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Abstract. Using the representation theory of Yangians we construct the rational

R-matrix which takes values in the adjoint representation of SU(n). From this we

derive an integrable SU(n) spin chain with lattice spins transforming under the adjoint

representation. However, the resulting Hamiltonian is found to be non-Hermitian.

1. Introduction

Consider a finite-dimensional, irreducible representation ρ : g → end(V ) of some

complex Lie algebra g on the vector space V . An R-matrix R(λ) : V ⊗ V → V ⊗ V for

λ ∈ C is a solution of the Yang–Baxter equation

R12(λ)R13(λ+ µ)R23(µ) = R23(µ)R13(λ+ µ)R12(λ) (1)

on the tensor product V ⊗ V ⊗ V , where Rij(λ) acts non-trivially on the i-th and

j-th factor, eg, R12(λ) = R(λ) ⊗ 1. Solutions of the Yang–Baxter equation play a

central role in various fields of theoretical physics like the quantum inverse scattering

method [1], statistical field theories with factorised scattering [2, 3], the theory of

quantum groups [4, 5], or quantum information theory [6, 7].

In the early 1980s many rational R-matrices beyond the simplest case of the

fundamental representation of su(2) have been constructed, see, eg, Refs. [8, 9, 10,

11, 12]. In 1985, Drinfel’d [13, 14] then discovered the intimate relation between

rational R-matrices and Yangians Y(g). He proved that there exists a universal R-

matrix in Y(g)⊗Y(g) which yields rational solutions of (1) provided the representation

ρ of g can be extended to an irreducible representation of Y(g). Unfortunately the

universal R-matrix is not known explicitly. This limitation was overcome by Chari

and Pressley [15, 16], who gave an explicit construction of rational R-matrices based

on the intertwining operator of representations of the Yangian. We will apply this

method to construct rational solutions of (1) where V is the (n2 − 1)-dimensional,

adjoint representation of su(n), and discuss the physics implication of our result. While

http://arxiv.org/abs/1606.02516v2
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this is presumably well-known to the integrable-systems community, it does not seem

to have been published before.

This article is organised as follows: In the next section we review the necessary

facts about Yangians and their relation to R-matrices. In Sec. 3 we present basic results

on the adjoint representation of su(n) and the properties of its tensor products. We

then use these results to construct the rational R-matrix for the adjoint representation

of su(n), which constitutes our main result and is given in (20). In Sec. 5 we construct

the corresponding integrable spin-chain Hamiltonian, which, however, turns out to be

non-Hermitian. Finally, in Sec. 6 we treat the special case of SU(3), before we conclude

with a discussion of our results.

2. Yangians and R-matrices

We first review the relation between Yangians and R-matrices based on the intertwining

operator [15, 16]. The Yangian Y(su(n)) is the infinite-dimensional Hopf algebra

generated by the (level-0) elements x ∈ su(n) and the level-1 elements J(x), which

satisfy a set of non-trivial relations that can be found, eg, in Ref. [16]. For example,

the map J : su(n) → Y(su(n)) is linear and satisfies [x, J(y)] = J([x, y]). In particular,

the Yangian possesses a co-multiplication ∆ : Y(su(n)) → Y(su(n)) ⊗ Y(su(n)) which

is given by

∆(x) = x⊗ 1 + 1⊗ x, ∆(J(x)) = J(x)⊗ 1 + 1⊗ J(x) +
1

2

[

x⊗ 1,Ω
]

(2)

with the Casimir element Ω ∈ su(n) ⊗ su(n). Choosing an orthonormal basis Ia,

a = 1, . . . , n2 − 1, of su(n) (with respect to the trace form (Ia, Ib) = tr[(Ia)†Ib] = δab),

we find Ω =
∑

a I
a ⊗ Ia and the level-1 generators are given by Ja = J(Ia). For the

orthonormal basis {Ia} one can, up to a normalisation, use the generalised Gell-Mann

matrices [17]. We recall that in such a basis the commutator and anticommutator of

two elements can be written as
[

Ia, Ib
]

=
∑

c

fabcIc,
{

Ia, Ib
}

=
∑

c

dabcIc +
2

n
δab 1, (3)

where fabc are the antisymmetric, purely imaginary structure constants, dabc the

symmetric, real d-symbols, and 1 denotes the (n× n)-identity matrix.

