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Abstract. We propose a new ice sheet model valida-
tion framework — the Cryospheric Model Comparison Tool
(CmCt) — that takes advantage of ice sheet altimetry and
gravimetry observations collected over the past several
decades and is applied here to modeling of the Greenland
ice sheet. We use realistic simulations performed with the
Community Ice Sheet Model (CISM) along with two ide-
alized, non-dynamic models to demonstrate the framework
and its use. Dynamic simulations with CISM are forced from
1991 to 2013, using combinations of reanalysis-based sur-
face mass balance and observations of outlet glacier flux
change. We propose and demonstrate qualitative and quan-
titative metrics for use in evaluating the different model sim-
ulations against the observations. We find that the altime-
try observations used here are largely ambiguous in terms
of their ability to distinguish one simulation from another.
Based on basin-scale and whole-ice-sheet-scale metrics, we
find that simulations using both idealized conceptual mod-
els and dynamic, numerical models provide an equally rea-
sonable representation of the ice sheet surface (mean eleva-
tion differences of < 1m). This is likely due to their short

period of record, biases inherent to digital elevation models
used for model initial conditions, and biases resulting from
firn dynamics, which are not explicitly accounted for in the
models or observations. On the other hand, we find that the
gravimetry observations used here are able to unambiguously
distinguish between simulations of varying complexity, and
along with the CmCt, can provide a quantitative score for as-
sessing a particular model and/or simulation. The new frame-
work demonstrates that our proposed metrics can distinguish
relatively better from relatively worse simulations and that
dynamic ice sheet models, when appropriately initialized and
forced with the right boundary conditions, demonstrate a pre-
dictive skill with respect to observed dynamic changes that
have occurred on Greenland over the past few decades. An
extensible design will allow for continued use of the CmCt as
future altimetry, gravimetry, and other remotely sensed data
become available for use in ice sheet model validation.
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1 Introduction

Over the past few decades, high spatial and temporal res-
olution remote-sensing-based observations have been col-
lected over Earth’s large ice sheets. These observations in-
clude wide spatial coverage and unprecedented detail con-
cerning, for example, the present state of, as well as changes
in, ice sheet surface velocity (Joughin et al., 2010; Moon
et al., 2012), ice sheet surface elevation and rates of eleva-
tion change (Pritchard et al., 2009; Shepherd et al., 2012;
Csatho et al., 2014), direct measurements of the rate of ice
sheet mass change (e.g., Jacob et al., 2012; Sasgen et al.,
2012; Velicogna and Wahr, 2013; Wouters et al., 2013), and
have allowed for synthesis assessments of overall ice sheet
mass balance (Shepherd et al., 2012). While some of these
observations have been used for the validation of ice sheet
models — testing whether ice sheet model outputs are consis-
tent with observations (e.g., Aschwanden et al., 2013, 2016;
Alexander et al., 2016) — the significant knowledge barrier to
understanding and using remote sensing data and the lack of
a standard framework for comparing available observations
with model output makes such comparisons difficult and far
from standard practice.

We present a new ice sheet model validation framework
— the Cryospheric Model Comparison Tool (CmCt) — that
aims to fill this gap. Broadly, the CmCt software is de-
signed to post-process model output over a specified time
frame, process and filter available spatially and temporally
coincident observations from remote-sensing-based datasets,
compare the two, and assess the model vs. observation mis-
match using a number of proposed qualitative and quanti-
tative metrics. Here, we demonstrate the CmCt using ob-
servations over the Greenland ice sheet obtained between
2003 and 2013 from the Ice, Cloud, and land Elevation
Satellite (ICESat) and from the Gravity Recovery and Cli-
mate Experiment (GRACE) satellites. The design is, how-
ever, intentionally extensible to allow for the incorporation
of other similar observational datasets (e.g., for the Antarctic
ice sheet) covering similar or longer time periods (e.g., ice
sheet surface altimetry from other space and airborne mis-
sions and follow-on missions to ICESat and GRACE). Im-
plicit in our development of the CmCt is the understanding
that the observational datasets of interest may be very large,
may entail complex processing for which ice sheet model-
ers have little or no expertise, and may be updated, appended
to, or altered in numerous ways at any point in the future.
Therefore, data are accessed remotely via an online interface
(https://ggsghpcc.sgt-inc.com/cmct/index.html) that insures
a CmCt user is able to take advantage of data processing
improvements and new datasets as they become available.
While we acknowledge that validation should be “model ag-
nostic” — that is, the framework makes no assumptions about
the type of mesh used by the model (structured vs. unstruc-
tured) — the prototype discussed below assumes regular grid-
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ded output. Planned improvements will eventually allow for
model output on unstructured meshes.

The paper proceeds as follows. We first describe the ICE-
Sat and GRACE observations used for model validation, as
well as additional datasets that we use here for model forc-
ing, or to provide constraints on dynamic ice sheet model
simulations. We then briefly describe the models, idealized
and dynamic, which we use to generate outputs for compar-
ison to observations. A detailed description of our dynamic
modeling approach is then presented, including our model
initialization procedure and the way in which we force the
model to produce realistic output for comparison to obser-
vations. Next, we discuss the processing steps undertaken
by the CmCt, so that both the observational data and model
simulation outputs can be compared. We then discuss and
present examples for the qualitative and quantitative valida-
tion “metrics”, which are provided as outputs from the CmCt.
By using the CmCet to evaluate our model outputs, we demon-
strate that our proposed metrics are successful at distinguish-
ing relative levels of skill exhibited by different simulations.
We finish with the discussion and conclusions.

It is important to stress at the outset that our goal is not
to validate a particular model or endorse a particular set of
modeling protocols but rather to demonstrate the use of the
CmCt and our proposed metrics when applied to actual ice
sheet model output. For this reason, we have deliberately
oversimplified some aspects of our numerical modeling pro-
cedure that are, in reality, quite complicated and much more
nuanced than suggested here. Where appropriate, we point
out, and discuss these further below.

2 Observational data

We use a number of different observational datasets, for
model validation and for initializing and forcing our model
simulations. These data are introduced briefly here and,
where relevant, discussed in additional detail.

