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Glossary

Throughout this thesis we will use several technical terms. For the sake of clarity we
explain the most important terms in the following list. The terminology is given for
the 3D case.

active voxel
a voxel with at least one link to another (parent or child) voxel.

adultness
a value between 0 and 1 indicating the suitability of a child to become a root.

affection
a value between 0 and 1 indicating the suitability of a candidate parent to
become an actual parent of a child.

blurring
the low-pass filtering (smoothing) of an image to remove detail.

boundary problem
the problem of the missing data for kernels crossing the image boundaries.

building step
the phases of blurring and linking.

child
a voxel with at least one parent, i.e., a voxel at the next higher level to which
it is connected.

child-parent link(age)
a link from a voxel in level n (the child) to another voxel in level n + 1 (the
parent).

correctness
a value between 0 and 1 denoting the part of the segmented image that is
regarded correct.

v



vi Glossary

downward projection
the phase in the hyperstack segmentation step where the scale-tree is followed
downwards from every root to the ground voxels in order to give those voxels a
segment value.

forced root
a voxel in scale space that is forced to become a root because of the amount of
outer scale reduction.

ground volume of a voxel
the number of voxels at the ground level connected to this voxel.

heuristic linking
a linking method based on heuristic models.

heuristic OSR
outer scale reduction based on a constant scope factor Kn for each level n.

hyperstack
a stack of blurred replicas of an input image at increasing scale connected by
child-parent voxel linkages.

inner scale
the smallest entity of an image containing discernable information.

Kuwahara filter
a nonlinear filter based on comparing variances of sub-windows.

linking
the construction of a link between a child in level n and a parent in level n+ 1.

lowest root level
the lowest level in the hyperstack at which roots may be created.

median filter
a nonlinear filter based on ordering the pixel values contained in the window.

multidimensional hashing
a technique with which the interesting elements of multidimensional data can be
stored efficiently without loss of the spatial information (coordinates) per data
element.

object distribution
a gold standard for evaluating segmentations.

outer scale
the field of view that an image represents.



Glossary vii

outer scale reduction (OSR)
the reduction of the dimensions of the images at larger scales in the hyperstack.

parent
a voxel with at least one child, i.e., a voxel at the next lower level to which it is
connected.

partial volume artifact
the effect that a voxel represents more than one object, caused by the limited
resolution of the imaging device, and therefore has an ‘in-between’ value.

passive voxel
a voxel with no parents or children.

post-processing editing costs ppe

the costs that have to be made to improve a segmented image up to a certain
correctness by manual editing.

probabilistic linking
a linkage scheme in which a voxel can have more than one parent (also called
multi-parent linking).

probabilistic segmentation
hyperstack segmentation approach with probabilistic linking; leads to a segmen-
tation in which voxels may belong to more than one segment.

probability map
an image where each intensity corresponds to the highest root probability of
that voxel.

pyramid
a multiscale image segmentation method based on coarse down sampling and
iterative linking.

root probability
the probability (a value between 0 and 1) that a ground voxel belongs to the
corresponding root in the scale-tree.

root (voxel)
a voxel in the hyperstack that represents a single segment at the ground level.

scale space
the set of blurred images derived from an input image by convolution with a
kernel of increasing width.



viii Glossary

search volume
the volume at level n+ 1 in which candidate parent voxels are sought for a child
voxel at level n (often a sphere characterized by its radius).

segment
a collection of voxels in the original image that belong together.

segmentation level
the highest level in the hyperstack that is used in the segmentation step.

segmentation step
the phases of root labeling and downward projection.

sibling voxels
voxels having the same parent.

single-parent linking
a linkage scheme in which a voxel can have at most one parent.

single-parent segmentation
segmentation approach in which each active voxel corresponds to exactly one
segment.

strict OSR
outer scale reduction based on the scale space theory, such that the ratio
#Voxels/Scale remains constant.

volume rendering
a three-dimensional view of a 3D segmented image.



‘Whenever man comes up with a better mousetrap,
nature immediately comes up with a better mouse’

– James Carswell

Chapter 1

Introduction and summary

Images. We see them all day, hang them on the wall, and use them to explain
unreadable articles. Images (drawings, photographs, movies) can perfectly be used for
inter-human communication, thereby often rousing strong emotional feelings, whether
they represent war, art or pornography. Apparently, looking at an image causes a lot
of information to be processed and subjectively interpreted. Or, as the trite but true
cliché says: an image says more than a thousand words.

Our visual system is continuously busy with processing, analyzing, and interpret-
ing of visual stimuli. Nature combined with nurture provides us with a beautiful sys-
tem to deal with this visual information. In fact, the statement that no autonomous
visual system built by men will outperform its biological equivalent in the foreseeable
future is upheld by a lot of researchers in the field—including the author of this thesis.

In the medical community, images from different modalities have found their way
to a variety of medical disciplines. Multidimensional images have become indispens-
able in clinical diagnosis, therapy planning and evaluation Clinicians now have the
possibility to ‘look’ into the anatomy of the entire human body, or to investigate the
functional properties of most organs or tissues. It depends on, among others, the
nature of the disease and the symptoms of the patient, which of the imaging modal-
ities is called for. Besides the well known two-dimensional X-ray images, some of
the most widely known and used image acquisition methods to visualize anatomical
structures X-ray Computed Tomography (ct), which is pre-eminently suited to im-
age bone against soft tissues; the Magnetic Resonance Imaging (mri) scan, useful for
imaging the brain and other soft tissues; Ultrasound Imaging, used inter alia for fetal
imaging; Digital Subtraction Angiography (dsa), ct Angiography (cta), and Mag-
netic Resonance Angiography (mra) for imaging of blood vessels. To visualize the
functional properties of tissue, Nuclear Science provides Single Photon Emission ct

(spect) and Positron Emission Tomography (pet) scans, but also the (non-invasive)
mr technique can be used (functional mri). Examples of four modalities are shown
in Fig. 1.1.

Images that are processed by the human visual system are of a considerably higher

1



2 Chapter 1. Introduction and summary

Fig. 1.1. Examples of imaging modalities, from left to right: an X-ray
photograph of a knee; an abdominal ct scan; an mri scan of the brain; a
spect image of the brain.

resolution than the digital medical images that are dealt with in this thesis (ranging
from 64× 64 pixels in the case of a 2D image up to 256× 256× 256 pixels for a 3D
image). Nonetheless, the latter contain a vast and important amount of information
for the physicians. Furthermore, the image acquisition techniques are improving every
year, resulting in higher resolution images in all three dimensions. An example of this
development is spiral ct recording [48, 45], which allows for fast three-dimensional
data acquisition of high resolution images.

The introduction of scale space theory by Koenderink [54] and Witkin [131] has
been a major breakthrough in image understanding. It was not until then that the
notion of ‘scale’ was coupled to a variety of basic concepts, such as the smallest entity
of an image containing discernable information (the inner scale), and the regularized
calculation of an image derivative. Koenderink proved that the unique linear scale
space kernel that satisfies the causality constraint is the Gaussian kernel of various
widths. Fig. 1.2 shows the mri image of Fig. 1.1 at four different scales. If the scale
space is sampled at a number of successive scales, a stack of images is formed. When
the input image is 3D, a four-dimensional stack or hyperstack is formed, with scale as
the fourth dimension.

Fig. 1.2. Four samples of the scale space of the mri brain image of Fig. 1.1

Scale space theory follows the same constraints as nature. Hence, it is not a
coincidence that multiscale image understanding is similar to the human visual system:
the Gaussian kernels and their derivatives resemble to a high extent the receptive fields
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in the eye that consist of rods and cones [133, 134, 135, 10]. Koenderink’s starting
point was the isotropic diffusion equation, which is in accordance with the absence
of information at the stage of early vision (i.e., when no knowledge about the virtual
scene is available). The power of the human visual system is that ‘observing a scene’
(say, looking at a tree) can be followed by a specific, directed action to gather more
(other trees) or more specific (branches, leafs) information. In this respect, compare
looking at a tree and focusing on a single leaf. Actions like this require some feedback
from the brain (that has observed and analyzed the visual scene within milliseconds)
to the visual mechanism that controls what we are looking at. Indeed, feedback
connections between the visual cortex and the Lateral Geniculate Nucleus (LGN) are
physically present, which supports the theory that differential structure in an image
(an edge, a corner) can only be seen after the image has been analyzed at multiple
levels of isotropic scale.

Fig. 1.3. An mri brain image (left); a segmentation into 6 segments
(right). From inside out: ventricles, white brain matter, grey brain matter,
liquor & bone, connective tissue & skin, and the background.

In the pipeline from image acquisition to understanding one of the most impor-
tant and difficult tasks is the segmentation of an image. That is, dividing the picture
elements (pixels) in larger, basic structures, such that the grouping results in a mean-
ingful distribution of objects. This is illustrated in Fig. 1.3. Without segmented ver-
sions of an image one is virtually not capable to perform quantitative measurements
on an image (e.g., calculate the volume of a tumor), or to create a three-dimensional
view (e.g., a volume rendering of a skull). Fig. 1.4 shows two examples of volume
renderings of a segmented 3D mr image. The challenge here is that the biological
visual system of higher species performs the extremely difficult task of segmentation
with such ease, that segmentation in computer vision should try to reach the same
speed and accuracy. In our opinion, a method derived from biological vision—like the
hyperstack segmentation method—has the best chances of accomplishing this goal.
The availability of 3D imaging creates at least one advantage with respect to biologi-
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cal vision. The latter can obtain 2D input images only, which must be reconstructed
to a 3D scene in the brain.

Fig. 1.4. Volume rendering of a 3D mri brain image (left): if the 3D
image is properly segmented, parts of the outmost objects (in this case the
skin and the skull) can be easily ‘removed’ to show hidden objects, such as
the cortex of the brain (right).

Most of the conventional segmentation methods are not based on a scale space
representation, but are more locally oriented—like the rule-based systems of Or-
tendahl [80], Menhardt [74, 75], and Raya [91]—or ad hoc implementations for a spe-
cific segmentation problem (e.g., Brummer [15]). Schiemann [102] and Pizer [85] have
focused on interactive rather than automatic segmentation methods, while Karsse-
meijer [49] and Vemuri [115] used a multiresolution approach that was not based on
the diffusion equation, but on median filtering and the wavelet transform [70], re-
spectively. Finally, promising results have been obtained by using neural networks
for image segmentation (e.g., Worth [132]), especially in combination with multiscale
techniques (Haring [44]).

Most approaches to multiscale image segmentation involve connecting pixels in ad-
jacent levels of the sampled scale space (Burt, Pizer, De Graaf [16, 86, 25]). By using
this multiscale approach the global image information can effectively be included. In
this thesis it is shown that the hyperstack performs well on noisy images and is par-
ticularly strong in its ability to segment both small and large objects simultaneously.

In Chapter 2 the fundamentals of the hyperstack segmentation method are ex-
plained. This includes the blurring process to sample the scale space, and the bottom-
up linking process in which the scale space levels are linked to one another pixelwise.
The latter results in a tree of linkages in scale space. From each node, the tree can be
followed downwards to the pixels of the original (high resolution) image to constitute
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a segment. The node from which the downward projection starts is appropriately
referred to as the root of the segment. A critical step in hyperstack segmentation is
to determine which of the scale-tree nodes are likely to represent a segment in the
original image. This is the root labeling phase. Chapter 2 also features aspects of the
design of the hyperstack method. The data structure has been implemented in the
object-oriented programming language C++.

In order to test our segmentation algorithms, it is desirable to have artificial (test)
images of which the object distribution is known a priori . To this end, an octree-
like algorithm has been developed to convert mathematically defined objects to a
voxel-based model (a voxel, from ‘volume element’, is a 3D pixel). In essence, the
coarse discretization at voxel level can be refined by a subdivision of each voxel that
represents part of the edge of an object into eight smaller sub-voxels. This allows for
proper representation of the partial volume voxels. The conversion algorithm has been
recursively implemented, which makes the method flexible in accuracy. The method
is described in detail in Chapter 3.

A major problem with most of the conventional segmentation methods is that they
fail to take the partial volume artifact into account. This effect—caused by the limited
resolution of the imaging device—is reflected by pixels that have an ‘in-between’ value
(the pixel intensity) with respect to neighboring pixels, that are fully contained in one
tissue. Normally, partial volume pixels are forced to choose between either tissue type.
By following the isophote structure in the neighborhood of a partial volume pixel, it is
possible to extract more detailed information on the different tissue types comprised
in that pixel. In the hyperstack, this is effectuated by allowing multiple upward
linkages to be established for each pixel (instead of just one as in the conventional
linking scheme). In Chapter 4 we explain how the multiscale information (containing
the isophote structures) can effectively be used to segment partial volume pixels at
sub-pixel level. It is shown that this yields better results with respect to quantitative
image analysis (e.g., volumetric measurement), and that the volume renderings of 3D
images can be significantly improved.

In Chapter 5 we deal with the sampling of the blurred images in scale space. Since
high frequency information vanishes with increasing scale, the images at the larger
scales are oversampled. It is shown why a straightforward sampling rate reduction
fails in multiscale image analysis. Instead, the decrease of the number of samples
should not affect the sampling width. This leads to outer scale reduction (OSR),
which is effectively a decrease of the image boundaries if scale increases. Two different
approaches are discussed: strict OSR and heuristic OSR. The profit of applying OSR
is twofold: (i) the influence of the boundary problem (which is especially apparent
at larger scales) is minimized, and (ii) the complexity of the linkage structure is
decreased. The segmentations of medical images based on hyperstacks with OSR
illustrate that the computation can be sped up by a factor of 5, without significant
loss in quality.

Finally, in Chapter 6 we deal with a topic that has an increasing interest from the
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computer vision world. Since the introduction of linear scale space, researchers have
focused on nonlinear variants. As a result, several nonlinear blurring schemes have
been proposed, e.g., by Perona [84], Alvarez [2], and Niessen [78]. We have compared
the applicability of such schemes with linear scale spaces and two other nonlinear
blurring filters: the median filter and the Kuwahara filter. The different blurring
strategies are evaluated by the hyperstack segmentation method: the blurring strate-
gies are taken as the first step of the method. On the basis of numerical experiments,
it is shown that the multiscale linking model is very robust against the choice of the
scale space. The nonlinear algorithms based on the Perona & Malik equation and
the Euclidean shortening flow appear to be most promising for research in the near
future.



‘Study the family as a family, (...)’

– Jan Koenderink
(The structure of images [54])

Chapter 2

Design of the hyperstack

Abstract

In this chapter the design of the hyperstack, a multiscale method for segmen-
tation of multidimensional images, is presented. Hyperstack segmentation is
based on the linking of voxels at adjacent levels in scale space, followed by a
root selection to find the voxels that represent the segments in the original
image. This chapter addresses an advanced linking and root labeling method
for the hyperstack.
We present an efficient data structure (based on so-called containers) for stor-
ing the linkages. Furthermore, we introduce a new technique (multidimen-
sional hashing) for the problem of storing sparse multidimensional data struc-
tures. A comparison with conventional hashing techniques will be made.
Finally, segmentations obtained from 2D and 3D images are presented and
compared to show the surplus value of 3D versus multiple 2D image processing.

Keywords: Image segmentation, scale space, containers, hashing.

2.1 Introduction

Image segmentation—dividing an image into meaningful objects—is a subfield of im-
age processing that is of crucial importance for quantitative analysis and, in the case
of 3D images, volume visualization (e.g., see [67, 27, 63, 87, 9, 139, 138]).

We present an approach to segmentation of multidimensional images called the
hyperstack (in analogy with the name stack for its 2D equivalent). The ideas under-
lying hyperstack segmentation are the scale space representation of images [131, 54]
and the hierarchical approach to image segmentation by means of the pyramid [16,
46, 24, 23, 73, 11]. Previous descriptions of scale space based image segmentation
include notably the stack [86, 64] for 2D images, and earlier versions of the present
work [116, 118, 57]. In this thesis we focus on discrete scale spaces rather than on the
continuous case (see [66], e.g., for details).

In the conventional pyramid approach the discrete levels of the multiresolution
structure are derived by a repeated averaging of the samples of the input signal, while

7
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the sampling rate is reduced by a factor of two in each dimension. The thus derived
levels are generally strongly undersampled—both in space and in scale—owing to this
block-wise algorithm.

A major advantage of the pyramid approach is its computing speed. The total
number of voxels used for the discrete scale space representation equals approximately
(2d · N)/(2d − 1), where N denotes the total number of voxels of the d-dimensional
input image. The larger d, the more this term approximates N . (For instance, a
pyramid of a 3D image requires only an additional 0.14 · N voxels.) Pyramids are
often used in applications where it is desirable to have a low computational effort at
the cost of a less accurate result.

A different approach to scale space was introduced by the wavelet transform [70],
although up to now wavelets have not been applied to image segmentation. The main
reason for this is that it is not clear how the difference signal, which is the result of
a wavelet decomposition step, can effectively be used to segment an image.

The hyperstack algorithm consists of four main steps, which are discussed in detail
in section 2.2. First, a blurring step is used to create replicas of the original image
at increasingly larger scale. The natural kernel for building such a discrete scale
space is the Gaussian [7]. This is the only linear convolution function that does not
create image structure when blurring [54] and that provides invariance for position,
orientation and scale [41, 30, 31, 33]. Moreover, the biological visual system is known
to employ a similar low-pass filtering [56, 134, 137]. The blurred images may be
conceived as placed on top of the input image, so as to create a ‘stack’. For 3D
images we obtain a four-dimensional scale space (hence the name hyperstack). See
Fig. 2.1 for a schematic of a hyperstack.

The next step is a linking step. Voxels in adjacent levels are linked according to
some ‘suitability’ criterion. The connections are called ‘parent-child’ linkages, where
the parent is located at the level of largest scale. In its simplest form, the linking
strategy may be based on minimum intensity differences between parent and child.
Such a simple strategy, however, has turned out to be insufficient for segmentation
of complex images [57, 118, 58]. Similar experiences with the extremum stack [64]
showed also that linkages could ‘escape’ from the isophote umbrella covering all the
light and dark blobs in an image. As will be shown, the hyperstack is based on a
better and more robust linking strategy.

The tree-like linkage structure which results from the building (blurring and link-
ing) phase is used to produce a segmentation. The segmentation phase also consists of
two steps: root labeling, followed by a downward projection. The root labeling defines
which voxels in the discrete scale space represent a single segment in the ground level.
Segmented images are then obtained by projection of some segment value from every
root downwards to the connected voxels in the ground level. Different choices for the
segment values will be discussed.

Section 2.3 describes the design of the hyperstack data structure. We explain what
objects need to be discriminated and how they are mutually related (section 2.3.1).
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Fig. 2.1. Schematic of a hyperstack in 3D (left) and 2D (right).
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The design is kept very flexible so as to allow future extensions. In particular, provi-
sions have been made for proper segmentation of partial volume voxels by probabilistic
linking schemes.

We also introduce the notion of containers to store the linkages involved (section
2.3.2).

In section 2.4 we discuss a new storage technique, called multidimensional hashing,
that can effectively be employed to decrease the amount of memory needed to store
large sparse arrays without loss of the multidimensional indexing capability. In the
hyperstack this multidimensional hashing technique is used to deal with the problem
of the sparseness of the higher levels: the number of interesting (or active) voxels is
decreasing rapidly because of the convergence of the linking process.

A lot of attention has been paid to full—i.e., three-dimensional—processing of 3D
images. In section 2.5.1 we show the surplus value of including the third (spatial) di-
mension in the segmentation process, rather than applying a series of two-dimensional
algorithms (often called 21

2
D segmentation). We will also show that a hybrid variant

that makes full use of the three-dimensional spatial information to generate a 3D scale
space, but processes the data on a slice-by-slice basis (the so-called 23

4
D variant) is

not an attractive alternative. Results of an extensive study will be presented here.
Finally, the results of hyperstack segmentation of both a 2D and a 3D real world

(medical) image are presented in section 2.5.

2.2 The hyperstack

The essence of the hyperstack image segmentation method is illustrated in Fig. 2.2.
The method consists of four consecutive steps: (i) blurring, building the image’s

scale space, (ii) linking, establishing the connections between voxels at adjacent scale
levels, (iii) root labeling, defining which voxels in scale space represent an entire seg-
ment, and (iv) downward projection, forming the segments in the original image. We
will now deal with the separate steps in detail.

2.2.1 Blurring

Applying a blurring algorithm to a (discrete) input image has the effect of a low-
pass filter: low frequencies are preserved, while the higher frequencies (the details)
are smoothed out. For front-end vision systems, i.e., systems that have no knowledge
about the observed scene, it has been shown [54, 33] that the unique linear scale space
constructor is the Gaussian function G(~x; σ):

G(~x; σ) =
1

(σ
√

2π)d
exp

(
−‖~x‖

2

2 σ2

)
, (2.1)

where d denotes the dimension of the input domain. A blurred replica of the original
image is obtained by convolution with G(~x; σ) for a specific σ. If the intrinsic scale of
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the input image is ε (often chosen to be 1), then the scale of the blurred image equals√
σ2 + ε2. The convolution may be effectuated either in the spatial domain or in the

frequency domain (by multiplication of the Fourier transforms). Both methods can
be used to derive the scale space of an image; they differ mainly in computation time
(see below).

stop?

labeling

Building Segmentation

Y

N

blurring linking

projection

downwardroot

Fig. 2.2. Schematic overview of the hyperstack image segmentation process.

In the discrete implementation we make use of the separability of the Gaussian.
Hence, a sampled 1D Gaussian Ĝ[n; σ] can be used:

Ĝ[n; σ] =
1

N
exp

(
− n2

2 σ2

)
, n = 0,±1,±2, ...,±bKnσc , (2.2)

where N is a normalization factor such that

bKnσc∑
n=−bKnσc

Ĝ[n; σ] = 1 . (2.3)

The factor Kn specifies the accuracy of the implemented Gaussian kernel: the larger
Kn, the larger the scope of the discrete kernel, and hence the accuracy of the calculated
blurred values (see also [118]). In practice, Kn is often given the same (constant) value
for each level n, although the accuracy of the convolution decreases if the number of
dimensions increases. This follows directly from Fig. 2.3, where the percentages of
the definite integral of a Gaussian function in d dimensions have been plotted. For
instance, for the three-dimensional case spherical coordinates can be used to compute
the volume V :

V =
1

(σ
√

2π)
3

2π∫
0

dφ

π∫
0

sinθ dθ

Knσ∫
0

ρ2 exp

(
− ρ2

2σ2

)
dρ , (2.4)
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for which we can write

V = erf

(
Kn√

2

)
−
√

2

π
Kn exp

(
−K

2
n

2

)
. (2.5)
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Fig. 2.3. Accuracy percentages of the convolution of a d-dimensional
image with a Gaussian kernel. The scope of the spatial kernel is defined
by a radius Knσ, where Kn is the accuracy factor.

The convolution in d dimensions is performed by repeated 1D convolutions of the
image with Ĝ[n; σ] in each spatial direction (see section 6.B.1 for details).

(Note that, from a mathematical point of view, the conventional pyramid kernel is
also a discretized Gaussian, albeit with a very limited accuracy. It encompasses two
voxels in each spatial direction, and there is no overlap between the domains of the
kernels for adjacent pixels or voxels. Because of the normalization of the coefficients
of the kernel this amounts to simply averaging.)

In the frequency domain the discrete Fourier transform of the spatial Gaussian
kernel of (2.2) is used:

G[ω; σ] = exp

(
−σ2ω2

2

)
(2.6)

Scale space sampling

The sampling in the scale direction of the generated scale space should follow a lin-
ear and dimensionless scale parameter δτ [33], which is related to the absolute (or
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effective) scale σn of level n by:

σn = ε eτ0+n·δτ , n ∈ N , (2.7)

where ε is taken to be the smallest linear grid measure of the imaging device, and
τ0 defines the initial offset in scale. A convenient choice for τ0 is 0, which implies
that the inner scale [54] σ0 of the initial image is taken to be equal to the linear grid
measure ε.

2.2.2 Linking

The search volume

volume

link

σ
n+1,n+2

search

n,n+1

level 0

σ

original image

level n

level n+1

level n+2

n+2

r
n+1,n+2

r
n,n+1

σ

Fig. 2.4. Search volumes in the linking process. For reasons of simplicity,
the schematic is drawn for 2D images.

The bottom-up linking process creates linkages between voxels in two adjacent
levels, say n and n+ 1. For each active voxel at level n a parent is sought in a search
volume defined at level n+ 1. (Note that only the active voxels—i.e., voxels with at
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least one child or parent reference—are linked upwards again. In combination with
the blurring, this ensures convergence of the hyperstack linking process; the top level
contains exactly one—active—voxel.) Since rotation invariance of the segmentation
method with respect to the input image is desirable, the search volume is defined as
a spherical volume in 3D, and as a circle in 2D (see Fig. 2.4). The radius rn,n+1 of
the search volume depends on the difference in scale between the child level n and the
parent level n+ 1, as defined by the relative σ between these levels:

rn,n+1 = kn · σn,n+1 , kn ≥ kn,min . (2.8)

For simplicity, kn is often given a constant value throughout the scale space, i.e.,
independent of the level n. The reason that kn has a minimum (kn,min) is that we
cannot allow a search volume with a radius smaller than the inner scale. The value that
is assigned to kn is a compromise between accuracy and computational complexity. An
acceptable value from either point of view has experimentally been found to be kn =
1.5, independent of the image dimension d. See appendix 2.A for more background
on the calculation of kn,min and the choice of kn.

Linkage criteria

For each child a suitable parent is sought in a limited domain. In keeping with the way
the images are blurred the attractiveness (or affection) decreases with the distance
between the potential parent and the child. The dependence of the affection on the
child-parent distance is based on the Gaussian shaped function

D(dc,p) = exp

(
− dc,p

2

2(σp2 − σc2)

)
, (2.9)

with dc,p = ||~xp − ~xc||, ~xc and ~xp being the spatial positions of the child and the
parent, and σc and σp the scales of the child and parent levels.

Every image at each level has an inner scale. Within this inner scale no distinction
of similar features is possible. Consequently, the child-parent distance has a minimum,
which is set to half the scale of the parent image. We define the distance factor D as:

D =

{
1 if dc,p ≤ 0.5 σp

D(dc,p)
D(0.5 σp)

if dc,p > 0.5 σp
(2.10)

The parents are selected on the basis of their affection (♥), or linkage strength,
to a given child. The candidate parent with the highest affection value is selected to
become the child’s parent. This affection is defined as:

♥ = D ·

N∑
i=1

wi · Ci
N∑
i=1

wi

, with Ci ∈ [0, 1] . (2.11)
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The Ci are individual linking components, controlled by weights wi.
Research into different statistical and heuristic components has shown that a gen-

eral and robust linking scheme should use three components [58]: (i) the traditional
intensity difference component CI , (ii) the ground volume component CG, and (iii)
the ground volume mean intensity component CM.

The first affection term is based on intensity proximity and provides intensity
following through scale-space. It is defined by:

CI = 1 − |Ip − Ic|
∆Imax

, (2.12)

where Ip and Ic denote the intensity of the parent and the child, respectively, and
∆Imax is the maximum intensity difference in the original image.

The second affection term, the ground volume of a parent, encourages convergence
of the linkages to ever fewer parents. The ground volume is the number of voxels
to which a parent is connected at the bottom level, the original image. The ground
volume affection term is defined by:

CG =
Gp
Gmax

, (2.13)

with Gp the ground volume of the parent and Gmax the maximum ground volume at
the parent’s level. Initially, no parents are linked, and hence no ground volumes exist.
This problem is solved using an iteration procedure. The linking process is done first
without taking the ground volume term into account (by assigning it a weight of 0),
followed by repeating the linking process a number of times, each time with a slightly
higher weight of wG. In general, no significant changes occur after three or more
iterations.

The third affection component is the ground volume mean intensity component
CM:

CM = 1 − |Mp − Mc|
∆Imax

, (2.14)

with Mp and Mc the ground volume mean intensity of the parent and the child,
respectively. If the ground volume mean intensity of the child closely resembles the
corresponding component of the parent, then it is natural for the child to merge into
that parent segment: they both represent (part of) a segment with such an intensity
value.

Obviously, the linkages formed heavily depend on the local image structure and
the relative weights of the affection components. Experiments with different images
showed that general, robust values can be calculated. Typically, the corresponding
weight factors wI, wG, and wM take the values of 1, 10−7, and 1000, respectively.
The domain where parents are sought is in effect limited by the distance factor D of
equation (2.10). Given a highest affection ♥max found within a certain radius around
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the spatial location of the child, no higher affection can be found at (larger) distances
where ♥max/D > 1.

In section 2.5.5 an example will be presented to show that linking based solely on
the intensity difference component CI performs significantly worse than the extended
linking scheme presented above.

Probabilistic linking

In the linking process described above every ground voxel has a unique path going up.
Hence, every ground voxel is related to exactly one root. The resulting hyperstack
is named single-parent for this reason; the thus segmented images are called ‘single-
parent segmentations’.

An important extension to this linking scheme is probabilistic or multi-parent link-
ing. Here, a child is linked to every candidate parent with a sufficiently high affection
value (according to some criterion, see [121] for details). The affection values are
normalized by requiring that the sum of all affections of a child equals 1. Accordingly,
the linkages to the parents can be regarded as probabilities. The sum of all normalized
affections between two adjacent levels equals the number of active voxels in the child
level, both in single-parent and multi-parent hyperstacks.

Probabilistic linking influences in particular the linking of partial volume voxels
and of voxels with a high noise content. These voxels are not forced to choose for
one particular segment, but are instead segmented at a sub-voxel level. Furthermore,
probabilistic linking improves the quality of three-dimensional image segmentations—
especially with respect to visualization of the results [121, 123, 120].

The result of a hyperstack based on multi-parent linking is a list of (normalized)
probabilities for each (partial volume) voxel specifying the chance that it belongs to
different segments.

Note that at the higher levels of the hyperstack, the profit of multi-parent linking
is limited [121]. The interesting partial volume voxels have already been decomposed,
so multi-parent linking can be turned off if the building proceeds.

2.2.3 Root labeling

The segmentation phase consists of two steps: root labeling and downward projection.
To start with, roots are formed by selecting the segmentation level . Linkages from the
segmentation level upwards are either not present (in the case that the segmentation
level is the top level of the hyperstack), or ignored. Thus, all active voxels in the
segmentation level become root. The default is to use the top level as segmentation
level.

