

STRUCTURAL CHEMISTRY

Received 13 October 2017
Accepted 27 December 2017

Edited by I. D. Williams, Hong Kong University of Science and Technology, Hong Kong

Keywords: heptanuclear mixed-valence coordination cluster; pseudosymmetry; iron oxidation state; validation; crystal structure.

CCDC reference: 1813756

Supporting information: this article has supporting information at journals.iucr.org/C

(C) 2018 International Union of Crystallography

Triethanolaminate iron perchlorate revisited: change of space group, chemical composition and oxidation states in $\left[\mathrm{Fe}_{7}(\text { tea })_{3}(\text { tea- } \mathrm{H})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (tea- H_{3} is triethanolamine)

Jitschaq A. van der Horn and Martin Lutz*

Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence e-mail: m.lutz@uu.nl

The X-ray crystal structure of tris[N-(2-hydroxyethyl)-2, 2^{\prime}-iminodiethanolato]tris $\left(2,2^{\prime}, 2^{\prime \prime}\right.$-nitrilotriethanolato)tetrairon(II)triiron(III) bis(perchlorate), $\left[\mathrm{Fe}_{7^{-}}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ or $\left[\mathrm{Fe}_{7}(\text { tea })_{3}(\text { tea }-\mathrm{H})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(\right.$ tea $-\mathrm{H}_{3}$ is triethanolamine), is known from the literature [Liu et al. (2008). Z. Anorg. Allg. Chem. 634, 778-783] as a heptanuclear coordination cluster. The space group was given as $I 2_{1} 3$ and is reinvestigated in the present study. We find a new spacegroup symmetry of $P a \overline{3}$ and could detect $\mathrm{O}-\mathrm{H}$ hydrogens, which were missing in the original publication. Consequences on the Fe oxidation states are investigated with the bond-valence method, resulting in a mixed-valence core of four $\mathrm{Fe}^{\mathrm{II}}$ and three $\mathrm{Fe}^{\text {III }}$ centres. Symmetry relationships between the two space groups and the average supergroup $I a \overline{3}$ are discussed in detail.

1. Introduction

The crystal structure of triethanolaminate iron perchlorate is known from the literature in the noncentrosymmetric space group $I 2_{1} 3$ with a unit-cell volume of 10849.9 (3) \AA^{3} (Liu et al., 2008). The composition of the cation was given as $\mathrm{C}_{36} \mathrm{H}_{72^{-}}$ $\mathrm{Fe}_{7} \mathrm{~N}_{6} \mathrm{O}_{18}$. There are three independent Fe centres. One Fe centre is on a threefold axis and two are on general positions. Based on bond lengths and charge balance, the original publication assigns an oxidation state +2 to Fe 1 and +3 to both Fe 2 and Fe 3 . The overall ratio between the +2 and +3 oxidation states is then $1: 6$. Bond-valence sum calculations were not conclusive and the authors could not exclude a mixed-valence situation. The $\mathrm{Fe}^{\mathrm{II}}$ centre is octahedrally surrounded by six O atoms and the $\mathrm{Fe}^{\mathrm{III}}$ centres are octahedrally surrounded by five O and one N atom. The $\mathrm{Fe}-\mathrm{O}$ bond lengths are in the range 2.123 (6) -2.181 (5) \AA for $\mathrm{Fe}^{\mathrm{II}}$ and 1.953 (6)-2.183 (6) \AA for $\mathrm{Fe}^{\text {III }}$. In addition, there are two crystallographically independent perchlorate anions present on a threefold axis.

Validation with the PLATON software (Spek, 2009) clearly indicates the presence of a crystallographic inversion centre at $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. The program suggests a space-group change from $I 2_{1} 3$ to $I a \overline{3}$, giving a 100% fit. The maximum deviation for the nonH atoms in the cation is $0.09 \AA$. The validation software additionally warns of short intermolecular $\mathrm{O} \cdots \mathrm{O}$ distances. Atom O 2 and symmetry-related $\mathrm{O} 2^{\text {iv }}$ are separated by 2.574 (9) \AA, and O 5 and O^{v} are separated by 2.649 (9) \AA [symmetry codes: (iv) $-x,-y+\frac{1}{2}, z ;(\mathrm{v})-x+\frac{1}{2}, y,-z+2$]. Such short intermolecular distances strongly suggest the presence of hydrogen bonds. Because of the symmetry relations, the missing $\mathrm{O}-\mathrm{H}$ hydrogens must be located on or disordered
about special positions with occupancies of $\frac{1}{2}$. No H atoms at these positions are given in the original publication.

As the original reflection data were not available to us, we resynthesized the compound and performed a new X-ray diffraction experiment.

2. Experimental

2.1. Synthesis and crystallization

The synthesis of (I) was performed according to the literature procedure of Liu et al. (2008). $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ (0.26 g ; Aldrich) was dissolved in methanol (3 ml) in a test

Table 1
Experimental details.

Crystal data	
Chemical formula	$\underset{\left(\mathrm{ClO}_{4}\right)_{2}}{\left[\mathrm{Fe}_{7}\left(\mathrm{C}_{6} \mathrm{H}_{1} \mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3}\right)_{3}\right]-}$
$M_{\text {r }}$	1469.87
Crystal system, space group	Cubic, Pa $\overline{3}$
Temperature (K)	100
$a(\mathrm{~A})$	22.0884 (6)
$V\left(\AA^{3}\right)$	10776.9 (8)
Z	8
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	2.02
Crystal size (mm)	$0.22 \times 0.09 \times 0.08$
Data collection	
iffractometer	Bruker Kappa APEXII
Absorption correction	$\underset{\text { 2014) }}{\text { Numerical (SADABS; Sheldrick, }}$
$T_{\text {min }}, T_{\text {max }}$	0.687, 0.887
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	211368, 7962, 6121
$R_{\text {int }}$	0.055
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.808
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.028, 0.070, 1.02
No. of reflections	7962
No. of parameters	236
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.67, -0.47

Computer programs: APEX3 (Bruker, 2016), PEAKREF (Schreurs, 2016), EVAL15 (Schreurs et al., 2010), SADABS (Sheldrick, 2014), SHELXT (Sheldrick, 2015a), SHELXL2017 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
tube. Methanol (3 ml) was carefully layered on top. Afterwards, a solution of triethanolamine (0.53 ml) in methanol $(10 \mathrm{ml})$ was added slowly on top. After 2 d , crystals suitable for X-ray diffraction had formed.

2.2. Refinement

Peak search and indexing on the strongest reflections confirmed the cubic I-centred cell of the literature (Liu et al., 2008). Weak non-indexed reflections in the original frames and a two-dimensional reconstruction (simulated precession image) prompted us to integrate the data in the cubic P-cell of the same volume. Data collection was performed at 100 (2) K. Unit-cell determinations at 220 (2) and 293 (2) K show no phase transition. The weak superstructure reflections are still present at these temperatures.

