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SUMMARY

Pore formation in membranes is important for
mammalian immune defense against invading bacte-
ria. Induced by complement activation, the mem-
brane attack complex (MAC) forms through sequen-
tial binding and membrane insertion of C5b6, C7,
C8, and C9. Using cryo-electron tomography with a
Volta phase plate and subtomogram averaging, we
imaged C5b-7, C5b-8, and C5b-9 complexes and
determined the C5b-9 pore structure in lipid bilayers.
The in situ C5b-9 pore structure at 2.3-nm resolution
reveals a 10- to 11.5-nm cone-shaped pore starting
with C5b678 and multiple copies of C9 that is poorly
closed, yielding a seambetweenC9andC6 substitut-
ing for the shorter b strands in C6 and C7. However,
large variations of composite pore complexes are
apparent in subtomograms. Oligomerized initiator
complexes C5b-7 and C5b-8 show stages of mem-
branebinding, deformation, andperforation that yield
�3.5-nm-wide pores. These data indicate a dynamic
process of pore formation that likely adapts tobiolog-
ical membranes under attack.

INTRODUCTION

Activation of the mammalian complement system induces for-

mation of membrane attack complexes (MACs), yielding pores

in membranes of invading microbes (see, e.g., Ricklin et al.,

2010). MAC formation is critical for human defense against

gram-negative bacteria of the Neisseria genus (Stephens et al.,

2007). However, host cells are also vulnerable to MAC, as is

apparent in paroxysmal nocturnal hemoglobinuria and atypical

hemolytic uremic syndrome (Noris and Remuzzi, 2009; Parker,

2007). In recent years, awareness has grown that complement

activation and MAC formation may impound on many disease

pathogeneses that involve tissue maintenance, with various tis-

sues affected, such as brain, heart, kidney, eyes, and teeth gums

(see, e.g., Morgan and Harris, 2015; Ricklin et al., 2010).
This is an open access article under the CC BY-N
MAC formation starts when C5 convertases cleave C5 into

C5a andC5b (M€uller-Eberhard, 1986). Upon production, C5b as-

sociates with C6, forming the soluble C5b6 complex (Cooper

and M€uller-Eberhard, 1970). Addition of C7 generates C5b67,

denoted as C5b-7, which adheres to membranes (DiScipio

et al., 1988; Preissner et al., 1985). Association of the hetero-

trimeric C8abg yields C5b-8, which forms small pores with a

0.9-nm diameter and, as time progresses, generates 3-nm pores

(Ramm et al., 1982; Zalman and M€uller-Eberhard, 1990). In

normal human sera (NHS), C5b-9 creates �10-nm pores

(Tschopp, 1984). Negative-stain electron microscopy studies in

the 1980s provided low-resolution images of C5b-7 (DiScipio

et al., 1988; Preissner et al., 1985), C5b-8 (Bhakdi and Tranum-

Jensen, 1984; Podack et al., 1982), and C5b-9 (Tschopp,

1984). Crystal structures of C5 (Fredslund et al., 2008), C6 (Ale-

shin et al., 2012b), and C8abg (Lovelace et al., 2011) and the first

MAC-initiating complex, C5b6 (Aleshin et al., 2012a; Hadders

et al., 2012), gave insights into structural details. Structures of

MAC-perforin (MACPF) domains of C8a (Hadders et al., 2007)

and Plu-MACPF from P. luminescens (Rosado et al., 2007) sug-

gested a mechanistic resemblance to bacterial cholesterol-

dependent cytolysins (CDCs), in which loosely folded a helices

rearrange into transmembrane b-hairpins that extend from the

kinked b strands, forming a b-barrel pore (Shatursky et al.,

1999; Shepard et al., 1998). For the CDC perfringolysin, forma-

tion of pre-pore complexes on top of the membrane before

membrane perforation was observed (Hotze et al., 2001). In

contrast, half- or hemi-pores were posited for MAC formation

(Bhakdi and Tranum-Jensen, 1984) and recently proposed to

exist for CDC pneumolysin (Sonnen et al., 2014). Atomic-force

microscopy studies confirm formation of these seemingly unfa-

vorable membrane structures for CDC suilysin in phosphatidyl-

choline:cholesterol membranes (Leung et al., 2014).

