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Abstract

Background: The identification of inflammatory asthma phenotypes, using spu-

tum analysis, has proven its value in diagnosis and disease monitoring. However

due to technical limitations of sputum analysis, there is a strong need for fast and

noninvasive diagnostics. This study included the activation state of eosinophils

and neutrophils in peripheral blood to phenotype and monitor asthma.

Objectives: To (i) construct a multivariable model using the activation state of

blood granulocytes, (ii) compare its diagnostic value with sputum eosinophilia as

gold standard and (iii) validate the model in an independent patient cohort.

Methods: Clinical parameters, activation of blood granulocytes and sputum char-

acteristics were assessed in 115 adult patients with asthma (training cohort/

Utrecht) and 34 patients (validation cohort/Oxford).

Results: The combination of blood eosinophil count, fractional exhaled nitric

oxide, Asthma Control Questionnaire, medication use, nasal polyposis, aspirin

sensitivity and neutrophil/eosinophil responsiveness upon stimulation with for-

myl-methionyl-leucyl phenylalanine was found to identify sputum eosinophilia

with 90.5% sensitivity and 91.5% specificity in the training cohort and with 77%

sensitivity and 71% specificity in the validation cohort (relatively high percentage

on oral corticosteroids [OCS]).

Conclusions: The proposed prediction model identifies eosinophilic asthma with-

out the need for sputum induction. The model forms a noninvasive and externally

validated test to assess eosinophilic asthma in patients not on OCS.

An estimated 334 million people worldwide suffer from

asthma, while its prevalence is still rising (1). The majority of

patients are well-controlled with beta-agonist combined with

inhaled corticosteroids. However, 5–10% of the patients

suffer from poorly controlled asthma, consume ~60% of total

asthma-related healthcare costs and experience long-term

side-effects of oral glucocorticoids use. This group needs bet-

ter asthma treatment, and identifying inflammatory pheno-

types is essential to choose the right treatment option.

Since the introduction of sputum induction to obtain cellu-

lar samples from the airways, it has been one of the most

accepted methods to assess airway inflammation and thereby

diagnosing the asthma inflammatory phenotype (2). Its clini-

cal value in asthma management was established in three ran-

domized controlled trials that tailored treatment based on

sputum eosinophilia (3–5). These studies independently
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showed a reduction in asthma exacerbations after treatment

adjustments that were based on sputum eosinophilia. In addi-

tion, the presence of eosinophils in airway epithelium (6) and

sputum has been shown to correlate with exacerbation fre-

quency (3–5). However, sputum induction is considered to be

an invasive, time-consuming diagnostic test that needs to be

performed only in specialized centres. Another disadvantage

is the procedure fail rate (10–30%). These limitations restrict

this type of adequate inflammatory phenotyping to a cohort

of patients with severe asthma (7, 8).

Measuring peripheral blood eosinophil count is a promis-

ing alternative for sampling in the airways. In the past,

cohort studies that focussed on relations between blood eosi-

nophilia and asthma found correlations between blood eosi-

nophilia and asthma diagnosis, asthma events, emergency

department (ED) visits, sputum eosinophilia and wheeze (9,

10). In the DREAM study, blood eosinophilia correlated

with a reduction in exacerbations after anti-IL5 (Mepolizu-

mab) treatment and was a predictive indicator for reduction

in sputum eosinophil count (11). Later on, blood eosinophilia

was the basis for patient selection in two large phase III stud-

ies that looked into the effect of Mepolizumab on exacerba-

tion frequency and glucocorticoid sparing (12, 13).

In contrast to sputum eosinophilia, it is yet unclear

whether glucocorticoid treatment strategies based on blood

eosinophilia can reduce exacerbation frequency or improve

other outcome measures in asthma. Blood eosinophil count

does not correlate perfectly with sputum eosinophilia. This

stretches the importance to identify fast and accurate mea-

sures to predict airway eosinophilia. The blood compartment

is favourable because it is easily accessible, already part of

routine clinical workup and with technical advances in mea-

surements such as multicolour flow cytometry has increased

potential for inflammatory phenotyping.

In addition to eosinophil count, the activation state of

eosinophils could be a promising biomarker. Johansson and

colleagues indicated that priming and activation of eosino-

phils in the peripheral blood is deficient during episodes of

tissue eosinophilia in severe and uncontrolled asthma (14).