Refinement in $I 2_{1} 3$ used the coordinates of Liu et al. (2008) as the starting model. Transformation to the $I a \overline{3}$ supergroup was performed with ADDSYM in PLATON (Spek, 2009). Structure solution in $P a \overline{3}$ was performed with SHELXT (Sheldrick, 2015a).

A leverage analysis was performed with the program HATTIE (Parsons et al., 2012). The design matrix for this purpose was created with the CRYSTALS software (Betteridge et al., 2003).

In the final structure refinement in the space group $P a \overline{3}$, all H atoms were located in difference Fourier maps. H atoms on C atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=$ $0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The $\mathrm{O}-\mathrm{H}$ hydrogen was refined freely with an isotropic displacement parameter.

Crystal data, data collection and structure refinement details are summarized in Table 1.

3. Results and discussion

3.1. Structure determination in the space group $/ a \overline{3}$

Re-refinement of the literature structure with our newly collected reflection data in the space group $I 2_{1} 3$ results in low R values of $R 1[I>2 \sigma(I)]=0.0252$ and $w R 2$ (all reflections) $=$ 0.0633. The Flack (1983) parameter was included in the refinement as a two-component inversion twin and resulted in a value of $x=0.51$ (5). A major problem in the refinement was the very large correlation matrix elements, with magnitudes up to 0.964 , leading to an unstable refinement. Such unstable situations are known from the literature for structures where the inversion centre has accidentially been omitted (Marsh, 1995). As a consequence, we have to consider the $\mathrm{Fe}-\mathrm{O}$ distances as unreliable in this space group.

As suggested by the PLATON software (see $\S 1$, Introduction), we transformed the $I 2_{1} 3$ structure into the centrosymmetric supergroup $I a \overline{3}$. As expected, this immediately solved the problem of large correlations. Here, there are no correlation matrix elements larger than 0.5 . In the $I a \overline{3}$ supergroup, there are only two independent Fe centres. Fe 1 is on a special position with $\overline{3}$ symmetry (Wyckoff position b) and Fe 2 is on a general position. The R values are now $R 1[I>2 \sigma(I)]=0.0239$ and $w R 2$ (all reflections) $=0.0606$.

Table 2
Selected bond lengths (\AA).

$\mathrm{Fe} 1-\mathrm{O} 4$	$2.1353(8)$	$\mathrm{Fe} 2-\mathrm{O} 1$	$2.2342(8)$
$\mathrm{Fe} 1-\mathrm{O} 1$	$2.1719(8)$	$\mathrm{Fe} 3-\mathrm{O} 3$	$1.9516(8)$
$\mathrm{Fe} 2-\mathrm{O} 6^{\mathrm{i}}$	$1.9814(8)$	$\mathrm{Fe} 3-\mathrm{O} 5$	$1.9600(8)$
$\mathrm{Fe} 2-\mathrm{O} 3$	$2.0198(8)$	$\mathrm{Fe} 3-\mathrm{O} 6$	$1.9945(8)$
$\mathrm{Fe} 2-\mathrm{N} 1$	$2.1873(10)$	$\mathrm{Fe} 3-\mathrm{O}{ }^{\mathrm{ii}}$	$2.0270(8)$
$\mathrm{Fe} 2-\mathrm{O} 4$	$2.1888(8)$	$\mathrm{Fe} 3-\mathrm{O} 4$	$2.0989(8)$
$\mathrm{Fe} 2-\mathrm{O} 2$	$2.2081(9)$	$\mathrm{Fe} 3-\mathrm{N} 2$	$2.1774(10)$

Symmetry codes: (i) y, z, x; (ii) z, x, y.

Table 3
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.89(2)$	$1.73(2)$	$2.6137(13)$	$176(2)$

Symmetry code: (iii) $z,-x+\frac{1}{2}, y+\frac{1}{2}$.

In $I a \overline{3}$, we have to be concerned about only one symmetryindependent short intermolecular O...O distance, namely the $\mathrm{O} 2 \cdots \mathrm{O} 2^{\text {vi }}$ distance of 2.6144 (15) \AA [symmetry code: (vi) $\left.-x+1,-y+\frac{1}{2}, z\right]$. With the reflection data available, we are now able to investigate the residual density between these two atoms (Fig. 1). There is indeed a strong indication for the presence of an H atom close to the twofold axis, viz. the midpoint between O 2 and $\mathrm{O} 2{ }^{\text {vi }}$. This can be interpreted as a double-well situation (Gilli et al., 2004). The H atom can only be half occupied, resulting in a molecular formula of $\mathrm{C}_{36} \mathrm{H}_{75} \mathrm{Fe}_{7} \mathrm{~N}_{6} \mathrm{O}_{18}$ for the cation. Of course, the larger number of H atoms will have consequences for the iron oxidation states. $\mathrm{Fe}-\mathrm{O}$ distances of 2.1514 (8) \AA for Fe 1 and 1.9667 (8)2.1655 (8) \AA for Fe 2 do not allow a clear distinction of oxidation state between the two independent iron centres. It should also be noted that the mean-square displacement amplitude along the $\mathrm{Fe} 2-\mathrm{O} 2$ bond is $0.0282 \AA^{2}$ and along the $\mathrm{Fe} 2-\mathrm{O} 1^{\text {vii }}$ bond id $0.0185 \AA^{2}$, as calculated with PLATON (Spek, 2009) [symmetry code: (vii) $-y+\frac{1}{2},-z+\frac{1}{2},-x+\frac{1}{2}$].

Figure 1
Residual density calculation around atom O 2 in the space group $I a \overline{3}$. Contour levels are drawn at -0.20 (red), 0.10 (blue) and $0.60 \mathrm{e}^{\AA^{-3}}$ (green). Calculations were carried out with PLATON (Spek, 2009).

Figure 2
PEANUT plots (Hummel et al., 1990) showing the difference between the measured displacement parameters and the parameters obtained by rigidbody analyses using the program THMA11 (Schomaker \& Trueblood, 1998). A scale factor of 6.15 was used for the r.m.s. surfaces. Red surfaces indicate positive differences and blue surfaces negative differences. Left: space group $I a \overline{3}$; right: space group $P a \overline{3}$.

These values are significantly larger than the limit of $0.001 \AA^{2}$ suggested by Hirshfeld (1976) for rigid bonds in organic molecules. Failure to this Hirshfeld rigid-bond test due to elongated displacement ellipsoids has been reported for the average structures of Jahn-Teller-distorted complexes [see, for example, Falvello (1997) and Smeets et al., (2011)]. In the present structure, it can indicate an average structure as well. The physically unreasonable displacement behaviour can be seen clearly in a PEANUT plot (Fig. 2, left).

