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Abstract. A perturbative description of Large Scale Structure is a cornerstone of our un-
derstanding of the observed distribution of matter in the universe. Renormalization is an
essential and defining step to make this description physical and predictive. Here we intro-
duce a systematic renormalization procedure, which neatly associates counterterms to the
UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As
a concrete example, we renormalize the one-loop power spectrum and bispectrum of both
density and velocity. In addition, we present a series of results that are valid to all orders
in perturbation theory. First, we show that while systematic renormalization requires tem-
porally non-local counterterms, in practice one can use an equivalent basis made of local
operators. We give an explicit prescription to generate all counterterms allowed by the sym-
metries. Second, we present a formal proof of the well-known general argument that the
contribution of short distance perturbations to large scale density contrast δ and momen-
tum density π(k) scale as k2 and k, respectively. Third, we demonstrate that the common
practice of introducing counterterms only in the Euler equation when one is interested in
correlators of δ is indeed valid to all orders.
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1 Introduction

A robust and accurate understanding of the gravitational clustering of Dark Matter is one
of the main goals of cosmology. The smallness of the smoothed density and velocity on large
scales suggests that some appropriate perturbation theory should converge to the right answer
in this regime. It has recently become clear [1–3] that a consistent treatment of this problem
requires the addition of an infinite hierarchy of effective interactions to the fluid equations of
Standard Perturbation Theory (SPT) [4].1 Although the lowest order effective interactions
have been discussed in details (in the density [2, 3, 17–19] and velocity [20] power spectrum,
and in the density bispectrum [21, 22], including non-Gaussian initial conditions [23]), a
complete prescription to generate all the relevant operators to all orders in perturbation
theory is still missing. In addition, the current renormalization procedure — a procedure
that makes the perturbative expansion physically meaningful — has been carried out only at
the lowest order for a limited set of interesting observables, and not in a fully systematic way.

In this paper, we introduce a renormalization procedure that works systematically to
all orders in perturbation theory and give an explicit prescription to construct all effective
counterterms allowed by the symmetries. Here we summarize our main findings:

• Systematic renormalization. In SPT one solves the continuity and Euler equations
order by order:

δ̇ + θ = −∂i(δv
i) ,

θ̇ +Hθ +
3

2
H2δ = −∂i(v

j∂jv
i).

The nonlinear terms relate short and long wavelength modes to each other and lead to
“loop” diagrams in the perturbative calculation of correlation functions. To be mean-
ingful, loops need to be regularized and new interactions or “counterterms” must be
included. With the exception of [20], all treatments so far have considered counterterms
only in the Euler equation. Moreover, the SPT kernels (and the associated diagrams)
combine several qualitatively different contributions together, making it practically
impossible to separate embeddings of lower order loop diagrams into a higher order di-
agram. Because of this, the connection among various terms in the loop expansion, e.g.
1-loop 2-point correlator and 1-loop 3-point correlator, is less clear than in the common
treatment of for example quantum field theories. Here, we introduce a systematic renor-
malization that avoid these drawbacks and is analogous to the one commonly adopted
in quantum filed theories (including the Feynman diagramatics). For additional clarity,
the procedure is illustrated using the explicit examples of 1-loop power spectrum and
1-loop bispectrum.

Our systematic renormalization makes explicit the implications of the long mem-
ory of the short-scale modes, of the equivalence principle and neatly organizes the
generation of new counterterms. Nevertheless, it has its own drawbacks. First, it re-
quires the introduction of counterterms in the continuity equation. These are indeed
necessary to discuss velocity correlators, but they are degenerate with those in the
Euler equation if one is only interested in correlators of δ. Second, systematic renor-
malization requires that all counterterms are non-local in time. A practical remedy to
these shortcomings is presented in section 6.

1The discussion has by now been extended beyond dark matter [5–9]. For a recent discussion of the range
of validity of the effective theory see [10–12]. See also [13, 14] and [15, 16] for a different but related approach.
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• Mass-weighted velocity/momentum description. To renormalize the one and
two-loop power spectrum and one-loop bispectrum, it is sufficient to include countert-
erms to the Euler equation [2, 18, 20–22]. It is well-known that this approach works
to all orders and for all statistics of δ, and is equivalent to a particular definition of
velocity in terms of momentum current.2 In section 6.1 we summarize and sharpen
those arguments.

• All-order counterterms. We provide an explicit prescription to generate the coun-
terterms allowed by symmetries to all orders. The discussion separates into the mo-
mentum description and the systematic renormalization approach. The latter case is
more cumbersome, so we refer the interested reader directly to section 4.4. The re-
sult in the former case can instead be stated concisely. The Euler equation must be
supplemented by

1

1 + δ
∂jτ

ij ,

where the two-index symmetric tensor τ ij is constructed order by order by traces and

products of locally observable n-th order, two-index tensors Π̂
(n)
ij and their spatial

derivatives. These tensors (also called the “Eulerian” basis) are defined recursively
by [8]

Π̂
(1)
ij (x, τ) = ∂i∂jφ(x, τ), and Π̂

(n)
ij =

1

(n− 1)!

[

(Π̂
(n−1)
ij )′ − (n− 1)Π̂

(n−1)
ij

]

,

where prime denotes the convective derivative (4.10) with respect to logD (D is the
linear growth factor). For example, at lowest order in derivatives and using matrix
notation, the first few terms are

1st 1Tr[Π̂(1)], Π̂(1)

2nd 1Tr[(Π̂(1))2], 1(Tr[Π̂(1)])2, Π̂(1)Tr[Π̂(1)], (Π̂(1))2, Π̂(2)

3rd 1Tr[(Π̂(1))3], 1Tr[(Π̂(1))2]Tr[Π̂(1)], 1(Tr[Π̂(1)])3, 1Tr[Π̂(1)Π̂(2)], · · ·

Two comments are in order. First, starting from quartic order, these operators can
not be written as local functions of (second derivatives of) the Newtonian and velocity
potentials φ and φv [8]. Second, after taking divergence of τij , some terms become de-
generate. For example, there are five second order terms above but only 3 independent
counterterms at this order [21, 22].

• Double softness. It is well-known (see e.g. [24]) that the conservation of momentum
and locality implies that interactions among modes of characteristic wave-number q
can generate a longer wavelength mode k ≪ q suppressed at least as δ(k) ∝ k2, namely
the density is “double soft”. Analogously, the momentum is single soft, |π| ∝ k. After
reviewing a general argument for this property due to Peebles, we prove it directly
from the equations of motion in section 5 (details are in appendix B). Double softness
can be seen and implemented most straghtforwardly using mass-weighted velocity or
momentum. On the other hand, in terms of the more general velocity used in [20] and
in the systematic renormalization, double softness implies a highly non-trivial relation
among counterterms to all orders.

2It should be stressed that care is needed when comparing the prediction for velocity correlators with
simulation or observations. We refer the reader to [20] for a discussion of this issue.
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In this paper, we have extensively used the same nomenclature as in quantum and
statistical field theory to stress the similarity with the problem at hand and to make the
discussion more intuitive. When needed, we have adapted and refined some of the definitions.
For the convenience of the reader, a glossary of the technical terms is provided in appendix E.

The rest of the paper is organized as follows. In section 2, we review standard perturba-
tion theory in a compact “vector” form and introduce diagrammatic rules, which we elucidate
for the case of the tree-level bispectrum. In section 3, we discuss how interactions give rise to
loops and the separation between 1-particle irreducible (1PI) and 1-particle reducible (1PR)
diagrams and stochastic and non-stochastic counterterms. The one-loop power spectrum is
used as an example. In section 4, we present our systematic renormalization procedure and
discuss the implication of the long memory of the short-scale modes and of the equivalence
principle. The one-loop bispectrum is used as a concrete example of our general remarks.
Section 5 is devoted to the discussion of double softness. Finally, in section 6, we give the
explicit form of all allowed counterterms and put the density-only description on a firmer
footing. Some technical details are left to the appendices.

2 Preliminaries

At very large scales dark matter can be treated effectively as a pressure-less fluid of density
contrast δ = (ρ − ρ̄)/ρ̄, and velocity vi, whose dynamics (in a matter dominated model of
expansion rate H) are governed by the continuity and Euler equations:

δ̇ + θ =− ∂i(δv
i) ,

v̇ +Hv +∇φ =− v · ∇v,
(2.1)

where the gravitational potential satisfies ∇2φ = 3
2H

2δ. Starting from zero vorticity, i.e.
∇ × v = 0, it remains zero under this evolution. Hence, we can take the divergence of the
latter equation and use the velocity divergence as the independent variable θ = ∂iv

i:

θ̇ +Hθ +
3

2
H2δ = −∂i(v

j∂jv
i). (2.2)

(We will comment on the generation of vorticity in section 4.3.) At shorter scales the above
description is incomplete and higher derivative corrections must be included. In practice, the
need for such corrections (counterterms) can be seen from the dependence of the nonlinear
solutions on the choice of the ultraviolet cutoff. The coefficients of the counterterms depend
on the cutoff in such a way that the final result is cutoff-independent, though it does depend
on the unknown details of the ultraviolet physics. That is, the counterterms capture the
contribution of short distance physics by introducing new effective interactions among long-
wavelength modes. Their coefficients are to be fixed either by a first-principle calculation
or, more realistically, using simulations and observations. In this paper, we will derive the
general form of these counterterms.

For this purpose, it is useful to develop a systematic approach to renormalization — the
procedure of removing cutoff dependence — as in conventional relativistic field theories. The
main difference is that here we are dealing with an initial value problem, whose implications
becomes clear in the sequel. In particular, it helps to have a more symmetric treatment of the
primary variables δ and θ, and a more explicit diagrammatic representation of perturbation
theory. Throughout the paper we work in an Einstein-de Sitter (EdS) universe but to a good

– 4 –
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approximation the conclusions remain unchagned in ΛCDM cosmology. Following [25, 26]
we introduce a doublet field

Ψa =

(

δ,−
1

H
θ

)

. (2.3)

The equations of motion can then be written (in momentum space) as

∂

∂η
Ψa(k, η) + Ωab(η)Ψb(k, η) =

∫

k1,k2

γ
(s)
abc(k,k1,k2)Ψb(k1, η)Ψc(k2, η), (2.4)

where

∫

k

≡

∫

d3k

(2π)3
, η = log a , Ωa b =

[

0 −1
−3/2 1/2

]

, (2.5)

and non-vanishing components of the symmetrized vertex functions γ(s) are given by

γ121(k,k1,k2) = δ3(k − k1 − k2)
α(k1,k2)

2
, (2.6)

γ112(k,k1,k2) = δ3(k − k1 − k2)
α(k2,k1)

2
, (2.7)

γ222(k,k1,k2) = δ3(k − k1 − k2)β(k1,k2) . (2.8)

The vertices can be read from (2.1):

α(k1,k2) =
k1 · (k1 + k2)

k21
, β(k1,k2) =

k1 · k2 (k1 + k2)
2

2 k21k
2
2

. (2.9)

2.1 Perturbation theory and diagrammatic rules

Given some initial condition Ψa(k, η0) = (δ1(k), δ1(k)), the above system can be solved
perturbatively to find Ψa(k, τ). At first order, we have

Ψ(1)
a (k, η) = D+

ab(η, η0)Ψb(k, η0), (2.10)

where repeated indices are summed over and D+
ab is the growing solution of the linearized

system. Note that it is k-independent. D+
ab(η) is related to the conventional growth factor

through

D(η) =
∑

a

D+
1a(η, η0) =

∑

a

D+
2a(η, η0). (2.11)

– 5 –
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The higher order solutions can be expressed, recursively, by combining two lower order ones
via the interactions vertices γabc:

Ψ(n)
a (k, η) =

n−1
∑

m=1

∫

k1,k2

∫ η

η0

dη′ga b(η−η′)γb c d(k,k1,k2, η
′)Ψ(m)

c (k1, η
′)Ψ

(n−m)
d (k2, η

′), (2.12)

where the retarded Green’s function, or propagator, is given by

gab(η, η
′) =

eη−η′

5

[

3 2
3 2

]

+
e−

3
2
(η−η′)

5

[

−2 2
3 −3

]

, (2.13)

for η > η′, and 0 otherwise. The growth function D+
ab(η, η0) coincides with the growing part

of gab(η, η0) and, since η0 is practically −∞, it can be approximated by gab(η, η0). This
perturbative expansion is diagrammatically illustrated by Feynman diagrams as

◭

a, η b, η′

k
ga b(η, η

′) :
◭

◭

◭a,k

a1,k1

a2,k2

γa a1 a2(k,k1,k2) : .

