Shrinking random β-transformation

Kan Jiang, Karma Dajani*
Department of Mathematics, Utrecht University, Fac Wiskunde en informatica and MRI, Budapestlaan 6, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

Abstract

For any $n \geq 3$, let $1<\beta<2$ be the largest positive real number satisfying the equation $$
\beta^{n}=\beta^{n-2}+\beta^{n-3}+\cdots+\beta+1 .
$$

In this paper we define the shrinking random β-transformation K and investigate natural invariant measures for K, and the induced transformation of K on a special subset of the domain. We prove that both transformations have a unique measure of maximal entropy. However, the measure induced from the intrinsically ergodic measure for K is not the intrinsically ergodic measure for the induced system. (c) 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Random β-transformation; Unique measure of maximal entropy; Invariant measure

1. Introduction

Let $\beta \in(1,2)$ and $x \in \mathcal{A}_{\beta}=\left[0,(\beta-1)^{-1}\right]$, we call a sequence $\left(a_{n}\right)_{n=1}^{\infty} \in\{0,1\}^{\mathbb{N}}$ a β-expansion of x if

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{\beta^{n}} .
$$

Renyi [11] introduced the greedy map, and showed that the greedy expansion $\left(a_{i}\right)_{i=1}^{\infty}$ of $x \in[0,1)$ can be generated by defining $T(x)=\beta x \bmod 1$ and letting $a_{i}=k$ whenever

[^0]

Fig. 1. The dynamical system for $\left\{T_{0}(x)=\beta x, T_{1}(x)=\beta x-1\right\}$.
$T^{i-1}(x) \in\left[k \beta^{-1},(k+1) \beta^{-1}\right)$. Since then, many papers were dedicated to the dynamical properties of this map, see for example [12,5,8,10,4,9] and references therein. However, Renyi's greedy map is not the unique dynamical approach to generate β-expansions. In [6] (see also [3,4]) a new transformation was introduced, the random β-transformation, that generates all possible β expansions, see Fig. 1. This transformation makes random choices between the maps $T_{0}(x)=\beta x$ and $T_{1}(x)=\beta x-1$ whenever the orbit falls into $\left[\beta^{-1}, \beta^{-1}(\beta-1)^{-1}\right]$, which we refer to as the switch region.

Although, all possible β-expansions can be generated via the random β-transformation, nevertheless, for some practical problems one would want to make choices only on a subset of the switch region [$\beta^{-1}, \beta^{-1}(\beta-1)^{-1}$], for instance, in A / D (analog-to-digit) conversion [7]. This motivates our study of the shrinking random β-transformation described below.

Let $1<\beta<2^{-1}(1+\sqrt{5}), \Omega=\{0,1\}^{\mathbb{N}}$, and $E=\left[0,(\beta-1)^{-1}\right]$. Set $a=\left(\beta^{2}-1\right)^{-1}, b=$ $\beta\left(\beta^{2}-1\right)^{-1}$, i.e. $T_{0}(a)=b, T_{1}(b)=a$. The shrinking random β-transformation K is defined in the following way (see Fig. 2).

Definition 1.1. $K: \Omega \times E \rightarrow \Omega \times E$ is defined by

$$
K(\omega, x)=\left\{\begin{array}{cc}
(\omega, \beta x) & x \in[0, a) \\
\left(\sigma(\omega), \beta x-\omega_{1}\right) & x \in[a, b] \\
(\omega, \beta x-1) & x \in\left(b,(\beta-1)^{-1}\right] .
\end{array}\right.
$$

Given $(\omega, x) \in \Omega \times[a, b]$, the first return time is defined by

$$
\tau(\omega, x)=\min \left\{n \geq 1: K^{i}(\omega, x) \notin \Omega \times[a, b], 1 \leq i \leq n-1, K^{n}(\omega, x) \in \Omega \times[a, b]\right\} .
$$

Define $K_{\Omega \times[a, b]}(\omega, x)=K^{\tau(\omega, x)}(\omega, x)$, and denote it for simplicity by I.
We now consider a special family of algebraic bases defined as follows. For any $n \geq 3$, let $1<\beta<2$ be the largest positive real number satisfying the equation

$$
\beta^{n}=\beta^{n-2}+\beta^{n-3}+\cdots+\beta+1
$$

The following lemma is clear.
Lemma 1.2. For any $n \geq 3$, let $\beta_{n}>1$ be the largest positive real root of the equation

$$
\begin{equation*}
x^{n}=x^{n-2}+x^{n-3}+\cdots+x+1 . \tag{1}
\end{equation*}
$$

Then $\left(\beta_{n}\right)$ is an increasing sequence which converges to $2^{-1}(1+\sqrt{5})$.