3.2. Structure determination in the space group $\mathrm{Pa} \overline{3}$

A closer inspection of the diffraction pattern shows that reflections with $h+k+l=2 n$ are weak but not absent. Space

Figure 3
Displacement ellipsoid plot of the cation drawn at the 50% probability level. H atoms are drawn at arbitrary radii and perchlorate anions have been omitted for clarity. [Symmetry codes: (i) y, z, x; (ii) z, x, y.]

Table 4
Reflection statistics for the strong substructure and the weak superstructure reflections.
Agreement factors $R 1$ and $w R 2$ were calculated according to the SHELXL manual (Sheldrick, 2015b).

$h+k+l$	$\#$	$\langle I\rangle$	$\langle\sigma\rangle$	$\langle I\rangle /\langle\sigma\rangle$	$\langle I / \sigma\rangle$	$w R 2$ (all reflections)	$R 1[I>2 \sigma(I)]$	$\# I>2 \sigma(I)$
$2 n$	3990	12721.86	495.31	25.68	46.01	0.0621	0.0233	
$2 n+1$	3972	1654.41	131.84	12.55	15.64	0.0894	0.0412	
Total	7962	7198.77	313.97	22.93	30.85	0.0701	0.0282	64.29%

group $I a \overline{3}$ thus represents an average structure and the true space group is subgroup $P a \overline{3}$ with the same volume of the unit cell. After re-integration of the data based on the new cell, least-squares refinement in $P a \overline{3}$ is stable. The largest element of the correlation matrix is here 0.521 , just above the 0.5 cutoff. As in subgroup $I 2_{1} 3, \mathrm{Fe} 1$ is on a threefold axis and Fe 2 and Fe 3 are on general positions (Fig. 3). The main difference is that subgroup $I 2_{1} 3$ is obtained from $I a \overline{3}$ by the removal of an inversion centre, while the true space group $P a \overline{3}$ is obtained by the removal of translational symmetry. Consequences for the intramolecular geometry are minor but significant (Table 2, and see below). A major difference concerns the short intermolecular $\mathrm{O} \cdots \mathrm{O}$ contacts. In $I 2_{1} 3$, this involves symmetryrelated atom pairs $\mathrm{O} 2 / \mathrm{O} 2^{\mathrm{iv}}$ and $\mathrm{O} 5 / \mathrm{O} 5^{\text {viii }}$ [symmetry codes: (iv) $-x,-y+\frac{1}{2}, z$; (viii) $\left.-x+2, y,-z+2\right]$, while in $P a \overline{3}$, the two O atoms of the potential hydrogen bond are symmetry independent (Fig. 4). There is no symmetry element between the potential donor and acceptor O atoms.

Fig. 5 shows the residual electron density between atoms O 2 and $\mathrm{O} 5^{\text {iii }}$ [symmetry code: (iii) $z,-x+\frac{1}{2}, y+\frac{1}{2}$]. The H atom is clearly bound to O 2 and can be introduced with full occupancy. Atom $\mathrm{O} 5^{\mathrm{iii}}$ is then the acceptor of the hydrogen bond

Figure 4
Coordination between adjacent cations in each of the described space groups. Dashed lines between the cations represent short ($<2.7 \AA$) O \cdots O distances. Each colour represents a crystallographically independent part of the complex. The supergroup $I a \overline{3}$ can be transformed into one of the subgroups $I 2_{1} 3$ and $P a \overline{3}$, both with subgroup index 2 .
(Table 3). From the nearly linear geometry and rather short $\mathrm{O} \cdots \mathrm{O}$ distance we conclude that the hydrogen bond is very strong. Overall, the hydrogen bonding leads to a threedimensional network in the crystal. The different protonation state for atoms O 2 and O 5 is also reflected in the $\mathrm{Fe}-\mathrm{O}$ distances. $\mathrm{Fe} 2-\mathrm{O} 2$ of 2.2081 (9) \AA is significantly longer than Fe3-O5 with 1.9600 (8) \AA. This difference can be used for the bond-valence calculations (see below). All $\mathrm{Fe}-\mathrm{O}$ bonds now have reasonably low values for the Hirshfeld rigid-bond test, with a maximum of $0.0024 \AA^{2}$. Also, the PEANUT plot looks physically reasonable (Fig. 2, right). The R value of the rigidbody model improves from 0.238 (Ia $\overline{3})$ to $0.160(P a \overline{3})(R=$ $\left.\left\{\Sigma\left[\left(U_{\text {obs }}-U_{\text {calc }}\right)^{2}\right] / \Sigma\left(U_{\text {obs }}\right)^{2}\right\}^{1 / 2}\right) \quad$ (Schomaker \& Trueblood, 1998).

The IR data given in the publication of Liu et al. (2008) show a broad peak at $3463 \mathrm{~cm}^{-1}$. This can be an indication for the presence of an $\mathrm{O}-\mathrm{H}$ group. We repeated the IR experiment on our crystals and indeed found a very broad peak in the same region.

The differences between the average structure in $I a \overline{3}$ and the true structure in $P a \overline{3}$ are mainly expressed in the weak superstructure reflections with $h+k+l=2 n+1$. Reflection statistics are given in Table 4. The mean I / σ of the substructure reflections are 2.9 -fold stronger than the superstructure reflections. Still, 69.44% of the superstructure reflections are stronger than the 2σ criterion. This pseudotranslation symmetry can also be seen in the Patterson map calculated

Figure 5
Residual density calculation around atom O 2 in the space group $P a \overline{3}$. The residual density peak is located $0.915 \AA$ from O2. Contour levels are drawn at -0.40 (red), 0.10 (blue) and 0.70 (green) e \AA^{-3}. Calculations were carried out with PLATON (Spek, 2009).

Figure 6
Side view of the title compound. The approximate inversion symmetry is mainly violated by the $\mathrm{O}-\mathrm{H}$ hydrogen. $\mathrm{C}-\mathrm{H}$ hydrogens have been omitted for clarity.

Table 5
Results of the leverage analysis performed with the program HATTIE (Parsons et al., 2012).
The normalized value T^{2} is a measure of the influence of a specific reflection on a refined parameter.

	h	k	l	T^{2}
x coordinate (H2)	3	1	5	10000
	3	3	3	7629.49
	3	5	7	7353.62
y coordinate (H2)	5	1	7	7175.33
	0	2	6	10000
	0	6	10	7304.21
	5	1	8	5936.25
z coordinate (H2)	6	4	10	5243.41
	5	0		
	4	6	6	10000
	1	0	7	5790.49
	3	4	8	5227.58
			6	4357.97

with SHELXS97 (Sheldrick, 2008). The highest non-origin peak is at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, with a height of 346 compared to the

Table 6
Bond lengths (\AA) from different refinements.