(2.14)
Every propagator is represented by a line, and the cubic interactions by vertices. The arrows
indicate the flow of time, and clearly the first index of γabc, which corresponds to the out-
going line, has no symmetry property with the last two which refer to the in-going lines. A
typical diagram contributing to Ψ(4) is

◮

◮

◮

◮

◭

◮

◭

◭

δ1 δ1 δ1 δ1

Ψ(4)

(2.15)

where here and in what follows the indices are often omitted to avoid clutter. Note also that
the momentum integrals in (2.12) must be understood as running up to some ultraviolet cutoff
Λ beyond which the effective theory is not applicable anymore. Renormalization ensures that
the final results do not depend on the choice of Λ.

Using the above Feynman rules, the following recipe can be used to calculate correlation

functions perturbatively. An external leg Ψ
(n)
a is given by the sum over all tree diagrams

constructed by successive bifurcations through trilinear interaction vertices to get to n initial

– 6 –
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fields δ1(k), as in (2.15). Any trilinear vertex merges a Ψ(n) and a Ψ(m) to result in an
(n+m)-th order Ψ(n+m) field. These perturbative expansions for the external fields are then
correlated using the initial statistics of δ1(k). We assume Gaussian initial condition

〈

δ1(k)δ1(k
′)
〉

= Plin(k)(2π)
3δ3(k + k′), (2.16)

which reduces the correlation functions of several Ψ fields to a sum over all possible pairings of
the initial fields that appear in their perturbative expansion. The correlation of initial fields
is called contraction and is reperesented by a dot. If all initial momenta in a given diagram
are fixed in terms of the external ones, the diagram is called tree-level. One example is

•
•

•
•

•

◮◭

◭ ◮

◮

◮

◭

◭

◮

◭

◮

◮

◭

◮

◭

. (2.17)

Otherwise, if there are undetermined initial momenta it is a loop diagram. There is one unde-
termined momentum for each loop and it must be integrated over. The tree-level contribution
to an N -point correlation function is of order 2(N − 1) in δ1, and an n-loop contribution is
of order 2(N +n− 1). It is common to label various diagrams by the orders of their external
legs in perturbation theory. For instance, the 1-loop contribution to the power spectrum
where Ψ(1) is correlated with Ψ(3) is often called P13.

2.2 Example: tree-level bispectrum

Let us conclude by illustrating the above formalism in the example of tree-level 3-point
correlation function of density contrast

〈δ(k1, η)δ(k2, η)δ(k3, η)〉 = (2π)3δ3(k1 + k2 + k3)B
δ
112(k1,k2,k3, η). (2.18)

In the conventional SPT formalism this is given in terms of the Fn kernels:

Bδ
112(k1,k2,k3, η) = 2e4ηF2(k1,k2)Plin(k1)Plin(k2) + 2 cycl. perm., (2.19)

where

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)
2

k21k
2
2

+
1

2
k1 · k2

(

1

k21
+

1

k22

)

. (2.20)

– 7 –
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In the doublet formalism, the relevant diagram is

• •

◮

◮

◭

◭

◮

1

1 1

a

b c

d e
f g•

• •

◮

◮

◭

◭

◮

(2.21)

where we demonstrated the SPT diagram on the right for comparison. Following the Feynman
rules, one obtains

∑

abcdefg

∫ η

η0

dη′g1a(η,η
′)gbd(η

′,η0)gce(η
′,η0)g1f (η,η0)g1g(η,η0)γabc(k1,k2,k3)Plin(k1)Plin(k2).

Using the above expressions for gab and γabc (and, of course, including other permutations),
it is easy to show that this agrees with (2.19).

3 Loops

Loops are encountered in the perturbative calculation of correlators when the initial mo-
menta are not fixed in terms of external momenta, and therefore, are integrated over. The
ultraviolet part of these integrals include short wavelength modes which are not expected to
be well described by the effective field theory. The integrals are often divergent. One should
therefore regulate the integrals (say by sharply cutting them off at momentum Λ), and use
the cutoff dependence to introduce new effective interactions (counterterms) that capture the
contribution of the short scale physics to the low momentum observables as an expansion
in k/Λ. This procedure provides a systematic way of inferring the form of higher derivative
corrections to be added to the long-wavelength effective theory, and in most cases, it covers
all possibilities that are compatible with the symmetries of the system under consideration.3

Hence, understanding better the properties of loop diagrams is the key to identify the
general structure of higher derivative corrections. This is the subject of this section.

3.1 Reducible and irreducible diagrams

Consider the P13 contribution to the 2-point correlation function

◭ ◮

◭

◭

P (q)

P (k)
k −k

k − q

•
• . (3.1)

3There can be exceptions when some higher derivative operator is protected by a non-renormalization
theorem.

– 8 –
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Suppressing time-integrations and indices the diagram would have the following momentum
structure

Plin(k)

∫

d3qPlin(q)γ(k, q,k − q)γ(k − q,k,−q). (3.2)

To renormalize this loop integral a linear counterterm must be added to the equations of
motion. Its leading contribution to the 2-point correlation function

⊗ •◭ ◮◭ (3.3)

combines with the original diagram to make the full result cutoff-independent.

Now suppose the same loop diagram of (3.1) is inserted into a higher order graph, e.g.

◭

◭

◭
◭

◭

◮

◮

•

•

•
. (3.4)

One would expect that if the counterterm (3.3) is chosen appropriately, inserting the same
quadratic vertex in place of the loop diagram, namely

◭ ◭
◭

◮

◭

◮

•

•

⊗ (3.5)

should renormalize (3.4). We will see that such a choice of the counterterm is indeed possible,
and in particular, the diagram (3.5) does renormalize diagram (3.4). Hence, embedding
lower order loop diagrams in higher order ones does not lead to genuinely new corrections
(counterterms). We call these loop diagrams reducible, or in analogy with particle physics
diagrammatics, 1-Particle Reducible (1PR). Their characteristic property is that there exist
an internal line l that is not immediately connected to any external line through a contraction
such that cutting l divides the diagram into two disconnected pieces. All other diagrams are
called 1-Particle Irreducible (1PI) diagrams, (3.1) is an example.

Since the counterterms are to be added to the equations of motion as new vertices, it
makes sense to work not with the full diagrams representing the correlation functions but
directly with the time-evolution diagrams. These show the evolution of a set of initial fields
into one higher order final field at a later time. The loops correspond to integrating over some
of the initial momenta, and hence, to allowing them to become “hard”, i.e. of the order of the
ultraviolet cutoff Λ. We represent these hard momenta by thick lines. Moreover, to exclude
1PR diagrams one would simply amputate all other (“soft”) lines. That is, the relevant
diagrams are made of (i) several hard lines extending all the way to the initial condition δ1,
(ii) one soft out-going line, and (iii) any number of soft in-going lines which are immediately

– 9 –
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connected to the hard lines. An example is

. (3.6)

The presence of high-momentum hard lines makes these diagrams cutoff dependent. They
are renormalized by adding new vertices to the effective theory that have the same structure
of the soft lines, and the same cutoff dependence in their coefficients:

⊗

• • •

. (3.7)

Note that the contribution of the new vertex to the final field always comes with the prop-
agator of the out-going soft field which is common between (3.6) and (3.7). Since we are
interested in the structure of the corrections to the equations of motion and not the resulting
final field, we will also amputate the final propagator.

3.2 Stochastic vs. non-stochastic corrections

There is another important classification of counterterms that is unique to the case of initial
value problem. The high-momentum initial fields were seen to result from integration over
unfixed initial momenta. If in a given time-evolution diagram all of these can be paired and
contracted with each other, the associated counterterm is called a non-stochastic one, e.g.

non-stochastic diagram:

◮

◮

◭

◮

◭

q k −q

k

. (3.8)

The counterterms of these diagram capture the fact that short scales are affected by large
scales. Otherwise, if at least one pair of the initial hard fields do not have exactly opposite
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momenta, it corresponds to the probability that short scale fluctuations average into a long-
wavelength mode, e.g.

stochastic diagram:
◮

◮

◭

q −q + k

k

. (3.9)

The associated counterterms are called stochastic. These are by nature indeterministic and
hence contain a stochastic field (usually denoted by J(x, η)) about which we can only make
statistical statements.

One can contract and integrate over the momenta of all initial hard fields that are paired
in a time-evolution diagram (which include all of the hard lines in a non-stochastic diagram).
This is because the loop is independent of how the ingoing soft lines are embedded in a more
complicated diagram. For instance, the hard modes δ1(q) and δ1(−q) in figure (3.8) can be
contracted regardless of whether we consider diagram of (3.1) or (3.4). After doing so these
diagrams (and the associated counter-terms) incorporate the average response of the short
modes to the initial long modes.4 On the other hand, the unpaired initial hard modes will
be contracted by unpaired modes coming from other external lines as in

◭ ◮

•

•
. (3.10)

Our primary focus will be on non-stochastic counterterms since in our universe the stochastic
ones are expected to be sub-dominant at long wavelengths (see below).

3.3 Example: one-loop power spectrum

As an explicit example let us consider the 1-loop non-stochastic contribution to the power
spectrum (3.1). This corresponds to

◭

◭ ◭

•

η1, a1 η2, a2
η′, b (3.11)

whose amplitude is given by (recall that amputation removes the final propagator)

∫ η1

η′
dη2 Ca1(η1;k, a2, η2) ga2 b(η2, η

′) . (3.12)

4Notice that the vertices (2.6) vanish for zero outgoing momentum since α(k,−k) = β(k,−k) = 0 (see
section 4.3 for more details). Therefore, non-stochastic diagrams with no ingoing soft lines all vanish.
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Here

Ca(η1;k, b, η2) = 4ga2 1(η1, η0)gb2 1(η2, η0)ga1 b1(η1, η2) (3.13)

×

∫

q

Plin(q) γa a1 a2 (k,+q,k − q) γb1 b2 b (k − q,−q,k) ,

the time variable is defined as a = eη, ga21(η1, η0) = ga22(η1, η0) is the same as the growth
factor, and the summation of repeated indices is assumed. Using the explicit expressions for
the propagator and vertices, and restricting to q ≫ k, we obtain the following expression for
the ultraviolet part of the loop diagram

CUV
a (η1;k, b, η2) = k2σ2

v e−η1/2

{[

3
5

−4
25

−9
5

−8
5

]

e
5η1
2 +

[

−8
5

4
25

9
5

3
5

]

e
5η2
2

}

. (3.14)

The velocity dispersion, which is defined as

σ2
v ≡

∫ Λ

dqPlin(q), (3.15)

is the cutoff dependent coefficient that we aim to renormalize by the addition of a counterterm
proportional to k2. This will be done in the next section.

4 Renormalization and counterterms

In this section, we first explain how to read off the counterterm associated to each amputated
loop graph. Then, we discuss various properties of these counterterms, give their general
structure, and conclude with an explicit application of these ideas to the 1-loop bispectrum.

The amplitude of a generic amputated diagram (such as (3.6)) with the final vertex
inserted at time η, outgoing momentum and index (k, a), and a set of soft ingoing lines
characterized by {kn, bn, η

′
n}, and hard ingoing lines characterized by {qi} (recall that hard

lines are all initial fields δ1(qi), so bi and η′i need not be specified), is of the form

∫ η

η0

{dηn}Aaa1···an [η; {kn, ηn}; {qi}]
∏

n

ganbn(ηn, η
′
n)
∏

i

δ1(qi). (4.1)

In the non-stochastic case the hard lines {qi} can be paired and contracted to give Plin(qi)
and integration over their momenta results in

∫ η

η0

{dηn}Caa1···an [η; {kn, ηn}]
∏

n

ganbn(ηn, η
′
n). (4.2)

The Cab of last section was an example of this with only one ingoing soft line. The C kernel is
a cutoff dependent quantity. This diagram is renormalized by the addition of a counterterm
of the following form to the equation of motion (cf. (3.7))

∫ η

η0

{dηn}caa1···an [η; {kn, ηn}]
∏

n

Ψan(kn, ηn). (4.3)

To cancel the cutoff dependence of the loop diagrams, the dependence of ca... on {kn} has
to match that of CUV

a··· , namely the cutoff dependent part of Ca··· when it is expanded in
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powers of k/q. Let us analyze this more closely. In the ultraviolet regime the momentum
dependence of Ca··· can always be brought via Taylor expansion into a sum of terms, each
of which factorizes into a product of a function of {qi} times a function of {kn}. We are
interested in the functional dependence on {kn}. Consider a vertex at ηn where the nth soft
line is attached to the diagram. From the equations of motion (2.1) and (2.2), the leading
order vertices of the theory are

− vi∂iδ, −θδ, −vi∂iθ, −
(

∂iv
j
)

∂jv
i. (4.4)

Thus, the soft line can realize one of the following six possibilities:

vi →
kin
k2n

Ψ2(kn, ηn), ∂iδ → kinΨ1(kn, ηn), θ → Ψ2(kn, ηn),

δ → Ψ1(kn, ηn), ∂iθ → kinΨ2(kn, ηn), ∂iv
j →

kink
j
n

k2n
Ψ2(kn, ηn).

