Metalate-Mediated Functionalization of P₄ by Trapping Anionic $[Cp*Fe(CO)_2(\eta^1-P_4)]^-$ with Lewis Acids

Jaap E. Borger,^[a] Maarten K. Jongkind,^[a] Andreas W. Ehlers,^[a, b, d] Martin Lutz,^[c] J. Chris Slootweg,^[a, d] and Koop Lammertsma^{*[a, b]}

The development of selective functionalization strategies of white phosphorus (P₄) is important to avoid the current chlorinated intermediates. The use of transition metals (TMs) could lead to catalytic procedures, but these are severely hampered by the high reactivity and unpredictable nature of the tetrahedron. Herein, we report selective first steps by reacting P₄ with a metal anion [Cp*Fe(CO)₂]⁻ (Cp*=C₅(CH₃)₅), which, in the presence of bulky Lewis acids (LA; B(C₆F₅)₃ or BPh₃), leads to unique TM-substituted LA-stabilized bicyclo[1.1.0]tetraphosphabutanide anions [Cp*Fe(CO)₂(η^1 -P₄·LA)]⁻. Their P-nucleophilic site can be subsequently protonated to afford the transient LA-free neutral butterflies *exo,endo-* and *exo,exo-*Cp*Fe(CO)₂(η^1 -P₄-H), allowing controllable stepwise metalate-mediated functionalization of P₄.

Organophosphorus compounds (OPCs) play a crucial role in synthetic chemistry,^[1] but are typically produced through large-scale halogenation of white phosphorus ($P_4 \rightarrow PCl_3$) and subsequent salt elimination, generating equimolar halogenide waste. However, this is avoidable by direct functionalization of the P_4 tetrahedron. This desirable avenue has been scrutinized for both main-group compounds^[2] and transition-metal (TM) complexes, ultimately in search of catalytic conversions.^[3] The challenge is to control the unpredictable reactivity of P_4 . To date, steps invoking reducing neutral metal complexes have

_	
[a]	J. E. Borger, M. K. Jongkind, Dr. A. W. Ehlers, Dr. J. C. Slootweg,
	Prof. Dr. K. Lammertsma
	Department of Chemistry and Pharmaceutical Sciences
	Vrije Universiteit Amsterdam
	De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands)
	E-mail: K.Lammertsma@vu.nl
[b]	Dr. A. W. Ehlers, Prof. Dr. K. Lammertsma
	Department of Chemistry, University of Johannesburg
	Auckland Park, Johannesburg, 2006 (South Africa)
[c]	Dr. M. Lutz
	Crystal and Structural Chemistry
	Bijvoet Center for Biomolecular Research, Utrecht University
	Padualaan 8, 3584 CH Utrecht (The Netherlands)
[d]	Dr. A. W. Ehlers, Dr. J. C. Slootweg
	Van "t Hoff Institute for Molecular Sciences, University of Amsterdam
	Science Park 904, 1098 XH Amsterdam (The Netherlands)
	Supporting Information and the ORCID identification number(s) for the
Ð	author(s) of this article can be found under http://dx.doi.org/10.1002/

- author(s) of this article can be found under http://dx.doi.org/10.1002/ open.201700027.
 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
- This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

been reported by, for example, the groups of Scheer (Fe),^[4] Driess (Fe,^[5] Co,^[6] and Ni),^[7] and Cummins (Nb)^[8] and cations by Peruzzini and co-workers (Fe,^[9] Ru,^[10] Rh, and Ir).^[11] However, in spite of its inherent electrophilic character, reactions of P₄ with TM anions have hardly been considered.

In 2002, Ellis and co-workers provided the first insights by reacting P₄ with a naphthalene-stabilized titanate that afforded the all-inorganic metallocene $[(\eta^5-P_5)_2Ti]^{2-}$ (**A**; Scheme 1).^[12]

Scheme 1. Anionic metal-mediated P_4 functionalization products (counter cations omitted). $Cp = C_5H_5$, $Cp^* = C_5(CH_3)_5$, BIAN = 1,2-bis(2,6-diisopropyl-phenylimino)acenaphthene.