Fig. 2. Shrinking random β-transformation.
Throughout the paper we will assume $\beta=\beta_{n}$ for some $n \geq 3$. In Section 2, we will show that I can be identified with a full left shift. As a result it will be easy to find I-invariant measures, and to show that I is intrinsically ergodic (i.e. has a unique measure of maximal entropy). In the last section, we identify the dynamics of K with a topological Markov chain, and then use Parry's recipe to prove the following result.

Theorem 1.3. For any $n \geq 3$, let $1<\beta<2$ be the largest positive real number satisfying the equation

$$
\beta^{n}=\beta^{n-2}+\beta^{n-3}+\cdots+\beta+1 .
$$

Then the shrinking random β-transformation K and the induced transformation $I=K_{\Omega \times[a, b]}$ have intrinsically ergodic measures. Moreover, the measure induced from the intrinsically ergodic measure of K on $\Omega \times[a, b]$, does not yield the unique measure of maximal entropy for I.

2. Invariant measures for $\boldsymbol{I}=\boldsymbol{K}_{\Omega \times[a, b]}$

As above, β satisfies $\beta^{n}=\beta^{n-2}+\beta^{n-3}+\cdots+\beta+1, n \geq 3$. It is easy to check that for $(\omega, x) \in \Omega \times[a, b]$, the first return time $\tau(\omega, x) \in\{2,3, \ldots, n\}$. We give a simple proof for this statement. Since $a=T_{1}(b), b=T_{0}(a)$ and the fact that β satisfies the equation $\beta^{n}=\beta^{n-2}+\beta^{n-3}+\cdots+\beta+1$, it follows that the largest return time of a is n. Similarly, we can show that those points, which are very close to a or b, have the return time 2 . What we want to emphasize here is that we delete these points with return time 1 . As there are only countable such points, we can delete these points without affecting our result.

Consider the space $\Omega \times\{2,3, \ldots, n\}^{\mathbb{N}}$ equipped with the product σ-algebra, and the left shift σ^{\prime}. Define the map $\phi:(\Omega \times[a, b]) \backslash\left(\cup_{i=0}^{\infty} K^{-i}(\Omega \times\{a\} \cup \Omega \times\{b\})\right) \rightarrow \Omega \times\{2,3, \ldots, n\}^{\mathbb{N}}$ by

$$
\phi(\omega, x)=\left(\omega,\left(n_{1}, n_{2}, \ldots, n_{k}, \ldots\right)\right),
$$

where n_{i} is the i th return time of (ω, x) to $(\Omega \times[a, b]) \backslash\left(\cup_{i=0}^{\infty} K^{-i}(\Omega \times\{a\} \cup \Omega \times\{b\})\right.$, i.e. $n_{i}=\tau\left(I^{i-1}(\omega, x)\right)$.

Given $\left(a_{n}\right) \in\{0,1\}^{\mathbb{N}}$, we denote the value of the sequence $\left(a_{n}\right)$ by $\left(a_{n}\right)_{\beta}=\sum_{n=1}^{\infty} a_{n} \beta^{-n}$.
Lemma 2.1. The sequences

$$
(01)^{j_{1}}(1 \underbrace{0 \cdots 0}_{n-1})^{j_{2}}(01)^{j_{3}}(1 \underbrace{0 \cdots 0}_{n-1})^{j_{4}} \cdots
$$

and

$$
(10)^{j_{1}}(0 \underbrace{1 \cdots 1}_{n-1})^{j_{2}}(10)^{j_{3}}(0 \underbrace{1 \cdots 1}_{n-1})^{j_{4}} \cdots
$$

are the possible β-expansions of a and b generated by the map K respectively, where $j_{1} \geq 1$ and $j_{k} \geq 0$ for $k \geq 2$.

Proof. The proof follows from the fact that $a=T_{1}(b)=T_{0}^{n-1} T_{1}(a)$ and $b=T_{0}(a)=$ $T_{1}^{n-1} T_{0}(b)$.