2.1 Model validation: ICESat observations

For model validation, we use time series of ice sheet sur-
face elevation based on data from the Geoscience Laser Al-
timeter System (GLAS) aboard the ICESat satellite. GLAS
was the first (and is so far the only) spaceborne laser altime-
ter used for Earth observations (Zwally et al., 2002). Instru-
ment problems forced a campaign-based rather than continu-
ous observational mode within months of its launch in early
2003. From 2003 to 2006, there were three 1-month cam-
paigns per year, from February to March, May to June, and
October to November. For 2007-2009, this was reduced to
two campaigns per year, skipping the May to June campaign.

Here, we started with the GLA12 standard product files,
release 634 (Zwally et al., 2014). From these we extracted
the elevation, reflectivity, waveform fit uncertainty, and in-
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strument gain for particular locations. The data were filtered
as described below and all points (i.e., individual data points
from GLAS) were required to

— have valid latitude, longitude, and elevation;

— lie within the ice sheet area, based on the GIMP 90 m ice
mask for Greenland (Howat et al., 2014) or the ASAID
coastline (including ice shelves) for Antarctica (Bind-
schadler et al., 2011);

— have a waveform fit with one and only one peak;

— have elevation within 200 m of the elevation at the near-
est GIMP 90 m digital elevation model (DEM) node for
Greenland (Howat et al., 2014) or Bamber 1 km DEM
node for Antarctica (Bamber et al., 2009) (to eliminate
outliers due to clouds and blowing snow);

— have reflectivity and waveform fit standard deviation
limited by campaign-dependent values (using the same
limits as in the first IMBIE analysis Shepherd et al.,
2012).

The DEM elevations (GIMP or Bamber) are also stored, as
are the “cleaned” data, for use in model-observation compar-
isons. Additional parameters included in the edited datasets
include the surface slope, an estimate of the elevation uncer-
tainty, a drainage system identifier, elevations relative to the
WGS84 and EGMO8 datums, and for Antarctica, a flag indi-
cating whether a measurement is on the continent or an ice
shelf. All relevant data are archived in NetCDF format and
are self-documenting.

Here, for comparison to the model outputs discussed be-
low, we picked three “snapshots” of Greenland ice sheet sur-
face elevation, with dates of 2003.8, 2004.8, and 2007.8. For
model output, the decimal year corresponds to a time slice for
which model output was written. For observations, it corre-
sponds to observations averaged over the month of October.
The years 2003, 2004, and 2007 were chosen because they
allow for the largest number, the widest spatial coverage, and
the highest quality of surface elevation retrievals, and being
near the end of the melt season, also minimize elevation bi-
ases due to snow cover and firn.

2.2 Model validation: GRACE observations

For model validation, we also use time series of ice sheet
mass change, as recorded by the GRACE satellites. GRACE,
launched in 2002 and still running as of December 2016, is
a dual-satellite mission with the primary objective of mea-
suring the gravity field of the Earth as it changes over space
and time (Wabhr et al., 1998). It does this by very accurately
measuring the distance between the two satellites (to within
a few micrometers), which are flying one behind the other in
the same orbit, about 200 km apart and 400-500 km above
Earth’s surface. Precisely measuring how the Earth’s gravity
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tugs each of the satellites differently allows for the calcula-
tion of changes in Earth’s gravitational potential field. Over
time, this allows for estimation of the mass change at repeat-
edly surveyed locations on the surface.

GRACE has several important limitations. First, only
changes in mass can be estimated, not the absolute mass.
Thus, GRACE results are always presented relative to some-
thing (usually either the time series starting point or the
mean over some time span). Second, while the observed mass
changes are due to the sum of solid Earth motions, hydrology
changes, ice loss, and atmospheric effects, GRACE data pro-
vide no information about the relative contribution of each
term. Here, we assume that solid Earth, ocean, and hydro-
logical changes are small near Greenland, compared to the
ice mass change term. Pre-processing of GRACE data has
already removed some fraction of the total signal using an
atmospheric and a non-tidal ocean model (Flechtner, 2007;
Dobslaw et al., 2013).

A final limitation is that GRACE provides data with rela-
tively low spatial resolution. The regularly released, degree-
and-order 60 spherical harmonics provide approximately
300 km of resolution (in terms of the half wavelength) at the
Equator, and perhaps twice that resolution near Greenland.
But that is only if one ignores measurement errors, which
grow as spatial resolution gets finer. In practice, some sort
of smoothing is typically used, which reduces the resolution
to regions of ~500-1000km in diameter. Thus, the major
difficulty when comparing GRACE to ice sheet model out-
put is scaling the two datasets to comparable spatial resolu-
tions. Here, we address this through “smoothing” of high-
resolution model output to GRACE-like resolution, by first
converting them to degree-and-order 60 spherical harmonics,
and then comparing the observations and smoothed model
output directly. Details on the spherical harmonics conver-
sion can be found in Wahr et al. (1998).

The following standard processing steps (Chambers and
Bonin, 2012) have been taken with the GRACE observations
used herein: geocenter terms added to the Cpg harmonic term
are replaced with the higher-accuracy SLR (sea-level rise)
version, and a model is used to remove the signal due to
glacial isostatic adjustment. The monthly data are annually
averaged (based on the calendar year), from 2003 to 2012, to
match with annually averaged simulation data. Here, averag-
ing to annual timescales reduces the post-processing burden
for both model output and observations, and also eliminates
large month-to-month noise in the GRACE signal (so that no
additional smoothing or de-striping is required). In principle,
however, higher time-resolution observations could be used
for model validation.

2.3 Model initialization and forcing
The initial ice sheet geometry (ice sheet thickness and

bedrock topography) is prescribed from Morlighem et al.
(2014). Other relevant initial and boundary condition data,
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used in our model spin-up, include maps of the present-day
surface temperature and geothermal flux, which are taken
from the SeaRISE project (Bindschadler et al., 2013; Now-
icki et al., 2013). Surface velocity data, used for optimiz-
ing our initial model velocity field, are from Joughin et al.
(2010). All data are bilinearly interpolated onto a uniform,
1 km resolution mesh.

In prognostic runs, we force our model with Regional At-
mospheric Climate Model version 2 (RACMO2) monthly
surface mass balance (SMB) data from van Angelen et al.
(2013). Those data, provided at ~ 11 km resolution, are spa-
tially interpolated onto our 1 km model grid using barycentric
interpolation (the RACMO?2 grid is not perfectly regular, so
unstructured grid interpolation was required). For one simu-
lation, we also force our model with a time series of outlet
glacier flux, which is based on observations and described in
more detail in Enderlin et al. (2014).