Additionally, the lowest root level may be set. This defines the lowest level in the
hyperstack where roots are allowed to be created. The default is set to level 1. The
combination ‘segmentation level/lowest root level’ controls a priori the size of the
resulting segments in a global sense.
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Additional roots are formed by voxels of which the linkages to the parents in the
next-higher level are too weak to be followed. The ‘weakness’ measure, or adultness,
is modeled in much the same way as the affection:

A =

N∑
i=1

ŵi · Ĉi
N∑
i=1

ŵi

, with Ĉi ∈ [0, 1] . (2.15)

A minimum adultness A may be set that is needed for a child to be labeled as root,
depending on properties like intensity proximity, ground volume, and ground volume
intensity variance. A first account of heuristic root labeling criteria is given in [58].

The two components that turn out to be robust root criteria are: (i) the ground
volume mean intensity difference component ĈM, and (ii) the ground volume com-
ponent ĈG. They are defined as:

ĈM =
|Mp −Mc|

∆Imax
, (2.16)

and

ĈG =
Gc
Gmax

, (2.17)

respectively. For the ĈM component it is plausible that a relatively large value in-
dicates a catastrophe in scale space [54]. At such an event, two different objects
merge together. Furthermore, large objects are preferred over smaller ones by the ĈG
component. The relative weight factors ŵM and ŵG turned out to be both 1.

Instead of using a lower bound for the adultness value, the total number of roots
(R) may be prescribed. Then, the best voxels (i.e., those with the largest adultness
value) are labeled root, up to the desired number R.

The advantage of the first method is that it is fast: by one thresholding operation
all roots will be found (if an adultness is larger than the threshold value, the corre-
sponding child voxel is labeled root). A disadvantage is that it is not clear beforehand
how many roots—and thus how many segments—will be found. Statistics on the
adultness values may help, but it is likely that at least a few threshold values have to
be tried before the number of segments is satisfactory.

The second method does not use a trial and error method, since the number of
roots is fixed. Then, the entire linkage structure is scanned R times. Each time, the
child of the child-parent link with the highest adultness value in the hyperstack is
labeled root. For efficiency reasons, it may be useful to maintain a (sorted) list of
candidate roots during the search to the first root.

2.2.4 Downward projection

Upon having found the appropriate roots, we need to relate them to the ground voxels
by following the linkages downwards. Each root represents a single segment in the
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ground level. The term ‘downward projection’ is somewhat misleading, because the
process might just as well be implemented as a bottom-up process. The choice depends
on how the parent-child linkages are incorporated in the data structure: top-down or
bottom-up. In section 2.3.2 we will deal with this issue and compare the alternatives.

The value assigned to each segment is either a unique value per segment—which
offers the possibility to discriminate between every two segments—or may be a func-
tion of the grey values. In the latter case, the root intensities can be used, or the
average value of all ground voxels comprised in that segment. Since the global max-
imum and minimum tend to converge to each other at increasing scale, it is to be
expected that root values also approximate an average value. Obviously, this has a
negative effect on the contrast of a segmentation. Thus, average intensities calculated
on the basis of original grey values are preferred—although this requires an additional
computing step. Both the use of root values and average intensities suffer from the
problem that different segments may be assigned the same value. Then, discriminat-
ing between them is impossible. Only the use of unique segment values guarantees a
unique ‘(pseudo)color’ per segment.

In the case of probabilistic hyperstacks there is not always a unique path from
ground voxel to root. Then, the probabilities involved have to be multiplied to obtain
the final root probabilities for every ground voxel. Ultimately, the root probabilities of
a ground voxel represent the fractions of tissue types comprised in that voxel (partial
volume effect).

2.3 The data structure

This section describes how the different objects of the hyperstack (levels, voxels,
linkages, roots) are related to each other. Furthermore, the notion of containers is

roots

voxels

linkages

levels

ground level

Fig. 2.5. Schematic picture of the different hyperstack objects and their relationships.
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introduced, and we will compare three different type of linkage structures: top-down,
bottom-up, and doubly linked lists.

2.3.1 Hyperstack objects

In Fig. 2.5 a hyperstack and the different objects contained in it are depicted. Each
level contains voxels (only active voxels are relevant) and linkages, the latter by means
of a link container (see 2.3.2) to simplify the maintenance of the linkages. In the
case of probabilistic linking, the number of linkages and the number of active voxels
may differ per level, hence the objects ‘voxels’ and ‘linkages’ can best be separated
internally.

Every voxel has a type assigned to it. Possible types are active, passive, and root.
The relationships of Fig. 2.5 have been translated to classes for implementation in
the C++ programming language [111]. Fig. 2.6 contains an overview of the most
important classes.

base
level

links

single object

multiple objects

containment

inheritance

conceptually related

base
voxel

voxels

voxels

roots
container
root

container
link

hyperstack

ground

level

images

higher

levels

ground

Fig. 2.6. Class hierarchy of a hyperstack.
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As can be seen from Fig. 2.6, the actual image data (intensities) are separated
from the voxels and the linkages. There are several reasons to do so:

• the number of intensities per voxel may be larger than one (multi-component
images);

• additional feature images (e.g., containing differential invariant information like
gradient magnitude or curvature) may be needed in the linking process;

• the number of active voxels decreases when moving upwards in the hyperstack
(convergence); this means that the number of voxels that actually need to be
recorded and the number of intensities present in the raw image data at that
scale can show a large discrepancy;

• the image data can now be handled separately (reading, writing, analysis of the
data, etc.).

In order to save memory we discriminate between the ground level and higher
levels. (As we will see later there are some clear differences between these, which can
be of great advantage with respect to the amount of memory needed to build, store
and use a hyperstack.)

2.3.2 The container concept

Conceptually, all information on linkages is handled by so-called link containers. A
container is an object type designed to hold collections of other objects; the concept
is well-known in object-oriented design [20, 96]. There is one link container for each
level, although one could also choose for one big container for all the linkages through
scale space. Three disadvantages of the latter approach are:

• copying a container (either explicitly by the programmer or implicitly by the
compiler) costs more computer time

• indexing the separate linkages requires a larger address space

• the boundaries between linkages of separate levels are difficult to maintain (they
may even overlap!)

For these reasons, we have implemented separate link containers per level.

Bottom-up versus top-down linking

Ground voxels need to store information about the roots they are connected to. This
information (i.e., a list of roots per ground voxel) concerns the spatial location of each
root, the probability value and a root value. Similar to the link container idea that is
used to implement the linkages, we use root containers to keep track of all interesting
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roots. A major advantage of storing the roots separately from the ground voxels is
that the roots can directly serve as input to a volume renderer.

As for the linkages three options have been examined (see Fig. 2.7):

1. bottom-up linked lists.

2. top-down linked lists.

3. doubly linked lists.

The doubly linked lists option is simple and straightforward, but very generous
with memory. The data structure used in the prototype of the hyperstack [116, 118, 25]
was a disguised variant of doubly linked lists. In this prototype we introduced sibling
linkages (pointing from one child to another) to facilitate the scanning of a hyperstack.
This allowed traversing the entire multidimensional tree structure, passing each voxel
just once. In the case of probabilistic linking, however, one has to be very careful to
prevent ambiguity in the sibling linkages (see [121]).

(c)(a) (b)

Fig. 2.7. Three different linkage structures for a probabilistic hyperstack:
(a) bottom-up linked lists, (b) top-down linked lists, (c) doubly linked lists.
To emphasize the differences between these linkage structures, all linkages
starting from the middle voxel have been denoted by dashed arrows.

Much faster and consequently cheaper in building a hyperstack are the two remain-
ing options, top-down and bottom-up linking. With half the number of references the
same structure can be recorded. The only price to pay for this profit is a slightly more
complicated scanning function: instead of one single pointer to the current voxel that
simply follows child-, sibling- and parent linkages (in that order of priority), we now
need an additional reference per level during the scanning process, since there is no
way back to where we started scanning a sub-tree. Consequently, singly linked lists
are preferable.

The choice between top-down and bottom-up linking is based upon the observation
that in the case of top-down linking there is no relation whatsoever between all children
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connected to one parent, but in the case of bottom-up linking we have the useful
property that the sum of probabilities of all parent linkages starting from a specific
child equals one (normalization). Checking and recalculating this important property
is more difficult if these linkages originate from different parents downwards. Thus,
we opted for singly linked lists based on bottom-up linking.

Implementation

The building phase and the segmentation phase have clearly been separated (see
section 2.2). Therefore, if multiple root labeling strategies are to be investigated for
one hyperstack, this hyperstack must be stored on disk after the building phase. This
calls for an implementation of the container classes that is independent of dynamic
memory allocation. To this end, we use conventional indexing methods. In Fig. 2.8
the pointer fields are shown as arrows for sake of clarity, although they have been
coded as index fields (every index refers to a parent or a link.)

G H

A B C A B C

D E F D E F

5
1 2 3 4 5 6

G H

2 3

4 61

7

8 9

10 11
7 8 9 10 11

Fig. 2.8. Implementation of the link container.

Note that the number of linkages contained in each link container decreases at
higher levels, according to the decreasing number of active voxels at larger scales
(convergence). Thus, the container that holds the child-parent linkages from level n
to level n + 1 is not initialized until all the linkages from level n − 1 to level n have
been established. At that time, the number of active voxels in level n is known.
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2.4 Addressing sparse levels

As the building of a hyperstack proceeds, the number of passive voxels increases. This
is caused by the fact that multiple children can link to the same parent. The images
at larger scales can be termed sparse in the sense that only a limited number of voxels
is active in the linking process.

This section deals with aspects affecting the convergence rate, and gives a solution
to store the sparse levels efficiently: multidimensional hashing.

2.4.1 Convergence rate

In Fig. 2.9 three graphs showing the dependency of the number of active voxels on
scale are shown for different parametrizations of a typical hyperstack.
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Fig. 2.9. Dependency (logarithmic) of the number of active voxels on the
scale level for three different parametrizations: one single-parent hyper-
stack (i.e., with a maximum of 1 parent per child), and two probabilistic
hyperstacks (with a maximum of two and three parents per child, respec-
tively). The image is two-dimensional of size 256 × 256.

The convergence of the number of linkages in a hyperstack is influenced by:

• The maximum number of parents per child. A large value for this maximum
results in a lower convergence rate than a small value. For instance, a single-
parent hyperstack has a high convergence speed.

• The blurring strategy. A smaller scale space sampling will result in a lower con-
vergence speed, since more levels are needed to assure that root voxels represent
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a segment properly. Also, the search volume will be smaller according to equa-
tion (2.8), which means that it takes more levels for voxels far apart to link.
This has obviously a negative effect on the convergence rate.

• The linking strategy. The weighting factors in the affection formula (2.11) in-
fluence the convergence in an image-dependent fashion. For instance, a high
weight of the ground volume component will result in a high convergence rate
if the image at hand contains large homogeneous areas.

• The contents of the image. Images with a high local variation in intensity values
will normally need more blurring (and hence more levels) to form the different
segments. This results in a lower convergence rate.

• The partial volume effect. Voxels with a partial volume effect will have diffi-
culty in choosing between candidate parents representing different tissue types,
so multiple parents are likely to occur (in probabilistic hyperstacks). This effect
diminishes at the higher levels, but the total number of linkages is mainly de-
termined by the linking characteristics in the lower levels, so the overall effect
of partial volume voxels on the convergence of the hyperstack is negative.

As can be concluded from Fig. 2.9, the number of passive voxels increases approx-
imately exponentially with increasing scale. So, we need an efficient way to store the
active voxels (i.e., the sparse levels in the hyperstack).

2.4.2 Conventional hashing techniques

Most known hashing techniques are based on intelligent mapping formulas, which
transform an input index (or logical index) into a physical index (called the hash
index). The used transformation formula is often based on the choice of a prime
number.

In the worst case, hashing schemes based on mapping degenerate to index methods
with access times comparable to the use of linked lists. In the ideal case, the access
time via the hash function approximates that of direct indexing; then, each input
index has a unique hash index. This requires two conditions to be fulfilled:

1. The logical indexes are evenly distributed over the logical index space (e.g., see
[103]).

2. It is known beforehand how sparse the logical index space will be.

Neither condition is satisfied for the hyperstack. The number of active voxels depends
on too many factors to predict its incidence within an acceptable accuracy range,
while the distribution of voxels over a hyperstack level is too image dependent to
ensure a uniform distribution. Furthermore, the existence of multiple levels in the
hyperstack is a complicating factor, because every level has its own number of active
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voxels (logical indices) with its own distribution characteristics. Every level of the
hyperstack thus requires a specific set of input parameters to the mapping formula of
the hashing technique. Consequently, conventional hashing techniques are not suited
for the hyperstack.

2.4.3 Multidimensional hashing

In this section we introduce multidimensional hashing, which is suited to store large
sparse arrays, like the levels in a hyperstack, in an efficient way.

We expect that multidimensional hashing—as an alternative for hashing tables—
can effectively be applied in several other image processing routines (e.g., image cod-
ing).

Multidimensional hashing uses a multidimensional bitmap, in which each voxel is
assigned one bit (see Fig. 2.10). Active voxels have the value 1, passive voxels the
value 0. For sparse levels, the number of 1-bits will be low.

The elements of the cumulative array are used to store the number of 1-bits in
the bitmap in a cumulative way. To this end, every cumulative array entry equals the
sum of the number of 1-bits in the previous rows of the corresponding bitmap.

The working of the cumulative array in cooperation with the bitmap will now be
briefly explained. Suppose I is a two-dimensional image of size dx × dy, with a bitmap
B of the same size, while the cumulative array C is an array of length dy (in Fig. 2.11
we have dx = 5, dy = 5). The aim is to find the hash index Hxy for pixel (x, y) in the
image I.

If we denote the bits of the bitmap by Bxy, then the entries Cy of the cumulative
array take the value:

Cy =


0 if y = 1
dx∑
i=1

y−1∑
j=1
Bij if y > 1 ,

(2.18)

for 1 ≤ y ≤ dy. The hash index of the element (x, y), with 1 ≤ x ≤ dx, can now be
obtained from:

Hxy = Cy +
x∑
i=1

Biy . (2.19)

In three dimensions multidimensional hashing extends to a three-dimensional bitmap
B and a two-dimensional cumulative array C. The cumulative array adds the 1-
bits similarly to two-dimensional hashing: the y–x order in 2D becomes z–y–x in
3D (meaning: first the x-direction is summed, then the y-direction, and finally the
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Fig. 2.10. Schematic representation of the multidimensional hashing con-
cept (3D case). The original image (left) is sparse in the sense that only
some voxels need to be stored (‘active voxels’), while the remaining ele-
ments are superfluous (‘passive elements’). If the active voxels are put in
a one-dimensional chain (not shown), then this chain can be indexed by
using an equally sized bitmap (1-bit per element) and a cumulative array
of two dimensions.
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Fig. 2.11. Two-dimensional example of the use of a cumulative array.
C2 = 3, Bi,2 = 1 for i = 1, 2, 4, 5, so H4,2 equals 6.
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z-direction). Equation (2.18) extends to:

Cyz =



0 if y = 1, z = 1
dx∑
i=1

y−1∑
j=1
Bijz if y > 1, z = 1

dx∑
i=1

dy∑
j=1

z−1∑
k=1
Bijk if y = 1, z > 1

dx∑
i=1

y−1∑
j=1
Bijz +

dx∑
i=1

dy∑
j=1

z−1∑
k=1
Bijk if y > 1, z > 1

(2.20)

for 1 ≤ y ≤ dy, 1 ≤ z ≤ dz. The hash index of (x, y, z) is straightforwardly obtained
by:

Hxyz = Cyz +
x∑
i=1

Biyz . (2.21)

Implementation

As regards the implementation of the multidimensional hashing technique, we must
pay attention to the overhead as a result of storing the bitmap. Bits are stored in
scalar data types, or units, to comprise series of bits together. Each unit requires
u bytes, typically 1 or 2. Bit operations are not performed directly on the bits, but
through these units instead by means of bit shifts and logical operators. In Fig. 2.11 u
equals 1, so the overhead for the image of size 5×5 is 3 bits per row (indicated by the
dashed lines). If the y-dimension were different, however, then it also matters in which
direction the units are chosen. Medical images are often square (and even 2n × 2n,
n integer) in the xy-plane, but have a different size in the z-direction, defined by the
number of relevant slices needed for the particular situation. Hence, the x-direction
is a plausible choice for the direction of the units. If the size of the original image in
the direction of the units equals a multiple of u bytes, there is no overhead.

The overhead Ω(n) for an image with x-dimension n can be formalized as:

Ω(n) =

{
0% if (nmod b) = 0
b− (nmod b)

n
× 100% otherwise

(2.22)

where b denotes the number of bits used per unit (i.e., 8u).
In Fig. 2.12, the overhead Ω(n) for increasing n is sketched graphically for both

b = 8 and b = 16. From this figure it follows that the overhead is negligible in the
case of large sized images (n > 256). For most medical images, n equals 128, 256, 512
or 1024. In all of these cases, there is no overhead of the bitmap storage.

The overhead for the cumulative array is comparable to extending the original
image with an additional ‘slice’ in the x-direction. This has only a minor effect on
storage requirements.

The summation over the B-values is best implemented by means of a look-up-
table. Every possible unit value corresponds to a unique entry in the table, and the
pre-calculated number of 1-bits is thus readily returned.
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Fig. 2.12. Overhead for the bitmap used for increasing values of n (the
size of the x-dimension of the image), expressed in percentages.

2.4.4 Discussion

The need for an effective hashing technique is clear, but the question rises at which
ratio of active voxels versus total number of voxels cumulative arrays become useful.
If we define N as the number of bytes needed if no hashing is applied, and H as the
same number if cumulative arrays are used, then we require that H < N .

For simplicity, suppose we have an image of size nd (d is the number of dimensions).
Without any form of hashing we would need to allocate nd voxel objects, irrespective
of whether they are active or not. Thus, if one voxel object occupies v bytes, then
N = v · nd. Next, suppose that m out of nd voxels are active. This will cost m voxel
objects (the absolute minimum), plus a bitmap of nd bits—we assume no overhead
exists—and a cumulative array with nd−1 entries. Hence, if one cumulative array
entry needs c bytes, then

H = m · v +
nd

8
+ c · nd−1 . (2.23)

If we denote m/nd by p, then 1− p is a measure of the sparseness of the data. If we
further define the profit of cumulative arrays as the ratio (N −H)/N , we arrive at:

profit = 1 − p −
(

1

8v
+

c

nv

)
. (2.24)

Since 8v � 1 (note that not just the original intensities are stored for each ground
voxel, but also a number of hyperstack properties) and nv � c, the profit is almost
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proportional to the sparseness 1− p. Since p has been found to be much smaller than
1 in all of our studies, cumulative arrays have a large advantage over a straightforward
implementation (i.e., without hashing), irrespective of the distribution of the active
voxels over the image.

2.5 Results

In this section we present some results of hyperstack segmentation. We first discuss
2D versus 3D image analysis by means of an artificial image, and then give some
segmentations of real world (medical) images.

2.5.1 2D versus 3D image analysis

The hyperstack segmentation method has been implemented and tested on an artificial
test image and on real world (medical) images. For the test image, the results of fully
3D segmentation are compared to slice-by-slice processing (see section 2.5.1). Since
test images have a ‘gold standard’ (viz. the originally created image without noise),
quantitative validation methods can be used to check the results.

We distinguish between three different dimensionalities of segmentation processes
for three-dimensional images:

• 3D. The full spatial information of the 3D image is taken into account in the
hyperstack, which thus becomes a four-dimensional data structure.

• 21
2
D. This version works on the individual slices of the 3D data set. The

correlation of the image slices in the slice direction is sacrificed for the sake
of computational efficiency. The variant is called 21

2
D because the image itself

is processed on a slice-by-slice basis, but the result (a concatenation of the
individual 2D results) is a 3D image.

• 23
4
D. In this hybrid version the full 3D spatial information is used in the blur-

ring step of the hyperstack. Next, however, the different slices are linked and
further processed on a 2D basis by chopping the four-dimensional scale space
(three spatial dimensions plus scale) into multiple three-dimensional scale spaces
(two spatial dimensions plus scale). After the downward projection step the seg-
mented slices are joined again to generate the three-dimensional segmentation.

These three variants will be compared as regards the quality of the segmentation
they produce. As an aside, in appendix 2.B the notion of Morse critical points is
discussed in the light of 21

2
D versus 3D hyperstack analysis.

For the experiments we have used the so-called airplane picture. (see Fig. 2.13).
The image has been modeled with the volumetric modeler things [121]; this package
is capable of simulating partial volume artifacts. The fuselage (body) of the airplane
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is an elongated ellipsoid, while the wings consist of 2 very flat ellipsoids (the diameter
of each ellipsoid in the y-direction equals 1.6 pixels in the middle). The tail is also
a small, 2 pixels flat ellipsoid perpendicular to the wing direction, and the propeller
is modeled through a torus with a diameter of 1.6 pixels. The three-dimensional
airplane has dimension sizes 64 × 32 × 64, which allows fast processing of the image
irrespective of the method used (21

2
D, 23

4
D, or 3D). The intensity of the airplane has

been set to 2000, the background equals 1000. We added sufficient Gaussian noise
(standard deviation of 10%) so that object and background could not be separated
via simple thresholding.

The airplane image has been processed in x, y, and z-direction for both the
21

2
D and the 23

4
D method. In both cases the resulting segmentations of the individ-

ual slices have been concatenated to produce the desired 3D result. Postprocessing
steps—such as pixel connect operations to remove single noise pixels—have deliber-
ately been omitted to emphasize the effect of each segmentation method. The results
are presented below.

x
z

y

Fig. 2.13. Rendering of the test image airplane that is used for the
21

2
D, 23

4
D, and 3D experiments. The slice-by-slice experiments have been

performed for all three Euclidean directions.

2.5.2 21
2
D segmentation

Fig. 2.14 shows the results of 21
2
D image segmentation for all three Euclidean di-

rections (the upper, middle, and lower frames correspond to x, y, and z-direction,
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respectively). From left to right the viewpoint changes (one oblique, three perpen-
dicular views) in order to make a fair comparison with the alternative slice-by-slice
methods and fully three-dimensional segmentation.

The propeller is only visible in the x-direction. This can be explained by the
fact that the propeller is completely contained in two slices in the x-direction: These
pixels can not escape to other slices, so this object can be segmented with a reasonable
accuracy. The same counts for the wings: if processed in the y-direction the result
seems acceptable, otherwise only parts of the wings have been segmented correctly.
In the y-direction, the tail has completely been separated from the fuselage.

x-direction

y-direction

z-direction

Fig. 2.14. 21
2
D segmentation of the airplane test image of Fig. 2.13.

The three horizontal frames correspond to slices in the x, y, and z-
direction, respectively.

2.5.3 23
4D segmentation

Fig. 2.15 shows the results for the 23
4
D segmentation variant. The viewpoints corre-

spond with those of Fig. 2.14.
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The propeller is, again, only completely visible in the x-direction. The y-direction
shows a small improvement over 21

2
D processing. This can be explained by the fact

that the three-dimensional scale space earlier reaches the vanishing point (the ‘root’
of the wings) than the two-dimensional scale space. (The darker background voxels
have a destructive effect on the lighter wings.) Hence, in the 23

4
D case the voxels of

the wings have less possibilities to ‘escape’ from the wings, as does happen in the
21

2
D variant. The 23

4
D segmentation in the z-direction produces no wings at all: the

voxels representing the wings vanish into the background at the lowest levels of the
hyperstack.

x-direction

y-direction

z-direction

Fig. 2.15. 23
4
D segmentation of the airplane test image of Fig. 2.13.

The three horizontal frames correspond to slices in the x, y, and z-
direction, respectively.

2.5.4 3D segmentation

Finally, in Fig. 2.16 the fully 3D segmentation is shown. Clearly can be seen that all
parts are present (fuselage, wings, tail and propeller). For the wings of this particular
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fully 3D

Fig. 2.16. Fully 3D segmentation of the airplane test image of Fig. 2.13.

object, only 23
4
D segmentation in the y-direction outperforms 3D hyperstack segmen-

tation. Thus, this should be regarded a lucky shot, which might be made structural
only by incorporating a priori knowledge about the object to be segmented.

2.5.5 Segmentation of medical images

Fig. 2.17. Single-parent segmentation of the thrombus and the vessel wall
of the histological image vessel. Segment contours have been superim-
posed in bright white. Enlargements on the right.

In this section two illustrations of the possibilities of hyperstack segmentation
of real world complex images are presented. Fig. 2.17 shows the potential of the
hyperstack in segmenting images containing objects of varying size. The image at
hand is called vessel, a 2562 histological image in which both the blood vessel wall
and the thrombus in the middle are simultaneously segmented using a single-parent
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hyperstack. The extended root labeling scheme, where the roots are distributed over
a relative large range of levels makes this kind of multi-tasking segmentation possible.

c

a

b

Fig. 2.18. Renderings of hyperstack segmentations of the ventricle system
of the ventricles image, a 3D MR image of the brain. Single-parent seg-
mentation based on intensity following only (left) and a multi-parent seg-
mentation based on the extended linking scheme (middle). Adding objects
is very simple (right).

In Fig. 2.18 the surplus value of the extended linking schemes over intensity-only
based linking is shown for segmentation of the ventricle system of a 3D MR image
of the brain, called the ventricles image. This image contains 32 slices of 1282

and a grey-level resolution of 12 bits. The simple linking scheme (based on intensity
following only) results in a segmentation that has several serious shortcomings, which
are not present with the linking scheme of section 2.2.2.
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2.6 Conclusions

In this chapter we have presented the hyperstack segmentation method for multi-
dimensional images. The method consists of blurring, linking, root labeling, and a
downward projection.

We introduced two extensions to the conventional linking scheme based on inten-
sity following: the affection formula, and probabilistic (multi-parent) linking. The
adultness formula has shown to be a powerful tool for root labeling schemes.

Furthermore, we have introduced multidimensional hashing as a new technique for
storing the elements of a sparse multidimensional data structure without losing the
spatial information of each element. As has been shown, the overhead is minimal for
square images. More important, multidimensional hashing poses no requirements on
the input data, like conventional hashing techniques.

We presented the results of a study where slice-by-slice processing has been com-
pared to fully 3D segmentation. The latter approach is clearly superior.

Finally, we have illustrated the potential of multiscale hyperstack segmentation by
applying the method to two complex medical images.

2.A Calculation on the search volume

The absolute, inner scale at level n is given by σn (see also Fig. 2.4). Since it does
not make sense to link in a search volume with a radius smaller than the inner scale,
kn must have a minimum kn,min. Hence, we have the requirement:

kn,min · σn,n+1 = σn+1 . (2.25)

Furthermore, from (2.2) it can easily be derived that the following property holds:

σ2
n,n+1 = σ2

n+1 − σ2
n . (2.26)

(2.7), (2.25), and (2.26) yield:

kn,min =
exp(δτ)√

exp(2δτ)− 1
. (2.27)

A convenient choice for kn can be found by relating kn to the influence that a
certain pixel P has on the blurred value of its neighboring pixel Q. This influence
diminishes if the spatial distance d(P,Q) increases, according to the Gaussian that
is used to blur the image. The relation is quantified by the requirement that the
influence of P on Q at a spatial distance d(P,Q) = knσ—i.e., G(knσ; σ)—relative
to the influence of pixel P on the blurred value of P itself—i.e., G(0; σ)—must be at
least γ%. In other words:

G(knσ; σ)

G(0; σ)
=

(
1

σ
√

2π

)d
exp

(
−k2

nσ
2

2σ2

)
(

1
σ
√

2π

)d ≥ γ , (2.28)
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from which follows

kn ≤
√
−2 ln γ , 0 < γ ≤ γmax , (2.29)

with γmax = exp(−k2
n,min/2). Note that relation (2.29) is independent of the dimen-

sion d. In Fig. 2.19, kn has been plot as a function of the influence factor γ according
to the upper bound kn =

√
−2 ln γ.
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Fig. 2.19. Plot of different values of kn (i.e., the multiplication factor for
σn,n+1 that determines the search volume of the children in level n looking
for parents in level n+ 1) as a function of the influence factor γ. See the
text for an explanation of the influence factor γ.

2.B Morse critical points

The most interesting points in an image are those whose topological properties change
with increasing scale, the so-called Morse critical points. In the 2D case there are three
types of Morse critical points: minima, maxima, and saddles. In the 3D case, there
are four types of critical points: minima, maxima, and two types of (hyper)saddles
[25]: maximum saddles and minimum saddles. We define a maximum saddle as a
critical point with a decrease in intensity in two directions and an increase in the
third direction of the Euclidean space. At a minimum saddle the intensity increases
in two directions, while the third direction shows a decrease in intensity. We note
that Morse critical points may be missed entirely using 21

2
D—or even 23

4
D—image

processing.
As an example, consider the quadric f(x, y, z) = x2 + y2 − z2. The origin is

obviously a (minimum) saddle, so we may expect to gain an insight into the behavior
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of this function by considering the coordinate planes through the origin. These planes
are denoted by fx⊥, fy⊥, and fz⊥.

Each cutplane can be displayed separately as a quasi 3D view, with the intensity
value as the height of the object (see Fig. 2.20). For the fx⊥ and the fy⊥ cutplanes this
leads to a saddle landscape, corresponding to the equations f(0, y, z) = y2 − z2 and
f(x, 0, z) = x2−z2, respectively. The cutplane fz⊥ shows the minimum corresponding
to f(x, y, 0) = x2 + y2. The saddle would not have been recognized by 21

2
D image

processing with slices perpendicular to the z-direction.
In real (medical) images a lot of critical points are present. For instance, it is not

hard to recognize several saddle points on the surface of a human head. In view of
the above, the detection of critical points calls for fully 3D hyperstack analysis.

Fig. 2.20. Quasi three-dimensional views of the cutplanes through the
origin of the function f(x, y, z) = x2 + y2 − z2. From top to bottom,
equidistant slices have been included (on the right) to illustrate the difficulty
of detecting a saddle point in a solid 3D model by 21

2
D image processing.

The pictures correspond to fx⊥, fy⊥, and fz⊥ (top to bottom), respectively.
The saddle point can clearly be determined from the top and the middle
row, but not from the bottom row.
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‘Art is goose-pimples or tears’

– Kees van Kooten
(Boekenbal 1995)

Chapter 3

Volumetric modeling

Abstract

In this chapter we present a recursive octree-like algorithm for the conversion
from mathematically defined objects to a voxel-based model. The resulting
volume represents the objects with an accuracy depending on (i) the number of
bits used to store each array element, and (ii) the depth used in the recursion.
This way, the partial volume voxels can be accurately represented by an in-
between intensity value.

Keywords: Volumetric modeling, partial volume artifact, volume rendering.