Lemma 2.2. ϕ is a measurable bijection.
Proof. Firstly we prove ϕ is one-to-one. Let $\phi\left(\omega, x_{1}\right)=\phi\left(\tau, x_{2}\right)$. Then we have $\omega=\tau$, and the first return time functions coincide. We denote the values of this function by $\left(n_{i}\right)_{i=1}^{\infty}$. Since $x_{1} \in[a, b]$ and $\omega=\left(\omega_{1} \omega_{2} \omega_{3} \cdots\right)$, by the definition of K, we choose ω_{1} for the first digit of x_{1}. Then the orbit of x_{1} jumps out of $[a, b]$, and in the region $[0, a) \cup\left(b,(\beta-1)^{-1}\right]$, we can only choose digits $\overline{\omega_{1}}$ for $n_{1}-1$ times. After n_{1} times later, the orbit of x_{1} goes back to $[a, b]$. Therefore we can implement similar algorithm again. Using this idea, one can easily check that

$$
x_{1}=\left(\omega_{1}{\overline{\omega_{1}}}^{n_{1}-1} \omega_{2}{\overline{\omega_{2}}}^{n_{2}-1} \cdots\right)_{\beta}
$$

and

$$
x_{2}=\left(\tau_{1}{\overline{\tau_{1}}}^{n_{1}-1} \tau_{2}{\overline{\tau_{2}}}^{n_{2}-1} \cdots\right)_{\beta}
$$

where $\overline{\omega_{i}}=1-\omega_{i}$, and $\left(\omega_{i}\right)^{k}$ means k consecutive ω_{i}.
As such we have $x_{1}=x_{2}$. Now we prove ϕ is also a surjection. Given any $\left(\omega,\left(n_{1}, n_{2}, \ldots, n_{k}, \ldots\right)\right)$, it is sufficient to show that

$$
x=\left(\omega_{1}{\overline{\omega_{1}}}^{n-1} \omega_{2}{\overline{\omega_{2}}}^{n_{2}-1} \cdots\right)_{\beta} \in[a, b] .
$$

We decompose the sequence ($\omega_{1}{\overline{\omega_{1}}}^{n_{1}-1} \omega_{2}{\overline{\omega_{2}}}^{n_{2}-1} \ldots$) into the blocks $\omega_{i}{\overline{\omega_{i}}}^{n_{i}-1}$. Note that for any $i \geq 1$, the value of the block can be classified in the following way:
If $\omega_{i}=0$ and $n_{i}=2$, then

$$
\left(\omega_{i}{\overline{\omega_{i}}}^{n_{i}-1}\right)_{\beta}=(01)_{\beta}
$$

If $\omega_{i}=0$ and $n_{i} \geq 3$, then

$$
\left(\omega_{i}{\overline{\omega_{i}}}^{n_{i}-1}\right)_{\beta} \geq(1 \underbrace{0 \cdots 0}_{n-1})_{\beta} .
$$

If $\omega_{i}=1$, then

$$
\left(\omega_{i}{\overline{\omega_{i}}}^{n_{i}-1}\right)_{\beta} \geq(1 \underbrace{0 \cdots 0}_{n-1})_{\beta} .
$$

Here we use the fact $1<\beta<\frac{\sqrt{5}+1}{2}$, see Lemma 1.2. Hence, we have

$$
x=\left(\omega_{1}{\overline{\omega_{1}}}^{n_{1}-1} \omega_{2}{\overline{\omega_{2}}}^{n_{2}-1} \cdots\right)_{\beta} \geq((01)^{j_{1}}(1 \underbrace{0 \cdots 0}_{n-1})^{j_{2}}(01)^{j_{3}}(1 \underbrace{0 \cdots 0}_{n-1})^{j_{4}} \cdots)_{\beta}=a
$$

or

$$
x=\left(\omega_{1}{\overline{\omega_{1}}}^{n_{1}-1} \omega_{2}{\overline{\omega_{2}}}^{n_{2}-1} \cdots\right)_{\beta} \geq((1 \underbrace{0 \cdots 0}_{n-1})^{j_{1}}(01)^{j_{2}}(1 \underbrace{0 \cdots 0}_{n-1})^{j_{3}}(01)^{j_{4}} \cdots)_{\beta}=a .
$$

Similarly, we prove by symmetry that

$$
\begin{aligned}
\bar{x} & =(\beta-1)^{-1}-x=\left(\overline{\omega_{1}} \omega_{1}^{n_{1}-1} \overline{\omega_{2}} \omega_{2}^{n_{2}-1} \cdots\right)_{\beta} \\
& \geq((01)^{j_{1}}(1 \underbrace{0 \cdots 0}_{n-1})^{j_{2}}(01)^{j_{3}}(1 \underbrace{0 \cdots 0}_{n-1})^{j_{4}} \cdots)_{\beta}=a
\end{aligned}
$$

or

$$
\begin{aligned}
\bar{x} & =(\beta-1)^{-1}-x=\left(\overline{\omega_{1}} \omega_{1}^{n_{1}-1} \overline{\omega_{2}} \omega_{2}^{n_{2}-1} \cdots\right)_{\beta} \\
& \geq((\underbrace{0 \cdots 0}_{n-1})^{j_{1}}(01)^{j_{2}}(\underbrace{0 \cdots 0}_{n-1})^{j_{3}}(01)^{j_{4} \cdots})_{\beta}=a .
\end{aligned}
$$

