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Chapter 1

 Introduction



General Introduction

‘Practice makes perfect’ is a well  known saying and refers to the beneficial effect of 

practice on performance and our limited capacity to process large amounts of 

information. The behavioral effects of practice are well-understood, however the 

neural  mechanisms behind these behavioral  changes remain largely unknown. This 

thesis aims at better understanding of the neurophysiology behind practice and its 

effect on our limited processing capacity. The main objective of this work is to 

investigate how practice changes brain activation in healthy individuals and how this 

can contribute to improved processing capacity. 

People suffering from a psychiatric illness seem to have serious problems in 

processing the abundance of information present in our environment. In particular, 

patients with schizophrenia seem to be more limited in the amount of information 

they can process. The neural  basis of limited processing capacity in schizophrenia 

is not clearly understood. A second objective in this thesis is to investigate whether 

decreased processing capacity in schizophrenia can be explained by a failure to 

relieve processing demands with practice. 

Automatization
Background

Novel tasks are typically effortful, slow, prone to errors, easily interrupted by other 

tasks and need a considerable amount of control. Practice however allows 

automatic behaviors to develop gradually with repeated exposure. These behaviors 

typically involve quick and stereotyped reactions that are difficult to suppress, but at 

the same time allow other tasks to be executed as well. The dual-processing theory 

of information processing [1] attempts to account for the qualitative different profiles 

of automated and controlled performance. This theory proposes the concept of 

automatization, which refers to the transition from controlled to automated 

processing that gradually develops with experience. 

An important prerequisite for automatization to develop is that the association 

between a stimulus and its contingent response remains constant over the course 

of practice. If stimulus-response associations change frequently there is little 

behavioral improvement, even after extended periods of practice [1]. Behavioral 

studies have demonstrated the profound decreases in reaction times and 

improvements in accuracy as a result of automatization [1]. In addition, 

automatization has been shown to be important for dual-task performance [2]. 

Together, this suggests an important role for automatization in improving our 

capacity-limited processing system with practice. 
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This thesis builds on previous studies that investigated the neural  basis of 

automatization and its putative role in human processing capacity [3,4]. In these 

studies was suggested that working memory plays an important role in the 

development of automatization and its beneficial effect on limited processing 

capacity. 

Working memory

Many daily routines, depend on the ability to actively remember and modify the 

goals we are pursuing [5]. For instance, when shopping for groceries you may keep 

in mind a list of products you want to buy. At the same time you need to keep track 

of the products in your basket, to avoid double purchases. This requires to keep 

information active that is no longer physically present, and that has to be accessed 

and updated frequently. The ability to do this is known as working memory. 

Baddeley [6] introduced the concept of working memory as a cognitive system 

comprising independent modules for storage and executive control. According to 

this idea, the working memory system involves a central executive that is 

responsible for the coordination of limited attentional  capacity and regulation of the 

information stored in the visuospatial and phonological  memory buffers. The first 

studies investigating the neural  basis of working memory involve electro-

physiological studies in monkeys [7,8]. They demonstrated that prefrontal neurons 

remain active in the period between a presented cue and the execution of a 

contingent response. This work indicated an important role of the prefrontal cortex 

in working memory. More recently, neuroimaging studies of working memory have 

linked Baddeley’s ‘central  executive’ to a distributed network of brain regions, 

including the dorsolateral prefrontal  cortex [5,9]. Other important regions in the 

working memory network involve the parietal cortex, the anterior cingulate, the 

premotor cortex and the cerebellum. Together these regions are important for active 

maintenance of task goals, and for using these goals to control  and adapt behavior 

under ambiguous or novel circumstances [5,10,11,12]. 

Neural correlates of automatization

Automatization not only improves performance, but also reduces activity across 

regions in the working memory network [3]. This is consistent with a variety of 

neuroimaging studies that report decreases in brain activity as a result of practice 

[13,14,15,16,17]. The decline in activity is most prominent in regions that are 

thought to underlie cognitive control mechanisms. This has been postulated to 

Chapter 1 Introduction

9



serve as a ‘scaffolding’ mechanism for learning new tasks [18]. In a previous study, 

it was shown that the drop in activity in working memory regions after practice was 

linked to how well one could concurrently perform an additional cognitive task [4]. 

This suggests an important role for working memory in the development of 

automatization and the ability to improve processing capacity with practice. The 

nature of activity changes in working memory regions and how they contribute to 

processing capacity however are still poorly understood. 

An important question relates to the progress of activity changes over the course of 

practice. Automatization involves distinct behavioral  components related to 

perceiving and responding to stimuli. It is unclear whether automatization follows 

similar courses in activity decreases for these behavioral components. 

A second issue pertains to whether decreases in brain activity after practice are 

accompanied by compensatory changes in activity elsewhere in the brain. Some 

tasks allow for a change in cognitive strategy with practice [13]. Novel and practiced 

performance of these tasks activate different brain regions. This indicates that 

practice can induce a shift in activity from working memory to other regions in the 

brain supporting practiced performance [15,19,20]. Alternatively, for other tasks the 

same set of regions is active before and after practice. With practice activity shifts 

from one region to another within the same network. This indicates that practice can 

diminish contributions of initially active regions while other regions in the same 

network gain in importance for task execution [5,13]. There is no clear indication 

that automatization leads to enhanced recruitment of other brain regions, leaving 

open the question which brain regions perform the task after practice. 

Schizophrenia
Clinical profile of schizophrenia

Schizophrenia is a chronic  mental  illness, with a lifetime risk of developing the 

disorder of about one percent [21]. The disease has a severely incapacitating effect 

on patients, affecting cognition, emotion and social behavior. Schizophrenia was 

first described by Emil Kraepelin in 1896 [22] with the classifications of a group of 

mental  disorders as ‘dementia praecox’. Kraepelin described patients with this 

disorder as having delusions and hallucinations. Later Eugene Bleuler renamed this 

disorder in the group of schizophrenias [23]. With this new term he tried to better 

classify the disorder, which he believed was characterized by a separation between 

the emotional part and the rational part of the brain. 

The clinical profile of schizophrenia is heterogeneous, with a large variety in 

symptoms and in the degree of deterioration. Symptoms are generally divided into 
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positive, negative and disorganized profiles [24]. Positive symptoms refer to 

abnormal behavior that is not present in healthy individuals, such as delusions and 

hallucinations. By contrast, negative symptoms indicate a loss of function, emotion 

or movement. Disorganized symptoms typically involve disrupted speech, thought 

and behavior. The Diagnostic  and Statistical Manual of Mental  Disorders-IV (DSM) 

[25] is the most commonly used classification system for psychiatric symptoms. 

According to the DSM criteria for schizophrenia, at least some of these symptoms 

should be present for at least six months to establish a diagnosis. The 

heterogeneity on the symptom level may obscure more homogeneous deficits in the 

cognitive spectrum [26,27]. A cognitive deficit may lead to various expressions of 

clinical symptoms in different individuals.

Working memory dysfunction in schizophrenia

Currently, cognitive deficits are considered a core characteristic of schizophrenia 

that may be at the basis of clinical  symptoms [27]. Patients with schizophrenia 

display a wide range of deficits, including problems with attention, memory and 

‘executive functioning’ [28]. A fundamental  deficit in working memory may underlie 

this wide range of cognitive problems in schizophrenia [26]. 

Patients with schizophrenia typically perform poor on tests of working memory 

function, especially when task load (e.g. the number of items that has to be 

memorized) is increased. Neuroimaging studies show that patients with 

schizophrenia activate the same set of regions during working memory 

performance, but exhibit abnormal  levels of brain activity [29,30,31,32,33,34,35]. 

When task performance of patients is within normal  boundaries, levels of brain 

activity are relatively increased [29,30,34]. This shows that patients inefficiently 

recruit working memory regions, as brain activity in patients peaks with lower task 

load than in healthy control  subjects. However, when patients with schizophrenia 

perform poorly on working memory tasks they show decreased levels of activity 

compared to control subjects [36]. This decline in activity indicates that working 

memory is no longer engaged when task load is beyond their processing capacity. It 

was therefore postulated that patients cannot process as much information as 

efficiently as healthy subjects and consequently reach the limitations of their 

capacity sooner than healthy individuals [37]. Although this research links severely 

limited processing capacity in schizophrenia to working memory dysfunction, its 

neural basis still remains poorly understood. 
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Functional Magnetic Resonance Imaging

Background

In the early nineties the first studies were published that activation of the brain could 

be non-invasively visualized with a Magnetic  Resonance Imaging (MRI) scanner. It 

was shown that the MR signal close to blood vessels and in perfused brain tissue 

decreased with a decrease in blood oxygenation. Because the oxygenation level  of 

blood was used as a natural  agent for detecting brain activation, this technique was 

called ‘Blood Oxygenation Level  Dependent’ functional MRI (BOLD-fMRI) [38]. fMRI 

allows researchers in cognitive neuroscience to visualize brain activity related to 

performance of a cognitive task. This mapping of brain activity occurs with a 

moderate time resolution (i.e. seconds) and a high spatial resolution (i.e. 

millimeters). fMRI is a noninvasive method. This is a major advantage compared to 

other techniques, as there is no need for injections of radioactive ligands such as is 

used in PET and SPECT imaging. A downside of fMRI however is its sensitivity to 

movement. Subjects are therefore not allowed to move their body and especially 

their head during a scan session. Although movement can partially be corrected for 

by realignment of the functional time-series data, it can affect the outcome of the 

statistical analysis and cause activation artifacts. The restriction of movements also 

limits the types of paradigms suitable for fMRI, as manual responses are required to 

measure behavioral performance. Another downside is the noise generated by the 

MRI scanner. This limits the possibility to present auditory stimuli and to collect 

verbal responses. 

How does BOLD-fMRI work?

Functional MRI images are obtained using an MRI scanner. This is a large magnet 

with a field strength of around 1,5 to 7 Tesla for use in research with human 

subjects. The acquisition of scans typically involves continuous series of scans of 

the brain, each lasting between one and a few seconds. A scan consists of several 

thousand data points. Each point is derived from a cube of brain tissue (also called 

a voxel). The series of scans is stored as a time-series of 3D volumes. Each voxel 

in the volume is associated with a series of intensity values. This represents the 

fMRI signal. The basis of this signal originates in protons. When a subject is placed 

inside the scanner (i.e. the magnetic field) a slight minority of the protons will  align 

with the field (B0). The signal measured by an MRI scanner is based on the 

emission of electromagnetic radiation from the nuclei  of these protons (hydrogen 

atoms), which are excited by a radio frequency (RF) pulse. After excitation the 

protons will return to their original state. The type of pulse sequence determines the 

set of factors that affect the basis of the signal. Some sequences are differentially 
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sensitive to the type of tissue the protons are in, e.g. gray matter, white matter, 

cerebrospinal  fluid or blood. In fMRI, the pulse sequence is sensitive to blood 

dynamics; blood flow, blood volume and oxygenated state. Transient changes in 

blood dynamics affect the fMRI signal. This can be detected by a receiver coil, 

which is placed very close to the head of the subject. fMRI thus enables 

visualization and measurement of transient changes in blood dynamics in the brain.

Neural activity and BOLD-fMRI

FMRI images are referred to as images representing brain activation. It is important 

to realize however that BOLD-fMRI is not a direct measurement of neuronal  activity. 

The BOLD signal measures relative changes in the distribution of (de)oxygenated 

blood. Changes in brain activation are accompanied by changes in blood flow. This 

causes an increase in the level of oxygen in the blood in a particular brain region. 

Oxygenated hemoglobin is diamagnetic and thus exerts little effect on the regional 

magnetic  field. By contrast, deoxygenated blood is paramagnetic, which disturbs 

the regional  magnetic field. The proportion of deoxygenated and oxygenated 

hemoglobin constitutes the basis of the fMRI signal. The exact relationship between 

neuronal  activity and fMRI signal, also known as the neurovascular coupling, is 

quite complicated. This involves multiple vascular, metabolic  and neural  processes, 

some of which are still  poorly understood. However, research in this field has 

substantially increased knowledge of the relationship between fMRI signal and 

underlying neural activity. With simultaneous recordings of the fMRI signal and 

various measures of the electrical activity of neurons in monkeys during visual 

stimulation it has been shown that the fMRI signal is predominantly determined by 

local field potentials (LFP) [39]. LFP are slowly varying gradient potentials, arising 

from the input of the dendrites of neurons and associated with local information 

processing. This work has major implications for the interpretation of fMRI results. 

Considering these observations, one can with greater confidence ascribe the BOLD 

signal to a change in local field potentials in post-synaptic  neurons. It should be 

cautioned however, that the signal-to-noise ratio of neural  recordings direct from the 

brain are typically much greater than the accompanying BOLD signal. This means 

that the absence of an fMRI signal  does not necessarily indicates that neural activity 

is absent in a particular brain region.  

Transcranial Magnetic Stimulation
Background

Over the past decades functional MRI has proved to be a powerful approach to 

detect changes in brain activity associated with cognitive functions. A shortcoming 
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of this technique however is that the results are based on correlations between the 

modeled cognitive event and the observed BOLD response. It is therefore not 

possible to infer causal relationships between regional function and behavior. A new 

method was introduced in 1985 by Barker et al. [40] that involved direct but 

noninvasive stimulation of the human cortex using a pulsed magnetic field. 

Magnetic  stimulation can temporarily disrupt cortical  activation and hence allows 

investigation of causal brain-behavior relationships. This method, named 

Transcranial Magnetic Stimulation (TMS) is increasingly becoming popular in 

cognitive neuroscience to examine direct contributions of brain regions to a 

particular cognitive function [41]. 

How does TMS work?

TMS is based on Faraday’s principles of electromagnetic  conduction [42]. A pulse of 

current flowing through a coil  of wire generates a magnetic field. A change in the 

magnetic  field strength will  induce a second current in a nearby conductor. The rate 

of change in the field determines the size of the induced current. In a TMS 

investigation a stimulation coil  is held over a participant’s head. A brief current runs 

through the coil generating a magnetic field that passes through the subject’s scalp 

and skull to the underlying cortex. This time-varying magnetic  field induces a 

current in the participant’s brain which stimulates the neural tissue. Magnetic 

stimulation can be applied in single pulses or in a series of pulses, known as 

repetitive TMS or rTMS. 

TMS can be used in conjunction with other neuroimaging techniques such as fMRI. 

For instance, functional maps of brain activity can be coregistrated to the head to 

guide TMS coil  location to regions of interest for assessment of regional function 

and its timing [41]. TMS can also provide functional information of neural activity 

associated with hemodynamic changes measured with fMRI or regional blood flow 

measured with PET [41,43]. Knowledge about the exact mechanism by which TMS 

induces its effect on neural  activity however is limited [41,42]. It is not yet possible 

to determine the depth of stimulation in the brain or the exact spatial  resolution. Also 

it is not yet known which neural elements are most sensitive to stimulation in a 

particular area. Nevertheless most TMS investigations assume that stimulation of a 

particular area disrupts neural activity, which consequently interferes with cognitive 

processing. If this causes a deterioration in performance this indicates that the 

stimulated brain area is critical for behavior. 
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Outline of the thesis

The research in this thesis builds on previous work that suggests an important role 

for working memory in the development of automatization and the ability to improve 

processing capacity with practice. As mentioned before, the nature of these 

contributions and how they relate to processing capacity are still poorly understood. 

The first objective of this work is to investigate how automatization changes brain 

activation in healthy individuals to better understand how this may increase 

processing capacity. The studies on automatization in healthy volunteers are 

described in chapters 2-4. A second objective of this thesis is to investigate 

whether automatization can explain limited processing capacity in schizophrenia. 

Chapter 5 describes the study where a putative link between automatization and 

processing capacity in schizophrenia is examined. Finally, chapter 6 provides with 

a summary and general discussion.

