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1 Introduction

Since the seminal work of [1, 2], the study of black hole microscopics has received significant

attention. A quantum understanding of black holes had been plagued with several problems

for decades. Of them, the apparent infiniteness of the Hilbert space of states associated to

the horizons was particularly striking [3]. The microscopic explanation of black hole entropy

elegantly solved this problem in a naturally UV complete setting; that of string theory.

At this juncture, one had two obvious paths to deliberate between. One, to take the

finiteness of the space of states as a final result from string theory and seek an understanding

of the special nature of interaction between these degrees of freedom that endow black

holes with their exceedingly mysterious dynamics; this is perhaps an obvious path leading

towards a quantum understanding of gravitational dynamics. The other, perhaps more

modest path, would have been to first seek a refined understanding of the static; more

than a mere count of states, that is. Both paths have been travelled, even extensively if

one might add, and yet it is fair to say that much is left to be understood. The microscopic

counting of [1, 2] accounts for the number of states, to leading order in charges, that yield

black hole entropy. What is counted on the microscopic front is an index — a sum over all

‘angular momentum states’. The macroscopic black hole is a singlet in that it is a static,

stationary spherically symmetric solution to the bulk supergravity equations of motion.

While the leading order counting of states matches with the macroscopic entropy, an often

under-appreciated problem is the lack of understanding of what each of these states is.

One reason for the difficulty in identifying them exactly is that a sum over states of a
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given representation under the angular momentum group is not a protected quantity. On

the macroscopic front, however, a sum over various black hole configurations may seem

unnatural. In examples with sufficient amount of supersymmetry, significant progress has

been made [4–11]. Nevertheless, in cases with lesser supersymmetry, the picture is a lot less

clear. In this article, I study one such set-up that is least understood in this context — the

one of [2]. The macroscopic black holes of interest here are supersymmetric dyonic ones in

N = 2, d = 4 supergravity obtained from a Calabi-Yau1 compactification of M-Theory (an

obvious, equivalent picture exists in the Type IIA setting). The microscopic states that

count their entropy arise in what has been dubbed the MSW CFT, after the authors of [2].

The MSW CFT is a (0,4) supersymmetric non-linear sigma model that is believed to

flow to a conformal fixed point in the IR. The supersymmetric states of this theory can be

counted via an index — the modified elliptic genus [12, 13]

Z (q, q̄, ỹ) = Tr

(
1

2
F 2 (−1)F qL0−

cL
24 q̄L̄0−

cR
24 ỹ2J

)
, (1.1)

where q = e2πiτ with τ being the modulus of the torus on which the theory is to live and

q̄ is its complex conjugate. F refers to the fermion number as in the case of the standard

Witten index. cL and cR label the left and right moving central charges of the field theory.

Finally, ỹ = e2πiz is a fugacity associated to the elliptic variable z and is raised with a

‘chemical potential’ J associated to the eigenvalue of the generator2 of the right-moving

U(1) algebra arising from the self-dual part of the (1, 1) forms of the threefold. BPS

excitations of this theory, counted by the above partition function, have been shown to

grow — to leading order in charges — exactly as does the entropy of a macroscopic single

center supersymmetric black hole in the four dimensional N = 2 supergravity theory [2].

Exciting as that result may already be, the above modified elliptic genus (1.1) in fact enjoys

an even richer structure. It is a weak Jacobi form of weight (−3
2 ,

1
2) and is endowed with

a Θ-decomposition3 in terms of vector valued modular forms Zγ as [12, 13]

Z (q, q̄, ỹ) =

n∑
γ=0

Zγ (q) Θγ (q, q̄, ỹ) , (1.2)

where γ labels the independent elements of the corresponding discriminant group. Loosely

speaking, the vector valued modular form Zγ captures the growth of states of the parti-

tion function (1.1) while the Θγ functions — forming modular representations of weight

(1
2h

(1,1)(CY3)− 1, 1
2) — add to the rich pole structure of the modified elliptic genus. While

much more can be said of this decomposition than is within the scope of this article or

1In this article, by a Calabi-Yau manifold, I refer to one with maximal holonomy. More is known about

this setup when one relaxes this condition [5].
2Note that this U(1) generator is to be distinguished from J3, appearing in the next sections. The latter

refers to the angular momentum of the macroscopic black hole dual to a given state in the field theory. I

thank the anonymous JHEP referee for pointing out this important disambiguation from a previous version

of this preprint.
3Θγ arises in a decomposition of the modular invariant theta function associated to the flux lattice of

the Calabi-Yau being compactified on. For details, see [12, 13].
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my current understanding, I will restrict my attention to the vector Zγ which captures the

growth of states that endow the macroscopic black holes with their entropy. For simplic-

ity, I will also consider those compactifications with h(1,1) = 1; this allows for a study of

uni-modulus supergravity theory on the macroscopic front. Furthermore, given that the

Θγ functions are then of weight (0, 1
2), Zγ would carry modular weight −3

2 . Finally, Zγ
is also endowed with a q-expansion — the coefficients of which capture a sum over all

the black hole microstate degeneracies falling in various representations of the space-time

angular momentum — that begins with a negative power of q. The polar sector of the

modular form is defined to be the set of all terms in this expansion with negative pow-

ers of q; knowledge of all the polar terms uniquely determines the entire modified elliptic

genus [12–14].

The leading order growth of coefficients in this q-expansion of Zγ is what a Cardy-

estimate of the growth of states counts. However, as the trace in the definition of the index

indicates, all bound states with a total charge equalling that of a single center black hole

also contribute to the corresponding term in the q-expansion. While contributions from

any one of these bound states may be small, the number of possible configurations clearly

grows as the number of partitions of the charge/energy level in question. As Ramanujan

famously showed, this number grows exponentially; much like the Cardy estimate, one

might observe. This raises the following question:

What states is the Cardy formula really counting?

It is the aim of this article to provide a disambiguation of this issue and work towards

an answer to the above question. Ideally, a clinching answer would be a listing of all

bound states contributing to a large charge coefficient in the q-expansion of Zγ leaving

an appropriate single-center entropy and the origin of the corresponding states behind.

However, the exponentially large number of such bound states renders this practically

impossible to achieve. One hopes to uncover a structure in the contributions arising from

these bound states that may be extrapolated to arbitrary charges. Since the polar terms

are the low-lying states and are those that actually entirely determine the modular form

uniquely, one may imagine that they provide for a good starting point.

One may in fact opt for a more direct approach to understand single-center black hole

entropy: it has been shown [15] that sub-leading corrections to the growth of states of

the modified elliptic genus depend on their representation of angular momentum. It is

certainly an interesting way forward and deserves more attention than it has received, in

my opinion. Notwithstanding this aside, I take the former approach in this article.

In this article, I present a systematic way to identify all the multi-center configurations

that enumerate the polar states of the vector valued modular form Zγ using the equivariant

refined index introduced in [16, 17]; as has been noted before [18] no single-center configura-

tions contribute to the polar sector. Along the way I find some interesting results regarding

the existence — or lack thereof — of certain three-center configurations involving D2(D̄2)

charges. I work by example to identify all the multi-centers needed to uniquely determine

the elliptic genera of the following Calabi-Yau threefolds: the quintic in P4, the sextic in
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WP(2,1,1,1,1), the octic in WP(4,1,1,1,1) and the dectic in WP(5,2,1,1,1). All results in this ar-

ticle that have been derived before in [13, 14], agree with those references; furthermore, as

in the said references, I use the known Gopakumar-Vafa invariants. These were computed

in [19–21] while the relation of Gromov-Witten invariants to Gopakumar-Vafa invariants

is excellently reviewed in [22].4 Finally, the equivalence of these to Donaldson-Thomas

invariants was conjectured and proved in [23–26].