Since $b=(\beta-1)^{-1}-a$, we have $a \leq x \leq b$ and ϕ is surjective. It remains to show that ϕ is measurable. For any cylinders $C=\left\{\omega \in \Omega: \omega_{1}=i_{1}, \ldots, \omega_{m}=i_{m}\right\}$ and $D=\left\{y \in\{2,3, \ldots, n\}^{\mathbb{N}}: y_{1}=n_{1}, \ldots, y_{m}=n_{m}\right\}$, we have

$$
\begin{aligned}
& \phi^{-1}(C \times D) \\
& \quad=\left\{(\omega, x) \in \Omega \times[a, b]: \tau(\omega, x)=n_{1}, \tau(I(\omega, x))=n_{2} \cdots, \tau\left(I^{m-1}(\omega, x)\right)=n_{m}\right\}
\end{aligned}
$$

which is a measurable set, since τ and I are measurable.
Lemma 2.3. Let μ be any $\sigma \times \sigma^{\prime}$-invariant measure on $\Omega \times\{2,3, \ldots, n\}^{\mathbb{N}}$. Then, the measure $\mu \circ \phi$ is I-invariant, and the dynamical systems $(\Omega \times[a, b], I, \mu \circ \phi)$, and $\left(\Omega \times\{2,3, \ldots, n\}^{\mathbb{N}}, \sigma \times\right.$ $\left.\sigma^{\prime}, \mu\right)$ are isomorphic.

Proof. It is easy to check that $\left(\sigma \times \sigma^{\prime}\right) \circ \phi=\phi \circ I$. Since ϕ is a measurable bijection, $\mu \circ \phi$ is I-invariant and the result follows.

Corollary 2.4. Let m_{p} be the $(p, 1-p)$ product measure on Ω, and μ_{π} the product measure on $\{2,3, \ldots, n\}^{\mathbb{N}}$ induced by the probability vector $\pi=\left(\pi_{2}, \ldots, \pi_{n}\right)$, i.e. $\mu_{\pi}\left(\left\{\left(a_{n}\right) \in\right.\right.$ $\left.\left.\{2,3, \ldots, n\}^{\mathbb{N}}: a_{1}=i_{i}, \ldots, a_{m}=i_{m}\right\}\right)=\pi_{i_{1}} \ldots \pi_{i_{m}}$. Then, $\left(m_{p} \times \mu_{\pi}\right) \circ \phi$ is an I-invariant ergodic measure on $\Omega \times[a, b]$.

Proof. Note that μ_{π} is σ^{\prime}-invariant, and since σ is weakly mixing, we have that $\left(m_{p} \times \mu_{\pi}\right)$ is $\sigma \times \sigma^{\prime}$-invariant ergodic measure. By Lemma 2.3, it follows that $\left(m_{p} \times \mu_{\pi}\right) \circ \phi$ is an I-invariant ergodic measure on $\Omega \times[a, b]$.

Note that for different probability vectors $\pi^{(1)}$ and $\pi^{(2)}$, the corresponding measures ($m_{p} \times$ $\left.\mu_{\pi^{(1)}}\right) \circ \phi$ and $\left(m_{p} \times \mu_{\pi^{(2)}}\right) \circ \phi$ are singular with respect to each other. It is natural to ask the following question: when do we have $\left(m_{p} \times \mu_{\pi}\right) \circ \phi=m_{p} \times \lambda$, where λ is the normalized Lebesgue measure on $[a, b]$?