3.1 Introduction

The use of artificial images in image processing has the advantage that all the geo-
metrical properties of the object(s) are known a priori . This makes it possible to test
algorithms very thoroughly and in a quantitative manner.

We will explain the conversion of one or more spheres into a volume of grey levels.
This in contrast with the well-known geometric modeling method based on octree
encoding [72], in which a sphere is represented by a hierarchical structure of voxels
and sub-voxels. If the method presented here is used in its simplest and fastest form
the result is equivalent to a binary discretization of the sphere [76].

Extension of the method to other objects is straightforward. As an example, the
discretization of ellipsoids, cylinders and truncated cones is discussed. The method
proposed here can be used to create test images for image processing applications and
volume visualization.

3.2 The algorithm

Our recursive algorithm, aimed towards 3D images, can best be explained using a 2D
picture (see Fig. 3.1).

39
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In Fig. 3.1 a part of a circle is discretized at three succeeding depths, while 4×3
image pixels are shown. Every pixel is first checked for being entirely inside, entirely
outside, or on the edge of the circle. If a pixel turns out to be an edge-pixel and the
current depth has not yet reached its user-defined maximum value, then the edge-
pixel is divided into four sub-pixels, each of which is subjected to the same procedure
again. If, on the other hand, the depth may not be increased anymore, then a simple
inside/outside test of the midpoint of that sub-pixel stops the recursion. (With a
maximum depth of 1 only the midpoint calculation is performed for every pixel.) If
this simple test is too rough for a particular application the maximum depth can
simply be increased.

(a) (c)(b)

Fig. 3.1. Discretization of a part of a circle at different depths.

The final grey value of each edge pixel in the original grid is a weighted sum of
the contributions of the sub-pixels comprised in it; the weight factors are proportional
to the sub-pixel areas. For example, if the sphere has a grey value of 100 and the
background is 0, then the center pixel at the upper row in Fig. 3.1a will have value
0, 25 (= 100 · 1/4) and 19 (≈ 100 · (3/16)) at depth 1, 2 and 3, respectively. As
this simple example illustrates, the pixel values will converge to the actual area of
intersection with the circle.

Extension of the above to 3D is straightforward. The weight factors in the sum
then are proportional to the sub-voxel volumes.

3.3 Modeling

When defining spheres we have to deal with the possibility that two or more spheres
can intersect. We therefore define all spheres in an order-dependent way; that is, the
sphere with the highest priority is defined first, followed by the one with the second
highest priority, and so on. When checking a voxel upon intersection with the specified
spheres, the sphere with the highest priority is checked first. In this way, the priority
of each sphere defines the visibility of intersecting parts.
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The actual voxel-sphere intersection test is executed by an algorithm of Arvo [6],
which has slightly been adapted to be able to discriminate between voxels that are
entirely inside or entirely outside a sphere. Using his idea, errors in the intersection
test—as described by Shaffer [110]—can be avoided.

With minor adaptations the algorithm can be applied for the generation of hollow
instead of solid spheres (by using Arvo’s original algorithm).

Note that the spheres considered here do not necessarily have to be origin-centered,
since all voxels are simply tested sequentially. In fact, no advantage is taken of any
similarity between voxels in the output image.

3.4 Pseudo-code

We now present the pseudo-code of the algorithm for the 3D case. Note that ‘Grey’
is used to denote the format for the storage of one intensity value. Basic data types
and variables are:

Grey : integer; format for one intensity

Sphere : record [
x, y, z : real; center of the sphere

r2 : real; square of the radius

g : Grey; grey value of the sphere

];

nrOfSpheres : integer; number of spheres

spheres : array [1..nrOfSpheres] of Sphere; sphere specifications

maxDepth : integer; maximum depth for recursion

backgroundV oxel, sphereV oxel,
edgeV oxel : integer; the three voxel types

voxelType : integer; type of a voxel

background : Grey; background grey value

vmin, vmax : array [1..3] of real; minimum and maximum

of a voxel for each axis

dimX, dimY, dimZ : integer; dimension sizes

image : array [1..dimX] of array [1..dimY ]
of array [1..dimZ] of Grey; ‘image’ contains the result

The main procedure is discretize spheres. In three straightforward loops the entire
image is filled with appropriate intensities, according to the specified depth. The
function get voxel type returns one of the three possible voxel types, which in case
of an edge voxel results in a call to the recursive function split voxel. The vmin and
vmax elements keep track of the minimum- and maximum values of the coordinates
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of the corners. These are used in the voxel-sphere intersection test (see the function
get voxel type).

procedure discretize spheres();
Note: lines enclosed in angle brackets < and > should be replaced with the code described.

depth : integer; current depth

begin
depth := 1;
for x := 1 to dimX do

for y := 1 to dimY do
for z := 1 to dimZ do

< fill vmin and vmax >
if depth < maxDepth then

voxelType := get voxel type(vmin, vmax, ref sphereNr);
if voxelType = backgroundV oxel then

image[x][y][z] := background;
else

if voxelType = sphereV oxel then
image[x][y][z] := spheres[sphereNr].g;

else
image[x][y][z] := split voxel(x, y, z, depth+ 1);

fi
fi

else
image[x][y][z] := midpoint value(x, y, z);

fi
od

od
od

end

The function get voxel type is derived from the SolidBox HollowSphere function of
Arvo [6]. The only difference is that get voxel type returns an integer instead of a
boolean, depending on the type of intersection between the two objects.

integer function get voxel type(vmin, vmax, ref sphereNr);
Note: sphereNr is returned via call-by-reference.

center : array [1..3] of real; midpoint coordinates

begin Continued on next page
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for sphereNr := 1 to nrOfSpheres do Continued from previous page

center[0] := spheres[sphereNr].x;
center[1] := spheres[sphereNr].y;
center[2] := spheres[sphereNr].z;
dmax := 0;
dmin := 0;
for i := 1 to 3 do

a := (center[i]− vmin[i])2;
b := (center[i]− vmax[i])2;
dmax := dmax+max(a, b);
if center[i] < vmin[i] then

dmin := dmin+ a;
else

if center[i] > vmax[i] then
dmin := dmin+ b;

fi
fi

od
if dmin ≤ spheres[sphereNr].r2 then

if spheres[sphereNr].r2 ≤ dmax then
return [edgeV oxel];

else
return [sphereV oxel];

fi
fi

od
return [backgroundV oxel];

end

The recursive function split voxel is similar to the main procedure discretize spheres,
except that the grey value is calculated for exactly one (sub-)voxel instead of for all
voxels of the image. If the depth of the current recursion level has not yet reached its
upper bound, this function will be called recursively in case of an edge voxel. Each
sub-voxel is then subjected to the same test again.

Grey function split voxel(midX,midY,midZ, depth);
sum : real; adds the 8 sub-voxel values

weight : real; the weight factor per sub-voxel

begin
weight := 1/8; const weight factor for 3D

sum := 0; Continued on next page
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foreach < sub-voxel > do Continued from previous page

< fill vmin and vmax >
if depth < maxDepth then

voxelType := get voxel type(vmin, vmax, ref sphereNr);
if voxelType = backgroundV oxel then

sum := sum+ (weight · background);
else

if voxelType = sphereV oxel then
sum := sum+ (weight · spheres[sphereNr].g);

else recursion!

sum := sum+ (weight · split voxel(x, y, z, depth + 1);
fi

fi
else

sum := sum+ (weight ·midpoint value(x, y, z);
fi

od
return [sum];

end

Finally, the function midpoint value determines if the midpoint of a (sub-)voxel is
inside or outside any sphere. The sphere with the highest priority is checked first, and
if the midpoint is outside that sphere the next one is checked for, and so on. Thus,
the grey value of the sphere with the highest priority that contains the midpoint is
returned (or the background value if no such sphere exists).

Grey function midpoint value(midX, midY, midZ);

begin
for n := 1 to nrOfSpheres do

if (midX − spheres[n].x)2 + (midY − spheres[n].y)2+
(midZ − spheres[n].z)2 ≤ spheres[n].r2 then
return [spheres[n].g];

fi
od
return [background];

end
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3.5 Accuracy considerations

The number of bits allocated to the Grey data type limits the maximum depth that
will still increase the accuracy. This leads to the following equation for the maximum
depth dmax:

dmax =
{

min d
∣∣∣ 2(d−1)·D + 1 ≥ 2b

}
(3.1)

with D the number of dimensions and b (≥ 1) the number of bits used for the Grey
data type. One can easily derive that (for b > 1 only) the following—more practical—
formula is valid:

dmax =

⌈
b

D
+ 1

⌉
. (3.2)

A simple and efficient way to calculate the error made in the discretization is to use
one single sphere. Then, the theoretical volume of the sphere can easily be compared
with the output image. Suppose the background has grey value 0 and the sphere 100,
then the following expression is a measure of the discretization error:

error =

∣∣∣ sum
100
− 4

3
π r3

∣∣∣
4
3
π r3

· 100% (3.3)

with sum equal to the summation of all the image intensities. Typical values for the
error-term are less than 0.1% at depth 3. Only very specific applications, such as
sophisticated volume renderers or quantitative measurements, may require this kind
of accuracy.

3.6 Extension to other objects

Extension of spheres to ellipsoids is trivial. Arvo [6] already presented pseudo-code
for extension of the voxel-sphere intersection test to ellipsoids.

More difficult is the use of truncated cones and cylinders (in fact a special case of
a truncated cone). One of the problems is that the used voxel-sphere intersection test
does not provide a solution for testing on cones. Here we propose a simple test, based
on the checking of all eight corners of a voxel being inside or outside the cone. The
caveats as described by Shaffer [110] may still occur, but are minimized if relatively
large cones are used. The inside-outside test is illustrated in Fig. 3.2.

Fig. 3.2a contains a truncated cone defined by center point C 1 with radius r 1, and
center point C 2 with radius r 2. The point to be tested, representing one of the voxel
corners, is denoted by P . The whole calculation focuses on the 2D plane formed by
C 1, C 2 and P (see Fig. 3.2b).

First, it is checked whether one of the angles PC 1C 2 or PC 2C 1 is obtuse-angled.
If so, P can never lie inside the cone. If not, the perpendicular hP and the distance q
are calculated by means of the edges a, b and c. Finally, a linear interpolation step
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Fig. 3.2. Schematic representation of the inside-cone test.

between r 1 and r 2 determines the maximum radius rP at P , which is compared with
the actual value of hP to find its position with respect to the cone. The pseudo-code
of the method follows.

boolean function cone test(C1, C2, P : Point3D; r1, r2 : real);

a, b, c, hP , rP , q, s : real; local variables

begin
< fill local variables >
if (b2 > a2 + c2) or (c2 > a2 + b2) then

return [false]; outside

fi
q := (a2 + b2 − c2)/2a;
s := (a+ b+ c)/2;

hP := (2/a) ·
√

s (s− a) (s− b) (s− c);

rP := r1 + (q/a) · (r2 − r1); interpolation step

if hP > rP then
return [false]; outside

else
return [true]; inside

fi
end

For the cylinder case (i.e. r1 = r2) the interpolation step can simply be omitted.
Then, rP equals r1.
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3.7 Examples

In this section we present some examples of test images created by the volumetric
modeling program (which is called ‘things’). In Fig. 3.3 a series of volume renderings
of three basic objects created by things is shown. The depth used is 1, which explains
the artifacts at the surfaces of the objects. The figure can be compared with Fig. 3.4,
which is created by using a recursive depth of 3. The objects are smooth and contain
no artifacts anymore.

Fig. 3.3. Volume rendering of three simple objects created by things,
with a recursive depth of 1.

Fig. 3.4. Volume rendering of three simple objects created by things,
with a recursive depth of 3.

By using the priority rule, more complex objects can be created. This is shown
in Fig. 3.5. All these objects have been created with a recursive depth of 3, which
explains the smooth appearance.
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Fig. 3.5. Volume rendering of four more complex objects, created by
things using a recursive depth of 3.



‘If you want to study the brain and consciousness, you have
to study the brain and consciousness, not computers’

– John Searle
(De Volkskrant, 14 May 1994)

Chapter 4

Probabilistic image segmentation

Abstract

A method is presented to segment multi-dimensional images using a mul-
tiscale (hyperstack) approach with probabilistic linking. A hyperstack is a
voxel-based multiscale data structure whose levels are constructed by convolv-
ing the original image with a Gaussian kernel of increasing width. Between
voxels at adjacent scale levels, child-parent linkages are established according
to a model-directed linkage scheme. In the resulting tree-like data structure
roots are formed to indicate the most plausible locations in scale space where
segments in the original image are represented by a single voxel. The final
segmentation is obtained by tracing back the linkages for all roots.
The present chapter deals with probabilistic or multi-parent linking, i.e., a set-
up in which a child voxel can be linked to more than one parent voxel. The
multi-parent linkage structure is translated into a list of probabilities that
are indicative of which voxels are partial volume voxels and to which extent.
The output of the thus constructed hyperstack can be directly related to the
opacities used in volume renderers. It is demonstrated by means of artificial
images as well as real world (medical) images that probabilistic linking gives
a significantly improved segmentation as compared with conventional (single-
parent) linking.
Furthermore, probability maps are generated to visualize the progress of weak
linkages in scale space when going from fine to coarser scale. This is shown
to be a valuable tool for the detection of voxels that are difficult to segment
properly.

Keywords: Image segmentation, multiscale analysis, scale space, probability
maps, partial volume artifact, data structures.

4.1 Introduction

Segmentation of volumetric image data plays a crucial role in image processing, in
particular as a preprocessing step for quantitative analysis and volume visualization.

49



50 Chapter 4. Probabilistic image segmentation

In the last decade, multiscale approaches (like pyramid [16, 24, 23, 73, 11], stack [54,
86, 64] and wavelet [40, 21, 70]) segmentation have gained considerable attention.

Recently, we have developed a flexible data structure—the hyperstack—for mul-
tiscale segmentation of two- and three-dimensional (2D, 3D) images [116, 118, 25],
which admits of extensions like outer scale reduction and probabilistic linking . Outer
scale reduction—reducing the number of voxels as the scale increases—will speed up
the process of building a hyperstack; this subject will be treated in a Chapter 5. Prob-
abilistic linking—the subject of the present chapter—is introduced with the aim of
improving the tuning of the segmentation to the subsequent rendering of volumetric
structures. In this way the jaggedness of objects which were incorrectly segmented
by a binary decision procedure, is sought to be reduced.

We first briefly discuss the design of the conventional (single-parent) hyperstack,
which is characterized by the fact that a voxel at some level of the hyperstack is
connected to at most one (parent) voxel in the next higher layer. We then discuss
probabilistic (multi-parent) hyperstacks and pay special attention to the explosive
growth of the number of linkages if no precautions are taken. It will be shown that this
problem can be solved without significantly affecting the quality of the segmentation.

Finally, we show how conventional-like segmentations can be derived from the
output of probabilistic hyperstacks, and why these segmentations are more robust and
of better quality than those obtained by conventional (single-parent) hyperstacks. We
will also present some segmentation results of probabilistic hyperstacks to show the
surplus value of multi-parent linking over single-parent linking.

4.2 The conventional hyperstack

In the sequel we use the term level to denote an image at a specific scale. The original
image (or ground level) corresponds with level 0, the top level—representing the most
strongly blurred image—is at level L − 1. A hyperstack thus contains L levels at
increasing scale. The terminology in this chapter will generally apply to 3D images,
so we will call the elements of the hyperstack voxels rather than pixels. The set-up is
equally valid for 2D images, however.

Building and employing a hyperstack consists of four different steps (see Fig. 4.1):

1. Blurring. Images at increasingly larger scales are obtained by convolving the
original image with Gaussians of increasing width.

2. Linking. Child-parent linkages are established between voxels at adjacent scale
levels.

3. Root labeling. Voxels having weak parent linkages and all voxels in the top-most
level are marked as roots.

4. Downward projection. The original image is segmented by tracing back the
linkages from the roots to the ground level.
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Fig. 4.1. Schematic overview of the hyperstack image segmentation process.

The following subsections deal with these steps in detail.

4.2.1 Blurring

The construction of a continuous linear scale space follows a blurring strategy, which
is essentially a repeated low-pass filtering using a Gaussian kernel [131, 54]:

L(~x, σ0 ⊕ σ) = L0(~x, σ0) ∗ G(~x, σ) , (4.1)

where L0(~x, σ0) is the luminance or intensity of the original image, G(~x, σ) is the
Gaussian with width σ of corresponding dimension, and L(~x, σ0⊕ σ) is the σ-blurred
replica of the input image. Note that the additive operator “⊕” does not correspond
to ordinary addition, but follows the semi-group property: σ0 ⊕ σ =

√
σ2

0 + σ2.
A discrete scale space is best constructed by convolution of the original image with

sampled Gaussian kernels of increasing width. The alternative—building the scale
space by convolving level i with a Gaussian to obtain level n+ 1 for n = 0, ..., L−1—
has the disadvantage that a concatenation of sampled Gaussians is not a discrete scale
space transformation [66].

As for scale space sampling, an equidistant sampling of the absolute scale σ would
violate the important property of scale invariance [33]. Instead, the sampling should
follow a linear and dimensionless scale parameter δτ , which is related to σ by:

σn = ε eτ0+n·δτ , n ∈ N . (4.2)

In this equation ε is taken to be the smallest linear grid measure of the imaging
device. A convenient choice for τ0 is 0, which implies that the inner scale σ0 of the
initial image is taken to be equal to the linear grid measure ε.
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4.2.2 Linking

In the linking step, voxels may be connected to voxels in the next-higher level (child-
parent linking). We discriminate between active and passive voxels. Passive voxels do
not participate in the linking process. At the ground level, passive voxels are voxels
without parents; they may be introduced to decrease the number of voxels to be
processed, notably to eliminate uninteresting background voxels. At the higher levels
passive voxels are generated automatically: all voxels that have not been chosen as a
parent of at least one child are considered passive.

In the conventional hyperstack [116, 118, 25], every child is linked to exactly one
parent. In the probabilistic hyperstack [121, 123, 124], a child voxel can have more
than one parent (see section 4.3.1).

Research has shown that a general and robust linking scheme should consist of
three components [58]: (i) the intensity difference between a child and its parent,
(ii) the ground volume of a parent, and (iii) the mean ground volume intensity. See
section 2.2.2 for details.

4.2.3 Root labeling

Voxels are labeled as roots after all child-parent linkages have been established. The
main reason for avoiding root labeling during the linking process is that we want to
have control over number of roots at the segmentation stage. Reducing the number
of roots (which implies increasing the number of linkages) after the completion of
the hyperstack is not only a laborious task, but also a dubious effort: owing to the
ground volume component in the affection formula linkages can not be added without
recalculating all the other linkages in that level and higher. Ignoring this fact may
very well lead to ‘false’ links, and hence to a lower accuracy of the segmentations in
general. Consequently, every voxel in the hyperstack is linked to a parent, except for
the voxels in the top level. After the top level has been appended, the roots can be
defined.

For a detailed description of the conventional root labeling process, we refer to
section 2.2.3. The process of root labeling will become much more complex in the
case of probabilistic linking (see section 4.3.3).

4.2.4 Downward projecting

In the last step, downward projection, intensity values that are characteristic of the
roots are projected downwards to the ground level. This requires—besides the choice
of a lowest root level—the definition of a level from which to start the projection. All
parents in this segmentation level are considered roots. A higher segmentation level
implies—owing to the fact that the number of parents decreases at larger scales—a
smaller lower bound for the minimum number of segments to be found.
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The number of segments and their different sizes are thus influenced by the choice
of the lowest root level and the segmentation level, and by the actual root labeling.

In the conventional hyperstack there are three possibilities for calculating a seg-
ment value (i.e., the actual intensity value given to all the voxels of one segment):
(i) the root intensity, (ii) the mean intensity of the ground voxels, and (iii) a unique
(pseudo-)value; for the probabilistic hyperstack a fourth possibility (the probability
value) exists, which will be discussed in section 4.5.

Root values are blurred intensities and thus will often produce low-contrast seg-
mentations. (Normally, the global intensity extrema of an image converge approxi-
mately linearly towards the average intensity of the largest scale, provided the scale
space is sampled according to equation (4.2).) The mean intensities of sets of ground
voxels are less dependent on the scales at which the roots reside, which results in
a higher contrast in the thus produced segmentations (at the cost of a little more
computing time).

In some cases it is desirable to know the contours of segments, e.g., in the case
where two adjacent segments with the same intensity (after downward projection)
need to be distinguished. In such cases, it is not sufficient to use root- or mean intensity
values for the down projection, although they give an acceptable output for visual
examination of the results. The distinction of segment values may be accomplished
by giving each segment a unique number. The use of pseudo-colored overlays can help
visualizing the different segments.

4.3 The probabilistic hyperstack

After having discussed the conventional hyperstack, we now turn to probabilistic
hyperstacks in which every child voxel is allowed to connect to more than one parent.

4.3.1 Probabilistic linking

Instead of forcing a binary decision to which parent a child should be linked, we simply
link a child to all parents that are ‘good enough’, according to some objective criterion.
This minimizes the chance that a crucial link is missed (which may happen if a worse
parent is preferred because of noise); higher up in the hyperstack the ‘mistake’ will be
corrected automatically. This is an important feature of probabilistic linking. Note
that—since the noise will disappear if the scale is increased—the chance that a crucial
link is missed owing to noise will be negligible in the higher levels. We will use this
observation when discussing the complexity of the hyperstack in detail (see section
4.4).

Once all interesting linkages have been established, the corresponding probabilities
are found simply by normalization of the affection values, since the sum of the linkage
probabilities from a child to all of its parents must equal one.
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Fig. 4.2. Example of multi-parent linking in a hyperstack.

Fig. 4.2 shows an example of multi-parent linking. Here, and in the sequel of this
chapter, we denote by P(Vil+1

|Vil) the conditional probability that voxel i at level
l+ 1 is the parent of child voxel i at level l. (Note that a voxel is indexed both by the
level index (l) and the grid index (i). Consequently, voxel i at level l is not necessarily
related to voxel i at level l + 1.) Child voxel V10—meaning: the child with index
1 at level 0—is linked to two parents at level 1: V11 and V21 . The corresponding
child-parent probabilities are P(V11 |V10) = 0.55, and P(V21 |V10) = 0.45. If a child
links just to one parent, the child-parent probability takes the value 1.

In appendix 4.A we discuss the consequences for the data structure of extending
the hyperstack from single-parent to multi-parent linking, and in appendix 4.B we deal
with the implementation of the linkage tree by means of so-called link containers.

4.3.2 The ground volume under multi-parent linking

In conventional hyperstacks, the ground volume of a voxel is the number of ground
voxels with a route to that voxel. The same definition is not appropriate for probabilis-
tic hyperstacks. Instead, the voxels encompassed in the ground volume are weighted
by the probabilities of the linkage paths. For example, the ground volumes of parents
V12 , V22 , and V32 in Fig. 4.2 have values 0.33, 0.8435 and 0.8265, respectively.

4.3.3 Root labeling under multi-parent linking

Each of the two paradigms for root labeling—discussed in section 2.2.3 for conventional
hyperstacks—must be adapted to multi-parent linking:

• The threshold value on the adultness to determine which voxels have to be
labeled as roots must be applied to the strongest link of every child.
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• A specified number of roots is no longer necessarily identical to the number of
segments after downward projection. For instance, if only the highest probability
path of a linkage tree is used to segment the image, several roots may end up
not having a ground volume. Thus, only an upper bound for the number of
segments can be specified with this method.

The eventual root probabilities (obtained as a result of the root labeling) represent
the chances for a ground voxel to belong to various segments. In an equivalent in-
terpretation these probabilities represent the fractions of segments that are contained
in a ground voxel. The result is comparable to the output of fuzzy image subsets
(see [94]) in which a degree of membership is associated with every voxel.

The root probabilities are computed by following all the linkages that connect a
ground voxel to different roots. The child-parent probabilities are multiplied for each
path, and the ‘path probabilities’ are added to find the final root probability, denoted
by P(Vil |Vi0), where l is the level at which the root is defined.

The root probabilities can be calculated from the recursive relation

P(Vil |Vi0) =
Nl−1∑
il−1=1

P(Vil |Vil−1
) · P(Vil−1

|Vi0) , (4.3)

with 2 ≤ l ≤ L − 1, L ≥ 3, and 1 ≤ ik ≤ Nk for all 0 ≤ k ≤ L − 1; Nk is the
number of active voxels at level k. Equation (4.3) can be written as

P(Vil |Vi0) =
N1∑
i1=1

N2∑
i2=1

· · ·
Nl−1∑
il−1=1


l∏

j=1

P(Vij |Vij−1)

 . (4.4)

Note that the following expression is also valid for all 1 ≤ il−1 ≤ Nl−1 (normalization
property):

Nl∑
il=1

P(Vil |Vil−1
) = 1 (4.5)

The root probabilities between voxels which are two levels apart can be found from
equation (4.4). Using the affections as given in Fig. 4.2, we find

P(V12 |V10) = P(V12 |V11) · P(V11 |V10) = 0.33

P(V22 |V10) = P(V22 |V11) · P(V11 |V10) + P(V22 |V21) · P(V21 |V10) = 0.4135

P(V32 |V10) = P(V32 |V21) · P(V21 |V10) = 0.2565

From Fig. 4.2 it follows that segmentations obtained using the strongest linkage
path in multi-parent linking may differ from segmentations obtained with single-parent
linking. In the latter, only the parent with the locally highest affection is included in
the data structure, which would make V12 the grandparent of V10 . Multi-parent link-
ing identifies two voxels, V12 and V22 , as possible grandparents. If only the strongest
linkage path is considered, voxel V22 is the most probable grand parent of V10 .
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The output of a probabilistic hyperstack is a list of normalized probabilities per
(ground) voxel. These probabilities represent the chances that a voxel belongs to the
listed segments. To obtain actual segmentations from lists of probabilities, as provided
by probabilistic hyperstacks, we have several possibilities. In section 4.5 some methods
are discussed and applied to actual images, while also the most important advantages
of probabilistic over conventional segmentations will be summarized.

4.3.4 Probability maps

Before actually applying a probabilistic hyperstack, we first want to understand how
linkages evolve in scale space. The number of linkages is enormous, which makes it
hard to follow and evaluate each of them. Therefore, we developed a way to visualize
the progression of weak and strong linkages.

The idea is to produce so-called probability maps by displaying for every ground
voxel the largest probability that it belongs to a root in a specific level. This simple
algorithm first chooses a level l to create a map for, then turns all the active voxels in
level l into roots, and finally calculates the highest root probabilities for every ground
voxel by scanning the entire hyperstack. A linear remapping of these probabilities onto
a range of regular image intensities, produces the desired result: dark voxels represent
areas of low probability, whereas brighter voxels correspond to high probabilities.

It might be expected that edge voxels are harder to link than voxels in near-
homogeneous volumes, for two reasons:

• Partial volume effect. An edge voxel will have, apart from possible noise com-
ponents, a value proportional to the volumes of the different object types that
are represented in that voxel. Thus, statistically the value of an edge voxel will
lie in between the values of the surrounding object values. Since the intensity
difference in equation (2.12) does not explicitly prefer smaller or larger values,
there will not be a preference for either of the objects.

• Blurring strategy. The blurred value of a voxel is determined by a weighted sum
of the values of the voxel at hand and the values of its neighbors. Thus, edge
voxels will be subjected to larger intensity changes in scale space than non-edge
voxels.

Hence, it is plausible that voxels near object edges will generally have links to
more parent voxels than voxels in homogeneous areas.

In Fig. 4.3 a series of probability maps in scale space is shown for the head

image, a sagittal MR image of the brain. One can clearly see the distribution of the
largest probabilities evolving in the hyperstack. The edges of the objects of different
sizes are best visible at the scale at which they can be represented by a single root.
Logically, there is a high correspondence between these levels and the levels found in
edge detection algorithms based on scale space [17]. For instance, the edges of the



4.3 The probabilistic hyperstack 57
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σ = 4 σ = 8

σ = 32 σ = 128 σ = 181

original image

Fig. 4.3. Probability maps of a hyperstack based on 15 blurred levels of the
two-dimensional head image. Shown are: the original MR image (with
dimension sizes 256 × 256), five probability maps (that correspond with
level 4, 6, 10, 14 and 15 of the hyperstack, respectively), and finally two
coarse segmentations (containing a predefined number of 5 and 2 segments,
respectively). Note the similarity between the last two probability maps and
the two segmented images (see text).
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ventricle are noticeable at the middle levels (cf. σ = 32), but merge with other objects
at the higher levels.

At one but the highest level shown (σ = 128) the probability map contains five
separate fragments: one for the head object and four for the background. The reason
for the side contours to be on the top, at the bottom, at the left and at the very
right of the image is that those pixels have great difficulty choosing between two near
background parts. At a higher level still (σ = 181), the background merges into a
single segment. A segmentation made with a predefined number of segments that
matches the number of segments in a probability map, bears a close resemblance with
this map, as the lower frames of Fig. 4.3 show convincingly.

Fig. 4.4. Volume renderings of 3D probability maps of the artificial el-

lipsoid image. Shown are a rendering of the original image (top picture),
followed by 6 renderings of inverted probability maps (for an explanation
see text).

In 3D a probability map is generated in the same way as for the 2D case. Vi-
sualization of the result in a slice-by-slice manner, however, is not very useful for
recognizing edge-like structures. To produce a suitable 3D presentation we invert the
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intensities of the probability maps such that high intensities correspond to low root
probabilities and vice versa. The result can then be piped to a volume renderer to vi-
sualize the low root probabilities at the outer edges of the image structure. In Fig. 4.4
this has been done for the ellipsoid image containing one ellipsoid. The successive
renderings represent (from left to right and from top to bottom) the probability maps
at increasing segmentation levels. To emphasize the weakness of the linkages corre-
sponding to edge voxels, we increased the lowest root level (this forces all voxels to
keep linking upwards). Indeed, the last probability map clearly shows the edge of the
ellipsoid as formed by the collection of voxels with a low root probability.

4.4 Computational complexity

The complexity of probabilistic hyperstacks is mainly determined by the total number
of linkages; if no precautions are taken, this number grows explosively. Thus, in order
to keep the number of linkages limited, we need to introduce some constraints.

We have used two limits while building a probabilistic hyperstack:

1. an upper bound for the number of parent linkages per child

2. a lower bound for the affection, below which no linkages are established (pro-
vided that at least one link per active voxel is present)

Since either constraint has great influence on the actual number of linkages formed,
we will explain them in more detail below. Note that during the linking process,
care must be taken that at least one link per child is established, so as to avoid
premature creation of roots. Section 4.3 presents some results on the number of
linkages established with and without the constraints.