Later, Wolf and co-workers described the formation of iron polyphosphides **B** and **C** through P₄-aggregation induced by anionic $[Cp*Fe(\eta^4-C_{10}H_8)]^ (Cp*=C_5(CH_3)_5)$,^[13] and recently the preparation of dinuclear cobalt tetraphosphido complex **D** by reaction of P₄ with $[Co(BIAN)(cod)]^-$ (BIAN = 1,2-bis(2,6-diisopropylphenylimino)-acenaphthene, <math>cod = 1,5-cyclooctadiene).^[14] The group of Ruiz reported the fragmentation of P₄ into P₂ (**E**), facilitated by the triply bonded molybdenate $[Mo_2Cp_2(\mu-PCY_2)(\mu-CO)_2]^ (Cp = C_5H_5).^{[15,16]}$

The marked unpredictability when using metal anions is reminiscent to the often uncontrolled reactions of P_4 with carbanions.^[17] For this, we developed a selective functionalization strategy by trapping the initial P_4 adduct (using sterically encumbered ArylLi) with Lewis acids to give stabilized bicyclo[1.1.0]tetraphosphabutane anions ([ArylP₄·LA]⁻; LA=B(C₆F₅)₃ or BPh₃)) that can be substituted or fragmented to novel OPCs containing P_4 , P_3 , and P_1 units.^[18] Herein, we show this approach to also allow the [Cp*Fe(CO)₂]⁻ anion to functionalize P_4 in a controlled manner, providing the first examples of LA-stabilized TM(η^1 - P_4)⁻ butterfly anions (**1a** and **1b**; Scheme 1),

ChemistryOpen 2017, 6, 350 – 353

and report on their P-nucleophilicity by protonation experiments.

To selectively generate anionic TM(η^{1} -P₄)⁻ from P₄, we reasoned that a stable, bulky metalate with well-defined nucleophilic character would be required, for which the readily available Li[Cp*Fe(CO)₂] was considered a good candidate.^[19] To capture the incipient phosphide, we opted for B(C₆F₅)₃ as strong LA. Indeed, addition of a solution of P₄ in toluene to a cooled (0 °C) mixture of Li[Cp*Fe(CO)₂] and B(C₆F₅)₃ instantaneously gave the novel LA-stabilized bicyclo[1.1.0]tetraphosphabutanide **1a** (δ^{31} P{¹H}: -65.0 (P1), -107.1 (P4), -340.7 (P2/P3) ppm), which could be isolated in 55% yield as a dark yellow powder (Scheme 2).

Scheme 2. Synthesis of Lewis-acid-stabilized $[Cp^*Fe(CO)_2(\eta^1-P_4)]^-$ butterfly anions. Solvent: toluene for 1 a and THF for 1 b.

Crystals of 1a, suitable for single-crystal X-ray diffraction, were grown from Et₂O after slow (1 min) addition of 12-crown-4. The molecular structure revealed the unprecedented metalphosphido-borane (Figure 1; [Li(12-crown-4)₂]⁺ counter cation omitted) with a bicyclic P₄ core (P1-P2-P3-P4 98.21(6)°) showing a slightly shorter transannular P2–P3 bond (2.1676(13) Å) compared to the peripheral P1-P2/P1-P3 (2.2324(13)/ 2.2100(12) Å) and P4-P2/P4-P3 (2.2091(13)/2.2252(13) Å) bonds, as is common for P₄ butterfly-type derivatives.^[18,20,21] Compound 1 a features a non-symmetric substitution pattern with the tetraphosphide unit being flanked by the $Cp*Fe(CO)_2$ moiety (Fe1-P1 2.3192(11) Å) and the B(C₆F₅)₃ (P4-B1 2.080(4) Å) Lewis acid. The "Lewis" bond is marginally longer than that found in the related organyl-substituted anion Li[Mes*P₄·B(C₆F₅)₃] (P-B 2.064(2) Å),^[18a] whereas the coordination bond connecting the iron complex is shorter than that observed in the neutral symmetric [{Cp^{"'}(CO)₂Fe}(μ , η ^{1:1}-P₄)] (Fe-P 2.3552(19) Å).^[20a]