To answer this question, we need to find an explicit expression for the induced transformation $K_{\Omega \times[a, b]}$ in terms of the first return time. We begin by partitioning $[a, b]$ using the greedy orbits,
i.e. when $x \in[a, b]$ we implement T_{1} on x. Define the greedy map $L_{1}(x)=\beta^{n-i+1} x-\beta^{n-i}$, where $x \in\left[c_{i}, c_{i+1}\right), c_{1}=a, c_{n}=b, c_{i}=\beta^{i-1} a-\beta^{i-2}+\beta^{-1}, 2 \leq i \leq n-1$. Similarly, we can define the lazy map $L_{0}(x)$ (we choose T_{0} if the orbits fall into [$\left.a, b\right]$) by

$$
L_{0}(x)=\beta^{n-i+1} x-\beta^{n-i-1}-\beta^{n-i-2}-\beta^{n-i-3}-\cdots-\beta-1,
$$

if $x \in\left(d_{i}, d_{i+1}\right]$, where $d_{1}=a, d_{n}=b, d_{i}=\beta^{n-i} b-\beta^{n-i-2}-\cdots \beta-1-\beta^{-1}, 2 \leq i \leq n-1$. It is easy to see that L_{1} and L_{0} are Generalized Lüroth Series (GLS) maps [2]. Hence, the induced transformation $I=K_{\Omega \times[a, b]}$ is given by $I(\omega, x)=\left(\sigma(\omega), L_{\omega_{1}}(x)\right)$. We now answer the question posed above.

Theorem 2.5. Let $P=\left(\frac{p_{1}}{b-a}, \frac{p_{2}}{b-a}, \ldots, \frac{p_{n-1}}{b-a}\right)$, where $p_{i}=\beta^{i} a-\beta^{i-1} a-\left(\beta^{i-1}-\beta^{i-2}\right), 1 \leq$ $i \leq n-2, p_{n-1}=b-\beta^{n-2} a-\beta^{n-3} a+\beta^{-1}$. Then, $m_{p} \times \lambda$ is an I-invariant ergodic measure and $\left(m_{p} \times P\right) \circ \phi=m_{p} \times \lambda$.

Proof. By [2, Theorems 1], the GLS maps L_{0} and L_{1} preserve the normalized Lebesgue measure. Since the induced transformation I is a skew product, it follows that $m_{p} \times \lambda$ is an I-invariant measure. To show $\left(m_{p} \times P\right) \circ \phi=m_{p} \times \lambda$, it is enough to show that $\left(m_{p} \times P\right)=$ $\left(m_{p} \times \lambda\right) \circ \phi^{-1}$. Let $C=\left\{\omega \in \Omega: \omega_{1}=i_{1}, \ldots, \omega_{m}=i_{m}\right\}$ and $D=\left\{y \in\{2,3, \ldots, n\}^{\mathbb{N}}:\right.$ $\left.y_{1}=n_{1}, \ldots, y_{m}=n_{m}\right\}$. Then,

$$
\begin{aligned}
\phi^{-1}(C \times D) & =\left\{(\omega, x) \in \Omega \times[a, b]: \tau(\omega, x)=n_{1}, \ldots, \tau\left(I^{m-1}(\omega, x)\right)=n_{m}\right\} \\
& =C \times J
\end{aligned}
$$

where

$$
J=D_{n_{1}} \cap L_{i_{1}}^{-1}\left(D_{n_{2}}\right) \cap\left(L_{i_{2}} \circ L_{i_{1}}\right)^{-1}\left(D_{n_{3}}\right) \cap \cdots \cap\left(L_{i_{m-1}} \circ \cdots \circ L_{i_{1}}\right)^{-1}\left(D_{n_{m}}\right)
$$

with $D_{n_{j}}=\left[c_{n-n_{j}+1}, c_{n-n_{j}+2}\right)$ if $i_{j}=1$ and $D_{n_{j}}=\left(d_{n_{j}-1}, d_{n_{j}}\right]$ if $i_{j}=0$. Since the maps L_{0} and L_{1} are piecewise linear and surjective, an easy calculation shows that J is an interval of length $\frac{p_{n_{1}} \ldots p_{n_{m}}}{(b-a)^{m}}=P(D)$, see [2, Theorem 1]. Thus,

$$
\left(m_{p} \times \lambda\right)\left(\phi^{-1}(C \times D)\right)=m_{p}(C) P(D)=\left(m_{p} \times P\right)(C \times D) .
$$

Now, we turn our attention in finding the intrinsically ergodic measure for $I=K_{\Omega \times[a, b]}$, i.e. the unique measure of maximal entropy. For this, we will identify the dynamics of I with a full left shift. Consider the space

$$
\Lambda=\{(0,2),(0,3), \ldots,(0, n),(1,2),(1,3), \ldots,(1, n)\}^{\mathbb{N}} .
$$