(4.5)

These are the only ways in which ca··· may depend on the nth field, up to possible multiplica-
tion by positive factors of kin, arising from vertices appearing at later times in the diagram.
The contribution from these later vertices is guaranteed to be analytic in kin because (i) by
definition of an amputated graph, a soft line n attaches immediately to a hard line, say with
momentum qn, thus (ii) the later vertices depend on kn only through qn+kn, and (iii) since
kn ≪ qn one can Taylor expand in kin.

Moreover, ca··· has to have a cutoff dependent coefficient with exactly the same time-
dependence and overall amplitude as the one arising from the integration over {qi} in CUV

a··· .
However, there can be a cutoff independent piece with different time-dependence. This
counterterm by construction renormalizes all possible embeddings of the original amputated
diagram into any higher order diagram. Next, we will discuss the manifestation of char-
acteristic properties of the cosmic fluid in the form of these new, and yet rather abstract,
corrections.

4.1 Long memory effect and non-locality in time

Counterterms capture the effect of the short wavelength modes on the long wavelength
physics. They result from replacing hard loop diagrams with new effective interactions
among soft lines (i.e. integrating out the short-distance physics). The result of this pro-
cedure is guaranteed to be spatially local since the short modes can probe the long modes
only in a region of size Λ−1 over which the long modes can be accurately Taylor expanded in
powers of k/Λ. However, before reaching the virialization scale, the short modes evolve with
approximately the same time scale H−1 as the long modes. Hence, we should expect the
counterterms to be generically non-local in time as a short mode can be influenced by long
wavelength modes at some earlier time and respond at a much later time. The hard lines in
a loop diagram can therefore be collapsed to a point spatially but not temporally [15, 18].

This expectation is manifest in our general formula (4.3) and in the explicit 1-loop
example. In order to systematically renormalize the amputated diagram of (3.12) one needs
to add a temporally nonlocal quadratic vertex, corresponding to a linear counterterm in the
equations of motion:

∂ηΨa(k, η) + Ωa bΨb(k, η) = k2
∫ η

0
dη1 cab(η; η1) Ψb(k, η1) + · · · , (4.6)
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where we omitted the standard cubic vertices. Here k2cab has a cutoff dependent piece that
(up to a minus sign) exactly matches CUV

ab in (3.14) so that the sum of the two cancels,
up to a regularization independent piece. As will be seen in section 4.5.1 this counter-term
automatically renormalizes the 1PR contribution (3.4) to the bispectrum. On the other
hand, if we were only interested in renormalizing the P13 diagram (3.1), this vertex could be
replaced by a local one (the conventional speed of sound and viscosity counterterms)

c̃a(η)k
2Ψ1(η), (4.7)

where

c̃a(η) ≡
1

D+(η)

∑

b

∫ η

0
dη1 caa1(η; η1) D+

a1b
(η1). (4.8)

As we will see in section 6 this reduction is always possible in perturbation theory. However,
it is incompatible with systematic renormalization. For example, using the local-in-time
counterterm in (4.7), on finds that the 1PR diagram (3.4) requires new counterterms [21].

4.2 Large scale flow and the equivalence principle

The origianl system (2.1) is invariant under the addition of a uniform bulk flow [27, 28]

x → x+ n(τ), v → v + ṅ(τ), (4.9)

where n is an arbitrary time-dependent vector. This ensures that a very long-wavelength
perturbation, whose main effect on much shorter scales is to produce a uniform acceleration,
is locally unobservable, in accord with the Equivalence Principle.5 Local observables can
depend on the tidal field ∂i∂jφ, the shear ∂ivj , their spatial derivatives, and their convective
time-derivatives

Dτ ≡ ∂τ + v · ∇. (4.10)

The counterterms which characterize the response of the short scale physics to long-wave-
length modes should also follow the same rules. The short modes can only respond to
the locally measurable quantities. However, when the counterterms are non-local in time
as in (4.6), they depend on these local observables along the large scale flow. The same
considerations imply that the time integral must be taken along the fluid trajectory, which
is implicitly defined by

xfl[τ
′;x, τ ] = x−

∫ τ

τ ′
dτ ′′v(xfl[τ

′′;x, τ ], τ ′′). (4.11)

In the following, we often drop the last two arguments of xfl when no ambiguity arises. For
concreteness, let us focus on the counterterm in (4.6). To be invariant under (4.9), it must
be dressed to read [18]

∇2

∫ η

η0

dη′ cab(η; η
′) Ψb(xfl(η

′), η′). (4.12)

The significance of this replacement x → xfl soon becomes clear in the example of 1-loop
bispectrum in section 4.5.2. Perturbatively expanding xfl around x, we get

Ψa(xfl[η
′;x, η], η′) = Ψa(η

′)−

∫ η

η′
dη1v(η1) · ∇Ψa(η

′)

+

∫ η

η′
dη1

∫ η

η1

dη2 [v(η2) · ∇v(η1)] · ∇Ψa(η
′) + · · ·

(4.13)

5For a discussion of these symmetries from the perspective of Weinberg adiabatic modes see appendix A
of [21].
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where all omitted space arguments are now x. This replacement essentially connects an
infinite set of counterterms (and hence an infinite set of amputated diagrams) to one another.
These are all diagrams in which the original diagram (3.8) is being displaced by the bulk
motion produced by any number of ingoing soft lines attached at later times than the original
attachment of k1:

v

v

v

v

q k1 −q

k

. (4.14)

More generally, whenever a soft line realizes the vi∂i part of the vertices in (4.4), it can be
attributed to the shift from x to xfl of a lower order diagram with the soft line removed.
These diagrams have the following characteristic property in perturbation theory: in the
presence of a long-wavelength mode with constant amplitude δ1(kL) and vanishing kL, they
diverge as kL/k

2
L, namely, proportionally to the bulk velocity induced by the long mode.

This will be referred to as infra-red (IR) singularity. The UV part of these diagrams are fully
fixed in terms of that of the original (unshifted) diagram. The counter-terms associated to
these diagrams too are fully fixed in terms of that of the original diagram. Therefore, they
do not introduce any new parameters into the effective theory. Eliminating these diagrams
by shifting x → xfl ensures that the new higher order counterterms needed to renormalize
the remaining higher order 1PI diagrams depend only on locally observable quantities, again
measured along the dark matter flow xfl. In other words there is no IR singularity, except in
the argument xfl of the fields.6

4.3 Soft outgoing momentum and vorticity

Another property of loop diagrams to be discussed is their softness in the outgoing momen-
tum. In perturbation theory, it can be easily verified that all vertices are at least single soft:

lim
q→∞

γabc(k, q,k − q) = O(k/q). (4.15)

In any amputated loop diagram, the latest vertex is one in which two hard lines combine to
give an outgoing soft line of momentum k (see e.g. (3.6)). Because of (4.15) the UV part of
this diagram will contain at least one factor of k, and so do the corresponding counterterms.
Rotational invariance implies that the full amputated diagram must be of second order in
soft momenta since there is no singularity (i.e. negative power) in the ingoing soft momenta
after taking care of the shift terms as explained in the previous section. Thus expressed in
terms of Ψa, the counterterms must start from second order in derivatives, one of them being
an overall derivative because of the property (4.15) of the final vertex. An example is

∂i[Ψa1(xfl(η1), η1)Ψa2(xfl(η2), η2)∂iΨa3(xfl(η3), η3)]. (4.16)

The ultraviolet part of Cab(η;k, η), calculated above agrees with this expectation.

6This fixed IR singular part can be used to derive a universal and dominant piece of the squeezed correlation
functions, when one of the external momenta is much smaller than the others [29]. This piece often vanishes
in equal-time correlation functions, however there is an exception in the presence of BAO feature [30].
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The above softness property of the counter-terms has a natural explanation based on
the structure of fluid equations. The continuity equation relates the change in mass density
to the divergence of the mass current (momentum density)7

δ̇ = −∇ · π, where π ≡ (1 + δ)v. (4.17)

However, this relation between π and v depends on the definition of velocity. Fixing velocity
at some scale Λ to be given by [π]Λ/[1 + δ]Λ and then coarse-graining to a smaller cutoff Λ′

results in a velocity field that differs from [π]Λ′/[1+ δ]Λ′ . Hence, when working with velocity
field as the primary variable one must add a locally observable vector jc as a counterterm to
the mass current. The absence of IR singularity ensures that a locally observable vector must
be at least of first order in derivatives (in the same sense that (4.16) is of second order in
derivatives). Upon taking the divergence, this leads to a counterterm ∇ · jc in the continuity
equation that is second order in derivative counting, and because of the overall derivative it
contains at least one factor of the outgoing momentum.

Similarly, integrating out the short wavelength modes can introduce an effective force
fc in the Euler equation. This is again a locally observable vector that incorporates the coun-
terterms. After taking the divergence to obtain an equation for θ it leads to a counterterm
∇ · (fc/(1 + δ)) with an overall derivative.

It is worth noting that since the original system of equations (2.1) do not generate
any vorticity, to cancel the cutoff dependence of just SPT loops, fc/(1 + δ) can be taken
to be curl-free. In other words, the counterterms to the θ equation ca=2,··· are not only
a total divergence but they are the Laplacian of locally observable scalars. We will verify
this expectation in the explicit calculation of quadratic counterterms (see appendix A.2). Of
course, the finite pieces of the counterterms do not have to obey this rule, and in principle the
short scale dynamics can generate vorticity (see section 6.1 and appendix B.3 for comments
on the non-uniqueness of the definition of velocity).

The property (4.15) and the fact that all counterterms have one overall derivative ensures
that if the outgoing momentum k is much smaller than the soft ingoing momenta {ki} the
solution for δ(k) and θ(k) is going to be single-soft in k. In fact, as we will discuss in section 5,
momentum conservation implies that δ must not only be single-soft but rather double-soft
in k in the limit k ≪ ki. As a result, only a subset of locally observable forces — those that
respect this property — are allowed to be added as counterterms to the system.

4.4 The list of counterterms

Using the above rules we can write down an over-complete list of counterterms which can be
added to the equations of motion. The softness in the outgoing line implies that they must
be of the form ∂ic

i. ci encodes the memory of all incoming soft lines that are attached to
the hard lines of the amputated diagrams (3.6). Therefore, each field in ci(x, η) is integrated
from η0 to η against a general time-dependent memory function. Any attached ingoing line
is either a locally measurable quantity made of the soft mode such as ∂i∂jφ or ∂ivj (and their
convective time derivatives (4.10)), or it is a velocity, which is not a local observable. As
argued above the latter is necessary to perturbatively dress the time integrals at constant x
to those along the fluid flow. In the former case, since both ∂i∂jφ and ∂ivj have two indices,
rotational invariance implies that to construct a vector ci one needs to have one additional
derivative.

7Notice that we have changed the traditional definition of π by a factor of 1/ρ̄, in such a way that π is
dimensionless. This is convenient because ρ̄ completely disappears from all the equations.

– 16 –



J
C
A
P
0
5
(
2
0
1
6
)
0
6
3

We proceed as follows. For simplicity, suppose there is zero vorticity; this allows us to
write v = ∇φv, and introduce

φa ≡ ∇−2Ψa = (φ, φv). (4.18)

Next, as an intermediate step we construct nth order two-index tensors cij made of various
contractions of the local observables Πij

a ≡ ∂i∂jφa. Using matrix notation, the first few
orders are

1st : Πa,1TrΠa (4.19)

2nd : ΠaTr(Πb),ΠaΠb,1Tr(Πa)Tr(Πb),1Tr(ΠaΠb) (4.20)

3rd : ΠaTr(Πb)Tr(Πb),ΠaTr(ΠaΠb),ΠaΠbTr(Πc),ΠaΠbΠc, · · · (4.21)

where 1ij = δij , and as an example, Tr(ΠaΠb) =
∑

ij Π
ij
a Π

ji
b . Each Πa is evaluated at a

different time which is integrated against a temporal kernel until the final time. An over-
complete (see below) list of vectors ci consists of all possible ways of acting by ∂j on any of
Πa appearing in cij . Finally, one takes the divergence ∂ic

i. One second-order example is

∂i

∫ η

η0

dη1dη2Kaa1a2(η, η1, η2)∂jΠ
ik
a1(xfl(η1), η1)Π

jk
a2(xfl(η2), η2), (4.22)

where the derivative in ∂jΠa1 should, in principle, be with respect to xfl. However, the
difference between this and the derivative with respect to x can be expressed in terms of
higher order terms that are included in our list — in other words

∂xifl
∂xj

= δij + local observable tensors. (4.23)

So we take it to be ∂/∂xj in what follows. Note also that the arbitrary time-kernel makes
the use of convective time-derivatives redundant.