This hypothesis was partly founded on the upregulation of

active FcgammaRII on activated blood eosinophils after seg-

mental lung challenge in mild asthmatics (15). The latter

seems to contradict the putative deficiency of primed or acti-

vated cells. However, long-term priming of eosinophils in the

peripheral blood of severe asthmatics and the subsequent

migration to the lung could lead to a deficiency of primed

cells within the peripheral blood (16); an upregulation of

active integrin receptors and activation-related receptors is

found on blood granulocytes in mild-to-moderate asthma,

and on the other hand, low expression profiles of these mark-

ers are found in severe inflammatory disease (17). These find-

ings indicate relevance of granulocyte priming and activation

for assessment of the inflammatory status of patients with

asthma.

Not only additional biomarkers could improve asthma

phenotyping; combined analyses of known clinical and bio-

logical characteristics provided important insights into airway

disease mechanisms using the multivariate advantage (18).

Multivariate advantage refers to classifications based on mul-

tiple, combined features that outperform the combined classi-

fications on the separate features. In asthma, a key finding

was the absence of correlation between eosinophilic inflam-

mation and symptoms (19). Haldar and colleagues further-

more showed the value of inflammation-driven treatment

decisions based on an unbiased approach for patient selec-

tion. Two other studies that made use of the multivariate

advantage evaluated the power of blood eosinophil count,

FeNO and periostin to predict sputum eosinophilia (20) and

to predict the response to anti-IgE treatment (21). Both con-

clude that the combination of the three markers might be a

good way to assess the inflammatory status of patients with

asthma, while the value of the single parameters FeNO,

blood eosinophils or total IgE to predict sputum eosinophilia

has been regarded to be moderate. In a meta-analysis of 24

studies overall sensitivity and specificity in detecting sputum

eosinophilia in adults were as follows: 0.66 and 0.76 for

FeNO; 0.71 and 0.77 for blood eosinophils; and 0.64 and

0.71 for IgE (22).

We designed a cross-sectional study to investigate whether

the classification accuracy of a multivariate prediction model

for sputum eosinophilia benefits from including measure-

ments of peripheral blood granulocyte activation status and

whether such a noninvasive prediction model has sufficient

diagnostic value to replace expertise-dependent sputum anal-

ysis. The multivariate prediction model is based on a training

cohort (Utrecht, The Netherlands) and prospectively vali-

dated on independent data from a validation cohort (Oxford,

UK). Sputum eosinophilia was set as gold standard.

Methods

Subjects

Training cohort

Patients with asthma aged 18–75 were recruited at the respi-

ratory outpatient clinics of the University Medical Center

Utrecht (UMCU), and the Central Military Hospital Utrecht

(CMH), The Netherlands, between May 2012 and December

2013. Inclusion and exclusion criteria are provided in the

Appendix S1 (Fig. S1, flow chart). Written informed consent

was obtained, and the local ethics committee of the UMCU

and CMH approved the study protocol.

Test/validation cohort

Adult patients with asthma were recruited at the respiratory

outpatient clinic of the Churchill Oxford University Hospital

between September 2014 and June 2015. The same inclusion

and exclusion criteria were used as in the test cohort. The

study protocol was ethically approved, and written informed

consent was obtained from all patients.

Study design

Patients with asthma (see for demographics Table 1) under-

went lung function measurement, sputum induction, blood

withdrawal and fractional exhaled nitric oxide (FeNO)
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measurement. Their medical history was taken, and both the

Asthma Control Questionnaire (ACQ) (23) and the Medica-

tion Adherence Report Scale (MARS) (24) were filled out.

Sample size

For the sample size calculation, we refer to Appendix S1,

Methods, sample size.