Advances in cryo-electron tomography (cryo-ET; Asano et al.,

2016; Nogales and Scheres, 2015) facilitate reinvestigations of

in situ MAC formation in lipid bilayers. We took advantage of a

Volta phase plate (Danev et al., 2014) installed on a Titan Krios

transmission electron microscope with a Falcon II direct electron

detector. This setup significantly improves the contrast at low

resolution, whichmarkedly increases the interpretability of tomo-

graphic volumes collected in focus (Fukuda et al., 2015) and
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Figure 1. MAC Pores Form in Lipid Bilayers in the Presence of FB-Depleted Serum, NHS, and Reconstituted C5b6789

(A–D) Tomographic slices through multilamellar liposomes of�200 nm in diameter in the presence of (A) NHS with no antibodies, (B) antibodies with FB-depleted

sera, (C) antibodies with NHS, and (D) reconstituted C5b6789. Arrowheads indicate pores; several composite pores are observed (double arrows). Lacey-carbon

support films are also visible. Scale bar represents 100 nm.
allows identification of heterogeneities in complex formation

(Asano et al., 2015). Nevertheless, the resolution of single tilt-

axis tomographic reconstructions is inherently limited by the tilt

angles attainable, which are constrained to approximately

±60�, resulting in a missing wedge of data and anisotropic reso-

lution. Particle averaging of subtomograms is necessary to fill in

this missing wedge, thereby restoring isotropic resolution to the

average (Briggs, 2013).

RESULTS AND DISCUSSION

For in situ cryo-ET imaging of MAC-pore formation, we used

liposomes consisting of 45:5:50 mol % dimyristoylphosphatidyl-

choline (DMPC):dimyristoylphosphatidylglycerol (DMPG):cho-

lesterol, with 0.5 mol % dinitrophenyl (DNP)-lipid haptens for

antibody-induced complement activation. In the presence of

anti-DNP complement-activating antibodies (Yamamoto et al.,

1995), NHS yielded MAC-induced leakage of the DNP-carrying

liposomes, with a 5-min lag phase and maximum leakage rates

observed 15 min after induction (Figures S1A and S1B). Imaging

of these liposomes in the presence of NHSwithout complement-
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activating antibodies showed bare membranes devoid of protein

deposition and protein pore formation (Figure 1A). Thus, neither

complement deposition nor protein binding occurred. Exten-

sive complement deposition and MAC-pore formation were

observed in experiments with complement-activating antibodies

and either NHS or factor B (FB)-depleted sera (Figures 1B and

1C). When using FB-depleted sera, similar MAC pores are

formed, indicating that our data are relevant to C5 convertases

from both classical and alternative pathways. Next, we imaged

MAC formation starting from purified soluble C5b6, C7, C8,

and C9. Addition of C7 to premixed C5b6, C8, and C9 yielded

liposomal leakage with a reduced (<1 min) lag phase because

of the absence of antibody binding and the proteolytic cascade

of complement activation (Figure S1A). In agreement with this,

pre-incubation of liposomes with antibodies reduced the lag

phase to 2min for NHS (Figure S1A). Phase-plate cryo-ET clearly

showed isolated pore structures in the liposomal membrane

(Figure 1D).

Measuring release of glucose-6-phosphate dehydrogenase

(Yamamoto et al., 1995) indicated no leakage from liposomes

upon addition of C5b6, C7, and C8 (Figure S1A), whereas we



Figure 2. C5b-7 and C5b-8 Bind to and Deform the Membrane, Respectively

(A) Tomographic slices through C5b-7 complexes bound to multilamellar liposome membranes.

(B) Tomographic slices through C5b-8 complexes bound to and deforming liposome membranes.