Unfortunately the above procedure generates an over-complete list of counter-terms, as
it allows us to introduce arbitrary observable vectors fc and jc as counter-terms. On the
other hand, as we will argue in section 5, only a subset of these vectors — those which ensure
double softness of δ when kout ≪ {ki}in — are permitted by momentum conservation. An
allowed list can be obtained by restricting the kernels to those which arise from perturbation
theory. This elects certain combination of these vectors that are necessary to cancel the
cutoff dependence of the loops. These combinations inherit the double softness property of
the leading order perturbation theory which is discussed in section 5.2. However, in this way
all amputated diagrams with fixed number of ingoing soft and hard lines combine to give only
one new counter-term whose coefficient can be allowed to have a cutoff independent piece.
While this is sufficient to cancel the cutoff dependence of the loops, in order to produce a
complete basis that can give an effective description for all possible microscopic scenarios one
needs to proceed to diagrams with increasingly large number of hard modes.

We will next verify the adequacy of this formalism in cancelling the cutoff dependence in
the explicit example of the 1-loop bispectrum. Several properties of the counterterms become
apparent in this example. In section 6, we show how this rather cumbersome and nonlocal
formulation can be reduced to a much more tractable and local one in any practical calculation
by giving up systematic renormalization. Moreover, using the results of section 5, we will
provide an alternative list of local counterterms that is complete but not over-complete.
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4.5 Example: one-loop bispectrum

In this section we discuss the renormalization of the non-stochastic part of the 1-loop bis-
pectrum which is conventionally called B114. The 1PI and 1PR contributions are evaluated
and discussed separately.

4.5.1 1PR diagrams

As expected from the general argument at the beginning of this section, it is easily seen that
the 1PR diagrams are automatically renormalized by the insertion of the linear counterterm
in (4.6) in a tree-level diagram. The diagram

◭

◭

◭
◭

◭

◮

◮

•

•

•
k, a; η

a1 a2
η1 η2

k1, b; η

k2, c; η

(4.24)

corresponds to taking the expectation value
∫ η

η0

dη1gaa1(η, η1)

∫ η1

η0

dη2 Ca1a2(η1, η2;k)
〈

Ψ(2)
a2 (k, η2)Ψ

(1)
b (k1, η)Ψ

(1)
c (k2, η)

〉

+ 2 perm.

(4.25)
We denoted the UV part of this loop diagram by CUV and it will be renormalized by adding
the contribution of the diagram

◭ ◭
◭

◮

◭

◮

•

•

⊗k, a; η

k1, b; η

k2, c; η

(4.26)

where the cross represents the counterterm in (4.6). The expression for this diagram is given
by an identical expression as (4.25) with C → k2c, which have equal and opposite cutoff
dependences. The other 1PR diagram

•

•

•

◭
◭

◭

◭

◮

◭

◮

k, a; η η1

η 2

η 3

b 1
b 2

b 3

c
1

a1

k1, b; η

k2, c; η

(4.27)
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has an expression
∫

d3q

∫ η

η0

dη1

∫ η2

η0

dη2

∫ η2

η0

dη3 gaa1(η, η1) gb1b2(η1, η2) γa1 b1 c1(k,k1,k2) Cb2b3(η2, η3;k1)

〈

Ψ
(1)
b (k1, η)Ψ

(1)
b3

(k1, η3)Ψ
(1)
c (k2, η)Ψ

(1)
c1 (k2, η1)

〉

+ 5 perm.

(4.28)

Similarly, the UV part of this diagram CUV is renormalized by the diagram containing the
same counterterm in place of the loop:

◭
◭

◭

◮

◭

◮

⊗

•

•

k, a; η

k1, b; η

k2, c; η

(4.29)

which has the same expression as (4.28) with C → k2c.
It is worth emphasizing here that the temporal non-locality of counterterm ca a′(η; η

′,k)
is crucial for it to cancel the cutoff dependences of all 1PR loop integrals. This accom-
modates the possibility that the response of short modes should strongly depend on the
time-dependence of the long modes. If only local in time counterterm are used, the UV
divergences in 1PR diagrams are not generically canceled by the lower order counterterms,
spoiling the systematic character of our renormalization procedure. This is expected and in
agreement with the general argument presented in section 4.1 about the long memory effect.

4.5.2 1PI diagrams: shift terms

As discussed in section 4.2, some of the 1PI diagrams contributing to B114, whose Ψ
(4)
a (k)

field is of the form

◭

◭

◭

◭

◭ ◮
◭

•a,k
η

a1,k1

η1

2,k2

η2

k1 ↔ k2

η1 ↔ η2
a1 ↔ a2

+

( )

(4.30)
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and

◭

◭

◭

◭

◮

◭

◭

•

a,k
η

a1,k1

η1

2,k2

η2

k1 ↔ k2

η1 ↔ η2
a1 ↔ a2

+

( )

(4.31)

play the role of shifting the temporally nonlocal lower order counterterms to the fluid position
(here 2 indicates the velocity field). It is implicit in the above diagrams that the lines marked
by 2 realize v in v · ∇Ψa vertices, and that η2 > η1. These correspond to contributions that
diverge as 1/k2 when k2 → 0. We expect them to be renormalized by including the first shift
term in (4.13) in the counterterm for the 1-loop power spectrum (4.12):

∇2

∫ η

η0

dη1

∫ η

η1

dη2 ca b(η, η1)
∇

∇2
Ψ2(x, η2).∇Ψb(x, η1). (4.32)

That this cancellation of IR-singularities must happen is almost obvious since any diagram
that has a potential singularity (i.e. any diagram where the soft line attached to the loop
is a vi∂i) can be identified with a contribution to (4.32). An explicit check is provided in
appendix A.1.

4.5.3 1PI diagrams: new counterterms

After the subtraction of shift terms from 1PI diagrams, what remains must be renormalized
with the genuinely new higher order counterterms. These are made of locally observable op-
erators integrated over the history of the short modes but evaluated at x (their displacement
to xfl would correspond to higher order counterterms). At this level one must add a second
order term to the equation of motion, corresponding to a cubic effective vertex. From (4.20),
there are 18 possibilities for quadratic terms in cij . Note that even if a1 = a2 the two soft legs
of the amputated diagram can be embedded in different ways in a connected diagram and
be integrated against different time-kernels, therefore no symmetrization is needed. When
taking derivatives to construct counterterms ∂ic

i, the number of operators proliferates but
some are degenerate. It follows that, for fixed a1,2 and η1,2, possible ci vectors are

∂i∇
2φa1∇

2φa2 , ∂i∂jφa1∇
2∂jφa2 , {a1 ↔ a2, η1 ↔ η2},

∂i∂j∂kφa1∂j∂kφa2 + {a1 ↔ a2, η1 ↔ η2} .
(4.33)

Thus there is a total of 15 independent, temporally nonlocal quadratic counterterms. It is
shown in appendix A.2 that they are sufficient to fully renormalize the 1PI diagrams. In fact,
as expected from the structure of the leading vertices (4.4) and the requirement of momentum
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conservation (see the end of section 4.4), only a subset of these counterterms are allowed by
the symmetries. The correct prescription will be discussed in section 6. Also, because SPT
does not generate vorticity (see subsection 4.3), an even smaller subset is needed to cancel
UV-dependencies.

In summary, we have demonstrated that the effective theory of large scale structure can
be systematically renormalized, at the expense of introducing a plethora of temporally non-
local counterterms. After discussing the implications of locality and momentum conservation
in the next section, in section 6 we explore a more practical approach.

5 Momentum conservation, locality and double softness

As alluded to in section 4.3 momentum conservation and locality of the short scale dynamics
ensure that the time evolution of short wavelength fluctuations can only lead to the generation
of a longer wavelength perturbation suppressed at least by k2out [24, 31]. In the following we
will first review the heuristic argument of Peebles, and next show that double softness follows
from the equations of motion of the fluid system.

5.1 A general argument for double softness

First consider an almost homogeneous initial density ρ̄0 with small short wavelength fluctu-
ations of scale 1/q, but no long wavelength fluctuation (δ(k, η0) = 0). Due to gravitational
instability, these initial fluctuations collapse and form a clumpy distribution of matter ρ(x).
We ask what is the typical size of a long wavelength fluctuation δ(k, η) after this process?
Approximating the final distribution by a set of point particles of mass mn at location xn,
we have

δ(k, η) =
1

ρ̄

∑

n

mne
ik·xn , (5.1)

where ρ̄ is the mean final density. If the short-scale dynamics was turned off, the local
mass distribution would be uniform; we denote it by a tilde: ρ̃(x) = ρ̄. There is a nonzero
δ(k, η) because this would-be uniform distribution has clustered. in this hypothetical uniform
universe, to keep track of the matter that ended up in each clump, we divide the space into
(possibly overlapping) regions Rn with density ρ̃n(x). All of the mass in this region falls into
the nth clump:

mn =

∫

Rn

d3y ρ̃n(xn + y). (5.2)

If there is no overlap ρ̃n(x) is the same as ρ̃(x) (and hence uniform) within Rn. But if
two regions Rn1 and Rn2 overlap, then in the overlapping region ρ̃n1(x) + ρ̃n2(x) = ρ̄ (and
similarly for more overlaps). The typical size of each region is the extent to which mass
elements are displaced from their initial position, namely, of order 1/q. Now we can write

0 =
1

ρ̄

∫

d3xρ̄eik·x =
1

ρ̄

∑

n

∫

Rn

d3yρ̃n(xn + y)eik·(xn+y)

=
1

ρ̄

∑

n

eik·xn [mn + ikidin − kikjQij
n +O(k3/q3)],

(5.3)
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where din and Qij
n are, respectively, the first and second moments of the mass distribution in

Rn as measured from xn:

din =

∫

Rn

d3y yi ρ̃(xn + y),

Qij
n =

∫

Rn

d3y yiyj ρ̃(xn + y).

(5.4)

The expansion of the exponential is justified because of the smallness of the size of the region
compared to 1/k. Comparison with (5.1) implies

δ(k, η) = −
iki

ρ̄

∑

n

dine
ik·xn +

kikj

ρ̄

∑

n

Qij
n e

ik·xn +O(k3/q3). (5.5)

The second and higher order terms on the r.h.s. satisfy our general expectation about the
dependence on k. As for the first term, the sum can be related to the center of mass position
of each region:

∑

n

dine
ik·xn =

∑

n

mn(x
CM
n − xn)e

ik·xn . (5.6)

The difference (xCM
n −xn) can only be caused by momentum transfer among different regions.

If initially there existed only modes of wavelength ∼ 1/q, there is no coherent momentum
transfer over much longer distances, and the sum

∑

nmn(x
CM
n − xn) over any patch of size

much larger than 1/q is negligible. Hence, the sum in (5.6) is nonzero to the extent that the
exponential varies over any such patch, and therefore it must be suppressed at least by one
factor of k. This shows that all terms in (5.5) are suppressed by at least two powers of k.8

In the absence of long wavelength initial perturbations the location of the clumps xn is
effectively random at large scales, and the sums in (5.5) become identical to random-walks.
Correlating two such contributions and averaging over the short modes results in

Pstochastic(k → 0) ∝ k4. (5.7)

This is the generic asymptotic behavior of stochastic contributions to the long-wavelength
power.

In the presence of initial long wavelength perturbations the above argument can be
modified as follows. Now the clumpy universe should not be compared with a homogeneous
universe, but with one in which the long modes are kept but the short modes are absent.
Hence, ρ̃(x) is smooth but nonuniform. All other steps remain the same, though one should
bear in mind that xn and xCM

n both depend on and can get largely displaced by an initial
long mode δ1(k1); the leading dependence which goes as δ1(k1)/k1 cancels in the difference
in (5.6). Nevertheless because of the remaining dependence of both xn and the shape of each
region Rn on the initial long modes, (5.5) has nonzero correlation with the initial δ1(k1).
The non-stochastic diagram (3.1) (equivalently (3.8)) is one perturbative analog of such
contribution.

Finally, a similar argument implies that the momentum density

π(k, η) =
1

ρ̄

∑

n

mnvne
ik·xn (5.8)

starts from order k.
8Our argument slightly differs from that of [24] in that the first term on the r.h.s. of (5.5) is absent there.