Measurements

Blood

Blood was obtained in 9-mL tubes containing sodium hep-

arin, transported at room temperature and processed and

analysed within 2 hours. Eosinophil and neutrophil priming

was tested in vitro; four polystyrene tubes with 50 lL blood

were incubated for 5 min at 37°C. Hereafter, two of the

tubes were stimulated with 5 lL 0.001 mM N-formyl-methio-

nyl-leucyl phenylalanine (fMLF) for 5 min. Subsequently,

whole blood in all tubes was stained with fluorescein isothio-

cyanate (FITC)-labelled monoclonal phage antibodies (Abs)

A17 or A27(31) and with phycoerythrin (PE)-labelled aM
(CD11b) and incubated for 30 min on ice. Hereafter, red

cells were lysed in ice-cold isotonic NH4Cl and cells were

centrifuged at 1500 rpm for 5 min. The cell pellet was

washed twice and resuspended in ice-cold PBS/1% human

serum albumin. In the test cohort, cells were measured using

a Gallios flow cytometer (Beckman Coulter, Brea, CA,

USA). In the validation cohort, cells were measured using a

Cyan flow cytometer (Becton Dickinson, Franklin Lakes, NJ,

USA). Prior to the analysis, blood was stained with Krome

Orange (KO)-labelled CD16 antibody. Eosinophils could be

distinguished from neutrophils by low FccRIII (CD16)

expression. Data from individual experiments are reported as

fluorescence intensity in arbitrary units (AU) or in n-fold

change from baseline.

Lung function and FeNO

FEV1 measurements were performed using the PiKo-1

(nSpireTM) device, and FeNO was determined using NIOX

MINO� (Aerocrine, Solna, Sweden) with an expiration time

of 10 s.

Table 1 Baseline characteristics of subjects in Utrecht cohort

Utrecht cohort n = 115 Oxford cohort n = 34

Age (mean) 43 56

Gender (M/F) 55/60 19/15

BMI, kg/m2 27 31

Smoking ever (%) 27 41

Pack years 1.28 4

Aspirin sensitivity (%) 5 24

Eczema 20

Nasal polyposis (%) 19 29

ACQ 1.4 1.6

Proven allergy (anamnestic and spec. IgE) (%) 59 71

History of allergy 77

FeNO (ppb) 23† 16–36 18† 19–45

% predicted FEV1 (L) 86 82–89 68 60–75

Total eosinophil count in PB 9 109/L 0.22† 0.13–0.41 0.25† 0.12–0.39

Sputum cell profile % %

Eosinophilic (>3% eosinophils) 21 18 11 32

Neutrophilic (>61% neutrophils) 14 12 8 24

Mixed (>3% eos. and >61% neutr.) 8 7 2 6

Paucigranulocytic 33 29 0 0

Epithelial (>80% epithelial cells) 39 34 13 38

Treatment % %

No medication (currently) 3 3 1 3

SABA 1 1 2 6

Low-dose ICS 5 4 1 3

Low-dose ICS + LABA or medium dose ICS 69 60 1 3

High dose ICS + LABA (and/or LTRA) 24 21 19 56

High dose ICS + LABA + OCS 13 11 10 30

MARS (nonadherence in percentage) 27

BMI, body mass index; MARS, Medication Adherence Report Scale; ACQ, Asthma Control Questionnaire; FeNO, fraction of exhaled nitric

oxide; FEV1, forced expiratory volume in 1sec; PB, peripheral blood; SABA, short-acting beta-agonist; LABA, long-acting beta-agonist; ICS,

inhaled corticosteroids; LTRA, leukotriene receptor antagonist.

†Median and IQR.
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Sputum

Sputum induction was performed with hypertonic saline

according to the ERS guideline (25). Cytospin slides of spu-

tum cells were stained with May–Gr€unwald–Giemsa, and

cells were differentiated and counted by an experienced tech-

nician. A cut-off value of 3% eosinophils in sputum was used

to classify patients with eosinophilic or noneosinophilic

inflammation. A cut-off value of 61% neutrophils in sputum

was used to classify patients with neutrophilic inflammat-

ion. A mixed phenotype was assigned if >3% eosinophils

and >61% neutrophils were counted. Eosinophils <3% and

neutrophils <61% were regarded as a paucigranulocytic

phenotype.