Having established the formation of the [Cp*Fe-(CO)₂(η¹-P₄)]⁻ butterfly anion, we wondered whether the weaker Lewis acid BPh₃ would, likewise, enable its isolation.^[22] Indeed, addition of Li[Cp*Fe(CO)₂] to a THF solution of P₄ and BPh₃ at 0°C afforded **1b** (δ^{31} P{¹H}: -46.6 (P4), -84.3 (P1), -337.0 (P2/P3) ppm), which was isolated as a brown powder in 86% yield (Scheme 2). Notably, the Li[Cp*Fe(CO)₂]/BPh₃ combination in THF results in a higher yield than Li[Cp*Fe(CO)₂]/B(C₆F₅)₃ in toluene (86% and 55%, respectively), likely owing to better solubility of the anions in THF. Its use as a solvent for the synthesis of **1a**, however, is precluded, owing to formation of the reactive THF·B(C₆F₅)₃ adduct.^[23]

Phosphides **1a** and **1b** are the first examples of isolable TMgenerated P₄ butterfly anions. ω B97X-D/6–311+G(2d,p)//6-31G(d) calculations (Scheme 3) revealed the nucleophilic addi-

Figure 1. Molecular structure of $1a^-$ in the crystal (displacement ellipsoids are set at 30% probability; H atoms, $[Li(12-crown-4)_2]^+$ counter cation and non-coordinated Et₂O molecules are omitted for clarity). Selected bond lengths [Å] and angles [°]: P1–P2/P3 2.2324(13)/2.2100(12), P4–P2/P3 2.2091(13)/ 2.2252(13), P2–P3 2.1676(13), Fe1–P1 2.3192(11), P4–B1 2.080(4), C1–O1 1.151(5); P1–P2–P3–P4 98.21(6).

Scheme 3. Relative ω B97X-D/6-311 + G(2d,p)//6-31G(d) energies (in kcal mol⁻¹) for the formation of anionic 1a⁻ and 1b⁻ and computed HOMOs (contour value = 0.05). [Fe] = Cp*Fe(CO)₂.

tion of $[Cp*Fe(CO)_2]^-$ to P₄ to cause exothermic cleavage ($\Delta E =$ -15.6 kcalmol⁻¹) of one P-P bond. The resulting [Cp*Fe- $(\text{CO})_2(\eta^1\text{-}P_4)]^-$ "butterfly" anion is stabilized by a significant $-59.5 \text{ kcalmol}^{-1}$ as the B(C₆F₅)₃ adduct (**1 a**⁻) and by -35.1 kcal mol^{-1} (ΔE) with the weaker bonding BPh₃ (**1 b**⁻). The stronger bond with $B(C_6F_5)_3$, as compared to BPh_3 , is reflected in the observed 19.3 ppm downfield shift of the ³¹P{¹H} NMR resonance for the P1 atom (1 a vs. 1 b), owing to the larger electron-withdrawing effect of the fluorinated triarylborane. This difference in inductive effect also leads to a weaker Fe1-P1 bond in the B(C₆F₅)₃ adduct. ETS-NOCV analysis revealed a smaller total bonding energy to that in the BPh₃ adduct ($\Delta\Delta E = 13.7$ kcal $mol^{-1})^{[24]}$ and showed a lower contribution for σ donation in the orbital interaction terms (1 a⁻: -101.6; 1 b⁻: -107.0 kcal mol⁻¹; π backdonation **1a**⁻: -10.6; **1b**⁻: -10.9 kcalmol⁻¹).^[25] The highest occupied molecular orbital (HOMO) reflects the lone pair on the boron-coordinated wing-tip P atom and is ex-

pectedly lower in energy for $1 a^-$ (-0.17 eV) compared to $1 b^-$ (-0.15 eV), suggesting P-nucleophilic character for both.