The rest of this article is organized as follows. In section 2, I review the relevant multi-

center configurations of interest and provide an intuitive argument for what the appropriate

index that counts their interaction degrees of freedom must be; furthermore, I also spell

out the prescription to be used to identify those configurations that contribute to the polar

terms of the elliptic genera under consideration. In section 3, I explicitly compute the said

indices for several examples. I conclude with a discussion in section 4

2 The refined equivariant index

In this section, I will first review the phase space of multi-center configurations, merely

stating results and known facts. Details may be found in [18, 27, 28]. I then move on

to a present an intuitive explanation for the appropriate index that counts multi-center

degeneracies.

Multi-center configurations in N = 2 supergravity are characterized by a metric ansatz

for stationary solutions

ds2 = −e2U(~r) (dt+ a(~r))2 + e−2U(~r)d~r2 , (2.1)

with a(~r) denoting a Kaluza-Klein one-form and U(~r) the scale factor. The scalars in the

vector multiplet are typically called ta, with the index a running over the set of all vector

multiplets. Since I restrict to Type IIA compactifications with h(1,1) = 1, there is only

one modulus in the theory allowing for a dropping of the index a. The real and imaginary

decomposition of the modulus is labelled as t = B + iJ. Denoting the charge lattice by

Γ, a given center carries charges that form a vector α ∈ Γ; for the case at hand in uni-

modulus supergravity, this vector is four-dimensional:
(
p0, p, q, q0

)
. The charges p0 and p

are magnetic in my conventions and correspond to D6 and D4 brane charges in Type IIA

language. Whilst q and q0 are electric charges corresponding to D2 and D0 excitations.

There is a natural symplectic inner product between two such charge vectors α and α̃

〈α, α′〉 = q0p
′0 + qp′ − q′p− q′0p0 (2.2)

and it is clearly antisymmetric. For a multi-center configuration with total charge γ =∑
i αi, with each center at a location ~ri, the scale factor and the value of the modulus t are

uniquely fixed by the ‘attractor equations’5 [27]

−2e−U(~r)Im
[
e−iφΩ(t(~r))

]
= β +

n∑
i=1

αi
|~r − ~ri|

with

φ = arg (Zγ) . (2.3)

4See chapters 33 and 34, in particular.
5I spell out the exact quantities appearing in these equations in the ensuing page.
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The moduli space of the scalars in the vector multiplet is a special Kähler manifold that

has a principal bundle over its base space with a structure group Sp(2nv + 2), where nv
is the number of vector multiplets in the theory. Calling the coordinates on the fibers

of the appropriate vector bundle XA and FA, the manifold affords a nowhere vanishing

holomorphic symplectic section. The index A runs over nv + 1 indices; therefore A ∈
{0, 1}. Now, in the above attractor equations, Ω(t(~r)) = −eK/2

(
XA, FA

)
is the said

symplectic section. K = − ln
[
i
(
FAX̄

A − F̄AXA
)]

is the Kähler potential associated to

Mv. Furthermore, β is a constant vector given in terms of the asymptotic value t∞ of the

modulus by

β = −2Im
[
e−iφΩ (t∞)

]
. (2.4)

In the one-modulus supergravity theory at hand, projective symmetry allows for a fixing

of the X0 coordinate to unity leaving the only modulus t = X1/X0. The coordinates FA
on the fibers are in fact derived, as FA = ∂AF , from the prepotential F of the theory:

F
(
X0, X1

)
= −k

6

(
X1
)3

X0
+
A
2

(
X1
)2

+
c2 · P

24
X0X1 + instantons . (2.5)

Here, I work in the following normalizations∫
CY3

= ω ∧ ω ∧ ω ;

∫
CY3

ω ∧ c2(CY3) = c2 · P ;

∫
CY3

ωa ∧ ωb = δba ;

∫
CY3

ωc = 1 , (2.6)

where the ω form a basis of integer two-cycles in the threefold. Finally, the half-integer

constant in the quadratic piece of the prepotential is given by A = k/2 mod 1. For the

purposes of this article, the instanton corrections may be ignored.6 Finally, the one-form

a (~r) is determined in terms of the Hodge-star operator of the three flat dimensions by

?3 da (~r) =

〈
d

n∑
i=1

αi
|~r − ~ri|

, β +

n∑
i=1

αi
|~r − ~ri|

〉
. (2.7)

In what follows, I shall label |~r − ~ri| by rij and 〈αi, αj〉 by αij . The ‘integrability equations’

n∑
j=1
j 6=i

αij
rij

= ci with ci = 2Im
[
e−iφZαi

]
(2.8)

ensure the existence of an a (~r) such that the configuration is supersymmetric. Finally, the

central charge Zγ is given by

Zγ = 〈γ,Ω (t)〉

= eK/2
[
pAFA − qAXA

]
= eK/2X0

[
k

6
p0t3 − k

2
pt2 − q̃t− q̃0

]
, (2.9)

6While one may be worried about the validity of the supergravity regime — without instanton corrections

— in the case of small charge configurations, they turn out to have a rather specific and easily controlled

effect insofar as regularity of solutions is concerned. I will be explicit about this effect in further sections.
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where the charges have been written with a tilde suggestively, to indicate that they are not

integer quantized. The exact quantization can be spelled out and I shall do so in section 3.

Furthermore, the Kähler potential can be computed from its definition as

e−K = i
(
X̄AFA −XAF̄A

)
=

4

3
kJ3|X0|2 . (2.10)

Having specified all the quantities appearing in the attractor equations (2.3), there is one

additional and extremely important constraint that these multi-center configurations must

satisfy; that of regularity. One might impose this by demanding the positivity of the scale

factor in front of the d~r2 term in the metric. The attractor equations can be shown to imply

that — for a configuration with i centers located at ~ri — this is equivalent to evaluating

the entropy on the regularity vector appearing on the right hand side of the attractor

equations (2.3) [28]

S

(
β +

n∑
i=1

αi
|~r − ~ri|

)
> 0 , ∀ ~r ∈ R3 . (2.11)

One may in fact solve for the attractor equations in full generality in uni-modulus super-

gravity to spell out this entropy function explicitly [29]. I present the explicit formula in

the next section.

At this stage, however, the goal is to understand how one may calculate the total

number of degrees of freedom associated to such a gravitational solution. To this end, an

‘equivariant refined index’ for such bound states as described was proposed in [16, 17].

While I leave the technical derivation of this refined index to those papers, in what follows

I argue for the correctness of their proposed index. It is my hope that this discussion gives

an intuitive picture leaving the more rigorous, technical treatment to those original papers.

Consider the solutions of the integrability equations (2.8). Although the equations are

seemingly simple, they are deceptively so. There is no general analytic solution set to these

equations. However, for a given configuration, one might numerically solve for the positions

ri of the black hole centers. In general, there is a non-trivial angular momentum associated

to every point in the space generated by the solutions of the integrability equations; for a

single-center on the other hand, spherical symmetry ensures that this angular momentum

is zero. There is also an action of the rotation group SO(3) that leaves the space of

solutions invariant; this is just a rotation of the whole configuration of the bound state

in space-time. The corresponding study of such spaces, with an action of a group, in

the Mathematics literature is that of Hamiltonian spaces and equivariant cohomology.