Literature structure at room temperature (Liu et al., 2008)								Present study at 100 K	

Table 7
Bond-valence sums (BVS).
Entries for the literature structure were taken from the original publication. Entries for the present study were calculated using the ToposPro software (Version 5.3.0.3; Blatov et al., 2014) with parameters from Brown (2016b): $R_{0}\left(\mathrm{Fe}^{3+}-\mathrm{O}\right)=1.759 \AA ; R_{0}\left(\mathrm{Fe}^{2+}-\mathrm{O}\right)=1.734 \AA ; R_{0}\left(\mathrm{Fe}^{3+}-\mathrm{N}\right)=1.82 \AA$; $R_{0}\left(\mathrm{Fe}^{2+}-\mathrm{N}\right)=1.76 \AA$. A b value of 0.37 was used for all bonds.

| | | | Literature structure
 at room temperature
 (Liu et al., 2008) | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

normalized height of 999 at the origin. Within the default tolerances, PLATON ADDSYM gives a 100% fit for I-centred superstructure $I a \overline{3}$. The maximum deviation is $0.35 \AA$ and involves the $\mathrm{O} 2 / \mathrm{O} 5$ atom pair. The cation has an exact crystallographic C_{3} symmetry and an approximate $C_{3 i}$ symmetry, with an r.m.s. deviation of $0.0750 \AA$ for the non-H atoms (Pilati \& Forni, 1998). The $C_{3 i}$ symmetry is mainly broken by the $\mathrm{O}-\mathrm{H}$ hydrogens (Fig. 6).

A leverage analysis (Parsons et al., 2012) gives a quantitative insight on the influence of certain observations on the refined parameters. We were especially interested in which reflections have the largest influence on the position of atom H 2 . The largest T^{2} values for the x, y and z coordinates are given in Table 5. In the current setting of the coordinates, the most influencial reflections for the x and z coordinates all belong to the weak superstructure reflections with $h+k+l=$ $2 n+1$. The y coordinate does not have this dependency. Indeed, the $\mathrm{O} 2 \cdots \mathrm{O} 5^{\mathrm{iii}}$ direction of the hydrogen bond is nearly perpendicular to the b axis, with an angle of $90.46(4)^{\circ}$.

3.3. Bond-valence analysis

As discussed above, the space group choice results in different symmetries of the Fe sites. A summary of the corresponding $\mathrm{Fe}-\mathrm{O}$ distances is given in Table 6. We assume that the distances in $I 2_{1} 3$ are unreliable because of an instable least-squares refinement. The distances in $I a \overline{3}$ reflect the situation of an average structure. In the true space group $P a \overline{3}$, there are three symmetry-independent Fe sites. The $\mathrm{Fe}-\mathrm{O}$ distances for Fe 3 (general position) are shorter than the distances for Fe 1 (special position, threefold axis) and Fe 2 (general position).

Based on the difference of bond lengths, Brown introduced the concept of bondvalence analysis for the determination of oxidation states (Brown, 2016a). An overview is shown in Table 7. The published values for the bond-valence sum (BVS) in the literature structure are rather inconclusive (Liu et al., 2008). With the correct
space group choice $P a \overline{3}$, we can conclude that atoms Fe 1 and Fe 2 are in a +2 oxidation state, while Fe 3 is in $\mathrm{a}+3$ oxidation state. This is consistent with the addition of $\mathrm{O}-\mathrm{H}$ hydrogens, which were missing in the literature structure.

4. Conclusions

The current study was initiated because the PLATON validation software (Spek, 2009) hints on severe problems with the literature structure (Liu et al., 2008). In the course of our investigations, it appeared that weak superstructure reflections were essential for the determination of the Fe oxidation states, as well as of the hydrogen-bonding situation. The situation is comparable to a recent study, where weak superstructure reflections were essential for the explanation of the hydrogen-bonded network of an organic molecule (Zarychta et al., 2016).

The original publication of Liu et al. (2008) did not include reflection data. Even if they were available, it would be impossible to detect the missing translation symmetry and the original problem with reflection indexing. This can only be detected if the original diffraction images are available. Fortunately, there are now initiatives attempting to set up an archiving system for diffraction images (Kroon-Batenburg et al., 2017; Helliwell et al., 2017).

Acknowledgements

Fruitful discussions with the group Organic Chemistry and Catalysis (Utrecht University) are kindly acknowledged.

Funding information

Funding for this research was provided by: the Netherlands Organization for Scientific Research (NWO), which financed the purchase of the X-ray diffractometer.

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Blatov, V. A., Shevchenko, A. P. \& Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.
Brown, I. D. (2016a). In The Chemical Bond in Inorganic Chemistry. Oxford University Press.
Brown, I. D. (2016b). Bond valence parameters. http://www.iucr.org/ _data/assets/file/0007/126574/bvparm2016.cif.
Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
Falvello, L. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4463-4476.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. \& Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845-3855.
Helliwell, J. R., McMahon, B., Guss, J. M. \& Kroon-Batenburg, L. M. J. (2017). IUCrJ, 4, 714-722.

Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Hummel, W., Hauser, J. \& Bürgi, H.-B. (1990). J. Mol. Graph. 8, 214 220.

Kroon-Batenburg, L. M. J., Helliwell, J. R., McMahon, B. \& Terwilliger, T. C. (2017). IUCrJ, 4, 87-99.
Liu, T., Wang, B.-W., Chen, Y.-H., Wang, Z.-M. \& Gao, S. (2008). Z. Anorg. Allg. Chem. 634, 778-783.
Marsh, R. E. (1995). Acta Cryst. B51, 897-907.
Parsons, S., Wagner, T., Presly, O., Wood, P. A. \& Cooper, R. I. (2012). J. Appl. Cryst. 45, 417-429.