Here the first coordinate denotes the outcome of the coin toss (heads $=0$ or tails $=1$), and the second denotes the return time to $\Omega \times[a, b]$. Let S be the left shift on Λ, i.e. $S\left((i, j)_{n}\right)=\left(i^{\prime}, j^{\prime}\right)_{n}$, where $\left(\left(i^{\prime}, j^{\prime}\right)_{n}\right)=(i, j)_{n+1}$. We define the following map

$$
\rho: \Omega \times\{2,3, \ldots, n\}^{\mathbb{N}} \rightarrow \Lambda
$$

by

$$
\rho\left(\left(\omega,\left(n_{1}, n_{2}, \ldots\right)\right)\right)=\left(\left(\omega_{1}, n_{1}\right),\left(\omega_{2}, n_{2}\right),\left(\omega_{3}, n_{3}\right), \ldots\right)
$$

Evidently, ρ is a bijection and $\rho \circ\left(\sigma \times \sigma^{\prime}\right)=S \circ \rho$. This leads to the following theorem.

Theorem 2.6. The induced transformation I is intrinsically ergodic with maximal entropy $\log (2 n-2)$.

Proof. Let m be the product $\left(\frac{1}{2 n-2}, \frac{1}{2 n-2}, \ldots, \frac{1}{2 n-2}\right)$ measure on Λ. Note that m is shift invariant, and is intrinsically ergodic. Since ρ is a commuting bijection, the measure $m \circ \rho$ is $\sigma \times \sigma^{\prime}$-invariant and is intrinsically ergodic. By Lemma 2.3, $m \circ \rho \circ \phi$ is the unique measure of maximal entropy for I. Since entropy is preserved under an isomorphism, the maximal entropy is $\log (2 n-2)$.

3. Invariant measures for K

It is a classical fact that if v is an I-invariant probability measure on $\Omega \times[a, b]$, then the probability measure μ defined on $\Omega \times\left[T_{1}(a), T_{0}(b)\right]$ by

$$
\mu(E)=\frac{1}{\int \tau d \nu} \sum_{n \geq 0} v\left(\{(\omega, x) \in \Omega \times[a, b]: \tau(\omega, x)>n\} \cap K^{-n}(E)\right)
$$

is a K-invariant probability measure. So for any measure v as defined in Lemma 2.3 of the previous section.

Now we consider the intrinsically ergodic measure of K. It can be found via Parry's work, see [13]. For the sake of convenience, we give a brief introduction to Parry's result. Given any one-dimensional subshift of finite type with irreducibility condition, the Parry measure given by a probability vector $\left(p_{0}, p_{1}, \ldots, p_{k-1}\right)$ and stochastic matrix $\left(p_{i j}\right)$ is constructed as follows. If λ is the largest positive eigenvalue of $A\left(A=\left(a_{i j}\right)\right.$ is the adjacency matrix of the subshift of finite type) and ($u_{0}, u_{1}, \ldots, u_{k-1}$) is a strictly positive left eigenvector and ($v_{0}, v_{1}, \ldots, v_{k-1}$) is a strictly positive right eigenvector with $\sum_{i=0}^{k-1} u_{i} v_{i}=1$, then $p_{i}=u_{i} v_{i}$ and $p_{i j}=\frac{a_{i j} v_{j}}{\lambda v_{i}}$. We state the following classical result.

Theorem 3.1. Given any one-dimensional subshift of finite type with irreducibility condition, then the Parry measure is the intrinsically ergodic measure for this subshift of finite type. The maximal entropy is $\log \lambda$.

Recall the definition of β, given $n \geq 3$, let β be the largest positive root of the following equation:

$$
\beta^{n}=\sum_{i=0}^{n-2} \beta^{i}
$$

We can partition $\left[T_{1}(a), T_{0}(b)\right]$ in terms of the image of $[a, b]$ under K. More precisely, let

$$
\left\{\left[T_{0}^{k} T_{1}(a), T_{0}^{k+1} T_{1}(a)\right], 0 \leq k \leq n-2,[a, b],\left[T_{1}^{i} T_{0}(b), T_{1}^{i+1} T_{0}(b)\right], 1 \leq i \leq n-1\right\}
$$

be a Markov partition of $\left[T_{1}(a), T_{0}(b)\right]$, where $T_{j}^{0}=i d, j=0,1$. It is easy to see that the image of each set of the Markov partition is the union of some sets of this partition. For instance, when $n=3$, let

$$
\begin{aligned}
& A=\left[T_{1}(a), T_{0} T_{1}(a)\right], \quad B=\left[T_{0} T_{1}(a), a\right], \quad C=[a, b], \quad D=\left[b, T_{1} T_{0}(b)\right], \\
& E=\left[T_{1} T_{0}(b), T_{0}(b)\right] .
\end{aligned}
$$