Statistical analysis

Nonlinear principal component analysis (NLPCA)

Principal component analysis (PCA) is a widely used unsu-

pervised method to reduce dimensionality in data sets. How-

ever, PCA is only suitable to analyse data consisting of

continuous variables. The majority of variables in our study

were either categorical or nominal; therefore, we used nonlin-

ear PCA (NLPCA). Linting et al. described a stepwise

approach for NLPCA and applied the technique in clinical

cohorts (26, 27). Applying this technique, we were able to

take into account the correlated variance from 26 clinical

and immunological parameters simultaneously. Briefly, the

method applied entails transposition of all parameters to a

linear scale, followed by reduction of the number of parame-

ters by a two-step selection process based on correlation of

variances and by PCA of the resulting data set to produce a

simplified description of the data that retain as much vari-

ance as possible by a small number of principal components.

After creating a final model with NLPCA using the

Utrecht cohort as a ‘training set’, the Oxford cohort was

plotted in this PCA model as test set using >Data >Weight

of 0.01 per patient. Thus, the Oxford cohort was used as val-

idation set.

Discriminant analysis (DA)

Discriminant analysis was used on the NLPCA scores. A

class for eosinophilic asthma and a class for noneosinophilic

asthma were set (≥3 sputum eosinophils); this is a supervised

step. External validation of the Oxford data was performed

by weighting the NL-PCA scores of these patients by 0.01 in

the DA. For an overview of both NLPCA and DA steps see

Fig. 1.

Results

A total of 115 patients with asthma were recruited in The

Netherlands (Fig. S2). In total, 76 patients could be classified

by sputum analysis and 39 patients with asthma were not

able to cough up or had sputum samples that showed >80%
buccal squamous cells (34%). A total of 34 patients with

asthma were recruited in the United Kingdom. Of these, 20

patients (59%) could be classified by sputum induction.

Demographic details are presented in Table 1.

Multivariate diagnostic model

Of 26 parameters, NLPCA identified 12 important parame-

ters that together described most variance within the cohort

of patients in Utrecht (Fig. 1). Six of the final parameters

were classical ‘clinical’ parameters, and the other 6 were

peripheral blood parameters that describe responsiveness of

eosinophils and neutrophils to fMLF. The six parameters

with the highest variance accounted for (VAF) were as fol-

lows: aspirin sensitivity, CD11b response on eosinophils and

neutrophils, nasal polyposis, ACQ and A17 response on neu-

trophils, in decreasing order. The remaining parameters

explained less variance, being A27 response on eosinophils,

medication, A17 response on eosinophils, FeNO, eosinophil

count and A27 response of neutrophils. The stability of the

NLPCA model was tested by performing a bootstrapping

procedure on the test cohort (Utrecht). 10 cohorts were cre-

ated that separately underwent NLPCA. The loadings from

these NLPCA analyses were compared to the original load-

ings, and the RV-coefficient of this comparison was 0.84.

This correlation coefficient indicates the NLPCA loadings

are highly stable. Technical details of the performed NLPCA

are supplied in paragraph I of the results section of the

Appendix S1 ‘NLPCA’ and in Fig. 1.

Interpretation of the model

The result of NLPCA is a set of ‘scores’ and ‘loadings’. As

there are four principal components in this model (see

Appendix S1 for the origin of this number), each individual

patient is represented by four scores. Figure 2 (middle) shows

both the loadings of the 12 most relevant parameters and the

scores of the patients on the first two principal components

of the model. These two principal components together

define the 2D projection of the data in which the most vari-

ability can be presented. The position of a patient indicates

its score on PC1 (horizontal axis) and its score on PC2 (verti-

cal axis). The 12 loadings each represent the contribution of

a single parameter, such as eosinophil count, to the variabil-

ity among the patients: The higher the correlated variance of

a parameter, the higher the loading and the longer the vector

in Fig. 2. Parameters pointing in the same direction are likely

to be correlated.

The distribution of patients within the score/loading plot

(Fig. 2) is largely determined by markers of eosinophilic

inflammation as indicated by the direction of the markers;

patients with sputum eosinophilia plot in the direction of the

parameters FeNO, ACQ, eosinophil count, medication, nasal

polyposis and aspirin sensitivity. On the contrary, these

patients have low values of blood eosinophil responsiveness

(A17, A27 and CD11b) and therefore plot in the opposite

direction of these vectors. In short, if there is a high percent-

age of eosinophils present in sputum, a patient has blood

eosinophilia with cells that are refractory to stimulation. On

the other hand, patients with a neutrophilic and a paucigran-

ulocytic sputum phenotype have lower values of for example

FeNO and ACQ and higher values of responsiveness of eosi-

nophils and neutrophils and therefore plot on the other side

Allergy 72 (2017) 1202–1211 © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 1205

Hilvering et al. asthma diagnosis by granulocyte response



of the graph. Notably, sputum characteristics were not part

of the selection of parameters for the multivariate model

(Fig. 1) and were used as a gold standard. The technical

details of the performed DA are supplied in ‘Statistical analy-

ses, paragraph discriminant analysis’ section of the

Appendix S1.