3 Models and simulations

We use the Community Ice Sheet Model (CISM) version 2.0
(Price et al., 2014; Lipscomb et al., 2017) coupled to Albany-
FELIX, a three-dimensional, finite-element code for solving
the first-order accurate Stokes approximation (Blatter, 1995;
Pattyn, 2003; Dukowicz et al., 2010). Additional details on
Albany-FELIX, including model verification, can be found in
Tezaur et al. (2015a) and Tezaur et al. (2015b). Because the
momentum balance solver is called from CISM, the model
uses CISM-native routines for evolving the ice sheet geome-
try and internal temperatures.

In addition to simulations conducted with our dynamic ice
sheet model, we construct two idealized and highly simpli-
fied model simulations — one that assumes a geometry fixed
in time at the model initial condition and another in which
the thickness evolves according to SMB forcing only. The in-
tent of these idealized models is to provide a baseline for use
in quantifying if and how a dynamic ice sheet model presents
added value in terms of improving the match to observations.
We discuss these idealized models in more detail below.

We demonstrate validation with the CmCt by running
these models forward in time during a period coincident with
the ICESat and GRACE observations. The models are forced
with a combination of observationally based SMB and/or
outlet glacier flux time series.

3.1 Model initial conditions

We generate initial conditions for our dynamic ice flow
model closely following methods discussed in Price et al.
(2011), Nowicki et al. (2013), and Edwards et al. (2014).
Briefly, with no-slip basal boundary conditions, we spin-
up the internal temperature and velocity fields using the
present-day geometry and thermal boundary conditions
(noted above). Temperature and velocity are allowed to freely
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evolve via their coupling through the flow-law rate factor,
but we maintain a fixed geometry. After 10000 years, we
use this initial temperature field and observed surface veloc-
ities (Joughin et al., 2010), to perform a formal, observation
constrained inversion for the basal traction coefficient field
in a linear-friction sliding law (as described in more detail
in Perego et al., 2014). This updated set of model velocities
and basal boundary conditions are then used for additional
spin-up of the temperature field, again maintaining a fixed
ice sheet geometry. Periods of temperature spin-up are alter-
nated with updates to the basal traction coefficient field and
this process continues iteratively until internal temperatures
approach an approximate steady state (in this case, model
temperatures were spun-up for a total of 350 kyr). The final
internal temperature field is then held steady for the decadal-
scale simulations conducted here. Observed surface speeds,
those from our optimized initial condition, and differences,
are shown in Fig. 1. While the model fit to observed veloc-
ities is reasonably good over the ice sheet as a whole, we
note that the model clearly underestimates speeds for some
of the major outlet glaciers (see also Fig. 2). These differ-
ences are relevant to the discussion below, since these same
outlet glaciers encompass the areas experiencing the largest
dynamic changes during the past few decades.

Lastly, we note that while we assign a date of 1991 to our
initial ice sheet state, the data used to define the initial ge-
ometry include ice thickness observations spanning the early
1990s to late 2000s (Morlighem et al., 2014) and surface el-
evations nominally dated to ~ 2000 and ~ 2007, for the inte-
rior and margins, respectively (Howat et al., 2014) (further,
these surface elevations are based in part on ICESat observa-
tions, as discussed further in Sect. 6). Similarly, the velocity
observations we optimize our model to were largely collected
during the early to late 2000s (Joughin et al., 2010). While
these represent the best available datasets, the variable time
span associated with the observations does introduce biases
into our results that are difficult to quantify.

3.2 Model simulations

Starting from the initial condition described above, we run
our models forward in time from 1991 to 2013. For our first
simulation, which we refer to as the “SMB-only” simulation,
we force the model with RACMO2 SMB from 1991 to 2013,
in the form of anomalies,

SMB (t)anomaly = SMB(#)racmo2 + FC, (1

with units of ice equivalent meters per year and assuming
an ice density of 910kgm?>. As in other recent studies on
Greenland ice sheet dynamics (e.g., Price et al., 2011; Shan-
non et al., 2013; Nowicki et al., 2013; Edwards et al., 2014),
we apply anomaly forcing because, following the tempera-
ture spin-up and optimization of sliding parameters to match
observed velocities, the model is not in equilibrium with the
present-day ice sheet geometry and SMB forcing. Thus, we
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Figure 1. Observed surface speed derived from InSAR observations (Joughin et al., 2010) (left), optimized, modeled surface speed (center),
and observed minus modeled surface speed (right). In the right panel, small black squares mark the locations of flux gates where Dirichlet
boundary conditions on velocity are applied and the inset shows a zoom on the flux gate across the Upernavik Glacier.
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Figure 2. Observed outlet glacier flux from Enderlin et al. (2014)
plotted against that from the model initial condition. Outlet glacier
locations are marked in the right-hand panel of Fig. 1.

apply a static flux correction, FC, to the modeled SMB fields
in order to maintain an initial steady state relative to the long-
term average SMB from 1960 to 1990 (the time series of spa-
tially integrated, net SMB, relative to the 1960—1990 mean,
is indicated by the black-dotted line in Fig. 4).

The flux correction, FC, is calculated as

FC = SMBgs — SMBmean, (2)

where SMB ean 18 the 1960-1990 mean SMB, SMBgg is the
steady-state SMB field, and the latter is calculated as the neg-
ative of the modeled thickness field rate-of-change when the
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model is run forward a single time step with no SMB forcing
applied. Thus, inherent in modeled volume trends starting in
1991 is the assumption that, in 1990, Greenland was in equi-
librium with its 1960-1990 mean SMB. The latter assump-
tion is broadly justified based on recreations of Greenland’s
mass budget over the last 50 years using observations from
remote sensing (van den Broeke et al., 2009).

In our second simulation, we apply RACMO2 SMB forc-
ing as noted above, but in addition we also force the model
using the Enderlin et al. (2014) time series of observed out-
let glacier flux change for 22 of Greenland’s largest outlet
glaciers, which are responsible for ~ 80 % of the observed
dynamic ice loss since 2000. Under the assumption that the
Enderlin et al. (2014) flux changes are dominated by velocity
changes (discussed further below), we apply these changes in
our model by first converting the data to a velocity increase
relative to the 1999 observations (all 22 outlet glaciers would
have a relative flux increase of 1 in 1999, i.e., no increase).
Starting in 1999, we “play back” this time series, relative to
the modeled 1999 velocity field, as the model is marched for-
ward in time. In this way, the Enderlin et al. (2014) velocity
changes are applied as Dirichlet boundary conditions on the
model velocity several kilometers upstream from observed
grounding line locations (i.e., at the same locations as the
Enderlin et al., 2014 observations).

