

> (C3)

[
where the implication follows as a result of the time order-
ing n = 1’ = n” in Egs. (C4) and (C5). Analogous pre-
scriptions hold for the other two intervals. Based on this,
we arrive at the ie prescriptions as given in Table 1. Note
that An” and A7’ have identical ie prescriptions and that
they are completely specified by the signature of the x”
vertex. On the other hand, the ie prescriptions of A7 are
completely given in terms of the signature of the x’ vertex.

We shall now use this fact to perform the r integrals (C6)
and (C7). The first integral J!) can be performed by mak-
ing use of the Dirac identity,

[”2 = (An —ie’P  [2 = (An + ie)2P

= L27Tl|: 9 8(r+ An) + i6(r — An):l. (C9)
n ar ar

The derivative d/dr can be moved by partial integration to
the integrand, such that the result of integration of (C6) is

J0 = ﬂ{(r" + AR + An) — Aq?)]
An

2
X I:ln(HT[(r” + AP — Anfz]) - 1]
+ (= A" — An)? — )]

X I:ln(HTZ[(r” - An)? — An’z]) - 1]}

Analogously, to evaluate J@ we can use the following
Dirac identity,

(C10)

TABLE 1. The ie prescriptions of the intervals Ap = 5 — 7/,
An"=mn—mn", and An' = ' — 5" as a function of the sig-
nature *+ of the vertices x, x', and x".

X X X' An Ay Ay
+ + + —i€e —i€e —ie
+ + - —i€e +ie +ie
+ - + +ie —ie —ie
+ - - +ie +ie +ie
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r? r? i

[P —(An—iefP [P —(An+iePP 2

[Zo0-am-Lov+an]- Ainw(r — A+ 3+ Al

(C11)
with whose help one can evaluate J@. The result is
) H? H?
J? = %{4(#’ + An) ln(T[(r” + An)* — An’z]) —4(r" — An) ln<T[(r” — An)? — An’2]>

2 2 2 H? 2 2

o107+ 80P = 82 (" 07+ AP — A1) 1]
n
2 2 2 H? 2 2

+ 20"~ An)? — Ay ][“‘(TW — AqP - Ay ]) -1} (C12)
n

The symmetry of the integrals JV) and J under " — — " allows one to extend the 7/ integration to —oo. Upon inserting
these two integrals into Egs. (C4) and (C5) and summing them, we obtain

16 5 3 3 r'r” 2 2 2
— L / ! sl /1 /.
1= i i [T [ anta ;(+)f e et E LU UL
H 7 2 2 /! 2 n
X In T[(” +An) — A9~ L ]) - [+ An)* — An”L L ]L (C13)
[
It is convenient to rewrite this expression in terms of two 712 1 1 1
radial integrals as follows, _2(r”2 — Aq?)? S Ay ) (r" — Ay")?
1 1
16 0 ! - -
Ij=—i 377 2;14 d77/ 3 : dn"a[LW + L?], 2 (¥ + Ag")*’ (€18)
0
(C14) resulting in four simple integrals, LW+ L® =
L,+ Lg+ L+ Lp, where
where 1 oo dr'
,, SRR I BN Vi
W [T p
”Z+ o (r//2 _ Aﬂ"2+¢)2 X ln< [(l"// + An)z /2 ), (C19)
X[ + An) — An?,.]
H2 _ 1 o0 dr"
X {ln(T[(r” + A2 — An’2+i]) - 1}, (C15) Lp= gxgi(i) f_ﬁ// A0

x m(T[(r" +Anf —AnlL]) (€20)

- n
L? = -2 (% j dar' d "+ A
xgi ) —o0 (r"? — A7]/12+t)2[ ) _ 1 Z (= )f dr”(A”] + An")

2 = —A II+ T A N2
X ln<HT[(r” + An)? — An’2+i]). (Cl16) ")