To probe the utility of anions **1a** and **1b** as nucleophilic reagents, protonation experiments were performed by using the mild acid [Me₃NH][BPh₄] in THF.^[26] Addition of the acid to the most reactive phosphide **1b** (1:1 stoichiometry) showed, in the ³¹P{¹H} NMR spectrum, the instantaneous formation of two new bicyclo[1.1.0]tetraphosphabutanes, which were identified as the neutral protonated LA-free *exo,endo* and *exo,exo* isomers of Cp*Fe(CO)₂(η^1 -P₄H) (**2**, 1:1.2 ratio; Scheme 4). Simulation of

Scheme 4. Top: Protonation of **1 a** and **1 b**. $[Fe] = Cp^*Fe(CO)_2$, $LA = B(C_6F_5)_3$ (**1 a**) or BPh₃ (**1 b**). Bottom: ³¹P{¹H} NMR spectrum (162.0 MHz, $[D_8]THF$, 297 K) recorded directly after mixing **1 b** and $[Me_3NH][BPh_4]$. Insets show expanded experimental and simulated^[27] (inverted) regions. The resonance signals marked with an asterisk (*) correspond to unidentified side products.

the ³¹P NMR resonances^[27] confirms the expected AMX₂ spin systems for *exo,endo*-**2** (δ_{PA} 70.6, δ_{PM} -41.8, δ_{PX} -335.5 ppm; ¹J_{PA,PX} = -194.5, ¹J_{PM,PX} = -198.4, ²J_{PA,PM} = 27.6 Hz) and *exo,exo* -**2** (δ_{PA} -19.8, δ_{PM} -226.7, δ_{PX} -355.2 ppm; ¹J_{PA,PX} = -166.4, ¹J_{PM,PX} = -149.9, ²J_{PA,PM} = 243.3 Hz). The isomers could be distinguished through the difference in the ²J_{PA,PM} (ΔJ = 215.7 Hz) and ¹J_{PH} (145.9 Hz *endo*-PH; 109.3 Hz *exo-PH*) coupling constants. The ¹H NMR spectrum showed a resonance for only the *endo*-PH isomer (-1.14 ppm; ¹J_{H,P} = 152.9 Hz). The ¹¹B{¹H} NMR spectrum revealed two signals at 27.3 and -8.4 ppm, attributed to the amine–borane adduct Me₃N·BPh₃ in equilibrium with its constituents and Li[BPh₄]. The phosphanes decompose within 24 h, owing to a lack of steric protection, which is common for neutral bicyclic tetraphosphanes bearing "small" substituents.^[18a,c]

Protonation of the less reactive **1 a**, likewise, gave a mixture of *exo,endo*-**2** and *exo,exo*-**2** (1:1.2 ratio) with Me₃N·B(C₆F₅)₃ $(\delta^{11}B{}^{1}H{}=-3.0 \text{ ppm})$ as the sole byproduct. We resorted to DFT calculations to obtain more insight into the product formation from the different precursors $\mathbf{1a}^{-}$ and $\mathbf{1b}^{-}$

(Scheme 5).^[28] Protonation of the anions by Me₃NH⁺ to give **1 aH** or **1 bH** was calculated to be quite exothermic ($\Delta E =$ -76.8 and -89.0 kcal mol⁻¹, respectively), as expected.^[29] Subsequent cleavage of the *exo*-cyclic P–B bonds by the liberated

Scheme 5. Relative ω B97X-D/6-311 + G(2d,p)//6-31G(d) energies (in kcal mol⁻¹) for the formation of 2. [Fe] = Cp*Fe(CO)₂.