Research Questions

Much remains unknown about the trajectory of activity decreases induced by 

practice for distinct behavioral components of automatization. The first question in 

this thesis pertains to the course of function-specific effects of automatization 

related to encoding and response selection. In chapter 2 an event-related fMRI 

design is used to isolate effects of practice on brain function related to encoding 

and response selection. Based on the domain-general effects (i.e. task-

independent) of practice reported in previous studies we hypothesize that the 

course of activity decreases in the working memory system is the same for 

encoding and response selection, while both may show independent courses in 

activity changes in function-specific networks (i.e. visual or motor regions).

A second question concerns whether automatization induces compensatory 

increases in activity in other brain regions, as activity decreases in working memory 

regions. In chapter 3 we investigate three possible scenarios. First we investigate if 

practice leads to a change in activated brain areas, which would induce a shift from 

one set of regions to another set. Secondly, we examine if activity shifts within the 

initially active network(s); from cognitive control regions to perceptual  and motor 

systems. Third, we investigate the scenario that the same networks are involved 

from beginning to the end of training, and the only change is an improvement of the 

efficiency with which regions communicate; in which case brain activity would 

decline coherently in all regions. In this study we investigate changes in brain 

activity following practice of a working memory task in a large sample of healthy 

subjects. Whole-brain fMRI scans are acquired on a 3T scanner with an 8-channel 
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head coil to obtain a high sensitivity for signal changes. In addition, we make use of 

the variability in practice-induced effects on brain activity among subjects, reflecting 

the rate or speed at which automaticity is achieved, to assess changes within and 

across networks. We hypothesize that regions responding to practice ‘in concert’ 

are correlated in their degree of signal change and thus will be part of the same 

network. Importantly, this approach allows to assess potential shifts of brain activity 

within networks, following practice. If particular regions gain significance with 

practice, one would expect those to correlate negatively with others that decrease in 

their involvement, even if activity declines in all regions.

Previous work has indicated the profound effects of automatization on brain activity 

in working memory regions. Yet much remains unknown about the functional 

importance of working memory in automatization. The third question in this thesis 

involves the critical role of working memory in establishing automatization. In 

chapter 4 a combination of fMRI and transcranial magnetic  stimulation is used to 

assess the functional contributions of two important working memory regions to the 

development of automatization. A cognitive paradigm is used to assess 

automatization, including a novel task with continuously changing information, a 

practiced task with consistent information and a control  task with overlearned 

information. Subjects first participate in an fMRI session to localize the dorsolateral 

prefrontal cortex and parietal cortex on an individual  basis, where activity decreases 

with practice. In separate sessions following fMRI, subjects perform the 

automatization paradigm while receiving stimulation over the left lateralized 

dorsolateral prefrontal and parietal cortices. We hypothesize that working memory 

enables the development of automatization. We expect that brief interruption of 

activity in these regions will disrupt retrieval of information that is kept active in 

mind. Based on our previous work we expect that this will  significantly affect 

practiced performance, but not as much as for novel performance. We assume that 

the control task with overlearned information does not involve working memory 

retrieval and therefore will not be affected by stimulation. Hence, this allows us to 

test whether automatic behaviors become independent of cognitive control. 

Nonetheless, even when overlearned, performance in an experimental setting 

depends on an internally represented context of a task instruction in working 

memory. If working memory enables automatization by providing this context, it is 

also possible that brief disruption of working memory will  affect performance on the 

control task.

The Automatic Brain

16



The fourth question concerns whether inefficient brain function and limited 

processing capacity in schizophrenia can be explained by a deficit in 

automatization. In chapter 5, the results are presented of an fMRI study where a 

group of patients with schizophrenia and a group of healthy individuals were 

examined on an automatization paradigm and a dual-task that was performed 

outside fMRI. Assuming that patients with schizophrenia exhibit inefficient brain 

function, we hypothesize that they show a smaller decrease in working memory 

activity with practice compared to the control group. Based on the idea that patients 

have more limited capacity than controls, we also expect that patients with 

schizophrenia perform worse on a dual-task. Finally, we hypothesize that an 

inability to decrease activity with practice in schizophrenia, is related to reduced 

capacity to accommodate processing of two tasks simultaneously.
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Abstract

Background

Practice can have a profound effect on performance and brain activity, especially if 

a task can be automated. Tasks that allow for automatization typically involve 

repeated encoding of information that is paired with a constant response. Much 

remains unknown about the effects of practice on encoding and response selection 

in an automated task. 

Methodology

To investigate function-specific effects of automatization we employed a variant of a 

Sternberg task with optimized separation of activity associated with encoding and 

response selection by means of m-sequences. This optimized randomized event-

related design allows for model  free measurement of BOLD signals over the course 

of practice. Brain activity was measured at six consecutive runs of practice and 

compared to brain activity in a novel task. 

Principal findings

Prompt reductions were found in the entire cortical  network involved in encoding 

after a single run of practice. Changes in the network associated with response 

selection were less robust and were present only after the third run of practice. 

Conclusions/significance

This study shows that automatization causes heterogeneous decreases in brain 

activity across functional regions that do not strictly track performance 

improvement. This suggests that cognitive performance is supported by a dynamic 

allocation of multiple resources in a distributed network. Our findings may bear 

importance in understanding the role of automatization in complex cognitive 

performance, as increased encoding efficiency in early stages of practice possibly 

increases the capacity to otherwise interfering information.
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Introduction

Practice can have a profound effect on performance and underlying brain activity 

especially if a task can be automated. Tasks that allow for automatization typically 

involve repeated encoding of information that is paired with a constant response [1]. 

While previous studies have demonstrated the profound effects of automatization 

on working memory [2-4], much remains unknown about how automatization affects 

function-specific  effects related to encoding and response selection in an 

automated task. 

Decreases in working memory activity after practice have been reported in a wide 

range of cognitive tasks; such as verb generation [5], mirror reading [6,7], delayed 

response tasks [4,8] and motor sequence learning [9,10] and have been interpreted 

in terms of reduced demands on domain-general cognitive control resources that 

support early learning or novel task performance [2,11]. It has also been shown that 

practice-induced activity decreases are closely related to one’s capacity to 

concurrently perform an additional cognitive task [3]. Better understanding of the 

mechanism behind automatization may explain how automatization can contribute 

to complex cognitive performance such as dual tasking.

To investigate function-specific effects of automatization we build upon our previous 

work in which we examined automatization by means of a Sternberg Task [12]. 

Performance of this task involves an encoding phase during which information is 

presented that is briefly memorized, and a response phase including a probe 

stimulus that requires a decision whether it matches the previously presented 

information or not. The blocked design we employed in our previous studies [3,4] 

did not allow investigation of function-specific changes in brain activity associated 

with encoding and response selection. In addition, it was not possible to assess 

changes in brain activity over the course of practice. To investigate function-specific 

changes in brain activity as a result of practice we used a pseudo-random event-

related design in which encoding and response phases in a Sternberg task were 

controlled by means of m-sequences [13]. This is a novel method that allows for 

model-free measurement of BOLD signals and optimal separation of BOLD signals 

of rapidly displayed stimuli. Brain activity was measured at six consecutive runs of 

practice to measure changes in activity during encoding and response selection 

over the course of practice. Based on current theories of practice we hypothesize 

that the course of activity decreases in brain areas associated with working memory 

function is the same for encoding and response selection, while both functions may 

show independent courses in activity changes in function-specific networks.
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Methods
Participants

Eleven right-handed subjects (M/F 6/5, mean age 33.0 (±2.9)) participated in the 

study. Before the functional  MRI (fMRI) session, all subjects gave written informed 

consent to participate in the study, which was approved by the Intramural  Review 

Board (IRB) of the National Institute of Neurological  Disorders and Stroke at the 

National Institutes of Health under protocol  #00-N-0082. Participants were provided 

with earplugs to protect their hearing from the acoustic  noise generated by the MRI 

gradient system.

Task 

We based the task used in our study on a Sternberg task-paradigm [12] (figure 1).  

This task has been used extensively in fMRI studies and it has been shown to 

reliably activate regions associated with working memory [4,14-22]. It allows for 

trial-by-trial measurement of the level of performance (reaction time (RT) and error 

rate) to verify that subjects are executing the task as required.

In our experiment participants were instructed to memorize either one or five letters 

that were visually presented (memory set). To increase similarity between stimuli, all 

of the letters used in the task were consonants. The memory set was followed by 

presentation of a probe stimulus. Participants were instructed to decide as fast as 

possible whether the probe belonged to the memory-set (target) or not (non-target). 

Tasks were presented in eight runs of approximately five minutes with each run 

containing 68 trials of 4000 ms duration. Each trial  started with an encoding phase 

during which the memory set was presented for 1500 ms. This was followed by a 

delay period of 1500 ms in which a fixation cross was displayed. The brief delay 

was followed by the response phase, which involved the presentation of a probe 

stimulus for 500 ms followed by another fixation-cross for 500 ms (figure 1). In the 

first two runs, the memory sets for each trial were randomly generated out of ten 

consonants. Because memory sets were novel  in each trial  these runs are denoted 

“novel task” (NT1 and NT2). In the following six runs all trials used the same fixed 

memory set. These runs are denoted “practiced task” (PT1 – PT6). The constant 

stimulus-response associations in’ PT  are thus practiced in six runs allowing 

automatization to be established over time. The stimuli in PT were chosen from a 

different set of consonants than NT to prevent interference. The first NT run was 

used to select regions of interest (ROI) representing brain areas involved with 
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Figure 1. Cognitive Paradigm

The timeline is shown for the cognitive experiment. Two m-sequences (m.seq.) of 63 bits control the encoding 

phase (1) and the response phase (2). Each trial starts with the encoding phase followed by a brief delay and the 

response phase. Where bits are 0 (baseline); memory sets  with 1 letter (MS1) are presented during the encoding 

phase and blank trials are presented during the response phase. Where bits  are 1; 5-letter memory sets (MS5) 

are presented during the encoding phase and a probe stimulus during the response phase. In the novel task the 

letters presented during the encoding phase were different in each MS1 and MS5 trial. In the practiced task, the 

same five letters were repeated in each MS5 trial.

encoding and response phases. The second NT run was used to establish signal 

level for NT  performance in the ROI’s, which was used as reference for comparison 

of activity during PT.

The M-sequence 

A 63 element binary m-sequence consisting of 32 positive and 31 negative bits was 

used to control  the timing of the presentation of the task stimuli  [13]. The primary 

sequence was used to control the encoding phase. Each bit of the sequence 
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belonged to one trial. If the sequence was negative then a one-letter memory set 

was presented (baseline condition for encoding phase). If the sequence was 

positive a five-letter memory set was presented. The sequence was shifted nine bits 

to create an independent but related sequence to control the response phase. If this 

sequence was negative no stimulus was presented (baseline condition for the 

response phase). If this sequence was positive a probe letter was presented. The 

m-sequence was extended by inserting a replica of the last five bits at the beginning 

of the sequence to allow removal of the initial BOLD transient, yielding an extended 

sequence of 68 bits. The uneven runs used the primary versions of the sequence, 

while the even runs used an inverted version (positive and negative bits switched). 

Functional MRI 

Data was acquired on a 3T GE MR system. Image signal-to-noise ratio (SNR) was 

boosted by employing multi-channel MRI with a custom-built helmet-type 16- 

channel receive array that fits tightly around the head [23], connected to a custom-

built 16-channel MRI receiver [24]. A single-shot rate-2 sensitivity-encoded 

(SENSE) [25] echo-planar imaging (EPI) [27] was employed for fMRI acquisition. 

The EPI matrix size was 96 by 72, and the field of view (FOV) 224 mm2, leading to 

a nominal in plane resolution of 2.3 mm2. Slice thickness was 2.0 mm, with a slice 

gap of 0.3. Echo time (TE) was 32 ms, repetition time (TR) was 2000 ms, and flip 

angle 90 degrees. Tasks were presented in three runs of 290 functional  scans with 

approximately one-minute period in between. A video projector presented stimuli on 

a small screen attached to the head-coil in the scanner. Participants could see the 

screen via a mirror also attached to the head-coil. Subjects were instructed to 

respond to each probe as quickly as possible by ion of the pushing a button with the 

index finger of the right hand to targets or with the middle finger of the right hand to 

non-targets.

Data preprocessing and statistical analysis

All fMRI data were analyzed off-line on a multimode Linux/PC reconstruction cluster 

using IDLTM. Image reconstruction was performed as described previously and 

included direct Fourier transform of the ramp-sampled data, EPI ghost correction 

using a navigator echo [26] and SENSE unfolding as well as image intensity 

correction based on coil  sensitivity reference maps derived from the array data itself 

[27].
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Figure 2. Performance

a. reaction time in milliseconds (left) and b. %  error rate (right) for trials with one-letter memory sets and five-letter 

memory sets. Performance measures are displayed for novel task (NT) and each practice run (PT1-PT6). 

First and second order trends were removed from the fMRI signal  per voxel. After 

this, an outlier test was performed, which removed all  time points larger than three 

standard deviations away from the mean. Trend correction for first and second 

order was repeated after outlier correction. The input function (primary m-sequence) 

was balanced to have a mean of zero. Because there were two scans per trial, the 

sequence was interleaved with zeros in order to have a sequence length equal to 

the number of scans. Analysis of brain activation was performed by calculating the 

cross-covariance of this input function with the image intensity on a voxel by voxel 

basis, for all 63 temporal  shifts [13] by multiplication in Fourier domain. Covariance 

values were transformed into t-values by dividing each value by an estimate of the 

temporal  noise level. The temporal noise value in the fMRI signal was estimated by 

calculating the temporal standard deviation in covariance values over shifts 20 to 

63, where no covariance peaks related to our experimental paradigm were present. 

Subsequently, the correlation maps for ten shifts (or a 20 s period) following the 

expected correlation peak were spatially normalized to the MNI305 standard brain, 

as it was expected that the BOLD curve would be fully covered by this segment.
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Table 1. Practice and Performance

a. ovverall differeence

reaction time (MS1 aand MS5) (MS1 vss MS5)

contrast F(1,10) p F(1,10) p

multivariate 5.40* <0.01 1.67** 0.17

NT-PT1 3.02 0.11 0.06 0.46

NT-PT2 3.16 0.11 2.33 0.16

NT-PT3 17.5 <0.01 0.25 0.63

NT-PT4 6.37 0.03 4.68 0.06

NT-PT5 11.6 <0.01 2.39 0.15

NT-PT6 15.7 <0.01 4.16 0.07

* df = (2.8,28.4) ** df = (4.3, 43.2) (Huynnh-Feldt corrected)

b. ovverall differeence

error rate (MS1 aand MS5) (MS1 vss MS5)

contrast F(1,10) p F(1,10) p

multivariate 2.91* 0.05 0.008** 0.93

NT-PT1 0.08 0.78 2.67 0.14

NT-PT2 1.23 0.30 0.79 0.40

NT-PT3 0.01 0.94 0.41 0.54

NT-PT4 3.10 0.11 1.59 0.24

NT-PT5 1.23 0.30 0.82 0.39

NT-PT6 5.91 0.04 0.09 0.77

* df = (2.8,28.4) ** df = (4.3, 43.2) (Huynnh-Feldt corrected)

a. reaction time (top) and b. error rate (bottom). Measures were tested over all runs (1st row) and between novel 

task (NT) and each practice run (PT), across one-letter (MS1) and five-letter (MS5) memory set trials (1st column) 

and for MS1 trials vs. MS5 trials (2nd column). Significant results are displayed in bold. 

These maps were transformed into group activity maps by testing the value in each 

voxel against zero over all subjects. Two covariance peaks were expected: The first 

peak related to the encoding phase with an onset at shift zero, the second peak 

related to the response phase with an onset at shift nine. 