We refer to this as the “SMB + FF” (FF stands for “flux
forcing”) simulation. In some cases, flux gate locations in our
model domain are extended from the grounding line to the ice
margin. In all cases, ice downstream of flux gates is removed
from comparison with observations in a post-processing step
(discussed further below). The locations of flux gates where

Geosci. Model Dev., 10, 255-270, 2017
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Dirichlet boundary conditions are applied in our model are
shown in Fig. 1. The observed vs. modeled flux for the 22
outlet glaciers and the time series of relative outlet glacier
speedup are shown in Figs. 2 and 3, respectively.

Inherent in our treatment of the Enderlin et al. (2014) data
is the assumption that the ice flux change over any time step
is well approximated by

AU;H)At = (U; AH + HAU;) At ~ HAU; At, 3)

where U; is the depth-averaged ice velocity (a vector field in
plan view), H is the ice thickness, ¢ is time, and A’s imply a
finite-difference-like approximation. In summary, we assume
that the change in flux is dominated by the change in velocity,
and that the advection of changes in ice thickness is a small
contribution to the overall flux change at a point. We justify
this approximation by noting that, over the time period of in-
terest, variations in speed of these outlet glaciers range from
~ 10 to 100 %, whereas percentage changes in ice thickness
are always an order of magnitude smaller.

All simulations are run on a uniform, 1km resolution
mesh. To maintain stability and accuracy when using our ex-
plicit, forward Euler time stepping scheme, we use a time
step of 0.025 yr. Monthly SMB anomalies are held steady in
time during sub-monthly model time steps. Because both our
SMB time series and our optimized basal boundary condi-
tions are limited in coverage to the footprint of the ice sheet
in its initial configuration (i.e., that of the present day) we
allow the ice sheet margin to retreat but not advance; at each
time step, we apply a mask to simply remove any ice that
has advanced beyond the initial footprint (for marine ter-
minating outlets, where the majority of the dynamic mass
loss occurs; this is equivalent to assuming that calving oc-
curs at a fixed location coincident with the initial ice front).
Both observations and our model experiments support the
fact that, over the simulation time period explored here, the
dominant mode of ice sheet evolution is strong marginal thin-
ning. Experiments without this treatment lead to problematic
ice growth and advance in limited marginal regions and, in
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reality, strong negative mass balance at and beyond the cur-
rent ice sheet margin provides a significant barrier to mar-
gin advance. As discussed below, the comparison between
model output and observations is only conducted for grid
cells within this masked region.

In addition to the two simulations run using our dynamic
ice sheet model, we include results from two idealized, non-
dynamic models. The first, which we refer to as the “persis-
tence” model, is simply the present-day ice sheet geometry,
unchanging in time. The second, which we refer to as the
“RACMO2-SMB-only” model, starts from a present-day ice
sheet geometry and, at monthly time steps, RACMO2 SMB
fields are applied. Simultaneously a proxy for a steady com-
ponent of discharge is included by subtracting the 1960—1990
mean SMB field at every time step. As mentioned above, the
purpose of these idealized models is to provide a benchmark
against which to compare results from dynamic model simu-
lations.

4 Processing of model output and observations

Model output is initially written in NetCDF format (Unidata,
2015). Simple scripts based on the NetCDF Operators tool-
box (NCO; see Zender, 2008) are used to extract only the
necessary time series of fields from these output files and
apply additional post-processing operations. We first extract
the basal topography (here, time invariant) and the ice thick-
ness fields, and then sum the two to derive a time series of
the ice sheet surface elevation. Because the profiles where
we apply Dirichlet boundary conditions in our SMB-FF ex-
periment are (in some cases) several to tens of kilometers in-
land from the present-day ice sheet margin, we apply a post-
processing mask to remove any ice thickness downstream
of these regions (which otherwise undergo anomalous evo-
lution). In order to then not compare ice thickness change
over two different ice sheet domains in the SMB-only vs.
SMB-FF experiments, we apply this same mask to the time
series of thickness data from the SMB-only experiment. The

www.geosci-model-dev.net/10/255/2017/
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Figure 4. Modeled ice sheet mass change (Gt) vs. time relative to the initial condition. Different line types represent different simulations

and models, as identified in the legend.

result of this post-processing step is that ~ 0.2 % of the ini-
tial ice sheet domain is removed when we compare model
output to observations. To further facilitate comparison to
ICESat observations, we extract model output that coincides
with the month of October in select years (as discussed above
in Sect. 2.1). For comparison to GRACE observations, we
take annual averages of the ice thickness time series (which
are recorded at approximately monthly time resolution; see,
e.g., Fig. 4). These trimmed NetCDF files, containing lati-
tude, longitude, and thickness or surface elevation, were sent
to NASA’s Goddard Space Flight Center for processing by
the CmCt (as noted above, as of mid-2016, the CmCt is on-
line and files can be uploaded via the internet). The CmCt
then performs the comparisons described below.

Since the locations of ICESat data rarely coincide with
the model grid points, the four model elevations surround-
ing each ICESat measurement were interpolated bilinearly
in the polar-stereographic space of the model domain to pre-
dict the model elevation at the ICESat measurement location.
ICESat measurements without four surrounding model nodes
were excluded from the comparison. Our goal was to remain
as close to the elevation observations as possible, and only
apply interpolation at the last possible step.

In contrast, to compare model outputs of ice sheet mass
change to those from the GRACE satellites, the majority
of the post-processing is applied to model output data. Our
aim is to mimic as closely as possible the simulation data,
as GRACE would see such a signal from space. This ulti-
mately means filtering model output to arrive at a more lim-
ited “GRACE-like” spatial resolution, on a 0.5° x 0.5° global
grid.
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To perform this filtering, we first relocate each 1 kmx 1 km
model grid cell into broader 0.5° x 0.5° grid cells. If more
than 1 simulated data point is located within a 0.5° x0.5° cell,
those values are averaged. Model grid cells near the coast re-
quire special care, since the higher-resolution simulated data
often does not fully fill each 0.5° x 0.5° cell. To avoid overes-
timating the coastal signal, we multiply the averaged signal
for coastal cells by the ratio of the total ice-covered model
grid area in that cell to the total cell area (with the latter
value fixed at 0.5° x 0.5°). We then convert ice thickness to
the GRACE-like units of equivalent water height, by multi-
plying by the density ratio of ice to water (910 / 1000). Sim-
ulated grid cells along the coasts that contain no-data values
during any year are removed from the computation for all
years. The time mean for each 0.5° x 0.5° grid cell is calcu-
lated and removed, since GRACE sees only mass anomalies.
This results in data on the same grid as GRACE, and in the
same units, but still with far greater spatial resolution than
GRACE. When comparing to mass change over a specific
region, we also convert this to total mass change in gigatons
by taking into account the known area of the region.