The first image in each row is a schematic showing the lipid bilayer (black) and protein (gray). Scale bar represents 100 nm.
observed release of sulforhodamine B (Figure S1C). Based on

the diameter of the fluorophore versus enzyme, these data indi-

cate a hole size between 1.5 and 7 nm, consistent with earlier re-

ports (Ramm et al., 1982; Zalman and M€uller-Eberhard, 1990)

that C5b-8, but not C5b-7, makes 3-nm holes in membranes.

Phase-plate tomograms of C5b-7 and C5b-8 bound to lipo-

somes indicate spots with one to several plume structures on

the membrane surface, with three to four plumes occurring

most often (Figure 2). Given the size of the C5b6 complex

(22 nm in length; Aleshin et al., 2012a; Hadders et al., 2012),

each plume corresponds to one C5b-7 or C5b-8 complex, in

agreement with negative-stain electron microscopy reports

(DiScipio et al., 1988; Preissner et al., 1985; Tschopp, 1984).

The effects on themembrane differ for C5b-7 and C5b-8. At sites

of C5b-7 binding, the local curvature of the membrane is unper-

turbed, as seen on the inner-leaflet side (Figure 2A), which is

consistent with the absence of leakage. However, formation of

C5b-8 complexes induces protrusion and perforation of the

membrane (Figure 2B). Though obscured by the missing wedge

effects, three to four C5b-8 complexes form complexes that

perforate the membrane, yielding a hole of �3.5 nm (Figure 2B),
in line with previously reported sizes (Ramm et al., 1982; Zalman

and M€uller-Eberhard, 1990).

A large variation of MAC pores formed in DMPC:DMPG:cho-

lesterol liposomes was observed upon addition of purified com-

ponents C5b6, C7, C8, and C9. Figure 3 presents the variation in

C5b-9 MAC pores on these liposomes observed by cryo-ET,

based on data from 73 tomograms using the Volta phase plate

and reconstructed using the software-program IMOD (Kremer

et al., 1996; Mastronarde, 1997). Pores were de-noised to aid

presentation using non-linear anisotropic diffusion (NAD; Fran-

gakis and Hegerl, 2001). Roughly half (518/986) of the occur-

rences are single C5b-9 ring structures (Figures 3A and 3C),

characterized by the presence of a single protrusion at the rim

(identifying the C5b678 initiator structure) and a single closed

pore (presumably formed by multiple copies of C9). However,

more complex arrangements are apparent with pores containing

a variable number (two to four) of C5b-8 initiator complexes,

which we term composite pores, with various C5b-8 to C5b-8

arrangements possible (Figures 3B and 3D). In some instances,

the C5b-8 component is located within the lumen of the pore

(e.g., numbers 1–4 in Figure 3B and double arrows in Figures
Cell Reports 15, 1–8, April 5, 2016 3



Figure 3. Oligomeric Heterogeneity in MAC Pores

(A) Representative single pores.

(B) Representative multimeric pores.

(C) Overview of single pores.

(D) Overview of multimeric pores.

Subtomograms were de-noised using NAD and colored by height from red (bottom) to blue (top). We interpret C5b-8 based on the height in the tomogram.

A schematic is shown below each pore; C5b678 is shown as gray, and C9 rings are shown as blue arcs.
1B and 1C), suggesting that it is fully surrounded by the aqueous

solution and not in contact with lipids. C5b-8 components are

concatenated with a C9 arc of variable length, suggesting unidi-

rectional growth (though it is not possible to assign C5b-8

unambiguously in every case). A variation of closures is

observed, with C9 touching at various sites of C5b-8 and C9

arcs. Similar composite pores are present in experiments with

NHS and FB-depleted serum (double arrowheads in Figures

1B and 1C), demonstrating that joined pores are not artifacts

from pore formation using purified proteins but rather form

upon classical-pathway activation and alternative-pathway

amplification. Except for a single instance of an arc connecting

two pores (number 5 in Figure 3D), no isolated, non-closed pores

were observed in the liposome membranes. However, the com-

posite and single pores observed in these liposomes display

similar widths, and formation of extended, joined pores may

have a limited effect on sizes of molecules that may leak.