Regions of interest (ROI) for encoding phase and response phase were created by 

combining neighboring voxels that reached a threshold of t > 3.71 (p< 0.0001 

uncorrected) in the group map of the NT1, at shift 2 and at shift 11 (corresponding 

to the fMRI signal at 4000 ms after PS presentation). These signals were analyzed 

using multivariate analysis (repeated measurements executed with SPSS ™ 11.0). 
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Figure 3. Heterogeneous effect of practice on regions activated by both encoding and response selection

Example of bold activity (arbitrary units) in regions activated by both phases: a. left DLPFC (top) and b. anterior 

cingulate cortex  (bottom) during the novel task (left), after one practice run (middle) and six  practice runs (right); 

showing the heterogeneous effects of practice for encoding and response selection. 

Results

Performance

We examined the behavioral  effect of practice for changes in performance over all 

practice runs and by comparison of each practice run with NT2. Overall task 

performance was averaged over responses in one-letter memory set (MS1) and 

five-letter memory set (MS5) trials and for the difference in performance between 

responses in MS1 trials and responses in MS5 trials. For reaction time (RT) there 

was a significant performance improvement over all runs (F=5.40, p<0.01). Practice 

runs three through six showed a significant improvement compared to the novel 

task (see table 1 and figure 2). There was also a significant overall improvement in 

error rate (F=2.91, p<0.05) and a significant improvement in the sixth run of practice 

compared to NT (F=5.91, p<0.04). The differences between MS5 and MS1 in RT 

and error rate were not significantly changed by practice (see table 1 and figure 2).
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Figure 4. Encoding ROI’s

ROIs showing activity related to encoding. The numbers in the color bar refer to the encoding phase ROIs (E1-

E7) in table 2.

Table 2. Encoding ROI’s

ROI  Region abbr. BA  NV  x  y  z tmax

E1 right calcarine sulcus Rcalc 18 2886 14 -94 2 12.87

E2 left calcarine sulcus Lcalc 18 2334 -12 -94 -2 12.75

E3 dorsolateral prefrontal cortex Ldlpfc 9 1044 -56 -2 42 6.94

E4 left superior parietal cortex Lspc 7 693 -24 -58 46 6.46

E5 right superior parietal cortex Rspc 7 475 24 -50 46 4.06

E6 Anterior cingulate cortex SMA 24 472 -4 2 58 8.36

E7 left putamen Lput Na 112 -22 2 -2 3.53

Description of ROIs showing activity correlated with encoding phase. (Abbreviations: E = encoding; 

BA=Brodmann Area; NV=number of voxels in ROI (size of ROI); x, y, z = MNI coordinates of voxel  with highest t-

value in ROI; tmax: maximum t-value in ROI).
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Figure 5. Response Selection ROI’s

ROIs showing activity related to the response selection. The numbers in the color bar refer to the response 

selection ROIs (RS1-RS14) in table 3.

Table 3. Response Selection ROI’s

ROI  Region abbr. BA  NV  x  y  z tmax

RS1 right occipital cortex Rocc 18/19 4054 18 -64 8 7.42

RS2 left primary sensorimotor cortex Lpsmc 4 3723 -38 -22 54 11.84

RS3 left dorsolateral prefrontal cortex Ldlpfc 9/46 2527 -52 2 14 8.05

RS4 anterior cingulate cortex ACC 32 2105 -4 -4 56 10.11

RS5 left occipital cortex Locc 19 1457 -52 -68 6 6.8

RS6 Thalamus thal Na 874 -14 -26 2 6.21

RS7 right operculum Roper 45 348 30 20 0 5.03

RS8 right dorsolateral prefrontal cortex Rldpfc 46 152 52 2 38 5.49

RS9 right ventrolateral prefrontal cortex Rvpfc 47 149 40 30 20 3.94

RS10 left operculum Loper 45 132 -40 12 4 5.54

RS11 right precentral gyrus Rpcg 6 99 28 -2 54 6.48

RS12 right postcentral gyrus Rpocg 2 96 54 -24 40 5.85

RS13 left cuneus Lcun 19 95 -24 -76 30 6.06

RS14 right superior parietal cortex Rspc 7 81 30 -58 48 4.13

Description of ROIs showing activity correlated with response phase. Abbreviations: RS = response selection; 

BA=Brodmann Area; NV=number of voxels in ROI (size of ROI); x, y, z = MNI coordinates of voxel  with highest t-

value in ROI; tmax: maximum t-value in ROI). 
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Overview of regions of interest

Encoding and response selection activated distinct cortical networks with limited 

overlap (see figure 3). Encoding ROIs are described in table 2 and figure 4. 

Response selection ROIs are listed in table 3 and figure 5.

Encoding 

During the encoding phase bilateral  regions in the occipital cortex and superior 

parietal  cortex and the dorsal part of the anterior cingulate cortex were activated. In 

addition, there was activity in the left dorsolateral prefrontal cortex and the putamen. 

Response selection

During the response phase there was also bilateral activity in the occipital cortex, 

but closer to the extrastriate and middle occipital  gyrus, the DLPFC, the ACC, the 

operculum and the thalamus. In addition, ROIs were identified in the left primary 

sensorimotor cortex and the cuneus. In the right hemisphere we identified ROIs in 

the ventrolateral  prefrontal cortex, the postcentral gyrus, the precentral gyrus and 

the superior parietal cortex. 

Changes in activity related to practice 

To examine function-specific  effects of practice we tested activity averaged over all 

ROIs in the encoding and response selection networks (table 4 and figure 6) and in 

each individual  ROI of the separate encoding network (table 5) and response 

selection network (table 6) for changes in activity across all  practice runs and 

between each PT run compared to NT. 

Effects of practice on encoding activity

The multivariate test for changes in activity (averaged over all encoding ROIs) 

shows a significant effect of practice across all six practice runs (table 5). Tests for 

changes in activity compared to the novel task show a significant decrease in all 

practice runs (p<0.01) (table 5). Separate tests for each ROI show significant 

decreases in bilateral visual  cortex (E1 and E2) and left DLPFC (E3). Bilateral  SPC 

(E4 and E5) and SMA (E6) show significant decreases in activity for all  but the third 

practice run. Left PUT (E7) shows a significant decrease for all practice runs, 

except runs three and five (table 5).
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Figure 6. Practice and brain activity

a. activity in arbitrary units during encoding averaged over encoding phase ROIs (left) and b. activity during 

response selection averaged over response selection ROIs (right). Activity is displayed for novel  task (NT) and 

each practice run (PT1-PT6).

Effects of practice on response selection activity

The multivariate test for changes in activity (averaged over all  response selection 

ROIs) across all practice runs was not significant (table 6). In addition, there was no 

significant change in activity from the novel task at any practice run (table 6). In 

tests of separate ROIs (table 6), we found a significant decrease in signal compared 

to the novel task in the lPSMC (RS2) in practice run 5, in the lDLPFC (RS3) in runs 

5 and 6, in the ACC (RS4) in runs 4, 5 and 6, in lOCC (RS5) in practice run 5, 

rDLPFC (RS8) in practice run 4 and 5, in lOPER (RS10) in practice run 5, and in 

rPCG (RS11) in practice run 4, 5 and 6. 

In summary, practice reduced activity in function-specific  regions associated with 

encoding and response selection. However, signal in encoding areas was reduced 

in all regions of the network after the first practice run, while in the response 

selection areas practice decreased activity only after the third practice run, and only 

in a subset of regions. 
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Table 4. Practice and Brain Activity

encoding response seleection 

contrast F(1,10) p F(1,10) p

multivariate 7.96* <0.01 1.19** 0.32

NT-PT1 31.97 <0.01 0.38 0.55

NT-PT2 19.67 <0.01 0.30 0.16

NT-PT3 18.23 <0.01 2.48 0.15

NT-PT4 18.51 <0.01 3.59 0.09

NT-PT5 14.24 <0.01 4.97 0.05

NT-PT6 36.39 <0.01 2.99 0.11

* df = (6,60) ** df = (6,660) Huynh-Feldt ccorrected 

Tests for significant effects of practice on encoding activity averaged over all encoding ROIs and response 

selection activity averaged over all response selection ROIs. Signals were tested over all  runs (1st row) and 

between novel task (NT) and each practice run (PT). Significant results are displayed in bold. 

Table 5. Practice and Encoding Activity

multi-varriate NT-PT1 NT-PT2 NT-PT3 NT-PT4 NT-PT5 NT-PT6

F p F p F p F p F p F p F p

Rcalc (E1) 4.93 <.01 17.0 0.00 10.6 0.01 19.5 <.01 14.6 <.01 9.56 0.01 21.3 <.01

Lcalc (E2) 7.29 <.01 27.9 0.00 12.7 0.01 28.7 <.01 13.7 <.01 20.5 0.00 31.9 <.01

Ldlpfc (E3) 6.16 <.01 15.8 0.00 15.2 <.01 6.88 0.03 19.7 <.01 10.1 0.01 23.7 <.01

Lspc (E4) 4.81 <.01 20.5 0.00 13.9 0.00 3.86 0.08 10.7 0.01 10.4 0.01 22.9 <.01

Rspc (E5) 3.62 <.01 11.0 0.01 12.5 0.01 3.13 0.11 6.33 0.03 11.1 0.01 12.6 0.01

SMA (E6) 7.46 <.01 10.2 0.01 12.5 0.01 3.48 0.09 12.7 0.01 6.61 0.03 18.8 <.01

Lput (E7) 3.14 0.01 6.3 0.03 10.3 0.01 0.64 0.44 5.13 0.05 0.96 0.35 6.7 0.03

Multivariate tests for signals in ROIs related to encoding. Signals were tested over all runs (1st column) and 

between novel task (NT) and each practice run (PT). Significant results are displayed in bold. (For abbreviations 

see table 2).

The Automatic Brain

36



Table 6. Practice and Response Selection Activity

multi-variate NT-PT1 NT-PT2 NT-PT3 NT-PT4 NT-PT5 NT-PT6
 F p F p F p F p F p F p F p
Rocc (RS1) 0.89 0.51 0.28 0.60 2.48 0.15 0.48 0.51 0.19 0.67 0.69 0.42 1.71 0.22

Lpsmc (RS2) 1.37 0.34 0.84 0.38 1.57 0.24 3.69 0.08 3.67 0.09 7.52 0.02 1.07 0.33

Ldlpfc (RS3) 1.27 0.29 0.49 0.50 1.53 0.24 1.32 0.28 4.60 0.06 9.60 0.01 5.60 0.04

ACC (RS4) 1.49 0.20 3.47 0.09 1.14 0.31 3.27 0.10 5.01 0.05 6.78 0.03 7.20 0.02

Locc (RS5) 1.40 0.22 1.11 0.32 3.18 0.11 3.90 0.08 4.61 0.06 4.83 0.05 1.83 0.21

thal (RS 6) 1.59 0.19 1.00 0.34 0.70 0.42 2.84 0.12 0.67 0.43 1.90 0.20 0.11 0.75

Roper (RS7) 0.75 0.61 0.04 0.86 0.08 0.78 0.12 0.74 1.28 0.30 0.75 0.41 0.92 0.36

Rldpfc (RS8) 1.51 0.20 1.73 0.22 2.87 0.12 2.27 0.16 7.66 0.02 8.10 0.02 3.33 0.10

Rvpfc (RS9) 0.70 0.63 0.01 0.95 0.47 0.51 0.00 0.99 2.20 0.17 0.96 0.35 1.04 0.33

Loper (RS10) 0.96 0.45 0.01 0.94 0.01 0.91 0.78 0.40 0.90 0.37 7.06 0.02 0.88 0.37

Rpcg (RS11) 2.32 0.05 2.03 0.18 1.75 0.22 2.56 0.14 7.77 0.02 14.59 0.01 5.06 0.05

Rpocg (RS12)1.12 0.37 0.07 0.79 2.15 0.17 0.42 0.53 2.16 0.17 3.00 0.11 0.05 0.83

Lcun (RS13) 0.53 0.78 0.01 0.96 0.44 0.52 0.70 0.42 0.30 0.60 3.10 0.10 1.10 0.32

Rspc (RS14) 1.33 0.26 4.72 0.06 0.15 0.71 0.00 1.00 1.58 0.24 0.00 0.99 0.22 0.65

Multivariate tests for ROI signals related to response selection. Signals were tested over all runs (1st column) and 

between novel task (NT) and each practice run (PT). Significant results are displayed in bold. (For abbreviations 

see table 3). 

Heterogeneous effect of practice on encoding and response selection activity

Figure 3 illustrates the distinct effect that practice has on the encoding and 

response phase activity by showing the complete BOLD curves for left DLPFC and 

ACC. During the encoding phase, BOLD activity was practically absent in the first 

runs of practice in both regions (3a, 3b; red lines). For the response phase, BOLD 

activity is still visually detectable in lDLPFC (3a, blue line), and ACC (3b, blue line), 

up to the last run of practice.

Discussion
Summary

This study examined the effect of practice on brain activity associated with encoding 

and response selection. We used an optimized pseudo-random event-related 

design that isolated effects of practice in the encoding phase and response phase 

of a Sternberg task, at six runs of practice. Performance and brain activity at each 

practice run were compared to that of a similar task with novel stimuli. Our 
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behavioral  results show that practice gradually but significantly improved 

performance, confirming automatization of task performance [1]. Practice promptly 

reduced activity across the entire regional network involved in encoding at the first 

run of practice, before response selection activity and performance were affected. 

Changes in response selection activity emerged at the third run of practice and 

were not present in all regions, but specific  for ACC, left and right DLPFC, lPSMC, 

lOCC, rPCG and lOPER. Our results indicate that automatization can induce 

independent changes in function-specific brain regions over the course of practice.

Heterogeneous effects of practice on encoding and response selection

In the novel task, encoding and response selection activated regions associated 

with working memory in left DLPFC, and SMA/ACC and right superior parietal 

cortex. This common activation of the working memory network during different 

phases of novel Sternberg performance supports the notion of a scaffolding system 

that contributes to novel task performance [2]. However, practice induced different 

courses of activity reductions in working memory activity for the encoding and the 

response selection. Practice immediately reduced activity in the encoding network 

at the first run of practice in left DLPFC and ACC. In sharp contrast, response 

selection activity in these regions did not show any effect of practice over the 

course of three runs with repeated memory sets. This indicates that DLPFC and 

ACC were activated to an extent specifically needed for each phase at the different 

runs of practice. This divergent pattern of activity changes for encoding and 

response selection does not support the notion that domain-general control 

resources are reduced as the need to ‘‘scaffold’ task performance decreases with 

practice [2]. Consequently, these findings do not seem to support our hypothesis 

based on this idea. Our findings are more in line with the idea of decentralized 

theories of working memory function [28-30]. From this perspective practice may 

independently reduce working memory contributions to different phases of cognitive 

performance depending on the level  of control  necessary for each phase. The 

immediate reductions in activity associated with encoding possibly indicate that 

practice promptly reduces the need for working memory to support the 

transformation of visually presented stimuli  into a neural representation that 

facilitates temporary storage of information during the delay [31-35]. In addition, the 

current data shows that a similar amount of practice can only marginally reduce 

working memory contributions to the response selection phase. This suggests that 

early in practice, working memory remains engaged to guide response selection 

based on earlier presented information [15,34]. The ability to automate task 

performance has been shown to be important for complex cognitive performance 
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such as the capacity to perform multiple tasks at once [1,3,36,37]. Our results 

suggest that early in practice reduced demands on encoding may increase one’s 

capacity to process otherwise interfering information. However, performance of an 

additional  task also deteriorates automated performance to some extent [3,37]. Our 

results indicate that this could be induced by conflicts at the level  of response 

selection. 

Automatization vs. other effects of practice on brain activity

Our findings are similar to other studies that have reported reductions in brain 

activity as a result of practice, representing increased efficiency of information 

processing [38,39]. However it should be noted that practice-induced activity 

changes in those studies were either not accompanied with improved performance 

[39], or selectively involved response selection [38]. Differences with our design are 

the type of stimuli  used [39], and more importantly that stimulus-response 

associations in those studies changed over trials, which makes it difficult to 

compare with our findings. Neuroimaging findings of practice effects on brain 

activity have been inconsistent across studies [40]. The different effects of practice 

on brain function have been interpreted in terms of reorganization vs. redistribution 

of activity [40], changes in skill  or strategy underlying task performance [41], item-

specific or task-skill effects [42], or improved task proficiency [22,43,44]. We 

propose an alternative but important distinction between tasks that allow for 

automatization and those that cannot be automated, because stimulus-response 

associations continuously change over the course of practice. Here we show that 

automatization predominantly affects encoding early in practice even before 

performance improves.