Starting from a representation ρ : su(n) → end(V ) of su(n), one can construct

representations of the corresponding Yangian using the evaluation homomorphism [5]

evλ : Y(su(n)) → U(su(n)) for λ ∈ C, which is given for n ≥ 3 by

evλ(x) = x, evλ(J(x)) = λx+
1

4

∑

a,b

tr
(

x{Ia, Ib}
)

IaIb. (4)

Now the composition ρλ = ρ ◦ evλ defines a one-parameter family of representations of

the Yangian which we denote by Vλ for simplicity.

Taking two representations Vλ and Wµ of Y(su(n)), the action on their tensor

product can be defined using the co-multiplication (2). Chari and Pressley proved [15,
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16] that there exists a unique intertwining operator IV,W (λ− µ) : Wµ ⊗ Vλ → Vλ ⊗Wµ

which is compatible with the action of the Yangian and preserves the tensor product

of the highest-weight states in Vλ and Wµ. Furthermore, the intertwining operator

is a rational function of λ − µ and satisfies IV,W (λ − µ) IW,V (µ − λ) = 1. Most

importantly, they showed that the intertwining operator yields a rational R-matrix, ie,

R(λ) = IV,V (λ)σ with the permutation operator σ satisfies the Yang–Baxter equation.

In Sec. 4 we will apply this construction to obtain the R-matrix for the adjoint

representation of su(n).

3. Adjoint representation of su(n)

Before doing so we recall some necessary facts about the adjoint representations. For

convenience, we assume n > 3 and treat the case n = 3 separately in Sec. 6.

The Lie algebra su(n) possesses n − 1 simple roots αi, i = 1, . . . , n − 1, in terms

of which the highest weight of the adjoint representation is given by the maximal root

β =
∑n−1

i=1 αi. Alternatively this can be written as [18, 19] β = λ1 + λn−1, there the λi

are the fundamental weights. In general, any representation can be uniquely defined by

its highest weight
∑n−1

i=1 miλi with integers mi; we will use the notation (m1m2 · · ·mn−1)

to specify the corresponding representation.

The tensor product representation of two adjoint representations decomposes as

(10 . . . 01)⊗ (10 . . . 01) = (20 . . . 02)s ⊕ (20 . . . 010)a ⊕ (010 . . . 02)a

⊕ (010 . . . 010)s ⊕ (10 . . . 01)s ⊕ (10 . . . 01)a ⊕ (0 . . . 0)s, (5)

where (010 . . . 010) has to read (020) for n = 4. With the subindices we indicate the

symmetry properties under exchange of the factors in the tensor product.

The positive root spaces of su(n) can be chosen such that they correspond to the

one-dimensional subspaces spanned by eij with i < j, where eij is the matrix with 1

as the (i, j)-th entry and 0 otherwise. With this choice of positive roots, we fix the

root space gα1
, with α1 a root corresponding to one of the end nodes in the Dynkin

diagram, to be spanned by e12. The highest-weight vector of the adjoint representation

is then given by e1n. For later use we state the explicit expressions for the highest-

weight vectors of the submodules on the right-hand side of (5) in Table 1, which can

easily be checked by straightforward calculation. For example, from (3) one sees that

{Ω, 1⊗ e1n} − 2
n
e1n ⊗ 1 indeed belongs to su(n)⊗ su(n).

We note that the highest-weight vectors for the two adjoint representations in (5)

are normalised such that they have the same norm with respect to the inner product on

su(n) ⊗ su(n) given for pure tensor states by (v1 ⊗ v2, w1 ⊗ w2) = (v1, w1) (v2, w2).

