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1 Introduction

Quantum Chromodynamics in the presence of an external magnetic field has recently at-

tracted much attention because of its phenomenological relevance and of many interesting

theoretical features, such as anomalous transport [1, 2], possibility of new phases in the

QCD phase diagram [3], magnetic catalysis [4–8] and inverse magnetic catalysis [9–14]. For

comprehensive reviews for these and many other phenomena, see for example [3, 15, 16].

Realization of these phenomena in nature typically requires very strong magnetic fields,

eB ∼ Λ2
QCD and higher. During non-central heavy ion collisions such large magnetic fields

are believed to be generated by the spectator nucleons, and their magnitude can reach up

to eB/Λ2
QCD ∼ 5–10 at the time of the collision [17–23]. Even though this magnetic field

rapidly decays after the collision, it is still sufficiently strong at the time when the quark-

gluon plasma forms, hence affecting the subsequent evolution of the plasma and finally the

charged hadron production in these experiments [23]. Nuclear matter in strong magnetic

fields also exists in other contexts such as the early universe [24–30] and neutron stars [31].

In this paper we study the influence of external magnetic fields on the dynamics of

the quark condensate in strongly interacting QCD-like theories. It is long known [6, 8]

that magnetic field has a constructive effect on the quark condensate at vanishing and low

temperatures. This is called the magnetic catalysis and the physical reason behind it can

be understood as follows [7, 8, 32]: in the presence of a strong magnetic field, motion of the

charged particles in directions transverse to B are restricted due to the Landau quantization

leading to an effective reduction from 3+1 to 1+1 dimensions. It is also well known that

the IR dynamics in gauge theories are much stronger in lower dimensions, leading to a

fortification of the quark condensate and catalysis of chiral symmetry breaking in the

presence of magnetic fields. It came as a surprise therefore, when recent lattice studies

found the opposite behavior at higher temperatures: for temperatures higher than a value

slightly below the deconfinement crossover temperature, around ∼ 150 MeV, the magnetic
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field is found to destroy the condensate [9–12]. This behavior, called the inverse magnetic

catalysis, cannot be explained by perturbative QCD calculations, as these and various

other effective models predict catalysis instead [3]. It is therefore believed to result from

the strongly coupled dynamics in QCD around the deconfinement temperature.

Among possible explanations of this phenomenon [3], the most promising one is the

competition between the “valence” and the “sea” quark contributions to the path integral,

which has been observed on the lattice [33, 34]. Here the valence quarks correspond to

the quarks in the q̄q operator inside the path integral and the effect of B through this

contribution always tend to catalyze the condensate, simply because B increases the spec-

trum density of the zero energy modes of the Dirac operator. The “sea” contribution on

the other hand comes from the quark determinant that describes fluctuations around the

gluon path integral. B and T dependence of this contribution is more complicated and

turns out to suppress the condensate around the deconfinement temperature. It is fair to

say that a clear explanation of the puzzle of the inverse magnetic catalysis is still missing.

We propose to study the problem in strong coupling and the limit of large number of

colors (Nc) and flavors (Nf ), using a realistic holographic bottom-up model for QCD based

on [35–39]. The model successfully incorporates breaking of the conformal symmetry and

running of the gauge coupling, predicts realistic glueball and meson spectra [40–43] and fits

very well the lattice results for temperature dependence of thermodynamic functions [44].

Since we work in the large Nc limit and since the magnetic field couples the system only

through the quarks, it is impossible to see phenomenon of inverse magnetic catalysis unless

one also considers large number of flavors, i.e., the Veneziano limit [45]:

Nf , Nc →∞ , x =
Nf

Nc
= fixed , λ =

g2
YMNc

8π2
= fixed . (1.1)

This is necessary, since the aforementioned “sea” quark contribution would be completely

suppressed unless we also consider large Nf . The price one pays by taking the Veneziano

limit is that the dual gravitational solution becomes much more complicated, since the

backreaction of the flavor branes on the gravitational background has to be taken into

account. A backreacted model was successfully constructed in [38] and the subsequent

papers, [46–54], and we shall use this model to study gravitational solutions with a finite

magnetic field. It is important to stress that this holographic model successfully describes

the dynamical chiral symmetry breaking at vanishing B. Holographic gauge theories in the

presence of magnetic fields have been studied in several works in the past either at Nf = 0 or

Nf � Nc, [39, 55–62], or with smeared backreacted flavor branes in the Veneziano limit [63].

In the next section we present details of the model and discuss the numerical techniques

we use to obtain the solutions. Section 3 contains the main results of our paper, in particular

presence of inverse magnetic catalysis in a particular range of the parameter space. In

section 4 we investigate the behavior of the condensate for varying number of flavors, by

considering different values of x in (1.1). In the final section we discuss our findings in the

light of the field theory and lattice QCD results discussed above. We leave the details of

the equation of motion and the choice of potentials that define our theory in the appendices

to simplify the presentation.
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2 Holographic QCD in the Veneziano limit

We consider an effective holographic model of QCD inspired by string theory and matched

to low energy properties of QCD. The dynamics can be separated in two sectors, the

color and the flavor. The color part of the model is the Improved Holographic QCD

(IHQCD) that describes the strong coupling dynamics of four dimensional Yang Mills in

the large Nc limit, [35, 36]. The low energy fields include the bulk metric and a real

scalar, the dilaton, corresponding to the ’t Hooft coupling. The flavor part is constructed

in a framework where flavors are introduced by Nf coincident pairs of flavor branes and

anti-branes [64, 65]. The system is symmetric under the U(Nf )R × U(Nf )L flavor group.