Independent encoding and response phase networks

Our finding of distinct networks activated by encoding and response selection is in 

line with previous studies. The encoding phase in our study activated bilateral  SPC. 

Many other studies have found this region to be activated by visual perception of 

stimuli in verbal working memory tasks [19,21,45-47]. It has been postulated that 

this region is important for encoding and temporary maintenance of information [48]. 

Response selection activated parts of the prefrontal-striatal-thalamic  circuitry 

(thalamus, left VLPFC and right DLPFC) [49] that is involved in motor response 

modulation. These regions have been reported to be active during the response 

phase in delayed response tasks before [15,45]. 
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We have designated the cognitive functions that we examined encoding and 

response selection, to emphasize the difference between the functions present in 

encoding and response phases of cognitive performance that can be automated. 

Naturally both task phases include many different processes. The encoding phase 

requires visual perception, encoding and short-term maintenance of the presented 

stimuli. The response phase also involves visual perception and encoding as well 

as response selection and execution. Based on the current design it is not possible 

to distinguish any of these processes within the current results, but we feel that the 

terms used, describe the most important function associated with the phase. We 

have restricted our analyses of brain activity to the encoding phase and response 

phase, while other studies also included the delay [15,19,21,47]. We decided not to 

separate the encoding phase from the delay, as it is difficult to separate these 

phases other than to vary the length of the delay period, which is not possible in an 

m-sequence design. Notably, current emerging views are that these phases activate 

the same brain systems [48] 

Limitations

Due to limitations in the design practice trials with five-letter memory sets were 

interleaved with novel one-letter memory sets. This may have prevented continuous 

rehearsal of the practiced memory set and consequently slowed down the effect of 

practice on brain function. The period of practice in our study may therefore have 

not been sufficient to establish a potential  relationship between activity and 

performance changes reported in other studies [22,38]. Reaction times on baseline 

trials (one-letter memory set) showed some improvement with practice. Although 

this may indicate that task performance became more proficient over time (i.e, 

regardless of whether stimuli were novel or practiced) it does not affect the main 

conclusion. The design used in our study yields different baselines for encoding and 

response selection activity. Encoding activity was based on the contrast between 

five-letter and one-letter memory sets, while response selection activity was derived 

from the average of all  correct responses in one-letter and five-letter trials. This may 

have affected the level of activity for the different phases. The m-sequence analysis 

also provides an interaction activity map [13]. This map did not show any significant 

activity indicating that interaction effects of the encoding and response phase were 

small. 

Conclusion
This study demonstrates that practice in a visually delivered cognitive task 

predominantly increases efficiency of encoding in primary visual, prefrontal and 
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parietal  cortex. Changes in the cortical  network related to response selection as 

well as performance improvement occur at a later state of practice. Our results 

indicate that automatization causes decreases in brain activity that are 

heterogeneous across functional regions and do not strictly track performance 

improvement. This suggests that cognitive performance is supported by a dynamic 

allocation of multiple resources in a distributed network. Our findings may further 

bear importance in understanding the role of automatization in complex cognitive 

performance, as increased encoding efficiency in early stages of practice possibly 

increases the capacity to otherwise interfering information.
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Abstract

One of the key features of working memory is its sensitivity to practice. For tasks 

that concern material that remains the same, practice leads to improved 

performance. Various studies have shown that brain activity in regions of the 

working memory system(s) declines with practice, and this is taken to indicate that 

performance becomes automatic. Performance is thought to become dependent on 

perceptual and motor systems rather than on working memory. However, it remains 

unclear how tasks are performed after practice, and which brain regions are 

involved. To investigate the nature of changes in brain activity, an fMRI study was 

conducted with 46 healthy volunteers, performing an item recognition task with 

novel  and with practiced items. Brain activity levels were evaluated in brain regions 

and in networks of brain regions that exhibited correlated changes. All  regions of the 

working memory system reduced activity with practice, and there were no regions 

that increased activity, indicating that practiced performance was not supported by 

other regions than the ones involved during the novel items. Multiple regions were 

found where activity was reduced in the novel item task (relative to a rest condition), 

and all of these became less deactivated with practice. Several  networks emerged 

from correlation analyses, including a working memory network, two negative 

networks matching the default mode and a sensory network, a subcortical and a 

cortical motor network. There were no negative correlations between regions within 

networks, indicating that there were no intra-network shifts of activity. The working 

memory network was inversely correlated with the default mode network, and 

positively with the cortical motor network. These findings suggest that activity levels 

revert towards resting state levels with practice in all  regions involved. We postulate 

that involvement of the working memory system becomes near-obsolete because 

the stimuli acquire a new feature which allows for their immediate categorization as 

targets or non-targets. This feature is only utilized when it is required by 

circumstances, in the context of the task. 
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Introduction

Many tasks humans perform become easier to conduct if they can be practiced. 

Performance improves in terms of speed and accuracy, and it becomes easier to 

conduct other tasks at the same time. Extensive research has shown that several 

conditions favor these benefits from practice, and that the behavioral changes are 

accompanied by changes in brain activity [1,2]. Foremost, the effect of practice 

depends on the nature of the task. Tasks involving movement sequences, which are 

abundant in many sports, lend themselves to training, or skill  learning. Improvement 

typically proceeds in a continuous fashion, and can be achieved explicitly, i.e. with 

deliberate monitoring and guiding of the actions, or implicitly where one is not aware 

of what exactly is practiced. Cognitive tasks, where information needs to be 

processed and evaluated in a particular context, are also amenable to improvement 

through training, but here the rate and nature of performance improvement can take 

different forms. With tasks that can be accomplished through different strategies, 

improvements can be stepwise rather than continuous, as better strategies can be 

found and implemented. In this case a switch to another strategy is likely to be 

accompanied by a change in the brain networks used [2,3,4,5,6,7]. Practice then 

reduces activity in areas that initially coordinate the mental processes required to 

perform the task (i.e. cognitive control) while increasing activity in areas that were 

not active before practice [3,4,6,7,8,9]. Tasks that do not allow for multiple 

strategies can be practiced but here it matters greatly whether the material  that 

needs to be processed remains the same (constant) or not (variable) [1,10]. For 

instance, reproducing series of sequentially presented random letters may become 

slightly easier with practice, but it will  remain effortful and slow, compared to 

reproducing one and the same series of letters repeatedly. It is generally thought 

that improved cognitive performance on material that remains the same is linked to 

a shift from controlled processing, which mostly involves working memory, to 

automatic processing where sensory input is seemingly directly classified and acted 

upon through motor programs [10]. This form of learning, which covers concepts 

such as cognitive procedural learning, rule-based learning and automatization, 

plays an important role in everyday life. Even quite complex tasks such as driving a 

vehicle in traffic or typing on a keyboard, improve with practice and with adequate 

amount of practice can be performed concurrent with for instance a conversation. 

Various studies have shown that brain activity declines with practice of constant 

material [1,11,12]. This decline is most prominent in regions that are thought to 

underlie cognitive control mechanisms, and which have been postulated to act as a 

scaffolding network for learning new tasks. The notion of a cognitive control system 

Chapter 3 Practice and the dynamic nature of working memory

49



as serving to shape brain functions to accommodate a novel  task by means of 

monitoring and feedback concerning errors has strong support [1,13,14,15,16]. 

There is no clear indication that practice in these cognitive tasks leads to enhanced 

recruitment of other brain regions such as those involved in perception or motor 

output, which leaves open the question which brain regions perform the task after 

practice. Several scenarios can be considered. First, practice may increase the 

involvement of long-term memory in the task, linking perceptual properties of stimuli 

to particular motor responses [3,4,7,17]. Second, practice may enable direct 

connections between perceptual and motor systems [14,18,19,20,21], increasing 

their involvement. Third, practice may reduce involvement of the initial set of brain 

regions, but not completely, and performance would still  involve the cognitive 

control network [21]. These scenarios represent different neural substrates 

underlying practice effects, all of which may be difficult to detect with fMRI. As 

mentioned, various fMRI studies have only observed an activity decline 

[11,22,23,24], but subtle shifts within or between networks may well have gone 

unnoticed due to limited statistical power associated with relatively low fMRI 

sensitivity for neural activity and small numbers of subjects. Hence, it remains 

unclear if a decline of activity in the cognitive control  network is paralleled by subtle 

compensatory increases in task-related areas. Empirical examination of the three 

scenarios can elucidate the mechanisms by which automaticity, a fundamental 

aspect of brain function, is accomplished.

In the present study we investigate changes in brain activity following practice of a 

working memory task, applying an approach that maximizes sensitivity for subtle 

effects. We recruited a large sample of healthy subjects, and obtained whole-brain 

fMRI scans on a 3T scanner with an 8-channel  head coil to obtain a high sensitivity 

for signal  changes. In addition, we made use of the variability in practice-induced 

effects on brain activity among subjects to assess changes within and across 

networks. A brief period of pre-scan training, too short to achieve full automaticity, 

results in differences in performance across subjects that reflects the rate or speed 

at which automaticity is achieved, and can thus be used as a cross-sectional 

approximation of the practice effect. 

It was reasoned that the different scenarios would be reflected in different findings. 

A shift from one set of regions to another set would signify that practice leads to a 

change in the brain areas engaged (scenario 1). Alternatively, activity could shift 

within the initially active network(s) from cognitive control regions to perceptual and 
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Table 1. Demographic variables

N Mean SD Range

Male 23

Female 23

Age (years) 30.8 9.50 20-51

EHI index 0.88 0.16 0.40-1.00

Years of Education 16.66 2.18 12-22

motor systems (scenario 2). The third scenario would predict that the same 

networks are involved from beginning to the end of training, and the only change is 

an improvement of the efficiency with which regions communicate, in which case 

brain activity would decline coherently in all regions. 

We first addressed the question whether there are brain regions that become more 

active after practice. Next, we addressed the question whether practice causes a 

shift of activity within the networks involved in performing the task. For this we first 

needed to identify the networks and assess interactions within those. We reasoned 

that regions that respond to practice ‘in concert’ (i.e. are correlated in their degree 

of signal  change) would be part of the same network. Importantly, this approach 

made it possible to assess potential  shifts of brain activity within networks, following 

practice. If particular regions would gain significance, one would expect those to 

correlate negatively with others that decrease their involvement, even if activity 

declines in all regions.

Methods

Participants

46 healthy volunteers participated in the study (details given in table 1). All subjects 

were recruited through the Normal Volunteer Office of the National Institute of 

Health. Prior to scanning all  participants were screened for a history of psychiatric 

and/or neurological illness, active substance abuse or dependence and significant 

abnormalities on a screening MRI examination. Handedness was assessed by 
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Figure 1. Cognitive paradigm 

The temporal  sequence is shown for the Sternberg automatization task. Each epoch starts  with presentation of 

the target set and is followed by ten probes. Subjects press the left button of a button-box  if the probe letter 

belongs to the set of targets and press the right button if the probe letter does not match the set of targets. 

means of the Edinburgh Handedness Inventory [25]. The fMRI examinations were 

conducted under a protocol (95-M-0085) that was approved by the Institutional 

Review Board of the National  Institute of Mental Health. All subjects gave written 

informed consent prior to participation in this protocol.

Materials 

The task used in the fMRI experiment to test automatization is a modified version of 

the Sternberg paradigm (STERN). Subjects were instructed to memorize five letters 

that were visually presented (memory set, presented for 5600 ms). The memory set 

was followed by presentation of a series of ten individual letters (probes, each 

presented for 1000 ms followed by a fixation cross for 1800 ms), together forming 

an epoch. Participants were instructed to decide as fast as possible whether the 
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probes belonged to the memory-set (target) or not (non-target) (Figure 1). Overall, 

fifty percent of probes were targets and 50 percent were non-targets.

The task consisted of three conditions differing in type of memory set, being Novel 

(NT), Practiced (PT) and Control (CT), and rest periods of equal duration. 

Conditions consisted of 48 epochs each, divided over 12 fMRI runs. Thus, each 

fMRI run contained 4 epochs of NT, PT, CT and rest, which were presented in a 

semi-randomized order. In the NT the stimuli  in the memory set in each epoch were 

randomly chosen from a set of ten consonants. In the PT one and the same 

memory set was presented in all  epochs. This memory set was presented prior to 

the scan session where subjects practiced five runs of 100 PT probes during 25 

minutes. In the CT the memory set consisted of one and the same vowel in all 

epochs, presented as an array of five (eg ‘AAAAA’) to maintain the same visual 

input as NT and PT. 

To avoid interference, the stimuli  used for memory sets and probes did not overlap 

between conditions. This was accomplished by reserving 10 consonants of the 

alphabet for NT and the remaining ten for PT. For CT two vowels were used, one of 

which always was the target (memory set) and the other the non-target.

The CT differed from the one used in previous studies where an arrow was used), 

and was chosen for its better match to NT and PT in terms of stimulus processing. 

This way, the CT essentially represents a fully automated version of the STERN 

task.

Procedure

The stimuli were generated by a standard desktop computer running Presentation 

software (www.neurobs.com) and presented through a projector on a through-

projection screen. A mirror attached to the head coil enabled subjects to see the 

screen positioned near the feet. Responses were recorded through a fiber-optic 

response box. Subjects were instructed to press the right button in response to a 

target stimulus and the left button in response to a non-target stimulus. Accuracy 

(percent correct) was computed for each task, and mean reaction time (RT) was 

calculated over all  correct responses per task. Mean RT and accuracy scores were 

tested with repeated measurements General Linear Model (NT, PT and CT as 

within-subject factors) and paired t-tests. Only RT was used for fMRI analysis, as 

accuracy was highly skewed towards 100% correct, and failed tests of normal 

distribution even after transformations.
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Figure 2. Performance 

The graphs show behavioral fMRI-scan performance data. Mean reaction times (± SEM) of correct target 

responses and mean correct responses as percentage of all trials (± SEM). 

fMRI acquisition

All fMRI studies were performed on a standard 3-T  GE Scanner (General  Electric 

Systems, Milwaukee WI). Whole brain fMRI data were acquired with a GE-EPI RT 

(Milwaukee, WI) sequence (24 contiguous slices, TE = 30, TR = 2000, flip angle = 

90, FOV = 24, voxel size = 3.75 x 3.75 x 6, matrix = 64 x 64). 

Data Preprocessing and Statistical Analysis

SPM2 software (Wellcome Department of Imaging Neuroscience, London http://

www.fil.ion.ucl.ac.uk/spm) was used for image processing and statistical analysis. 