Writing the two highest-weight vectors as vs = n
∑

a,b,cw
adabcIb ⊗ Ic and va =√

n2 − 4
∑

a,b,cw
afabcIb ⊗ Ic, where wa is the unique vector such that e1n =

∑

aw
aIa,

the norms can be computed easily using [20]
∑

a,b d
abcdabd = (2n2 − 8)δcd/n and

∑

a,b f
abcfabd = −2nδcd.
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Submodule Highest-weight vector Eigenvalue of Ω

(20 · · ·02)s e1n ⊗ e1n 2

(20 · · ·010)a e1(n−1) ∧ e1n 0

(010 · · ·02)a e2n ∧ e1n 0

(010 · · ·010)s Sym
(

e2(n−1) ⊗ e1n − e1(n−1) ⊗ e2n
)

−2

(10 · · ·01)s n
(

{Ω, 1⊗ e1n} − 2
n
e1n ⊗ 1

)

−n

(10 · · ·01)a
√
n2 − 4 [Ω, 1 ⊗ e1n] −n

(0 · · · 0)s Ω −2n

Table 1. Highest-weight vectors for the irreducible submodules in the decomposition

of (5). The eigenvalues of the Casimir element have been computed previously [19].

Furthermore, v ∧ w = v ⊗ w − w ⊗ v and Sym(v ⊗ w) = v ⊗ w + w ⊗ v.

4. Construction of the R-matrix in the adjoint representation

In this section we derive the R-matrix in the adjoint representation from the

corresponding intertwining operator. A similar construction was performed in Ref. [16]

for the representation g ⊗ C if g 6= su(n).

Consider the two representations Vλ and Vµ of Y(su(n)) obtained by pulling back

the adjoint representation V = (10 . . . 01) of su(n) using the evaluation homomorphism

(4) with the spectral parameters λ and µ respectively. The action of Y(su(n)) on the

tensor product Vµ ⊗ Vλ is defined by the co-multiplication (2). As was proven by Chari

and Pressley [16], there exists a unique intertwining operator I(λ−µ) : Vµ⊗Vλ → Vλ⊗Vµ

compatible with this representation, ie, I satisfies

I(λ− µ) (adµ ⊗ adλ)∆(y) = (adλ ⊗ adµ)∆(y) I(λ− µ), y ∈ Y(su(n)), (6)

that preserves the tensor product of the highest-weight states. For later use we give the

explicit action of the J(x) on Vµ ⊗ Vλ,

J(x)µ,λ = (adµ ⊗ adλ)∆(J(x)) =

(

µx+
1

4

∑

a,b

tr
(

x{Ia, Ib}
)

IaIb

)

⊗ 1

+1⊗
(

λx+
1

4

∑

a,b

tr
(

x{Ia, Ib}
)

IaIb

)

+
1

2

[

x⊗ 1,Ω
]

. (7)

We stress that the action of products like IaIb has to be understood in the adjoint

representation, ie, IaIb ≡ ad(Ia) ad(Ib) = [Ia, [Ib, . ]].

We first note that since I is a function of λ − µ, we can set µ = 0. Furthermore,

the intertwining operator is invariant under the action of the Lie algebra su(n), thus

the decomposition (5) together with Schur’s lemma implies that it can be written as

I(λ) = P(20...02) + f1(λ)P(20...010) + f2(λ)P(010...02) + f3(λ)P(010...010)

+ f4(λ)P(0...0) +M(λ), (8)

where PΛ is the projection onto the submodule Λ, the fi(λ) are rational functions,

and M(λ) is an operator acting on the two copies of the adjoint representation; when
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considering its action on the two highest-weight states (see Table 1) it can be written

as a (2 × 2)-matrix. Note that the requirement to preserve the tensor product of the

highest-weight states fixes the prefactor of P(20...02) to one.