Leaving the intricate details to the excellent review [30], I will resort to a more sketchy and

qualitative consideration to tell the number of degrees of freedom to be associated to such

bound states. While a two center solution can immediately be imagined, increasing the

number of centers in the problem prevents easy visualization. For instance, the integrability

equations for a two center problem essentially fix the distance between the two centers.7

Rotating this configuration in space-time generates a round sphere as the space of solutions;

7Up to translations that can be gauged by fixing one of the centers to be at the origin.
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the sphere is clearly smooth and symplectic. To generalize this to phase spaces of solutions

of a configuration with higher number of centers is an open problem in Mathematics.

Nevertheless, one can write down a symplectic two-form on the phase space of solutions

of the integrability equations [31]. It is again a non-trivial task to prove that a given

two-form is indeed non-degenerate on the phase space. Therefore, that the phase space is

symplectic is best left to be conjectural at this juncture. This phase space is classical. An

‘equivariant volume element’ of this phase space (read as a volume element that accounts

for the non-trivial angular momentum at each point in the space) is one that accounts

for the interaction between the black hole centers. The phase space is built out of these

equivariant volume elements. This is an extremely important insight. It tells us, among

other things, that quantizing this phase space yields a quantum index of the interaction

between the black hole centers [17]. Such a quantum index is to keep track of the interaction

degrees of freedom of the black holes. While this is a very naive picture, a more rigorous

discussion can be found in [17]. In the following, I will take a slightly different perspective

from [17] to understand this index.

In mathematical terms, quantization of a phase space that is symplectic, is best under-

stood with the theory of Geometric Quantization. An excellent review for aspects relevant

to us can be found in [32]. The basic idea is the following - given a line bundle (called

the pre-quantum line bundle) and a space of sections of this line bundle (called the pre-

quantum space) on the phase space, one can construct a quantum space as a set of subspace

of sections of this pre-quantum line bundle that vanishes under the action of a covariant

derivative that is defined on the line bundle (via the corresponding connection). Physi-

cally speaking, a pre-quantum space can be identified with the space of square integrable

sections on an appropriate pre-quantum line bundle. These sections would, upon quanti-

zation, build up the quantum space - the Hilbert space of states. In the setting at hand,

apart from square integrable sections on the line bundle, we also have a spinor bundle con-

sisting of sections corresponding to the fermionic supersymmetry generators in the theory.

A clever ploy would be to choose the covariant derivative to be the Dirac operator on the

phase space. This is a clever choice for the formally defined equivariant index of the Dirac

operator now counts the quantum states in the theory. This is a direct consequence of the

definition of the index of the Dirac operator. It is worth understanding this index better

for this is what is to be computed, eventually.

Given a vector bundle E → M on a manifold M with an action of a group G acting

on it; consider the action of the group on M such that it lifts to an action on E. The Dirac

operator (whose action is assumed to commute with G henceforth) is now defined on the

space of sections of this vector bundle as

D : Γ(E) −→ Γ(E). (2.12)

By definition, the equivariant index of this Dirac operator, for an element g ∈ G, is

IndG(g,D) = TrKerD+(g)− TrKerD−(g). (2.13)

Equivalently, considering the Lie Algebra g of G and an element x = ln(g) ∈ g, the

– 7 –
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equivariant index can be defined as [33]

IndG(exp(x), D) =
1

(2πi)
n
2

∫
M
Chg(x,E)Âg(x,M), (2.14)

where Ch denotes the Chern character and Â denotes the usual A-roof genus; this is also

called Kirilov’s formula. For the purposes of this article, in the spirit of the Witten index,

picking an element y2J3 ∈ G, where y is a formal generating parameter and J3 is the third

generator of the angular momentum algebra of the rotations in space-time, the index can

now be written as8

gref({αi}, y) = TrKerD+

[
(−y)2J3

]
− TrKerD−

[
(−y)2J3

]
. (2.15)

This is the index for a configuration of black hole centers carrying charges αi that form a

bound state satisfying the integrability equations (2.8). gref stands for the refined index;

to avoid confusion, I merely stick to conventional notation used in [17]. This can further

be shown to reduce to [17]

gref({αi}, y) =

∫
Mn

Ch(ν,L)Â(ν,Mn), (2.16)

where L is the line bundle, Mn is the phase space of an n-centered problem solving the

integrability equations and ν = ln y.

The idea now, is to compute this index via Localization. Knowing the group action on

the phase space, a localization technique under an Abelian subgroup of this group (U(1) of

SO(3)) results in a localization of the black hole centers along a line, say the z axis, with

manifest U(1) symmetry; the symmetry being rotations about the axis of localization. This

renders a non-vanishing contribution to the index only from the fixed points that are the

black hole centers. What was originally a problem in R3 has now localized to a problem on a

line with the centers lying at positions, say zi. With this knowledge, one may write down a

‘superpotential’ whose fixed points are given by exactly the fixed points of localization [17]

Ŵ (λ, {zi}) = −
∑
i<j

αijsign [zj − zi] ln |zj − zi| −
∑
i

(
ci −

λ

n

)
zi . (2.17)

This superpotential is a function of n+1 variables: the n centers and a parameter λ. With

these considerations, the index can now be written in its computationally easiest form as

gref({αi}, y) =
(−1)

∑
i<j αij+n−1

(y − y−1)n−1

∑
p

s(p) y
∑
i<j αijsign[zj−zi], (2.18)

where p corresponds to a given regular configuration of black hole centers that satisfy the

integravility equations and s(p) = −sign det M̂ , with M̂ being the Hessian of Ŵ (λ, {zi})
with respect to z1, . . . , zn. Upon specifying y = −1, this gref is exactly that quantum index

8A dependence on the complexified Kähler parameter t is implicit if one is to work globally in the moduli

space; locally, however, the index is constant.
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which computes the interaction degrees of freedom arising from a given multi center black

hole solution to supergravity. Another interpretation of this quantity is that of the Poincaré

polynomial associated to the moduli space of the quiver representations: each center in

the configuration arises from a D-brane that may be treated as a node with an Abelian

gauge group associated to it. With bifundamentals extending between the bound centers

playing the arrows, these configurations do indeed take the guise of a quiver diagram [34].

Topological invariants associated to the moduli space of representations of these quivers

have been shown to be enumerated by this index gref [35, 36]. With the knowledge of

the interaction degrees of freedom between the black hole centers, the total degeneracy

associated to a multi-center black hole configuration can now be naturally written as

Ω̄({αi}; t) =
gref ({αi}; t)
|Aut({αi})|

∏n

i=1
Ω̄S(αi), (2.19)

where Ω̄({αi}; t) is the total degeneracy associated to the multi-center configuration in

question, Ω̄S(αi) corresponds to the rational index associated to a single black hole center

carrying charge αi and the |Aut({αi})| factor9 takes repeated centers into account. The

single center indices are input parameters. These rational indices are given, in terms of the

integer invariants, by

Ω̄S(αi) =
∑
m|αi

m−1 y − y−1

ym − y−m
ΩS(αi), (2.20)

where ΩS(αi) are the integer invariants of the single centers. It may be noted that the

product of these rational indices is the mathematical counterpart of the symmetric prod-

uct of the moduli spaces in the string regime, that contains several singularities [13, 14].