However, this seems to be a nontrivial part of the argument.
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5.2 Double softness in perturbation theory

The double softness property is not manifest in the formulation (2.1) in terms of δ and v.
However, it becomes manifest if we eliminate v in favor of the momentum density π = (1+δ)v,
in terms of which the continuity equation becomes linear (4.17) and the Euler equation
becomes

π̇i +Hπi = −(1 + δ)∂iφ− ∂j

(

πiπj

1 + δ

)

. (5.9)

Writing

δ∂iφ = ∂j(∂jφ∂iφ)−
1

2
∂i(∂jφ∂jφ) (5.10)

shows that the non-linear terms in this equation all have an overall derivative. Moreover,
taking the divergence of this equation and using ∂iπ

i = −δ̇ to obtain an equation for δ makes
all interaction vertices explicitly second derivative. In appendix B it is shown that these
equations evolve ingoing hard lines into a single soft answer for π(kout) and a double soft
answer for δ(kout) when kout ≪ {ki}in. The same conclusion is shown to hold when there
are ingoing soft lines with momenta of the order of kout in addition to the hard lines. It then
becomes clear that the softness property is preserved if counterterms of the form ∂jτ

ij are
added to equation (5.9), where τ ij is made of local observables. This ensures locality and
momentum conservation.

6 A practical remedy

So far we learned that a systematic renormalization of the two field (δ, θ) formulation of
cosmic fluid is possible if one uses nonlocal in time counterterms and add corrections to
both continuity and Euler equations. However, there are three reasons to seek an alternative
approach:

I One may not be interested in the velocity statistics, and even if she is, there are various
ways to define velocity field and the one used in section 4 might not agree with the
velocity field obtained from an actual survey or simulation.

II More importantly, the momentum conservation constraint is not straightforwardly im-
plemented.

III The nonlocal in time counterterms introduce additional complications, since instead of
a single time-dependent coefficient one needs to consider a multi-variable function of
insertion times for every new counterterm.

We first show in section 6.1 that one can use the momentum formulation to eliminate
velocity. In this language, only the Euler equation receives corrections and not the continuity
equation. Also, now there exists a straightforward prescription to generate all counterterms
and only the ones allowed by the symmetries, including the conservation of total momentum.
The observed velocity on the other hand must be treated similar to biased tracers; it can
differ from the one calculated in any perturbative scheme by a set of locally observable
counterterms whose coefficients must be empirically determined. This resolves the first two
problems. Then in section 6.2 we show that all nonlocal in time counterterms can be reduced
perturbatively to a set of local operators, addressing problem III. This allows us to give a
complete and more manageable list of counterterms.
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6.1 Formulation in terms of the mass-weighted velocity

If we use the density δ and momentum π as the primary variables, the continuity equation
reduces to the linear equation (4.17), and does not require any counterterm (it is not modified
by smoothing) [2, 18]. If the correlators of δ (and therefore of δ̇) are renormalized, then so
are the correlators of ∇ · π and vice versa. The same can be said for φ and δ, given that
the Poisson equation is also linear. The problem then reduces to solving the only non-linear
equation, namely the vector Euler equation (5.9). If one is interested in the correlators for δ,
it is convenient to decompose the momentum into a divergence (µ ≡ ∇ · π) and a vorticity
(ν ≡ ∇ × π), as discussed in appendix B (see (B.1), (B.2) and (B.3), see also [32]) . The
Fourier space version of these equations is collected in appendix D. Notice that all nonlinear
terms on the right hand side of the Euler equation (5.9) are total derivatives of some tensor
that is not proportional to δij and hence all contribute to the curl equation. In particular, all
non-trivial solutions have ν, µ 6= 0. Using the continuity equation (4.17), one can get rid of
µ and solve the remaining equations for δ and ν. When using momentum, one can therefore
compute all correlators of δ without including any counterterm in the continuity equation.
We will see now that this is still the case when using a specific definition of the velocity.

In Standard Perturbation Theory (SPT), where τij = 0, there exists a convenient change
of variables for which the curl of the vector Euler equation is trivially satisfied even for non-
trivial solutions δ 6= 0. From (5.9), it is clear that a necessary condition for this to happen is
that the curl is not sourced by the term (1 + δ)∂iφ. Upon dividing the whole equation (5.9)
by (1 + δ), this term reduces to the gradient of a scalar which disappears after taking the
curl. This suggests to use the variable vπ ≡ π/(1 + δ), which, as it is well-known, indeed
decouples the vorticity ∇×vπ from δ in SPT. We will refer to vπ as “mass-weighted” velocity.

More explicitly, let us define the divergence and curl of the velocity (we raise and lower
all indices with δij)

θπ ≡ ∇ · ~vπ = ∂iv
i
π , wi

π ≡ ∇× ~vπ = ǫijk∂jv
k
π , (6.1)

from which it follows ∂iw
i
π = 0. After including the effective stress tensor the equations of

motion take the schematic form (see appendix D for the explicit form)

∂τδ + θπ = −αθπδ + ~αw · ~wπδ , (6.2)

∂τθπ +Hθπ +
3

2
H2Ωmδ = −βθπθπ + ~βw · ~wπθπ + βww

ij wi
πw

j
π + ∂ ·

(

~∂τ

1 + δ

)

(6.3)

∂τ ~wπ +H~wπ = γwijw
j
πθπ + ~αw ~wπ · ~wπ + γww

ijl w
l
πw

j
π + ∂ ×

(

~∂τ

1 + δ

)

, (6.4)

This is a system whose main goal is to obtain a renormalized δ while ~vπ are treated
as auxiliary fields which don’t have to be (and are not) renormalized — renormalization of
velocity will be discussed below. As before ~τ is treated as a source and is chosen such that
δ correlators are independent of cutoff. We can now perturbatively solve for θπ and wπ in
terms of δ using (6.2) and (6.4). This yields, order by order, a single differential equation
for δ. The vorticity, which vanishes initially, is sourced by ∂ × [∂τ/(1 + δ)] and therefore as
we proceed renormalizing δ correlators we get nonzero wπ starting from quadratic order in
δ perturbations. Thus in general one has to solve the system of four variables: two scalars δ
and θπ and a vector ~wπ. However, since δ is not on equal footing as the other three variables,
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there is no reason to generalize the symmetric two-field formalism of section 2 to the above
system.

Let us see explicitly how this works to quadratic order where we can neglect vorticity,
keeping in mind that it will contribute to δ at the next order, O(δ31). We solve the continuity
equation

θπ = −δ̇ + ∂i

(

δ
∂i
∇2

δ̇

)

+O(δ3) , (6.5)

and substitute it into the divergence of the Euler equation to obtain a nonlinear equation
purely in terms of δ:

δ̈ +Hδ̇ −
3

2
H2δ = (∂τ +H)∂i

(

δ
∂i
∇2

δ̇

)

+ ∂i

(

∂j
∇2

δ̇
∂i∂j
∇2

δ̇

)

+O(δ3). (6.6)

The linear part of this equation is a second order differential equation which gives a retarded
Green’s function, using which one can perturbatively solve for the evolution of δ(τ,x) in terms
of the initial condition δ1(x), without ever mentioning θπ. Obviously the resulting equation
for δ now has interactions of all orders in δ. On the other hand, the original system (2.1)
contains only cubic interactions and quadratic mixings between intermediate θ and δ lines.
What the above procedure of solving for θπ in terms of δ means is that all intermediate θ
lines are contracted to points, thereby generating arbitrarily high order interactions of δ.

This formulation justifies a common approach in the EFT literature which is to use δ
and θ as variables but to consider counterterms only in the Euler equation while keeping
the continuity equation intact. It is equivalent to renormalizing the equation (6.6), as any
conventional nonlinear theory of a single field δ, and to redefine the composite operator
θπ to absorb the counterterm ∇ · jc of the continuity equation, so that the redefined θπ is
given by the same relation (6.5) at all scales. However, doing so can in principle introduce
vorticity because ∇ · jc is not necessarily Laplacian of a locally observable scalar. Therefore,
the counterterms of the (vectorial) Euler equation needed to renormalize the SPT loops
are no longer pure gradients. This was the case in [21], where the quadratic counterterms
∂j(∂i∂kφ∂j∂kφ), which is not the pure gradient of a locally observable scalar, was needed to
renormalize one-loop bispectrum of δ.

In summary, one can use the standard perturbation theory approach to calculate various
correlation functions of δ. The counterterms that are allowed to be added to the vector Euler
equation are now fixed by momentum conservation to be of the form

(1 + δ)−1∂jτ
ij (6.7)

where in order to do systematic renormalization τ ij must be allowed to depend on observable
quantities along the flow, and hence be nonlocal in time.

As for the statistics of the observed velocity field, the difference with that of perturbation
theory (say vπ) can be parameterized by a set of counterterms

vobs = vπ + vct, (6.8)

where vct is a locally observable vector. It has a non-stochastic piece which by symmetry
must start from first order in derivative counting, and a stochastic piece which according
to the arguments of appendix B.3 is generically O(k0), leading to O(k2) contribution to the
vorticity power spectrum. Hence, the treatment of velocity is similar to the biased tracers.
In particular the most general vct can be expressed locally in time [8].
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6.2 Local formulation

It was argued in the last section that a generic counterterm can be constructed out of a
tensor τ ij . The tensor is made of observable quantities integrated along the flow:

τ ij(x, τ) =

∫ τ

0
{dτn}Ka···an···(τ ; {τn}) · · ·Π

injn
an (xfl(τn), τn) · · · , (6.9)

where we switched to the conformal time τ . In perturbation theory, any observable can be
solved in powers of the initial field δ1(x), in particular, suppressing indices,

Π(x, τ) = D(τ)Π(1)(x) +D2(τ)Π(2)(x) + · · · (6.10)

where D(τ) is the growth factor and we are using the reasonably accurate approximation of
replacing a(τ) → D(τ) in going from matter dominance to ΛCDM. This expansion contains
displacement terms to take into account the bulk flow induced by long wavelength initial
perturbations. As such, some of the second and higher order terms in the sum become
singular in the presence of a finite δ1(k1) with vanishing momentum k1 → 0. These terms
are responsible for shifting the argument of the fields on the right hand side (r.h.s.) to their
initial (Lagrangian) fluid position

z = xfl[0;x, τ ]. (6.11)

After shifting the arguments x → z there remains no infra-red singularity on the r.h.s. as ex-
pected on symmetry grounds. We denote the operators thus obtained Lagrangian operators.
In terms of them [8, 21]

Π(x, τ) = D(τ)Π
(1)
lgr (z) +D2(τ)Π

(2)
lgr (z) + · · · (6.12)

Substituting this expansion in (6.9), makes it possible to perform all time integrations to
obtain an expansion of various products of Lagrangian quantities with coefficients that gener-
ically depend on (and only on) the final time τ . The whole expression is acted on by two
Eulerian derivatives:

∂

∂xi





1

1 + δ

∂

∂xj

∑

{mn}

k(τ ; {mn, an}) · · · [Π
injn
an ]

(mn)
lgr (z) · · ·



 . (6.13)

It was shown in [8] that there is a one-to-one correspondence between the Lagrangian quan-
tities and the locally measurable (Eulerian) operators. Hence, we can re-express (6.13) in
terms of those Eulerian operators. A basis for the latter can be obtained by combining
various convective time derivatives (4.10) of ∂i∂jφ. Starting from

Π̂
(1)
ij (x, τ) = ∂i∂jφ(x, τ), (6.14)

the convective derivatives can be combined in such a way that a set of operators with in-
creasing order in perturbation theory is obtained. Suppressing the indices and the argument
(x, τ) these higher order operators can be computed recursively:

Π̂(n) =
1

(n− 1)!

[

(Π̂(n−1))′ − (n− 1)Π̂(n−1)
]

, (6.15)
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where prime denotes convective derivative with respect to logD (= η in a matter dominated
universe). At leading order these operators match those that appear in the perturbative
expansion of ∂i∂jφ:

Π̂
(n)
ij (x, τ) = Dn(τ)(∂i∂jφ)

(n)
lgr (z) + · · · (6.16)

At lowest derivative level an Eulerian basis for two-index tensors can be constructed as
follows. First, a two index tensor is made out of a (matrix) product of a (possibly empty)

sequence of Π̂(n)’s. For instance, δij , Π̂
(1)
ik Π̂

(3)
kl Π̂

(1)
lj are two examples. This tensor can be

multiplied by an arbitrary scalar constructed out of traces of products of Π̂
(n)
ij , like Π̂

(1)
ij Π̂

(1)
ij .

The trace Tr[Π̂(n)] with n > 1 must be excluded since it is expressible in terms of lower order
operators. The first few orders are (in matrix notation):

1st 1Tr[Π̂(1)], Π̂(1) (6.17)

2nd 1Tr[(Π̂(1))2], 1(Tr[Π̂(1)])2, Π̂(1)Tr[Π̂(1)], (Π̂(1))2, Π̂(2)

3rd 1Tr[(Π̂(1))3], 1Tr[(Π̂(1))2]Tr[Π̂(1)], 1(Tr[Π̂(1)])3, 1Tr[Π̂(1)Π̂(2)], · · ·

Note that the τ ij matrix must be symmetrized. To obtain a list of counterterms, one substi-
tutes any such tensor into the τij of (6.7). Let us close with a few clarifications.