Validation

An internal cross-validation was used to test classification

accuracy of the NLPCA/DA hybrid model with sputum eosi-

nophilia as the dependent variable. Based on a leave-one-out

cross-validation of the Utrecht cohort, sputum eosinophilia

could be predicted with a sensitivity of 90.5 and a specificity

of 91.5 (Table S1), In the next step, using the ‘Utrecht

cohort’ as a test set and subsequently adding the ‘Oxford

cohort’ as a validation set it was possible to classify sputum

eosinophilia with 77% sensitivity and 71% specificity

(Table 2, tested by cross-validation).

The discriminant analysis results in four classes (Table 3)

by means of positivity or negativity for sputum eosinophilia

(gold standard) and positivity or negativity predicted by the

model.

Four ROC curves (Fig. 3A–D) were created using the

discriminant function and sputum eosinophilia as state vari-

able. Notably, the fourth ROC curve (Fig. 3D) was created

by leaving out patients who were taking oral steroid

treatment.

Finally, the data were rerun without the granulocyte

responsiveness data. The sensitivity dropped from 90.5 to

Figure 1 Overview data analysis. Steps 1 and 2: Clinical (in the

white cells) and peripheral blood markers (in the grey cells) were

combined to build a model using dimension reduction (NLPCA,

unsupervised). After steps 1 and 2, the Oxford Cohort was added

to the NLPCA model to validate the prediction model for airway

eosinophilia. Subsequently, discriminant analysis was performed by

setting a class for eosinophilic asthma and a class for noneosino-

philic asthma (≥3 sputum eosinophils); this supervised step was

required to obtain a diagnostic score.
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47.6%, and specificity increased slightly from 91.5 to 95.7%

(Table 4 and Fig. 4A, B).

Discussion

The findings of this cross-sectional study in a ‘training’

cohort of 115 patients with asthma and a ‘validation’ cohort

of 34 patients visiting university medical centres in, respec-

tively, Utrecht and Oxford, underline the value of cellular

markers in peripheral blood to classify asthma phenotypes.

fMLF-induced upregulation of activation-associated recep-

tors on eosinophils and neutrophils, together with a limited

set of clinical parameters, can serve as an accurate read-out

for eosinophilic asthma. Results of the unbiased analysis of

both cellular and clinical parameters confirm the important

role for already established measurements in asthma, such as

eosinophil count, ACQ and FeNO. However in this study,

adding measurements of blood granulocyte responsiveness

Figure 2 Combined scoring and loading plot after nonlinear princi-

pal component analysis. Each symbol represents a patient. Each

vector represents a variable, in total 12 in this model. The more

variability a variable has, the longer the vector. Each patients score

depends on the value of these 12 variables. Therefore, eosinophilic

patients (in blue) are high in FeNO, ACQ, eosinophil count and low

in eosinophil responsiveness, while their noneosinophilic

counterparts (in red and green) exhibit low values in these clinical

markers, but higher values of granulocyte responsiveness and

appear on the opposite side of the graph. CD11b, A17 and A27 on

eosinophils and neutrophils represent fold-induction of receptor

expression (fluorescence intensity after fMLP stimulation divided

by baseline fluorescence intensity).

Table 2 2 9 2 contingency table with diagnostic score of the prediction model with respect to the Oxford Cohort

Prediction model for sputum

eosinophilia

Predicted group membership

CharacteristicsEos. Non-eos.

Sputum analysis Eos. 10 3 Positive predictive value: 62.5%

Non-eos. 6 15 Negative predictive value: 83.3%

Characteristics 76.9% Sensitivity 71.4% Specificity Accuracy: 73.5%

The number of patients correctly classified with eosinophilic disease is 10 of 13 (76.9%). The number of patients with noneosinophilic

disease is correctly identified in 15 of 21 (71.4%). On average, 73.5% of original grouped cases is correctly classified (leave-one-out cross-

validation accuracy). Eos: eosinophilic asthma, Non-eos.: noneosinophilic asthma.
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significantly increased the predictive accuracy, improving the

sensitivity from 47.6% to 90.5%.