To further reduce the resolution of the processed model
output so that it more closely mimics GRACE observations,
we convert from a 0.5° x 0.5° uniform grid to spherical har-
monics (Wahr et al., 1998). By using spherical harmonics of
infinite degree and order, we would perfectly reproduce the
simulated output (i.e., the output would look identical to what
it looks like on the raw, 0.5° x 0.5° grid). However, we in-
stead cut off the spherical harmonics at degree-and-order 60,
which limits the resolution to precisely what can fit into the
solution space that GRACE measures. To make later compar-
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Figure 5. Map of ICESat minus modeled surface elevation differ-
ences (m) in 2007.8 for the SMB + FF simulation. Colored lines
mark locations of ICESat observations. Gray areas represent regions
where no ICESat observations are available.

isons easy, we then reconvert the limited spherical harmonics
back to a spatial map on a 0.5° x 0.5° grid.

We note that in the present work, the GRACE pro-
cessing and metric calculations (discussed next) were con-
ducted using software developed at the University of South
Florida (J. Bonnin and D. Chambers, personal communica-
tion, 2016). The publicly available service will include this
software and functionality as a processing option when us-
ing the CmCt.

5 Qualitative and quantitative metrics

In this section, we propose metrics for use in characteriz-
ing output from a particular simulation relative to the ob-
servations. Our qualitative metrics consist of a range of vi-
sual outputs (figures) and our quantitative metrics consist of
several whole-ice-sheet (and in some cases, basin-specific)
scalar values used to assign an overall score to a particular
simulation. Both are made available by the CmCt. In Sect. 6,
we provide these metrics for the current set of simulations
and discuss in more detail where they are and are not able
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Figure 6. Histogram of ICESat minus modeled surface elevation
differences (m) in 2007.8 for the SMB + FF simulation.
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Figure 7. Scatterplot showing difference in model and observation
location (km) vs. ICESat minus modeled surface elevation differ-
ences (m) in 2007.8 for the SMB + FF simulation.

to distinguish between relatively better and relatively worse
simulations.

5.1 ICESat metrics

For the qualitative comparison to ICESat observations, we
present three types of qualitative metrics: (1) map view plots
of the differences in modeled and observed ice sheet surface
elevations for any given year (e.g., Fig. 5), (2) histograms of
these differences (e.g., Fig. 6), and (3) scatterplots of these
differences as a function of the distance from ice sheet grid
cell to the nearest ICESat observation point (e.g., Fig. 7).
All of these figures can be used to quickly identify and fix
gross problems that might occur during a simulation or post-
processing. As an example, a difference in model and ICESat
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Table 1. Whole-ice-sheet metrics for model (CISM) vs. ICESat observations (ICESat-model) for the SMB-only simulation. For reference,
results for the idealized simulations, “RACMO2-SMB-only” (RACMO?2) and “persistence” (Pers.) are also shown.

Date (yr) Az (m) oAz (M) [Az] (m) 0|Az| (M)

CISM, RACMO?2, Pers. CISM, RACMO?2, Pers. CISM, RACMO?2, Pers. CISM, RACMO?2, Pers.
2003.8 0.26, 0.20, 0.15 10.48, 10.43, 10.38 4.46, 4.40, 4.37 9.49,9.45,9.42
2004.8 0.11, 0.01, —0.05 10.87, 10.83, 10.78 4.61, 4.56, 4.52 9.84,9.82,9.79
2007.8 0.33,0.19, 0.04 10.33, 10.28, 10.24 4.35,4.29,4.26 9.38,9.34,9.32

Table 2. Whole-ice-sheet metrics for model vs. ICESat observations (ICESat-model) for the SMB + FF simulation. For reference, results for
the idealized simulations, “RACMO2-SMB-only” (RACMO2) and “persistence” (Pers.) are also shown.

Date (yr) Az (m) oAz (m) |Az| (m) ]Az| (M)

CISM, RACMO2, Pers.  CISM, RACMO2, Pers.  CISM, RACMO2, Pers.  CISM, RACMO2, Pers.
2003.8 0.27,0.20, 0.15 10.49, 10.43, 10.38 4.46, 4.40,4.37 9.50, 9.45,9.42
2004.8 0.12,0.01, —0.05 10.89, 10.83, 10.78 4.62,4.56,4.52 9.86,9.82,9.79
2007.8 0.36,0.19,0.19 10.34,10.28, 10.24 4.36,4.29,4.26 9.38,9.34,9.32

vertical datums was easily discovered through examination
of Figs. 5 and 6. Outliers as a result of incorrect masking of
model and observational data were easily discovered and cor-
rected by inspection of Figs. 6 and 7. Large regional biases
would also be obvious from Fig. 5 and biases as a result of
sparse ICESat sampling would be identifiable using Fig. 7.
Figure 5 also provides a clear indication of where altimetry
data are available or absent for use in model validation.

A quantitative comparison between model output and ICE-
Sat observations is given by standard statistics calculated
from the distributions shown in Figs. 5, 6, and 7. We use the
following scalar metrics for the quantitative assessment of a
particular year of a particular simulation: (1) the mean of the
elevation differences, Az, (2) the standard deviation of the
elevation differences, oa;, (3) the mean of the absolute value
of the elevation differences, |Az|, and (4) the standard devi-
ation of the absolute value of the elevation differences, o|a
(e.g., Tables 1 and 2). These same metrics can be applied to
individual drainage basins, as shown in Fig. 8.

Examples of these figures and metrics, based on the
present work, are shown and discussed in more detail in
Sect. 6.