Pilati, T. \& Forni, A. (1998). J. Appl. Cryst. 31, 503-504.
Schomaker, V. \& Trueblood, K. N. (1998). Acta Cryst. B54, 507-514.
Schreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands.
Schreurs, A. M. M., Xian, X. \& Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Smeets, S., Parois, P., Bürgi, H.-B. \& Lutz, M. (2011). Acta Cryst. B67, 53-62.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zarychta, B., Gianopoulos, C. G. \& Pinkerton, A. A. (2016). Bioorg. Med. Chem. Lett. 26, 1416-1418.

supporting information

Acta Cryst. (2018). C74, 125-130 [https://doi.org/10.1107/S2053229617018460]

Triethanolaminate iron perchlorate revisited: change of space group, chemical composition and oxidation states in $\left[\mathrm{Fe}_{7}(\text { tea })_{3}(\text { tea- } \mathrm{H})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(\right.$ tea $-\mathrm{H}_{3}$ is triethanolamine)

Jitschaq A. van der Horn and Martin Lutz

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: PEAKREF (Schreurs, 2016); data reduction: EVAL15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris[N-(2-hydroxyethyl)-2,2'-iminodiiethanolato]tris(2,2', $2^{\prime \prime}-\backslash$ nitrilotriethanolato)tetrairon(II)triiron(III)

bis(perchlorate)

Crystal data

$\left[\mathrm{Fe}_{7}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=1469.87$
Cubic, $P a \overline{3}$
$a=22.0884$ (6) \AA
$V=10776.9(8) \AA^{3}$
$Z=8$
$F(000)=6056$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 104201 reflections
$\theta=1.3-35.1^{\circ}$
$\mu=2.02 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, black
$0.22 \times 0.09 \times 0.08 \mathrm{~mm}$
$D_{\mathrm{x}}=1.812 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker Kappa APEXII
diffractometer
Radiation source: sealed tube
φ and ω scans
Absorption correction: numerical
(SADABS; Sheldrick, 2014)
$T_{\text {min }}=0.687, T_{\text {max }}=0.887$
211368 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.070$
$S=1.02$
7962 reflections
236 parameters
0 restraints

Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0318 P)^{2}+4.712 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

supporting information

$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.67 \mathrm{e} \AA^{-3}$

$$
\Delta \rho_{\min }=-0.47 \mathrm{e} \AA^{-3}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Fel	0.25330 (2)	0.25330 (2)	0.25330 (2)	0.00791 (5)
Fe 2	0.22069 (2)	0.16731 (2)	0.36722 (2)	0.00893 (4)
Fe3	0.33830 (2)	0.13764 (2)	0.28373 (2)	0.00842 (4)
O1	0.17204 (4)	0.21290 (4)	0.29115 (4)	0.00986 (14)
O2	0.21869 (4)	0.12195 (4)	0.45628 (4)	0.01637 (17)
H2	0.2383 (9)	0.1233 (11)	0.4913 (9)	0.048 (7)*
O3	0.26809 (4)	0.10217 (4)	0.32397 (4)	0.01312 (16)
O4	0.29956 (4)	0.21244 (4)	0.32770 (4)	0.00978 (14)
O5	0.37899 (4)	0.05905 (4)	0.27734 (4)	0.01365 (16)
O6	0.40289 (4)	0.18411 (4)	0.24104 (4)	0.01275 (15)
N1	0.14858 (4)	0.10076 (4)	0.35394 (4)	0.01091 (17)
N2	0.40266 (4)	0.15008 (4)	0.35735 (4)	0.01108 (17)
C1	0.10275 (5)	0.13060 (5)	0.31484 (5)	0.0129 (2)
H1A	0.076640	0.156948	0.340002	0.015*
H1B	0.076764	0.099374	0.295911	0.015*
C2	0.13276 (5)	0.16854 (5)	0.26538 (5)	0.01151 (19)
H2A	0.156258	0.141764	0.238188	0.014*
H2B	0.101192	0.188918	0.240948	0.014*
C3	0.12445 (5)	0.08718 (6)	0.41514 (5)	0.0146 (2)
H3A	0.097115	0.051736	0.412797	0.017*
H3B	0.100542	0.122151	0.429773	0.017*
C4	0.17503 (6)	0.07400 (5)	0.45961 (5)	0.0152 (2)
H4A	0.158507	0.071214	0.501178	0.018*
H4B	0.194465	0.034891	0.449512	0.018*
C5	0.17540 (5)	0.04711 (5)	0.32310 (6)	0.0134 (2)
H5A	0.166443	0.049253	0.279232	0.016*
H5B	0.156514	0.009797	0.339230	0.016*
C6	0.24374 (5)	0.04385 (5)	0.33227 (5)	0.0126 (2)
H6A	0.252965	0.029135	0.373582	0.015*
H6B	0.261812	0.015364	0.302765	0.015*
C7	0.37356 (5)	0.18936 (5)	0.40332 (5)	0.0130 (2)
H7A	0.404749	0.207173	0.430125	0.016*
H7B	0.345497	0.165143	0.428525	0.016*
C8	0.33886 (5)	0.23950 (5)	0.37111 (5)	0.0121 (2)
H8A	0.314986	0.263136	0.400776	0.014*
H8B	0.367487	0.267273	0.350669	0.014*