Evidently,

$$
\begin{array}{lll}
T_{0}(A)=B, & T_{0}(B)=C, & T_{0}(C)=D \cup E, \\
T_{1}(D)=C, & T_{1}(E)=D . &
\end{array}
$$

Hence the associated adjacency matrix for this Markov partition is

$$
S_{3}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

This matrix can generate a subshift of finite type, denoted by Σ_{3}, i.e.

$$
\Sigma_{3}=\left\{\left(i_{n}\right) \in\{1,2,3,4,5\}^{\mathbb{N}}: S_{3_{i_{n}, i_{n+1}}}=1\right\}
$$

Similarly, for general n, we can find the adjacency matrix S_{n} and its corresponding subshift of finite type Σ_{n}. It is easy to see that the matrix S_{n} is irreducible. Hence, we can make use of Parry's idea to find the unique measure of maximal entropy.

Denote $a_{n}=\operatorname{det}\left(\lambda E-S_{n}\right)$. The following lemma is doing some trivial calculation in linear algebra.

Lemma 3.2. $a_{n+1}=\lambda^{2} a_{n}-2 \lambda^{n}$ for any $n \geq 3$, and $a_{3}=\lambda^{2}\left(\lambda^{3}-2 \lambda-2\right)$. By induction, we have

$$
a_{n}=\lambda^{n-1}\left(\lambda^{n}-2\left(1+\lambda+\lambda^{2}+\cdots+\lambda^{n-2}\right)\right)
$$

The right eigenvector of S_{n} is

$$
\vec{v}=\left(v_{0}, v_{1}, \ldots, v_{2 n-2}\right)=\left(c, \lambda c, \lambda^{2} c, \ldots, \lambda^{n-2} c, \lambda^{n-1} c, \lambda^{n-2} c, \lambda^{n-3} c, \ldots, \lambda c, c\right)
$$

where $c>0$.
The left eigenvector of S_{n}, denoted by $\vec{u}=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{2 n-2}\right)$, is

$$
\begin{aligned}
& \left(d, \frac{1+\lambda}{\lambda} d, \frac{1+\lambda+\lambda^{2}}{\lambda^{2}} d, \ldots, \frac{1+\lambda+\cdots+\lambda^{n-2}}{\lambda^{n-2}} d, \lambda d,\right. \\
& \left.\frac{1+\lambda+\cdots+\lambda^{n-2}}{\lambda^{n-2}} d, \ldots, \frac{1+\lambda}{\lambda} d, d\right)
\end{aligned}
$$

where $d>0$. By the construction of the Parry measure, we assume $\vec{u} \cdot \vec{v}=1$, which implies that c and d have the following relation

$$
\frac{1}{c d}=\frac{2}{\lambda-1}\left(\lambda^{n-1}-n+\frac{\lambda^{n}}{2}\right)+\lambda^{n}
$$

Now we can find the Parry measure as follows, given any $\left(a_{1} a_{2} \cdots a_{k}\right) \in\{1, \ldots 2 n-2\}^{k}$, the Parry measure defined on the cylinder $\left[a_{1} a_{2} \cdots a_{k}\right]$ is

$$
\mu\left(\left[a_{1} a_{2} \cdots a_{k}\right]\right)=p_{a_{1}} p_{a_{1} a_{2}} \cdots p_{a_{k-1} a_{k}}
$$

Let v be the induced measure of μ on $\Omega \times[a, b]$, that is

$$
v(E)=\frac{\mu(E)}{\mu(\Omega \times[a, b])}
$$

for E a measurable subset of $\Omega \cap[a, b]$. By Abramov formula,

$$
h(K, \mu)=h(I, v) \times \mu(\Omega \times[a, b])
$$

where h denotes the entropy of the underlying system, and $I=K_{\Omega \times[a, b]}$. By the construction of the Parry measure,

$$
h(I, v)=\frac{\log \lambda}{u_{n} v_{n}}=\frac{\log \lambda}{c d \lambda^{n}}
$$

To prove the remaining part of Theorem 1.3, we need to compare $h(I, v)=\frac{\log \lambda}{c d \lambda^{n}}$ with $\log (2 n-2)$, the maximal entropy of I.