From a supergravity perspective, however, this product can physically be understood as

arising from the Bose-Fermi statistics of the interacting single center black holes [16]. This

essentially negates all troubles encountered with singularities in the geometric counting.

Finally, a word on the regime of validity of this approach is in order. Owing to the

attractor mechanism in four dimensional N = 2 supergravity theories, as the size of the

modulus approaches the attractor value, it is fixed by the charges of the single center

black hole towards which the modulus is being attracted. In a multi-center configuration

however, bound states exist only at large values of the modulus. This is because at smaller

values, one is attracted to the basin of attractor of one of the bound state constituents,

owing to the attractor mechanism. Therefore, the analysis of multi-center configurations

in this paper is done in the large volume limit: J � B.

3 M5-brane elliptic genera from multi-centers

Having — at least morally — justified the index that computes the interaction degrees of

freedom, in this section I will show how one may identify those mutli-centers that contribute

to the polar terms of the MSW elliptic genus. Working by example, I explicitly show that

all polar terms of the quintic in P4, the sextic in WP(2,1,1,1,1), the octic in WP(4,1,1,1,1) and

9|Aut({αi})| =
∏
k zk!.
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the dectic in WP(5,2,1,1,1) can be reconstructed with this approach. In the next section, I

will finish with an argument why this approach is well suited to identifying single-center

black hole entropy in the non-polar sector.

To this end, one first needs to identify what the charges of individual terms of the

q-expansion of Zγ must be. Knowing that these charges arise from a D4−D2−D0 brane

construction, the central charge Zγ(t) provides an easy tool for this purpose. Dp branes

often support lower dimensional brane charges. A pure D4 brane, for instance, supports

non-zero D2 and D0 fluxes [12, 13] to cancel the Freed-Witten anomaly [37]. Since these

branes must form localized objects as black holes in the four dimensional non-compact

space in the low energy theory, their extension is entirely confined to the compact Calabi-

Yau space. Every Calabi-Yau threefold has a non-vanishing structure-sheaf. Since the D6

brane must extend entirely in the threefold, one may view it as the structure-sheaf of the

manifold and consequently, there is always one at our disposal. The central charge of a

BPS brane is given by the same formula (2.9) as in the supergravity theory. However,

the lower dimensional fluxes on the D6 brane induce additional curvature. In addition, if

the brane has a non-trivial gauge bundle turned on, the charge vector of the brane would

arise from turning on the relevant Chern classes. Taking all of these into consideration,

the central charge takes the form [18]

Zγ(t) = −
∫
CY3

eU1+U2+U3 ∧ e−tω ∧
(

1 +
c2 (CY3)

24

)
(3.1)

where the Ui represent integer classes in which the Chern classes of the gauge bundle have

been expanded as c1 = U1ω, c2 = U2ω̃
b and c3 = U3ω̃

c. Expanding the exponentials and

using the normalization of (2.6), the central charge reduces to

Zγ =
k

6
t3 − k

2
U1t

2 +

(
k

2
U2

1 +
c2 · P

24
+ U2

)
t−

(
U3

1

k

6
+ U1U2 +

BU1

24
+ U3

)
. (3.2)

Using (2.9), this allows for an identification of the corresponding charge vector of a single

D6 brane as

γ =
(
p0, p, q̃, q̃0

)
=

(
1, U1,−

k

2
U2

1 −
c2 · P

24
− U2,

k

6
U3

1 +
c2 · P

24
U1 + U1U2 + U3

)
=

(
1, U,−k

2
U2 − c2 · P

24
,
k

6
U3 +

c2 · P
24

U

)
. (3.3)

where in the last line, I restrict to an Abelian gauge bundle and label the only available

integer class U1 by U . This turns out to be sufficient for the polar sector of interest. Now,

solving the attractor equations for a large black hole with the above charges results in a

Bekenstein-Hawking entropy S = π |Zγ(tattractor)|2 — where tattractor is the attractor value

of the modulus determined in terms of the charges — as follows [29]

S = π
√
D(1, p, q̃, q̃0), (3.4)
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where D(1, p, q̃, q̃0) is the discriminant function given in terms of the charges as

D(1, p, q̃, q̃0) =
k2

9

[
3

(q̃p)2

k2
− 18

q̃0q̃p

k2
− 9

q̃2
0

k2
− 6

p3q̃0

k
+ 8

q̃3

k3

]
(3.5)

for a single center solution. For a multi-center configuration, however, the discriminant

is given by (2.11), where the argument of the discriminant is chosen to be the ‘regularity

vector’ appearing in the attractor equations

D = D

(
β +

n∑
i=1

αi
|~r − ~ri|

)
. (3.6)

Positivity of the discriminant on the ‘regularity vector’ ensures regularity of the multi-

center configuration.

3.1 Some generalities

It has long been argued that a D4 brane splits into a bound state of a D6 brane and

an anti-D6 brane [18]. In an M-Theory setting of the case at hand, it has proved to be

very difficult to write down elliptic genera for the MSW CFTs with multiple M5 branes.

Therefore, in what follows, I will consider only those with a single M5 brane. This means a

unit D4 brane charge in the charge vector. Indeed, from the charge vector (3.3), considering

a D6 brane with one unit flux and a D̄6 with no flux yields a D4 brane charge vector with

induced lower dimensional fluxes:

αD6 =

(
1, 1,−k

2
− c2 · P

24
,
k

6
+
c2 · P

24

)
and αD̄6 =

(
−1, 0,

c2 · P
24

, 0

)
give

αD4 = αD6 + αD̄6 =

(
0, 1,−k

2
,
k

6
+
c2 · P

24

)
. (3.7)

Of course, as a consistency check, this must match with the appropriate induced fluxes

on the D4 brane that cancel the Freed-Witten anomaly; this is indeed satisfied. For

example, specifying to the quintic threefold, which has k = 5 and c2 · P = 50, this charge

vector produces the correct fluxes known from [13]. One can now compute the interaction

degrees of freedom between these two centers and check if it matches with what one expects

from modularity. Before that however, consider the Θγ decomposition of the partition

function again:

Z (q, q̄, y) =

n∑
γ=0

Zγ (q) Θγ (q, q̄, y) . (3.8)

One property of this decomposition is that Zγ = Zδ for all γ = −δ modulo a pull-back

of the second integer cohomology onto the D4 brane. For the quintic for instance, n = 4

and Z1 = Z4, Z2 = Z3. Now, the pure D4 brane degeneracy appears as the first (or most

polar) term in the q-expansion of Z0.
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Symmetric product orbifolds and adding D0 charges. To go to the next term in

the expansion, one simply adds D0 charge. Thinking geometrically, the D0 brane has a

moduli space of the entire threefold in consideration and demanding a bound-state with the

D4 reduces the moduli space of a the latter; the combined moduli space yields the correct

degeneracy [13]. Adding more and more D0 charges results in symmetric product orbifolds

of the moduli space of the D0 particles, namely the threefold. Owing to configurations

with coinciding branes, one runs into singularities on the moduli space that need to be

resolved. As was pointed out in [16], the rational refined indices overcome these subtleties

of moduli space singularites. From a multi-center configuration perspective, adding D0

charges implies an increase in the number of centers in a configuration. And there are

exponentially many of them; the number growing with the number of partitions of the

D0 charge to be added. Nevertheless, the low-lying spectrum can still be handled. And

considering all configurations satisfying regularity, an addition of D0 charges takes us

towards the non-polar sector of Z0. I will work out explicit examples in the next subsection

to show that counting degrees of freedom associated to all regular configurations produces

the correct polar terms.