The lowest lying open string states on the flavor branes include a complex scalar field, the

“open string tachyon”, and the left and right gauge fields that correspond to the left and

right flavor currents respectively. The tachyon is dual to q̄q operator and belongs to the bi-

fundamental (Nf , N̄f ) representation of the flavor group. In the current work, we consider

the full backreaction of the flavor sector to the glue in the Veneziano limit, equation (1.1),

and study the ground state of the system at finite temperature and magnetic field. The

magnetic field is introduced in the flavor part of the model through the vector combination

of the left and right gauge fields.

The glue action is,

Sg = M3N2
c

∫
d5x
√
−g
(
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

)
. (2.1)

Here λ = eφ is the exponential of the dilaton field. M is the Planck mass in five dimensions.

The Ansatz for the vacuum solution of the metric is

ds2 = e2A(r)

(
dr2

f(r)
− f(r)dt2 + dx2

1 + dx2
2 + e2W (r)dx2

3

)
, (2.2)

where the anisotropy in x3 direction is introduced because presence of the background

magnetic field, which we choose in the x3 direction, breaks the rotational symmetry

SO(3) → SO(2). The UV boundary lies at r = 0 (where A → ∞), and the bulk coor-

dinate runs from zero to the horizon, rh, where the black hole factor vanishes, f(rh) = 0.

In the UV, r is identified roughly as the inverse energy scale in the dual field theory. The

dilaton potential, Vg, approaches a constant close to the boundary (λ→ 0). Its asymptotics

in the IR (λ → ∞) is Vg ∼ λ
4
3
√

log λ. This behavior is chosen to reproduce confinement,

discrete glueball spectrum, linear Regge trajectories of glueballs and the thermodynamic

properties of QCD [35–37, 40, 66–68].

The flavor action was first proposed by Sen, [69], in the study of a coincident brane-

antibrane pair in flat spacetime. It was then employed in modeling the flavor sector of

holographic QCD in [65], where it was shown to successfully reproduce the chiral symmetry

breaking pattern and the low energy meson spectrum of QCD. It was generalized in

the Veneziano limit by taking into account full backreaction of the flavor branes on the

background geometry in [38]. These fully backreacted models are coined V-QCD. Sen’s
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action at the vacuum with only real part of the tachyon nontrivial reads

Sf = −xM3N2
c

∫
d5xVf (λ, τ)

√
−det (gµν + w(λ)Vµν + κ(λ) ∂µτ ∂ντ) , (2.3)

where Vµν = ∂µVν − ∂νVµ is the field strength of the bulk gauge field dual to U(1)L+R in

the decomposition U(Nf )R ×U(Nf )L → SU(Nf )R × SU(Nf )L ×U(1)L+R ×U(1)L−R. We

introduce the boundary magnetic field by choosing

Vµ = (0,−x2B/2, x1B/2, 0, 0) , (2.4)

and set the other bulk gauge fields to zero. τ is the aforementioned tachyon field that we

take in the diagonal form for simplicity. The total action of the system is

S = Sg + Sf . (2.5)

The tachyon potential has the form Vf (λ, τ) = Vf0(λ)e−a(λ)τ2 that has a minimum at

τ →∞. Presence of this field is crucial to the model since it serves as an order parameter of

the chiral symmetry breaking [65]. As the tachyon potential is minimized by requiring τ di-

verge in the IR of the geometry, then, the brane-anti-brane pairs condense and, if the geom-

etry is confining, chiral symmetry breaks at zero temperature [65]. Above a certain temper-

ature however the profile with minimum energy becomes τ = 0 restoring chiral symmetry.

The functions Vf0(λ), a(λ), κ(λ) and w(λ) need to satisfy several constraints. First

we need to fix the behavior in the UV, i.e., at weak coupling λ → 0. In this regime

the holographic model is not expected to be reliable, however we can still make a choice

that guarantees the best possible UV “boundary conditions” for the more interesting IR

physics, and choose the potentials consistently with QCD perturbation theory [35, 36, 38].

In particular, we determine Vf0 and κ/a near the UV boundary such that the holographic

RG flow of the dilaton and the tachyon matches the perturbative RG flow of the coupling

and the quark mass in QCD. Consequently, the leading boundary behavior of the bulk

scalar fields is given by

λ(r) ' − b0
log Λr

(2.6)

τ(r) ' mqr(− log Λr)−ρ + 〈q̄q〉r3(− log Λr)ρ (2.7)

where b0 is the leading coefficient of the QCD β-function and the power ρ is also matched

to the coefficients of the anomalous dimension of q̄q and the QCD β-function (see [38, 47]

for details). In this work we only consider massless quarks so the non normalizable mode

of the tachyon solution vanishes.