C9	$0.41247(6)$	$0.08692(5)$	$0.37804(5)$	$0.0149(2)$
H9A	0.376760	0.072762	0.401131	0.018^{*}
H9B	0.448238	0.085129	0.404990	0.018^{*}
C10	$0.42245(5)$	$0.04634(5)$	$0.32320(6)$	$0.0146(2)$
H10A	0.463706	0.052964	0.306983	0.018^{*}
H10B	0.419081	0.003389	0.335540	0.018^{*}
C11	$0.45825(5)$	$0.17931(6)$	$0.33281(5)$	$0.0137(2)$
H11A	0.494455	0.160261	0.351123	0.016^{*}
H11B	0.458364	0.222757	0.343807	0.016^{*}
C12	$0.46122(5)$	$0.17298(5)$	$0.26411(5)$	$0.0130(2)$
H12A	0.490419	0.202435	0.247136	0.016^{*}
H12B	0.474609	0.131682	0.252974	0.016^{*}
C11	$0.09580(2)$	$0.09580(2)$	$0.09580(2)$	$0.01534(9)$
O7	$0.08074(5)$	$0.08564(5)$	$0.15863(5)$	$0.0266(2)$
O8	$0.05841(5)$	$0.05841(5)$	$0.05841(5)$	$0.0304(4)$
C12	$0.41017(2)$	$0.41017(2)$	$0.41017(2)$	$0.01490(9)$
O9	$0.42281(5)$	$0.34728(5)$	$0.42264(5)$	$0.0253(2)$
O10	$0.44765(5)$	$0.44765(5)$	$0.44765(5)$	$0.0281(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe 1	$0.00791(5)$	$0.00791(5)$	$0.00791(5)$	$0.00099(5)$	$0.00099(5)$	$0.00099(5)$
Fe 2	$0.00892(7)$	$0.00825(7)$	$0.00963(7)$	$0.00067(5)$	$0.00126(5)$	$0.00061(5)$
Fe 3	$0.00793(7)$	$0.00863(7)$	$0.00871(7)$	$0.00104(5)$	$0.00021(5)$	$0.00058(5)$
O 1	$0.0105(3)$	$0.0091(3)$	$0.0101(3)$	$-0.0005(3)$	$0.0005(3)$	$-0.0005(3)$
O 2	$0.0209(4)$	$0.0160(4)$	$0.0123(4)$	$-0.0039(3)$	$-0.0032(3)$	$0.0034(3)$
O 3	$0.0131(4)$	$0.0087(3)$	$0.0176(4)$	$0.0000(3)$	$0.0047(3)$	$0.0006(3)$
O 4	$0.0096(3)$	$0.0099(3)$	$0.0098(3)$	$0.0005(3)$	$-0.0010(3)$	$0.0001(3)$
O5	$0.0129(4)$	$0.0120(4)$	$0.0161(4)$	$0.0025(3)$	$-0.0014(3)$	$-0.0013(3)$
O 6	$0.0079(3)$	$0.0176(4)$	$0.0127(4)$	$0.0008(3)$	$-0.0002(3)$	$0.0042(3)$
N 1	$0.0105(4)$	$0.0106(4)$	$0.0117(4)$	$0.0003(3)$	$0.0015(3)$	$0.0007(3)$
N 2	$0.0106(4)$	$0.0115(4)$	$0.0111(4)$	$0.0018(3)$	$-0.0005(3)$	$0.0009(3)$
C 1	$0.0101(5)$	$0.0132(5)$	$0.0153(5)$	$-0.0011(4)$	$-0.0004(4)$	$0.0016(4)$
C 2	$0.0114(5)$	$0.0119(5)$	$0.0112(5)$	$-0.0016(4)$	$-0.0015(4)$	$-0.0007(4)$
C3	$0.0138(5)$	$0.0161(5)$	$0.0138(5)$	$-0.0016(4)$	$0.0033(4)$	$0.0027(4)$
C4	$0.0204(6)$	$0.0133(5)$	$0.0118(5)$	$-0.0028(4)$	$0.0011(4)$	$0.0025(4)$
C5	$0.0141(5)$	$0.0096(5)$	$0.0164(5)$	$-0.0009(4)$	$0.0006(4)$	$-0.0010(4)$
C6	$0.0139(5)$	$0.0079(4)$	$0.0161(5)$	$0.0002(4)$	$0.0023(4)$	$0.0011(4)$
C7	$0.0138(5)$	$0.0153(5)$	$0.0101(5)$	$0.0026(4)$	$-0.0014(4)$	$-0.0007(4)$
C8	$0.0136(5)$	$0.0111(5)$	$0.0115(5)$	$-0.0002(4)$	$-0.0018(4)$	$-0.0011(4)$
C9	$0.0173(5)$	$0.0136(5)$	$0.0138(5)$	$0.0030(4)$	$-0.0017(4)$	$0.0034(4)$
C10	$0.0144(5)$	$0.0111(5)$	$0.0183(5)$	$0.0030(4)$	$-0.0020(4)$	$0.0002(4)$
C11	$0.0102(5)$	$0.0159(5)$	$0.0152(5)$	$-0.0009(4)$	$-0.0017(4)$	$0.0004(4)$
C12	$0.0083(5)$	$0.0158(5)$	$0.0148(5)$	$0.0006(4)$	$0.0005(4)$	$0.0024(4)$
C11	$0.01534(9)$	$0.01534(9)$	$0.01534(9)$	$0.00135(10)$	$0.00135(10)$	$0.00135(10)$
O7	$0.0310(6)$	$0.0320(6)$	$0.0166(5)$	$0.0077(4)$	$0.0056(4)$	$0.0051(4)$
O8	$0.0304(4)$	$0.0304(4)$	$0.0304(4)$	$-0.0074(4)$	$-0.0074(4)$	$-0.0074(4)$

C12	$0.01490(9)$	$0.01490(9)$	$0.01490(9)$	$0.00088(10)$	$0.00088(10)$	$0.00088(10)$
O9	$0.0321(6)$	$0.0161(4)$	$0.0278(5)$	$0.0056(4)$	$0.0044(4)$	$0.0032(4)$
O10	$0.0281(4)$	$0.0281(4)$	$0.0281(4)$	$-0.0057(4)$	$-0.0057(4)$	$-0.0057(4)$

Geometric parameters (A, ${ }^{\circ}$)

Fel-O4 ${ }^{\text {i }}$	2.1352 (8)	C2-H2B	0.9900
Fel-O4ii	2.1352 (8)	C3-C4	1.5159 (17)
Fe1-O4	2.1353 (8)	C3-H3A	0.9900
Fe1-O1	2.1719 (8)	C3-H3B	0.9900
$\mathrm{Fe} 1-\mathrm{Ol}^{\text {i }}$	2.1719 (8)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
Fel-O1 ${ }^{\text {ii }}$	2.1719 (8)	C4-H4B	0.9900
$\mathrm{Fe} 2-\mathrm{O6}^{\text {i }}$	1.9814 (8)	C5-C6	1.5247 (16)
$\mathrm{Fe} 2-\mathrm{O} 3$	2.0198 (8)	C5-H5A	0.9900
Fe2-N1	2.1873 (10)	C5-H5B	0.9900
Fe2-O4	2.1888 (8)	C6-H6A	0.9900
$\mathrm{Fe} 2-\mathrm{O} 2$	2.2081 (9)	C6-H6B	0.9900
$\mathrm{Fe} 2-\mathrm{O} 1$	2.2342 (8)	C7-C8	1.5233 (16)
$\mathrm{Fe} 3-\mathrm{O} 3$	1.9516 (8)	C7-H7A	0.9900
$\mathrm{Fe} 3-\mathrm{O} 5$	1.9600 (8)	C7-H7B	0.9900
Fe3-O6	1.9945 (8)	C8-H8A	0.9900
$\mathrm{Fe} 3-\mathrm{O} 1^{\text {ii }}$	2.0270 (8)	С8-H8B	0.9900
Fe3-O4	2.0989 (8)	C9-C10	1.5229 (17)
Fe3-N2	2.1774 (10)	C9-H9A	0.9900
$\mathrm{O} 1-\mathrm{C} 2$	1.4271 (13)	C9-H9B	0.9900
O2-C4	1.4345 (15)	C10-H10A	0.9900
$\mathrm{O} 2-\mathrm{H} 2$	0.89 (2)	C10-H10B	0.9900
O3-C6	1.4080 (13)	C11-C12	1.5252 (16)
O4-C8	1.4247 (14)	C11-H11A	0.9900
O5-C10	1.4235 (14)	C11-H11B	0.9900
O6-C12	1.4071 (14)	C12-H12A	0.9900
N1-C3	1.4836 (15)	C12-H12B	0.9900
N1-C1	1.4849 (15)	C11-O8	1.4302 (18)
N1-C5	1.4898 (15)	$\mathrm{Cl} 1-\mathrm{O}^{\text {i }}$	1.4448 (10)
N2-C7	1.4822 (15)	$\mathrm{Cl1}-\mathrm{O} 7^{\text {ii }}$	1.4448 (10)
N2-C9	1.4839 (15)	C11-O7	1.4448 (10)
N2-C11	1.4896 (15)	C12-O10	1.4341 (19)
$\mathrm{C} 1-\mathrm{C} 2$	1.5282 (16)	C12-09	1.4435 (10)
C1-H1A	0.9900	$\mathrm{Cl} 2-\mathrm{O} 9^{\text {i }}$	1.4435 (10)
C1-H1B	0.9900	$\mathrm{Cl} 2-\mathrm{O} 9^{\text {ii }}$	1.4435 (10)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900		
O 4 - $\mathrm{Fe}^{\text {i }}$ - $4^{4 i}$	99.17 (3)	N1-C1-H1B	109.4
$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{O} 4$	99.16 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.4
$\mathrm{O} 4{ }^{\text {iii- }} \mathrm{Fe} 1-\mathrm{O} 4$	99.16 (3)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.0
O 4 - $\mathrm{Fe} 1-\mathrm{O} 1$	77.45 (3)	O1-C2-C1	110.80 (9)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Fe} 1-\mathrm{O} 1$	174.49 (3)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 1$	85.73 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5