Interestingly, the ‘eosinophilic patients by prediction

model’ (i.e. patients without sputum eosinophilia) have dis-

tinct characteristics; these 13 eosinophilic patients have

higher blood eosinophil counts, higher values of FeNO and a

higher incidence of aspirin sensitivity and nasal polyposis

compared to the noneosinophilic patients. More patients in

this group are using oral glucocorticoids compared to the

other groups (~46%, Table 3). Oral corticosteroids (OCS)

Table 3 Clinical characteristics of the four groups identified by the prediction model

Eosinophilic by sputum

and prediction model

Noneosinophilic by sputum

and prediction model

Eosinophilic

prediction model

Noneosinophilic

prediction model

n 29 102 13 5

FeNO, median (IQR) 48 (215) 20 (81) 25 (120) 16 (21)

ACQ (CI) 2.71 (3.86) 1.29 (4.43) 1.0 (3.57) 1.29 (1.86)

Eosinophil count 9109/L (CI) 0.49 (1.16) 0.16 (0.8) 0.27 (0.75) 0.18 (0.62)

Aspirin sensitivity % (n) 24 (7) 1 (1) 46 (6) 0

Nasal polyposis % (n) 66 (19) 6 (6) 54 (7) 0

Medication, % on OCS (n) 28 (8) 8 (8) 46 (6) 20 (1)

All values are represented in mean and 95% CI lower/upper limit, or in number (n) except for FeNO which is expressed in median and

interquartile range.

Figure 3 (A) ROC curve based on the Utrecht data set. This ROC

curve has an AUC close to 1 as it is the base of the NLPCA model.

AUC = 0.946, the reported P-value is <0.001. (B) ROC curve based

on the combined Utrecht and Oxford data set. This combined set

has a high AUC of 0.91. AUC = 0.914, the reported P-value is

<0.001. (C) ROC curve based on the Oxford validation cohort only.

The AUC is lower compared to the test set and indicates a

difference between test set and validation set. AUC = 0.725, the

reported P-value is 0.029. (D) ROC curve based on the Oxford vali-

dation cohort only without BTS treatment group 6. For this ROC

curve, patients in BTS treatment group 6 (oral steroid treatment)

were excluded. The AUC increased from 0.73 to 0.80.

AUC = 0.800, the reported P-value is 0.014. [Colour figure can be

viewed at wileyonlinelibrary.com]
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are known to induce apoptosis in eosinophils and can explain

the ‘false’ low number of sputum eosinophils (28). To

strengthen this, the Oxford cohort has a ~threefold higher

percentage of patients on OCS compared to Utrecht. There-

fore, these patients are particularly less likely to have sputum

eosinophilia, leading to the ‘false’ conclusion they do not suf-

fer from eosinophilic asthma. Based on known steroid effects

and high OCS use in the group of 13 patients that were ‘false

positive’, OCS use is the most likely explanation for the rela-

tively low sensitivity and specificity of the prediction model

in the Oxford cohort and suggests the prediction model as

developed here is more suitable for asthma classification in

patients not on OCS. This was validated by excluding

patients on OCS from the Oxford cohort, which led to an

increase in predictive power: 79.2% compared to 73.5%

without this group. The sensitivity lowered from 76.9% to

72.7%, and the specificity increased extensively from 71.4%

to 84.6%. The ROC curves with the full Oxford cohort

(Fig. 3C) and the cohort with patients on oral steroids

(Fig. 3D) also show a great improvement in AUC value.

Instead of using a single-parameter approach, an unbiased

multidimensional approach was used to evaluate the experi-

mental data. This is generally regarded as a promising analy-

sis strategy for the understanding of heterogeneous diseases

such as asthma (29, 30). Large asthma cohorts, such as

SARP and the Leicester cohorts, already brought more

insight into disease phenotypes using clustering techniques

(19, 31, 32). One strong determinant of the quality of

Table 4 2 9 2 contingency table with diagnostic score of the prediction model without blood markers, using sputum analysis as reference

test

Prediction model for sputum

eosinophilia

Predicted group membership

CharacteristicsEos. Non-eos.