The UV energy scale Λ in (2.6) and (2.7) is identified with ΛQCD on the field theory

side up to a proportionality constant. We stress, however, that while this proportionality

constant is typically O(1) it does not need to be very close to one. As is the case for lattice

QCD, the matching of the energy scales of the holographic model and real QCD needs to be

done by comparing the values of some physical parameter, such as the pion decay constant,

the mass of the ρ-meson, or the critical temperature of the confinement-deconfinement
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transition. For the potentials which we shall use here, this matching typically leads to the

value of Λ being around 1 GeV.

The functions Vf0(λ), a(λ), and κ(λ) are constrained also in the IR (λ → ∞) by

requiring that they reproduce the expected dynamics in the flavor sector, such as the

phase diagram of the theory with varying x, T and chemical potential and the properties

of meson spectra, [41, 42, 46–49, 51, 52]. In the present work, we use the choice for these

potentials constructed in [49]. We present this choice of potentials in appendix B.

The most important coupling function in our study is w(λ) because it couples the

electromagnetic sector of the theory to the gluon dynamics, hence its shape strongly affect

electromagnetic properties of dual theory that we are interested. Its asymptotic dependence

on λ is not strongly constrained by studies referred above. The most natural expectation

is that w(λ) and κ(λ), i.e., both couplings in the square root factor of the DBI action, have

similar asymptotics both in the UV and in the IR. This assumption is consistent with the

UV behavior of the two point function of the flavor vector current and asymptotics of the

meson spectra [42, 47]. The potential w also plays an important role in determining the

transport properties of the Quark-Gluon Plasma, such as its conductivity and the diffusion

constant [50]. Hence, it is also a major factor in the calculation of the spectrum of emitted

photons in the QGP phase of heavy ion collisions [53]. Assuming that κ and w have similar

IR asymptotics lead to reasonable physics and yield good fits to the experimental data also

in these studies.

Motivated by these earlier studies, we therefore make a choice for w for which it has

the same asymptotics as κ:

w(λ) = κ(c λ) , (2.8)

where c is a parameter. We will see that judicious choices of c lead to interesting phenomena

such as the inverse magnetic catalysis.

3 Numerical results

Solving Einstein’s equations derived from the action (2.5), we extract the phase diagram

of the model as a function of the temperature and the magnetic field. Furthermore, we

determine the chiral condensate and show that for particular choices of w(λ) the model

exhibits inverse magnetic catalysis in qualitative agreement with the lattice results, [9–12].

In more detail, we solve eqs. (A.2), (A.5), (A.6) of appendix A by shooting from the horizon

towards the boundary. For each bulk solution we fix the non-normalizable solution of the

fields close to the boundary and read the normalizable asymptotics. Then we determine

the vacuum expectation values of the dual field theory operators, i.e., the temperature,

magnetic field and chiral condensate of the dual field theory state.

As shown in [48, 49], the holographic V-QCD model often has a first order confinement-

deconfinement transition at Td, and a separate second order chiral transition at Tχ, where

Tχ > Td. For T < Td the thermodynamically dominant solution is the thermal gas geometry

corresponding to a confined and chirally broken field theory state. For Td < T < Tχ, the

geometry is a black hole with a tachyon hair, so that the dual state is deconfined and chirally
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Figure 1. The confinement-deconfinement transition temperature Td (left) and the chiral transition

temperature Tχ (right) as a function of the magnetic field for different values the parameter c, for

zero quark mass, mq = 0 and for x = 1. Td and B are measured in units of the energy scale Λ.

broken. Finally, for T > Tχ, the geometry is a tachyonless black hole, and therefore the

dominant phase is deconfined and chirally symmetric. Such separate transitions were seen

at B = 0 for values of x close to the conformal transition of QCD for all studied potentials,

but for the particular choice of potentials of eqs. (B.1) and (B.2) this behavior is seen even

at low values of x, down to x ' 1.

As we shall see, adding a finite background magnetic field does not drastically change

this phase structure. The coupling function w(λ) plays an important role on the dependence

of the transition temperatures Td and Tχ on B, since it controls the interaction of the

medium with the magnetic field. Hence, we study the transition temperatures and the

condensate as function of B for different choices of w(λ) parametrized by the parameter c

appearing in eq. (2.8). We start by studying the B dependence at moderately low values

of B, but still high enough for the backreaction to be important. The left plot in figure 1

shows the deconfinement temperature as a function of B for different c. We observe that

for sufficiently small values of c, the transition temperature Td decreases as a function of B.

For larger values, i.e., for c & 1, the dip in the deconfinement temperature is suppressed

and growing behavior with B dominates.1 All dimensionful quantities are measured in

units of Λ, that is an energy scale of the model which appears as an integration constant

in (2.6) and (2.7).

The right plot in figure 1 depicts the chiral transition temperature as a function of B

for different values of c. We note that for small values of c, i.e., c < 0.4, the chiral transition

temperature is a decreasing function of B, a fact that signals inverse magnetic catalysis.