Lemma 3.3. For any $n \geq 3$,

$$
\log (2 n-2)>\frac{\log \lambda}{c d \lambda^{n}}
$$

Proof. For $n=3$, we can show

$$
\log 6>\frac{\log \lambda}{c d \lambda^{3}}=\frac{\log \lambda}{\lambda^{3}}\left(\frac{2}{\lambda-1}\left(\lambda^{2}-3+\frac{\lambda^{2}}{2}\right)\right) .
$$

This is trivial as we can find the exact value of λ in terms of some characteristic polynomial. Similarly, for $n=4$ the lemma is still correct. Hence, it suffices to prove this lemma when $n \geq 5$. Note that λ is the largest positive root of the following equation

$$
\lambda^{n}-2\left(1+\lambda+\lambda^{2}+\cdots+\lambda^{n-2}\right)=0
$$

Since S_{n} is irreducible, it follows by Perron-Frobenius Theorem that such a λ exists, and furthermore $1<\lambda<2$. By the construction of the Parry measure, it follows that

$$
\frac{1}{c d}=\frac{2}{\lambda-1}\left(\lambda^{n-1}-n+\frac{\lambda^{n}}{2}\right)+\lambda^{n}
$$

Hence, in order to prove

$$
\frac{\log \lambda}{c d \lambda^{n}}=\left[\frac{2}{\lambda-1}\left(\lambda^{n-1}-n+\frac{\lambda^{n}}{2}\right)+\lambda^{n}\right] \frac{\log \lambda}{\lambda^{n}}<\log (2 n-2),
$$

it suffices to prove that

$$
\lambda^{\frac{2}{(\lambda-1) \lambda^{n}}\left(\lambda^{n-1}-n+\frac{\lambda^{n}}{2}\right)}<\frac{2 n-2}{\lambda} .
$$

Since $n \geq 5$ and $1<\lambda<2$, it follows that $\frac{2 n-2}{\lambda} \geq \frac{8}{\lambda} \geq \lambda^{2}$. Hence it remains to show that

$$
\frac{2}{(\lambda-1) \lambda^{n}}\left(\lambda^{n-1}-n+\frac{\lambda^{n}}{2}\right)<2
$$

However, this inequality immediately follows from

$$
\lambda^{n}-2\left(1+\lambda+\lambda^{2}+\cdots+\lambda^{n-2}\right)=0
$$

and $1<\lambda<2$.
Proof of Theorem 1.3. By Lemma 3.3, Theorems 2.6 and 3.1, we finish the proof of Theorem 1.3.

4. Some remarks

The shrinking random β-transformation we defined is very special. For a general sub switch region, i.e. $(a, b) \subset\left[\beta^{-1}, \beta^{-1}(\beta-1)^{-1}\right]$, does the intrinsically ergodic measure exist? For general $1<\beta<2^{-1}(1+\sqrt{5})$, how can we find an invariant measure (or intrinsically ergodic measure) for the shrinking random β-transformation? In the setting of classical random beta transformation, similar questions can be considered, see [1].

Acknowledgments

The first author was supported the National Natural Science Foundation of China No. 11271137 and by China Scholarship Council grant number 201206140003.

References

[1] Simon Baker, Karma Dajani, Induced random beta-transformation. arXiv:1509.06194, 2015.
[2] Jose Barrionuevo, Robert M. Burton, Karma Dajani, Cor Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith. 74 (4) (1996) 311-327.
[3] Karma Dajani, Martijn de Vries, Measures of maximal entropy for random β-expansions, J. Eur. Math. Soc. (JEMS) 7 (1) (2005) 51-68.
[4] Karma Dajani, Martijn de Vries, Invariant densities for random β-expansions, J. Eur. Math. Soc. (JEMS) 9 (1) (2007) 157-176.
[5] K. Dajani, C. Kalle, A natural extension for the greedy β-transformation with three arbitrary digits, Acta Math. Hungar. 125 (1-2) (2009) 21-45.
[6] Karma Dajani, Cor Kraaikamp, Random β-expansions, Ergodic Theory Dynam. Systems 23 (2) (2003) 461-479.
[7] Ingrid Daubechies, Sinan Güntürk, Yang Wang, Özgür Yılmaz, The golden ratio encoder, IEEE Trans. Inform. Theory 56 (10) (2010) 5097-5110.
[8] T. Kempton, On the invariant density of the random β-transformation, Acta Math. Hungar. 142 (2) (2014) 403-419.
[9] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416.
[10] William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964) 55-66.
[11] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493.
[12] Peter Walters, Equilibrium states for β-transformations and related transformations, Math. Z. 159 (1) (1978) 65-88.
[13] Peter Walters, An Introduction to Ergodic Theory, in: Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982.

[^0]: * Corresponding author.

 E-mail address: k.dajani1@uu.nl (K. Dajani).