$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1^{\text {i }}$	85.73 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{i}}$	77.44 (3)
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 1^{\text {i }}$	174.49 (3)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Ol}^{\text {i }}$	97.86 (3)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{O} 1^{\text {ii }}$	174.49 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Fe} 1-\mathrm{O} 1^{\text {ii }}$	85.73 (3)
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 1^{\text {ii }}$	77.45 (3)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\text {ii }}$	97.86 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1^{\text {ii }}$	97.86 (3)
O6 ${ }^{\text {i}}-\mathrm{Fe} 2-\mathrm{O} 3$	170.08 (4)
O6--Fe2-N1	107.99 (4)
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{N} 1$	80.52 (4)
O6--Fe2-O4	96.25 (3)
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O} 4$	73.93 (3)
N1—Fe2-O4	146.33 (3)
O6- ${ }^{\text {i }} \mathrm{Fe} 2-\mathrm{O} 2$	90.60 (3)
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O} 2$	96.23 (4)
N1-Fe2-O2	78.46 (4)
$\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{O} 2$	125.30 (3)
O6 ${ }^{\text {i }}$ - $\mathrm{Fe} 2-\mathrm{O} 1$	74.48 (3)
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O} 1$	102.40 (3)
$\mathrm{N} 1-\mathrm{Fe} 2-\mathrm{O} 1$	81.48 (3)
$\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{O} 1$	82.97 (3)
$\mathrm{O} 2-\mathrm{Fe} 2-\mathrm{O} 1$	149.87 (3)
$\mathrm{O} 3-\mathrm{Fe} 3-\mathrm{O} 5$	92.38 (4)
$\mathrm{O} 3-\mathrm{Fe} 3-\mathrm{O} 6$	172.02 (4)
$\mathrm{O} 5-\mathrm{Fe} 3-\mathrm{O} 6$	95.38 (4)
$\mathrm{O} 3-\mathrm{Fe} 3-\mathrm{O} 1^{\text {ii }}$	95.38 (3)
$\mathrm{O} 5-\mathrm{Fe} 3-\mathrm{O} 1^{\text {ii }}$	120.80 (3)
$\mathrm{O} 6-\mathrm{Fe} 3-\mathrm{O} 1^{\text {ii }}$	79.04 (3)
$\mathrm{O} 3-\mathrm{Fe} 3-\mathrm{O} 4$	77.37 (3)
$\mathrm{O} 5-\mathrm{Fe} 3-\mathrm{O} 4$	156.56 (3)
$\mathrm{O} 6-\mathrm{Fe} 3-\mathrm{O} 4$	96.05 (3)
$\mathrm{O} 1{ }^{\text {ii- }} \mathrm{Fe} 3-\mathrm{O} 4$	81.53 (3)
$\mathrm{O} 3-\mathrm{Fe} 3-\mathrm{N} 2$	103.25 (4)
$\mathrm{O} 5-\mathrm{Fe} 3-\mathrm{N} 2$	82.31 (4)
$\mathrm{O} 6-\mathrm{Fe} 3-\mathrm{N} 2$	79.70 (4)
$\mathrm{O} 1{ }^{\text {ii- }} \mathrm{Fe} 3-\mathrm{N} 2$	149.83 (4)
$\mathrm{O} 4-\mathrm{Fe} 3-\mathrm{N} 2$	79.70 (3)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Fe} 3{ }^{\text {i }}$	120.46 (7)
C2-O1-Fe1	129.12 (7)
Fe 3 - $\mathrm{O} 1-\mathrm{Fe} 1$	100.98 (3)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Fe} 2$	106.43 (6)
Fe3--O1-Fe2	98.15 (3)
$\mathrm{Fe} 1-\mathrm{O} 1-\mathrm{Fe} 2$	94.43 (3)
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{Fe} 2$	113.21 (7)
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{H} 2$	108.0 (15)
Fe2-O2-H2	138.7 (14)

77.44 (3)
174.49 (3)
97.86 (3)
174.49 (3)
85.73 (3)
77.45 (3)
97.86 (3)
97.86 (3)
170.08 (4)
107.99 (4)
80.52 (4)
73.93 (3)
146.33 (3)
90.60 (3)
96.23 (4)
78.46 (4)
125.30 (3)
74.48 (3)
102.40 (3)
81.48 (3)
82.97 (3)
149.87 (3)
172.02 (4)
95.38 (4)
95.38 (3)
120.80 (3)
79.04 (3)
77.37 (3)
156.56 (3)
96.05 (3)
81.53 (3)
103.25 (4)
82.31 (4)
149.83 (4)
79.70 (3)
120.46 (7)
129.12 (7)
100.98 (3)
106.43 (6)
98.15 (3)
94.43 (3)
13.21 (7)
138.7 (14)

$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1
N1-C3-C4	111.37 (10)
N1-C3-H3A	109.4
C4-C3-H3A	109.4
N1-C3-H3B	109.4
C4-C3-H3B	109.4
H3A-C3-H3B	108.0
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	108.69 (9)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.0
C3-C4-H4A	110.0
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.0
C3-C4-H4B	110.0
H4A-C4-H4B	108.3
N1-C5-C6	111.74 (9)
N1-C5-H5A	109.3
C6-C5-H5A	109.3
N1-C5-H5B	109.3
C6-C5-H5B	109.3
H5A-C5-H5B	107.9
O3-C6-C5	108.54 (9)
O3-C6-H6A	110.0
C5-C6-H6A	110.0
O3-C6-H6B	110.0
C5-C6-H6B	110.0
H6A-C6-H6B	108.4
N2-C7-C8	108.89 (9)
N2-C7-H7A	109.9
C8-C7-H7A	109.9
N2-C7-H7B	109.9
C8-C7-H7B	109.9
H7A-C7-H7B	108.3
O4-C8-C7	108.41 (9)
O4-C8-H8A	110.0
C7-C8-H8A	110.0
O4-C8-H8B	110.0
C7-C8-Н8B	110.0
H8A-C8-H8B	108.4
N2-C9-C10	109.24 (9)
N2-C9-H9A	109.8
C10-C9-H9A	109.8
N2-C9-H9B	109.8
C10-C9-H9B	109.8
H9A-C9-H9B	108.3
O5-C10-C9	110.63 (9)
O5-C10-H10A	109.5
C9-C10-H10A	109.5