NMe₃ is driven by the formation of the amine–borane adduct and gives *exo,endo-***2**. This reaction is more exothermic for BPh₃ (**b**, $\Delta E = -7.3 \text{ kcal mol}^{-1}$) than B(C₆F₅)₃ (**a**, $\Delta E = -0.2 \text{ kcal} \text{mol}^{-1}$). The *exo,exo-***2** isomer was computed to be almost equally stable ($\Delta E = -0.2 \text{ kcal mol}^{-1}$) and is likely formed experimentally through Lewis or Brønsted acid enhanced isomerization^[30] in light of the high trigonal and turnstile inversion barriers of 53.7 and 58.3 kcal mol⁻¹, respectively.^[31]

The selective protonation at the wing-tip P atoms of the complexed P_4 anions **1a** and **1b** confirms their P-nucleophilic character and provides a simple route to hitherto scarce non-symmetrical neutral TM-complexed P_4 derivatives. The reactivity is analogous to the organyl-substituted congeners and should, therefore, be extendable to alkylations and possibly [3+1] fragmentations, on which we reported recently.^[18c] The present report lies the foundation for the isolation of new TM-mediated P_4 -functionalized products.

In conclusion, reacting anionic Li[Cp*Fe(CO)₂] with P₄ in the presence of either the B(C₆F₅)₃ or BPh₃ Lewis acid provides facile access to unique metal-substituted bicyclo[1.1.0]tetra-phosphabutanide anions. Their P-nucleophilic site can be protonated, affording the novel transient LA-free tetraphosphanes *exo,endo-* and *exo,exo-*Cp*Fe(CO)₂(η¹-P₄H). The controlled and selective formation of these intriguing new anionic and neutral derivatives enables the selective functionalization of white phosphorus by anionic metalates to be explored.

Acknowledgements

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO/CW).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: anions \cdot iron \cdot Lewis acids \cdot P_4 functionalization \cdot white phosphorus