• This is a complete basis at lowest derivative level. In particular, all locally observable
operators made of the velocity field are also included. For instance, in terms of a
rescaled velocity potential ∇2φv = −H−1θ, we have

Π̂
(2)
ij = ∂i∂mφ∂j∂mφ+

5

2
(∂i∂jφ− ∂i∂jφv) +O(δ3). (6.18)

Clearly, at higher orders ∂i∂jφ and ∂i∂jφv will be insufficient for a local description of
counterterms and higher order convective time derivatives will be necessary. However,
given that at nth order we need up to Π̂(n−1), the first example appears at the quartic
level.

• The tensors Π̂(n)(x, τ), and hence the counterterms in (6.7), are easily calculable in
momentum space by combining the F and G kernels of SPT. For instance,

Π̂
(1)
ij (k, τ) =

kikj

|k|2

∞
∑

n=1

Dn(τ)δn(k), (6.19)

where δn(k) is the nth order SPT solution, and

Π̂
(2)
ij (k, τ) =

∞
∑

n=1

Dn(τ)

[

kikj

|k|2
(n− 1)δn(k)

+
n−1
∑

m=1

∫

p

(k − p) · p

|k − p|2
pipj

|p|2
θm(k − p)δn−m(p)

]

,

(6.20)

and so on.

• One should bear in mind that although ∂i∂jφ(x, τ) is a total derivative, neither its

convective time derivatives nor the z-space matrices Π
(n)
ij (z) are necessarily total spatial

derivatives of any kind.
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• Although, the basis (6.17) for tensors is non-redundant, taking the derivatives leads to
degeneracies. For instance, at second order there are 5 tensors but only 3 independent
counterterms.

• Any tensor τ ij leads to an infinite series of counterterms when the factor (1 + δ)−1 is
expanded in (6.7). The relative coefficients of these counterterms are fixed so as to
insure double softness of δ when the ingoing fields are hard (a fact that is verified in
appendix B using the momentum equations).

In summary, we have proposed an alternative to the systematic renormalization scheme
introduced in section 4. The renormalization of 1-loop bispectrum carried out in section 4.5
and appendix A provide a nontrivial check of the systematic renormalization. On the other
hand, the adequacy of the basis (6.17) in the case of 1-loop power spectrum and 1-loop
bispectrum has already been established in earlier works (see e.g. [21]). For instance, at first
order there are two possibilities for τij : δij∇

2φ and ∂i∂jφ, and at second order there are five
possibilities: (6.18) and

δij(∂m∂nφ)
2, δij(∇

2φ)2, ∇2φ∂i∂jφ, ∂i∂mφ∂j∂mφ. (6.21)

These were considered in [21] and it was shown that they are sufficient for renormalizing
1-loop power spectrum and bispectrum.

7 Conclusions

In this paper, we have introduced a systematic renormalization procedure for the pertur-
bative description of Large Scale Structures, which is analogous to the one commonly used
in quantum field theory. One main advantage is that new counterterms can be straightfor-
wardly read off amputated time-evolution diagrams, without the complicated mixing with
lower-order counterterms that plagues the standard treatment. In this approach, correlators
of both δ and θ are renormalized at each order. We have also provided for the first time
an explicit prescription for the allowed counterterms to all orders in perturbation theory. In
passing, we have justified the commonly used mass-weighted volcity formulation in which
counterterms appear exclusively in the Euler equation.9 We have also presented a rigorous
derivation of the double-softness of δ and ∇·π in perturbation theory, namely the well-known
fact that δ(k) ∼ ∇π(k) ∼ k2 on large scales, k → 0.
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A Second order counter terms at 1-loop order

This section is devoted to a detailed calculation of second order counterterms in the leading
loop order. This is sufficient for a 1-loop calculation of the bispectrum. However, the resulting
counterterms renormalize all reducible diagrams where the vertex corrections of figure 1a
and 1b appear as a sub-diagram, which is the goal of systematic renormalization. For this
the counterterms are unavoidably nonlocal in time since the ingoing lines into this sub-
diagram can be of different orders and hence have different time-dependence. This is the
practical manifestation of the “long memory effect” discussed in section 4.1.

Using Feynman rules presented in section 2, the 1-loop correction to the vertex function
can be read off diagrams of figure 1a and figure 1b as

C1−loop
a,a1,a2 (η, η1, η2;k,k1,k2) = Cdia.1

a,a1,a2(η, η1, η2;k,k1,k2) + Cdia.2
a,a1,a2(η, η1, η2;k,k1,k2)

+

(

k1 ↔ k2

η1 ↔ η2
a1 ↔ a2

)

(A.1)

for which the diagram 1 and diagram 2 can be calculated through performing hard momentum
(loop momentum) integrations of the following equations. At this step time integrals are left
untouched

Cdia.1
aa1a2(η,η1,η2;k,k1,k2) = 4× gfm(η2,0)ghl(η1,0)gbe(η,η1)gcd(η,η2)

∫

q

γa,b,c(k,k1 + q,k2 − q)γd,f,a2(k2 − q,−q,k2)γea1h(k1 + q,k1,q)

(A.2)

Cdia.2
aa1a2(η,η1,η2;k,k1,k2) = 8× gbl(η,0)ge,m(η1,0)gcd(η,η2)gfh(η2,η1)

∫

q

γabc(k,−q,k + q)γdfa2(k + q,k1 + q,k2)γhea1(k1 + q,q,k1)

(A.3)

and summation on repeated indices is presumed. It should be noticed that the counterpart of
diagram 1 which can be found by exchanging k1 ↔ k2, η1 ↔ η2, a1 ↔ a2, would just multiply
the contribution of diagram 1 in C1-loop

a a1 a2 by a factor 2. However, in the second diagram,
(1 ↔ 2) conversion produces a new momentum and time dependence.

The results of the above integrals are

Cdia.1
a,a1,a2(k;k1,k2; η, η1, η2) = σ2 θ(η − η1) θ(η − η2)

{

1Γ(1)
a,a1,a2 e2 η + 1Γ(2)

a,a1,a2 e(1/2) (−η+5η1)+

1Γ(3)
a,a1,a2 e(1/2) (−η+5η2) + 1Γ(4)

a,a1,a2 e(5/2) (η1+η2)−3η

}

(A.4)
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+
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(a) Amputated diagram 1.

◭

◭

◭

◭

◮

◭

◭

•

a,k
η

a1,k1

η1

a2,k2

η2

k1 ↔ k2

η1 ↔ η2
a1 ↔ a2

+

( )

(b) Amputated diagram 2.

Figure 1. 1-loop corrections to the cubic vertex function.

Cdia.2
a,a1,a2(k;k1,k2; η, η1, η2) = σ2 θ(η − η2) θ(η2 − η1)

{

2Γ(1)
a,a1,a2 e2 η + 2Γ(2)

a,a1,a2 e(1/2) (−η+5η1)+

2Γ(3)
a,a1,a2 e(1/2) (−η+5η2) + 2Γ(4)

a,a1,a2 e(5/2) (η1−η2)+2η

}

(A.5)

in which 1Γ
(n)
a,b,c and 2Γ

(n)
a,b,c are originating from 1-loop vertex diagram 1 and diagram 2

respectively.

A.1 Shift terms

As discussed in section 4.1 promoting the time integration to be along the flow identifies
several higher order counterterms as the displacement a lower order one. These shift terms
can be isolated by looking at the infra-red limit when one of the ingoing momenta becomes
much smaller than the other. In other words, the two vertices vi∂iθ and vi∂iδ with soft
velocities lead to IR-divergences as 1/k in the momentum of Ψ2 ∼ θ = ∇.v. In the case
of 1-loop second-order counterterms, the first order shift of a first order counterterm (4.13)
automatically renormalize these “IR-divergent” cutoff dependence. It is shown in section 4.5.2
that these non-original counterterms are

∇2

∫ η

η0

dη1

∫ η

η1

dη2 ca b(η, η1)
∇

∇2
Ψ2(x, η2).∇Ψb(x, η1). (A.6)

Now using the 1-loop correction of the propagator

ca b(η, η1) = −σ2
v e−η/2

{[

3
5

−4
25

−9
5

−8
5

]

e
5η
2 +

[

−8
5

4
25

9
5

3
5

]

e
5η1
2

}

,

the above correction to the equation of motion can be written in Fourier space as

∫ η

η0

dη1

∫ η

η0

dη2 C̃aa1a2(η, η1, η2;k,k1,k2) Ψb(k1, η1) Ψ2(k2, η2). (A.7)
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in which

C̃aa1a2(η, η1, η2;k,k1,k2) = −σ2 δa22
k2 (k1.k2)

k22

∫ η

η0

dη1

∫ η

η0

dη2 θ(η − η1) θ(η1 − η2)

{[

3
5

−4
25

−9
5

−8
5

]

a a1

e2 η +

[

−8
5

4
25

9
5

3
5

]

a a1

e
5η1−η

2

}

.

(A.8)

Now let us examine the IR-limit of the corrections to the vertex function. Using the following
identity between step functions

θ(η − η1) θ(η − η2) = θ(η − η1) θ(η1 − η2) + θ(η − η2) θ(η2 − η1) (A.9)

one readily finds that IR-limit of diagram 1 contribution to the vertex correction as

lim
k2→0

Cdia.1
aa1a2(k,k1,k2; η, η1, η2) + (1 ↔ 2) = − 2× σ2 δa2 2

k2 (k1.k2)

k22

∫ η

η′
dη1

∫ η

η′
dη2

[

θ(η − η1) θ(η1 − η2) + θ(η − η2) θ(η2 − η1)
]

×

{[

6
25

12
175

0 −6
25

]

a a1

e2 η +

[

−6
25

−12
175

0 6
25

]

a a1

e
5η1−η

2

}

(A.10)

where the symmetry factor 2 comes from (1 ↔ 2) or more explicitly (k1 ↔ k2, η1 ↔ η2, a1 ↔
a2). And

lim
k2→0

δCdia.2
aa1a2(k,k1,k2; η, η1, η2) + (1 ↔ 2) =

− σ2 δa2 2
k2 (k1.k2)

k22

∫ η

η0

dη1

∫ η

η′
dη2

[

θ(η − η2) θ(η2 − η1)

{[

−12
25

−24
175

0 12
25

]

a a1

e2 η +

[

12
25

24
175

0 −12
25

]

a a1

e
5η1−η

2

}

− θ(η − η1) θ(η1 − η2)

{[

3
25

−52
175

−9
5

−28
25

]

a a1

e2 η +

[

−28
25

52
175

9
5

3
25

]

a a1

e
5η1−η

2

}]

. (A.11)

Again the third line is the soft limit amplitude of the inverted version of diagram 2. Adding
up these contributions together one recover the IR-divergent vertex correction already an-
ticipated by promoting time integrals in propagator correction integral, CUV

a , to an integral
along xfl, which leads to (A.8).