Next, we performed subtomogram averaging after particle

picking from 73 tomograms, resulting in 986 subvolumes used

for refinement in EMAN2 (Galaz-Montoya et al., 2015; Tang

et al., 2007). Subtomogram averaging converged to yield a den-

sity map with a resolution of 2.3 nm (Fourier shell correlation

[FSC] = 0.143; Figures 4A and S2). ResMap (Kucukelbir et al.,
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2014) showed highest resolution (1.8–2.6 nm) around the pore

ring and protrusion, whereas the lowest resolution was found

in the lipid bilayer (likely due to variations in liposome diameter

and fluidity of the membrane) and at the top of the protrusion

(Figure S2B). The pore shape is clear in the subtomogram-

average density map (Figure 4), with a total height of 25 nm

and inner and outer diameters of 10 and 25 nm, respectively (Fig-

ures S2C and S2D). The large extension above the ring fits with

the C5b6 heterodimer previously described (Aleshin et al.,

2012a; Hadders et al., 2012). The lumen is slightly conical, con-

stricting from 11.5 to 10 nm from top to bottom (an 8.6-nm differ-

ence in height), resulting in an angle of �5� (Figures S2C and

S2D). In conjunction with this, the barrel is slightly twisted and

skewed, with the thickness of the rim varying from 6.8 to

7.3 nm (Figure S2C). Finally, a striking feature of the map is a

fissure in the barrel above the membrane (Figure 4D) marking

the beginning and the end of the C5b-9 pore structure.

Crystal structures were fitted into the subtomogram-average

density map using rigid-body docking with UCSF Chimera (Fig-

ures 4B–4F and S3; Pettersen et al., 2004). C5b with C6 comple-

ment-control protein (CCP) domains 1 and 2, as found in the

C5b6 crystal structures (Aleshin et al., 2012a; Hadders et al.,

2012) fitted well into the protrusion on top of the ring (Figure 4).



Figure 4. Electron Microscopy Density Map and Fitted Crystal Structures of the MAC Pore

(A) Subtomogram average.

(B and C) Fitted crystal structures. Colors represent C5b (white), C6 TS1-3 domains (cyan), CCP-FIM domains (blue), C7 TS1-2 domains (green), C8ab domains

(yellow), C8g domains (red), C9 ring (purple), and lipid bilayer (dark gray).

(D) Detail of the C6/9 seam.

(E and F) Orthogonal slices through the density map.
The two C-terminally connected factor I-MAC (FIM) domains of

C6 were not resolved in the map (Figures 4 and S4); in the

C5b6 crystal structures (Aleshin et al., 2012a; Hadders et al.,

2012), these domains are kept in place primarily by crystal con-

tacts. The remaining six domains of C6, thrombospondin (TS)

1 and 2, low-density lipoprotein receptor-like (LR), MACPF,

epidermal growth factor like (EGF), and TS3 domains, are part

of the b-barrel and rim. For modeling of the rim, we used the

structure C6 TS1-TS2-LR-MACPF-EGF-TS3 (Hadders et al.,

2012); for C7, we used a copy of C6 minus the first TS1 domain

(forming C7 TS1-LR-MACPF-EGF-TS2); C8b and C8a-g were

taken from the crystal structure (Lovelace et al., 2011); and for

C9, we used a copy of C8b minus the last TS domain (forming

C9 TS1-LR-MACPF-EGF). We generated a ring of C9 copies,

with the central kinked b sheet on the inside, to estimate the

number of protomers in the ring. The width of the ring corre-

sponds to approximately 22 protomers; however, the density ac-

counts for 20 copies, with 2 copies missing due to the presence

of the seam (Figure 4F). Thus, we conclude the ring contains 4

protomer units from C5b6, C7, C8b, and C8a, likely with 16

copies of C9. Clear density inside the pore was visible for C8g

(Figure 4C), which confirms the position of the disulfide bonded
C8a; the observation of C8g on the inside of the pore is in agree-