Another factor that influences the computational complexity of a hyperstack,
though to a lesser extent, is scale space sampling. Using only a few levels will also
keep the amount of linkages low. The minimum scale space sampling rate to avoid de-
terioration of the quality of the segmentation will be application dependent. Research
is due to optimize the sampling rate for classes of applications.

In practice, it turns out that it is not necessary to blur until a scale is reached
where only one intensity is left (an average image intensity value). The number of
levels used will generally lie between 10 and 20.

4.4.1 A maximum number of parents per child

Owing to noise present at the smaller scales, the maximum number of parent linkages
per child should be relatively high when linking the lowest levels, and may decrease
when linking levels at larger scales. A similar argument holds for the partial volume
voxels in the lower levels (see section 4.3.4 about the probability maps). Thus, we
need to allow the lowest levels more links than those higher up in scale space.
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If we try to determine the maximum number of parents for every child voxel at
the ground level without a priori information on the image to be segmented, the
number of dimensions plus one seems a reasonable choice. This choice is motivated
by the partial volume notion and is based on the fact that it is unlikely that on a two-
dimensional map four different areas join together in one point, whereas 3-junctions
(i.e., three joining areas) are much more common. Similar considerations lead to a
maximum of four in the three-dimensional case. The diminishing influence of both the
noise component and the partial volume effect at increasing scale make it acceptable
to decrease the maximum number of parents per child with one at every scale step.
This decrease is effectuated after level 1 has linked to level 2.

4.4.2 A lower bound for the affection

The linkage strength increases when linking at larger scales, for ground volumes are
steadily growing and the intensity differences will diminish. Consequently, the lower
bound for the affection should increase accordingly.

When searching for a suitable lower bound for the affection of linkages, it is at-
tractive to define a uniform lower bound per level. A simple calculation—for instance
based on the affection range of the first iteration—can then serve as initial estimation
for the lower bound. Moreover, the need to recalculate the limit per child, or even
per iteration, is absent.

Implementation of this paradigm, however, showed an annoying side-effect: owing
to the fact that between any two levels there is a rather high variance in affection
values (especially at smaller scales), voxels in areas with a relatively low affection
range (edges) are assigned one single link, the minimum amount. But probabilistic
linking has been invented to give better segmentation results precisely in those areas!
Consequently, we dropped this ‘solution’.

Much better results are obtained by defining an adaptive lower bound of the affec-
tion, despite the amount of work involved. The idea is to define a parameter, called
the minimum relative affection, that specifies how much the affection of a child-parent
link may differ from the highest affection present for that child. In order to avoid ab-
solute differences here, we choose to set a relative value (e.g., 95%). Intuitively, this
leads to the desirable effect that voxels with a strong preference for a specific parent
do not need any other links, whereas children in dubio are assigned more than one
parent.

4.4.3 Results on constrained linking

In order to evaluate the effects of constraining the number of linkages, we built five
types of hyperstacks with different parameter settings, and compared the number of
linkages evolving in the first 14 levels for:

a. a traditional hyperstack with single-parent linking
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b. a multi-parent hyperstack with a minimum relative affection value of 95% and
initially a maximum of 3 parents per child

c. a multi-parent hyperstack with a minimum relative affection value of 0% and
initially a maximum of 3 parents per child

d. a multi-parent hyperstack with a minimum relative affection value of 95% and
continuously a maximum of 3 parents per child

e. a multi-parent hyperstack with a minimum relative affection value of 0% and
continuously a maximum of 3 parents per child
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Fig. 4.5. Scale dependence of the number of links for five different types of
hyperstacks based on the head image. For an explanation of the different
types (a) up to (e) see text.

The results for the head image of Fig. 4.3 are presented in Fig. 4.5. The hyperstack
has been created according to equation (4.2) with a δτ value of 1

2
ln 2; this results in

a hyperstack of 15 levels.
From Fig. 4.5, it follows that the constraints we impose on the linking procedure

are effective. Setting the minimum relative affection to 95% (d) limits the number of
linkages in the lower levels in the hyperstack. Using no lower bound (e) results in a
significantly higher number of linkages.

Applying the constraint that limits the maximum number of parents per child at
increasing scale (c) has even more effect (again compared to (e)): irrespective of the
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minimum relative affection used, the hyperstacks quickly converge to single-parent
variants (a). Finally, applying both constraints is most useful (b).

4.5 Results

The presentation of the results—lists of tissue probabilities—is hampered by the un-
availability of suitable volume rendering software. Yet, we can compare images seg-
mented by multi-parent hyperstacks with conventional segmentations by selecting one
segmented image from an ensemble of possible realizations. The natural option is to
use the highest object probability of each list. In section 4.3.1 we have indicated why
segmentations thus obtained may be expected to outperform segmented images from
single-parent hyperstacks.

Fig. 4.6. Two-dimensional segmentation of the sagittal head image.
Contours have been superimposed (in bright white) on the original MR im-
age. Single-parent segmentation (left), multi-parent segmentation (right).

Fig. 4.6 shows a comparison of a segmentation using the single-parent hyperstack
with a multi-parent segmentation, in which each voxel is represented by the highest
object probability of its list. The arrows emphasize the main differences between the
two segmentations. The multi-parent hyperstack clearly performs better than the
single-parent hyperstack.

The probabilistic hyperstack used contained 17 levels (with constrained linking and
a minimum relative affection of 0.90), while the lowest root level was set to 6. The
contours have been found by simple thresholding of the segments formed by downward
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projection of mean segment values. We emphasize that no additional editing has been
performed on the segmentations.

Fig. 4.7. Segmentation of the cerebellum of the head image. Original
image (left), single-parent segmentation (middle) and a probabilistic result
(right).

A second way to visualize probabilistic results is to focus on one object (organ
or tissue type). The summed probabilities of the paths from a ground voxel to a
root are indicative of the probability that this ground voxel belongs to the segment
defined by the root. (Note that this value is not equal for all the members of one
segment, in contrast with other downward projecting techniques.) The result is an
image whose intensities are proportional to the amount of tissue contained in each
voxel (see Fig. 4.7). Volumetric compositing methods [27, 63] can be applied to
visualize this type of output (see also [87, 9, 139, 138]).

Fig. 4.8. Renderings of the stylized ellipsoid image: original image
(left), conventional hyperstack segmentation (middle) and probabilistic hy-
perstack segmentation (right).

In Fig. 4.8 the same technique has been applied to the ellipsoid image. The
(noise-free) input image was used to generate the first rendering, in order to show
the desired result. The object intensity value is 2000, with a background value of
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1000. The second rendering is based on segmentation by a single-parent hyperstack
(after having added Gaussian noise with a standard deviation of 10% of the object
intensity), and the third rendering is based on a multi-parent hyperstack. Note the
notched edges in the middle image, owing to the single-parent segmentation. The
probabilistic linking softens this effect (third image).

c

a

b

Fig. 4.9. Renderings of (a) a single-parent and (b) a probabilistic segmen-
tation of the ventricles image, a 3D MR image of the brain. Including
additional segments is very simple (c).

Fig. 4.9 shows a series of results of techniques to segment the ventricles from a
three-dimensional MR image of the brain (the ventricles image). On the top row,
renderings from different viewpoints are shown based on conventional (single-parent)
hyperstack segmentations. On the second row, the probabilistic counterparts are
shown. The third row also represents a probabilistic hyperstack, but now extended
with two small additional segments in the middle of the ventricle. To obtain this
result, we only had to increase the desired number of segments with two. Note that
the single-parent segmentation has several serious shortcomings.



4.6 Conclusions and discussion 65

4.6 Conclusions and discussion

We have presented a method to segment images in a probabilistic way using multiscale
based hyperstacks. We showed the surplus value of multi-parent linking over single-
parent linking and described a data structure capable of handling such complex child-
parent connections.

As regards the complexity of probabilistic hyperstacks, we indicated how the num-
ber of linkages involved easily grows prohibitively. Two constraints have been intro-
duced to keep this number limited. Their adequacy has been demonstrated experi-
mentally.

The display of probabilistic images calls for proper visualization software: it seems
most appropriate to let the calculation of the opacities of the voxels depend on the
knowledge of the partial volume voxels. Until this becomes available we can only
visualize two-dimensional segmentations, or simulate intelligent renderers by ad hoc
postprocessing. Images produced this way do allow us to sufficiently evaluate our
segmentation results.

We are currently investigating what other strategies can be pursued to calcu-
late the probability for each link. Interesting features are, inter alia, the number of
parent/child linkages per voxel, the scale, and the used blurring strategy. It seems
promising to extend the affection formula with these features.

We also expect probabilistic segmentations to have advantages over conventional
segmentation schemes with respect to quantitative measurements. The accuracy of
calculated distances and volumes heavily depends on the accuracy of the segmentation.
Probabilistic segmentation introduces voxels that are only partly contained in seg-
ments, which increases the accuracy of quantitative measures significantly [123, 124].

Experiments to quantify and verify these expectations are currently in progress.

4.A Single-parent data structure

In this appendix we will outline the design of a suitable data structure.
The data structure to store single-parent linked hyperstacks [116, 118, 25] is not

suited to be extended to multi-parent linking (see Fig. 4.10). The single-parent data
structure is a variant of doubly linked lists, with the modification that one parent
having multiple children does not have separate child references, but each child has a
sibling reference instead. A sibling linkage points to the next child belonging to that
parent, thus creating a chain of children. Together with every parent reference per
child, a triangular data structure is formed.

The main problem in applying this data structure to multi-parent linking is that
it is impossible to discriminate between multiple children of one parent and multiple
parents of one child. Introducing a fourth (sibling-like) type of reference to connect all
parents of a child would create ambiguity, because parents can be shared by different
children. Besides, the implementation would become unacceptably expensive.



66 Chapter 4. Probabilistic image segmentation

?

level 0

level 1

level 2
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B C

D

Fig. 4.10. Single-parent data structure showing the multi-parent problem.
Adding a second parent C for child A (dashed arrow) will introduce am-
biguity with respect to the sibling link from B to C (fat arrow): all the
children of parent B seem to have a second parent C, although this is only
true for child A.

4.B Multi-parent data structure by means of link

containers

In this appendix we discuss the implementation of the multi-parent data structure by
means of link containers.

The solution to the ambiguity problem of appendix 4.A is effectively a singly
linked list, implemented with link containers (see Fig. 4.11). With the help of the
link containers, only parent linkages are stored, keeping all parents that belong to one
child together. Each voxel has a unique reference to one link in the link container—
indexing the first parent—while all remaining parents are accessed by subsequent
fields in the container. This makes multi-parent linking possible without introducing
ambiguities.

The list of probabilities per ground voxel—denoting the chances that a voxel be-
longs to different segments—are implemented similarly by means of a root container
(not shown in the figure).

Using link containers, the downward projecting of root values can easily be imple-
mented as a bottom-up process. Since it can be shown that this segmentation step
is equally expensive as the top-down scanning process used in the single-parent data
structure, the halving of the number of linkages—owing to the use of singly- instead
of doubly linked lists—will result in an appreciable reduction of computing time for
the segmentation step.
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Fig. 4.11. Schematic of the notion of link containers (right picture). The
arrows in the hyperstack (left picture) are implemented as indices, so no
pointers are involved.



68 Chapter 4. Probabilistic image segmentation



‘A theory has no more truth than a hammer; what
matters is whether you get the nail into the wall’

– Joe Schwartz
(De Volkskrant, 24 December 1993)

Chapter 5

Outer scale reduction in multiscale
image analysis

Abstract

In multiscale image analysis a stack of blurred replicas of an input image is
obtained by a sequence of filtering steps with an increased smoothing effect.
Since high frequency information vanishes at increasing scale, the images at
the larger scales are oversampled. In this chapter it is shown how the number
of samples of the higher levels of the stack can be reduced without affecting the
sampling width. Effectively, this leads to a reduction of the region of interest,
or outer scale, with increasing scale. It is argued that the reduction speed
should be controlled by the absolute scale of each level.
The profit of outer scale reduction in multiscale image analysis is twofold: the
influence of the boundary problem is minimized, and the complexity of the
scale space application is decreased without significantly affecting the quality
of the results.
The latter profit is illustrated by a multiscale image segmentation technique,
called the hyperstack. No significant loss of quality is found upon introducing
outer scale reduction in the hyperstack segmentation process, while the profit
in computation time is enormous.

Keywords: Image segmentation, multiscale image analysis, scale space, sam-
pling rate reduction, outer scale.

5.1 Introduction

The by now well-understood and widely accepted framework of linear ‘scale space’
theory [131, 54] has triggered an increasing number of researchers to develop multi-
scale image analysis applications. In essence, a scale space representation provides
the information contained in an image at multiple levels of scale by deriving blurred
replicas of the input image. The thus created stack of images can be used as basis for
a multiscale linking model to connect pixels through scale space. The first algorithm

69
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based on this concept was the pyramid (see section 5.3), that was used for image seg-
mentation [16, 24, 23, 60]. In section 5.3 we will deal with the conventional pyramid.
Later, algorithms based on other scale space representations, like the extremum stack
[64] and the hyperstack [121, 123, 125, 124, 58] (see section 5.4), have proven to be
useful for segmentation of complex images.

There are two problems when using scale space theory: (i) the extraction of large
scale information requires an (explicit or implicit) solution to the boundary problem;
and (ii) all the levels derived from the original image are equal in size, although the
amount of information decreases with increasing scale: the images are oversampled.

In section 5.5 we discuss the former problem. We need knowledge about the pixel
data outside the boundaries of the image. Roughly spoken, this problem can be solved
in three ways: (i) estimating the missing pixel data; (ii) adapting the used kernel—
by varying its scope—according to its spatial position; (iii) applying a non-uniform
type of sampling rate reduction (SRR) such that the filter window is limited to the
known pixel data. For the first two options the image dimensions remain unaltered.
The third option, however, results in a reduction of the field of view (FOV), which
manifests itself by a decrease of the dimension sizes of the output image. In multiscale
image analysis the FOV (or the ‘region of interest’) is called outer scale [55], since it is
scale dependent. Hence, for option (iii) the term outer scale reduction (OSR) is used.
With OSR the number of samples decreases at increasing scale without affecting the
sampling width. Hybrids of the three methods are also possible.

The second problem of applying scale space theory is the key point of this chapter.
The fact that images at the larger scales are redundant with respect to the number
of samples representing the signal at that scale is often ignored. For instance, in [64]
the reason for not implementing the theoretic reduction was caused by the expected
increase in complexity of the involved linking algorithm.

Our main goal is to have a mechanism that controls the sampling of the blurred
images such that a maximum profit is achieved (both in storage space and in com-
puting time) without significantly affecting the results of the scale space application.
In this chapter we use the hyperstack segmentation method (see section 5.4), which
is based on a multiscale linking model, to evaluate the results.

At first sight, the Nyquist criterion offers the proper starting point. It is well-
known that the minimum number of samples required for a bandlimited signal to be
completely represented follows from the Nyquist criterion (e.g., see [43]). Since high
frequencies are removed at increasing blur, it may be expected that the number of
samples needed to represent the blurred levels decreases accordingly. In other words,
the oversampled data can be uniformly resampled. In section 5.2, however, we will
discuss why this criterion is not feasible within our scale space framework.

Fortunately, linear scale space theory provides us with a stable formalism that
indicates how the number of samples should decrease at increasing scale [33] (see
section 5.6): strict OSR. The main differences with the Nyquist criterion are: (i) the
Nyquist frequency is image dependent, and (ii) sampling according to Nyquist leads
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to a sampling rate reduction (SRR) rather than an OSR. Since decreasing the outer
scale reduces the influence of the boundary problem, OSR is preferred to SRR in a
multiscale environment.

In the same section we show that applying strict OSR theory in practice leads to
a fast decrease of the outer scale. Although the computational profit is enormous,
a major disadvantage is that the region of the image that can be segmented by the
hyperstack only covers the middle of the input image. A practical but effective solution
to this problem is to adapt the amount of OSR. In section 5.7 we will present a solution
(called heuristic OSR) to achieve this.

Results will be shown by applying the theory to real-world images. The effect on
the segmentations of these images will be shown for various forms of OSR.

5.2 Sampling rate reduction according to Nyquist

In this section we discuss sampling rate reduction of multidimensional images using
the Nyquist criterion. The theory is presented for the continuous case, but extends
straightforwardly to the discrete domain. The term ‘sampling rate reduction’ (SRR)
refers to a rediscretization of a signal that has been sampled by N uniform samples
to M (uniform) samples, under the constraint that M < N .

If the frequency distribution of a bandlimited signal is known, then the Nyquist
criterion determines the minimum number of samples that is necessary to represent
the signal. More precisely, for a bandlimited signal L(~x) a maximum frequency ωm
exists such that

L(~ω) = 0 for | ~ω | > ωm , (5.1)

where L(~ω) is the Fourier transform of L(~x). Let T be the sampling period, then L(~x)
is uniquely determined by its samples L(nT ), n ∈ Z, if and only if:

ωs > 2ωm , (5.2)

where ωs = 2π/T , the sampling frequency. However, a bandlimited spatial signal
has an infinite spatial support (in keeping with the duality property). So, real world
images cannot be bandlimited. The fact that images have a finite support implies
that they extend infinitely in the frequency domain.

A solution to this problem is to estimate the ‘missing’ spatial data, but this can
affect the value of ωm significantly (e.g., by a ‘jump’ of the data near the image
boundaries). In some cases the assumption that the signal is periodic may solve
the problem, but this is seldom true for signals containing spatial information. An
exception may be the time-series of a periodic signal, such as the beating of a heart.

Even if the missing data problem can be solved (by using an extrapolation method),
we still have to determine a practical value of ωm. That is, find the highest frequency
in the Fourier domain that still corresponds to the data. Owing to the presence of
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unwanted high-frequency noise, a straightforward calculation of ωm may lead to a rela-
tively high value, so that the resulting Nyquist sampling rate ωs will also be high. The
problem is that it is very difficult—if not impossible—to define unambiguously the
threshold value above which frequencies must be considered (high-frequency) noise.

Consequently, a priori information on the image noise or the appropriate signal-to-
noise ratio must be added to the sampling scheme for obtaining the maximum profit of
SRR. The inclusion of a priori information is undesirable for two reasons: (i) it makes
the SRR method image dependent, and (ii) the amount of SRR is unpredictable.
Although these disadvantages are not fatal for applying a form of SRR, we prefer a
more robust, general reduction method.

Note that for discrete images the situation is less favorable still: if the sampling
period T turns out to be a non-integer number, interpolation of the data will be
necessary to obtain the resampled image at the maximum reduction. (In fact, to
prevent this we have to require T ∈ Z+, which leads to a very limited range of discrete
values for ωs.) A major disadvantage of interpolating the data is the simultaneous,
unintended introduction of a blurring and/or an aliasing effect. The actual distortion
depends on the interpolation method used [83, 47, 112].

To summarize, we opt for a different approach towards reducing the number of
samples of a discrete signal. In the sections 5.6 and 5.7 we will explain how we
successfully combine the scale information of an image and outer scale reduction,
thereby solving the boundary problem. To this end, we first have to go into detail on
the concept of scale. We do this by explaining the well-known pyramid approach in
section 5.3, followed by a description of the hyperstack in section 5.4 [121, 123, 125,
124, 120, 126], which is based on a more robust and much improved representation of
an image at multiple scales.

5.3 The pyramid

In this section we describe the first multiscale segmentation technique, the pyramid.
The pyramid was introduced by Burt et al. [16] and further elaborated by various
researchers [5, 46, 24, 23, 60, 11, 58].

The conventional d-dimensional pyramid is created by sub-sampling level n to
derive level n + 1, such that an explicit SRR of a factor two is performed in each
Euclidean direction. This is done by straight averaging of 2d pixels (the children)
to form one blurred pixel (the parent). Later, a standard option was to use a 50%
overlap for the averaging areas of two neighboring pixels. For the Gaussian pyramid
the blurring is performed by convolution with a discrete Gaussian kernel.

In the initialization step, all the children that contributed to the blurred parent
pixel are linked to that parent. This is done for the entire pyramid structure in a
bottom-up manner.

In the iterative linking step, the linkages are reviewed by searching for ‘better’
parents (i.e., pixels in the next higher level having a smaller intensity difference with



5.3 The pyramid 73

the child at hand). In such cases, the old link is deleted and a new one is established.
After a complete revision of the linkage structure, the average parent values are recal-
culated. The iteration then starts again, until the pyramid does not change anymore.
This process is guaranteed to converge [50].

Pyramids have been used in a variety of other applications, such as data com-
pression based on hierarchical interpolation (HINT) [93, 92], and hierarchical chamfer
matching [13].

The most striking disadvantages of the pyramid approach are (see also [5, 11]):

• Coarse scale space sampling. The resolution in each dimension of the pyramid
decreases with a factor two per level. The blurring thus is independent of the
image contents: it is as coarse for simple stylized images (for which it may be
sufficient) as for complex images. Moreover, the blurring is ad hoc since it is
based on discretization details rather than on a grid-independent concept.

• Enhanced discretization effects. The pyramid model entails that discretization
effects are propagated all the way up to the top level of the pyramid. This effect
is highly image dependent.

• Shift/rotation variance. Translating or rotating the input image may result in
a segmentation that is dissimilar with the original segmentation. Thus, repro-
ducibility can not be guaranteed if simple geometrical transformations have been
applied to the input image.

• Inhomogeneous linking. The linking possibilities for each pixel depend on the
spatial location of that pixel. For instance, if the search volumes have the
customary 50% overlap, only pixels in the middle of the image can be linked to
other quadrants; the other pixels have to remain in their quadrant until in the
last pyramid step the final 4 pixels link together.

• Fixed number of segments. The fact that the two top levels of the pyramid
consist of 4 and 16 pixels (in 2D), respectively, makes it impossible to create a
different number of segments. This is highly inflexible. The problem can only
be solved by very drastic and ad hoc solutions [46].

In our opinion, the major shortcoming of the pyramid is that its SRR is not related
to the scale transitions that follow from the contents of the image. These transitions
can readily be calculated [33].

The main advantage of the pyramid approach is its computational speed. The total
number of pyramid pixels equals approximately (2dN)/(2d−1), where N denotes the
number of pixels of the d-dimensional input image. The larger d, the less overhead of
the pyramid structure is involved. (For instance, a three-dimensional image requires
only an additional 0.14N pixels.)

Many improvements have been proposed to the conventional pyramid segmentation
method. It has been suggested to focus on different blurring methods or on the
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used kernel. Examples are the Inca pyramid [114], which has the structure of the
conventional pyramid but with a delayed SRR (a ‘stretched out’ pyramid); the adapted
or dual pyramid, which makes use of intermediate levels that have been rotated by
1
4
π [60, 61]; the Gaussian pyramid [24, 23], where the averaging has been replaced

by a better discrete representation of the Gaussian kernel; the median filter [104],
which is a highly nonlinear blurring kernel; and finally the Gaussian kernel in general
[54, 7, 33].

5.4 The hyperstack

In this section we briefly describe the hyperstack segmentation method. For an ex-
tensive description of this multiscale method we refer to [123, 124, 120].

The hyperstack segmentation method consists of four phases (see Fig. 5.1). In the
following subsections we deal with each step separately.

stop?

labeling

Building Segmentation

Y

N

blurring linking

projection

downwardroot

Fig. 5.1. Schematic of the hyperstack image segmentation process.

5.4.1 Blurring

A scale space of the image to be analyzed is created by filtering the original image with
a Gaussian kernel of increasing width. The Gaussian convolution kernel—originally
proposed by Koenderink [54] and Witkin [131]—is denoted by G(~x, σ), where σ is the
standard deviation of the corresponding Gaussian function.

The Gaussian is the unique linear scale space generator for front-end vision [7],
i.e., if no knowledge about the imaged scene is available. This unicity follows from
postulates that a front-end vision system should be able to generate ‘a complete,
homogeneous, isotropic, and scale invariant representation of its input data’ [30].
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The uniqueness of the Gaussian kernel was derived earlier by Koenderink [54]. He
formulated the causality requirement that no ‘spurious resolution’ should be generated
with increasing scale. This leads to isosurfaces in scale space that are convex in the
direction of increasing scale. Note that this forces the number of local extrema to
decrease monotonically with scale only in the 1D case (see also [64, 66, 65]).

According to the property of scale invariance the blurring strategy has to follow an
exponential sampling in scale space. Hence, the linear scale parameter τ = n δτ, n ∈
N, is related to the absolute scale σn at level n by:

σn = ε eτ0+n δτ , (5.3)

where τ0 is the initial scale offset and ε is taken to be the smallest linear grid measure
of the imaging device. If we denote level n of the discrete scale space by Sn, then we
can write for the scale space representation S of the d-dimensional input image L(~x)
(i.e., the collection of d-dimensional images at increasing scales):

Sn = S(~x, σn) = L(~x) ∗ G(~x; σn) , (5.4)

with initial conditions S(·; 0) = L(·) and τ0 = 0. The dimensionality of a scale space
S is d+ 1.

5.4.2 Linking

During the linking phase pixels in two adjacent levels are connected by so-called
parent-child linkages. Linking is a bottom-up process in the sense that we start linking
the children of level 0 (the ground level) to parents in level 1, then find parents in level
2 for the children in level 1, and so on. Since only pixels that have been selected as
parents are considered children in the next linking step, convergence of the scale-tree
is assured. The area in which a parent is selected for a specific child is defined by a
radius rn,n+1 = kn σn,n+1, where σn,n+1 =

√
σ2
n+1 − σ2

n (the self-similarity property)
is the relative σ of the Gaussian kernel that corresponds to the scale transition from
level n to level n + 1, and kn is chosen such that only pixels whose intensity has
been determined to a significant extent by the child at hand are considered candidate
parents (see [120] for details). For simplicity, kn is often given a constant value
throughout the scale space, i.e., independent of the level n. A typical value for kn
is 1.5, which corresponds to an influence factor γ = exp(−1

2
kn

2) (see section 2.A) of
0.32 (i.e., only pixels whose intensity is determined by the child pixel at hand for at
least 32% are considered candidate parents). We found experimentally that smaller
values of the influence factor (i.e., larger values of kn) did not improve the results.
Upon combining the self-similarity property with equation (5.3), we get:

σn,n+1 = ε eτo+nδτ
√
e2 δτ − 1 . (5.5)

Research has shown that a general and robust linking scheme should consist of
three components [58]: (i) the intensity difference between a child and its parent,
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(ii) the ground volume of a parent, and (iii) the mean ground volume intensity. See
section 2.2.2 for details.

5.4.3 Root labeling

The roots—i.e., pixels in the scale-tree that represent segments in the original image—
are identified after all levels have been connected through linkages. We have investi-
gated the applicability to root labeling of a feature-based approach (i.e., the adultness
term) similar to the affection term used in the linking phase. Children having a large
adultness are classified as roots. This is done either by setting a threshold on this
value, or by prescribing the number of roots.

The two components that turned out to be robust root criteria for the adultness
term were [58]: (i) the ground volume mean intensity difference component, and (ii)
the ground volume component. See section 2.2.3 for details.

5.4.4 Downward projection

In the actual segmentation phase root values are projected downwards from every
root to the corresponding pixels in the ground level. By using a unique value for each
root it is guaranteed that the segments in the original image are distinguishable. This
allows for quantitative validation of segmentation results. For visual interpretation of
the segmentation, it may be more attractive to display the mean intensity of the pixels
within each segment. See section 2.2.4 for a more extensive description of possible
values.

5.5 The boundary problem

The boundary problem occurs when the blurring kernel extends beyond the image
borders. Any (linear) kernel with an extent of more than 1 pixel in one of the spatial
directions will pose such a problem.

5.5.1 Fourier domain

We first consider the boundary problem in the Fourier domain. Blurring of the input
image to build a scale space is often done in the frequency domain, partly because of
the nice mathematical convolution property that can speed up the filtering process,
partly because the boundary problem is implicitly ‘solved’. As for the latter, repetition
and mirroring are the two most commonly used variants for ‘estimating’ the pixels
beyond the image boundaries (see Fig. 5.2).

The boundary effects of Fourier filtering are illustrated in Fig. 5.3. The extrapo-
lated pictures of Fig. 5.2 have been blurred (in Fig. 5.3a and Fig. 5.3b, respectively)
by a Gaussian kernel with a standard deviation of half the image size, i.e., 128 pixels.
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(a) (b)

Fig. 5.2. Example of data extension used in Fourier filtering: (a) repe-
tition of the signal; (b) mirroring of the signal. The bright white square
in the middle denotes the original brain image, a two-dimensional 2562

sagittal MR image.

We did the same for an artificial image, the ‘half.ellipse’ image of size 256× 256,
where Gaussian noise with a standard deviation of 10% has been added (see Fig. 5.3d
and Fig. 5.3e, respectively). (For clarity, we included a coarse iso-intensity contour
plot for each picture.)

Evidently, the appearance of bright blobs at the boundaries of the image is caused
by the blurring in the Fourier domain. The results also demonstrate that extrapolation
by repetition or mirroring produces quite dissimilar artifacts, the nature of which is
strongly image dependent.

5.5.2 Spatial domain

In the spatial domain a variety of extrapolation methods can be used. Since an
extensive treatment of these methods is beyond the scope of this thesis, we only
mention a few popular techniques.

We first dwell upon the notion of ‘scope’ of a Gaussian kernel. This is the spatial
limit imposed on the discrete representation of the kernel. A large scope (measured
in natural or scale units) is equivalent to accurately modeling the blurring: the tails
of the Gaussian function are well taken into account. For an isotropic kernel of width
σn, the scope can be defined by a radius Rn = Kn σn, where Kn is related to the
d-dimensional integral of the Gaussian function (see [118] for details). Typically, Kn
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(a) (b) (c) (f)(d) (e)

Fig. 5.3. Illustration of the effect of the used extrapolation method on
the blurring for the image of Fig. 5.2 (a, b, and c) and for an artificial
image containing half an ellipse (d, e, and f): repetition in the Fourier
domain (a and d); mirroring in the Fourier domain (b and e); 0th order
extrapolation in the spatial domain (c and f). Corresponding iso-intensity
plots have been included below. For all images we have used a Gaussian
kernel of width σ = 128 pixels.

takes the value 2.5, which corresponds to a scope encompassing 95.6% of the volume
of the 2D Gaussian integral, and to 90.0% in the 3D case.

As for extrapolation techniques in the spatial domain, the most straightforward—
and most common—method is 0th order extrapolation, where the outmost pixels of
the image are simply expanded on an infinite basis. Alternatively, 1st order (linear)
extrapolation can be performed based on the outmost two pixels of the image bound-
ary. Higher order extrapolation is generally unattractive, because a large variance of
pixel values near the image boundary may result in overflow output (i.e., the aliasing
effect increases).