- D. E. C. Corbridge, Phosphorus 2000: Chemistry, Biochemistry & Technology, Elsevier, Amsterdam, 2000.
- [2] For reviews, see: a) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236–4256; b) N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342–1359; c) S. Khan, S. S. Sen, H. W. Roesky, Chem. Commun. 2012, 48, 2169–2179.
- [3] For reviews, see: a) M. Peruzzini, L. Gonsalvi, A. Romerosa, *Chem. Soc. Rev.* 2005, *34*, 1038–1047; b) B. M. Cossairt, N. A. Piro, C. C. Cummins, *Chem. Rev.* 2010, *110*, 4164–4177; c) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, *Chem. Rev.* 2010, *110*, 4178–4235.
- [4] a) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077–9081; Angew. Chem. 2014, 126, 9223–9227; b) F. Spitzer, C. Graßl, G. Balázs, E. M. Zolnhofer, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2016, 55, 4340–4344; Angew. Chem. 2016, 128, 4412– 4416.
- [5] S. Yao, T. Szilvási, N. Lindenmaier, Y. Xiong, S. Inoue, M. Adelhardt, J. Sutter, K. Meyer, M. Driess, *Chem. Commun.* 2015, *51*, 6153–6156.
- [6] S. Yao, N. Lindenmaier, Y. Xiong, S. Inoue, T. Szilvási, M. Adelhardt, J. Sutter, K. Meyer, M. Driess, Angew. Chem. Int. Ed. 2015, 54, 1250–1254; Angew. Chem. 2015, 127, 1266–1270.
- [7] S. Yao, Y. Xiong, C. Milsmann, E. Bill, S. Pfirrmann, C. Limberg, M. Driess, Chem. Eur. J. 2010, 16, 436–439.
- [8] a) J. S. Figueroa, C. C. Cummins, J. Am. Chem. Soc. 2003, 125, 4020–4021; b) J. S. Figueroa, C. C. Cummins, Angew. Chem. Int. Ed. 2004, 43, 984–988; Angew. Chem. 2004, 116, 1002–1006.
- [9] I. de los Rios, J.-R. Hamon, P. Hamon, C. Lapinte, L. Toupet, A. Romerosa, M. Peruzzini, *Angew. Chem. Int. Ed.* 2001, 40, 3910–3912; *Angew. Chem.* 2001, 113, 4028–4030.
- [10] P. Barbaro, C. Bazzicalupi, M. Peruzzini, S. Seniori Costantini, P. Stoppioni, Angew. Chem. Int. Ed. 2012, 51, 8628–8631; Angew. Chem. 2012, 124, 8756–8759.
- [11] D. Yakhvarov, P. Barbaro, L. Gonsalvi, S. Mañas Carpio, S. Midollini, A. Orlandini, M. Peruzzini, O. Sinyashin, F. Zanobini, Angew. Chem. Int. Ed. 2006, 45, 4182–4185; Angew. Chem. 2006, 118, 4288–4291.
- [12] E. Urnéžius, W. W. Brennessel, C. J. Cramer, J. E. Ellis, P. v. R. Schleyer, Science 2002, 295, 832–834.
- [13] E.-M. Schnöckelborg, J. J. Weigand, R. Wolf, Angew. Chem. Int. Ed. 2011, 50, 6657–6660; Angew. Chem. 2011, 123, 6787–6790.
- [14] S. Pelties, T. Maier, D. Herrmann, B. de Bruin, C. Rebreyend, S. Gärtner, I. G. Shenderovich, R. Wolf, *Chem. Eur. J.* DOI 10.1002/chem.201603296.
- [15] a) M. A. Alvarez, M. E. García, D. García-Vivó, A. Ramos, M. A. Ruiz, *Inorg. Chem.* 2011, *50*, 2064–2066; b) Recently, also the W analogue was employed: M. A. Alvarez, M. E. García, D. García-Vivó, M. A. Ruiz, M. F. Vega, *Organometallics* 2015, *34*, 870–878.
- [16] Cummins obtained anionic [P₃Nb(ODipp)₃][−] by P₄ activation with Cl₂Nb(ODipp)₃(THF) in the presence of reducing agents, see: B. M. Cossairt, M.-C. Diawara, C. C. Cummins, *Science* **2009**, *323*, 602–602.
- [17] a) M. M. Rauhut, A. M. Semsel, J. Org. Chem. 1963, 28, 471–472;
 b) M. M. Rauhut, A. M. Semsel, J. Org. Chem. 1963, 28, 473–477;
 c) Ref. [21a]; d) A. Hübner, T. Bernert, I. Sänger, E. Alig, M. Bolte, L. Fink, M. Wagner, H.-W. Lerner, Dalton Trans. 2010, 39, 7528–7533; e) M. Arrowsmith, M. S. Hill, A. L. Johnson, G. Kociok-Köhn, M. F. Mahon, Angew. Chem. Int. Ed. 2015, 54, 7882–7885; Angew. Chem. 2015, 127, 7993–7996.
- [18] a) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2014, 53, 12836–12839; Angew. Chem. 2014, 126,

13050–13053; b) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, *Angew. Chem. Int. Ed.* **2016**, *55*, 613–617; *Angew. Chem.* **2016**, *128*, 623–627; c) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, *Angew. Chem. Int. Ed.* **2017**, *56*, 285–290; *Angew. Chem.* **2017**, *129*, 291–296.