Rational curves and adding D2 charges. In order to move ‘vertically’, so to speak,

into the degeneracies in Z1, one adds D2 charges. Thinking geometrically again, adding D2

charges is equivalent to demanding that the D4 brane passing through rational curves. So,

one computes the moduli space associated to degree ‘β’ rational curves in conjunction with

a demand that the D4 brane intersect them. D2 fluxes, however, induce D0 charges and the

amount of induced charge had to be computed using techniques of algebraic geometry. Even

in attempts to obtain the elliptic genera from supergravity split-attractor flows [38], the

amount of induced charge was needed as an input from geometry to identify the appropriate

flows that contribute to the index. Notwithstanding this input, consider the most polar10

term in the q-expansion of Z1, say q−y. Writing this term as q−xqz, such that −x+z = −y
with q−x being the most polar term in Z0, it turns out to be sufficient to consider added D0

charge that corresponds to the positive integer part of z.11 In the several examples under

consideration, it is sufficient to consider rational curves of degree 1 and all polar terms of

such kind have z > 1; I leave the cases with higher degree rational curves for future work.

Positivity of (z − 1) has a geometric interpretation: it is that rational curves come with

non-trivial moduli spaces only upon an induction of D0 charges. In fact, in the theory of

Donaldson-Thomas invariants — where a Witten index enumerates invariants NDT (β, n)

associated to a D2 brane wrapping a curve in the homology class β that intersects a

collection of points ascribed to D0 branes — there are no topological invariants associated

to NDT (1, 0) when z > 1. That the index is correctly reproduced by looking at multi-center

configurations with added D0 charges as I prescribe may be interpreted as supergravity’s

way of telling us that NDT (1, 0) = 0 whenever z > 1.

In view of the previous discussion on adding D0 charges, it is tempting to guess

that adding D2 charges must involve adding additional centers to charge configurations.

10It may be worth pointing out that not all partition functions necessarily have a polar term in the

q-expansion of Z1.
11z is positive in all the examples under consideration.

– 12 –



J
H
E
P
0
5
(
2
0
1
6
)
0
7
6

Interestingly, a simple argument shows that a generic D2−D0 charge vector never binds

to a D6 center. Consider generic D6 and D2−D0 charge vectors as follows

γ1 =

(
1, p,−p

2

2
k − 25

12
,
p3

6
k +

25

12
p

)
and γ2 = (0, 0, q, q0) . (3.9)

Their symplectic product is given by

γ12 = − (q0 + pq) . (3.10)

Using the fact that the phase factor associated to them e−iφ is given by

e−iφ ∼
Z(γ1+γ2=γ)

|Zγ |
, (3.11)

we have that

Im
(
e−iφZγ

)
∼ Im

(
Zγ1Z̄γ2

)
∼ (q0 + pq) J3. (3.12)

where the second line is true up to some numerical factors and only holds in the large

volume limit J � 0 for a threefold with positive triple-intersection k > 0. Wherever it

needs specification, I make an arbitrary choice for the vacuum value of the modulus t

at infinity to be t = 0 + 3i; this satisfies the large volume condition J � B. Since the

FI constants now have the opposite sign of the symplectic product of the corresponding

charges, the integrability equations for the bound state implies that r12 < 0, which violates

regularity. This implies that a bound state of D6 with a generic D2 − D0 charge never

occurs! One might imagine that a three center bound-state of a generic D2 − D0 center

with D6 − D̄6 might still be possible. Although it is hard to prove in full generality, one

might take the previous argument as an indication that such three-center bound states

generically violate regularity. In the next subsection, I explicitly show that this is true in

several examples.

3.2 Explicit elliptic genera for some Calabi-Yau threefolds

3.2.1 The quintic in P4

The quintic threefold is defined by a degree 5 polynomial in P4. The topological invariants

associated to the quintic are: χ(X5) = −200, k = 5 and c2 · P = 50. Its modified elliptic

genus is given by

ZX5 (q, q̄, y) =

4∑
γ=0

Zγ (q) Θ(5)
γ (q, q̄, y) and

Θ
(m)
k (q, q̄, y) =

∑
n∈Z+ 1

2
+ k
m

(−1)mn q
m
2
n2
ymn (3.13)

where

Z0(q) = q−
55
24
(
5− 800q + 58500q2 + non-polar terms

)
Z1(q) = Z4(q) = q−

83
120 (8625 + non-polar terms)

Z2(q) = Z3(q) = non-polar terms . (3.14)

– 13 –



J
H
E
P
0
5
(
2
0
1
6
)
0
7
6

γ12 Z1 Z2 α = arg[Zγ ] Dγ c1

-5

(
47

72
+ i

7

24

)√
5 −i13

√
5

24
tan−1

(
18

47

)
−275

36
−

611
√

5
2533

12

Table 1. Relevant constants for the Pure D4 brane.

Pure D4 brane. The charge vector associated to a Pure D4 brane for this compactifi-

cation can be written from (3.7) with the topological data of the quintic

γ1 := αD6 =

(
1, 1,−55

12
,
35

12

)
and γ2 := αD̄6 =

(
−1, 0,

25

12
, 0

)
give

γ := αD4 = αD6 + αD̄6 =

(
0, 1,−5

2
,

35

12

)
. (3.15)

Computing the discriminant associated to this vector via (3.5), one finds

DD4 = −275

36
, (3.16)

which yields an imaginary single-center entropy. This renders this solution un-

physical.12 In order to compute the interaction degrees of freedom, the two-center

integrability equations
γ12

z12
= c1, (3.17)

where z12 ∈ R, need to be solved. The required constants, to solve this equation, are

tabulated below in table 1. This results in the following solution

z12 =
611
√

12665

12
. (3.18)

Since it is only the relative distance between the centers that is important, I fix z1

to be at the origin. The above solution then implies that z2 is at a distance of ±z12

from the origin on the axis on which the centers are localized. This leaves us with two

possible configurations, namely: 12 and 21, where z1 < z2 and z2 < z1 respectively.13 For

consistency, the discriminant associated to the two-center configuration must be positive.

This requires the knowledge of β — with an arbitrary choice of the value for the modulus

at infinity to be t = 0 + 3i as mentioned before —

β =

(
6√

12665
,

53√
12665

,−611

12

√
5

2533
,− 76√

12665

)
, (3.19)

12In fact, computing the discriminant associated to the D6 center also yields a negative value:

−3125/1944. I expect that the ignored instanton corrections to the prepotential lift this sickness; working

with this hypothesis, I merely shift the definition of a ‘zero discriminant’ from Dγ = 0 to that of the D6

brane. Aside from this subtlety, the instanton corrections play no other role in the analysis.
13In the configuration 12, z2 = +z12 and in the configuration 21, z2 = −z12.
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Plugging this into the regularity vector, I find that both configurations D12 and D21 are

regular everywhere14 outside the centers; infinities at the location of the centers is expected.