As an alternative, the average image intensity value can be used as global extrap-
olation value. At first sight this may seem a bit odd, but there are two important
assets for this option. Firstly, at an extremely large scale, the image must be regarded
as a single pixel that is surrounded by an infinite number of other (unknown!) pixels.
The least committing estimate for these pixels is the average value of the input image,
since this is the value that corresponds to Gaussian blurring at infinite scale. Sec-
ondly, it should be prevented that disturbing fluxes enter the image (the image energy
should be conserved). The average image value satisfies this requirement, although
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small distortions may occur owing to discretization errors.
Note that 0th or 1st order extrapolation may produce results with a substantially

different energy, for instance if the image has a region of interest located in the mid-
dle and dark background pixels near its borders. The total image energy will then
diminish if the blurring step is increased.

To illustrate the spatial extrapolation method, we have applied 0th order extrapola-
tion to both the brain image and the half.ellipse image (see Fig. 5.3c and Fig. 5.3f,
respectively). It is evident that no bright blobs appear at the image boundaries.

Spatially variant kernels

As a solution to the boundary problem, one could adapt the shape of the kernel while
approaching the boundary. Note that this will result in a nonlinear scale space. In
general, the calculated scale will be too high at the boundaries, because less pixels are
used to compute the blurred value of a pixel at the boundaries than in the middle of
the image. The major advantage of spatially variant kernels is that the image needs
not be extrapolated.

Three examples of an adaptive kernel are outlined in Fig. 5.4. Note that every
such kernel must be implemented in the spatial domain.

(c)(a) (b)
Fig. 5.4. Schematic of three different spatially varying kernels: (a) de-
creasing; (b) chopping; (c) deforming. The square in the middle denotes
the area in which the boundary problem is absent.

In its simplest form, the kernel size is constant in the middle of the image and
decreases near the boundaries, so that it will never trespass the image border (see
Fig. 5.4a). The disadvantages are: (i) strong distortion of the linear scale space near
the image boundaries (note that the outmost boundary pixels can not be blurred
according to this algorithm), and (ii) dependency of the amount of distortion on
the extent of the discrete representation of the Gaussian kernel. For instance, if the
extent is large, the kernel will be reduced already at a large distance from the image
boundaries. This may be remedied by adapting the scope in conformity with the
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adaptation of the kernel at the cost of a lower accuracy of the convolution at the
boundaries. In any case, the boundary pixels will be calculated at a lower accuracy
than the middle pixels.

Another option is shown in Fig. 5.4b. Here, the kernel is simply chopped off where
it crosses the image boundary. Compared to the previous method it is an advantage
that the scope of the blurring kernel no longer determines the amount of scale space
distortion. The scale is calculated correctly for each pixel, though again with a lower
accuracy at the image borders. Similar to the previous solution, if there is a lot of
significant image information near the image boundaries, then ignoring the missing
data will influence the convolution process to a large extent.

Finally, Fig. 5.4c shows the most complex variant. The kernel is deformed without
changing the number of pixels used per convolution. To achieve this, the kernel has
to deform itself, especially at the corners of the image. Although one would expect
the scale space deformation to be less compared to the previous two methods, the
algorithm is difficult to implement, and hence not used very often. Furthermore, it is
far from trivial to determine how the kernel exactly should be deformed in order to
obtain optimal results.

5.6 Strict outer scale reduction

In this section we will show how knowledge of the used blurring kernel can aid in
solving the boundary problem. The result is a blurring scheme with an explicit outer
scale reduction.

5.6.1 Theory

As described by Florack in [33], blurring an image with a (discrete) Gaussian kernel
must obey very strict rules. The largest blurring scale σn,max that can be applied is
bounded by two components: the scope of the kernel (defined by the factor Rn) and
the spatial location at which the kernel is applied.

The spatial location is expressed by the distance dp (in pixels) to the closest image
boundary. It follows that:

σn,max =
dp
Kn

. (5.6)

This formula clearly shows that it is not feasible to obtain large scale information of
an image near its boundaries.

In consequence, a resampling of blurred images should preferably ignore the data
near the boundaries without affecting the applied kernel per pixel. This leads to a fast
decrease of the area of pixels that can be blurred correctly if σ increases (see Fig. 5.5).
As a result, the boundary problem is avoided, and an explicit OSR is implied.
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Fig. 5.5. Strict outer scale reduction: equal-sized kernels are used through-
out image space. An explicit outer scale reduction is implied by this tech-
nique.

If we denote the linear image dimension at level n by Nn, then

Nn = N0 − 2Rn = N0 − 2Kn σn . (5.7)

According to equation (5.3) a scale space has to be exponentially sampled in the scale
direction, which gives:

Nn = N0 − 2Kn ε e
τ0+n δτ . (5.8)

On the other hand, according to Florack [33], the ratio Nn/N0 has to be inversely
proportional to the corresponding σ’s:

Nn

N0

=
σ0

σn
. (5.9)

Jointly with equation (5.3) this yields:

Nn = N0 e
−n δτ , (5.10)

which defines the sampling rules according to strict OSR.
Using (5.10) we are now able to calculate δτp, i.e., the δτ that corresponds to

the (Gaussian) pyramid. Pyramids have the property that Nn+1 = 2−dNn, so Nn =
N0 2−nd. It follows that the scale space sampling parameter δτp for the pyramid is
given by δτp = d ln 2. This sampling of scale space is so coarse that the resulting
segmentation is not adequate for various purposes [64]. Why from a purely practical
point of view a much finer sampling of scale space is required. For practical purposes
a value of δτ = 1

2
ln 2 was found to be reasonable. This gives a (natural) sampling in

the scale direction that is ‘2d’ as good compared to the pyramid sampling method in
d dimensions. Since our images are mostly 2D or 3D, this yields a sampling that is at
least four times better than the pyramid sampling. For all cases, we have chosen this
value for δτ , unless indicated otherwise.
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Upon combining equations (5.8) and (5.10), we arrive at:

Kn =
N0

2ε
e−τ0−n δτ

(
1 − e−n δτ

)
. (5.11)

It is clear that strict OSR implies that Kn is scale dependent (see also equation (5.6)).
We will use this observation in section 5.7.

In practice, equation (5.10) can not be used straightforwardly, because the trun-
cated image dimensions have to be natural numbers. Even stronger, if N0 is even
(odd), then Nn has to be even (odd) too. (Otherwise, asymmetric levels have to be
linked together.) Therefore, we round Nn to N̂n (N̂n ∈ Z+), which is the nearest
integer that is not smaller than Nn and also satisfies the even/odd requirement.

5.6.2 Strict OSR and scale space

Fig. 5.6. Effect of strict OSR on a linear Gaussian scale space for the
brain image of Fig. 5.2. The blurred replicas of the input image at in-
creasing scale are indicated by the bright white borders. Shown are the
levels 1, 2, and 3 (upper row), and 4, 6, and 8 (lower row). The corre-
sponding σ’s are 1.4, 2.0, 2.8, 4.0, 8.0, and 16.0 pixels.

Without OSR the dimensions of each level of a scale space remain unaltered. To
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show the effect of strict OSR on a scale space, we applied (5.10) to the two-dimensional
brain image of Fig. 5.2 (see Fig. 5.6).

It is clear that the number of remaining pixels decreases fast if scale is increased.
From the same equation (5.10) we may conclude that the only way to slow down the
reduction process of strict OSR is by using a smaller δτ value (see Fig. 5.7).
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Fig. 5.7. Effect of decreasing δτ on Nn for strict OSR.

From this figure, however, it follows that an increasing number of levels will be
required to represent the discrete scale space. This is undesirable from the point of
view of the number of linkages: the convergence speed of a hyperstack is mainly de-
termined by the scope of the search volume at each level. According to the definition
of search volume (see section 2.2.2), this scope depends on the relative σn,n+1 between
the two successive levels n and n+1. A smaller δτ results in smaller values for σn,n+1,
so the hyperstack will have a lower convergence speed (i.e., more linkages are estab-
lished between adjacent levels). Furthermore, as has been discussed in section 2.2.2,
increasing kn has no qualitative advantage. Thus, strict OSR can not be improved by
decreasing δτ .

We emphasize that strict OSR is not going ‘too fast’ from a theoretical point
of view, and it is entirely correct to use a smaller δτ . (In fact, such a scale space
approaches the fine discrete representation of the visual system, which is almost a
continuous space.) Only computational aspects thwart current research to such fine
representations.
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5.7 Heuristic OSR

In this section we will present an adaptation to strict OSR, such that the reduction
process is slowed down.

5.7.1 Theory

The problem of strict OSR is that, according to equation (5.10) Nn decreases fast if
the level n is increased (see Fig. 5.7).

In order to slow down the dimension size reduction process, we make the following
observation. The scope of the corresponding blurring steps are given by the Kn values
as defined in equation (5.11). In Fig. 5.8 Kn has been plotted as a function of n for
three different values of N0, while the remaining variables have been given fixed values
(ε = 1, τ0 = 0, δτ = 1

2
ln 2).
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Fig. 5.8. The scope factor Kn as a function of scale, for three image dimensions.

It is striking that the scope of the blurring kernel is much higher at smaller scale
than at larger scales. This effect is caused by the implication of strict OSR only,
according to equation (5.9).

From the blurring point of view it seems odd to change the scope factor for the
blurring process from level to level: small scale information should not be considered
more important than large scale information. Hence, an obvious solution is to make
Kn the constant factor and let Nn be dependent of this factor. To this end, we
introduce the so-called reduction factor ρ: Kn = ρ , ∀n ∈ Z+. The term ‘reduction
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factor’ relates to the fact that a different choice for ρ results in a different amount of
OSR. Substitution in equation (5.8) yields:

Nn = N0 − 2 ρ ε eτ0+n δτ . (5.12)
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Fig. 5.9. Decrease of the number of samples of a signal with original
dimension N0 = 256. Solid lines: strict OSR; broken lines: heuristic OSR
for several reduction factors.

The resulting Nn values have been plotted in Fig. 5.9 for ρ ranging from 1 to 4,
together with the Nn values that correspond to strict OSR, according to (5.10). All
Nn values have also been corrected for being integer and even/odd, as stated before.
As for the scale space sampling, we have used δτ = 1

2
ln 2.

5.7.2 Heuristic OSR and scale space

In Fig. 5.10 (heuristic OSR) the outer scale of the brain image has been reduced
according to equation (5.12) with ρ = 3. In accordance with Fig. 5.9 we note that the
reduction process is much shallower than to strict OSR.

At first sight, running a hyperstack on a scale space that is based on heuristic OSR
will not give a large computational profit: only the larger levels have a significant
decrease of the dimensions. The search volume, however, increases significantly at
larger scales. Therefore, heuristic OSR will decrease the computation time especially
at the higher levels of the hyperstack. This will be shown for real-world images in
section 5.8.3.
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Fig. 5.10. Effect of heuristic OSR on a linear Gaussian scale space for
the brain image. As in Fig. 5.6, the blurred levels of decreasing dimension
sizes are indicated by the bright white borders. Shown are the levels 1, 2,
and 3 (upper row), and 4, 6, and 8 (lower row). Again, the corresponding
σ’s are 1.4, 2.0, 2.8, 4.0, 8.0, and 16.0 pixels.

5.8 Results

In this section we quantify the profit in terms of total number of pixels of a scale space,
and examine what the effect of (both strict and heuristic) OSR is on the hyperstack
multiscale segmentation method. For the latter, we have to investigate the size of
the forced roots area, which is the area of the input image that can not be segmented
properly because OSR is applied.

5.8.1 The profit of OSR

We can calculate the profit that is accomplished by OSR, by computing the total
number of pixels of a scale space ranging from level 0 to level l (i.e., the scale-tree
volume). To this end, we compare the total number of pixels of a scale space with
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and without applying OSR. For the profit Pl at level l we can write:

Pl =
(l + 1)Nd

0 −
l∑

n=0
Nd
n

(l + 1)Nd
0

· 100% . (5.13)

For the strict OSR we can substitute equation (5.10), which makes the profit Pl,str
independent of the initial image volume N0:

Pl,str =

(
1 − 1

l + 1

l∑
n=0

e−dn δτ
)
· 100% . (5.14)

In contrast, the profit Pl,heur for heuristic OSR is always image size dependent:

Pl,heur =

(
1 − 1

(l + 1)Nd
0

l∑
n=0

(
N0 − 2 ρ ε eτ0+n δτ

)d )
· 100% . (5.15)
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Fig. 5.11. Profit of OSR expressed as a percentage compared to applying
no OSR at all. The total number of voxels for the scale space up to each
level have been cumulated from level 0. The input is a three-dimensional
image with N0 = 256.

In Fig. 5.11 the profit has been plotted for a 3D image with N0 = 256, according
to equations (5.14) and (5.15). Strict OSR clearly outperforms heuristic OSR, irre-
spective of the actual value of ρ. Other values for N0, or two-dimensional images, give
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similar results, as can be understood by inspecting equations (5.14) and (5.15) more
closely.

Note that the profit of a pyramid-like approach for SRR (not shown in Fig. 5.11)
even outperforms strict OSR for δτ < ln 2.

5.8.2 OSR and forced root areas

The fact that Nn decreases for increasing n implies that the search volume narrows
down for pixels near the level boundaries. More precisely, if the OSR from level n to
n + 1 is large enough, then the corresponding search volume (defined by the radius
rn,n+1) might be too small for children in level n to even find one single parent in level
n + 1. These children are termed forced roots, since they have to be labeled roots,
rather unvoluntary than imposed by a root labeling scheme in the segmentation phase.

In the worst case, a child located at a corner of the image at level n must find a
parent in level n+ 1. The very corner point of that level can only be reached if:

rn,n+1 > Rn+1

√
d , (5.16)

or, equivalently:

kn σn,n+1 > Kn+1 σn+1

√
d . (5.17)

For strict OSR this inequality will never be satisfied: the absolute scale σn+1 is always
larger than the relative scale σn,n+1, and Kn+1 is much larger than kn (see Fig. 5.8).
Since

√
d > 1 there exist children that can not find a parent in the next higher level.

For heuristic OSR equation (5.17) simplifies to: kn > ρ
√

2d. Clearly, the effect is
much less dramatic.

In Fig. 5.12 the occurrence of forced roots is illustrated. Because the search volume
has a spherical character (it is a circle in 2D), the corners are being rounded.

In order to investigate the area of forced roots more precisely, we created an
artificial stack where every child links to the parent that is closest to the central axis of
the stack (i.e., to the middle of the image). This can be achieved by using (artificially
created) levels with the following characteristics: every level has dimensions 256×256
and represents a cone pointing downwards (when viewed as a 3D landscape with image
intensity as height feature). The point of the cone coincides with the center of the
image, and the maximum intensity difference of each level (i.e., corner point minus
center pixel) equals Φ. More precisely, level n of this artificially created ‘scale space’
contains a reversed cone with intensities ranging from nΦ (midpoint) to (n + 1) Φ
(corner point). Based on these levels, we run a hyperstack using iso-intensity following
only. Children in level n will always try to link to the parent in level n+1 that is closest
to the center, because that will be the parent pixel closest to the child’s intensity. The
maximum distance that can be traveled through the scale space is determined by the
search volume factor kn. The pixels of this scale-tree that have been labeled as roots
by the hyperstack segmentation process thus represent the minimum number of forced
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forced roots area

rn,n+1

level  n

level  n+1

Fig. 5.12. Schematic of the occurrence of ‘forced roots’. If the OSR
exceeds the maximum allowable distance—controlled by the search volume
factor kn—then a range of outmost boundary pixels will never find a parent
in the next level.

(a) (b) (c)

Fig. 5.13. Outline of the minimum areas of forced roots (black pixels)
obtained by applying strict OSR to an artificially created stack (for expla-
nation see text). The forced root area is shown for (a) level 2, (b) level 4,
and (c) level 6 of the corresponding hyperstack (these correspond to a σ of
2.0, 4.0, and 8.0 pixels, respectively).
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roots. For real world images the forced roots area expands if pixels are being linked to
parents that in higher levels will become forced roots. This happens most frequently
with background pixels that link towards the ‘outside direction’.

The result of a hyperstack with strict OSR is shown in Fig. 5.13. To clarify the
observation that the number of forced roots increases if more levels are added to the
stack, we have shown the interim results of the levels 2, 4, and 6 (Fig. 5.13a, b, and c,
respectively). The large area of forced roots indicates that only very specific images
can be segmented using this approach. That is, the images must have an ROI located
around the spatial center of the image. In particular, large scale information can only
be calculated at a high accuracy if a sufficiently wide border surrounds the ROI. Note
that small irregularities occur because of rounding errors in the linking process.

(c)(b)(a) (d)

Fig. 5.14. Minimum areas of forced roots (black pixels) for heuristic
OSR applied to the artificial stack (see text for detail). Fully converged
hyperstacks have been created. The reduction factor increases from 2 to 5
(from (a) to (d), respectively).

In Fig. 5.14 the forced root area for heuristic OSR is shown. In contrast with
Fig. 5.13 (where we have created three small hyperstacks containing just a few levels),
we now created four complete hyperstacks, with ρ ranging from 2 to 5. For each stack
we needed 12 levels to impose convergence of the linkages. The final minimum areas
of forced roots are indicated in black. As can be seen, the expansion drift of the forced
roots area is much less dramatic. It is clear that heuristic OSR does not impose such
rigorous requirements on the ROI as strict OSR.

5.8.3 The effects of OSR on hyperstack segmentations

From section 5.6.2 and Fig. 5.13 it may be evident that it is difficult to produce useful
segmentations by applying strict OSR. Only a smaller δτ in combination with a larger
search volume may produce useful results, but even then the number of segments will
be too large for subsequent manual selection.

In the case of such a large number of segments, a practical representation of the
segmentation results is by means of ‘mean values’ (see section 5.4.4), followed by
a straightforward thresholding step. The influence of noise at pixel level has been
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diminished by the very first linkages between the ground level and level 1, but the
clustering of the small segments still needs be done manually. In fact, one can conceive
the thresholding process as being executed on large, irregular ‘pixels’ (i.e., the small
segments). A hyperstack of only two levels is already an improvement compared to
plain thresholding of the input image (the number of active pixels in level 1 is typically
more than 30% smaller than in level 0). Note, however, that this does not solve the
conventional thresholding problems (such as gradient levels in an MR image).

(a) (b)

Fig. 5.15. Comparison of two renderings of the knee image, based on the
hyperstack segmentation method with heuristic OSR: (a) reduction factor
of 2; (b) reduction factor of 3. The qualitative differences are minimal,
while the computation time decreases with about 40% for (b) compared to
(a).

In Fig. 5.15 we have compared two volumetric renderings of the knee image, a CT
image of dimension 256×256×97, based on two different (hyperstack) segmentations.
The segmentation volumes have been produced using heuristic OSR with reduction
factors 2 and 3, respectively. The profit in computation time of Fig. 5.15b compared
to Fig. 5.15a was about 40%, while no significant differences are apparent. (It takes
about 15 hours to process this image with a reduction factor of 3, and 25 hours when
a reduction factor of 2 is used. All times have been measured on a HP 9000/755.)

For large images, like the knee image of Fig. 5.15, a straightforward segmentation
based on a hyperstack without OSR is virtually impossible, owing to the huge amounts
of memory and swap space that are needed to deal with the scale space and the
linkages. Then, the use of OSR (even with a small reduction factor) can be very
helpful.
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ba
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Fig. 5.16. Comparison of three hyperstack segmentations of the brain

image. Shown are: (a) original image; (b) full hyperstack segmentation;
(c) hyperstack segmentation with heuristic OSR of value 2; (d) idem, with
value 3. For all cases, the contours of the segmentation have been super-
imposed in bright white onto the original image.
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In Fig. 5.16 we show the differences between a straightforward segmentation and
heuristic OSR. For this particular brain image we have focused on the white mat-
ter of the brain. Fig. 5.16c (ρ = 2) and Fig. 5.16d (ρ = 3) are very similar to
Fig. 5.16b (i.e., the conventional hyperstack segmentation with no OSR), although
the computation time decreases from 30 to less than 9 minutes (ρ = 2) and to 6
minutes (ρ = 3), respectively: a profit of more than 70–80%! For larger values of ρ
(not shown in Fig. 5.16) the time gain levels off, and the segmented images slightly
begin to ‘crumble’. This is a typical effect, caused by the fact that difficult areas
(e.g., areas with a lot of partial volume pixels, or thin, elongated objects) tend to
keep on linking upwards without significantly extending the current segment size by
merging with other segments. (This can be examined by looking at the corresponding
ground volumes at each level.) At a certain—relatively high—level in the hyperstack,
they are forced to link to ‘bad’ parents, because convergence is imposed. During the
segmentation phase, these pixels are perfect candidates to be labeled as roots, which
results in small, crumbled segments at the ground level.

This effect need not necessarily be disastrous for the final segmentation result.
In most cases, an increase in the total number of desired segments suffices to obtain
useful results, although a smaller ρ value is probably an easier solution.

In Fig. 5.17 a similar comparison has been made for the trans image, a 2D
transversal MR image of size 256× 256. This time, the profit of using heuristic OSR
increases to 80% (ρ = 2), 85% (ρ = 3). Again, using heuristic OSR for ρ > 3 produces
slightly crumbled segmentations, although the effect is less than for figure Fig. 5.16a.
This is caused by the fact that the original trans image (Fig. 5.17a) is more blurred
in itself than Fig. 5.16a.

The pixels that have difficulty finding a good parent (in this case mainly the partial
volume pixels between the white and grey matter) are forced to choose. This leads
to an increase in relatively small segments containing the partial volume pixels. Such
a segmentation will look ‘thin’: only the pixels that belong to the white matter with
high certainty remain present in the segmentation based on heuristic OSR with ρ > 3.

In Fig. 5.18 the effect of OSR on the volumetric rendering of the tumor image, a
three-dimensional image with dimensions 256× 256× 128, is shown. The patient has
a tumor in the right frontal lobe (shown as a hole in the grey matter). The hyperstack
segmentation without applying OSR could only be made by dividing the large image
into several pieces. This requires a lot of administration and computing time. If OSR
is applied, a much coarser subdivision is possible, because less voxels and linkages are
involved per (sub-)hyperstack.

There is hardly any difference in quality between the full hyperstack segmentation
and the one generated by applying heuristic OSR with a ρ-value of 2. The inlets in
the grey matter are somewhat deeper for heuristic OSR (ρ = 2) compared to the full
hyperstack, but the location of the tumor is still clear. Nonetheless the time difference
for the two segmentations is significant: approximately 60 hours and 13 hours effective
computing time. In Fig. 5.18c small artifacts show up, while the additional profit in
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dc

ba

Fig. 5.17. Comparison of three hyperstack segmentations of the trans

image. Shown are: (a) original image; (b) full hyperstack segmentation;
(c) hyperstack segmentation with heuristic OSR of value 2; (d) idem, with
value 3. The contours of the segmentation have been superimposed in bright
white onto the original image.
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computing time is marginal: 9 hours. Without a priori information on the pathology
of this patient, the tumor is easily missed. In this case, the loss in quality does not
excuse the computational profit.

a

c

b

Fig. 5.18. Comparison of three series of renderings based on hyperstack
segmentations of the tumor image. Shown are: (a) full hyperstack seg-
mentation without OSR; (b) hyperstack segmentation with heuristic OSR,
ρ = 2; (c) idem, ρ = 3.
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5.9 Conclusions

In this chapter we have discussed the boundary problem of a multiscale image analysis.
We have argued why sampling rate reduction in its conventional form can not easily be
applied to real-world images that have been blurred to create the levels at larger scale.
Instead, outer scale reduction as non-uniform SRR technique has major advantages
over straightforward SRR, in particular with respect to the computation time.

We have explained two different variants of outer scale reduction: strict OSR
and heuristic OSR. Their usefulness has been tested by the hyperstack, a multiscale
segmentation technique. We have indicated what the effect of OSR is on the generated
scale space and on the segmentations.

Based on our research we draw the following conclusions:

• SRR in its original form (e.g., conform the Nyquist criterion) does not seem
very promising for multiscale image analysis.

• It is hard to define the requirements for OSR that are generally applicable in
multiscale image segmentation. Strict OSR requires that the ROI is located in
the center of the image. The parts at the image boundaries ‘disappear’ if scale
is increased and hence can not be segmented properly. For heuristic OSR, this
requirement is much weaker. Only the pixels close to the boundary of the input
image vanish with increasing scale.

• The amount of outer scale reduction is flexible for the heuristic OSR. Although
the actual maximum is image dependent, a reduction factor of 2 seems a good
default value.

• The profit in computation time by using OSR is enormous. For the hyperstack
the use of heuristic OSR (value 2) will result in time savings of at least 70%.

• Strict OSR solves the boundary problem—involved with the blurring kernel
extending beyond the image borders—completely, albeit at the cost of a too
steep reduction of the volume-of-interest. Heuristic OSR significantly reduces
the boundary problem: the ‘inaccurately’ computed boundary pixels at a large
scale are ignored.

• The hyperstack scale-tree converges faster if OSR is applied, because the number
of candidate parents decreases. This has the desirable effect that less segments
are needed to completely represent an object. If the reduction factor is set too
high, the convergence may become too strong. Experiments yield the prelimi-
nary conclusion that no significant problems are expected for reduction factors
up to 3.



‘There is nothing more musical than a sunset’

– Claude Debussy

Chapter 6

Blurring strategies for hyperstack
image segmentation

Abstract

Hyperstack image segmentation consists of four consecutive steps: (i) blur-
ring, i.e., constructing a scale space by subjecting the original image to a
sequence of filtering steps with an increased smoothing effect; (ii) linking,
i.e., establishing parent-child linkages between pixels of two successive levels
in the scale space; (iii) root labeling, i.e., determining which of the pixels in
the scale-tree represent a segment in the input image; and (iv) the downward
projection step to obtain an actual segmentation. Up to now, the scale space
in hyperstack segmentation has been constructed invariably by means of a
Gaussian kernel. This chapter investigates alternatives to Gaussian blurring
in hyperstack image segmentation.
We have compared six different scale space generators, viz. the Gaussian kernel
in both the spatial and in the Fourier domain, variable conductance diffusion
according to Perona & Malik, Euclidean shortening flow as proposed by Al-
varez, Lions, & Morel, the median filter, and the Kuwahara filter. Hyperstack
segmentation is found to be rather insensitive to the choice of the underlying
scale space generator. This is shown by evaluating the segmentations through
visual inspection and by means of a quantitative algorithm, both for artificial
and real-world images with an available gold-standard.

Keywords: Blurring, boundary problem, multiscale image analysis, scale
space, nonlinear diffusion, image segmentation, median filter, Kuwahara filter.

6.1 Introduction

The scale space [54, 131] of an image provides a framework to process and analyze
the image at multiple levels of scale simultaneously. The combination of local and
global information has proven to be useful in various applications, e.g., edge detection
[17], image segmentation [86, 64, 123, 124], segmentation in combination with neural
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networks [44], description of higher order image structure [97, 98], and multimodality
matching [68, 69, 35].

There is not one unique scale space for an image, nor a unique way of using the
scale space for image analysis. The options comprise the choice of the scale space
generator, the number of—discrete—scale space levels used, the sampling in the scale
direction, and the sampling in the spatial directions [119]. In this chapter we expand
on the choice of the scale space generator.

We focus on applications that use scale spaces as input to a linking model [86, 64,
57, 39], which in turn serves as the basis for segmentation of the input image. The
linking model establishes parent-child linkages between pixels in adjacent levels of the
scale space, thus creating a tree-like structure of pixel connections. The segmentation
method we consider is the hyperstack, which has proven to be a promising method
for segmenting multidimensional images [121, 122, 123, 124, 120, 126]. We investigate
how crucial the choice of the underlying scale space generator is.

Bangham [8] already noted that the well-known linear scale space kernels [131,
54, 66, 30, 29] are not the only viable options to construct a scale space. Therefore,
in this chapter we will deal with both linear (section 6.2) and nonlinear scale space
filters [34] (sections 6.3, 6.4, and 6.5). The six different scale space constructors that
we have compared are:

1. The Gaussian scale space implemented in the spatial domain (section 6.2.1);

2. Ditto, implemented in the Fourier domain (section 6.2.2);

3. The nonlinear scale space based on the Perona & Malik equation (section 6.3.1);

4. Ditto, based on the Euclidean shortening flow of Alvarez, Lions, & Morel (section
6.3.2);

5. The (nonlinear) median filter (section 6.4);

6. The (nonlinear) Kuwahara filter (section 6.5).

In section 6.6 we discuss the main front-end scale space axioms and define the
properties that are desirable for a scale space generator. In the same section we
outline a method to synchronize the scale parameters between the different scale
space constructors, in order to enable a fair comparison by the hyperstack algorithm.

For the experiments we have used both artificial and real-world (medical) images.
The results are presented in three ways: (i) the scale spaces are compared (section
6.7.1); (ii) the segmented images are qualitatively compared (see section 6.7.3); (iii)
the segmentations are quantitatively compared by an objective evaluation algorithm
(see section 6.7.4) of the segmented images that result from the hyperstack segmen-
tation method.

Finally, in section 6.8 we draw some general conclusions.
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6.2 Linear scale space

A linear scale space is—according to previous work done by, e.g., Witkin[131], Koende-
rink[54], and Florack[33]—a one parameter family of images generated by convolution
of the input signal with a Gaussian kernel of increasing width σ.

The Gaussian is the unique constructor of the linear scale space as a consequence
of four requirements (the so-called front-end vision postulates), which express that
a front-end system should be able to construct ‘a complete, homogeneous, isotropic,
and scale invariant representation of its input data’ [30].

Koenderink derived the Gaussian kernel from quite a different point of view [54].
In order not to generate ‘spurious detail’ by blurring (the causality requirement), he
derived that a multiscale representation of an image should be constructed by the
linear diffusion equation:

∂L

∂t
= ∆L , (6.1)

where L ≡ L(~x, t) is a scalar function (e.g., luminance) over the image domain. This
also leads uniquely to the Gaussian kernel, which is the Green’s function of the linear
diffusion equation.

According to the property of scale invariance [30] the blurring strategy has to
follow an exponential sampling in scale space. Hence, we introduce a natural scale
parameter τ = n δτ, n ∈ N, which is related to the absolute scale σn at level n by:

σn = ε eτ0+n δτ , (6.2)

where τ0 is the initial scale offset and ε is taken to be the smallest linear grid measure
of the imaging device (the inner scale). If we denote level n of the discrete scale space
by Sn, then we can write for the scale space representation S of the d-dimensional
input image L(~x) (i.e., the collection of d-dimensional images at increasing scales):

Sn = S(~x, σn) = L(~x) ∗ G(~x; σn) , (6.3)

with initial conditions S(·; 0) = L(·) and τ0 = 0. Hence, the dimensionality of a scale
space S is d+ 1 for a d-dimensional input image.