The function w(λ) takes larger values for smaller c as shown in figure 2. This means

that the coupling of the magnetic field to the glue dynamics, i.e., the dilaton, becomes

stronger for smaller values of c. As a result, we qualitatively expect that the effect of

the quarks to the transition temperature becomes more important and eventually leads to

inverse magnetic catalysis. This argument is in qualitative agreement with findings in [53],

1We find numerically that the dip does not disappear, but becomes extremely weak as c increases. Td
grows with B also for c = 3 even though this is barely visible in figure 1. The growth becomes more

pronounced at higher B for this value of c.
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c=0.25

c=0.4c=1

c=2

0.5 1.0 1.5 2.0
λ

0.2

0.4

0.6

0.8

1.0

w(λ)

Figure 2. Dependence of the function w(λ) on the parameter c for x = 1. The curves are for

c = 0.25, 0.4, 1 and 3. We note that increasing c suppresses w(λ).

where it is shown that a large w(λ), compared to the c = 1 case matches better the lattice

result for the electric conductivity of QGP at vanishing B. A detailed phenomenological

matching of the model to low energy QCD is a subject we leave for future work, but it

is reassuring that the results of our preliminary analysis here are in qualitative agreement

with electromagnetic properties of QGP. The choice c = 0.4 seems to correctly reproduce

the qualitative features observed in the lattice studies.

Since we have included the dynamics of the flavor sector in the full backreacting regime

of Nf ∼ Nc, we are able to explicitly compute the quark condensate using our model. Using

the standard holographic techniques, we set the non-normalizable boundary solution of the

tachyon to zero, which corresponds to zero quark mass, and then read numerically the value

of the condensate form the normalizable solution of eq. (2.7). In figure 3, curves of constant

chiral condensate are plotted. Higher curves correspond to lower values of the condensate,

and finally the red dashed line is the chiral transition, along which the condensate vanishes.

Hence, we observe that the condensate is a decreasing function of B at fixed temperature,

that is indeed the phenomenon of inverse magnetic catalysis. The reason for the straight

contours for the condensate below the blue curve is that this phase correspond to the

thermal gas background in the holographic dual, for which the temperature dependence of

all thermodynamic functions is suppressed as 1/Nc in the large-N limit.

The chiral condensate is not invariant under the renormalization group flow. A renor-

malization group invariant combination reads

Σ(T,B) =
〈q̄q〉(T,B)

〈q̄q〉(0, 0)
=

1

〈q̄q〉(0, 0)
(〈q̄q〉(T,B)− 〈q̄q〉(0, 0)) + 1 , (3.1)

that is dimensionless. The change due to the magnetic field is then defined as

∆Σ(T,B) = Σ(T,B)− Σ(T, 0) . (3.2)

This difference ∆Σ is plotted for V-QCD in the left plot of figure 4 for vanishing quark mass

and c = 0.4. We find very good qualitatively agreement with the lattice results [11]. One
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x=1   c=0.4
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Λ2
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0.140

0.145
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T/Λ

Figure 3. Curves of constant 〈q̄q〉 on the T −B plane, in units of Λ, for c = 0.4, zero quark mass,

and x = 1. The labels on the curves correspond to the value of 〈q̄q〉/Λ3. Below the blue curve,

corresponding to the deconfinement transition, the condensate is independent of temperature, hence

the lines are straight. Moreover, as the chiral transition (the red dashed line) is approached from

below the value of the condensate approaches zero.

main difference, is the fact that in the Veneziano limit, QCD has a first order confinement-

deconfinement transition, hence the condensate jumps at this point. However, the picture

is very similar to the Nc = Nf = 3 case. At zero temperature there is magnetic catalysis.

For larger temperatures ∆Σ increases for small B and then it jumps and starts decreasing

for higher B. For even larger temperatures, ∆Σ is a monotonically decreasing function

of B, at least in the range of B which is plotted. We also observe that for intermediate

temperatures (T/Λ = 0.1385, 0.14), ∆Σ starts to increase for larger values of B. For

T/Λ = 0.143, the condensate hits the chiral transition at B/Λ2 = 0.116, so for larger

values of B it is zero.

The right plot in figure 4 depicts the normalized condensate as a function of B/Λ2

in the confined phase of the model for the choices x = 1 and mq = 0 and for various

values of the parameter c. We note that for B/Λ2 � 1 the normalized condensate behaves

as ∆Σ(0, B) = Dq̄q(c)B
2 + · · · , where the parameter Dq̄q depends on c. We numerically

determine Dq̄q(0.25) ' 124, Dq̄q(0.4) ' 58, Dq̄q(1) ' 5.3, Dq̄q(3) ' 1.8. We further note

that the slope Dq̄q decreases with increasing c. This is very much expected, since the

coupling of the magnetic field to the plasma is controlled by the function w that is more

pronounced for smaller values of c as shown in figure 2.

Finally, we find linear dependence on B for large B as a consequence of how B enters

the equations of motion in appendix A: it enters through the combination

Q(r) =
√

1 + w(λ)2B2e−4A(r) , (3.3)

that is indeed linear Q(r) ' e−2A(r)w(λ)B for large magnetic fields.

Some of the important thermodynamic observables of the QGP medium related to the

magnetic field are the magnetization MB and the magnetic susceptibility χB = MB
B

∣∣∣
B=0

.