5.2 GRACE metrics

For the qualitative comparison to GRACE observations, we
also present three types of figures: (1) spatial maps show-
ing the observed and modeled ice sheet mass trend over the
2003-2012 time period (e.g., Fig. 9); (2) whole-ice-sheet,
spatially averaged plots of mass change, showing the ob-
served and modeled mass trends as a function of time (e.g.,
Fig. 11); and (3) spatial maps showing the percent of GRACE
variance explained by each model simulation (e.g., Fig. 12).
The first and third maintain spatial information about mass
trends at the expense of a collapsed time dimension, while
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Figure 8. Summary plot for whole-ice-sheet- and basin-scale-
specific mean elevation differences (GLAS minus model, in me-
ters). Circles, squares, and triangles are for years 2003.8, 2004.8,
and 2007.8, respectively. Colors represent different ice sheet ar-
eas as follows: entire ice sheet (black), Jacobshavn drainage basin
(blue), Kangerlussuauaq drainage basin (red), Helheim drainage
basin (green), and the northwest coast drainage basin (magenta).
For 2004.8, all Kangerlussuauaq basin comparisons (missing red
squares) plot at around —2.25m, and are omitted here for clarity
of plotting. Drainage basin areas are identical to those defined by
IMBIE (Shepherd et al., 2012).
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Figure 9. Total mass change between 2003 and 2012 for GRACE observations (a), RACMO2-SMB-only model (b), SMB-only simula-
tion (c¢), and SMB + FF simulation (d). Units are meters of water equivalent height.
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Figure 10. The Greenland weighting kernel (a) and its degree-and-order 60 smoothed version (b), used when calculating the whole-ice-sheet
mass trends shown in Fig. 11. The colors indicate the relative weights applied to various regions of the ice sheet.

the second maintains temporal information about mass trends
at the expense of collapsed spatial dimensions.

The first set of spatial maps displays the total mass change
over each 0.5° x 0.5° bin near Greenland, for GRACE and as
simulated by the various models (Fig. 9). These maps have
units of meters of equivalent water height lost or gained over
the 10 years, which differs from ice height depending on the
density of snow and firn in a particular region.
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The second plot allows us to examine the whole-ice-sheet-
averaged mass time series as observed by GRACE vs. as
simulated by the models. Because GRACE data are of lim-
ited spatial resolution, signals from coastal Greenland tend
to smear out into the ocean and into the interior (e.g., Fig. 9).
If we used a simple mask of Greenland land area to compute
an average, we would thus understate the true mass change.
Instead, we create a “ones-and-zeroes” filtering kernel for
Greenland (Fig. 10, left panel) and transform it to GRACE-
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Figure 11. Observed and modeled, cumulative, whole-ice-sheet
mass trends obtained using annually averaged ice thickness fields
and the spatial smoothing kernel from Fig. 10.

like spherical harmonics. The result is a smoothed mask of
spatial weights, which are “smeared” in the same way that
GRACE observations are (Fig. 10b). We use this smoothed
mask to weight the spatial average mass change at each time
step when calculating the time series of average mass change
shown in Fig. 11.

The second set of spatial maps displays the percent of
GRACE’s observed variance explained by each model us-
ing a combination of statistics. First, the standard devia-
tion of the GRACE signal, ogracg, is computed in each
0.5° x 0.5° bin (Fig. 12a). Then, the standard deviation of
the difference between GRACE and each model is com-
puted, 0[GRACE-model]- The percentage of GRACE’s variance
explained by the model, PVE, is thus given by

OGRACE — O[GRACE-model] «

PVE = 100. 4)

OGRACE

When calculating PVE values, we create a mask of areas
near Greenland (but excluding neighboring islands) where
the observed GRACE signal between 2003 and 2012 has
a standard deviation of at least 15 cm of water (this leaves
only the colored regions in the model-observation compar-
ison panels of Fig. 12b—d). This allows us to include both
the signal over Greenland and the part of the signal that is
smeared into the ocean by GRACE’s low spatial resolution.
The mask also prevents divide-by-zero errors in Eq. (4). A
model which perfectly reproduces the GRACE observations
has a PVE = 100 in each 0.5° x 0.5° bin (the model explains
100 % of the observed variance). For 0 < PVE < 100, the
model simulation correctly captures some of GRACE’s ob-
served signal, but has imperfect amplitude or timing. Isolated
regions where the difference between the observed and mod-
eled variance is larger than the observed variance can also
exhibit negative PVE values.

Based on these three qualitative assessments, we propose
two single-value metrics for use in quantifying the match be-
tween model output and GRACE observations. First, from
Fig. 11 we compute MTreng, the difference between the spa-
tially averaged linear trend of GRACE and each model. Sec-
ond, we create an ice-sheet-wide average of the PVE statistic
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Table 3. Observed and modeled mass trend and scalar metrics
MrTrend and Mpyg calculated for the RACMO2-SMB-only, SMB-
only, and SMB + FF models from 2003 to 2012.

Simulation Trend MTrend MpvE

(Gtyr—h (error) (%)
GRACE —186.1 0 (0 %) 100
RACMO2-SMB-only —83.3 —102.8 (55%) 39.8
SMB-only —100.4 —75.7 (41 %) 46.5
SMB + FF —121.0 —65.1 (35 %) 49.7

for each model-to-GRACE comparison, Mpyg. For a sim-
ulation that provides a perfect match to the observations,
MrTrend and Mpyg would have values of 0 and 100, respec-
tively. These metrics are listed in Table 3 and discussed in
more detail in Sect. 6.

6 Results and discussion

Figure 4 provides a broad summary of the results for the
different model simulations conducted here. All simulations
other than the persistence simulation show a clear seasonal
cycle in mass balance as a function of the SMB forcing
and, over interannual and longer timescales, all simulations
steadily lose mass with a marked increase in the rate of mass
loss starting around or after the year 2000. For the simulation
that includes forcing of outlet glacier flux, an additional in-
crease in the rate of mass loss can also be observed starting
around 2005.