Sputum analysis Eos. 10 11 Positive predictive value: 71.4%

Non-eos. 4 90 Negative predictive value: 89.1%

Characteristics 47.6% Sensitivity 95.7% Specificity Accuracy: 87.0%

The number of patients correctly classified with eosinophilic disease is 10 of 21 (47.6%). The number of patients with noneosinophilic dis-

ease is correctly identified in 90 of 94 (95.7%). On average, 87% of original grouped cases is correctly classified (leave-one-out cross-valida-

tion accuracy). Eos: eosinophilic asthma, Non-eos.: noneosinophilic asthma.

Figure 4 (A) Prediction model without blood markers has a poor

diagnostic value. According to this model differences between

groups of patients are not clear; true non-eosinophilic asthma

patients (red diamonds), true eosinophilic asthma (plus sign), false-

positive patients (green diamonds) and false negative (black trian-

gles). (B) Prediction model based on blood markers discriminates

accurately between eosinophilic and noneosinophilic asthma. The

dotted line indicates the discrimination between eosinophilic (plus

sign) and noneosinophilic (red diamonds) disease according to the

prediction model based on clinical parameters and blood granulo-

cyte measures. The two false negatives (black triangles) are not

identified by the model; however, the eight false-positive cases

(green diamonds) that have a high symptom and high eosinophilic

inflammation profile illustrate the improved classification capability

of the prediction model. These false positives would have been

missed by sputum analysis only.
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multidimensional models is the included parameters. There-

fore, it is important to include and test new parameters such

as granulocytes responsiveness. In this study, we were able to

improve the sensitivity of our prediction model from 47.6%

to 90.5% by adding granulocyte responsiveness to the model.

Using nonlinear principal component analysis, correlations

between many of the measured clinical parameters were

taken into account. These correlations may be clinically valu-

able and on the other hand may hamper multiple linear

regression models. NLPCA provides a consistent, widely used

and quantitative way to merge parameters measured on dif-

ferent levels.

Our prediction model is based on 12 clinical and cellular

parameters and does not depend on several common asthma

parameters such as atopy, gender and BMI. These latter

parameters showed little discriminative value in our cohort.

This finding is in agreement with findings in the larger

Leicester and SARP cohorts (19, 31–34). The Leicester

cohorts showed that atopy, gender and BMI were not signifi-

cant determinants for the secondary care factor model. Simi-

larly, the SARP cohorts also had low variability within the

data sets for atopy, gender and BMI. These collective find-

ings are also in line with insights from the DREAM cohort

(11). Atopy in the DREAM cohort was not a predictor for

the response to Mepolizumab, whereas peripheral blood eosi-

nophil count and exacerbation frequency in the past year,

both hallmarks of eosinophilic inflammation, had predictive

value for the response. In summary, the model focuses atten-

tion on relevant parameters and is in line with data from ear-

lier unsupervised multivariate models.

Flow cytometry analysis is the required technique to per-

form cell counts and in this study also to measure granulo-

cyte responsiveness. State-of-the-art bench top flow

cytometers are able to perform a stimulation step on whole

blood, such as adding fMLF. A blood tube has to be loaded

into the cytometer and the pipetting step is performed auto-

matically by the cytometer, after which it measures fluores-

cence intensity. This important advancement makes it

possible to use complex flow cytometry for clinical diagnostic

tests, such as testing granulocyte responsiveness in patients

with asthma.

In conclusion, the proposed prediction model identifies

eosinophilic asthma with peripheral blood analysis, FeNO

measurement and assessment of routine clinical data.

Responsiveness of peripheral blood granulocytes was essen-

tial to come to a sensitive diagnostic test and adds to the

ongoing scientific debate about the biological relevance of

granulocyte responsiveness in asthma. The prediction model

was prospectively tested in an independent patient population

visiting a specialised asthma centre in Oxford (UK) and iden-

tified an important group of patients with potentially eosino-

philic inflammation that rendered noneosinophilic in sputum

most likely due to OCS use. Finally, this study underlines the

potential of unbiased approaches to support clinical decision

making in complex diseases such as asthma.
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