They have been computed in the lattice for 2+1 flavors at B = 0 in [70]. The susceptibility
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1.5

ΔΣ(0,B)

Figure 4. Left: the normalized variation of the chiral condensate, ∆Σ(B, T ), as a function of B

for constant T , c = 0.4, zero quark mass, and x = 1. Right: the normalized chiral condensate in

the confined phase (T = 0) as a function of the magnetic field at zero quark mass and x = 1 and

for different values of the parameter c.

in our holographic model is given by

χB = − 1

V4

∂2Son−shell
E

∂B2

∣∣∣∣∣
B=0

, (3.4)

where Son−shell
E is the Euclidean on shell action of the model. Inserting here the expression

for the flavor action (2.3) we obtain

χB = M3N2
c

∫ rε

rh

dr x Vf (λ, τ)w(λ, τ)2eA(r)+W (r)G(r) , (3.5)

where

G(r) =
√

1 + e−2A(r)κ(λ, τ)f(r)(∂rτ(r))2 , (3.6)

rh is the location of the horizon and rε is a cut-off near the boundary. The magnetization

of the ground state is (at any value of B)

MB = − 1

V4

∂Son−shell
E

∂B

= M3N2
c

∫ rε

rh

dr B xVf (λ, τ)w(λ, τ)2eA(r)+W (r)G(r)

Q(r)
. (3.7)

Both the susceptibility and the magnetization diverge at the boundary and have to be

renormalized appropriately. We do this here by subtracting their values for reference

(thermal gas) solutions at T = 0.

In figure 5, we show the magnetic susceptibility χB as a function of temperature for

different values of c. The plot shows that smaller c leads to larger values of χB. This is

expected by the following argument. Since the function w that controls the coupling of

the magnetic field to the plasma is more pronounced for smaller c, we expect the effect

of quarks become more important, yielding a stronger inverse magnetic catalysis, in other

words, a steeper decrease in Td around B = 0. Now, because at the deconfinement tran-

sition near B = 0 we have dF = 0 and hence dTd/dB = −χBB/S, a stronger decrease in

– 9 –
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Figure 5. Magnetic susceptibility as a function of temperature for various values of c for x = 1.

The chiral transition is indicated by the vertical dashed line.

Td with B results in a larger positive value of χB. Another observation is appearance of

kinks at the chiral transition T = Tχ that is different from the deconfinement transition

(Tχ > Td) for x = 1.

4 Varying number of flavors

In our holographic model both the number of colors Nc and the number of flavors Nf are

taken to be infinite with their ratio x = Nf/Nc fixed. By varying x then it should be

possible to study the influence of the quark sector on (inverse) magnetic catalysis. It is

also interesting to investigate whether the phase diagram show additional features in the

regime with B/Λ2 � 1 for different values of the ratio x. We address these questions in

figure 6, where the phase diagrams in the (T,B)-plane are shown for different values of x.

In this plot we also extend the range of B to much larger values than in section 3.

Several interesting features arise in these diagrams. First, we observe inverse magnetic

catalysis kicking in around B/Λ2 ∼ 1 on for all the choices of x. Moreover, we observe

magnetic catalysis taking over for larger values of B for smaller choices of x = 0.1 and

1/3. For x = 2/3 and 1 there are also hints that the deconfinement transition might start

increasing again at large B, but numerics in that region is not stable enough to assert this

with certainty. Another interesting feature is the reappearance of the deconfined chirally

broken phase at large B. This can be seen in all diagrams for B/Λ2 & 100, except2 for

x = 0.1. Finally we obtain an extra deconfined, chirally symmetric phase for x = 0.1, that

is separate from the other deconfined chirally symmetric phase by a first order transition.

This additional phase transition has also been observed at B = 0 in [48], and is discussed

in more detail there.

2In this case, there are hints of a triple point around B/Λ2 ∼ 100, but the numerics is not stable enough

to confirm this with certainty.
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Figure 6. The phase diagram of our model for various values of x and for c = 0.4. T and B are

measured in units of Λ.

It is also interesting to study dependence of the magnetic susceptibility on x. We plot

this dependence in figure 7. One can see here that the shape of the curves varies non-

trivially with x. First of all we observe that the susceptibility becomes larger for larger

values of x. This is obvious as the susceptibility controls the reaction of the plasma, in

particular its magnetization to B, and this reaction is stronger for larger number of flavors.

More interestingly, we observe that, an inflection point forms as x is decreased, as can

clearly be seen in the curve for x = 1/3. This inflection point moves toward smaller values

of T with decreasing x, which eventually turns into a jump in susceptibility at around

x = 0.1. The jump can be traced back to the phase transition between the two chirally

symmetric deconfined phases (red and purple) shown in figure 6 for x = 0.1.

Finally, we would like to identify the physical reason behind inverse magnetic catalysis

using our holographic model. As we argue below studying the behavior of the condensate

on x is helpful in this quest. As mentioned in the Introduction, magnetic field influences

the chiral condensate through two separate sources as shown in the lattice studies [33, 34].