A.2 The new counterterms

As discussed in 4.5.3, after the subtraction of shift terms from 1PI diagrams, what remains
must be renormalized with the new higher order counterterms. For every second order term
(counter-term) in the equation of motion there is an associated cubic vertex in Feynman
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diagrams so we use 1-loop second order counterterms and 1-loop cubic vertex correction
interchangeably. Using eq. (4.22), all second order counterterms are of the following form

∫ η

η0

dη1

∫ η

η0

dη2 Ki
aa1a2(η, η1, η2) F

i(k,k1,k2) Ψa1(k1, η1)Ψa2(k2, η2). (A.12)

The general structure of F i kernels can be found using eq. (4.20) as

F 1(k,k1,k2) = k.k1 F 2(k,k1,k2) = (k.k2)

F 3(k,k1,k2) =
(k.k1) (k1.k2)

k21
F 4(k,k1,k2) =

(k.k2) (k1.k2)

k22

F̃ 5(k,k1,k2) =
(k.k1)(k1.k2)

2

k21 k
2
2

F̃ 6(k,k1,k2) =
(k.k2)(k1.k2)

2

k21 k
2
2

. (A.13)

As already emphasized, although the basis 4.20 for tensors is non-redundant, taking the
derivatives leads to degeneracies. It can be shown that the above structures are linearly
dependent: F̃ 6 − F̃ 5 = F 3 − F 4. Hence, we eliminate F̃ 6 − F̃ 5 and define

F 5 =
1

2
(F̃ 5 + F̃ 6). (A.14)

Having found all possible momentum dependencies, the next step would be listing the time
kernels. There is a unique basis for all possible time kernels of 2-nd order counterterms in
the equation of motion. We denote them by κ̂i given by

κ̂1 = e2η κ̂2 = e(5η1−η)/2 κ̂3 = e(5η2−η)/2

κ̂4 = e5(η1−η2)/2+2η κ̂5 = e5(η1−η2)/2+2η κ̂6 = e5(η1+η2)/2−3η . (A.15)

Every time kernel has three indices associated with indices of the one outgoing and two
ingoing legs respectively. As every index can be either 1 or 2 there are 23 = 8 distinct
counter terms which are listed below

∑

i

Ki

121
F i = +

1

125
F 1
[

−6(4κ̂1−4κ̂2−7κ̂5+7κ̂6)Θ12−(24κ̂1−4κ̂3+63κ̂4+42κ̂6)Θ21

]

+
1

125
F 2
[

3(44κ̂1+25κ̂2−74κ̂3+3κ̂4+2κ̂6)Θ21+(132κ̂1−57κ̂2−200κ̂3−6κ̂5+6κ̂6)Θ12

]

−
2

125
F 3
[

6(13κ̂1−13κ̂2−4κ̂5+4κ̂6)Θ12+(78κ̂1−13κ̂3+36κ̂4+24κ̂6)Θ21

]

(A.16)

∑

i

Ki

222
F i =

3

125
(F 1+F 2)

[

(−74κ̂1+25κ̂2+44κ̂3+2κ̂4+3κ̂6)Θ21

+(−74κ̂1+44κ̂2+25κ̂3+2κ̂5+3κ̂6)Θ12

]

−
2

125
F 5
[

(−13κ̂1+78κ̂2+24κ̂5+36κ̂6)Θ12+(−13κ̂1+78κ̂3+24κ̂4+36κ̂6)Θ21

]

(A.17)

∑

i

Ki

122
F i = +

2

875
F 1
[

Θ21(129κ̂1+70κ̂2−199κ̂3+33κ̂4−33κ̂6)+3Θ12(43κ̂1−43κ̂2+11κ̂5−11κ̂6)
]

+
2

875
F 2
[

Θ12(129κ̂1−199κ̂2+70κ̂3+33κ̂5−33κ̂6)+3Θ21(43κ̂1−43κ̂3+11κ̂4−11κ̂6)
]
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+
1

875
(F 3+F 4+F 5)

[

Θ12(−611κ̂1+611κ̂2+48κ̂5−48κ̂6)

+Θ21(−611κ̂1+611κ̂3+48κ̂4−48κ̂6)
]

(A.18)

∑

i

Ki

111
F i =

3

25
F1

[

Θ12(6κ̂1−16κ̂2+15κ̂3−3κ̂5−2κ̂6)+Θ21(6κ̂1−κ̂3−3κ̂4−2κ̂6)
]

+
3

25
F2

[

Θ21(6κ̂1+15κ̂2−16κ̂3−3κ̂4−2κ̂6)+Θ12(6κ̂1−κ̂2−3κ̂5−2κ̂6)
]

(A.19)

∑

i

Ki

221
F i =

3

25
(F 1+F 2)

[

Θ12(16κ̂1−6κ̂2−15κ̂3+2κ̂5+3κ̂6)+Θ21(16κ̂1−16κ̂3−3κ̂4+3κ̂6)
]

(A.20)

∑

i

Ki

211
F i =

27

25
(F 1+F 2)

[

Θ12(−2κ̂1+2κ̂2+κ̂5−κ̂6)+Θ21(−2κ̂1+2κ̂3+κ̂4−κ̂6)
]

(A.21)

in which Θ12 = θ(η − η1)θ(η1 − η2) and Θ21 = θ(η − η2)θ(η2 − η1). Moreover
∑

iK
i
112F

i

and
∑

iK
i
212F

i could be simply read off from
∑

iK
i
121F

i and
∑

iK
i
221F

i, respectively, by the
following replacements

κ̂2 ↔ κ̂3, κ̂4 ↔ κ̂5, F 1 ↔ F 2, F 3 ↔ F 4, Θ12 ↔ Θ21 . (A.22)

Note that the counterterms for the Euler equation, which are the ones with the first
index 2, are all proportional to

F1 + F2 = k2, or F5 = k2
(k1 · k2)

2

k21k
2
2

(A.23)

which in real space translate into ∇2δ2 and ∇2(∂i∂jφ)
2, respectively. Hence, as expected

they are Laplacians of locally observable scalar quantities and the corresponding force in the
Euler equation is curl-free.

B Softness properties of perturbation theory

In this appendix we give a perturbative and iterative proof of the single softness of momen-
tum π(k) and double softness of density contrast δ(k) which result from evolution of short
wavelength initial modes — also known as decoupling. The proof is broken into several steps.

B.1 Only hard ingoing modes

Let us first list the equations and constraints to be satisfied by δ, ν = ∇×π, and µ ≡ ∇ ·π,
namely (4.17) and the divergence and the curl of (5.9)

δ̇ = −∇ · π, (B.1)

δ̈ +Hδ̇ −
3

2
H2δ = ∂i∂j(∂iφ∂jφ)−

1

2
∇2(∂jφ∂jφ) + ∂i∂j(v

iπj), (B.2)

ν̇i +Hνi = −εijk∂j [∂m(∂kφ∂mφ) + ∂m(vkπm)] (B.3)

where we used
v =

π

1 + δ
(B.4)

and

∇2φ =
3

2
H2δ (B.5)
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(a) (b)

Figure 2. Hard ingoing lines combining into a soft line.

to simplify the last two equations (and the subscript on vπ is dropped to avoid clutter).
Suppose we start from a set of initial short wavelength (hard) modes. These modes evolve and
combine according to the above equations to generate second and higher order perturbations.
The softness properties follow from:

1. At any level when, as in figure 2a, hard modes combine into a soft δ through the vertices
of (B.2)

δl(η) =

∫ η

η0

dη′Gδ(η, η
′)

[

∂i∂j(∂iφs∂jφs)−
1

2
∇2(∂jφs∂jφs) + ∂i∂j(v

i
sπ

j
s)

]

η′
, (B.6)

the result is automatically of second order in the outgoing momentum, i.e. k2l . (Here and
in what follows we use the more compact subscripts l and s to denote long wavelength
(soft) and short wavelength (hard), respectively.)

2. The same applies to ∇·πl because of the constraint (B.1), and (B.3) ensures in a similar
way that ∇× πl = O(k2l ). It follows that πl = O(kl).

3. If the hard modes combine into two long modes at a lower order which then evolve into
one long δl (as in figure 2b), we have

δl(η) =

∫ η

η0

dη′Gδ(η, η
′)

[

∂i∂j(∂iφl∂jφl)−
1

2
∇2(∂jφl∂jφl) + ∂i∂j(v

i
lπ

j
l )

]

η′
. (B.7)

The softness of the final δl can be established by induction as follows.

4. If all long modes on the r.h.s. are the immediate result of combining short modes, we
have from 1 and 2, and (B.4) and (B.5)

∂iφl = O(kl), vil = O(k0l ), πi
l = O(kl), (B.8)

which ensures that δl on the left of (B.7) is at least O(k3l ).
10 This in turn ensures

via (B.1) that ∇ · πl = O(k3l ) at this level, and one can similarly verify ν = O(k3l ).

5. Therefore a stronger softness property than (B.8) holds when the soft modes on the
r.h.s. of (B.7) result from evolution of two soft modes that themselves evolved from
hard modes, and the iteration can be continued ad infinitum.

10Since (B.4) is nonlinear and has no overall derivatives a priori one would expect vl = O(k0
l ). However,

we will show in appendix B.3 that at lowest derivative order the (standard) perturbation theory results
in vl = O(kl).
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(a) (b) (c)

Figure 3. Hard and soft ingoing lines combining into a soft line.

B.2 Soft and hard ingoing modes

In the presence of both soft and hard initial modes, double softness can be established by
dividing the quadratic vertices of the perturbation theory into different categories. First,
every vertex that results in a soft outgoing field either combines two short modes or two long
modes, e.g.

[∂φ∂φ]l = ∂φs∂φs + ∂φl∂φl. (B.9)

In the presence of initial soft modes we need to make a further distinction of whether a long
mode is purely made of those initial long modes (indicated as ∂φl;l), or if it contains initial
hard modes in addition to a (possibly empty) set of initial long modes (indicated as ∂φl;sl).
Thus, the first vertex in (B.2) is decomposed schematically as

∂∂[∂φs∂φs + ∂φl;l∂φl;sl + ∂φl;sl∂φl;sl]. (B.10)

Note that ∂φl;l∂φl;l is excluded since we are only interested in the case where there are some
hard initial modes. Figure 3 shows one example for any of the above three terms.

1. The first term in the above equation is similar to what we considered in point 1 of the
previous section, where the two external derivatives ensured double softness. However,
there is an important difference: the short modes can now contain initial long modes
(see figure 3a). One may therefore worry that ∂φs may contain negative powers of kl
due to the displacement of hard modes by the soft modes. That is, terms in perturbative
evolution of the form vl;l ·∇δs where vl;l = O(k−1

l ). These IR singularities indeed exist
in any short wavelength quantity that evolves from initial hard and soft modes. They
correspond to the motion of short modes with the bulk flow of the long modes and their
presence is ensured by the equivalence principle. However, as shown more explicitly
in appendix C whenever a collection of hard modes combine into a soft mode, adding
any number of initial soft modes to such diagram does not lead to any negative power
of kl. The singular displacement of hard lines with momenta {qi} by a soft line of
momentum k1 that are proportional to k1 · qi/k

2
1 add up to k1 · ktotal/k

2
1 − 1 = O(k0l )

at any moment. Hence, the first term in (B.10) leads to a double soft outgoing δl (and
as before a single soft πl).

2. The second and third terms can also be shown to lead to at least double soft results
using induction. First suppose there is no initial long modes in ∂φl;sl. Then by the
argument of the last section ∂φl;s = O(kl). And ∂φl;l = O(k−1

l ) from (B.5). So
the resulting outgoing δl;sl = O(k2l ) because of the overall derivatives. One can then
continue the induction provided that the same argument applies to the ∂∂(vπ) vertex
of (B.2).
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3. Decomposing vπ into short and long wavelength contributions we get

[vπ]l = vsπs + vl;slπl;l + vl;slπl;sl + vl;lπl;sl. (B.11)

Assuming that up to some order in perturbations

πl;sl = O(kl), δl;sl = O(k2l ), vl;sl = O(k0l ), (B.12)

and using the fact that vl;l, πl;l = O(k−1
l ) and δl;l = O(k0l ), we see that the last two terms

on the r.h.s. of (B.11) preserve these properties (when considering the vertex ∂∂(vπ)).
The second term clearly violates them and the first term does so too: expanding

vsπs = vs[δsvs + (1 + δ)lvs + δsvl]

= vs[δsvs + (1 + δ)lvs + δsvl;sl + δsvl;l],
(B.13)

the last term is seen to be O(k−1
l ), leading to O(kl) contribution to δl from the vertex

∂∂(vsπs). However, the sum of the two dangerous terms preserves the condition (B.12).
Substituting

πl;l = (1 + δ)l;lvl;l (B.14)

in the second term on the r.h.s. of (B.11) and using the fact that (1+δ)l;sl = δl;sl (since
the subscript s indicates a nonzero set of initial short modes) we obtain for the sum of
potentially dangerous terms

vl;l[(1 + δ)l;lvl;sl + δsvs] = vl;l {[(1 + δ)v]l;sl − (1 + δ)l;sl(vl;l + vl;sl)}

= vl;l[πl;sl − δl;sl(vl;l + vl;sl)] = O(k0l ).
(B.15)

Therefore the sum of all vertices preserves the condition (B.12), and double softness
follows by induction.

Note finally that all of the above arguments generalize to the case where counterterms
of the form ∂jτ

ij , with τ ij a locally observable tensor which by definition can never have
an IR singularity (corresponding to a negative scaling with kl), are added to the Euler
equation (5.9). This seems to be the most general way of modifying the equations of motions
that is still compatible with locality and momentum conservation. Intuitively, the short scale
dynamics can generate an effective force on a volume element of the fluid only due to its
momentum flux into that volume.