All  EPI images were realigned to the first image in the series. EPI images were 

spatially normalized to a standard template. All normalized EPI images were 

spatially smoothed using an isotropic Gaussian filter (10 mm FWMH) and high-pass 

filtered. Task-related activity during NT, PT and CT was modeled as a block design 

using the general  linear model in SPM2 with the canonical hemodynamic response 

function. Contrast maps were generated for each condition (NT vs Rest, PT vs Rest 

and CT  vs Rest), for NT versus PT and for PT versus NT (primary contrasts of 

interest). All individual contrast images were then entered into second-level 

analyses with subject as a random factor. A more stringent threshold of t=5.5 

corresponding with a p-value of 0.01 (corrected for multiple comparisons) was used 

to bilaterally separate inferior and superior frontal clusters of activity in the NT-PT 

contrast image. A more stringent threshold of t=5.5 corresponding with a p-value of 

0.01 (corrected for multiple comparisons) was used to bilaterally separate inferior 

and superior frontal clusters of activity in the NT-PT contrast image. We determined 
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Figure 3. Regions of Interest 

Group contrast images (average contrast map of all 46 subjects) showing the regions of interest. Contrasts were 

thresholded with t=4.5. The top panel shows the NT vs. PT contrast image. Red areas show the cortical  network 

that was more active in NT (NT>PT). Blue areas show the cortical regions that were more active in PT (inverse 

contrast PT>NT). The bottom panel  shows areas in red that were commonly active in the three task conditions: 

NT!PT!CT (i.e. the intersection of NT, PT and CT vs. rest). The numbers in the slices correspond to MNI z-

coordinates. Slices are in radiological orientation (left side is right hemisphere and vice versa). 

the loci of the MNI-coordinates of the activation peaks and subsequently used 

masks from the WFU pickatlas [26] to separate the adjacent clusters of activity 

within this large volume of activity. To identify the regions that are active during all 

three tasks we combined the NT versus rest, PT versus rest and CT versus rest 

group maps (NT!PT!CT) This analysis first involved separate one-sample t-tests 

for the each task versus rest contrasts. The three group contrasts were combined in 

xjView (http://people.hnl.bcm.tmc.edu/cuixu/xjView) to create a new map consisting 

of regions that were significantly active in NT, PT  and CT (each p<0.05 family-wise 

error-corrected and more than 5 contiguous voxels). The NT!PT!CT contrast 

yielded an extensive cortical  cluster of motor regions, extending from pre-motor to 

parietal regions with multiple peaks of activation (see table 2 and figure 3). 

Three sets of ROIs were obtained, i,e., positive ROI’s (NT>PT), negative ROI’s 

(NT<PT) and common ROI’s (NT AND PT > rest). Parameter estimates (b-values) 

were extracted with MarsBar [27] from individual NT, PT  and CT contrast images, 

and were averaged for all voxels in each of the ROI’s in the three sets. 
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Table 2. Regions of interest

Region Abbreviation Brodmann area Number of voxels X Y Z Maximum t-

value

Positive ROI’s

P1 Left Cerebellum LCer - 76 -52 -52 -20 7.76

P2 Left Inferior Frontal Gyrus LIFG 44,45,47 62 -38 26 -5 7.37

P3 Left Middle Frontal Gyrus LMFG 9,46 500 -49 15 25 12.08

P4 Left Parietal Cortex LPar 7,40 231 -34 -64 50 11.60

P5 Medial Frontal Cortex MFC 6,8 68 -4 23 55 6.53

P6 Right Cerebellum RCer - 34 38 -67 -35 6.33

P7 Right Inferior Frontal Gyrus RIFG 45,47 62 28 26 -5 7.01

P8 Right Middle Frontal Gyrus RMFG 9,46 184 49 23 35 6.18

P9 Right Parietal Cortex RPar 7,40 147 38 -60 45 10.37

Negative ROI’s
N1 Anterior Cingulate ACC 24,32 412 15 49 0 8.52

N2 Left Hippocampus LHip 35,36 36 -26 -30 -15 8.82

N3 Left Insula LINS 13, 53 -41 -11 -5 7.04

N4 Left Middle Temporal Gyrus LMTG 21,22,39 67 -49 -67 25 8.03

N5 Left Superior Frontal Gyrus LSFG 8 51 -19 45 55 7.45

N6 Left Superior Temporal Gyrus LSTG 37 5 -38 -15 -20 5.69

N7 Posterior Cingulate PCC 23,29,31 575 -11 -60 25 10.15

N8 Right Insula RINS 13,20,21,22, 19 45 -7 -20 7.35
N9 Right Superior Temporal Gyrus RSTG 38,40,43 134 56 -4 -5 7.59

Common ROI’s

C1 Left Thalamus LThal - 27 -11 19 10 7.90

C2 Right Cerebellum RCer - 241 30 -56 -30 12.28

C3 Left Putamen / Globus Pallidus LPut/GP - 56 -26 0 5 7.72
C4 Left Precentral Gyrus LPreC 4 573 -38 -7 60 10.97

C5 Left Premotor cortex LPreM 6 -7 4 55 9.22

C6 Left Postcentral Gyrus LPostC 5 -4 -22 60 9.95

C7 Left Parietal Cortex LPar 7,40 -49 -30 55 7.90

ROI correlation analyses

After determining the three sets of ROI’s, we assessed correlations between 

regions within each ROI set, correlations across and between ROI sets and 

correlations between ROI’s, sets and RT. Correlations were computed between 

regions within these sets, and between regions across sets, for the NT-PT values in 

ROI’s. Significance thresholds for correlations were based on a Bonferroni 

correction for the total  number of correlation computations, i.e. 9 positive ROI’s, 9 

negative ROI’s and 7 common ROI’s amounting to 271, at p<0.05 two-sided. 

Subjects differ in the average strength of activation, thereby potentially enhancing 

correlations between all ROI’s. Therefore, all analyses were conducted with Partial
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Figure 4. Practice and brain activity

The graphs show top left panel: The level of activity in the positive ROI’s for NT and PT. For list of abbreviations 

see table 2). Activity was significantly enhanced during NT in all  regions (*p<0.0001, uncorrected). 2. The level of 

activity in the negative ROI’s. Activity during NT was significantly reduced in all  regions (*p<0.0001, uncorrected) 

3. The level of activity in the common ROI’s. The y-axis shows mean parameter estimates (b-values) and 

represents level of activity. 

correlation, using the grand mean b-value for all ROI’s within a set across CT, PT 

and NT as covariate. Correlations patterns were then verified by means of factor 

analysis within ROI sets. Finally, for the networks defined by these tests, mutual 

relationships were assessed.
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Figure 5. Positive and negative regions of interest

Surface representation of the positive (red) and negative (blue) regions of interest. Numbers correspond to those 

in Table 2. Negative regions 2, 3 and 6 are below the surface (see figure 3). 

Results

Performance

Reaction time (figure 2) differed significantly between the three tasks, as indicated 

by a significant main effect of task (F(2, 44)=170.53, p<0.0001). Posthoc t-tests 

confirmed longer RT for NT than for PT and CT, and for PT than CT (t(45)>11, 

p<0.001). Accuracy (figure 2) was also significantly different in NT, PT and CT (main 

effect of task: F(2,90)=6.50, p=0.002). PT performance was better than NT 

(t(45)=2.27, p<0.03) but not better than CT. The graphs (figure 2) show that PT 

reaction time was halfway between NT and CT, indicating that full automatization 

had not yet been achieved.

Brain Activity

Positive regions of interest (NT greater than PT)

The contrast (NT>PT) shows areas that were more active during NT, including left 

cerebellar cortex, left inferior frontal gyrus, left middle frontal gyrus, left parietal 

cortex, left thalamus, medial frontal cortex right cerebellar cortex, right inferior 
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Figure 6. Interactions within and between regional networks

Correlations within regions (left 4 columns) and between (right column) regions. Left 3 columns display 

correlations of task versus rest values (not corrected for mean activity  level, see text). Fourth column displays 

correlations of practice-induced signal change (NT  - PT), corrected for mean activity of CT, PT and NT versus 

rest. Right column display correlations between regions across networks, corrected for mean activity of CT, PT 

and NT versus rest. Positive ROIs (NT > PT) are displayed in red, negative ROIs (NT < PT) in blue, and the 

common ROIs (NT> rest AND PT  > rest) in purple. Numbers correspond to regions listed in Table 2. Right side is 

left hemisphere. 

frontal  gyrus, right middle frontal  gyrus and right parietal cortex (see figure 3 and 

table 2). These areas are consistent with the cortical  network supporting WM 

function [11,28,29,30,31] and replicate our previous findings of the difference in the 

level of activity in working memory areas between novel  and practiced performance 

(figure 4). 
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Figure 7.

Graphs depicting clustering of regions within their ROI sets, obtained by Principal Component Analysis (Varimax 

rotation with Kaiser normalization). For each ROI the loading on the two factors is shown. Explained variance for 

the 2 factors is 64%  for the positive (A) and the negative (B) ROI set, and 71%  for the common ROI set (C). 

Dotted ovals indicate the ROIs (and the network abbreviation) collapsed for further analyses.
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Figure 8. correlation between positive network activity and level of performance 

Scatterplot of the decrease in reaction time on the Sternberg task following practice (NT-PT, displayed on the x-

axis) versus the decrease in the positive Regions of Interest network following practice (y-axis). 

Negative regions of interest (PT greater than NT)

Contrasting PT directly with NT revealed a set of regions including anterior 

cingulate cortex, left hippocampus, left insular cortex, left middle temporal gyrus, left 

superior frontal gyrus, left superior temporal gyrus, posterior cingulate cortex, right 

insular cortex, right superior temporal gyrus (table 2, figure 3). Importantly, signals 

in these ROI’s exhibited negative values relative to rest during NT and returned 

towards baseline after practice (figure 4). 

Regions common to NT and PT 

To investigate whether automatization was associated with activity changes in task-

related areas we determined the intersection of common NT, PT and CT  activity 

(NT!PT!CT) to localize the regional overlap between the tasks. This resulted in a 
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network that partly overlapped with the working memory network as described in 

the previous section (see figure 3 and 4, and table 2). The common network 

involved left thalamus, right cerebellum, left putamen / globus pallidus, left premotor 

cortex, left superior parietal cortex, left postcentral gyrus and left precentral gyrus.

Networks

Correlations between and across regions within the ROI’s identified in the three 

contrasts (figures 3 and 5) were computed, using partial  correlation analysis 

correcting for mean activity level  (average of all tasks versus rest contrasts) across 

all  ROI’s. Significance threshold was p<0.05 two-sided, Bonferroni corrected for all 

pairwise comparisons (i.e. 271). For each ROI set, a factor analysis was performed 

to evaluate presence of separate networks within ROI sets (Principal Components 

with Varimax Rotation). Figure 6 displays all the correlations within and across sets 

of ROI’s for the NT versus PT contrast. Correlations for the separate task contrasts 

are displayed also, for comparison. In supplementary figure S1 the regions are 

displayed schematically, showing which regions are significantly different from rest 

for each task.

Positive regions of interest

Correlations were strongest between the regions known for their involvement in 

WM, being bilateral  inferior and middle frontal gyrus, left and right superior parietal 

cortex, and medial  frontal gyrus. Value distributions and scatterplots are show in 

supplementary figure S2. In addition, the left cerebellum/fusiform gyrus was also 

strongly correlated. Factor analysis confirmed existence of only one network (P1), 

encompassing all ROI’s except for the right Cerebellum (see figure 7).

Negative regions of interest

Correlations were found in two apparently separate sets which did not evidence any 

relationship with each other. One set consisted of anterior and posterior cingulate, 

left middle temporoparietal cortex and left superior frontal gyrus (N1). The other 

consisted of bilateral insula/parietal regions and superior temporal gyrus (N2). One 

region, the left hippocampus, did not evidence any correlation with other regions. 

The existence of these two separate networks was confirmed by factor analysis 

(see figure 7).

Common regions of interest

Strong correlations were found between left premotor, precentral  and postcentral 

cortex, forming a cortical motor set (C1). A second set consisted of the left putamen 
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and the thalamus (C2). The existence of these two separate networks was 

confirmed by factor analysis (see figure 7), be it that left parietal  cortex was 

included in C1 and right cerebellum was included in C2.

Across Networks

Correlations between regions across ROI sets were few (figure 6). No correlations 

exceeded the threshold between the positive and the negative ROIs, suggesting 

that the sets are not strongly linked to each other. Common ROI’s exhibit positive 

correlations with positive ROI’s, i.e. between anterior cingulate and left premotor 

cortex, and within left parietal  cortex. The common ROI in left postcentral gyrus 

correlated with the negative ROIs in insular cortex bilaterally.

Given indications that there were several distinct networks, correlations between 

networks (with values averaged across ROI’s within networks as described above) 

were assessed (supplementary figures S3, S4). Corrected for the 5 comparisons 

and for overall activity (as above), P1 was negatively correlated with N1 (r=-0.41), 

and positively with C1 (r=0.54). C1 was also positively correlated with N2 (r=0.48). 

All other correlations were below |0.18|.

Correlations with performance

No regions of any of the 3 ROI sets correlated with reaction time or accuracy when 

correcting for numbers of comparisons. Of the networks, only P1 correlated with 

performance, both in reaction time (r=0.32, p=0.03, all other correlations below |

0.17|), and accuracy (r=-0.31, p=0.035, all  other correlations below |0.18|), 

indicating that a larger reduction in activity in P1 following practice coincided with a 

larger reduction in reaction time and a larger improvement in accuracy (figure 8).

Discussion

We investigated the nature of the changes in brain activity during a working memory 

task, following practice. The task does not allow for a change in strategy, as is 

indicated by the fact that performance improves in a continuous manner rather than 

stepwise [11]. The main question pertains to the regions that are involved in the 

initial  and the trained phase. With practice, activity decreased in all  regions 

associated with working memory, as was shown by previous studies with this or 

similar tasks [2,11,12,23,32,33,34,35,36]. A set of regions was found where the 

BOLD signal  increased with practice, but in all  of these the signal  was negative 

relative to rest. Hence the novel task caused a strong decrease in activity in this set, 

which was ameliorated by practice. Activity in motor regions remained mostly 
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constant across tasks. Given the large sample size and the high sensitivity for 

BOLD signal change, the chances of failing to detect subtle changes (i.e. false 

negative findings) are minimized. The main finding hence supports the notion that 

practice does not lead to a shift from one network to another. 

Shifts of involvement within the initially active network would be an alternative 

scenario, for instance an increasing dependence on perceptual or motor regions 

[14,16]. We assessed correlational structures within each of several sets of regions 

that emerged from the statistical image analyses, i.e. where signal  decreased with 

practice (P1), where it increased (N1 and N2), and where signal was elevated 

during all  tasks (C1 and C2). Partial correlation and factor analyses revealed strong 

correlations between regions within the sets, in how they respond to practice 

(Figure 7). Important for our study objective, there were no significant negative 

correlations within sets, which should be present if activity shifts between regions 

within a set. Hence, our findings also do not support the notion that specific  regions 

within the initially active network(s) gain in involvement. The data do support the 

scenario where practice leads only to a decline of involvement of the WM system. 

Regions of interest were determined by contrasting the novel  with the practiced 

task, and by conjunction of all tasks. Cross-correlation (corrected for overall 

magnitude of activity) and factor analyses indicated that there were several  distinct 

sets of correlated regions. Regions that were active during all three tasks included 

the motor regions. Factor analysis identified two separate networks, a neocortical 

and a subcortical network. The positive regions that exhibited a decrease in activity 

following practice, exhibited strong correlations with each other, except for the right 

cerebellum. The left cerebellum ROI extended into the fusiform gyrus, which is likely 

involved in decoding the lexicographic stimuli [37,38]. The left parietal  cortex seems 

to be the most dominant node in the positive network in terms of strength and 

number of correlations. Parietal, dorsolateral prefrontal and anterior cingulate cortex 

are recognized as the critical  brain areas for working memory [39], and reproducibly 

activate with the sternberg task [11,12,40]. Regions are more strongly active in the 

left hemisphere, in accordance with the notion that laterality is to some extent 

related to the type of stimulus material  (i.e. verbal) [30]. Ventrolateral prefrontal 

cortex extended into the operculum bilaterally, along the posterior wall of BA 44. 

This set of regions has also been coined the ‘Cognitive Control Network’ (CCN) 

[13], exhibiting correlated activity both during rest and during performance of a WM 

task. On average, activity in the WM network decreased by about 90% after 20 

minutes of practice. Activity in the network differed from baseline (rest) only during 
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the novel task, and not during the practiced or the control task. The decrease in 

activity following practice has previously been shown to partially predict dual-task 

performance [12], suggesting that the decrease represents a decline in demand for 

WM resources and a subsequent increase in resources available for other tasks.