ment with MACPF orientations in modeling of CDCs (Dang et al.,

2005; Tilley et al., 2005), but it contradicts the modeling of per-

forin (Law et al., 2010). A small region of density is not accounted

for in the model, which lies above C7 and between C5b and C8g,

as indicated in Figures S4C and S4D. This density possibly

accommodates part of the C7 C-terminal domains CCP1-

CCP2-FIM1-FIM2. Moreover, modeling of the protomer units in

the slightly helical rim and barrel cannot be performed unambig-

uously at the given resolution of�2 nm. In this model, we did not

account for the variation in rim thickness (Figure 4E), indicating

possible conformational adjustments of C6-7-8b-8a andC9mol-

ecules in the ring. Overall, the C5b678bag916 modeling explains

the dominant features of the C5b protrusion, the rim made by

MACPF and surrounding domains, the pore wall formed by

extension of the transmembrane b-hairpins into a large b-barrel

(consisting of 20 3 4 b strands), and a seam, indicating a weak

closure between terminal C9 and C6 of the C5b-8 MAC initiator.

Conclusions
Using vitrified liposomes, we visualized the heterogeneous struc-

tures of MAC initiating C5b-7 and C5b-8 complexes and C5b-9
Cell Reports 15, 1–8, April 5, 2016 5



MAC pores on and in themembrane bilayer. These in situ studies

were facilitated by the use of a Volta phase plate mounted on a

Titan Krios transmission electron microscope with a Falcon II

direct electron detector, enabling identification of the individual

complexes and evaluation of the structural heterogeneities using

in-focuscryo-ETwithout theneed for labelingornegativestaining.

Under the experimental conditions used, we observed clustering

of the initiating C5b-7 complexes on the membrane, without

disturbanceof the lipidbilayer;membraneprotrusionandhole for-

mation upon oligomerization of C5b-8 complexes; and single and

composite pores formed in themembrane bilayer by C5b-9 com-

plexes. Subsequent subtomogramaveraging of 740C5b-9 pores

yielded a 2.3-nm resolution map of the MAC pore.

The density map of a subtomogram-averaged singleMAC pore

revealed an irregular twisted barrel, consistent with C5b6-7-

8b-8ag and likely 16 copies of C9, yielding a slightly conical pore

with a seam of weaker density between the last C9 and the

C5b-8 complex. All MACPF proteins (i.e., C6, C7, C8b, C8a, and

C9) are part of the single-barrel pore. The b-hairpin regions, which

are thought to form the transmembrane b-barrel (Shatursky et al.,

1999; Shepard et al., 1998), are notably shorter forC6,C7, and to a

lesser extent, C8 (Figure S4A). As indicated previously (Aleshin

et al., 2012b), the shorter b strands likely explain that C5b-7 com-

plexes merely bind to membranes while C5b-8 perforates the

membrane, but full C5b-9 is required to generate the 10-nmpores.

With C5b6-7-8b-8a being part of the C5b-9 pore, the shorter b

strands of C6, C7, and C8b would imply incomplete membrane-

pore formation. The in situ C5b-9 single pore structure indicates

that the barrel is narrowed in the membrane. Tightening of the

pore in the membrane suggests that the ‘‘missing’’ b strands are

accommodated for by making a smaller b-barrel. An apparent

consequence of this arrangement is a twisting of the barrel

and loss of interactions between the end of C9 and the start of

C5b-8, yielding a pronounced seam in the barrel above the

membrane.