From Figs. 5-7, it is clear that for 2007.8, the modeled
ice surface is biased slightly low relative to observations.
This remains true regardless of which year we pick to com-
pare against (Figs. 5-7 are very similar for years 2003.8 and
2004.8). Yet in general, aside from a few isolated regions
near the margin, the model vs. observed surface elevation dif-
ferences are surprisingly small, with mean differences over
the entire ice sheet of < 1.0m in all cases (Tables 1 and 2).
The persistence model simulation was specifically designed
to address the concern that such a seemingly good match is
simply a reflection of an initial condition, which is already
a good match to observations and then simply carried for-
ward in time. Tables 1 and 2 include whole-ice-sheet metrics
based on the ICESat observations and confirm that the per-
sistence model has the best overall statistics, followed by the
RACMO?2-SMB-only model, with the two dynamic model
simulations giving the worst overall statistics. Apparently, at
the whole-ice-sheet scale, our proposed ICESat metrics are
unable to confirm that a dynamic ice sheet model provides
any ‘“value added” relative to a static initial condition or a
very simple model driven by SMB considerations alone.

To examine this further, we show additional values of our
ICESat Az metric in Fig. 8, which were obtained for specific
drainage basins (observational data sparsity prevents mean-
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Figure 12. GRACE variance (a) and percent of GRACE variance (PVE; Eq. 4) explained by various models: (b) RACMO2-SMB-only
model, (¢) SMB-only simulation, and (d) SMB + FF simulation. Colorbar in (a) applies to the colormap in (a), while the colorbar in (b)

applies to the colormap in (b)—(d).

ingful comparisons at anything finer than the basin scale).
In this case, the assessment of which simulation scores
“best” is much more ambiguous; at the scale of specific
drainage basins and depending on the year, either idealized
or dynamic-model-based simulations perform better, and no
clear pattern emerges. At best, any of the models proposed
here do a reasonably good job of mimicking the ice sheet
state for the particular dates of ICESat observational data
used here. But clearly a strong argument cannot be made for
the relative ranking of either the dynamic or idealized models
when assessed using these data and metrics.

These ambiguous results are likely explained by a num-
ber of factors. First, over the timescales considered here, the
changes in the observed and modeled ice sheet surfaces as a
function of the different simulations conducted may be small
enough that they cannot be distinguished from one another
at the drainage-basin or whole-ice-sheet scale. Second, be-
cause of the relative short time span of ICESat data, we only
conduct this comparison at three points in time, separated by
a maximum of 5 years. By including other datasets prior to
the ICESat period (e.g., ERS-1/2 radar altimetry) and after
(e.g., Operation Ice Bridge; ICESat-2), elevation data will
likely be more successful at distinguishing relatively better
or worse model simulations. Third, our initial condition is
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biased in the sense that the DEM it is based on (Morlighem
et al., 2014) includes some of the same ICESat observations
that we compare our model outputs with (see Howat et al.,
2014). This likely explains the good match between the ICE-
Sat observations and the persistence model, and in this sense,
it is encouraging that the much more realistic, but also much
more complicated, dynamic models obviously do no harm
to that initially good match (Fig. 8). Lastly, we make no ac-
counting here for the complications that might be introduced
by snow and firn dynamics. However, we note that the model
initial conditions are based on observational data that include
snow and firn, as do the ICESat data that are used in the com-
parison. Seasonally, the elevation does vary by a few tens of
centimeters in the middle of the ice sheet and up to a few
meters near the ice sheet margins (Kuipers Munneke et al.,
2015). This seasonal amplitude is only partly accounted for
when converting SMB into the ice-equivalent units used as
model forcing (i.e., for a given mass change, the respective
volume (thickness) change is larger for firn than for ice).
The comparison to surface elevation snapshots from ICE-
Sat provides both whole-ice-sheet and regional information
about how well our model simulations mimic the ice sheet
state at a particular moment in time. Complementary in-
formation regarding how well our simulations mimic the
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observed trends (in this case, mass trends) is provided by
the comparison with GRACE observations. Importantly, this
comparison also removes any concern about the issue of per-
sistence, since trends for the persistence model are always
exactly equal to 0. Spatial maps of the observed and mod-
eled mass trends confirm that all of the simulations capture
at least some fraction of the observed mass loss occurring
along Greenland’s coasts (Fig. 9). No model simulates as
large a magnitude of loss along the western or southeastern
coasts as GRACE sees and all of the models overestimate the
mass loss in the southwest relative to GRACE. Simulations
that include an approximation of ice dynamics by includ-
ing the time series of outlet glacier forcing show a modest
improvement at mimicking GRACE along the southeastern,
western, and northwestern coasts. The dynamic model sim-
ulations have PVE near 50, demonstrating that they see half
of the GRACE signal in most places (Fig. 12). Addition of a
dynamic ice sheet model and/or forcing to approximate the
effects of outlet glacier dynamics increases the PVE in north-
western, western, and southeastern Greenland, and for the ice
sheet as a whole, as shown by the change in the whole-ice-
sheet Mpyg metric (Table 3). However, dynamic ice sheet
models also appear to result in locally negative PVE values in
southwestern Greenland. For the spatially averaged, whole-
ice-sheet mass trend comparison (Fig. 11), there is a clear
improvement when moving from the RACMO2-SMB-only
model, to the SMB-only dynamic model, to the SMB+FF
dynamic model, and this same improvement is clearly cap-
tured by the ice-sheet-wide MTeng metric (Table 3). We note
that our SMB-only simulation underestimates the cumulative
mass loss between 2003 and 2012 by ~ 700 Gt, which is very
similar to the underestimate over this same time period from
an independent but related model vs. observation comparison
effort (see Fig. 6 in Alexander et al., 2016).

Overall, our qualitative and quantitative GRACE metrics
appear to provide a much clearer distinction between ideal-
ized and dynamic model simulations. Further, they also ap-
pear to demonstrate an increase in model “skill” in the sense
that might be expected; dynamic models perform better than
non-dynamic models, and dynamic models that account for
known changes in ice dynamics perform better than those
that account for only SMB forcing.

7 Conclusions

In the present work, we have proposed a software framework
— the Cryospheric Model Comparison Tool (CmCt) — for the
purposes of ice sheet model validation, which allows us to
take advantage of several decades worth of satellite-based
observations of the Greenland ice sheet. Based on ICESat
altimetry observations and GRACE gravimetry observations,
we have proposed qualitative and quantitative metrics for use
in assessing ice sheet model skill with respect to mimicking
these same observations. Using both idealized and dynamic
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models, we have demonstrated the ability of these metrics
to distinguish between relatively better and relatively worse
simulations. For the ICESat observations and simulations
conducted here, the related ICESat metrics are unable to un-
ambiguously distinguish between the different simulations.
On the other hand, the GRACE observations and metrics are
clearly able to distinguish between relatively worse and rela-
tively better simulations. Importantly, we note that while the
comparison with GRACE proves more useful here for dis-
tinguishing model skill with respect to observed ice sheet
trends, that information would be much less compelling in
the absence of the ICESat comparison, which provide initial
confidence that the models are also skillful with respect to
representing the observed ice sheet state; different types of
observations have different strengths and multiple sets of ob-
servations used in conjunction will allow for a much more
robust validation of models.