The implementation of the Gaussian scale space may be carried out in the spatial
domain or in the Fourier domain. Either option has pros and cons, as will be discussed
below.

6.2.1 Spatial domain implementation

If we opt for the spatial domain implementation of the Gaussian scale space, we have
two problems: (i) the discretization of the kernel, and (ii) the boundary problem.

The first problem is tackled by using a straightforward discrete implementation of
the Gaussian kernel. Gaussian convolution is self-similar: a blurring step by a Gaus-
sian kernel of width σ1 followed by a second blurring step with width σ2 equals a single
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blurring step by a Gaussian of width
√
σ2

1 + σ2
2. Unfortunately, in the discrete domain

the concatenation of sampled Gaussians is not a discrete scale space transformation
[66]. Hence, a discrete scale space is best constructed by convolution of the original
image with sampled Gaussian kernels of increasing width.

The second problem is more difficult to deal with. The boundary problem is
well-known in filter analysis in general. If we restrict ourselves to multiscale image
analysis, then a short overview of commonly used techniques can be found in [119].
In this chapter we will use average value extrapolation of the image to estimate the
unknown boundary pixels. That is, the average intensity value of the original image is
used as global extrapolation value for kernels that overlap with the image boundary.
This method forces the blurring at increasing scales to converge to precisely the same
average value.

Note that this imposes the same requirement on the implementation as the dis-
crete Gaussian does: the convolution can not be implemented in consecutive steps,
because then the flux through the image boundaries is not accounted for. Instead,
the original image must be used to derive every blurred replica directly. (Deriche [26]
has shown that a recursive implementation of the discrete convolutions decreases the
computational complexity significantly—even for very large filters.)

For the actual implementation of the discrete convolution—including speed-up
techniques—we refer to appendix 6.A.1.

6.2.2 Fourier domain implementation

As an alternative, the blurring can be performed in the Fourier domain. In this case
a repetition of the signal is assumed, which leaves two options for dealing with the
boundary problem. We can simply repeat the signal in every Euclidean direction, or
perform a mirroring step first. In the latter case, the repetition pulse spans a distance
that equals twice the length of the original signal (in each direction).

Irrespective of which method is used, the fact that the original data is simply
repeated introduces huge artifacts at increasing scales. Generally (i.e., if the brighter
areas are in the center of the image), this reflects itself as bright blobs that show up
at the boundaries of the images at large scales.

The main advantage of blurring in the Fourier domain is the processing speed at
large scales: convolution in the spatial domain equals multiplication in the Fourier
domain, hence the computation time is now independent of the width of the used
Gaussian kernel.

In this chapter, we have applied straight (i.e., unmirrored) repetition in the Fourier
domain implementation.
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6.3 Nonlinear scale space

In recent years a number of nonlinear smoothing techniques have been developed.
Although there is a wide range of approaches yielding a rich diversity of gener-
ating equations, we can roughly distinguish three approaches which cover a wide
range of schemes: (i) diffusion equations with variable conduction coefficients, (ii)
geometrically-driven curve or surface evolutions, and (iii) morphological schemes. We
will briefly discuss the approaches (i) and (ii) to introduce two equations which are
used in the remainder of this chapter to generate a stack of images. The third approach
is closely related to approach (ii) and models an evolution equation using morpho-
logical operations with locally defined (convex) structuring elements [71, 19, 113, 1].
The relation is beyond the scope of this thesis but the interested reader may consult
[14] where the authors describe a method to relate functional morphological operators
to nonlinear partial differential equations.

6.3.1 Variable conductance diffusion

The first approach is essentially a modification of the linear diffusion (or heat) equa-
tion. A general form of a diffusion equation with conduction coefficient c is given
by:

∂L

∂t
= ∇ ·

(
c∇L

)
. (6.4)

In the particular case that c is a constant we have the linear diffusion equation, which
has been described in section 6.2.

If the heat conduction coefficient c is not a constant anymore but depends on
local image properties, as e.g., proposed by Perona & Malik in [84], the resulting
smoothing process is no longer linear. The underlying idea is to choose c such that
relevant objects smooth while not affecting one another. Two choices that Perona &
Malik proposed for c(~x, t) = g(‖∇L(~x, t)‖) are:

g1

(
‖∇L‖

)
= e

−
(
‖∇L‖
K

)2

(6.5)

g2

(
‖∇L‖

)
=

1

1 +
(
‖∇L‖
K

)2 (6.6)

Here K is a free parameter which determines whether a gradient is significant or
not. Both choices are decreasing with the magnitude of the gradient. A drawback of
equation (6.4) is that it locally behaves like the inverse heat equation if c(~x, t)∇L is
decreasing with respect to ∇L for a point (~x, t) (which happens for ‖∇L‖ > 1

2

√
2K

in (6.5) and for ‖∇L‖ > K in (6.6)). Furthermore, the gradient is not calculated at a
certain scale which implies that insignificant edges (for example resulting from high
frequency noise) will also be kept. Fortunately, a solution to the latter problem also
solves the first; a regularization proposed by Catté et al. [18] in which the equations
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(6.5) and (6.6) are evaluated using the gradient evaluated at a certain scale DGσ ∗ L
rather than the gradient at the scale level of the original image (which is physically
not possible!) is well-posed. In this chapter we will use g1(‖∇L‖). Extensions towards
vector-valued diffusion have been made by Whitaker & Gerig [130].

Although the Perona & Malik equation is often referred to as an anisotropic dif-
fusion equation it in fact is an inhomogeneous diffusion equation . In [128] truly
anisotropic diffusion is studied using a heat conduction tensor.

6.3.2 Curve evolution

The second approach to nonlinear scale spaces studies the evolution of curves or
surfaces as a function of their geometry. Since the planar case of evolving curves is
by now well understood [108, 36, 109, 37, 28, 38, 81, 4, 3] we will briefly outline the
main steps in the derivation.

A general evolution of a curve can be written as:

∂C

∂t
= α(p, t)~T + β(p, t) ~N (6.7)

where ~T and ~N denote the tangential and normal unit vector to the curve respectively.
However, the tangential component only affects the parameterization which implies
that we can rewrite {α, β} as {0, β′} [28] and if we require β′ to be a function of local
geometry we find

∂C

∂t
= g(κ, κp, ...) ~N (6.8)

where κ denotes isophote curvature and p is the arclength parameter.
In this chapter we will consider the case g = κ, which leads to the well-known

Euclidean shortening flow. The more general choice g = ακ + β was introduced in
computer vision by Kimia et al. [52, 51, 53] while Sapiro & Tannenbaum studied

extensions towards affine invariant evolutions in which case g = κ
1
3 [100, 99].

The particular choice we use here has a very intuitive interpretation if we rewrite
it in so-called gauge coordinates ((v, w)-gauge, see figure Fig. 6.1).

In this gauge the v direction denotes the local isophote direction while w denotes

the normal direction. From κ
def
= ∂2w

∂v2 we find: κ = −Lvv
Lw

which implies the following
evolution of the luminance function:

∂L

∂t
= Lvv (6.9)

which can be interpreted as a diffusion equation which only diffuses in the local
isophote direction (note that4L = Lvv+Lww). Thus, the net result is that no smooth-
ing occurs in the gradient direction (and therefore the diffusion is very anisotropic).
This equation has been derived independently by Alvarez et al. in [2] because of this
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Fig. 6.1. Local gauge coordinates in 2D and 3D (w points in the normal
direction). In 3D u and v denote the principal curvature directions.

exact property. This derivation does not readily extend to three dimensions, although
some approaches have recently appeared in literature [77, 129].

As mentioned before we have to resort to numerical methods to obtain the stack
of images generated by the evolution equations that were described in the previous
section. In this respect, we have to distinguish between implicit and explicit schemes
[79]. Implicit refers to the fact that the image of the next time step also depends
on image information at the next step, whereas in an explicit scheme the image at
the next time step is estimated by using only the information that is available at the
current time step. We use a simple (explicit) Euler forward scheme. The problem
with implicit schemes is that they are difficult to construct if the operators, used
to extract the geometrical information, have a large window (if we use Gaussian
operators the window is—at least in theory—infinite). We choose to extract the
differential operators using scaled Gaussian operators rather than finite differences to
build in some of the desired properties from the start. We briefly comment on the
implementation in appendix 6.A.2 and refer to [78] for a more extensive treatment.

Free parameters in our scheme are the time-step in the Euler forward scheme, the
scale at which the Gaussian derivative operators are calculated, and in the Perona &
Malik scheme a weighting factor which is used as a threshold determining whether
a gradient is significant or not. A few considerations greatly reduce the parameter
space. We want the scale of the derivative operators to be as small as possible and a
time-step as large as possible. Lower limits for the scale of the derivative operators
are set by the noisiness of the image and the inner scale [42]; aliasing in the Fourier
domain is a function of the order of differentiation and the operator scale expressed in
inner scale units. We therefore select a scale parameter based on these considerations.
Typically, for a second order invariant we select σ ≈ 0.8 pixel units. From [78] follows
the maximal time-step allowed.

The parameter K which measures whether a gradient is significant or not is set to
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the 90%-value of the cumulative histogram of the image gradient.

6.4 Median filtering

The median filter has originally been designed to remove ‘salt-and-pepper’ noise from
data. Small speckles in the image are simply removed, while the size of the speckle
noise is controlled by the size of the median filter.

list

median

3x3 window

reordering

image

Fig. 6.2. Schematic of the median filtering of a 2D image by a window of
size 3× 3.

The filter design is fairly simple (see Fig. 6.2), although the computation time
may become significant—especially if the window size is increased. The basic idea
is to shift a squared window of size m × m (m odd) over the entire image. All the
pixels covered by the window are reordered in increasing order. The centered pixel of
the window is then replaced by the middle data point of the reordered list (i.e., the
‘median’). Since the exceptional pixels (i.e., black and white noise pixels) will find
their place at the begin or the end of the reordered list, these noise pixels will be ruled
out after median filtering.

Near the image boundary, the window has to be adapted, or an extrapolation step
is necessary. In this chapter, we stick to smaller window sizes, although there is no
clear preference for either method. As a consequence, it may happen that the total
number of elements in the list that need to be reordered is even. In that case, the
average value of the two middle data points is taken to be the median.

Several extensions to the basic scheme are possible:

• Use a circular window. This is slightly more difficult to implement, but is more
fair from a rotation invariance point of view.

• Use only existing data points as median values. If the total number of elements
in the list is odd, this will always be true, but if this number is even (see above),
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a new value may be introduced. This is especially annoying at images with a
relatively low number of grey levels, such as segmented images. In that case,
the one pixel of the two middle pixels that is closest to the original pixel value
is taken to be the median. This will only occur at the boundary of the image,
since elsewhere m is odd.

• Use the average value of the middle m̂ pixels. For the conventional median
filtering, m̂ is taken to be 1. A higher degree of smoothing is achieved by
increasing m̂. If m̂ is given its maximum value (i.e., m2), the median filtering
converges to straight averaging over an m×m window.

• Use the pseudomedian filter [89, 105], which is a debilitated variant of the me-
dian. The one-dimensional pseudomedian PMED5 with a filter width of 5 is
defined as:

PMED5

{
a, b, c, d, e

}
=

1

2
max

{
min {a, b, c} , min {b, c, d} , min {c, d, e}

}
+

1

2
min

{
max {a, b, c} , max {b, c, d} , max {c, d, e}

}
. (6.10)

Pratt [88] later introduced the two terms ‘maximin’ and ‘minimax’ for the two
halves of equation (6.10). Schulze and Pearce [104] extended the definition of the
one-dimensional pseudomedian filter to two dimensions. They also proved the
equivalence relationship with the morphological opening and closing operations.
More precisely, equation (6.10) can be written as:

PMED
{
L(~x); φ

}
=

1

2
Open

{
L(~x); φ

}
= +

1

2
Close

{
L(~x); φ

}
, (6.11)

where φ equals the morphological structuring element.

It is beyond the scope of this thesis to test all the variants of the conventional
median filter, although it is obvious that changing the filter definition may affect the
results. For instance, the response of the pseudomedian filter is distinct from the plain
median filter on two grounds: (i) the amplitude of isolated pixels are halved rather
than completely removed, and (ii) new pixel values may be introduced because of the
averaging character (see also [105]).

In appendix 6.A.3 we expand on the implementation of the median filter.

6.5 Kuwahara filtering

In the original Kuwahara paper [62] the filter is described as a preprocessing step to
facilitate the inspection of radioisotope (RI)-angiocardiographic images of the cardio-
vascular system. At that time there was no suspicion that nonlinear filtering would
become so increasingly popular.
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w
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w

k

Fig. 6.3. Schematic of the original Kuwahara filtering of the pixel (i, j)
in a 2D image by four rectangular neighborhoods (windows) of size w×w
each. The total kernel scope equals k × k, with k = 2w − 1 (i.e., the
quadrants overlap with one pixel).

Kuwahara used the sliding window concept, similar to the median filter of the
previous section. The original idea was to compare the variance in each of the four
windows (the ‘quadrants’ of every pixel), and replace the value of the pixel at hand
by the mean value of all the pixels in the window with the smallest variance (see
Fig. 6.3). This way, it is stimulated that homogeneous areas arise, because windows
crossing edges will have a relatively large variance.

Normally, the quadrants of size w×w (w > 1) overlap by a line of one pixel width.
For symmetry reasons we require the total kernel scope k per pixel to be odd (i.e.,
k = 2w − 1).

The choice of four rectangular neighborhoods is rather ad hoc. Schulze and Pearce
[106, 107] suggested to extend the conventional Kuwahara filter to a range of sub-
windows, i.e., to use all w2 possible windows of size w×w for each pixel. In this way, a
substantial amount of overlap between the different windows is achieved, which makes
the filter much more robust. A second advantage is that scale transitions are smaller,
because the probability that one of the windows has a smaller variance increases if
more sub-windows are checked. The paper refers to the filter as a ‘Mean-of-Least-
Variance’ (MLV) filter, but is in essence comparable to the conventional Kuwahara
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filter. The d-dimensional MLV filter is formally described by:

MN (~x, k) =
1

kd

∑
~y∈N~x

L(~y) (6.12)

VN(~x, k) =
1

kd

∑
~y∈N~x

∣∣∣∣ L(~y) − MN (~x, k)
∣∣∣∣ 2

(6.13)

MLVN

{
~x; k

}
= M

({
~x : ~x ∈ N~x : v(~x) = min {v(~y) : (~y) ∈ N~x}

})
,(6.14)

where N~x denotes the window centered at position ~x, and MN (~x, k) and VN(~x, k)
denote the mean and variance over this region, respectively.

For implementation details of the Kuwahara filter we refer to appendix 6.A.4.

6.6 Comparison of the scale space generators

In this section we briefly summarize: (i) the main characteristics of the different
scale space generators described in the previous sections (section 6.6.1), and (ii) the
responses of each generator to a series of desirable properties (section 6.6.2). Fur-
thermore, in section 6.6.3 we discuss how to synchronize the scale of the levels cor-
responding to nonlinear scale spaces with those of the linear scale space. It is shown
for all methods that this can be achieved.

Note that we talk about ‘blurring’ for any scale space generation process, although
some constructors do not perform a blurring in the very strict meaning of the word
(i.e., smoothing). Moreover, we will talk about ‘scale’ spaces, even though there is
not always an explicit connection between the blurring process and scale.

6.6.1 Front-end scale space axioms

Below we briefly describe the basic properties that a front-end vision system must
have. We closely follow the ‘front-end vision postulates’ as defined by Florack in [29]:

• Linearity. The scale space generator is a linear operator.

• Homogeneity. The blurring is said to be homogeneous if all the locations within
the field of view are considered a priori equivalent.

• Isotropy. There is no a priori preference for any direction of blurring in any
point.

• Self-similarity. The result of two successive blurring steps b1 and b2 can be
performed by a single (larger) blurring step b3 = b1⊕ b2, in which ‘⊕’ represents
the additive operator. Note that the ‘⊕’ does not necessarily correspond to
ordinary addition.
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• Commutativity. The result of two successive blurring steps should be equivalent
if the two steps were reversed, i.e., b1 ◦ b2 equals b2 ◦ b1.

We emphasize that translation and rotation invariance are implied by the assump-
tions of homogeneity and isotropy (see [29] for details).

For an extensive description of the above-mentioned front-end vision axioms with
respect to the six different scale space generators (described in this chapter) we refer
to appendix 6.B. Table 6.1 gives an overview. To which degree the six scale space
generators satisfy each axiom is indicated by one of the three signs: ‘+’ (good), ‘2’
(reasonable), or ‘–’ (bad).
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linearity + + – – – –

homogeneity + + – – + +

isotropy + + + – 2 –

self-similarity +1 + +2 +2 – –

commutativity + + + + – –

Notes:
1 Only if the original image is the starting point (see also Linde-

berg [66]).
2 Implemented this way (i.e., iteratively).

Table 6.1. Responses of the different scale space generators to the basic
axioms of a front-end vision system.

6.6.2 Desirable scale space properties

In this section we describe a set of additional properties that a scale space generator
should have in order to be ‘useful’ in any sense. The problem is that it is hard to define
the ‘complete set’ of desirable properties, since this will depend on the application
of the scale space. Furthermore, we emphasize that different (and often very logical)
desirable properties may be in contradiction with the axioms defined in the previous
section. An example will be given below.

Desirable properties are:
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adaptive feature preservation – – + +3
2 2

grey value invariance – – – + + –

convergence +/− 4 + – 2 – +

low noise sensitivity 2 2 + + + 2

fast + + 2
5

2
5

2 2

Notes:
3 Extensions of this scheme [95, 2, 101, 78] alter the speed of diffusion as a function

of the local gradient magnitude.
4 Depends on the solution to the boundary problem (for instance, + if the average

image value is used, – for 0th order extrapolation).
5 Our implementation uses an explicit scheme, which is prohibitively slow for the

higher scale levels.

Table 6.2. Quality of the different scale space generators with respect to
the additional desirable properties.

• Adaptive feature preservation. The blurring should be flexible with respect to
features (such as edges, corners, etc.). That is, for some applications it might
be useful to preserve the features at that scale and blur only in more or less
homogeneous regions. The amount of preservation should be adaptive.

• Grey value invariance. The blurring should be invariant under the group of
general intensity transformations acting on the image L, given by:

T : R→ R : L 7→ L̂ = T (L) , (6.15)

where L̂ denotes the image after the transformation T . Note that T may be
any nonlinear transformation, as long as it is a strict monotone function. (See
[32] for details.)

• Convergence. The blurring should converge to the mathematical mean of the
entire image. This should be the only pixel value left at the largest scale that
can be computed.

• Low noise sensitivity. The influence of noise should be minimal.
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• Fast. The actual algorithm should be fast irrespective of the scale that is calcu-
lated.

In appendix 6.B we discuss these items in detail. Note that the property of ‘fea-
ture preservation’ (in fact a nonlinearity preference) heavily conflicts with the axioms
‘linearity’ and ‘isotropy’. Obviously, it depends on the specific task and the used
algorithm which property should precede the other one.

Table 6.2 summarizes the results. The ‘+’ , ‘2’, and ‘–’ signs now relate to the
‘quality’ of each scale space generator with respect to the different properties.

6.6.3 Nonlinear scale spaces and scale

In this section we describe how we relate the scales of the levels of a linear scale space
to the levels generated by nonlinear scale space constructors.

The Perona & Malik equation and Euclidean shortening flow

We first consider the two approaches which are modifications of the linear diffusion
equation (6.1). Since the Gaussian is the Green’s function of this equation, it can
be thought of as the aperture function, which generates the one-parameter family
of images (known as linear or Gaussian scale space). Hence, there exists a relation
between the evolution parameter t in equation (6.1) and the standard deviation of the
Gaussian (or scale) σ. This relation is given by:

t =
1

2
σ2 . (6.16)

For the nonlinear evolution equations discussed in this chapter no analytical solutions
are known. This has two major implications. First, we have to resort to numerical
approximations to be able to compute the multi-scale representation of an image.
Secondly, there is no longer an obvious relation between the evolution parameter and
the spatial extent of ‘some’ blurring filter. However, both the Perona & Malik equation
and the Euclidean shortening flow are derived from the linear diffusion equation in
the sense that they are limiting the ‘normal’ linear diffusion. In the former case the
linear diffusion is limited in regions with a high gradient while the latter case only
allows diffusion in the local isophote direction. Therefore it makes sense to relate the
evolution parameter t of the nonlinear evolution equations to the evolution parameter
t in the case of the linear diffusion equation. Instead of using an exponential scale
sampling as in equation (6.2), we use an exponential ‘evolution time sampling t’
which corresponds to the scale sampling of the linear diffusion equation, according to
equation (6.16).
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The median and the Kuwahara filter

In the case of both the median and the Kuwahara filter, the size of the sliding window
determines the ‘scale’ of the resulting level. In particular, if the window size m of the
median filter has become large enough so that the entire image of size N×N will have
one and the same value (the global median of the image), we say that the scale of that
level equals σ = N , since at that scale the linear Gaussian kernel will generally result
in a (near-)homogeneous image. This will definitely be the case if m = 2N , since then
the window covers the entire image, irrespective of which pixel is being processed.

Similarly, for the Kuwahara filter, if w = N (or k ≈ 2N), a homogeneous image
is to be expected, which corresponds to σ = N . (Unlike the median, however, the
global image value that corresponds to the largest scale is the mathematical average
of the entire original image.)

For the successive values of kn—corresponding to the Kuwahara kernel size k to
create level n from the input image—we follow a similar definition as for the successive
values mn of the median filter (see below).

In accordance with equation (6.2)—defining the exponential character of the linear
scale space sampling—successive m-values (corresponding to the scale levels) must
have an exponential base too. This is achieved by following the formula:

mn =


3 if n = 1

bψjc if n > 1
j, n ∈ Z+ , (6.17)

where the base factor ψ regulates the scale space sampling (ψ ∈ R+), and j equals the
smallest value not smaller than n such that mn > mn−1. This is a simple mechanism to
prevent the occurrence of ‘double’ mn values; we simply skip these levels. (Note that
for ψ = 1 no double values will be produced by equation (6.17), i.e., j = n, ∀n ∈ Z+.)
In order to estimate a proper value for ψ, we make the observation that ψ ≈ eδτ for
a linear scale space with reasonable values for ε and τ0. Typically, ε = 1, τ0 = 0, and
δτ = 1

2
ln2. Hence, ψ =

√
2 seems an appropriate choice for comparing a scale space

generator—like the median filter—with the corresponding linear scale space.
A qualitative comparison with the linear Gaussian scale space can be made by

comparing the number of ‘elliptic patches’ at each scale. This requires a second order
invariant, called the umbilicity of an image. Florack [29] argued that the number
of ‘generic local features’ should decrease exponentially if scale is increased, while
the slope of the corresponding log-linear graph is dimension dependent. This linear
relationship will only be valid on a scale range fairly within the fundamental upper
an lower limits, i.e., the inner and outer scale.

For the two-dimensional case, an elliptic patch is defined as a connected set of
pixels in which:

∂2L

∂x2
· ∂

2L

∂y2
− ∂2L

∂x∂y
> 0 , (6.18)
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evaluated at the appropriate scale (see Fig. 6.4). Hence, the decrease in the number
of elliptic patches corresponding to any scale space generator, should be more or less
the same as the decrease for the linear scale space. In this way, we have defined a
qualitative measure to synchronize different scale space generators.

Fig. 6.4. Elliptic patches of a 256 × 256 MR image at different scale
levels. Shown are (from left to right) the original image and the umbilicity
images of the levels 3, 5, and 7 (corresponding to σ = 2.83, 5.66, 11.31
pixels, respectively, with δτ = 1

2
ln2).

In practice, counting the blob-like structures for a linear scale space is performed
by calculating the umbilicity at the corresponding scale. Then we continue scanning
the resulting image until all the areas satisfying equation (6.18) have been counted.
This is done effectively by a region-growing in each positive valued pixel encountered,
after which that region is marked as being ‘counted’. The process stops if no more
positive valued pixels can be found.

As can be seen in Fig. 6.4, most of the elliptic patches appear to be connected to
neighboring patches by a thin path of pixels, or via the ‘corners’ of two patches. To
prevent any coincidental matching of the number of elliptic patches for two different
scale space generators, we also compared the decrease in the number of patches after
a single erosion step by a morphological filter with a small structuring element (a
squared window of size 3× 3).

As can be seen from Fig. 6.5, taking ψ = eδτ nicely matches the different scale
spaces with respect to the course of the umbilicity feature evaluated at the appropriate
scales. The optional erosion step leads to the same conclusion, which emphasizes the
robustness of the method of counting elliptic patches. Hence, if δτ = 1

2
ln2, we have

ψ =
√

2. This is valid for both the median and the Kuwahara filter.

6.7 Results

In this section we describe the results of applying the different scale space generators.
This is done in three ways:

• The generated scale spaces are compared (see section 6.7.1).
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Fig. 6.5. Exponential decrease of the number of elliptic patches in the
first 10 levels for different scale spaces (left). For the linear scale space
(both in the Fourier and the spatial domain) we have used δτ = 1

2
ln2. For

the median and the Kuwahara filter we have used ψ =
√

2. As expected,
this value of ψ gives a good qualitative match with the conventional linear
scale space. On the right, the elliptic patches have been counted after an
additional erosion step (see text).

• The stacks are used as input to the hyperstack segmentation algorithm (see
section 6.7.2). The produced segmentations are qualitatively compared (see
section 6.7.3).

• The segmented images are evaluated by an objective measure (see section 6.7.4)
that we have developed for quantitative analysis and comparison of segmentation
results.

For the experiments we have used four different images. Firstly, we created an
artificial 3D image containing a hand by using the volumetric object generating pack-
age ‘things’ [117]. The main feature of this package is the simulation of the partial
volume artifact by discretizing the specified objects (i.e., ellipsoids, etc.) at sub-voxel
level. The original hand image contains the pixel values 0 (background), 500 (dumb),
800 (forefinger), 1000 (palm of the hand), 1250 (middle finger and ring-finger), and
1500 (little finger). From this artificial image (containing 16 slices of 64× 64 pixels)
we derived two different input images by adding two different Gaussian noise levels:
one with standard deviation 100 (called the ‘hand.100’ image) and one with 200
called the ‘hand.200’ image). Furthermore, we have used two real-world 2D MR
slices of a human head, which are both originally sized 256 × 256. The first image
(called ‘brain.cor’) has a coronal viewpoint, a ROI of size 178× 179 and contains
two objects. The second image (called ‘brain.tr’) is transversally oriented and has
a ROI of size 170× 210, in which six objects can be distinguished.

For all images we can check the segmentations against a ‘gold standard’. That
is, for the hand.100 and the hand.200 image (see Fig. 6.6b and Fig. 6.6c, respec-
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Fig. 6.6. Input images to the experiments.
(a) a slice of the original hand image (the object distribution);
(b) the corresponding slice of the noisy hand.100 image (s.d. = 100);
(c) idem, for the hand.200 image (s.d. = 200);
(d) the original brain.cor image;
(e) the manual segmentation of the ROI;
(f) the segmentation of (e) superimposed on the original image (d);
(g) the original brain.tr image;
(h) the manual segmentation of the ROI;
(i) the segmentation of (h) superimposed on the original image (g).
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tively) we can use the original image created by things before noise was added (see
Fig. 6.6a). This reflects the ‘perfect’ object distribution that a segmentation algorithm
should produce. For the brain.cor and the brain.tr images we use the manual
segmentations of an expert. Within specific accuracy limits these can be considered
the gold standards, although other experts would probably define different object con-
tours as ‘the best’ segmentation possible. This can be seen by examining the manual
segmentations superimposed onto the original images (see Fig. 6.6).

6.7.1 The scale spaces

In Fig. 6.7 the different scale spaces—generated by the methods discussed in this
chapter—for the hand image are shown. More precisely, we extracted one slice of
the hand.200 image at some of the levels of the generated scale spaces to show the
scaling function. Note that the detail vanishes at different scales, so for clarity we
have chosen different series of scales for every scale space generator. For instance, the
median and the Kuwahara filters are only interesting at the very first levels of the
scale space. The actual level numbers used have been indicated in the subscript of
Fig. 6.7.

Note that the scale spaces that correspond to the hand.100 image have been
omitted here; in fact, these are very much like the hand.200 images shown here. As
regards Fig. 6.7 we have the following remarks:

• The boundary effect caused by blurring in the Fourier domain (i.e., data repe-
tition) is much more apparent than in the spatial domain (averaging).

• The Perona & Malik equation preserves the objects’ contours best. The thumb
disappears first of all fingers, because it has the lowest intensity value. A dif-
ferent (lower) value of K in the equations (6.5) or (6.6) will preserve the thumb
better.

• Structure disappears relatively fast at the three-dimensional median and the
Kuwahara filter. Nonetheless, at the first levels of the scale space features are
better preserved than in the linear case.

• For the Euclidean shortening flow it is striking that the absolute image intensities
do not affect the local blurring: the curve evolves at the same speed for points
with equal curvature.

In Fig. 6.8 a similar figure is shown for the brain.cor image. The most striking
differences are comparable to the hand.200 image of Fig. 6.7: the nonlinear scale
space generators preserve features better than in the linear case. Furthermore, we
notice that the squared structure of the Kuwahara filter (at every scale) becomes very
apparent at larger scales. Corners seem to be ‘introduced’ rather than just ‘preserved’.
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Fig. 6.7. A single slice of the hand.200 image shown at different levels
of scale for the six different scale space generators. Shown are, from top
to bottom:
(a) Linear scale space, spatial domain (levels 1, 3, 5, 11);
(b) Linear scale space, Fourier domain (levels 1, 3, 5, 11);
(c) Perona & Malik filter (levels 2, 4, 6, 8);

In Fig. 6.9 we show the different scale spaces of the brain.tr image. Owing to an
evenly distribution of grey values in this (more or less symmetric) image, the Perona
& Malik equation and Euclidean shortening flow are much alike. The ventricle sys-
tem having a considerably lower intensity than its neighboring objects causes variable
conductance diffusion to preserve the ventricles at large scales. In contrast, Euclidean
shortening flow considers the ventricles to be a relatively small object, hence it dis-
appears before level 10.