In conclusion, our data highlight the structural heterogeneity in

the MAC-pore formation process. Most recently, two reports pre-

sented single-particle cryo-electron microscopy reconstructions

of detergent-solubilized poly-C9 (Dudkina et al., 2016) and

C5b-9 (Serna et al., 2016). These results are consistent with the

main in situ pore features presented here, but the structures either

are regular untwisted or show a relaxed twist; this is likely due to

using C9 exclusively in the former case and non-native detergent

solubilization in the latter. Moreover, these data do not show the

extensive structural heterogeneities observed in situ. Thisdiversity

possibly serves the mammalian immune system to form MAC

structures on variousmembrane surfaces. Clearly, the complexity

of the microbial membranes by far exceeds the simplicity of the li-

posomes used in these studies. Conceivably, membrane fluidity,

protective glycan layers, etc., will affect the formation rates of C5

convertases, initiating MAC formation, and affect multimerization

and fusion of MAC, initiating complexes and final pore structures.
EXPERIMENTAL PROCEDURES

Complement Activity Assays

Purified C5b6, C7, C8, and C9 proteins; NHS; and FB-depleted sera were pur-

chased from Complement Technologies and stored at �80�C. Liposomes
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composed of DMPC:DMPG:cholesterol (45:5:50 mol %; Avanti Polar Lipids)

were formed by hydration and extruded to a diameter of 200 nm, as described

in Supplemental Information.

For fluorescence assays, 50 mM sulforhodamine B was encapsulated dur-

ing hydration. Fluorescence was monitored using an excitation wavelength

of 565 nm and emission wavelength of 585 nm. Purified C5b6, C7, C8, and

C9 proteins were added to liposomes at final concentrations of 25, 25, 25,

and 300 nM, respectively; C7 was always added last to initiate pore formation.

For absorbance assays, DNP-labeled liposomes (Wako Diagnostics) were

monitored at 340 nmusing anUltrospec 2100 pro (Biochrom), as described (Ya-

mamotoetal., 1995). Serawereusedatafinal concentrationof2.5 vol%.Purified

C5b6, C7, C8, and C9 proteins were used at final concentrations of 15, 15, 15,

and 180 nM, respectively; C7 was always added last to initiate pore formation.

Cryo-electron Tomography

Liposomes weremixed with sera or protein and frozen as described in Supple-

mental Information. Grids were loaded into a Titan Krios transmission electron

microscope (FEI Company) equipped with a field emission gun operating at

300 kV and a Volta phase plate (FEI) heated to 225�C and were imaged using

a Falcon II direct electron detector (FEI). Before each tilt series, the Volta phase

plate was advanced to a new area, allowed to settle for 300 s, and then condi-

tioned for 300 s with a dose of 0.17 nA for a final charge of�50 nC to generate

an approximate phase shift of 90� (Danev et al., 2014). The phase plate was

also conditioned for an additional 10 s between each tilt image.

Tilt series were collected in batchmode using the software program Tomog-

raphy 4.0 (FEI) at 329,000 magnification, using a discontinuous tilt scheme

from 0� to �60� before collecting 0� to +60�, in 2� increments. Total dose for

the tilt series was 6,100 e–/nm2. Focusing to �500 nm was performed before

each image acquisition using a low-dose routine.

Tomogram Reconstruction and Subtomogram Averaging

Tomograms were reconstructed with the software program IMOD (Kremer

et al., 1996; Mastronarde, 1997), as described in Supplemental Information.

Subtomogram averaging was performed using EMAN2 (Galaz-Montoya

et al., 2015) by refining against two independent initial models following

gold-standard procedures (Henderson et al., 2012), as detailed in Supple-

mental Information. Resolution was estimated by applying a tight mask that

was independently and automatically generated for the even and odd half-da-

tasets. Resolutions reported are at FSC= 0.143. The electronmicroscopy den-

sity map and associated mask and FSC curve were deposited in the Electron

Microscopy Data Bank (http://www.emdatabank.org/) with accession number

EMD-3289. The software program ResMap was used to calculate local reso-

lution variations (Kucukelbir et al., 2014).

Model Fitting

Models for C5b6, C7, C8, and C9 were generated as described in Supple-

mental Information. These were manually positioned in the electron micro-

scopymap using UCSF Chimera (Pettersen et al., 2004) and, due to the limited

resolution, refined only by rigid-body fitting (using the function ‘‘fit-in-map’’ of

Chimera), as described in Supplemental Information.
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