The first source is the explicit coupling of the quarks in the operator 〈q̄q〉 to the magnetic

field. This direct coupling is termed as “valence” quarks in [33, 34], and it is argued to

strengthen the condensate, hence causing magnetic catalysis. The second source is the

indirect dependence of the condensate expectation value on the magnetic field that arises
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Figure 7. Magnetic susceptibility as a function of temperature for different values of x for c = 0.4.

from the the quark determinant in the path integral. This source, termed as the “sea”

quarks, arise from the the gluon path integral, therefore directly related to the glue physics.

It was argued in [33, 34] that this backreaction of the glue physics is to cause the inverse

effect and it dominates over the catalysis created by valence quarks, in the large B regime.

We can also identify two separate sources of B to the condensate in our holographic

model. The first is the explicit dependence of the tachyon field equation eq. (A.6) on B. This

explicit dependence is present in the function Q(r) =
√

1 + w(λ)2B2e−4A(r) both in the lin-

ear ∼ τ ′ and in the nonlinear ∼ τ ′3 term in this equation. The second source is the indirect

effect coming from the modification of the background functions, the metric gµν and the

dilaton λ by presence of B. The change in these background functions due to B also affects

the tachyon equation in an indirect manner. It is very tempting to identify the former ex-

plicit dependence with the valence, and the latter, implicit dependence with the sea quarks.

In order to test this idea one can try to isolate one of these effects. First, let us consider

the large B limit of the tachyon equation in the confined phase. We note that in the large

B limit Q(r) ∼ e−2A(r)w(λ)B and the tachyon equation eq. (A.6) simplifies as

τ ′′ − e2AG2

f κ(λ)
∂τ log Vf (λ, τ) +

(
A′ +W ′ +

f ′

f
+ λ′∂λ log(Vf (λ, τ)κ(λ)) + λ′∂λ log w(λ)

)
τ ′

+ e−2A f κ(λ)

(
W ′ +

1

2

f ′

f
+ 2A′ +

1

2
λ′ ∂λ log (κ(λ)Vf (λ, τ)2) + λ′∂λ log w(λ)

)
τ ′3 = 0 .

The explicit dependence on the magnetic field B cancels out in this limit. This is very

much in accord with our assertion because according to the lattice study in the deconfined

phase and in the large B region, it should be the glue physics, the sea quarks controlling

the behavior of the condensate. Indeed, in this limit the only dependence of the tachyon

equation (A.6) on B comes from the implicit dependence in the metric functions that we

want to match with the sea quark effect.
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Figure 8. Left: the normalized condensate in the confined phase (T = 0) for B/Λ2 = 3 as a

function of x. Increasing x tends to decatalyze the condensate for larger B. The large B behavior

of the condensate is mainly determined by the backreaction of the flavor to the geometry. Right:

The normalized chiral condensate as a function of B in the confined phase (T = 0) for different

values of x. The condensate always increases, but for higher x the rate of increase becomes smaller.

At x = 0.01 the background is essentially the same as the Yang-Mills case with no flavor. Then,

the tachyon is affected only by the explicit B dependence in eq. (A.6). As a result the condensate

is catalyzed by B for x = 0.01.

Another clue comes from the fact that the implicit backreaction effect is controlled by

the value of x. Indeed, as B only enters the gravitational action in the flavor sector (2.3)

and because this action is proportional to x, backreaction of B on the background functions

should be bigger for larger values of x. Then, if our identification of this backreaction with

the sea quark is correct, for a large value of B (where the backreaction effect is isolated) we

should see suppression of the condensate for larger values of x. In the left figure in 8 we plot

the dependence of the normalized condensate ∆Σ on x for a large value of B/Λ2 = 3. We

indeed observe the suppression of the condensate with increasing x. In the right figure in 8

we plot the dependence of ∆Σ on B for varying values of x. We find that the fortification

of the condensate with B is much more pronounced for smaller x. This is again consistent

with our identification, because the backreaction effect is absent for such small values and it

should be the explicit dependence of the tachyon equation on B that controls the physics.

It may seem confusing that the normalized condensate always increases with B in this

figure. There is no contradiction however: as mentioned above, in the large Nc limit the

temperature dependence in the confined phase drops out, hence the plots in 8 are in fact

for T = 0. Indeed lattice studies also always find magnetic catalysis for small T. It would

be nice to study behavior in the deconfined and chirally broken phase at small x, but this

phase does not exist in our model for small x, as can be seen from figure 6.

5 Summary and discussion

In this work we study the influence of an external magnetic field on a strongly interacting,

confining theory of quarks and gluons in the large Nc, large Nf limit with vanishing quark

masses. We focused on two related problems: dependence of the quark condensate on the

magnetic field, and the phase diagram of the theory on the B-T plane. We employed a

– 13 –



J
H
E
P
0
3
(
2
0
1
7
)
0
5
3

bottom-up holographic model of QCD, known as V-QCD. This model perfectly suits our

problem as it displays all the salient features of QCD: confines color and breaks the chiral

symmetry at low temperatures, correctly reproduces the running of the coupling constant,

exhibits a first order deconfinement and a second order chiral symmetry restoration tran-

sition with increased T and agrees almost perfectly with thermodynamic studies on the

lattice. Holographic modeling necessitates the large Nc limit. For finite number of flavors

then, effect of the magnetic field on the system would be negligible. Thus we consider

the Veneziano limit where the ratio x = Nf/Nc is kept constant in the large-Nc limit.