Given all the configurations that contribute, using the formula in (2.18)

gref({γi}, y) =
(−1)

∑
i<j γij+n−1

(y − y−1)n−1

∑
p

s(p) y
∑
i<j γijsign[zj−zi] , (3.20)

the Poincaré polynomial associated to the interaction degrees of freedom of the Pure D4

brane realized as a bound state of the D6 and D̄6 is

gref(γ1, γ2, y) =
(−1)−5+2−1

(y − y−1)

(
y5 − y−5

)
=
(
y−4 + y−2 + 1 + y2 + y4

)
, (3.21)

where the sign s(12) was computed to be + 1 from the Hessian of the superpotential

in (2.17). Specializing to y → (−1) results in gref = 5. Substituting this into (2.19) with

the implicit understanding that a D6 and a D̄6 have refined indices of 1 each15 yields a

final index of

Ω̄(γ1, γ2; t) = gref Ω̄S
D6 Ω̄S

D̄6 = 5× 1× 1 = 5. (3.22)

This matches the prediction from the string regime and modularity; the most polar term

in Z0 is the pure D4 brane. The final index being exactly the same as the norm of the

symplectic inner product of the two charge vectors is not a mere coincidence. This is a

generic feature of two center solutions to the integrability equations.

D4-D0 bound state. As advertised in the previous subsection, the next polar term in

Z0 may be achieved by adding a D0 brane center. Three-center solutions of D0 branes

bound to D6 and D̄6 centers have been extensively studied in [17]. While the D6 centers

considered there were both with D4 fluxes turned on, the analysis is largely similar. It has

also been previously noted that Dp−6 branes bound to Dp branes energetically prefer to stay

ejected from them as opposed to dissolving as fluxes as preferred by Dp−2 and Dp−4 branes.

This is consistent with the picture in [17] that adding a D0 charge necessarily implies an

addition of a new D0 center with charge vector αD0 = (0, 0, 0,±1). The correct sign may

be fixed by noting that adding a positive D0 flux on the Pure D4 reduces the entropy

via a reduction in D. Therefore, in these conventions, a D4 brane binds to an anti-D0

brane. Therefore, the three-problem of interest now has a third center γ3 := (0, 0, 0,−1) in

addition to the two centers that generated a pure D4 brane. These result in a total charge

vector given by

γ := αD4−D0 =

(
0, 1,−5

2
,

23

12

)
. (3.23)

The corresponding integrability equations take the form
γ12

z12
+
γ13

z13
= c1, (3.24)

γ23

z23
+
γ21

z21
= c2, (3.25)

14For simplicity, I check for positivity of the corresponding regularity vector only along the axis of

localization.
15The structure sheaves have a unit degeneracy.
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γ12 γ13 γ23 Z1 Z2 Z3 α = arg[Zγ ]

-5 1 -1

(
47

72
+ i

7

24

)√
5 −i13

√
5

24

1

6
√

5
tan−1

(
90

247

)
Table 2. Relevant data for the D4−D0 state (Part a).

Dγ c1 c2

−155

36
−3139

12

√
5

69109

3211

12

√
5

69109

Table 3. Relevant data for the D4-D0 state (Part b).

Configuration z1 z2 z3 s(p)

231 0 −1.33278 −0.65506 -1

312 0 2.07521 −5.42298 1

132 0 1.33278 0.65506 -1

213 0 −2.07521 5.42298 1

Table 4. Configurations contributing to the D4-D0 state.

where γ12 = −γ21.16 I tabulate the relevant data required to solve these equations, in

tables table 2 and table 3. Starting far out in the moduli space at t = 0 + 3i again, the

corresponding vector for β is

β =

(
−6

√
5

69109
,

247√
345545

,−3211

12

√
5

69109
, 2

(
−295

4

√
5

69109
+

247

4
√

345545

))
. (3.26)

Solving the Denef equations and writing down those solutions that satisfy the discriminant

positivity condition (i.e, D > DD6) I find table 4. Gathering all the computations, I now

compute the interaction degrees of freedom for this three center bound state

gref(γ1, γ2, γ3, y) =
(−1)−5+1−1

(y − y−1)2

(
y5 − y3 − y−3 + y−5

)
= −

(
y−3 + y−1 + y1 + y3

)
. (3.27)

Specializing to y → (−1) results in gref = 4. Substituting this into (2.19) and using the

fact that the single center refined index for a D0 is χ(CY3) = −200 yields a final index of

Ω̄(γ1, γ2, γ3; t) = gref Ω̄S
D6 Ω̄S

D̄6 Ω̄S
D0

= 4× 1× 1× (−200)

= −800. (3.28)

This too is in perfect agreement with the partition function.

16The symplectic product of any two charge vectors is antisymmetric.
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γ12 γ13 γ23 Z1 Z2 Z3 α = arg[Zγ ]

-5 2 -2

(
47

72
+ i

7

24

)√
5 −i13

√
5

24

1

3
√

5
tan−1

(
90

259

)
Table 5. Relevant data for the D4-2D0 state (Part a).

Dγ c1 c2

−35

36
−3223

12

√
5

75181

3367

12

√
5

75181

Table 6. Relevant data for the D4-2D0 state (Part b).

D4-D0-D0 bound states. There are two possibilities for the next polar state.

• A three center scenario, similar to the D4-D0 case,17 but with the third center

carrying twice the unit D0 charge α2D0 = (0, 0, 0,−2). The total charge vector

is now

γ =

(
0, 1,−5

2
,
11

12

)
. (3.29)

The corresponding integrability equations take the form

γ12

z12
+
γ13

z13
= c1, (3.30)

γ23

z23
+
γ21

z21
= c2. (3.31)

The relevant data required to solve these equations is collected in the following tables.

The corresponding vector for β is

β =

(
−6

√
5

75181
,

259√
375905

,−3367

12

√
5

75181
, 2

(
−295

4

√
5

75181
+

259

4
√

375905

))
.

(3.32)

Solving the integrability equations and writing down those solutions that satisfy the

discriminant positivity condition, I find the values in table 7. The associated Poincaré

polynomial is now

gref(γ1, γ2, γ3, y) =
(−1)−5+2−2

(y − y−1)2

(
y5 − y1 − y−1 + y−5

)
= −

(
y−3 + 2y−1 + 2y1 + y3

)
. (3.33)

Therefore gref = 6 while the refined index for the 2D0 center is given by

Ω̄S
2D0 = χ(CY3) +

χ(CY3)

4
= −250. (3.34)

17This is an example of a scenario where D > DD6 and yet it corresponds to a purely multi-center

solution.
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Configuration z1 z2 z3 s(p)

231 0 −0.446522 −0.222042 -1

312 0 1.95346 −5.41678 1

132 0 0.446522 0.222042 -1

213 0 −1.95346 5.41678 1

Table 7. Configurations contributing to the D4-2D0 state.

This yields a final index of

Ω̄(γ1, γ2, γ3; t) = gref Ω̄S
D6 Ω̄S

D̄6 Ω̄S
2D0

= 6× 1× 1× (−250)

= −1500. (3.35)

• A four center scenario with two explicit D0 centers:

The contributing centers are the previous D6 and D̄6 centers with two explicit unit

charge D0 charge vectors. The total charge vector is clearly the same as before. A

detailed computation is no more illuminating to present here; the resulting gref in

this scenario is half that of the previous case, owing to the halving of the symplectic

products. The degeneracy for this four center D6-D̄6-D0-D0 solution is gref = 3.