- [19] R. D. Theys, M. E. Dudley, M. M. Hossain, Coord. Chem. Rev. 2009, 253, 180-234.
- [20] Selected transition metal substituted examples: a) O. J. Scherer, T. Hilt,
 G. Wolmershäuser, *Organometallics* **1998**, *17*, 4110–4112; b) S. Pelties,
 D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, *Chem. Commun.* **2014**, *50*,
 7014–7016; c) S. Heinl, M. Scheer, *Chem. Sci.* **2014**, *5*, 3221–3225;
 d) Ref. [4a]; e) Ref. [10].
- [21] Selected other examples: a) R. Riedel, H.-D. Hausen, E. Fluck, Angew. Chem. Int. Ed. Engl. 1985, 24, 1056-1057; Angew. Chem. 1985, 97, 1050; b) M. B. Power, A. R. Barron, Angew. Chem. Int. Ed. Engl. 1991, 30, 1353-1354; Angew. Chem. 1991, 103, 1403-1404; c) J.-P. Bezombes, P.B. Hitchcock, M. F. Lappert, J. E. Nycz, Dalton Trans. 2004, 499-501; d) A. R. Fox, R. J. Wright, E. Rivard, P. P. Power, Angew. Chem. Int. Ed. 2005, 44, 7729-7733; Angew. Chem. 2005, 117, 7907-7911; e) B. M. Cossairt, C. C. Cummins, New J. Chem. 2010, 34, 1533-1536; f) D. Holschumacher, T. Bannenberg, K. Ibrom, C. G. Daniliuc, P. G. Jones, M. Tamm, Dalton Trans. 2010, 39, 10590-10592; g) S. Khan, R. Michel, J. M. Dieterich, R. A. Mata, H. W. Roesky, J.-P. Demers, A. Lange, D. Stalke, J. Am. Chem. Soc. 2011, 133, 17889-17894; h) N. A. Giffin, A. D. Hendsbee, T. L. Roemmele, M. D. Lumsden, C. C. Pye, J. D. Masuda, Inorg. Chem. 2012, 51, 11837-11850; i) M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford, J. J. Weigand, Angew. Chem. Int. Ed. 2012, 51, 2964-2967; Angew. Chem. 2012, 124, 3018-3021; j) S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 7639-7642; Angew. Chem. 2014, 126, 7769-7773; k) J. Bresien, K. Faust, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 6926-6930; Angew. Chem. 2015, 127, 7030-7034.
- [22] The reaction of Li[Cp*Fe(CO)₂] with P₄ in THF in absence of Lewis acid showed no bicyclic tetraphosphorus species in the recorded ³¹P{¹H} NMR spectrum, and only several broad signals between 100 and -200 ppm indicative of a mixture of iron polyphosphides (see the Supporting Information).
- [23] The same trend was observed in studies using ArylLi reagents, see Ref. [18].
- [24] ETS-NOCV analyses were performed at ZORA-BP86-D3/TZ2P using ADF2014; see the Supporting Information for details.
- [25] The remainder of $\Delta\Delta E_{total}$ arises primarily from a lower electrostatic interaction energy: ΔE_{elstat} **1a**⁻: -234.3; **1b**⁻: -254.0 kcal mol⁻¹ (ΔE_{Pauli} **1a**⁻: 156.4; **1b**⁻: 169.4 kcal mol⁻¹).
- [26] This acid was found to selectively protonate the previously reported Li[Mes*P_4·BPh_3], see: Ref. [18c].
- [27] Spectral parameters were determined by iterative full line shape analysis using the gNMR simulation program: P. H. M. Budzelaar, gNMR, Version 5.0.6.0, 2006.
- [28] DFT calculations were performed at the ω B97X-D/6-311+G(2d,p)//6-31G(d) level of theory using Gaussian09 (Revision D.01); see the Supporting Information for further details.
- [29] Protonation energies are overestimated in the gas phase and are moderated in solution because of solvent stabilization of the charges.
- [30] Schulz et al. reported on the GaCl₃-catalysed isomerization of the bicy-clo[1.1.0]tetraphosphabutanes *exo,endo-* and *exo,exo-*Mes*₂P₄: J. Bresien, K. Faust, C. Hering-Junghans, J. Rothe, A. Schulz, A. Villinger, *Dalton Trans.* 2016, 45, 1998–2007.
- [31] A. Göller, T. Clark, Chem. Commun. 1997, 1033-1034.

Received: February 8, 2017 Version of record online March 23, 2017

www.chemistryopen.org