The holographic model therefore includes the full backreaction of the flavor branes on the

background geometry. The model is necessarily complicated yet manageable.

The magnetic field in our model is introduced by an Abelian bulk gauge field that

corresponds to the diagonal U(1) of the flavor symmetry on the flavor branes. Coupling of

this field to the background is controlled by two parameters: the ratio x and a constant

c that parametrizes the gauge field kinetic term in the DBI action. The magnetic field

influences the geometry stronger for larger values of x and smaller values of c. We study

the behavior of the quark condensate and the phase diagram of the theory for varying

values of c and x. Qualitative agreement with lattice studies follow for smaller choices of c.

In particular, for smaller values of c, such as c = 0.4, we observe the phenomenon of inverse

magnetic catalysis in our model. We observe two manifestations of this phenomenon. First,

the chiral and the deconfinement transition temperatures starts decreasing as the magnetic

field is turned on. This is shown in figures 1, 3 and 6. Second, we observe that magnetic

field decreases the value of the quark condensate in figures 3, 4(left) for large enough T.

The phase diagram of the model is also interesting. As shown in figure 3 for c = 0.4

and x = 1 there are typically three phases in this model. At low temperatures the model

is confined and the chiral symmetry is broken for all values of B. As we crank up the

temperature we first come across a deconfinement phase transition, that is first order and

the temperature it happens Td is a non-trivial function of B. As we crank T up further

we hit a second order chiral symmetry restoration transition above which the condensate

vanishes. This transition temperature Tχ also exhibits an interesting profile in B. This

picture becomes more complicated when we fiddle with the value of x. As we see from

figure 6 there arise the possibility of new phases for smaller value of x, such as x = 0.1. This

new phase shown in red is another deconfined and chiral symmetric phase separated from

the usual one by a first order phase separation line. There also seems to be reappearance

of the deconfined and chirally broken phase at larger values of B for x = 1/3 and higher.

Whether these features are realized in real physical systems or they are just artifacts of

our holographic model remains to be seen.

It is important to note that our model has the following limitation in the confined

phase. Confined phase corresponds to the thermal gas geometry which does not exhibit

any dependence on T in the large N limit. Therefore we cannot study dependence of the

condensate on T in this phase and our plots are essentially for T = 0. This is why we focus

on the T-dependence in the deconfined and chiral symmetry broken phase, a phase that is

generically present in our model. In order to track the T dependence also in the confined

phase one needs to take into account the 1/N corrections, in particular the contribution to
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the free energy arising from the bulk fluctuations in the background. This is not an easy

task that we hope to tackle in future.

One of the main focus of our paper is to understand the physical mechanism behind

inverse magnetic catalysis. We indeed find strong indications that this phenomenon is

driven by the sea quark effect, that is the contribution of the quark determinant coming

from the gluon path integral in 〈q̄q〉. We identify this “glue backreaction” in the holographic

model with the implicit dependence of the background functions on B that enter the tachyon

equation. We find strong indications supporting this identification by analyzing the large B

limit of the tachyon equation and varying the value of x, as discussed in the previous section.

If this idea is indeed correct then the remaining question is why is this backreaction effect

is causing the inverse effect? To answer this question we need to translate this holographic

mechanism into the field theory language. This is another interesting problem that we

leave to future work.

Shape of the phase separation curves at larger values of B is another open problem in

the lattice and effective field theory studies. The lattice study [71] goes up to eB = 3 GeV

and observes a monotonic decrease in the chiral transition temperature as a function of

B up to these large values. General expectation from effective field theory, however, is

that eventually this separation line curves up and starts increasing with B [72]. We gener-

ically observe this catalyzing behavior at larger values of B but the minimum of the phase

separation line both depends on x and c, hence it is model dependent.

Finally we studied the various interesting observables such as magnetization and mag-

netic susceptibility. As shown in figure 5 there are interesting kinks appearing in the

magnetic susceptibility as a function of T at the chiral transition. Comparison and per-

haps matching the magnetic susceptibility in our model with lattice studies is also left as

a future work.

The most pressing issue is to fix the parametrization of our model, in particular fixing

the shape of the potentials, shown in appendix B, by matching the lattice data. This is not a

very easy task because ideally, we want our model to reproduce all the features observed on

the lattice quantitatively. This requires matching at all different levels, including the meson

spectra, the thermodynamic functions, transport coefficients and the various correlation

functions. In particular, it will be also very interesting to also include a baryon chemical

potential in our theory and fix the parameters of the model also including the finite baryon

density domain. All of this we leave for future work.
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A The equations of motion

The Einstein equations of motion from the action (2.5) read

Rµν −
1

2
gµνR−

(
4

3

∂µλ∂νλ

λ2
− 2

3

(∂λ)2

λ2
gµν +

1

2
gµνVg(λ)

)
−x

Vf (λ, τ)