All of the simulations conducted here underestimate the
observed mass loss from Greenland with respect to the ob-
servations. This occurs for several reasons. First, the match
between modeled and observed velocities is imperfect, and
we underestimate ice flux in some important regions in our
initial condition (Fig. 2). The result is that modeled changes
in ice flux, which are proportional to the initial flux, are
also likely to be underestimated. Since those changes are
largely responsible for the dynamic thinning that has been
observed, our model underestimates that thinning as well.
Second, our simulations implicitly assume a steady-state ice
sheet in 1991, which is at odds with recent work suggest-
ing that the ice sheet was already thinning dynamically at
that time (Kjeldsen et al., 2015). Lastly, our forcing of out-
let glaciers does not start until 1999, yet we know that dy-
namic thinning for several important outlet glaciers (e.g., Ja-
cobshavn; see Joughin et al., 2004) started prior to that time.
In addition to the underestimation of mass loss by the model-
ing conducted here, it is worth noting that GRACE estimates
of Greenland mass loss are likely to be slight overestimates
due to the same “leakage” effects discussed above. In partic-
ular, mass loss from Baffin and Ellesmere Islands, which are
also significant (Gardner et al., 2011), affect GRACE obser-
vations of Greenland mass loss.

The forcing of the dynamic ice sheet model is admittedly
overly constrained in the present study — we have specified
both the “passive” climate forcing (in the form of surface
mass balance) and the “dynamic” climate forcing (in the
form of outlet glacier flux). In reality, the latter is argued to
be largely a response to the coupling between marine termi-
nating outlets and the surrounding oceans (see reviews by
Straneo et al., 2013; Straneo and Heimbach, 2013), which
we ignore here aside from attempting to include the ice sheet
response to that forcing. One can imagine more meaningful
validation exercises in which the ice sheet model is freely
evolving and the climate forcing — the ice sheet surface mass
balance and submarine melting at marine terminating mar-
gins — is supplied through complete coupling with an Earth
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system model and translated to a dynamic response through
the appropriate ice sheet model physics (subglacial hydrolog-
ical forcing in response to increased surface melting, iceberg
calving in response to submarine melting, etc.).

Nevertheless, for the purposes of demonstrating the ef-
fectiveness of the CmCt validation framework at assessing
model skill, the present approach has proven effective. Fur-
ther, the present approach allows us to speculate that, given
“perfect” knowledge of climate forcing, coupling, and the
model physics necessary to translate those couplings to the
appropriate ice dynamical responses, the dynamic model
tested here clearly demonstrates some level of “skill” at re-
producing the observations; non-dynamic models perform
worse than dynamic models and dynamic models forced only
by climate (here, SMB) perform worse than dynamic models
forced by both climate and ice dynamics. Put another way,
present-day ice sheet models with adequate representations
of physics and boundary conditions, and when forced by re-
alistic climate histories, can be expected to skillfully repro-
duce observed ice dynamical changes on decadal timescales.
This marks a clear improvement over a decade ago, when
sea level rise projections from ice sheet models were not in-
cluded in the IPCC’s 4th Assessment Report (Solomon et al.,
2007) because models of that time clearly lacked skill at ex-
plaining or mimicking observed ice dynamical behaviors.

Practically speaking, the framework and metrics proposed
here would be most useful in a relative sense, for example in
quantifying improvements within a specific model (or within
a class of models) as a result of differences in model dy-
namics (e.g., shallow vs. higher-order dynamical approxi-
mations), model physics (e.g., representations of ice sheet
rheological or basal processes), or model resolution (mesh
resolution and/or changes in the spatial resolution of input
datasets). The framework and metrics could also be fairly
easily adapted for use as a model-to-model intercomparison
tool, simply by swapping outputs from another model as the
observational datasets. Such development is planned in sup-
port of the new Ice Sheet Model Intercomparison Project
(ISMIP6; see http://www.climate-cryosphere.org/activities/
targeted/ismip6) for CMIP6 (Nowicki et al., 2016).

Lastly, we note that once the model and observational data
are both available within the same data structures and co-
located on the same grid, any number of additional or alter-
native metrics can be imagined for comparing and contrast-
ing model output and observations; the main contribution of
the CmCt is to make those comparisons possible in the first
place.

Future work on the CmCt will focus on the extension to
Antarctica, allowing for the use of model output on unstruc-
tured meshes, the addition of other datasets for use in model
validation — including new altimetry data from OIB, Cryosat,
and ICESat2, older radar-altimetry data from Envisat and
the ERS missions — and new gravimetry observations from
GRACE2. For comparing observed and modeled surface ele-
vations, improvements could be made by accounting for firn
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dynamics on both the observation and model sides. On the
modeling side, validation results will be significantly more
meaningful when using improved initialization techniques,
which do not require the use of anomaly forcing (Perego
et al., 2014) and/or that allow models to start from a state
that better matches present-day observed transients (Gold-
berg et al., 2015). Similarly, validation results are expected to
be more meaningful when the oversimplified boundary forc-
ing applied here can be replaced by modeled or observed cli-
mate forcing that is translated through appropriately modeled
physical processes (e.g., submarine melting and iceberg calv-
ing leading to retreat of marine terminating outlet glaciers).

8 Code and data availability

The Community Ice Sheet Model code is available at
http://oceans11.lanl.gov/cism/index.html (Price et al., 2014;
Lipscomb et al., 2017). For the Albany momentum bal-
ance solver, please see the code availability statement
in Tezaur et al. (2015a). The raw ICESat and GRACE
data discussed above are available for download at http:
/Mmsidc.org/data/icesat/data.htm]l and http://podaac.jpl.nasa.
gov/datasetlist?search=GRACE, respectively. The CmCt on-
line service is available at https://ggsghpcc.sgt-inc.com/
cmet/ and the CmCt source code will be made available
upon request. Model forcing and initial condition datasets
are available through direct contact with the respective au-
thors (see Sect. 2.3).
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