This yields a final index of

Ω̄(γ1, γ2, γ3, γ4; t) =
gref

2
Ω̄S
D6 Ω̄S

D̄6 Ω̄S
D0 Ω̄S

D0

=
3

2
× 1× (−200)× (−200)

= 60000, (3.36)

where the factor of half comes from the automorphism arising from the two identical

D0 centers. This results in a total contribution of −1500 + 60000 = 58500, towards

this state. All these numbers are clearly consistent with the modular prediction fo Z0.

Once one has identified the appropriate centers that are of interest, the authors of [39] have

developed a Mathematica code for the computation of the Poincare polynomials. The code

is attached to their paper.

D6-D̄6-D2D0 bound states. To move into the polar sector of Z1, now, one must add

D2 charges. Naively, this added charge may merely be an increase in the D2 component of

either of the D6 brane charges or act as an additional third center, with possible additional

induced D0 centers. The split attractor flow allows for such flows into many channels [18].

In fact, in the large volume limit — the one I stick to in this article — one can even compute

the index across the wall of marginal stability along the flow [40]; for an end point with
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three centers — which I will think of being the two D6 centers along with a generic D2D0

center (0, 0, q, q0) — is given by [40]

Ω((12)3; t) =
1

4
(−1)γ12+γ31+γ23 γ(1+2)3 · γ12 · Ω(γ1) · Ω(γ2) · Ω(γ3)sgn
[
Im[Z(γ1 + γ2, t)Z̄(γ3, t)]

]︸ ︷︷ ︸
a

+ sgn[γ(1+2)3]︸ ︷︷ ︸
b


sgn

[
Im[Z(γ1, t1)Z̄(γ2, t1)]

]︸ ︷︷ ︸
c

+ sgn[γ12]︸ ︷︷ ︸
d

 . (3.37)

Specifying the quintic data, I find

sgn [a] = sgn

[
q0 −

235

12

]
; sgn [b] = −sgn [5 + q0]

sgn [d] = −sgn [q + q0] ; sgn [c] = sgn

[
−72q2

0 − 360q0 + 408qq0 + 5785q

1728(5 + q0)

]
. (3.38)

upon computing the corresponding quantities in the underbraces. For a non-vanishing

index, sgn [a] and sgn [b] must have the same sign (and similarly with sgn [c] and sgn [d]).

sgn [a] and sgn [b] have the same sign iff −5 < q0 < 20, where I use the fact that q & q0 ∈ Z.

Therefore, if this condition is satisfied, sgn [a] + sgn [b] = −2. For the total contribution to

the index to be positive,18 sgn [c] and sgn [d] < 0. Since γ12 = −q − q0,

sgn [d] = sgn [γ12] = −sgn [q + q0] . (3.39)

Now sgn [d] < 0 implies q > −q0. Putting all the pieces together, the allowed values for

the center γ2 such that there is a non-vanishing contribution to the index are collected in

table 8. It is evident that in the direction of the physical D0 charges that bind with the

D4, there are no non-vanishing D2 charges to form a three-center black hole bound state.

Nevertheless, one might still investigate if D0 charges of the opposite sign can form the

third center with non-vanishing D2 charges. As it turns out, none of the allowed values in

table 8 result in a positive discriminant everywhere outside the location of the centers. An

example of this is shown in figure 1 where the discriminant function (3.6) associated to a

three center configuration with charges D6 and D̄6 as in (3.15) and a third D2D0 center with

(0, 0,−1, 2) is plotted against the axis of localization of the centers. Owing to the negative

discriminant of the Pure D4 brane (arising from the ignoring of instanton corrections to

the prepotential), one expects that the discriminant is negative at the locations of the D6

and D̄6 centers. However, as is evident from the plot, the discriminant dips below zero

even near the third center corresponding to the D2D0 charge vector. This charge vector

has zero discriminant and therefore must not go down to negative infinity as it does in

the plot. One may easily check that in fact all allowed values of the D2D0 center listed in

table 8 violate regularity.

18Considerations similar to those that will follow, rule out the case when the contribution is negative too.
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Figure 1. Discriminant function of a D6− D̄6−D2D0 three-center configuration with charges D6

and D̄6 as in (3.15) and D2D0 charge vector (0, 0,−1, 2) plotted against the axis of localization of

the centers.

This rules out the possibility of having a three center bound state with non-vanishing

D2 charges. This may be seen as a more precise vindication of the naive argument I

presented in the previous subsection.

In so far as the modified elliptic genus is concerned, this means that a polar term

with D2 charges can occur only as a two-center configuration where one of the centers has

additional D2 and D0 fluxes. To identify which of the two centers picks up the additional

lower dimensional charges, I again look for the charge vectors whose discriminant increases

upon the addition of the said charges to find the configuration to be

D6: γ1 =

(
1, 1,−55

12
,

23

12

)
and D̄6: γ2 =

(
−1, 0,

13

12
, 0

)
. (3.40)

Since this is now a two center problem, gref is given by the symplectic product of the

charge vectors gref = |γ12| = 3. Therefore, the final index is given by

Ω̄(γ1, γ2; t) = gref Ω̄S
1 Ω̄S

2

= 3× 2875× 1

= 8625, (3.41)

where the factor of 2875 comes from the Donaldson-Thomas invariants associated to the

D6 with a D2 flux and a point p.
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3.2.2 X6 in WP(2,1,1,1,1)

The sextic is a degree 6 hypersurface in WP(2,1,1,1,1). For the purposes of this article, the

topological invariants associated to the sextic I need are: χ(X6) = −204, k = 3, c2 ·P = 42

and NDT (1, 1) = 7884. Its modified elliptic genus is given by

ZX6 (q, q̄, y) =
2∑

γ=0

Zγ (q) Θ(3)
γ (q, q̄, y) (3.42)

where

Z0(q) = q−
45
24 (4− 612q + non-polar terms)

Z1(q) = Z2(q) = q−
5
24 (15768 + non-polar terms) . (3.43)

The charge vector of the Pure D4 brane is given by

αD6 =

(
1, 1,−13

4
,
9

4

)
and αD̄6 =

(
−1, 0,

7

4
, 0

)
give

αD4 = αD6 + αD̄6 =

(
0, 1,−3

2
,

9

4

)
, (3.44)

Omitting explicit detail, the associated Poincaré polynomial is

gref (D4, y) = −
(
y−3 + y−1 + y1 + y3

)
. (3.45)

which yields the correct final index of 4. Adding a D0 brane, yields

gref (D4−D0, y) = y−2 + 1 + y2 (3.46)

which gives a final index of 3 × −204 = −612. Finally, adding a D2 charge, the two

centers are

D6: γ1 =

(
1, 1,−13

4
,
5

4

)
and D̄6: γ2 =

(
−1, 0,

3

4
, 0

)
. (3.47)

with

gref (D4−D2D0, y) = 2 (3.48)

yielding a final index of 2 × 7884 = 15768.