Although we did not find evidence of new areas selectively involved in practiced 

performance, a network of regions emerged when the practiced task was 

contrasted with the novel task that exhibited strong task-induced deactivation that 

was attenuated after practice. Factor analysis indicated that there were two 

separate, uncorrelated, sets of regions. The first set comprises anterior cingulate, 

posterior cingulate, left temporoparietal cortex and left superior frontal  cortex, and 

matches the network that is active during a conscious resting state and which is 

often referred to as the default mode network (DMN) [41,42,43,44]. Signals in the 

DMN regions are correlated when the subject is at rest, both in terms of low 

frequency coherence [43,45] and of pattern similarities as observed with 

Independent Component Analysis [41,46], and seed-voxel correlation analyses 

[47,48].  Although the functionality of the default network has been debated [49], it 

has been argued that regions in this network are involved in sensory and emotional 

processing [43,45] that may interfere with cognitive performance (e.g inner speech, 

self-referential thoughts) [42,44], and is therefore inhibited during demanding 

cognitive tasks. The DMN has been shown to decrease in signal proportionally to 

task difficulty [50], which is seen as evidence for reallocation of processing 

resources away from the DMN, toward the task-relevant regions. In the present 

study, practice reduced deactivation by 75%, but deactivation remained significant 

both during the practiced and the control task.

Factor analysis revealed a second set of negative regions consisting of bilateral 

auditory and posterior insular cortex (N2). This network may deactivate to inhibit 

processing of auditory (notably scanner noise) and of somatosensory input. 

Posterior insula is thought to process interoceptive input, thereby representing the 

‘physiological condition of the body’ [51]. It has also been linked to ‘stimulus 

independent thought’ [52], which emerges when task demands decline. Mason 

found a correlation between activity in insular cortex and the amount of 

daydreaming subjects reported. The most posterior aspect, parietal operculum, 

matches the location of SII, the secondary somatosensory area. This region can be 

activated bilaterally by electrical stimulation of the right hand [53]. Interestingly, this 

network operates independent from N1 in the present study, and does not respond 

proportionally to cognitive demand. Practice reduced the magnitude of deactivation 
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in this network by 55%, but deactivation remained significant during the practiced 

task and during the control task.

As can be seen in figure 6, there were very few correlations between regions of 

different networks. There were, however, robust correlations between whole 

networks (supplementary figure 3 and 4). The P1 network exhibited clear 

correlations with N1 and the neocortical motor network. The decline of WM activity 

with practice was accompanied by a proportional attenuation of deactivation in N1. 

In other words, both networks moved towards resting state activity levels in concert. 

The neocortical motor network C1 decreased activity in concert with the P1, but it 

remained significantly active (compared to rest) during all  tasks. This correlation 

may reflect the decrease in reaction time as practice reduces the need for 

controlled processing. The C1 network was also correlated positively with the 

second negative network N2. The subcortical  motor network (C2) did not covary 

with any of the other networks. 

The overall pattern may be summarized as follows: Initially, when the memory set is 

new a WM network is active, and a DMN and a sensory network are deactivated. 

With practice, WM network involvement declines, and the DMN network increases 

activity proportionally. Performance improves, and activity in the neocortical  motor 

network declines, but moderately. The sensory network also becomes more active, 

but not proportional  to the WM or DMN network. One reason may be that the 

degree of deactivation is dominated by subject-specific  strategies, for instance by a 

preference for phonological  versus visual maintenance of the memory set.  

Importantly, performance improvement is associated only and be it weakly, with the 

decline of activity in P1, not with any other network. The weak association between 

brain activity and performance is in line with our previous study, where the drop in 

brain activity in the WM network was shown to reflect an individuals ability to 

perform multiple tasks, and did not correlate with improvement in reaction time [12].

Based on the seminal work of Sternberg [54], we can assume that in the novel task 

the probe is compared to each of the items in the memory set. Sternberg showed 

that reaction time increases proportional  to the number of items in the memory set. 

Recalling the memory set for comparison to the probe is accomplished by WM, and 

is thought to be achieved by bringing the set that is held available in one of the 

slave systems, into the central arena of WM, the central executive [55]. With 

practice of the same memory set, the steady decline in reaction time is thought to 

reflect facilitation of recalling the memory set for each probe, potentially by shifting 
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to retrieval from long-term memory [3,4,7]. One would expect to see an increase in 

activity in regions associated with long-term memory, such as hippocampus, but this 

was not observed in the present study. The items also become strongly associated 

with one another as to become a single ‘chunk’ of information [56,57]. However, 

faster retrieval  does not necessarily explain why reaction time decreases the way it 

does. We have shown previously that brain activity associated with holding the 

memory set online decreases within a few minutes if not less, whereas brain activity 

associated with processing the probes declines very slowly over time, matching the 

improvement in reaction time better [40]. Alternatively, the process of comparing the 

probe to memory set items is accelerated. It is hard to explain why this would only 

occur for practiced items, unless the nature of the probes changes. We hypothesize 

that with practice, the need to sequentially compare the probe with memory set 

items declines because the internal  representation of probes themselves acquire a 

new feature, namely that of being a target or a non-target. This feature is then 

utilized when circumstances require so, but not when the context is different. 

From the present and previous studies it is clear that a cognitive control network 

[13] as well  as a default mode network [48,50] respond proportionally to working 

memory load. The CCN is indispensable for new tasks, as evidenced by effects of 

virtual lesions [58,59], is called for to shape responses to stimuli  and retreats once 

performance is automatic. This is in line with the notion of WM emerging from 

interactions between motor and/or sensory pathways and association areas such as 

the prefrontal  and parietal  cortex [14,16,60]. Moreover, if practiced performance is 

no longer correct (e.g. when rules are changed, and for instance targets become 

non-targets), the CCN is likely to re-engage, potentially to overrule automatic 

responding. Interestingly, part of the CCN, notably the parietal cortex, as well  as the 

whole DMN are still involved in the control task, suggesting that both are engaged 

for the purpose of maintaining the particular context and for reducing interference 

from internal and external sources respectively.

One of the important questions that remain is how the context of the task is 

represented and which brain regions maintain it. The context of a task instruction is 

critical because the (practiced) stimuli only generate a motor response when called 

for by the task at hand. The alphabetical stimuli used in the present study are used 

extensively in everyday life and do not generate motor responses during reading. 

Another question is what makes the WM system disengage from the task. One 

could imagine that the WM system is ‘bypassed’ by immediate classification based 

on a newly acquired feature of the probes, and ceases coordination of processes. 
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These questions may require additional techniques such as virtual lesions, and 

more sensitive and detailed measures of brain activity such as electrocortical 

recording.

In conclusion, practice of a task with a fixed set of stimuli  leads to a significant 

reduction in brain activity in working memory regions. We found no evidence of 

either a shift to another network, or a shift in activity within the initially active 

network. Regions of the motor system remained active during all tasks. Several sets 

of regions were observed that formed correlated networks, all of which reverted 

towards resting state activity with practice. We conclude that following practice the 

working memory network is no longer involved because stimuli  have acquired a 

novel feature that allows for rapid classification. 
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Supplementary materials

Figure S1

Color indication of significance of task versus rest. Positive ROIs (NT > PT) are displayed in red, negative ROIs 

(NT < PT) in blue. Colored regions are significantly (de)activated versus rest (p<0.05). Grey circles are not. 

Numbers correspond to regions listed in Table 2. Right side is left hemisphere. Common ROIs are not displayed, 

they are significant in all tasks.
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Figure S2

Scatterplots of positive ROI’s versus each other, for the NT-PT change in brain activity. Red frames indicate 

significant correlations (see text for details). Diagonals display distributions of values across subjects, within 

ROI’s.
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Figure S3

Scatterplots of networks versus each other, for the NT-PT change in brain activity. Red frames indicate significant 

correlations (see text for details). Diagonals display distributions of values across subjects, within networks.
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Figure S4

Mean levels of activity change (NT minus PT, displayed on y-axis) for all subjects. Values are shown for the 5 

networks on the x-axis. Significant correlations between networks are displayed in the figure. 
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Abstract

Practice substantially affects performance and brain activity in working memory 

regions, especially when a task allows for automatization. Yet much remains 

unknown about the functional importance of working memory for the development 

of automatization. Here we show that working memory enables the development of 

automatization and is no longer required when this development is completed. In 

this study we use fMRI-guided transcranial magnetic stimulation to assess the 

critical role of working memory in automatization. A modified Sternberg paradigm 

was used with a novel task, a practiced task and a control task with overlearned 

information. Individual  fMRI maps were used to localize dorsolateral prefrontal and 

parietal  areas where activity decreases with practice. These regions were 

stimulated with real  and sham magnetic stimulation to investigate the effects of brief 

disruption of working memory on task performance. Novel task accuracy for target 

responses was more susceptible to interference than practiced task accuracy. This 

shows that automatization induces a gradual decline in cognitive control. Accuracy 

of the control  task with overlearned associations was not affected by brief disruption 

of brain activity. This suggests that with sufficient practice, performance may 

become independent of cognitive control. We propose that working memory 

enables the development of automatization by restructuring of task-relevant 

information that allows more efficient implementation of internal task goals.
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Introduction

Practice substantially affects performance and underlying brain activity, especially 

when a task allows for automatization [1]. These tasks typically involve learning 

associations between sensory input and (motor) actions [1,2]. Previous studies 

have demonstrated the profound effects of automatization on brain activity in 

working memory regions [3,4,5]. Yet much remains unknown about the functional 

importance of working memory for the development of automatization. 

Working memory refers to the active maintenance and utilization of internal task 

goals or rules, in support of complex cognitive performance [6].  Practice decreases 

activity in working memory regions across different types of cognitive tasks, 

including verb generation [7], mirror reading [8], delayed response tasks [3,9,10,11] 

and motor sequence learning [12,13]. This has been interpreted in terms of reduced 

demands on cognitive control that support early learning or novel task performance 

[2]. Practice-induced activity decreases in working memory have also been linked to 

one’s capacity to perform multiple tasks at the same time [4]. Understanding the 

functional  importance of working memory for automatization can clarify the neural 

mechanisms by which automatic  behaviors are accomplished and how this 

contributes to increasing processing capacity with practice.

The objective of the present study is to investigate the functional importance of 

working memory in the development of automatization with practice. Here we build 

upon on previous work where we investigated the effects of automatization on brain 

function by means of a modified Sternberg paradigm [3,4,5]. This paradigm includes 

a novel  task, that requires memorizing and responding to novel  stimuli, a practiced 

task with stimuli that remain consistent over the course of performance and a 

control  task with similar visual  and motor requirements. In these previous studies 

we used functional  MRI to localize changes in brain activity patterns associated with 

automatization. This however does not permit to determine the critical contributions 

of working memory to automatization. In the present experiment we use transcranial 

magnetic  stimulation (TMS) to assess the critical role of working memory in 

automatization. TMS can briefly disrupt brain activity and thereby determine a 

causal relationship between cortical function and behavior [14]. 

The application of TMS in working memory research has increasingly gained 

interest in the past few years (see Motthagy [15] for a review). Recently a number of 

studies have confirmed the functional importance of left dorsolateral prefrontal and 

parietal  cortices for (verbal) working memory [16,17,18,19]. These studies show 
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that brief disruption of neural  activity in these regions significantly impairs working 

memory performance. In our previous work we consistently demonstrated that the 

left dorsolateral prefrontal  and parietal regions are part of a set of brain regions 

where activity decreases with practice [3,4,5]. We therefore stimulate these regions 

in the present experiment to investigate the functional  roles of these regions in 

automatization. 

We hypothesize that during novel performance, prefrontal  and parietal  regions 

support the development of automatization. Magnetic stimulation was applied after 

presentation of a probe stimulus (probes were presented in a series after 

presentation of the memory set, see methods for details). We expect that this will 

briefly disrupt retrieval  of the memory set that is kept active in mind. Consequently, 

the memorized stimuli  may be temporary unavailable or inaccessible [20]. We 

expect that this will  especially affect target stimuli, as they cannot be reliably 

compared to the temporarily unavailable memory set. 

Our previous work and other studies show that brief practice predominantly 

increases encoding efficiency [5,10,21] and only modestly affects response 

selection [5]. This suggests that with practice, working memory is no longer required 

to modify or update task information, but may still  be activated to access or retrieve 

task-relevant information to generate a decision. We therefore hypothesize that 

interference with working memory will  significantly affect practiced task 

performance, but not as much as for novel performance. 

We assume that the control task does not involve working memory retrieval, as 

subjects respond to arrows. This task may be considered fully automatic, as the 

relationship between stimuli and responses in this task is highly overlearned. 

Hence, it is possible that control task performance is independent of cognitive 

control  [22,23]. Brief disruption of working memory may therefore not significantly 

affect performance on the control  task. Nonetheless, even when overlearned, 

performance on the control task is determined by the context of a task instruction in 

an experimental  setting. Theories on cognitive control  suggest an important role of 

working memory in context representation [24,25]. If working memory enables 

automatization by providing this context, it is also possible that brief disruption of 

working memory will affect performance on the control task.
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Figure 1.

The temporal  sequence is shown for the Sternberg task. Each run starts with the presentation of the target set 

and is followed by ten probes. Subjects press a left button to targets and a right button to distracters. For NT, the 

target set was different in each run. The set with target letters was the same in each PT run. For CT the target set 

consisted of two arrows (< >) and probe stimuli were single arrows (< or >). The task involves 8 runs of NT, PT 

and CT in a pseudorandom order. 

Material and Methods

Subjects

Twenty-one adult volunteers (11 males; mean age= 22.8 years; SD=3.03 years, 

range = 19-31 years) participated in the study after having given written informed 

consent. Subjects were recruited from the university campus through advertisement 

and rewarded for their participation. The M.I.N.l. International Neuropsychiatric 

Interview (M.I.N.I.) [26] was used to exclude subjects with a history of neurological 

illness, psychiatric disorders or substance abuse. All participants were tested for 

right-handedness using the Edinburgh Handedness Index (EHI) [27]. The study was 

approved by the local  medical ethics committee, in accordance with the Declaration 
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of Helsinki (2004). Participants tolerated the TMS protocol well and did not report 

any lasting adverse effects.

Cognitive Task

The cognitive task involved a modified version of the Sternberg paradigm (see also 

Jansma et al. [3] and Ramsey et al. [4]). Subjects were instructed to memorize a set 

of five letters and subsequently respond to a series of ten probes to indicate 

whether they matched the memory set (target) or not (distracter), by making a left or 

right button press (Figure 1). The cognitive paradigm includes a novel (NT) and a 

practiced task (PT). For NT, the consonants in the memory set were randomly 

chosen from an array of ten consonants in each run. During PT memory sets 

involved a fixed set of consonants and were selected from the ten consonants that 

were not used in NT. The remaining five consonants served as distracter stimuli. In 

addition, a control  task (CT) was included during which subjects responded to the 

symbols < and > by making left and right button presses respectively. Subjects first 

performed a training session to practice five series of 100 PT  stimuli  (approximately 

25 minutes), to induce automatization.

Experimental Procedure

The experiment included three experimental sessions; one fMRI session and two 

separate TMS sessions for frontal and parietal stimulation on separate days. Each 

TMS session included real TMS and sham stimulation. Prior to each experimental 

session, subjects performed the training session. fMRI was always performed in the 

first session, to acquire an individual  activity map that served to localize the regions 

for TMS stimulation. All task versions used in the experiment were programmed in 

Presentation 9.9. running on a Windows operating system. For both the fMRI and 

TMS sessions, the task was presented in eight runs of each condition (NT, PT, CT 

and rest) in a pseudorandom order. Each run included a memory set that was 

presented for 5000 ms, followed by a series of ten probes each lasting 1200 msec. 

During the interstimulus interval between probes an asterisk was presented for 

1000 msec. Total task duration was approximately 15 minutes. Subjects were 

instructed to press the left button of a pneumatic  MRI compatible push-button box 

when probes matched the memory set (targets) and the right button if the probe did 

not match the memory set (distracters). In the TMS sessions, subjects were 

instructed to press the M on a QWERTY keyboard to targets and the X to 

distracters. Both keys were clearly marked with an easily found ribbon to prevent 

searching of the keys during task performance. The left and right index finger rested 

on the keys during the entire session. 
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Figure 2.