6.7.2 The hyperstack

In essence, the hyperstack is a linking model based segmentation technique, originally
built upon the linear scale space theory. The basic idea of the hyperstack is to define
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Fig. 6.7 (continued).
(d) Euclidean shortening flow (levels 2, 4, 6, 8);
(e) Median filter (levels 1, 2, 3, 4);
(f) Kuwahara filter (levels 1, 2, 3, 4).

relations between voxels in all pairs of adjacent scale space levels, such that the levels
at larger scales—containing the global information—guide the collection of voxels in
the original image at the smallest scale (the ground level).

The entire process requires four steps: (i) blurring, (ii) linking, (iii) root labeling,
and (iv) downward projection.

In the blurring phase the scale space is created. This results in a stack of images
at increasing scale. During the linking phase voxels in two adjacent scale levels are
connected by so-called child-parent linkages. This is done by searching for suitable
parents in level n+1 for each child in level n. Each link is awarded a value (or linkage
strength), based on statistical criteria and heuristic features. The maximum spatial
distance that a child-parent link may span (i.e., the search volume of a child) depends
on the relative scale step σn,n+1 from level n to level n+1. The linking is a bottom-up
process, such that only parents that have been linked to are considered children in the
next linking step. This leads to a tree-like structure of linkages through scale space,
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Fig. 6.8. The brain.cor image shown at different levels of scale for the
six different scale space generators. Shown are, from top to bottom:
(a) Linear scale space, spatial domain (levels 2, 4, 6, 15);
(b) Linear scale space, Fourier domain (levels 2, 4, 6, 15);
(c) Perona & Malik filter (levels 2, 5, 8, 11);

called the hyperstack.

If the linking has converged—in the sense that only few parents are left in the
top level of the hyperstack—the root labeling takes place. Then, the children in the
tree with a relatively low child-parent linkage strength are labeled as roots, which
can be regarded as an ‘end point’ in the linking of voxels that belong together (i.e.,
that form a segment). Finally, in the down projection phase the actual segments
are formed by a projection of specific segment values from the roots downwards to
the ground level. This can readily be executed by following the child-parent linkages
backwards (from the parents to their children). Instead of using unique segment
values to discriminate between the different segments it may also be useful to apply
a ‘mean value’ segmentation. Then, the mean value of all the pixels belonging to one
segment is used for the downward projection of that segment from the corresponding
root. This gives usually more attractive segmented images for visual inspection (see



6.7 Results 119

d

f

e

Fig. 6.8 (continued).
(d) Euclidean shortening flow (levels 2, 5, 8, 11);
(e) Median filter (levels 2, 4, 6, 8);
(f) Kuwahara filter (levels 2, 4, 6, 8).

the results for examples of mean value segmentations).

In short, this describes the hyperstack segmentation algorithm. For a more de-
tailed description and various extensions to this basic scheme we refer to different
publications on this subject [58, 121, 123, 124, 120, 119, 127, 126], or see section 2.2
of this thesis.
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Fig. 6.9. The brain.tr image shown at different levels of scale for the
six different scale space generators. Shown are, from top to bottom:
(a) Linear scale space, spatial domain (levels 2, 4, 6, 15);
(b) Linear scale space, Fourier domain (levels 2, 4, 6, 15);
(c) Perona & Malik filter (levels 2, 4, 7, 10);

6.7.3 The segmentations

In this section we compare the different scale space generators according to the seg-
mentations created by the hyperstack method. Each hyperstack is based on the
corresponding scale spaces shown in section 6.7.1, depending on the input image at
hand.
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Fig. 6.9 (continued).
(d) Euclidean shortening flow (levels 2, 4, 7, 10);
(e) Median filter (levels 2, 4, 6, 10);
(f) Kuwahara filter (levels 2, 4, 6, 10).

Convergence of the linkages in a hyperstack is enforced by using a sufficient number
of discrete scale space levels, so that only a few top parents remain in the highest level
of the stack. (A hyperstack typically needs 15 levels to converge.) Note that this also
requires that all the detail disappears at increasing scale; otherwise, groups of linkages
may continue linking upwards without linking to each other. For instance, the stacks
generated by the Perona & Malik equation suffer from this problem, while the median
and the Kuwahara stacks will converge relatively fast in terms of diffusion time. See
section 6.B.8 for details and solutions.
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In Fig. 6.10 five pairs of volume renderings of hand images are shown. Each pair—
corresponding to the front and back side of the hand—relates to a segmentation of the
hyperstack based on one of the six scale space generators. In order to enable a visual
comparison, the front and back view renderings of the original image are presented as
well.

Fig. 6.10. Volume renderings of segmentations of the hand.100 and the
hand.200 image. The results have been rendered twice to show the front
and back sides of the hand. The pairs of hands correspond to the original
image (top row), the hand.100 image (left pairs), and the hand.200

image (right pairs). The middle row contains the ‘worst’ segmentations
of both the hand.100 and the hand.200 image according to the objective
evaluation measure (see section 6.7.4); the bottom row contains the ‘best’
segmentations according to the same criterion.

For both the hand.100 and the hand.200 image the worst and best results are
shown. This is based on a criterion that will be explained in section 6.7.4, where
a quantitative evaluation method for segmentation results is outlined. In any case,
comparing the middle row (worst results) with the bottom row (best results), it is hard
to detect clear differences. This is a first indication for the fact that the hyperstack
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segmentations do not depend greatly on the different scale spaces used. (Note that the
low resolution of the hand images—64×64×16—leads to relatively poor renderings,
where single pixels look ‘blown up’.)
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Fig. 6.11. Segmentations of the brain.cor image based on the six dif-
ferent scale space generators. The segmentations correspond to:
(a) Linear scale space implemented in the spatial domain;
(b) Linear scale space implemented in the Fourier domain;
(c) Perona & Malik equation;
(d) Euclidean shortening flow;
(e) Median filter;
(f) Kuwahara filter.

In Fig. 6.11 six segmentations of the brain.cor image are presented. The results
are shown in binary form, so as to make them comparable to the manual segmen-
tation of Fig. 6.6e. Again, the differences are small and mainly concern the small,
disconnected lobe on the right part of the picture. Indeed, small segments and deep
inlets are the most difficult parts to segment.

To emphasize the differences we use so-called error pictures (see Fig. 6.12). These
are constructed by subtracting each (binary) segmentation of Fig. 6.11 from the man-
ual segmentation (Fig. 6.6e). The pixels that are in agreement with each other are
colored grey, the differences are colored white. Note that the color white may denote
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either ‘too little’ or ‘too much’ segment.
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Fig. 6.12. Errors of the segmentations of the brain.cor image based
on the six different scale space generators. The grey colored areas have
been segmented correctly (according to the gold standard), the white colored
areas correspond to erroneously segmented pixels. The figures correspond
to:
(a) Linear scale space implemented in the spatial domain;
(b) Linear scale space implemented in the Fourier domain;
(c) Perona & Malik equation;
(d) Euclidean shortening flow;
(e) Median filter;
(f) Kuwahara filter.

It is clear that the Kuwahara filter performs worse than the other five. However, we
have to be careful with interpreting these results. A manual segmentation will never
be 100% correct, and in addition the segmentation task will generally not require a
100% correct result. Therefore, not all the white pixels will have to be corrected to
obtain a useful result. See section 6.7.4 for a more detailed consideration on evaluating
segmentation results.
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Fig. 6.13. Segmentations of the brain.tr image based on the six differ-
ent scale space generators. The segmentations correspond to:
(a) Linear scale space implemented in the spatial domain (initially 58 seg-
ments);
(b) Linear scale space implemented in the Fourier domain (38 segments);
(c) Perona & Malik equation (16 segments);
(d) Euclidean shortening flow(34 segments);
(e) Median filter (50 segments);
(f) Kuwahara filter (54 segments).

In Fig. 6.13 the object distribution obtained from the six hyperstack segmentations
of the brain.tr image is shown. Each segmentation produces a series of sub-segments
that have to be collected to end up with a distribution similar to Fig. 6.6h. The number
of sub-segments that resulted from the hyperstack segmentation step is indicated
below the figures in Fig. 6.13.

Finally, in Fig. 6.14 error images corresponding to Fig. 6.13 are shown. We have
focused on the white matter of the brain, because this is the segment with the largest
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and most difficult curving elements. Again the Kuwahara filter performs relatively
bad, characterized by the large white parts at the edges of the contours. The nonlinear
methods based on the Perona & Malik equation and the Euclidean shortening flow
perform well.

b ca

d fe

Fig. 6.14. Errors of the segmentations of the white matter of the brain.tr

image based on the six different scale space generators. The grey colored
areas have been segmented correctly (according to the gold standard), the
white colored areas correspond to erroneously segmented pixels. The fig-
ures correspond to:
(a) Linear scale space implemented in the spatial domain;
(b) Linear scale space implemented in the Fourier domain;
(c) Perona & Malik equation;
(d) Euclidean shortening flow;
(e) Median filter;
(f) Kuwahara filter.
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6.7.4 Evaluation

In order to be able to make an objective and quantitative comparison between the
performance of the different scale space generators with respect to the hyperstack
segmentations, we have developed a task-driven evaluation method [59, 136, 22]. The
task is defined as to minimize the effort of manually editing the segmented image—
post-processing editing (PPE)—until a result of satisfactory quality is obtained.

Manual editing is modeled by an editing scenario that consists of a series of two
basic actions: (i) the merging of two segments into one segment, and (ii) splitting
a segment along a borderline (2D) or surface (3D). These actions are labeled with
costs. A merge counts for 2 cost units, and a split for 1 + 0.5 · C, where C denotes the
number of contour pixels/voxels involved in the split operation. All the editing of a
segmented image can be expressed in these two basic actions, resulting in a certain
amount of ‘editing costs’.

The quality of a segmented image is determined by mapping each segment of a
segmentation to the gold standard (or rather object distribution in this respect) in a
one-to-one relation. The correctness of a segmentation is defined by the number of
voxels that could be mapped to objects relative to the total number of voxels in the
image. This results in correctness values ranging from 0 to 1, in which ‘1’ corresponds
to a segmentation that is completely identical to the object distribution.

Segmenting an image correctly up to the very last pixel may involve excessive
editing costs. In most cases, this is not needed. (Note further that the use of a
manual segmentation as gold standard also introduces errors, because no two manual
segmentation are the same.) Hence, the required correctness of a segmentation is not
1, but a value slightly less than 1. In our experiments we allow a fifth of the number
of object border pixels to be segmented incorrectly. In this way, the complexity of
objects in the image is acknowledged by allowing a tolerance for small segmentation
errors.

Some of the values used in the editing scenario—viz. the basic costs for a split
action, the ‘one fifth’ of the border pixels, etc.—may look rather ad hoc. However,
the final costs results should not be interpreted as absolute judgements with respect
to the quality of the segmentations, but more as a relative measure for comparing
different segmentations for one and the same input image (with a corresponding ob-
ject distribution). Indeed, we have experimentally found out that tuning the editing
parameters only changes the absolute costs. Mutual relations (‘method A is cheaper
than method B’) generally remain valid.

The PPE costs do not have an absolute meaning for the same reason. Rather, they
should be compared relatively to the costs needed for a complete manual segmenta-
tion. The manual costs are calculated by using an entirely homogeneous image as
‘segmented image’. Then, the editing costs to change the image to the gold standard
correspond precisely to drawing the contours of all the segments. The relative PPE
costs refer to the ratio of the costs of an automatic segmentation and the costs of a
100% manual segmentation.
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Table 6.3 gives an overview of the PPE costs for the four images and for the
six scale space generators considered. The nonlinear diffusion paradigms (Perona &
Malik, Euclidean shortening flow) perform best.
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#segs 26 22 34 12 51 36
hand.100

costs 1.4% 1.7% 1.5% 1.2% 2.8% 1.7%

#segs 26 24 26 26 54 32
hand.200

costs 1.2% 1.6% 0.9% 1.7% 3.9% 1.5%

#segs 24 16 34 18 24 46
brain.cor

costs 8.8% 16.0% 5.6% 7.1% 8.6% 20.6%

#segs 58 38 16 34 50 54
brain.tr

costs 7.9% 5.1% 2.3% 3.8% 7.5% 31.7%

Table 6.3. Relative PPE costs plus corresponding number of segments
that result from a hyperstack segmentation for six different scale space
generators.

6.8 Conclusions

In this chapter we have investigated the sensitivity of hyperstack segmentation to the
strategy of scale space blurring. We have compared six different scale space generators,
and judged the corresponding segmentations both quantitatively and qualitatively.
Based on the experiments described with artificial and medical images, we draw the
following conclusions:

• In general, hyperstack segmentation is not very sensitive to the underlying scale
space. Apparently, using a linking model this way (i.e., based on multiple
features) is a robust system that nicely ‘follows’ the distortion of the scale space
caused by a nonlinear generator.

• The nonlinear scale space generators based on the Perona & Malik equation and
the Euclidean shortening flow perform best on the test images.

• For the Perona & Malik equation more research has to be done to find the criteria
that determine at which scale linear blurring should take over the nonlinear
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blurring. Our preliminary conclusion is that using nonlinearly blurred levels
prior to a linear scale space will yield an improvement in all cases. A large
diversity in sizes of objects that need to be segmented requires a longer nonlinear
blurring in terms of diffusion time.

• The Euclidean shortening flow requires a proper 3D implementation for a prin-
cipled comparison with the other (truly 3D) algorithms. However, the presented
slice-by-slice approach already performs remarkably well, so the results may be
expected to improve only slightly.

• The explicit implementations of both the Perona & Malik equation and the Eu-
clidean shortening flow are computationally slow. An implicit implementation—
which is currently being implemented—will speed up the calculation of all levels
considerably. Note, however, that if only a couple of nonlinearly blurred levels
are needed for the stack the speed issue can easily be dropped: the first levels can
be created sufficiently fast for most purposes, even by explicit implementations.

• The Kuwahara filter has a low quality performance for real-world images, whereas
it performs satisfactory for the artificial images. This can be explained by the
fact that the hand images are geometrically simple. Then, the Kuwahara filter
nicely preserves some image features. For medical images, though, the larger
scale levels have a lot of spurious corners, introduced by the square form of the
filter. To a lesser extent, the same counts for the median filter. (But we em-
phasize that these two filters were never designed to operate at such extremely
large scales.)

6.A Implementation details

In this appendix we discuss the implementation of the following scale space generators:
the discrete Gaussian kernel in the spatial domain (section 6.A.1), the Perona & Malik
equation and Euclidean shortening flow (section 6.A.2), the median filter (section
6.A.3), and the Kuwahara filter (section 6.A.4).

6.A.1 The discrete Gaussian convolution

In this appendix we will deal with the implementation of the convolution of a d-
dimensional image—containing Nd pixels—with a Gaussian kernel of size kd in the
spatial domain (k > 2 and odd). The symbols ‘M’ and ‘A’ are used to denote the
total number of multiplications and additions needed for a complete convolution of
the image, respectively.

As explained in section 6.2.1, the best option to generate level n is to perform the
blurring by convolution of the original image with a discretized Gaussian kernel of
width σn.
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A straightforward implementation of the discrete convolution in the spatial domain
(i.e., use the kernel as a sliding window to compute the convolution of every pixel in
the image) requires M = kdNd multiplications and approximately the same amount
of additions: A = (kd − 1)Nd.

In order to speed up the algorithm, we make use of two observations:

• the Gaussian kernel is separable in the Euclidean directions;

• the Gaussian kernel is symmetric.

The first observation simplifies the implementation significantly: instead of one
complex d-dimensional computation we only have to perform d successive one-dimen-
sional convolutions. (In fact, the Gaussian kernel is the only convolution kernel with
this property [29]) This reduces M to k · d ·Nd and A to (k − 1)dNd.

The second observation may also lead to significant profits in computing time,
provided that it is used properly. We will explain this according to the following
definitions. Set h to half the kernel size k, such that it covers the top of the discrete
Gaussian kernel and one of the tails, i.e., h = (k + 1)/2. Let G[1..h] represent half
the discrete Gaussian kernel in one dimension. This array is filled according to:

G[i] =
1

γ
exp

(
− i2

2 σ2
n

)
, i ∈ [0..h] , (6.19)

where γ is a normalization factor such that

G[1] + 2 ·
h∑
i=2

G[i] = 1 . (6.20)

Let L[1..N ] represent the pixel values of the 1D image line that is currently being
processed. Now a 2D temporary array T [1..N, 1..h] is filled according to:

T [i, j] = L[i] ·G[j] . (6.21)

Hence, the T -array contains all the possible multiplications of every pixel with every
kernel index.

Next, notice that a straightforward convolution of a blurred pixel value L′[i] =
(L ∗G)[i] is calculated as:

L′[i] = L[i− h+ 1]G[h] + ... + L[i− 1]G[2] + L[i]G[1]

L[i+ 1]G[2] + ... + L[i+ h− 1]G[h] , (6.22)

which can readily be rewritten as:

L′[i] = T [i, 1] +
h−1∑
j=1

(
T [i− j, j + 1] + T [i+ j, j + 1]

)
. (6.23)
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In this way, M has further been reduced to hdNd, which is computationally cheaper
than the kdNd of the straightforward implementation, since h ≈ 1

2
k. The number of

additions is not further reduced by using the symmetry property of Gaussian kernels
(i.e., A = (k − 1)dNd).

Note that the T -array indices as calculated in equation (6.23) may cross the array
bounds. In those cases, the border problem becomes apparent. Therefore, an addi-
tional check is necessary to detect border errors and to calculate the correct value (the
actual border handling, e.g., 0th order extrapolation). This can readily be achieved
by using a macro in the implementation.

factor per pixel
Optimization used

M A

none kd kd − 1

separability k d (k − 1) d

symmetry
(
k
2

)d
kd − 1

separability & symmetry k+1
2
d (k − 1) d

Table 6.4. Number of multiplications (M) and additions (A) needed per
pixel of a d-dimensional image to calculate the convolution of that pixel
with a kernel of size kd. The numbers have been indicated for (i) conven-
tional convolution, (ii) convolution based on the separability property, (iii)
convolution based on the symmetry of Gaussian kernels, and (iv) convolu-
tion based on both the separability and the symmetry property.

Finally, Table 6.4 gives a summary of the computing speed factors for the different
optimization methods. The table indicates theM andA values per pixel, so all factors
must be multiplied by Nd to obtain the number of operations necessary for the entire
image.

When considering the symmetry optimization only (the third entry in the table),
we have assumed that 1/2d part of the kernel contains unique (different) values.

6.A.2 The Perona & Malik equation and Euclidean shorten-
ing flow

The image at time t0 +4τ can be written as:

L(~x, t0 +4τ) =
∞∑
n=0

(4τ)n

n!
∂tnL(~x, t0) (6.24)
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If we include terms up to n = 1 we obtain the Euler forward scheme:

L(~x, t0 +4τ)− L(~x, t0) = ∂tL 4τ = F (Li, Lij , ...)4τ (6.25)

Higher order terms can be included to improve the accuracy. We have to be aware
whether these operators are still correctly represented at that scale.

F (Li, Lij, ...) at the desired scale σ can be obtained by a convolution of the original
image with the equivalent derivative of the Gaussian at scale σ. Convolutions are
conveniently calculated in the Fourier domain because the Fourier transform F of a
convolution in the spatial domain is equal to the product of the individual Fourier
transforms in the Fourier domain. We need to compute both the Fourier transform
of the original image and of the desired (combination) of derivatives of the Gaussian
kernel. The Fourier transform of the n-th order derivative of a Gaussian kernel is
obtained by an n-times multiplication with −iω:

F{ ∂
n

∂~xn
G(~x, σ)} = (−iω)nF{G(~x, σ)} (6.26)

After multiplication with the Fourier transform of L0(~x), the inverse Fourier transform
F−1 yields the desired derivative.

6.A.3 The median filter

Fast implementations of the median filter, such as in [82], are based on fixed values of
m and d (m = 3, d=2). In this case, a lot of preprocessing work can be done before
applying the filter to an actual image. This is not a suitable solution for generating
scale spaces, however, since m varies from level to level and for different values of ψ.

The algorithm described in Numerical Recipes [90] is designed to read data in a
sequential pass, for instance from an external tape. The trick is to limit the total
number of passes, while the total number of interesting data points decreases at each
pass. The basic idea is to keep track of the number of data points that are larger
and smaller than the currently estimated median. In general, it takes log N2 passes
through the data to find the median.

A rather simple and effective improvement on this algorithm is based on the fact
that a better initial guess of the median can be made, because our data points do
not have a sequential character; instead, they are simply present in memory. The
initial guess is based on a small number (typically 7) of random pixels of the list.
The algorithm then continues in an iterative way by scanning the list, while keeping
track of the number of values that are larger and smaller than the ‘best’ value found
so far. If the list has been scanned completely and the median value has not been
found (i.e., ‘larger’ and ‘smaller’ are not equal), then the pixel value closest to the
previous estimate (this decision depends on the values of ‘larger’ and ‘smaller’ again)
is considered to be the median in the next iteration step. The process continues until
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Fig. 6.15. Schematic of the median filtering process for relatively large
kernels. The points L and R approach each other such that the size of the
areas CL and CR are kept as closely as possible. If L and R touch each
other, the median has been found.

the median has been found. We found that this technique is faster than log N2 passes,
although the actual computation time depends strongly on the image data.

This improvement fails for larger kernel sizes (needed to create the levels of largest
scale), since the computation time is still enormous. Therefore, we have also im-
plemented the median filter based on the histogram distribution of an image (see
Fig. 6.15). The idea is to detect the median by finding the histogram entry that
divides the histogram in two parts that are equal in area. This can readily be effec-
tuated by using two ‘pointers’, one starting at the most left histogram entry (L), and
one at the right (R). Two cumulative sums (CL and CR) keep track of the total area
covered by L and R so far. The smallest sum index (L or R) is shifted towards the
middle of the histogram, and the cumulative sum is updated. This process continues
until L and R are next to each other. The median then corresponds to the index with
the largest Ci value.

An advantage of this method is that the sliding window can be used to further
optimize the algorithm. Each time the kernel is moved to the next pixel, one row of
pixels is shifted out and one row is shifted into the window. The corresponding data
points of these rows are used to update the histogram, after which the next median
can be found. The major advantage of this method is that it is fast even for very
large values of mn.

The only drawback of the method is that it can not be applied directly on floating
point data. Then, a quantification step is necessary to construct a histogram, which
slightly decreases the accuracy of the method.
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6.A.4 The Kuwahara filter

As regards the implementation we start with the input image Orig, and calculate
OrigSqr, containing the squared pixel values of Orig. Next, we perform the following
four steps for every kernel width k that generates one level:

1. Calculate the ‘mean’ image Mean(k) according to equation (6.12). This image
contains for every pixel the mean value of that pixel in a k × k neighborhood.
Use 0th order extrapolation at the borders to fill in the missing values.

2. Calculate MeanSqr(k), which is the k × k mean image based on OrigSqr.

3. Calculate the ‘variance’ image Var(k), which equals MeanSqr(k) - Mean(k)2.
Each pixel in Var(k) then contains the variance in a k×k neighborhood. (Note
that the normalization factor of equation (6.13) can be omitted without changing
the results of the MLV filtering.)

4. Finally, calculate the result image Kuwa(k), which is done by finding the pixel
in a k × k neighborhood with the smallest local variance value (as stored in
Var(k)), and replace each pixel with the corresponding pixel value in Mean(k).

With respect to the calculation of Mean(k) and MeanSqr(k), note that a significant
profit in time can be achieved by reusing the overlap between two succeeding windows
in the shifting process.

6.B Scale space axioms and properties

We are aware that judging the axioms and selecting desirable properties for a scale
space generator is a rather arbitrary process. Therefore, for each axiom/property we
explain the methodology used, followed by a conclusion for each scale space generator.

6.B.1 Linearity

We have examined the linearity of the operator Ψ, operating on an input image L,
according to the well-known linearity property:

Ψ
(
aL1(~x) + L2(~x)

)
?
= aΨL1(~x) + ΨL2(~x) , (6.27)

where L1 6= L2 and a is a constant. The operator Ψ represents the scale space
generator, e.g., convolution with a Gaussian kernel for the linear scale space.

The convolution of an image with a Gaussian kernel is a linear algorithm. This
can easily be seen by inspecting the multiplication and addition process for a single
pixel (see appendix A). Hence, both the spatial and Fourier implementation of the
linear scale space are linear by definition.



6.B Scale space axioms and properties 135

Not surprisingly, the nonlinear scale space generators Perona & Malik and the
curve evolution process turn out to be highly nonlinear. This can be checked by
expanding equations (6.4) and (6.9) according to the linearity equation (6.27). Much
easier, however, is finding a counter example of two images L1 and L2 that fail the
linearity test. The latter also works perfectly for the median and the Kuwahara filter.

6.B.2 Homogeneity

This property can be judged by looking at the blurring process itself. The process
can be called ‘homogeneous’ if the region of neighboring pixels (centered around that
pixel) that contribute to the blurred value of the pixel at hand has a constant volume
and shape for every pixel in the image. (Note that this does not require that all the
pixels equally contribute to the blurring.)

In the case that a kernel is used, the kernel itself can be inspected. This accounts
for the Gaussian kernel (perfectly homogeneous), and the median and the Kuwahara
filter (both homogeneous). The last two kernels are homogeneous because all the sub-
windows contribute equally to the choice which sub-window is chosen. Note that in
the case of a median filter, the size of such a sub-window is 1, and for the Kuwahara
filter larger than 1.

Perona & Malik and curve evolution both depend on local image features, and can
therefore not be called homogeneous.

6.B.3 Isotropy

The blurring process can be called ‘isotropic’ if for every pixel in the image the neigh-
boring pixels contribute to the blurred value of the pixel at hand according to their
Euclidean distance. This relation (i.e., distance versus contribution) need not be
linear.

The symmetry of the Gaussian kernel makes the linear scale space generator (spa-
tial/Fourier domain) isotropic. The median filter can be called ‘reasonably isotropic’,
because it is symmetric in every Euclidean direction. The kernel not being circular,
however, introduces artifacts—especially at larger scales.

The Perona & Malik equation, although often called ‘anisotropic’, actually is
isotropic. The confusion is caused by the fact that the influence of all the neigh-
boring pixels is locally varying.

The Kuwahara filter uses only one of the surrounding windows, while in the Eu-
clidean shortening flow only diffusion in the isophote direction takes place. Hence,
both methods are not isotropic.
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6.B.4 Self-similarity

For both the linear and the nonlinear scale space generators, it is not hard to see that
they are self-similar. In fact, they are often implemented this way (i.e., iteratively),
although this may introduce discretization artifacts at larger scales.

If this property can not easily be derived analytically, a simple test is the following:
for two successive blurring steps b1 and b2 try to find a single (larger) blurring kernel
b3 that matches the overall result b1 ⊕ b2. To make a fair and robust comparison, use
two different combinations of b1 and b2: (i) a large blurring step with a small one, and
(ii) two blurring steps that are closely together. For the median and the Kuwahara
filter it can readily be tested that such a blurring kernel b3 can seldom be found.

6.B.5 Commutativity

This criterion can easily be tested by comparing two different blurring results b1 ◦ b2

and b2 ◦ b1. As before, two different experiments have been done.
Except for the median and the Kuwahara filter, all scale space generators are

commutative. That is, Gaussian convolution is commutative (linear scale spaces),
and the iterative character of both the Perona & Malik and the curve evolution filter
indicates that it makes no difference whether b1 precedes b2 or the other way around:
the effective result is the same.

6.B.6 Adaptive feature preservation

One of the characteristics of a linear scale space is that it does not take a priori
information into account. Hence, there is no possibility to preserve any specific feature
information whatsoever. On the other hand, the scale spaces obtained with the Perona
& Malik equation and Euclidean shortening flow give specific control over features.
In the original Perona & Malik paper the equations (6.5) and (6.6) are presented as
edge-preserving control functions. One can easily extend these formulas such that
other features, such as corners, are effectively preserved. The Euclidean shortening
flow preserves features by not diffusing in the gradient direction. From the figures
in section 6.7.1 it is obvious that the Perona & Malik equation tends to preserve
the features ‘better’ (i.e., longer in terms of diffusion) than the Euclidean shortening
flow. For the latter, an arbitrary contour will always converge to a circle (in 2D) and
subsequentially shrink to a point [36, 38].

Because the design of both the median and the Kuwahara filter is rather strict,
no high adaptive feature preservation may be expected. However, they both perform
remarkably well with respect to preserving edges, especially at the smaller scales.
Other researchers have shown that corners easily disappear by median filtering, but are
preserved by Kuwahara filtering [106]. At larger scales, both filters fail dramatically
to preserve any image information, but then again, they were never designed to be
used this way.
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6.B.7 Grey value invariance

The evolution is invariant under grey value transformations if equation (6.15) is sat-
isfied. It is readily shown that the linear diffusion equation—in which the luminance
is the potential for the diffusive current—and the Perona & Malik equation are not
grey value invariant. Since the Euclidean shortening flow evolves curves as a function
of their curvature, it is grey value invariant by definition (it is a pure geometric evo-
lution). The median filter is also grey value invariant, since the sequence of values is
not altered by a strict monotone grey value transformation of the image intensities.
Finally, the Kuwahara filter is not grey value invariant, since the variances in the re-
spective sub-windows may change after a transformation. This also affects the choice
of the sub-window that is chosen, and hence the mean value that makes up the new
pixel value.

6.B.8 Convergence

Every implementation of a linear scale space should converge to the average image
intensity. Indeed, Fourier domain implementations nicely converge to this value. For
spatial domain implementations of the linear scale space, convergence is only guaran-
teed if the boundary problem is tackled by using the average image intensity to fill in
the missing data. Frequently used techniques like 0th order extrapolation do not force
the image to converge to the mean image value. Rather, the extreme values asymp-
totically approach each other if the scale is increased, but do not merge together until
the scale is extremely large. This may prevent linking models from converging to a
single node.

A property of nonlinear scale space generators is that they preserve features, as
contrasted with the linear scale space (see above). If this property is still present at
the larger scales, then the linking may have difficulties to converge. It is unlikely that
dark and bright blobs will merge together into a single link (a catastrophe), because
the isophote structure of the underlying scale space does not forces this event to
happen.

However, if we take a closer look at features in scale space (e.g., edges), then it
is undesirable that they remain present at every scale level. We rather would like
to use the feature preserving character of the scale space generator to facilitate the
linking of pixels close to these edges (i.e., the difficult pixels), followed by a fast and
converging linking step to collect the sub-segments at a larger scale. Therefore, from
a pure practical point of view it makes sense to combine feature preserved blurring at
the first levels of scale and straight linear blurring at larger scales.