C6-O3-Fe3	136.90 (7)
C6-O3-Fe2	113.09 (7)
$\mathrm{Fe} 3-\mathrm{O} 3-\mathrm{Fe} 2$	109.96 (4)
C8-O4-Fe3	113.16 (6)
C8-O4-Fe1	129.21 (7)
Fe3-O4-Fe1	99.88 (3)
C8-O4-Fe2	114.05 (7)
$\mathrm{Fe} 3-\mathrm{O} 4-\mathrm{Fe} 2$	98.66 (3)
$\mathrm{Fe} 1-\mathrm{O} 4-\mathrm{Fe} 2$	96.80 (3)
$\mathrm{C} 10-\mathrm{O} 5-\mathrm{Fe} 3$	115.63 (7)
C12-O6-Fe2 ${ }^{\text {ii }}$	137.14 (7)
C12-O6-Fe3	113.19 (7)
Fe2 ${ }^{\text {ii }}$-O6-Fe3	108.30 (4)
C3-N1-C1	112.01 (9)
C3-N1-C5	113.50 (9)
C1-N1-C5	110.99 (9)
C3-N1-Fe2	105.98 (7)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Fe} 2$	106.02 (7)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Fe} 2$	107.84 (7)
C7-N2-C9	113.75 (9)
C7-N2-C11	110.68 (9)
C9-N2-C11	113.53 (9)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{Fe} 3$	107.60 (7)
C9-N2-Fe3	101.93 (7)
C11-N2-Fe3	108.73 (7)
N1-C1-C2	111.32 (9)
N1-C1-H1A	109.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4
C3-N1-C1-C2	154.85 (10)
C5-N1-C1-C2	-77.15 (12)
$\mathrm{Fe} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	39.70 (10)
Fe 3 - $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	-69.16 (10)
Fe1-O1-C2-C1	151.10 (7)
Fe2-O1-C2-C1	41.01 (10)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	-57.29 (12)
C1-N1-C3-C4	-163.54 (10)
C5-N1-C3-C4	69.81 (12)
Fe2-N1-C3-C4	-48.36 (11)
$\mathrm{Fe} 2-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	-26.94 (12)
N1-C3-C4-O2	51.07 (13)
C3-N1-C5-C6	-95.22 (11)
C1-N1-C5-C6	137.60 (10)
Fe2-N1-C5-C6	21.87 (11)
Fe3-O3-C6-C5	-137.18 (9)

154.85 (10)
-77.15 (12)
39.70 (10)
-69.16 (10)
151.10 (7)
41.01 (10)
-57.29 (12)
-163.54 (10)
69.81 (12)
-48.36 (11)
-26.94 (12)
51.07 (13)
-95.22 (11)
137.60 (10)
21.87 (11)
-137.18 (9)

O5-C10-H10B	109.5
C9-C10-H10B	109.5
H10A-C10-H10B	108.1
N2-C11-C12	110.96 (9)
N2-C11-H11A	109.4
C12-C11-H11A	109.4
N2-C11-H11B	109.4
C12-C11-H11B	109.4
H11A-C11-H11B	108.0
O6-C12-C11	107.76 (9)
O6-C12-H12A	110.2
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	110.2
O6-C12-H12B	110.2
C11-C12-H12B	110.2
H12A-C12-H12B	108.5
$\mathrm{O} 8-\mathrm{Cl1}-\mathrm{O}^{\text {i }}$	109.39 (5)
$\mathrm{O} 8-\mathrm{Cl1}-\mathrm{O}^{\text {ii }}$	109.39 (5)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Cl1}-\mathrm{O}^{7 i}$	109.55 (5)
O8- $\mathrm{Cl} 11-\mathrm{O} 7$	109.40 (5)
O7- ${ }^{\text {i }}$ Cl1-07	109.55 (5)
$\mathrm{O} 7 \mathrm{ii}-\mathrm{Cl1}-\mathrm{O} 7$	109.55 (5)
$\mathrm{O} 10-\mathrm{Cl} 2-\mathrm{O} 9$	109.50 (5)
$\mathrm{O} 10-\mathrm{Cl} 2-\mathrm{O} 9^{\text {i }}$	109.50 (5)
$\mathrm{O} 9-\mathrm{Cl} 2-\mathrm{O} 9^{\text {i }}$	109.45 (5)
$\mathrm{O} 10-\mathrm{Cl} 2-\mathrm{O} 9^{\text {ii }}$	109.50 (5)
$\mathrm{O} 9-\mathrm{Cl} 2-\mathrm{O} 9^{\text {ii }}$	109.44 (5)
O 9 - $\mathrm{Cl} 2-\mathrm{O} 9^{\text {ii }}$	109.45 (5)

$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$-152.83(10)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$77.95(11)$
$\mathrm{Fe} 3-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$-40.72(10)$
$\mathrm{Fe} 3-\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 7$	$-38.20(10)$
$\mathrm{Fe} 1-\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 7$	$-164.36(7)$
$\mathrm{Fe} 2-\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 7$	$73.53(9)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 4$	$52.65(12)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$161.48(10)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$-70.76(12)$
$\mathrm{Fe} 3-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$45.98(10)$
$\mathrm{Fe} 3-\mathrm{O} 5-\mathrm{C} 10-\mathrm{C} 9$	$19.09(12)$
$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 5$	$-45.53(13)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$-135.90(10)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$94.76(11)$
$\mathrm{Fe} 3-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$-17.93(11)$
$\mathrm{Fe} 2 \mathrm{C}-\mathrm{O} 6-\mathrm{C} 12-\mathrm{C} 11$	$146.42(9)$

supporting information

$\mathrm{Fe} 2-\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 5$	$45.75(11)$	$\mathrm{Fe} 3-\mathrm{O} 6-\mathrm{C} 12-\mathrm{C} 11$	$-49.03(11)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 3$	$-43.95(13)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 6$	$42.43(13)$

Symmetry codes: (i) y, z, x; (ii) z, x, y.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots{ }^{5} 5^{\mathrm{iii}}$	$0.89(2)$	$1.73(2)$	$2.6137(13)$	$176(2)$

Symmetry code: (iii) $z,-x+1 / 2, y+1 / 2$.