An individual t-map in native space (single subject, t=3; p<0.05 corrected, L=left, A= anterior, z=15) is shown, 

displaying activation in the left prefrontal cortex (1) and left parietal cortex (2). 

Three task versions with different PT sets were used for fMRI and the two TMS 

sessions. The same PT set was used during the fMRI session for all participants, in 

order to acquire reliable and consistent patterns of brain activity. Task versions for 

TMS were counterbalanced over the first and second stimulation session for the 

participating subjects. Reaction times (RT) of all  correctly identified targets and 

percentage correct responses were recorded. 

Functional Magnetic Resonance Imaging 

FMRI was performed on a Philips 3T  Intera scanner. Subjects were positioned 

supinely in the scanner. Head movement was reduced by using a strap around the 

forehead and foam padding. A mirror attached to the head coil enabled subjects to 

see a 1 m wide through-projection screen positioned near the feet at 2 m viewing 

distance. A video projector located outside the scanner room projected the tasks on 

the screen. A pneumatic push-button box with air pressure cables was used to 

record responses. A PRESTO SENSE pulse sequence was used for the acquisition 

of BOLD-sensitive images [28]. Functional images were acquired in two continuous 

runs of each 832 scans. All  images were acquired with the following parameters TE 

= 32.4 msec., TR = 21.75 msec., voxel  size = 4 x 4 x 4, 32 saggital slices and a 

scan duration of 500 msec. An additional functional image with high flip angle was 
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Figure 3.

The individual stimulation locations in the prefrontal (shown in red) and the parietal cortex   (shown in green) are 

displayed in MNI space for all participants in the study. In blue the control region in the mid-saggital plane is 

displayed that was stimulated in five subjects. The top panel  shows a posterior and an anterior view  of the 

stimulation locations. The bottom panel displays a superior and lateral view of the individual stimulation locations.

acquired for registration purposes. A T1-weigthed anatomical image was acquired 

for spatial localization and for guiding TMS coil navigation. 

All  functional and anatomical  data were processed in SPM5. After motion 

correction, individual statistical  activation maps were generated for the three task 

conditions (NT, PT and CT, each compared to rest) using multiple regression 

analysis [29,30]. Individual NT-CT contrasts were generated to reveal working 

memory related activity and were used for TMS coil navigation to frontal and 

parietal  areas. Individual  t-maps (spatially smoothed with a Gaussian kernel with a 
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FWHM of 8 mm) and anatomical volumes were normalized into standard MNI-305 

space [31]. 

Transcranial Magnetic Stimulation 

A frameless stereotactic  neuronavigator (NeNa) [32] was used for positioning of the 

coil  above functionally relevant cortical  areas. This device enables coregistration of 

the subject’s head to his native MRI space by coregistering anatomical landmarks 

on the skin of the participants with the same landmarks as selected on a skin 

rendering based on their MRI scans in the NeNa software. Skin markers were 

measured with a 3D electromagnetic  digitizer. TMS target coordinates were derived 

from the individual NT-CT fMRI contrast in native space and was entered into 

NeNa, where they were visible together with the brain and skin rendering. The TMS 

target coordinates were determined as the voxel with maximal  activity in the 

dorsolateral prefrontal cortex and the superior parietal  cortex. After coregistration of 

the real skin markers and MRI skin markers, the areas on the scalp directly 

overlying the TMS target coordinates of interest in the brain were marked on a 

tightly fitting swimming cap worn by the participant. This can be done in real time by 

moving the 3D digitizer over the scalp, which is visible on the NeNa screen together 

with the predefined TMS target coordinates.

Magnetic  stimulation was applied using a Neopulse TMS device (Neotonic Inc. 

Atlanta) with an iron core coil. Before the experiment the individual motor threshold 

was determined, defined as the minimum intensity inducing a visible muscle twitch 

in the contralateral  hand on at least five out of ten occasions (see Schutter et al. 

[33] for details on this procedure).

TMS was applied with a pulse intensity of 110% of the individual motor threshold. A 

train of TMS pulses was triggered by a computer. Five pulses were delivered 

separated by 100 msec. (i.e. 50-550 ms; 10 Hz), after the onset of a probe stimulus. 

Besides TMS, participants received stimulation with a sham coil to control for 

nonspecific effects induced by TMS (tactile and auditory sensations). The order of 

stimulation site (frontal and parietal) and stimulation type (TMS, sham) was 

counterbalanced, to prevent a bias due to learning, fatigue or habituation. Five 

subjects also received stimulation of a control region, located in at the midsaggital 

plane at about 57 mm on the anterior-posterior axis in MNI space. 

Individual RT and target accuracy (proportion of correct responses) were obtained 

for each task condition (NT, PT, CT), type of stimulation (sham, TMS) and site of 

stimulation (frontal, parietal, control). All mean correct responses were entered in a 
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Figure 4.

The average reaction times (msec) of all subjects are shown for target responses. The left panel shows average 

reaction times of the three tasks during TMS (dashed line) and sham (solid line) stimulation of the dorsolateral 

prefrontal  cortex. The right panel displays average reaction times of the three tasks during TMS and sham 

stimulation of the parietal cortex. 

2 (site) x 2 (stimulation) x 3 (condition) repeated measures General Linear Model 

analysis.

Results 

Region of interests

To localize working memory regions for transcranial magnetic  stimulation we 

compared NT with CT images [3,4] in each individual subject (see material  and 

method section for details). A single subject t-map in native space, representing 

brain activity in the prefrontal and parietal regions of interest is displayed in figure 2. 

Individual stimulation locations in the prefrontal  and parietal cortex in MNI space for 

all participants are displayed in figure 3.
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Figure 5.

The average accuracy (percentage correct responses) of all subjects is shown for target responses. The left 

panel displays accuracy for dorsolateral prefrontal  TMS (dashed line) and sham (solid line) stimulation for the 

three tasks. The right panel shows accuracy of the three tasks for parietal TMS (dashed line) and sham (solid 

line) stimulation.

Frontal and parietal TMS 

Reaction times

First, a GLM was performed on distracter reaction times. Besides the main effect 

task (F(2,17)=74.72, p<0.0001), there were no other significant main effects or 

interactions (p>0.17). Planned within-subjects contrasts show that PT reaction times 

were longer than CT (F(2,17)=86,48, p<0.0001) but not for NT (F(2,17)=65.03, 

p<0.0001). The GLM testing for an effect of TMS on reaction times did not reveal a  

significant main effect of stimulation (F(1,18)=0.084, p=0.78), or region 

(F(1,18)=0.16, p=0.70). There was only a significant main effect of task 

(F(2,17)=56.35, p<0.0001). Planned within-subject contrasts reveal that PT reaction 

times were significantly longer than CT reaction times (F(2,17)=70.03, p<0.0001) 

and that NT reaction times were significantly longer than PT reaction times 

(F(2,17)=52.54, p<0.0001). There were no significant interactions (p>0.13). 

Reaction times for target accuracy are displayed in figure 4.

Accuracy

First a GLM was conducted to test the effect of stimulation on distracter accuracy. 

Besides a main effect of task (F(2,19)=16.30, p<0.0001), showing that accuracy 

was different across conditions there were no other significant main effects or 

interactions (p>0.14). This confirms our hypothesis that brief disruption of working 

memory does not interfere with processing of distracter stimuli.
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Figure 6.

This graph shows the average accuracy (percentage correct) for target responses for the three tasks during TMS 

(dashed line) and sham (solid line) stimulation of the control region in five subjects. 

Below the results are discussed for target accuracy only (see also figure 5). First we 

tested the effects of frontal and parietal stimulation on target accuracy for the three 

tasks (NT, PT and CT). This analysis revealed significant main effects for 

stimulation (F(1,20)=19,13 p=0.0001), and task (F(2,19)=39.66, p<0.0001). The 

stimulation x task interaction was also significant (F(2,19=4,43p=0.026). Planned 

simple within-subjects contrasts show a deterioration of novel performance that is 

greater than practiced performance (F(1,20)=8.09, p=0.01) and also greater than 

performance on the control task (F(1,20)=8.08, p=0.01). Neither the main effect nor 

the interactions involving regions were significant (p>0.16). This shows that the 

effect of TMS on accuracy was similar for the stimulated regions in the prefrontal 

and parietal cortex.

Separate GLM’s for NT, PT and CT were conducted to further examine the effect of 

TMS in each task condition. The multivariate main effect of TMS was significant for 
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NT (F(1,20)=18.22, p<0.0001) and PT (F(1,20)=7.66, p=0.012) but not for CT 

(F(1,20)=0.98, p=0.33). Planned within-subjects contrasts confirm that NT and PT 

accuracy were both significantly lower during TMS compared to sham stimulation. 

To assess the possibility that stimulation in general affects performance, we 

stimulated a control region not involved in working memory, in five of our subjects. 

Target accuracy for the control region is shown in figure 6. First we tested whether 

TMS affected performance in the three tasks during stimulation of the control 

region. This GLM did not show significant main effects of TMS (F(1,4)=2.58, 

p=0.18) and task (F(1,4)=1.01, p=0.46). This suggests that stimulation of the control 

region, did not significantly affect performance. The GLM revealed a significant TMS 

x task interaction (F(1,4)=9.05, p=0.002, indicating that the effect of TMS on the 

control  region was different for performance of the three tasks. We therefore 

separately tested the effect of TMS on performance of the three task conditions. 

The main effect of TMS was not significant in the separate GLM’s conducted for CT 

(F(1,4)=1, p=0.37), PT (F(1,4)=4.24, p=0.11) and NT (F(1,4)=0.64, p=0.47). Next, 

we conducted a GLM on the NT target accuracy scores during stimulation of the 

three regions in these five subjects. This revealed a significant main effect for 

region (F(2,3)=14,88, p=0.03). Planned simple contrasts show that the effect of 

frontal  stimulation on performance was significantly larger than stimulation of the 

control region (F(1,4)=16, p<0.02). In summary, TMS caused significant 

performance deterioration for NT and moderate deterioration for PT, but did not 

significantly affect CT performance. 

Discussion
The present study used fMRI-guided TMS to investigate the functional importance 

of working memory in automatization. We hypothesized that working memory 

enables the development of automatization. We therefore predicted a larger 

disruption in novel performance than practiced performance. If working memory 

supports automatization by providing an internally represented context (e.g. task 

instruction), we also expect an effect of stimulation on performance on the control 

task with overlearned stimuli.

The results show a remarkable deterioration for novel  performance when working 

memory was briefly disrupted. Interference with working memory induced a modest 

decline in practiced performance, and did not affect processing of overlearned 

information. This is consistent with our hypotheses regarding the functional 

importance of working memory for novel  and practiced performance and indicates 
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that automatization enables a gradual decline in cognitive control. In addition, our 

data suggests that automated performance can occur independent of working 

memory. 

Our data show that when performance is novel, working memory is important to 

support learning of associations between sensory information (e.g. alphabetical 

stimuli) and actions (selection of an appropriate response). This is in line with 

current models of practice [2] and cognitive control [25]. As expected, stimulation 

significantly interfered with target accuracy and not distracters. It confirms our idea 

that due to this brief disruption, the memory set with target letters was temporarily 

unavailable or inaccessible [20]. Target stimuli  could therefore not be reliably 

matched to the memorized target set and were incorrectly classified as a distracter. 

Interference with working memory only moderately affected practiced performance. 

This suggests that also after a brief period of practice working memory was 

activated. This is consistent with our previous work [5] and other studies [10,21] that 

indicate modest effects of brief practice on brain activation associated with 

response selection. We assume that also with some practice, the memory trace 

with target letters is reactivated when a response is required based on the contents 

of working memory. Our data further suggest that when processing is overlearned, 

working memory is no longer required. It should be noted however that the type of 

stimuli differed in the control  task. We should therefore be cautious in interpreting 

the lack of an effect on control task performance. It may implicate however that with 

sufficient practice, task representations supported by working memory are no longer 

activated to guide task execution. 

Our data suggest that working memory supports automatization by active 

maintenance and utilization of internally represented rules or goals (e.g. the set of 

target stimuli) for guidance of task execution. Our data further indicate that over the 

course of practice internal representations of task information become less 

important to support task performance. This is consistent with theories of 

categorization learning [34,35]. These theories assume that working memory is 

important for learning categories, by internally representing category structures (e.g. 

targets or distracters) and selecting responses based on category membership 

[34,35]. In their reviews both Seger [35] and Ashby [34] propose that categorization 

becomes increasingly independent of working memory with practice, as 

corticocortical  connections between visual and motor cortices become 

strengthened.  Both assume a putative role for the basal ganglia in this process. 
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The basal  ganglia have been implicated in habit and stimulus-response learning 

[36]. They have been proposed to recode or restructure input received from cortical 

regions, into ‘action chunks’ [36,37]. This allows for more efficient implementation of 

‘performance plans’ for learned behaviors [36]. Prefrontal and parietal regions have 

also been proposed to mediate ‘chunking’ strategies to more efficiently represent 

complex types of information [38,39]. The corticostriatal  loop may therefore play an 

important role in the transition of controlled to automatic processing. In the present 

study, working memory thus may contribute to restructuring of the letter sequences 

in some arrangement (e.g. pseudo-words) to facilitate the development of 

automatization. 

There was no evidence that working memory significantly contributed to 

performance of the control task. This task is similar in visual and motor 

requirements, but compared to the novel and practiced tasks, lacks the requirement 

to actively keep multiple items in mind. Also, the control task involves object 

information (arrows), while PT and NT involve verbal information. This could explain 

why interference with brain regions that have implicated in the phonological loop of 

working memory [40,41] did not affect control  task performance. The dorsal 

prefrontal cortex however, has also been implicated in representing domain-general 

task information, such as task instructions, rules or goals [24,25]. The three tasks in 

the present experiment all  involve arbitrary relationships between stimuli and 

responses that are determined by the task instruction (e.g. if you see A, press B). 

Our data thus indicate that automated performance that is based on a task 

instruction (i.e. that is not yet reflexive) can occur without significantly activating 

working memory. 

It should be noted that other nodes in the working memory network might have 

compensated for the brief interruption in frontal and parietal activity. Current views 

of working memory emphasize that working memory should not be considered as a 

centralized executive processor that is located in a brain region, but rather emerges 

from interactions between the prefrontal cortex and posterior regions in the brain 

[25,42,43]. The prefrontal cortex has been found to coactivate with Broca’s area, 

the premotor cortex and the parietal  cortex in verbal working memory studies 

[3,40,41]. Also, Herwig et al. [44] has demonstrated critical  contributions of the 

premotor cortex, rather than prefrontal and parietal cortex during the brief delay in a 

working memory task when verbal information should is actively maintained. It may 

thus be possible that in the present experiment other regions important for verbal 

working memory compensate for the disrupting effect on prefrontal and/or parietal 

Chapter 4 The functional importance of working memory in automatization; an fMRI-guided TMS study

93



activation. This could explain that in the present study TMS interference with 

working memory did not result in a massive breakdown of performance.

Finally, there are some methodological considerations that should be taken into 

account. The TMS apparatus used in the current study involved different coils for 

real and sham stimulation. Although we did not tell participants about the different 

coils, they reported to be aware of the different effects of two types of stimulation. 

Performance of the control  task however was not significantly affected by TMS. This 

argues against the idea that the data could have been biased towards more 

inaccurate performance during real stimulation because subjects knew about the 

interfering effects of TMS. Another consideration is that we only acquired data from 

a control region in a small sample of our subjects. This may limit the interpretation 

of the stimulation effects in the prefrontal and parietal  regions. However, with the 

inclusion of the sham stimulation condition and the control task with overlearned 

information we argue that the results are robust enough to claim the importance of 

working memory for automatization. 