2

(
−gµν

√
D +

1√
D

dD

dgµν

)
= 0 , (A.1)

where D = det(δµλ + w(λ) gµν Vνλ + κ(λ)gµν∂ντ ∂λτ). Inserting here our Ansätze for the

metric (2.2) and Vµ (2.4) gives

3A′′+
2

3

λ′2

λ2
+3A′2+

(
3A′−W ′

) f ′
2f

+
xVf (λ, τ)Ge2A

2Qf
(2Q2−1)− e

2A

2f
Vg(λ) = 0,

W ′′ +
W ′f ′

f
+W ′2 + 3A′W ′ +

xVf (λ, τ)Ge2A

2Qf

(
1−Q2

)
= 0, (A.2)

f ′′ + (3A′ +W ′)f ′ +
xVf (λ, τ)e2AG

Q

(
1−Q2

)
= 0 ,

where we defined

G(r) =
√

1 + e−2A(r)κ(λ, τ)f(r)(∂rτ(r))2 ,

Q(r) =
√

1 + w(λ)2B2e−4A(r) . (A.3)

The first order constraint equation reads

2

3

λ′2

λ2
−
(
3A′ +W ′

) f ′
2f
− 6A′2 − 3A′W ′ +

e2A

2f
Vg(λ)−

xfVf (λ, τ)Qe2A

2Gf
= 0 . (A.4)

The dilaton equation of motion becomes

λ′′

λ
− λ′2

λ2
+

(
3A′ +W ′ +

f ′

f

)
λ′

λ
+

3

8

λe2A

f
∂λVg(λ)−

3xB2e−2AGλVf (λ, τ)w(λ)

8fQ
∂λw(λ)

− 3xe2AGλQ

8f
∂λVf (λ, τ)−

3xλQVf (λ, τ)τ ′2

16G
∂λκ(λ) = 0 , (A.5)

and the tachyon equation of motion is

τ ′′ − e2AG2

fκ(λ)
∂τ log Vf (λ, τ) + e−2Afκ(λ)

(
W ′ +

1

2

f ′

f
(A.6)

+ 2A′
1 +Q2

Q2
+

1

2
λ′∂λ log(κ(λ)Vf (λ, τ)2)− λ′(1−Q2)

Q2
∂λ logw(λ)

)
τ ′3

+

(
A′

2 +Q2

Q2
+W ′ +

f ′

f
+ λ′∂λ log(Vf (λ, τ)κ(λ))− λ′(1−Q2)

Q2
∂λ logw(λ)

)
τ ′ = 0 .

The equation of motion of the vector gauge field is trivially satisfied for the Ansatz (2.4).

The above equations of motion enjoy the following scaling symmetries

• rescaling of f(r), f → f
cf

, A→ A− 1
2 log cf , B → B

cf

• rescaling of the holographic coordinate, r → Λ r, A→ A− log Λ, B → B
Λ2

• rescaling of the function W (r), W →W + cW .
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B The potentials

The potentials entering the action of the holographic model are the Vg(λ), Vf (λ, τ), w(λ),

and κ(λ). The dilaton potential Vg(λ) governs the glue dynamics in the absence of fla-

vors, the tachyon potential, Vf (λ, τ) is mainly responsible for the dynamics of the tachyon

condensation and the breaking of chiral symmetry at zero temperature. Additionally, the

potentials w(λ) and κ(λ) determine the coupling of the mesons to glue. The choice of the

potentials in the current work coincides with that of [49]. The near boundary expansion of

those potentials is such that the perturbative dynamics of QCD are reproduced. In partic-

ular, the numerical coefficients of Vg, Vf0 and κ are fixed by matching to the beta function

of QCD and the quark mass anomalous dimension. The explicit form of the potentials is

Vg(λ) =
12

L2
0

[
1 +

88λ

27
+

4619λ2

729

√
1 + ln(1 + λ)

(1 + λ)2/3

]
, (B.1)

xVf0 =
12

L2
UV

[
L2

UV

L2
0

− 1 +
8

27

(
11
L2

UV

L2
0

− 11 + 2x

)
λ

+
1

729

(
4619

L2
UV

L2
0

− 4619 + 1714x− 92x2

)
λ2

]
,

κ(λ) =
[1 + ln(1 + λ)]−1/2[

1 + 3
4

(
115−16x

27 − 1
2

)
λ
]4/3 , a(λ) =

3

2L2
UV

, (B.2)

where LUV is the AdS radius, so that the boundary expansion of the metric is

A ∼ ln(LUV/r) + · · · . The radius depends on x as

L3
UV = L3

0

(
1 +

7x

4

)
. (B.3)

The IR asymptotics of the potentials are constrained by certain low energy features of the

dual field theory. Those include confinement, chiral symmetry breaking and the correct

thermodynamic behavior of the theory at strong coupling at finite Nf/Nc. Moreover, the

behavior of the glueball and meson spectra is highly dependent on the IR behavior. For

the function w we use the choice

w(λ) = κ(cλ) =
(1 + log(1 + c λ))−

1
2(

1 + 3
4

(
115−16x

27 − 1
2

)
c λ
)4/3 . (B.4)
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