3.2.3 X8 in WP(4,1,1,1,1)

The octic threefold is a degree 8 hyperplane in WP(4,1,1,1,1) its relevant topological invariants

are: χ(X8) = −296, k = 2, c2 · P = 44 and NDT (1, 1) = 29504. Its modified elliptic genus

is given by

ZX8 (q, q̄, y) =

4∑
γ=0

Zγ (q) Θ(2)
γ (q, q̄, y) (3.49)
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where

Z0(q) = q−
23
12 (4− 888q + non-polar terms)

Z1(q) = q−
1
6 (59008 + non-polar terms) . (3.50)

The Pure D4 brane is now

αD6 =

(
1, 1,−17

6
,
13

6

)
and αD̄6 =

(
−1, 0,

11

6
, 0

)
give

αD4 = αD6 + αD̄6 =

(
0, 1,−1,

11

6

)
, (3.51)

with an associated Poincaré polynomial

gref (D4, y) = −
(
y−3 + y−1 + y1 + y3

)
. (3.52)

and final index of 4. Adding a D0 brane, yields

gref (D4−D0, y) = y−2 + 1 + y2 (3.53)

which gives a final index of 3×−296 = −888. Finally, adding a D2 charge, the two centers

are

D6: γ1 =

(
1, 1,−17

6
,
7

6

)
and D̄6: γ2 =

(
−1, 0,

5

6
, 0

)
. (3.54)

with

gref (D4−D2D0, y) = 2 (3.55)

yielding a final index of 2 × 29504 = 59008.

3.2.4 X10 in WP(5,2,1,1,1)

The dectic is a degree 10 hypersurface in WP(5,2,1,1,1). The relevant topological invariants

associated to the dectic are: χ(X10) = −288, k = 1 and c2 · P = 34. Its modified elliptic

genus is given by

ZX5 (q, q̄, y) =
η(q)−35

576

[
541E4(q)4 + 1187E4(q)E6(q)2

]
Θ1(q̄, y)

= q−
35
24 (3− 576q + non-polar terms) . (3.56)

A Pure D4 brane in this example is

αD6 =

(
1, 1,−23

12
,
19

12

)
and αD̄6 =

(
−1, 0,

17

12
, 0

)
give

αD4 = αD6 + αD̄6 =

(
0, 1,−1

2
,

19

12

)
. (3.57)

The Poincaré polynomial is

gref (D4, y) = y−2 + 1 + y2 . (3.58)

And the corresponding index is 3. Adding a D0 brane, yields

gref (D4−D0, y) = −y−1 − y1 (3.59)

which gives a final index of 2 ×−288 = −576.

Clearly, all results exactly build the polar terms under consideration in the examples.
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4 Discussion

In this article, I have identified all multi-center configurations (whose total charge vectors

violate the naive single-center cosmic censorship bound) that build the polar sector of sev-

eral elliptic genera of Calabi-Yau threefolds with maximal holonomy. It is natural to expect

that once one moves into the non-polar sector of the theory, when total charge vectors no

longer violate the cosmic-censorship bound, single center black holes begin to contribute.

Exactly what states these constitute is not fully known. Several interesting suggestions

have been made [41–44] in the literature. Nevertheless, large charge single-center black

hole entropy has not been easy to understand concretely, with these suggestions.

With the prescription I have proposed in this article, one may now seek to push into

the non-polar sector of the elliptic genus to understand single-center black hole entropy.

Naively, the approach from split-flows proposed in [38, 44] might have been a good starting

point to push deep into the non-polar sector. As one increases charge, there is an expecta-

tion that an increasing number of multi-center configurations must contribute to the index.

For instance, moving on from a D4-D0 charge vector to a D4-2D0 charge vector, one ex-

pects two different contributions: one from a three center D6-D̄6-2D0 solution and another

from a four center D6-D̄6-D0-D0 configuration. The authors of [38, 44], however, argue

for only a single flow. On the contrary, I show explicitly in (3.35) and (3.36) that both

the expected configurations do indeed contribute to produce the correct polar term. In

extension, enumeration of all multi-center configurations can systematically be done with

the approach I present in this article. It may be noted that a more general prescription

might be needed to incorporate higher degree rational curves to include more D2 charges

with appropriately induced D0 charges. Nevertheless, it is my hope that this enables for a

better understanding of the non-polar sector.

Although I have refrained from stressing on them, there are several aspects of purely

mathematical interest that are very closely related to the study of BPS states mentioned

in this article. The elliptic genera studied in this article encode topological invariants of

the moduli space of the derived category of coherent sheaves on a Calabi-Yau threefold.

Some questions in this field related to this article are: what is the generating function for

the Euler numbers of the moduli space of stable sheaves (seen as objects in the derived

category of coherent sheaves where stability is usually thought to be Bridgeland stability

as in the Kontsevich-Soibelman setup) on a smooth three-dimensional quasi-projective

variety? What is the generating function for the Betti numbers for the same? Göttsche has

answered both these questions for sky-scraper sheaves on smooth two-dimensional quasi-

projective varieties [45]. In the mid-nineties, Cheah [46] managed to write a generating

function (the McMahon function) for the Euler numbers of the moduli space of stable

sky-scraper sheaves on smooth three dimensional quasi-projective varieties. A refinement

of Cheah’s result in the spirit of Göttsche is expected to be related to single-center black

hole entropies. While hoping for a general result might be far fetched from the explicit

multi-center prescription presented in this article, I speculate that it may well prove to be

very helpful in conjuring up and testing conjectures [41, 42] in this regard.

Another branch of mathematical interest that is closely related is the study of Poincaré

polynomials of quiver representation spaces. A Kähler manifold is endowed with a natural
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Sl2 Lefschetz action on the cohomology. And the generating function of the Euler numbers

mentioned above captures this action because Euler numbers are, after all, characterized

by the cohomology. However, the refined generating function of the Betti numbers exactly

organizes BPS states into different representations of the Lefschetz action. States invari-

ant under this action have been conjectured to be special, in that they are expected to

capture single-center black hole entropy. With the results presented in this article, one

may identify the Lefschetz singlets in the low-lying non-polar terms to test the conjecture

of [41, 43] that Pure-Higgs states make up single-center indices in all the above exam-

ples. The Poincaré polynomials studied in the mathematics literature that encode these

invariants are based on Reinike’s solution to the Harder-Narasimhan recursion for quivers

without oriented closed loops. However, the indices used in this article, originally proposed

in [39, 40], applies to those with or without closed loops. It would be interesting to un-

derstand a mathematical counterpart of the latter, as extensions of Reinike’s results. On

the other hand, one may seek to understand a pattern of growth of multi-center entropies

to compare against asymptotic behaviour of states under various representations that has

been predicted in [15].
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A Three-center D6-D̄6-D2D0 configurations in the quintic

The allowed D2-D0 charges for a generic D6-D̄6-D2D0 three-center configuration to have

a non-vanishing index are collected in table 8 below.

None of these allowed values satisfy regularity, proving the non-existence of the corre-

sponding three-center solutions.

q0 q

−4 None

−3 None

−2 None

−1 None

0 None

1 0

2 −1, 0

3 −2, −1, 0

4 −3, −2, −1, 0

5 −4, −3, −2, −1, 0

6 −5, −4, −3, −2, −1, 0

7 −6, −5, −4, −3, −2, −1, 0

8 −7, −6, −5, −4, −3, −2, −1, 0

9 −8, −7, −6, −5, −4, −3, −2, −1, 0

10 −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1

11 −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1

12 −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1

13 −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1

14 −13, −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1

15 −14, −13, −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1

16 −15, −14, −13, −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1

17 −16, −15, −14, −13, −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2

18 −17, −16, −15, −14, −13, −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2

19 −18, −17, −16, −15, −14, −13, −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2

Table 8. Allowed values for q and q0.
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