The functions fi(λ) and the entries of M(λ) can be obtained recursively from

the general relation (6). Starting with the highest-weight state v = v(20...010) of the

representation (20 . . . 010)a in (5), the requirement (6) for the element y = J(e(n−1)n)

yields

I(λ) J(e(n−1)n)0,λ v(20...010) = J(e(n−1)n)λ,0 I(λ) v(20...010), (9)

where the action of J(e(n−1)n)µ,λ is given by (7). This can be rewritten as

I(λ)

[

λ
(

1⊗ e(n−1)n

)

+
1

2

(

e(n−1)n ⊗ 1
)

Ω− 1

2
Ω
(

e(n−1)n ⊗ 1
)

]

v(20...010)

= f1(λ)

[(

λ− 1

2
Ω

)

(

e(n−1)n ⊗ 1
)

+
1

2

(

e(n−1)n ⊗ 1
)

Ω

]

v(20...010), (10)

where we used the identity
∑

a,b

[

tr
(

e(n−1)n{Ia, Ib}
)

IaIb ⊗ 1 + 1⊗ tr
(

e(n−1)n{Ia, Ib}
)

IaIb
]

v(20...010) = 0. (11)

We have checked (11) by explicit numerical evaluation for n ≤ 7. Now using
(

1⊗ e(n−1)n

)

v(20...010) = −
(

e(n−1)n ⊗ 1
)

v(20...010) = v(20...02) (12)

as well as Ω v(20...010) = 0 and Ω v(20...02) = 2v(20...02) we obtain

(1 + λ)v(20...02) = (1− λ) f1(λ) v(20...02) ⇒ f1(λ) =
1 + λ

1− λ
. (13)

The same calculation can be performed for v = v(010...02) and y = J(e12). As the

identity (11) with e(n−1)n and v(20...010) replaced by e12 and v(010...02), respectively, still

applies (also explicitly checked for n ≤ 7) we find f2(λ) = f1(λ). Similarly, for

v = v(010...010) and y = J(e12) the function f3(λ) can be related to f1(λ) with the

result f3(λ) = (1 + λ)2/(1 − λ)2. The last function, f4(λ), can be obtained by acting

with J(e1n) twice on the highest-weight state v(0...0) = Ω. Using the identity

J(e1n)µ,λ J(e1n)µ,λ v(0...0) = −2(µ− λ− 1)(µ− λ− n) v(20...02), (14)

again explicitly checked for n ≤ 7, we obtain f4(λ) = (1 + λ)(n + λ)/(1− λ)/(n− λ).

In order to determine the intertwining operator on the submodule (10 . . . 01)s ⊕
(10 . . . 01)a, we consider its action on the corresponding highest-weight states v(10...01)s
and v(10...01)a respectively. The action on these is encoded in the (2 × 2)-matrix M(λ),

whose entries can be calculated from (6) using the set of identities

J(e1n)µ,λ v(10...01)s = n(n− 2) v(20...02), (15)

J(e1n)µ,λ v(10...01)a =
√
n2 − 4

(

n + 2− 2µ+ 2λ
)

v(20...02), (16)

J
(

e(n−1)n

)

µ,λ
J
(

e1(n−1)

)

µ,λ
v(10...01)s = n

[

(λ− µ)2 + 2λ− nµ+
n2

4

]

v(20...02), (17)
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J
(

e(n−1)n

)

µ,λ
J
(

e1(n−1)

)

µ,λ
v(10...01)a

=

√
n2 − 4

4

[

n(n + 4)− (6n+ 4)µ+ 4µ2 + (2n− 4)λ− 4λ2
]

v(20...02). (18)

As before, we have checked (15)–(18) by explicit numerical evaluation for n ≤ 7. The

matrix M(λ) is now obtained by straightforward calculation with the result

M(λ) =
1

2(n− λ)(1− λ)2

(

2n+ (n2 + 2)λ− 2λ3 n
√
n2 − 4λ

−n
√
n2 − 4λ 2n− (n2 + 2)λ+ 2λ3

)

, (19)

where we recall that M(λ) has to be understood with respect to the ordered basis of

highest-weight vectors {v(10...01)s , v(10...01)a}. One easily checks I(λ) I(−λ) = 1. This

completes our derivation of the intertwining operator (8).