The nonlinear scale space generators according to the Perona & Malik equation and
the Euclidean shortening flow behave differently in this respect. Euclidean shortening
flow does not require measures to impose convergence. For the Perona & Malik
stacks, however, we have to add a series of linearly blurred levels on top of the stack
to force convergence of the scale space to the average image intensity. We found that
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it depends on the image at which level the nonlinear scale space is best continued by
a linear scale space (although the actual differences in PPE costs are minimal). In our
experiments we have tried to use 1 up to 10 levels for the nonlinear part of the scale
space, added with linearly blurred levels. For the results presented in this chapter we
have used 2 nonlinearly blurred levels for the brain.cor image, and 5 for the brain.tr
image. These numbers corresond to the minimum PPE costs for the segmentations
of those images.

As regards the median and the Kuwahara filter, the convergence property is clear.
As soon as a (sub-)window covers the entire image at every pixel in the image, the
resulting level will be homogeneous. For the Kuwahara filter (k ≈ 2N), the homoge-
neous value will be the average image value. For the median (m = 2N), however, this
end value is strongly image dependent (although the image will be homogeneous). If
a hyperstack requires more levels for complete convergence than the series generated
by the filter process, the final (homogeneous) level is simply used to extend the stack
with more levels.

6.B.9 Low noise sensitivity

From a pure theoretical point of view, all the six scale space generators described in
this chapter remove noise if the scale is increased. The low-pass filtering character
varies from method to method (e.g., locally versus globally), but normally the noise
does not survive the first levels of the scale space.

The main difference is determined by the behavior of each filter for different noise
levels. In this respect, the median filter performs excellent: if a noise peak is increased,
this has almost no influence on the result. The same effect can be observed for the
Kuwahara filter, although to a lesser extent. Here, the selected sub-window (i.e.,
the one with smallest variance) will often be the same, but the mean value of the
sub-window will depend slightly on the noise level.

The propagation of noise in linear scale space has been studied extensively by
Blom [12]. He shows that the propagation of noise variance is always substantially
reduced when scale is increased. For the computation of higher order derivatives
noise is usually enhanced, owing to its high pass nature. However, in the same paper
[12] is shown that determining derivatives is stable if we use the scale at which they
are evaluated properly. Therefore, the two nonlinear equations according to Perona
& Malik and Euclidean shortening flow are also robust against different noise levels.
Features can be extracted nicely irrespective of the noise level by using the scale space
concept. Hence, the gradient information that is used by the Perona & Malik filter
does not loose its influence at increasing noise. If the noise level is increased, the curve
evolution will only be disturbed locally, but at larger scales the curve still converges
to the circular shape.
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6.B.10 Computational speed

We have compared the computing times for the different scale space generators nec-
essary to create the entire scale space. There are two different criteria to be checked:
(i) the algorithm should be fast (i.e., measured in absolute time units); (ii) the speed
of the calculation should preferably be scale independent.

Obviously, we can only judge our scale space generators based on the implemen-
tations that we have available. Nevertheless, we believe that we can make a fair
comparison, apart from a few side notes.

The linear scale space generators are the absolute winners. The spatial domain
implementation (see appendix A) is extremely fast at the smallest scale levels—even
for large images. If scale increases, the algorithm slows down, but within proportions.
The Fourier domain implementation is slower than the spatial domain counterpart at
small scales, but the major advantage is that the computation time does not alter if
scale is increased.

Explicit implementations of the Perona & Malik equation and Euclidean shorten-
ing flow are slow for large scale levels, since only a small time step is allowed. In this
case, implicit methods are preferred, which allow larger time steps.

The Kuwahara filter has the largest decay in performance. The computation
time increases exponentially with increasing window size, although it is very fast for
relatively small kernels.

Finally, for the median filter we have used two implementations. The straightfor-
ward method—based on the counting the number of pixels that are smaller/larger than
the best median found so far—for the first levels of the scale space, and the histogram
division for the larger scale levels. The former behaves similar to the Kuwahara filter:
fast for small values of m, extremely slow for large values of m. The computing times
of the latter are relatively independent of the scale level (and fast enough to yield
manageable results).
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1 0.3 3.4 14.8 5.9 16.0 0.9

5 0.5 3.5 237.2 95.1 20.5 3.2

10 2.0 3.6 7589.7 3041.9 31.3 50.4

1–10 6.5 23.8 7589.7 3041.9 220.0 113.0

Table 6.5. Computation times (measured in seconds) for the six different
scale space generators. Indicated are the times needed to created levels 1, 5,
10, and the total time to create the levels 1 up to 10. Times are measured
on a HP 9000/755 series (user times).
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Samenvatting

Beelden. Wij worden er dagelijks mee geconfronteerd, hangen ze aan de muur en
gebruiken ze om onleesbare artikelen te verduidelijken. Beelden (tekeningen, foto’s,
films) zijn uitstekend geschikt voor communicatie tussen mensen, hetgeen vaak heftige
emoties opwekt, ongeacht of het oorlog, kunst of pornografie betreft. Blijkbaar gaat
het kijken naar een beeld gepaard met het verwerken van een enorme hoeveelheid
informatie. Of, zoals het afgezaagde maar toepasselijke cliché luidt: een beeld zegt
meer dan duizend woorden.

Ons visuele systeem is voortdurend bezig met het verwerken, analyseren en in-
terpreteren van visuele prikkels. De natuur, in combinatie met wat wij leren in de
eerste maanden van ons leven, biedt ons een uitmuntend systeem om met deze visuele
informatie om te gaan. De stelling dat in de nabije toekomst geen enkel door mensen
gemaakt autonoom visueel systeem het biologische equivalent zal overtreffen, wordt
dan ook onderschreven door veel wetenschappers op dit gebied—inclusief de auteur
van dit proefschrift.

Beelden van verschillende modaliteiten hebben hun weg gevonden naar diverse
medische disciplines. Multidimensionale beelden zijn onmisbaar geworden voor kli-
nische diagnose, en voor planning en evaluatie van therapie. Artsen hebben nu de
mogelijkheid de anatomie van het hele menselijk lichaam te ‘bekijken’, of de func-
tionele eigenschappen van bepaalde organen en weefsels te onderzoeken. Welke van de
beeldmodaliteiten relevant zijn, is onder meer afhankelijk van de aard van de ziekte
en de symptomen die een patiënt heeft. Naast de overbekende twee-dimensionale
röntgenfoto is eveneens op röntgenstraling gebaseerde Computed Tomography (ct)
ontwikkeld, die met name geschikt is om bot te onderscheiden van zachte weefsels.
Magnetic Resonance Imaging (mri) is zeer bruikbaar voor het afbeelden van de herse-
nen en andere zachte weefsels, terwijl onder meer voor het zichtbaar maken van foe-
tussen Ultrasound Imaging gebruikt kan worden. Digital Subtraction Angiography
(dsa), ct Angiography (cta) en Magnetic Resonance Angiography (mra) worden
toegepast voor het in beeld brengen van bloedvaten. Om functionele eigenschappen
van weefsels af te beelden is vanuit de nucleaire geneeskunde Single Photon Emission
ct (spect) en Positron Emission Tomography (pet) beschikbaar, maar tevens kan
de (niet-invasieve) mr techniek worden gebruikt (functionele mri). Fig. 1 bevat vier
voorbeelden van verschillende modaliteiten.

Beelden zoals die door het menselijk visueel systeem worden verwerkt, zijn van
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Fig. 1. Voorbeelden van vier verschillende beeldmodaliteiten. Van links
naar rechts: een röntgenfoto van een knie, een ct opname van de buik,
een mri opname van het hoofd, een spect beeld van de hersenen.

een aanmerkelijk hogere resolutie dan de digitale medische beelden die aangehaald
worden in dit proefschrift (te weten, variërend van 64 × 64 pixels (beeldpunten) bij
2D beelden, tot 256× 256× 256 pixels in het geval van 3D beelden). Desalniettemin
bevatten deze digitale beelden voor artsen een schat aan belangrijke informatie. Door-
dat de opnametechnieken voortdurend verbeterd worden, neemt de resolutie in alle
drie dimensies toe. Een voorbeeld van deze ontwikkeling is de spiraalsgewijze ct

opname [48, 45], die snelle drie-dimensionale data-acquisitie van hoge resolutie beelden
mogelijk maakt.

De introductie van de schaalruimte (scale space) theorie door Koenderink [54] en
Witkin [131] is een belangrijke doorbraak geweest voor het begrijpen van beelden.
Voor het eerst werd het begrip ‘schaal’ gekoppeld aan een aantal basisconcepten,
zoals de kleinste eenheid die in een beeld nog onderscheidbare informatie bevat (de
inner scale) en de berekening van de afgeleide van een beeld. Koenderink bewees
dat een Gaussisch filter van verschillende breedtes het enige filter is dat een (lineaire)
schaalruimte onder de voorwaarde van het causaliteitscriterium1 genereert. Fig. 2 laat
het mri beeld van Fig. 1 zien op vier verschillende schalen. Het bemonsteren van de
schaalruimte op een aantal opeenvolgende schalen resulteert in een stapel (stack) van
beelden. Wanneer het invoerbeeld 3D is, geeft dit een vier-dimensionale stack, oftewel
een hyperstack. Hierbij is de schaal de vierde dimensie.

De schaalruimte-theorie volgt dezelfde randvoorwaarden als de natuur. Het is dus
geen toeval dat het concept van meerschalige beelden lijkt op die van het menselijk
visueel systeem: de Gaussische filters en hun afgeleiden komen in hoge mate overeen
met de receptieve velden die worden gevormd door de staafjes en kegeltjes in het
oog [133, 134, 135, 10]. Koenderink is dan ook uitgegaan van de isotrope diffusie-
vergelijking, hetgeen in overeenstemming is met de afwezigheid van informatie in de
fase van ‘early vision’ (d.w.z. dat geen subjectieve kennis over een bekeken scène
beschikbaar is). De kracht van het menselijk visueel systeem ligt in het feit dat
het ‘het observeren van een scène’ (zoals het kijken naar een boom) gevolgd kan

1Het causaliteitscriterium houdt in dat op grotere schalen geen details mogen onstaan die er op
kleinere schalen niet zijn.
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Fig. 2. De mri opname van het hoofd van Fig. 1 afgebeeld op vier ver-
schillende schalen

worden door een specifieke, gerichte actie om meer informatie (andere bomen) of
meer specifieke informatie (takken, bladeren) te verzamelen. Vergelijk in dit verband
het kijken naar een boom en het vestigen van de aandacht op een enkel blaadje. Dit
soort acties vereist terugkoppeling van de hersenen (die binnen enkele milliseconden
een scène hebben geobserveerd en geanalyseerd) naar het visuele mechanisme dat
bepaalt waarnaar we kijken. Inderdaad zijn er voor zulke terugkoppelingen fysieke
verbindingen gevonden tussen de visuele cortex en de Laterale Geniculate Nucleus
(LGN), hetgeen de theorie ondersteunt dat differentiaalstructuren in een beeld (een
rand, een hoek) alleen waargenomen kunnen worden nadat het beeld is geanalyseerd
op meerdere isotrope schaalniveaus.

Fig. 3. Een mri opname van de hersenen (links) en een corresponderende
segmentatie in 6 segmenten (rechts). Van binnen naar buiten: ventrikels,
witte hersenstof, grijze hersenstof, liquor & bot, bindweefsel & huid, en de
achtergrond.

In de pijplijn van beeldacquisitie naar interpretatie is het segmenteren van een
beeld één van de belangrijkste en moeilijkste taken. Segmenteren is het groeperen van
pixels tot grotere structuren, zodanig dat dit resulteert in een betekenisvolle verdeling
van objecten. Dit is gëıllustreerd in Fig. 3. Zonder een gesegmenteerde versie van een
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beeld is het vrijwel onmogelijk kwantitatieve metingen aan dat beeld te doen (zoals
het bepalen van het volume van een tumor), of een drie-dimensionaal aanzicht te
genereren (zoals de volume rendering van een schedel). Fig. 4 bevat twee voorbeelden
van volume renderings gebaseerd op de segmentatie van een 3D beeld. De uitdaging is
hier niet zozeer de visualisatie zelf, als wel het segmenteren van de hersenschors. Het
doel is dit te realiseren met een snelheid en nauwkeurig die vergelijkbaar is met die
waarmee het biologisch visueel systeem van hogere diersoorten deze extreem moeilijke
taak uitvoert. Naar onze mening heeft een methode die gebaseerd is op het biologisch
visueel systeem—zoals de hyperstack segmentatiemethode—de beste papieren om dit
doel te bereiken. De beschikbaarheid van 3D afbeeldingen geeft een computationeel
systeem in ieder geval één voordeel ten opzichte van het biologisch visueel systeem:
voor deze laatste zijn alleen 2D invoerbeelden beschikbaar, waarvan in de hersenen
een 3D voorstelling gemaakt moet worden.

Fig. 4. Volume rendering van een 3D mri hersenopname (links). Indien
het beeld correct gesegmenteerd is kunnen de objecten aan de buitenkant
eenvoudig worden ‘verwijderd’ zodat verborgen objecten zichtbaar worden.
In dit geval zijn een deel vande huid en de schedel verwijderd, waardoor
de cortex zichtbaar wordt (rechts).

De meeste conventionele segmentatiemethoden zijn niet gebaseerd op het schaal-
ruimte concept, maar zijn meer lokaal georiënteerd—zoals de rule-based systemen van
Ortendahl [80], Menhardt [74, 75], en Raya [91]—of ad hoc implementaties voor een
specifiek probleem (bijv. Brummer [15]). Schiemann [102] en Pizer [85] hebben zich
met name toegelegd op interactieve segmentatiemethoden in tegenstelling tot automa-
tische methoden, terwijl Karssemeijer [49] en Vemuri [115] een multiresolutie aanpak
gebruikten die niet gebaseerd is op de diffusievergelijking, maar op respectievelijk
het mediaanfilter en de wavelet-transformatie [70]. Tenslotte zijn er voor beeldseg-
mentatie veelbelovende resultaten geboekt met het gebruik van neurale netwerken
(Worth [132]), met name in combinatie met meerschalige technieken (Haring [44]).
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In de meeste meerschalige beeldsegmentatiemethodes is er sprake van het verbinden
van pixels tussen aangrenzende schaalniveaus (Burt, Pizer, De Graaf [16, 86, 25]).
Door de meerschalige benadering kan globale informatie in het beeld effectief worden
gebruikt. In dit proefschrift wordt aangetoond dat de hyperstack met ruisige beelden
goed presteert en met name sterk is in het tegelijkertijd segmenteren van zowel kleine
als grote objecten.

In hoofdstuk 2 wordt de hyperstackmethode uiteengezet. Dit omvat het filteren om
de schaalruimte te bemonsteren, en het ‘bottom-up’ linking proces waarin de schaal-
niveaus pixelgewijs met elkaar verbonden worden. Dit laatste levert een boom van
verbindingen in de schaalruimte op. Vanaf elk knooppunt kan de boom naar beneden
worden gevolgd tot aan de pixels in het originele (hoge resolutie) beeld. Deze pi-
xels vormen dan een segment. Het knooppunt waar de projectie begint heet de wortel
(root) van het segment. Een kritische fase in een hyperstack segmentatie is het bepalen
welke knooppunten in de boom door de schaalruimte de beste vertegenwoordigers zijn
van segmenten in het originele beeld. Dit is de ‘root labeling’ fase. Hoofdstuk 2
behandelt tevens ontwerpaspecten van de hyperstackmethode. De datastructuur is
gëımplementeerd in de object-georiënteerde programmeertaal C++.

Voor het testen van onze segmentatie-algoritmen is het wenselijk om de beschikking
te hebben over (test)plaatjes waarvan de objectverdeling a priori bekend is. Hiertoe
is een octree-achtig algoritme ontwikkeld om objecten die op een wiskundige manier
zijn gedefinieerd, om te zetten naar een voxel-model (een voxel, afgeleid van volume
element, is een 3D pixel). De essentie van deze methode is dat de grove discretisatie
op voxelniveau verfijnd kan worden door elk voxel dat een deel van de rand van
een object representeert op te delen in acht kleinere sub-voxels. Hiermee kunnen de
zgn. partial volume voxels nauwkeurig weergegeven worden. Het conversie algoritme
is op een recursieve manier gëımplementeerd, waardoor de methode een instelbare
nauwkeurigheid heeft. De methode wordt in detail beschreven in hoofdstuk 3.

Een groot probleem van de meeste conventionele segmentatiemethoden is dat ze
geen rekening houden met het partial volume effect. Dit effect—dat veroorzaakt wordt
door de beperkte resolutie van het afbeeldingssysteem—uit zich in voxels met een
‘tussenwaarde’ (de intensiteit van het voxel) van de buurvoxels, die wel volledig in één
weefseltype zitten. Normaal gesproken moeten partial volume voxels kiezen tussen
deze weefseltypen. Door de isofoten in de directe omgeving van een partial volume
voxel te volgen, is het mogelijk meer gedetailleerde informatie van de verschillende
weefseltypen (die in dat voxel zitten) te verkrijgen. Het equivalent met de hyperstack
is dat het toegestaan is meerdere verbindingen naar de bovenliggende laag aan te
leggen voor ieder voxel (in plaats van slechts één zoals in het conventionele linking
schema). In hoofdstuk 4 wordt uitgelegd hoe de meerschalige informatie (die de
structuur van de isofoten bevat) effectief gebruikt kan worden om partial volume voxels
op sub-voxel niveau te segmenteren. Er wordt aangetoond dat dit betere resultaten
oplevert met betrekking tot kwantitatieve beeldanalyse (bijv. volume metingen) en
dat de volume renderings van 3D beelden aanzienlijk in kwaliteit vooruit gaan.
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In hoofdstuk 5 wordt de bemonstering van de gefilterde beelden in de schaalruimte
behandeld. Omdat de hoogfrequente informatie verdwijnt als de schaal toeneemt zijn
de beelden op de hogere schaalniveaus overbemonsterd. Er wordt aangetoond waarom
het rechttoe-rechtaan verminderen van het aantal bemonsteringen, ook wel sampling
rate reduction genoemd, faalt voor de meerschalige beeldverwerking. In plaats daar-
van zou de afname van het aantal bemonsteringen onafhankelijk moeten zijn van de
afstand tussen twee bemonsteringen (de sampling width). Dit leidt tot een methode
waarbij de outer scale2 kleiner wordt, ook wel outer scale reduction (OSR) genoemd;
het netto resultaat is dat de beeldgrenzen kleiner worden bij toenemende schaal. Er
worden twee verschillende benaderingen besproken: stricte en heuristische OSR. Het
voordeel van het toepassen van OSR is tweeledig: (i) de invloed van het randpro-
bleem (vooral aanwezig op grotere schaalniveaus) wordt geminimaliseerd, en (ii) de
complexiteit van de verbindingsstructuur gaat omlaag. Segmentaties van medische
beelden gebaseerd op hyperstacks met OSR laten zien dat de rekensnelheid met een
factor 5 opgeschroefd kan worden, zonder dat er een significant verlies in kwaliteit
optreedt.

In hoofdstuk 6 tenslotte wordt een onderwerp aangehaald dat een groeiende inte-
resse geniet van de computer vision wereld. Sinds de introductie van lineaire schaal-
ruimte hebben onderzoekers zich gericht op niet-lineaire varianten. Als gevolg hiervan
werden er diverse niet-lineaire filters voorgesteld om een schaalruimte mee te bouwen,
bijv. door Perona [84], Alvarez [2] en Niessen [78]. We hebben de bruikbaarheid van
dergelijke filters vergeleken met de lineaire schaalruimte en twee andere niet-lineaire
filters: het mediaanfilter en het Kuwahara filter. De verschillende filter strategieën
worden geëvalueerd aan de hand van de hyperstack segmentatiemethode: de filters
worden gebruikt om de schaalruimte te creëren (de eerste stap van de hyperstack
segmentatiemethode). Op basis van numerieke experimenten wordt aangetoond dat
het meerschalige linking model zeer robuust is voor wat betreft de keuze van de on-
derliggende schaalruimte. De niet-lineaire filters gebaseerd op de Perona & Malik
vergelijking en ‘curve evolutie’ lijken het meest veelbelovend voor onderzoek in de
nabije toekomst.

2Met outer scale wordt de Field Of View (FOV) bedoeld: de totale reikwijdte van een beeld.
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me, maakte overigens wel weer heel veel goed na een dag hard werken (‘Agie, aboe’).
Bovendien ben je een uitstekend communicatiemedium gebleken voor je ouders (‘Je
vader is de afwas vergeten te doen, hè Jelle?’).

Max, jou ben ik veel dank verschuldigd voor je humor, je geduld, je afkortingen,
je makkelijk zijn, en bovenal je openhartigheid. Ondanks het feit dat de subsidie-
aanvragen altijd eergisteren binnen moesten zijn, stond je altijd voor me klaar (als je
er was...) en had je een meer dan positieve houding tegenover mijn ‘heb je nog een
minuutje?’ (antwoord steevast: ‘VK?’1). Onze gezamenlijke terugreis uit Amerika in
1992, onder begeleiding van Whoopi Goldberg, staat mij (en de stewardessen) nog
helder voor de geest. Met meer flessen wijn op vrijdag kan onze komende samen-
werking alleen nog maar beter worden. Desnoods sleep ik je auto nóg een keer terug
naar Soest (het blijft toch je baas), als ik maar geen adressen-labeltjes meer hoef te
plakken met een Pritt-stift.

Ik wil de commissie bedanken voor hun geduld en strakke planning bij het lezen en
beoordelen van dit proefschrift. Er is een grote mate van objectiviteit nodig om ieder
boekje op zich te beoordelen, zeker gezien de variëteit aan onderwerpen (en kwaliteit)
van proefschriften die gelezen moeten worden.

En dan André. Tja, André. Als kamer- en promotiegenoot ben je vooral te herken-
nen aan het feit dat je ‘rechts’ en ‘links’ consequent door elkaar haalt. Bovendien heb
je een hele nieuwe dimensie aan het begrip ‘homo sapiens’ gegeven... Jou ben ik
gewoon eigenlijk2 ontzettend dankbaar voor het feit dat onze boekjes er zo uitzien

1Verse Koffie
2Op zijn Alfons Saldens.
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zoals ze er nu uitzien. Het is dan wel geen op zijn kop gebundelde eenheid geworden,
maar ze horen overduidelijk bij elkaar. Ik denk dat we de afgelopen jaren allebei veel
profijt hebben gehad van onze samenwerking, niet alleen op segmentatieniveau. Onze
discussies betroffen een breed scala aan onderwerpen: van ergernissen over buslijn 12
tot discussies over de Nederlandse taal op niveau3 en over ingewikkelde koffiebeheer-
systemen. De laatste maanden konden we goed samenwerken, mits jij je schoenen
gewoon aanhield en ik niet zeurde over teveel melk in mijn koffie. En ochtendmensen
zijn we allebei niet...

Ger–2 seconden–Timmens, ex-collega en vriend, jij bent een onmisbare steun in de
rug gebleken. Je kennis van allerhande grapjes en grolletjes, van LATEX tot Postscript,
van Linux tot vi, van ‘Kugelschreiber’ tot ons polynoom-programmaatje. Onze nach-
tenlange sessies hebben zeker vruchten afgeworpen, was het niet voor een student die
af moest studeren, dan wel voor onze vriendschap.

En dan Wiro Niessen, de dorpsgek van 3DCV. Na alle hyper-nerds die Max binnen
had gehaald, was jij een knappe vent. Je humor staat op het niveau van Maurits–
tadadadadam–Konings, een prestatie van formaat. Ik dank je vooral voor je vermogen
om het serieuze werk (zoals het schrijven van mijn artikelen) te combineren met ‘leuk
doen’, en tussendoor nog even te roddelen over de hele groep. En een langere paranimf
kon ik niet vinden.

Verder wil ik Rik–standje-2–Stokking bedanken voor zijn werktijden, zodat ik ’s
avonds niet altijd alleen (of met Ger) hoefde te werken, en de meiden Carolien Bouma
(‘this is the animal’) en Manon–gammafi(e)t(s)–Kluytmans voor hun niet-mannelijke
kijk op het groepsgebeuren. Een verademing!

De beheerders Fred Appelman en Bart–ĵ h–Muyzer bedank ik voor het (meestal)
draaiende houden van al die computers met een te lang ethernet. Fred, als ex-
kamergenoot heb ik veel van (en over) je geleerd, maar ik bedank je vooral voor
je levensreddende klap op mijn rug toen ik bijna leek te stikken in een hapje biefstuk.
Onze reis naar Madrid was er één om nooit te vergeten! Bartm, bedankt dat ik je
altijd mocht bellen, ook al moest het eigenlijk per e-mail.

Sandra Boeijink (‘ik ben géén secretaresse!’) bedank ik voor alle administratieve
rompslomp die wij niet begrijpen en voor de (nu al legendarische) barbecue, en Margo
Agterberg voor het aanhoren van mijn file-problematiek en de gratis koffie.

Bart ter Haar Romeny, nooit ben ik iemand tegengekomen die zich meer gedreven
in zijn vakgebied (en daarbuiten) beweegt dan jij. Je bent onbetwist een grote stimulus
voor velen, met je brede kennis, je vriendelijkheid en je reisverhalen. Lunchen met
jou kost een uurtje, maar het is het waard.

Verder loopt (of liep) er nog een variëteit aan mensen rond op 3DCV die ik eigenlijk
niet op een hoop mag gooien, maar ik sta al als ‘te wollig’ bekend, dus vooruit maar.
Bas Haring (onze Kunstmatige Intelligent), Karel–O-O–Zuiderveld, Freek–5/6/94-of-
6/5/94-?–Beekman, Twan Maintz voor het niet met mij in één bed willen slapen
in Brussel en in Nice, Romhild Hoogeveen (‘ik k’m uut ’t oost’n, ’n da wet’n ze

3Voor André: nivo.
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nog njet wat uun piex’l ies’), Robert–de-Pèhp–Maas, Chris Bakker, Ruud–heup-doet-
leven–Geraets, Georg Steinfelder, Evert-Jan Vonken, Frank Bastin, Janita Wilting,
Ilse Klinkenberg, Alfons Salden gewoon eigenlijk voor zijn triviale uiteenzettingen,
en Erwin van Soest, die als eerste buitenstaander de code van de hyperstack heeft
kunnen doorgronden. Proficiat!

Aan de beginperiode heb ik veel goede herinneringen overgehouden. Kees–dat-
heb-ik-vijf-jaar-geleden-al-in-fortran-gedaan–de Graaf, Alex–blockout–Hulzebosch,
Paul Roos, Petra van den Elsen, Emiel Polman, Analies Schipperheijn, Luc Florack,
Anton Koning alias Mr. Unsupp en Sander Wendel, jullie waren prima collega’s. Het
is jammer dat ik jullie nu nog zo weinig zie.

Marcel Metselaar en Jan de Groot bedankt voor jullie uitstekende service voor
wat betreft ons foto- en diamateriaal, Peter Anema bedankt omdat je een aangename,
integere kamergenoot was (en voor het snellere scan-werk). Hilleke Hulshoff Pol en
Wim Baaré ben ik zeer erkentelijk voor hun introductie van mij bij Psychiatrie. Ik
hoop een waardevolle collega voor jullie te kunnen zijn in de nabije toekomst.

Ik wil ook de studenten bedanken, met name Birgit Arkesteijn, Chris Kamphuis,
Olaf Zander, Nee Hè en Niet Weer.

I also would like to thank my friend Richard Holloway for knowing you and your
family. We don’t meet very often, but you are always welcome when you are in
Holland; I’m sure we’ll meet again some day, ẃıth our wives and children! A special
thanks to Steve Pizer, who always showed a lot of interest in my work during visits. I
also want to thank Graham Gash, Tim Cullip, Mark Schulze, Lewis Griffin, and Jorge
Llacer for being so helpful, in person or by e-mail. Mads–popcorn–Nielsen, I think I
like you, but I don’t know why...

Naast het werk heb ik ook veel steun, liefde en gezelligheid mogen ontvangen van
mijn naaste familie, schoonfamilie en mijn vrienden. Jullie zorgden voor broodnodige
ontspanning en heerlijke vakanties en weekenden. Mijn grote broer Bart ben ik
dankbaar voor het ‘broer-zijn’.

Tenslotte wil ik mijn ouders bedanken voor alles wat ze in de afgelopen dertig jaar
voor mij gedaan hebben. Zonder jullie zou ik zeker niet geworden zijn wat ik nu ben,
maar vooral ook hóe ik nu ben. Ik bedank jullie dat ik mij heb kunnen ontplooien,
van pianist tot wollige (nét z’n vader) wetenschapper, van zoon tot jonge vader.
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Curriculum Vitae

Koen Vincken werd op 22 augustus 1965 in Heemskerk ge-
boren. Zijn middelbare schooltijd bracht hij door op het Pius
X College (tegenwoordig het Augustinus College) te Bever-
wijk, waar hij in 1983 het Gymnasium β diploma behaalde.
In datzelfde jaar begon hij met de studie informatica aan de
Technische Universiteit te Delft. Zijn afstudeeronderzoek ver-
richtte hij bij de groep Beeldverwerking (de Computer Vi-
sion Research Group), gevestigd in het Academisch Ziekenhuis
Utrecht (AZU), en betrof het ontwerpen en implementeren
van een prototype van de hyperstack, een methode waarmee
(medische) beelden semi-automatisch gesegmenteerd kunnen
worden. De onderzoeksgroep maakt deel uit van de vakgroep

Radiodiagnostiek & Nucleaire Geneeskunde van de Faculteit der Geneeskunde aan de
Universiteit Utrecht.

Na zijn afstuderen aan de TU Delft bleef hij aan de Universiteit Utrecht verbonden
via een aanstelling als Assistent In Opleiding (AIO) per 1 juli 1989. Het onderzoek
van zijn promotie betrof het verder ontwikkelen van het prototype van de hyperstack.
Dit proefschrift is daar het resultaat van.
In mei 1992 werd zijn AIO aanstelling omgezet in een functie als Toegevoegd Onder-
zoeker. In die hoedanigheid heeft hij—naast zijn promotie-onderzoek—onder meer
meegewerkt aan de ontwikkeling van een nieuwe beeldver-
werkingsbibliotheek.
Per 1 oktober 1995 is hij als Toegevoegd Onderzoeker
Computational Neuroimaging (in het kader van het zgn.
Schizofrenie project) voor 50% verbonden aan de afdeling
Psychiatrie van het AZU en voor 50% aan de afdeling
Beeldverwerking.
Koen Vincken is getrouwd met Pauline Plantinga en ze
hebben sinds 1 juni 1995 een zoon, Jelle.
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