B.3 Velocity field

The final point to be discussed is the softness property of the mass weighted velocity field
defined as v = π/(1 + δ). Using mass conservation we get

θ = ∇ · v = −δ̇ −∇ · (δv). (B.16)

Using this equation in the Euler equation leads to

δ̈ +Hδ̇ −
3

2
H2δ = H(∂τ +H)∂i(δ∂iφv) +H2∇2(∂iφv∂iφv), (B.17)

where we neglected vorticity and set v = −H∇φv. From these equations it follows that
double-softness of a soft outgoing δ evolved purely from initial hard modes implies double
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softness of θ. To show this one needs to argue that the second term in (B.16) which naively
is only single soft is actually double-soft when the perturbative solution for δ and θ are
substituted. This follows from the fact that the second vertex on the r.h.s. of (B.17) is
automatically double soft and if δ is to be double soft the first term on the r.h.s. must also
be double soft by itself.11

If we use δ and v as primary variables — as we did in our systematic renormalization —
and add counter-terms proportionally to SPT cutoff dependence, the resulting renormalized
velocity inherits both curl-freedom and single-softness from SPT kernels. This renormalized
velocity of course differs from vπ. On the other hand, if we use vπ and add counterterms as
∂jτ

ij to the momentum equation (5.9), they modify (B.17) as ∂i[(1 + δ)−1∂jτ
ij ]. Expanding

this leads to vertices which are not explicitly second derivative. For instance, taking τ ij =
δij(∂m∂nφ)

2 we get an associated cubic vertex

− ∂i[δ ∂i(∂m∂nφ)
2]. (B.19)

Taking all ingoing modes to be hard, this vertex gives rise to an outgoing δ which is only
single soft. In this formulation, the full result becomes double soft (as it must according
to the arguments of sections B.1 and B.2) because the above single soft term cancels with
the one arising from evolving a second order solution coming from the leading part of the
counterterm ∇2(∂m∂nφ)

2 to third order via the vertex ∂i(δv
i). Hence, the double softness

of δ does not imply that of θπ anymore because the second term on the r.h.s. of (B.16) is
generically only single soft after the addition of counterterms. Note that one can redefine
velocity to absorb these single soft terms, but the new velocity is no longer given by π/(1+δ).

C Cancellation of IR singularities

Consider the following time evolution diagram with ingoing momenta {k1, q1, q2} and out-
going momentum k, and such that k1 ∼ k ≪ q1,2.

◮

◮

◭

◮

◭

q1 k1 q2

k

. (C.1)

The potential IR singularity arises in this diagram from the vertex v · ∇Ψa, where v realizes
the soft k1 mode and Ψa a hard one, leading to k1 · qi/k

2
1. Focusing only on this vertex we

11One should also consider the case when the hard modes combine into two soft modes which later combine
into a final δ. In this case too the second term on the r.h.s. of (B.17)

∇
2(vl;svl;s) (B.18)

is double soft because at least vl;s = O(k0
l ).
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have for the outgoing field

{Ψa(k, η)}IR =

∫ η

η0

dη1gab(η, η1)

∫ η1

η0

dη2

[

γbcd(k, q1 + k1, q2)gce(η1, η2)
k1 · q1
k21

Ψ
(1)
2 (k1, η2)Ψ

(1)
e (q1, η2)Ψ

(1)
d (q2, η1) + q1 ↔ q2

]

.

(C.2)

Now using
Ψd(q2, η1) = gdf (η1, η2) Ψf (q2, η2), (C.3)

and the fact that γbcd(k, q1+k1, q2) = γbcd(k, q1, q2)+O(k1) in the limit k1 ≪ qi, we obtain

{Ψa(k, η)}IR =

∫ η

η0

dη1gab(η, η1)

∫ η1

η0

dη2γbcd(k, q1, q2)gce(η1, η2)gdf (η1, η2)

[

k1 · q1
k21

+
k1 · q2
k21

]

Ψ
(1)
2 (k1, η2)Ψ

(1)
e (q1, η2)Ψ

(1)
f (q2, η2).

(C.4)

The expression in the square brackets is k1 · (k − k1)/k
2
1 which is O(k0), thus the potential

IR singularities coming from the v · ∇Ψa vertex cancel in this diagram when we sum over
the two possible attachments of the soft line. The full diagram will therefore have the same
softness property as the one without attaching the soft line.

The above cancellation arises from the fact that the displacement produced by the
long k1 mode is universal, and hence when the individual hard momenta add up to a soft
momentum k, the displacement terms also add up as effectively moving a long wavelength
mode. Note that the cancellation happens independently at any time-slice. Next we show
this to hold more generally whenever one or several ingoing soft modes are added to a diagram
that combines a set of hard modes into a soft mode.

Let us focus again on attaching one soft line via the v · ∇ vertex at a specific time
η1, with

v = −H
k1

k21
Ψ

(m)
2 (k1, η1) (C.5)

an order m soft velocity, and freeze the rest of the diagram. Cutting this frozen diagram

at time η1 and stripping off the soft k1 line we have a set of fields {Ψ
(ni)
ai (qi, η1)} whose

contribution to the outgoing field is

Aaa1···(η; η1, {qi})
∏

i

Ψ(ni)
ai (qi, η1), (C.6)

where Aa··· is a function that contains all momentum dependences arising from the vertices
after η1 and all propagators. Now add the soft line and sum over all possible attachments of
v · ∇ vertex at η1

∑

i

Aaa1···(η, η1, {q1, · · · , qi + k1, · · · })
k1 · qi
k21

Ψ
(m)
2 (k1, η1)

∏

i

Ψ(ni)
ai (qi, η1), (C.7)

and use the fact that Aa···(η, η1, {q1, · · · , qi + k1, · · · }) is regular when k1 ≪ qi to get

Aaa1···(η, η1, {q1, · · · , qi, · · · })
∑

i

k1 · qi
k21

Ψ
(m)
2 (k1, η1)

∏

i

Ψ(ni)
ai (qi, η1) +O(k01). (C.8)
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The sum gives k1 · (k−k1)/k
2
1 = O(k0l ). Hence, the drifts caused by a long wavelength mode

add up at any moment to the overall drift of the total (stripped) diagram whose momentum
is k − k1. This proves that if we start from a composite operator such as ∂φs∂φs, which
combines hard modes into a soft outgoing line, and perturbatively add soft modes they will
not introduce any negative power of kl.

D Equations in Fourier space

In this appendix we provide explicit formulae for the equations of motion of momentum and
velocity in Fourier space.

The equations of motion using momentum are

∂τδ + µ = 0 , (D.1)

∂τµ+Hµ+
3

2
H2Ωmδ = ξδδ + ξµµδ + ξµνδ + ξννδ + ∂i∂jτ

ij (D.2)

∂τν
i +Hνi = ~γµµδ + ~γµνδ + ~γννδ + ǫijk∂j∂mτmk . (D.3)

Several definitions are in order. ξδδ comes from the term δ∂iφ

ξδδ ≡ −
3

2
H2Ωm

∫

~q
α(~q,~k − ~q)δ(~q)δ(~k − ~q)

→ −
3

2
H2Ωm

∫

~q
α(s)(~q,~k − ~q)δ(~q)δ(~k − ~q) , (D.4)

where α was given in (2.9) and the arrow refers to symmetrization12

α(s)(~k, ~q) ≡
1

2

[

α(~k, ~q)± α(~q,~k)
]

=
(~k + ~q)

2
·

(

~q

q2
+

~k

k2

)

. (D.7)

The other interactions come from ∂i
(

πiπk/ρl
)

and are as follows.

ξµµδ(~k) = −
∞
∑

n=0

∫

~q1,~q2

~k·~q2~k·~q12
q22q

2
12

µ(~q2)µ(~q12)δ
n(~k−~q1)(−1)n,

ξµνδ(~k) =
∞
∑

n=0

∫

~q1,~q2

~k·~q2×~ν(~q2)~k·~q12µ(~q12)−~k·~q12×~ν(~q12)~k·~q2µ(~q2)

q22q
2
12

δn(~k−~q1)(−1)n,

12The reason why we drop the antisymmetric term is the following. For any anti-symmetric function
A(~k, ~q) = −A(~q,~k) one has

∫

q

A(~q,~k − ~q) = −

∫

q

A(~q,~k − ~q) , (D.5)

as it can be easily proven. This equation has two solutions: zero and infinity. In applications to perturbation
theory the integral is often divergent. We regulate the divergences in a way that respect the anti-symmetry
so that the regularized terms vanish. E.g. a divergence in a integral like

∫

~q

α(~q,~k − ~q)δ(~q)δ(~k − ~q) , (D.6)

is regulated by smoothing each δ(k) on some cutoff scale kcut off.
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ξννδ(~k) = −
∞
∑

n=0

∫

~q1,~q2

~k·~q2×~ν(~q2)~k·~q12×~ν(~q12)

q22q
2
12

δn(~k−~q1)(−1)n,

~γµµδ(~k) = −
∞
∑

n=0

∫

~q1,~q2

~k×~q2~k·~q12
q22q

2
12

µ(~q2)µ(~q12)δ
n(~k−~q1)(−1)n,

~γµνδ(~k) =
∞
∑

n=0

∫

~q1,~q2

~k×[~q2×~ν(~q2)]~k·~q12µ(~q12)−~k×[~q12×~ν(~q12)]~k·~q2µ(~q2)

q22q
2
12

δn(~k−~q1)(−1)n,

~γννδ(~k) = −
∞
∑

n=0

∫

~q1,~q2

~k×[~q2×~ν(~q2)]~k×[~q12×~ν(~q12)]

q22q
2
12

δn(~k−~q1)(−1)n,

where ~q12 ≡ ~q1 − ~q2, δ
n(~k) is the Fourier transform of δ(~x)n and we used the vector identity

~a×~b× ~c = ~b~a · ~c− ~c~a ·~b . (D.8)

Moving on to the velocity equations, we start with the Fourier-space decomposition

vi(~k) = i
ǫijj

′

kjwj′(~k)

k2
− i

ki

k2
θ(~k) . (D.9)

The equations of motion in terms of velocity gradient and curl in Fourier space, supplemented
by the EFT corrections, are then given by

∂τδ + θ =

∫

q

[

−α(~q,~k − ~q)θ(~q) + ~αw(~q,~k − ~q) · ~w(~q)
]

δ(~k − ~q) , (D.10)

∂τθ +Hθ +
3

2
H2Ωmδ = −

∫

q

[

β(~q,~k − ~q)θ(~q)θ(~k − ~q) + ~βw(~q,~k − ~q) · ~w(~k − ~q)θ(~q)

+~w(~q)βww(~q,~k − ~q)~w(~k − ~q)
]

+ ∂i

(

∂jτ
ij

1 + δ

)

(D.11)

∂τ ~w +H~w =

∫

q

γwij(~q,
~k − ~q)wj(~k − ~q)θ(~q) + ~αw(~q,~k − ~q)~w(~q) · ~w(~k − ~q)

+γww
ijl (~q,

~k − ~q)wl(~k − ~q)wj(~q) + ǫijk∂j

(

∂lτ
kl

1 + δ

)

, (D.12)

where α and β were given in (2.9) and13

~αw(~q1, ~q2) =
~q2 × ~q1

q21
, ~βw(~q1, ~q2) =

~q1 × ~q2
q22

, βww
ij (~q1, ~q2) ≡

(~q1 × ~q2)i (~q1 × ~q2)j
q21q

2
2

,

γwij(~q1, ~q2) ≡
~q1,i (~q1 + ~q2)j

q21
−

(~q1 + ~q2) · q1
q21

δij , γww
ijl (~q1, ~q2) ≡

ǫil
′l(~q1 + ~q2)l′q

j
1

q21
. (D.14)

13We used the magic vector identity

~∂ ×

(

vk∂k~v
)

= −~∂ ×

[

~v ×

(

~∂ · ~v
)]

. (D.13)
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E Glossary

In this paper, we have extensively used the same nomenclature as in quantum and statistical
field theory to stress the similarity with the problem at hand and to make the discussion
more intuitive. However, when needed we have adapted and refined some of the definitions.
For the convenience of the reader we have collected below those technical terms used in this
paper whose meaning differs in some important or subtle way from the common usage.

1-Particle Reducible (1PR) A loop diagram for a correlation function that can be divided
into two disconnected parts by cutting an internal line that
is not immediately connected to a contraction or an external
line, e.g. (3.4).

1-Particle Irreducible Any loop diagram that is not 1PR, e.g. (3.1).

Time-evolution diagram It shows the evolution of a set of initial fields into one higher
order final field at a later time (3.6).

Hard line In a diagram, a line representing the time evolution of per-
turbation δ(k) with a large momentum k → ∞, e.g. thick
lines in (3.6).

Soft line In a diagram, a line representing the time evolution of
perturbation δ(k) with a small momentum, e.g. thin lines
in (3.6).

Amputated diagram A time evolution diagram in which the soft lines are imme-
diately connected to the hard lines, e.g. (3.11).

Non-stochastic The counterterm of a time-evolution diagram in which all
of hard lines are paired and contracted with each other,
e.g. (3.8).

Stochastic The counterterm of a time-evolution diagram in which one
or more hard ingoing lines remain unpaired, e.g. (3.9).

Double softness A field is double soft iff it scales as k2 as k → 0, e.g. δ
and ∇π.

Systematic Renormalization is systematic if new counterterm are needed
only for 1PI diagrams, while divergences in 1PR diagrams
are already canceled by lower order counterterms.
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