The R-matrix is now obtained by the composition of the intertwining and

permutation operators. Using the symmetry or antisymmetry of the submodules as

indicated in (5), we arrive at the R-matrix in the adjoint representation of su(n), which

constitutes our main result (we recall that n ≥ 4)

R(λ) = I(λ) σ = P(20...02) −
1 + λ

1− λ

(

P(20...010) + P(010...02)

)

+

(

1 + λ

1− λ

)2

P(010...010)

+
1 + λ

1− λ

n + λ

n− λ
P(0...0) +N(λ). (20)

Here the operator N(λ), considered as acting on the highest-weight states of (10 . . . 01)s
and (10 . . . 01)a, is given by

N(λ) =
1

2(n− λ)(1− λ)2

(

2n+ (n2 + 2)λ− 2λ3 −n
√
n2 − 4λ

−n
√
n2 − 4λ −2n+ (n2 + 2)λ− 2λ3

)

. (21)

The R-matrix satisfies R(0) = σ as well as

R(λ) =

(

1 +
2

λ

)

1⊗ 1− 1

λ
(ad⊗ ad)Ω +O(λ−2), (22)

furthermore R̃(λ) = σ I(λ) provides a second, independent solution. We note that the

construction followed above cannot be generalised to the adjoint representation of other

Lie algebras g 6= su(n). Instead one has to consider the representation g ⊗ C, as was

done in Ref. [16]. The obtained results are similar to (20).

5. Integrable SU(n) spin chains

The quantum inverse scattering method [1, 3] allows the construction of integrable

models from a given solution of the Yang–Baxter equation. In the case at hand we obtain

a spin chain with adjoint SU(n) symmetry. Specifically consider an N -site chain with

periodic boundary conditions. Each lattice side carries the (n2−1)-dimensional, adjoint

representation of su(n). Since the R-matrix (20) satisfies R(0) = σ, the integrable

Hamiltonian is given by [3]

H =
N
∑

i=1

hi,i+1, h =
∂

∂λ
R(λ)

∣

∣

∣

λ=0
σ, (23)
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where hi,i+1 denotes the local Hamiltonian acting non-trivially only on the two

neighbouring sites i and i+ 1. We find

hi,i+1 = 2
(

P(20...010) + P(010...02)

)

+ 4P(010...010) +
2 + 2n

n
P(0...0) +O, (24)

where O, written as a matrix acting on the two copies of the adjoint representation, is

given by

O =

(

(2+n)2

2n
1
2

√
n2 − 4

−1
2

√
n2 − 4 2− n

2

)

. (25)

We recall that the matrix is given in the basis of Table 1.

It is well known that the Hamiltonians of the SU(2)-invariant integrable models [21]

constructed using the quantum inverse scattering method can be expressed in terms of

a polynomial in the Casimir element. For the adjoint representation one obtains the

integrable Takhtajan–Babujian model [22, 21]. In contrast, because of the off-diagonal

terms, it is not possible to rewrite (24) in terms of a polynomial in the Casimir element.

Nevertheless, we can express the local Hamiltonian in terms of SU(n) ’spin’

operators acting on the lattice sites. These spin operators for the adjoint representation

can be defined as follows: We fix an orthonormal basis Ia with respect to the trace form.

Then the spin operators act in the adjoint representation by a matrix Sa = ad(Ia) with

the structure constants as entries, ie, (Sa)bc = fabc. Since in the basis {Ia} the structure

constants are completely antisymmetric and purely imaginary, the spin operators Sa are

Hermitian. Furthermore, we define the following Hermitian operators [23]

Q =
∑

a

Sa
1S

a
2 , CA =

∑

a,b,c

dabc
(

Sa
1S

b
1S

c
2 − Sa

1S
b
2S

c
2

)

,

K =
∑

a,b,c,d,e,f

dabcddefSa
1S

d
1S

e
1S

f
2S

b
2S

c
2, (26)

where the spin operators act on two neighbouring sites indicated by the subindex 1,2.