(o anp - an2]) @
LY can be partially integrated to give

1 dr'’' Az’
L — -+
LW = Z (+)[ A T AL [r + An] 2 ,,Z+( ),[ "+ A", )?
e 2 _ )
% ln<7[(r“ + A77)2 _ A"?/2+r]>- (C17) X ln( 4 [(+" + An) An +t:|)’ (C22)
where we made use of r' + Anp=r"—An" + Ay +
The first term in L? can be rewritten as An" ="+ An" — An'. All of these integrals are simple

043523-34



TWO LOOP STRESS-ENERGY TENSOR FOR ...

to evaluate by contour integration. For example, upon
writing the ie prescription explicitly (e.g. from Table I),
L, can be written as

1 [ In[r" + An — An' + i€]
L= —= /!
A 2,[—wdr { " — An" +ie
N In[r" + An" —ie]

In[r" + An — An’ — i€]

" — An" +ie = An" —ie
In[r" + An" + i€]
- An" —ie }
(C23)

This is straightforward to evaluate,
L, = 2mi[ln2A7n")]. (C24)

Similarly, the remaining integrals in Egs. (C20)—(C22)
evaluate to

5 = 2mi[— In(2An")], (C25)

1 1 A9
Lc 27Tl|:2 + = o ”], (C26)
Lp = 2771'[—%]. (C27)

Upon combining these integrals, we can write the spatial
integral I;; (C14) as follows,

PHYSICAL REVIEW D 78, 043523 (2008)

Upon changing the variables to v = a'/a and w = a"/a,
this reduces to

327t a’8;; [a v
I, =— 7 a—sjf dvv dww
’ 3 H 1/a 1/a
w 1 w(l—v)
X|Infl——)—In(1 — . 2
[n(1=3) —w0 - -3 3=} ©

These integrals are straightforward to do. The result is

at 8 5 4

I;
3a

This is the final result for the spatial part of the finite 2-
vertex integral.

The de Sitter invariant form of the integrand in Eq. (C1)
indicates that the leading order contribution to the integral
1,,, should be de Sitter invariant, such that when combined

: uv ONE expects to get I, =
7% 8 uv Plus terms suppressed by powers of the scale factor

with the 00 component of J

27t 8 1 g3 a. A detailed evaluation confirms this expectation. Albeit
1= - 3 2 H4 d na d n-a more cumbersome, the evaluation of T, closely resembles
A 1 A o the evaluation of I;;, and here we present only the major
X [m(—",,) — - ’7,,] (C28)  steps.
An 2 An From Eq. (C1) it follows that
|
2nAn 1 2nAn" a'a"H?
7 - + + d4 / /3[ + ][d4 // 13 ]1 ( A /2++). C31
0= 2 [ G l) O aer T aa )M Aee) D
Upon performing the r integral, one obtains
1677.3 r rll 27’},.//An//
T =i + d 14"3 // //3[ dr' + :I
00 — ! 2 xgi( ) o na r A2 A”ﬂ”2+¢ (" — An//2+i)2
1 //H2
x =00+ agp - An’2+i][ln(a ‘ ) I + AP = A )~ 1]
a/a// 2
—nlr' + An][ln( ) + In((r" + An)> — An’2+i)i|}. (C32)

Performing the r" integral requires more work,

327 d77/ s

Jon=-——"—"
00 2
H Mo 7o

+ n[(Ay + An")In[a'a"H*(An")*] — 2A7'] + 7 I:ln[a’a”HzAn”An’] +1+= 1 An ]}

dn// //3{[A7}A7]1/1n[a/a//H2(AT’//)2] _ A’T](A’T]“ + An/)]

3 3 (C33)

By making the substitutions v = a’/a and w = a'"/a, this can be reduced to a set of relatively simple integrals. The result

of integration is
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IOO

7T4a2{ ( 1)( 17 23 17)
= —(1 -1 +——=+=)+
H® a a a* ol

4

at

a
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S5 ufr-)

(C34)

When the two parts J;; in Eq. (C30) and Iy, in Eq. (C34) are combined, the leading order contribution is de Sitter invariant,

I

4
nv = ﬁg,u,v

(C35)

plus terms suppressed as powers of scale factors, in accordance with the expectation.
From this result we see that the finite integral Iy, does not contribute a leading logarithm to the two loop photon field
strength bilinear.
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