Applying certain relations [23] between these operators, the local Hamiltonian can be

written as [24] (we recall that n > 3)

hi,i+1 = Q +
1

n

2− n2

6 + n2
Q2 − 3

6 + n2
Q3 − 1

n

1

6 + n2
Q4

− 1

n3

2 + n2

6 + n2
K +

1

4n3

1

6 + n2

[

K,CA

]

, (27)

where C, CA and K are understood to act on sites i and i + 1. We note that in the

derivation of (27) we rescaled (24) by the factor (6 + n2)/8 and dropped an additive

constant. From this result we immediately deduce that the local Hamiltonian is not

Hermitian because of the commutator [K,CA], and thus that also the total Hamiltonian

(23) will be non-Hermitian. We note that while the eigenvalues of the two-site system

hi,i+1 are real, for the full Hamiltonian this is no longer the case. Hence the physical

interpretation of the system (23) is unclear.
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6. Special case: SU(3) model

Finally we consider the special case of SU(3) which has been investigated previously [12]

without using the Yangian. The decomposition of the tensor product (5) does

not contain the representation (010 . . . 010). Denoting the representations by their

dimensions, eg, (30) = 10, we thus have instead of (5)

8⊗ 8 = 27⊕ 10⊕ 1̄0⊕ 8s ⊕ 8a ⊕ 1. (28)

Again the subindices of the adjoint representations indicate its symmetry/antisymmetry

under exchange of the factors, while the bar denotes conjugation. The highest-weight

vectors for these modules are still given in Table 1, while the R-matrix reads

R(λ) = P27 −
1 + λ

1− λ

(

P10 + P1̄0

)

+
1 + λ

1− λ

3 + λ

3− λ
P1 +N(λ) (29)

with N(λ) given by setting n = 3 in (21). The matrix N(λ) can be diagonalised with

the eigenvalues given by (11λ− 2λ2± 3
√
4 + 5λ2)/2/(1−λ)2/(3−λ) in agreement with

Ref. [12]. Furthermore, we have explicitly checked that the R-matrix (29) satisfies the

Yang–Baxter equation. The local Hamiltonian becomes

hi,i+1 = 2
(

P10 + P1̄0

)

+
25

6
P8s

+
1

2
P8a

+

√
5

2

(

Osa − Oas

)

+
8

3
P1, (30)

where Oas is mapping 8s onto 8a and vice versa. When considered as acting on the

highest-weight states we have explicitly Oas = σ− and Osa = σ+ with the Pauli matrices

σ± = (σx ± iσy)/2. Introducing Hermitian spin operators Sa via Sa = ad(Ia) with {Ia}
an orthonormal basis of su(3), eg, Ia = λa/

√
2 with λa being the Gell-Mann matrices,

the local Hamiltonian can be written as

hi,i+1 = Q− 7

9
Q2 − 2

9
Q3 − 11

81
K +

1

324

[

K,CA

]

, (31)

where the operators Q, K and CA were defined in (26), and we have rescaled (30) by

8/3. We note that due to the last term the full Hamiltonian is not Hermitian.

7. Conclusion

We constructed the intertwining operator between two representations of the Yangian

of su(n) obtained by its pull-back of the adjoint representation. From this we obtained

the rational R-matrix with adjoint SU(n) symmetry, given in (20), as well as the

corresponding integrable Hamiltonian. From the physics point of view the main problem

with the latter is its lack of hermiticity, which renders its physical interpretation unclear.

Still we hope that the derived R-matrix will be useful in other contexts like field theories

with factorised scattering or quantum information theory.
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