Conclusion
The present study shows that automatization induces a gradual decline in cognitive 

control. When performance is novel working memory enables the development of 

automatization and with sufficient practice performance may become independent 

of cognitive control. We postulate that over the course of practice working memory, 

possibly in interaction with other networks in the brain, may engage in restructuring 

of information that facilitates the development of automatic behaviors that may 

eventually become independent of control.  
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Abstract

Working memory (WM) dysfunction in schizophrenia is characterized by inefficient 

WM recruitment and reduced capacity, but it is not yet clear how these relate to one 

another. In controls practice of certain cognitive tasks induces automatization, which 

is associated with reduced WM recruitment and increased capacity of concurrent 

task performance. We therefore investigated whether inefficient function and 

reduced capacity in schizophrenia was associated with a failure in automatization. 

fMRI data was acquired with a verbal WM task with novel  and practiced stimuli  in 18 

schizophrenia patients and 18 controls. Participants performed a dual-task outside 

the scanner to test WM capacity. Patients showed intact performance on the WM 

task, which was paralleled by excessive WM activity. Practice improved 

performance and reduced WM activity in both groups. The difference in WM activity 

after practice predicted performance cost in controls but not in patients. In addition, 

patients showed disproportionately poor dual-task performance compared to 

controls, especially when processing information that required continuous 

adjustment in WM. Our findings support the notion of inefficient WM function and 

reduced capacity in schizophrenia. This was not related to a failure in 

automatization, but was evident when processing continuously changing 

information. This suggests that inefficient WM function and reduced capacity may 

be related to an inability to process information requiring frequent updating. 
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Introduction

Cognitive dysfunction is a core characteristic  of schizophrenia [1] and associated 

with deficits in working memory (WM). WM refers to the temporary maintenance 

and utilization of information [2] and is considered important for complex cognitive 

performance [3]. WM dysfunction in schizophrenia is characterized by inefficient 

prefrontal function as most patients exhibit excessive activity when performing a 

moderately difficult WM task [4,5,6,7,8,9]. When performing a more difficult WM 

task (i.e. with more information that has to be memorized and processed), they 

generally exhibit poor performance and lower levels of WM activity than controls 

[10,11,12,13], indicating that their WM capacity is quite limited [5,8,9]. In spite of 

structural abnormalities in the prefrontal  cortex [14,15], and of genetic  variation 

contributing to prefrontal  activation levels [16,17,18,19] it is not clear what causes 

inefficient WM function and reduced WM capacity in schizophrenia.

Recently we demonstrated that the ability to reduce demands on WM with practice 

is closely related to the capacity to perform an additional task simultaneously in 

controls. If a cognitive task involves a constant relationship between stimuli  and 

responses, practice can induce a shift from demanding to effortless processing, 

which is referred to as automatization. In a previous study we demonstrated that 

automatization is associated with improved performance and reduced activity in 

WM. In a related study we compared the difference in WM activity after practice to 

the ability to perform two tasks simultaneously. It was found that subjects with a 

larger reduction in WM activity after practice were better at performing two tasks 

concurrently [20]. This suggests that the drop in WM activity induced by practice 

may reflect an increase of available WM capacity to accommodate concurrent task 

performance. 

Although behavioral tests of automatization indicate that schizophrenic  patients 

improve performance with practice [21,22] several studies have shown that patients 

are either unable to process a second task concurrently [23,24] or need significantly 

more practice to achieve normal dual-task performance [21,22,23,24,25]. This 

suggests that schizophrenic  patients may fail to reduce neural activity in spite of 

improved after practice and are therefore unable to liberate sufficient neural 

resources to perform additional tasks simultaneously. 

This raises the question whether inefficient WM function and limited capacity in 

schizophrenia could be associated with a failure in automatization. To test this, brain
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Table 1. Demographic and illness-related variables in healthy controls and subjects with schizophrenia

Patieents with sschizopphrenia Healtthy controls

N Mean SD Range N Mean SD Range p-vvaluue a

Male 14 13 -
Female 4  5 -
Age (years) 28.4 7.4 19.6-41.8 26.0 5.8 18.9-43.8 n.ss.
EHI index 0.80 0.19 0.42-1.00  0.86 0.20 0.33-1.00 n.ss.
PANSS (sum)
Positive scale 1.77 0.57 1.00-2.83
N e g a t i v e 

scale

2.10 0.72 1.00-3.29

General scale 1.59 0.32 1.06-2.19
L e n g t h o f 

Illness (years)

5.23 4.36 0.77-17.53

Age of Onset

(years)

23.17 5.04 15-33

M e d i c a t i o n 

(mg/day)
Clozapine 7 145.36 179 0-400
Quetiapine 1 700 - 700
Risperidon 3 1.33 0.58 1-2
Olanzapine 6 10.75 7.64 2-20

a Significance of differences calculated by using t-tests and nonparametric Kolmogorov-Smirnov Z-test, two-tailed 

activity was examined with fMRI using a verbal  WM task with novel and practiced 

stimulus sets [26]. Subjects subsequently participated in a behavioral dual-task 

paradigm to measure their ability of concurrent task performance. 

Methods and Materials

Subjects

Patients were recruited from the Department of Psychiatry of the University Medical 

Center Utrecht. DSM-IV diagnosis of schizophrenia was confirmed using The 

Comprehensive Assessment of Symptoms and History (CASH) [27] and severity of 

symptoms was assessed with The Positive And Negative Syndrome Scale (PANSS) 

interview [28]. Controls were recruited through advertisement and were rewarded 

for participation. The Mini  International Neuropsychiatric  Interview (M.I.N.I.) [29] 

was used to exclude controls with a history of neurological illness, psychiatric 

disorders or substance abuse. All  participants were tested for right-handedness 

using the Edinburgh Handedness Index (EHI) [30]. Initially, 18 controls and 22 

patients were scanned after signing an informed consent. In total four patients were
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Figure 1. 

The temporal sequence is shown for the STERN task. Each epoch starts with presentation of the target set and is 

followed by ten probes. Subjects have to press a button as fast as possible if the probe letter belongs to the set of 

targets. 

excluded from the study; one could not complete the scan procedure due to 

technical problems with the scanner, three were excluded from analysis because 

their performance was at chance level. Presented results are based on the 

remaining cohort with 18 controls and 18 patients matched for age and gender. 

Demographic and illness-related details are shown in Table 1.

 

Assessment of automatization

The fMRI experiment to test automatization involved a modified version of the 

Sternberg paradigm (STERN) (see also [20,31,32]). Subjects were instructed to 

memorize a set of five letters and subsequently respond to matching probes 

(targets) (Figure 1). A novel (NT) and a practiced task (PT) were administered. In 

PT a fixed set of target and non-target stimuli  was selected from an array of ten 

preset letters [33]. In NT, target and non-target letters were randomly chosen from 
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the ten remaining consonants that were not used in PT. In addition, a control task 

(CT) was included during which subjects made a button press when the symbol 

‘<>’ appeared. Prior to fMRI subjects performed five series of 100 PT stimuli  (25 

minutes) to induce automatization. During scanning an epoch (memory set and ten 

probes) lasted 32 s. The four tasks (NT, PT, CT and rest of equal epoch length) 

were presented eight times in a pseudo-randomized and counterbalanced order. 

Reaction times (RT) of all correctly identified targets and percentage correct 

responses for all stimuli were recorded. 

Assessment of capacity: dual-task paradigm

After fMRI, STERN (five NT and five PT blocks) was performed concurrently with a 

selective attention task (SAT) outside the scanner. SAT involved detection of tones 

with a higher or lower pitch than a baseline tone (see also [20,31]). Task difficulty of 

SAT was standardized for each subject prior to the experiment, by adjusting pitch 

difference until  the subject detected 80% of the deviant tones. The 200 ms tones 

(16% deviants randomly distributed) were presented in blocks of 25 seconds. 

STERN intertrial  interval  in the dual-task was 2500 ms with stimulus duration of 

1500 ms. Although tones and letters frequently coincided, only on three out of 64 

occasions a tone and STERN target overlapped. To prevent interference at the 

response level, subjects silently counted target tones and verbally reported the 

number after each series of 25 stimuli. STERN and SAT were also administered 

separately. STERN and SAT “performance cost” was defined as the difference in 

performance on the dual versus the single tasks and was also computed for NT and 

PT blocks separately. 

fMRI procedure and acquisition

FMRI was performed on a Philips 1.5 T Intera scanner. Subjects were positioned 

supinely in the scanner. Head movement was reduced by using a strap around the 

forehead and foam padding. A mirror attached to the head coil enabled subjects to 

see a through-projection screen positioned near the feet. A video projector located 

outside the scanner room projected the tasks on the screen. A pneumatic  push-

button box with air pressure cables was used to record responses. To measure 

BOLD signal  changes we used a three-dimensional navigated PRESTO pulse-

sequence [34]. A single run of 384 scans was acquired over a period of 17 minutes. 

This was followed by one high-contrast scan for registration purposes and a 3-D 

anatomical scan for spatial localization (for scan parameters see [31,32]).
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Figure 2.

Graphs show  behavioral fMRI-scan performance data of STERN. Mean reaction times (± SEM) of correct target 

responses for both groups and mean correct (misses and false alarms) as percent of all trials (± SEM). 

Data analysis: behavioral data

Individual mean and variance of RT calculated over all correct responses and 

percentage of correct responses of STERN during fMRI were tested with a general 

linear model (GLM) with repeated measurements, with practice (NT and PT) as 

within-subject factors and group (patients and controls) as between-subject factor. 

Dual-task performance cost was separately tested with a GLM with task (STERN 

and SAT) and practice (NT and PT) as within-subject factors and group (patients 

and controls) as between-subject factors. 

Data Analysis: imaging data

After motion correction, fMRI signals were analyzed voxelwise, using multiple 

regression [35,36]. This resulted in individual activation t-maps for the three tasks 

contrasted with rest. Individual  t-maps (spatially smoothed with a Gaussian kernel 

with a FWHM of 8 mm) and anatomical volumes were normalized into standard 

MNI-305 space [37]. A group t-map was calculated for NT-CT by testing the 

difference values in each voxel  against zero. A value of 4.51 was used as an activity 

threshold, corresponding to a p-value of < 0.05 (onesided) Bonferroni-corrected for 

total  brain volume. For all significantly active regions in the group map with a cluster 

size of at least ten voxels, a mean activity score (b-values obtained from the 

regression analysis) was obtained for NT, PT and CT for each subject. These final 

variables were entered into repeated measurements GLM analysis with practice 

(NT  and PT) and region (listed in table 2) as within-subject factors and group 

(patients and controls) as between-subjects factor.
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Figure 3.

Combined group map of patients and controls showing WM regions: 1. left fusiform gyrus LFG, 2. left prefrontal 

cortex  LPFC, 3. left superior parietal cortex  LSPC, 4. right superior parietal  cortex  RSPC, 5. anterior cingulate 

cortex  ACC. The numbers in the slices correspond to MNI z-coordinates. Slices are in radiological  orientation (left 

side is right hemisphere and vice versa). 

Results

Practice and working memory 

Effects of practice on working memory performance

The performance results are shown in Fig.2. NT reaction times were significantly 

longer than in PT in both groups (main effect of task [F(1,32)=57.1; p<0.0001]). 

Patients were overall slower than controls (main effect of group [F(1,32)=13.9; 

p=0.001]). There was no significant group by task interaction [F(1,32)=0.12; 

p=0.65], indicating that patients improved RT with practice to the same degree as 

controls.
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 Table 2. Working memory regions (STERN)

Region Brodmann area Number 

of 

voxels

X Y Z Maximum 

z-value

Left Fusiform Gyrus (LFG) 37 14 45 -59 -11 10.53
Left Dorsolateral Prefrontal Cortex (LFC) 9/46 193 46 11 29 14.36
Left Superior Parietal Cortex (LPC) 7 133 33 -56 41 10.31
Right Superior Parietal Cortex (RPC) 7 56 -32 -60 42 8.77
Anterior Cingulate Cortex (ACC) 6/24 57 4 23 53 18.52

Although RT were more variable in schizophrenia across conditions (main effect of 

group [F(1,26)=9.29, p=0.005]), RT variability was larger in NT than in PT in both 

groups (main effect of task [F1,26)=19.01, p<0.0001]). There was no significant 

group by task interaction [F(1,26)=0.76, p=0.39], suggesting that the effect of 

practice on RT variability was similar in both groups. Patients and controls did not 

significantly differ in percentage of correct responses [F(1,32)=2.45, p=0.13]. The 

main effect of task shows that performance was more accurate after practice 

[F(1,32)=13.98, p=0.001]. The group by task interaction was not significant 

[F(1,32)=0.10, p=0.75]. This suggests that the effect of practice on accuracy was 

similar in both groups. In summary, although RT were generally slower and more 

variable in patients, practice improved performance to the same degree in both 

groups.

Overview of regions of interest

Regions in frontal  (left dorsolateral prefrontal cortex (LPFC) and anterior cingulate 

cortex (ACC)) parietal (left superior parietal  cortex (LSPC) and right superior 

parietal  cortex (RSPC)) and visual cortex (left fusiform gyrus (LFG) reached 

significance in both groups and were used for further analyses (Table 2 and Fig. 3). 

These regions are the same in the previous studies with this task [20,31,32]. 

Patients did not activate additional regions.

Effects of practice on working memory function

To assess the effect of practice on WM activity mean b-values from individual NT 

and PT maps of the five ROI’s were used in the analysis. Practice significantly 

reduced brain activity in all WM regions in both groups (main effect of practice 
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Figure 4.

The graphs show 1.  the decrease in activity in WM areas, in response to reduced WM load after practice in both 

groups 2. excessive activity in LPFC and LSPC in patients with schizophrenia (* p<0.05) when processing novel 

information. The y-axis shows mean b-values and represents level of activity. 

[F(1,32)=142.10; p<0.001] (Figs. 3 and 4). Practice induced a larger drop in brain 

activity schizophrenics (group by practice interaction [F(1,32)=8.79; p=0.005]). Post-

hoc ANOVA indicates that this was due to excessive activity in schizophrenia during 

NT, especially in LPFC [F(1,32)=5.04; p=0.03] and LSPC [F(1,32)=6.96; p=0.012] 

(Figure 3)). These results indicate that patients excessively activated WM, 

especially left prefrontal and left parietal  regions during NT, but were capable of 

normalizing levels of brain activity after practice. 
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Figure 5.

STERN and SAT dual task performance cost (outside the scanner). The vertical axis of the graph shows the 

difference in accuracy between single and dual task performance of STERN and SAT respectively; a high value 

corresponds with higher performance cost. Patients show disproportionately higher performance cost than 

controls, especially on SAT (* p<0.05). 

Practice and processing capacity

Dual task performance

STERN and SAT performance cost scores (Fig. 5) were calculated to assess WM 

capacity. Patients showed disproportionate performance cost for both SAT and 

STERN (main effect of group [F(1,32)=10.53; p=0.003]). SAT performance cost was 

higher than STERN (main effect of task [F(1,32)=21.42; p<0.001]), indicating that 

SAT performance was more influenced by simultaneous processing demands than 

STERN. The difference in STERN and SAT performance cost was more 

pronounced in schizophrenia [task x group interaction F(1,32)=5.64; p=0.02)]. 

Practice reduced perance cost in both tasks as was shown by a main effect of 

condition [F(1,32)=9.03; p=0.005]. Thus for both groups performance cost was 

larger for SAT than STERN, but practice reduced performance cost in both tasks. In 

addition, patients showed excessive performance cost for both tasks and especially 

for SAT. 

Practice-related activity changes in WM and performance cost

The difference in WM activity after practice predicted STERN performance cost in 

controls (r=0.58, p<0.02) (Fig. 6). Thus, subjects with a larger drop in activity were 

better at maintaining STERN performance when a second task was added [20]. 

There was no such relationship in schizophrenia (r=-0.16, p=0.54) (Fig. 6) The 

difference between the correlations was significant: (Fisher z-transform, z= 2.256, 

p=0.024 [38]. 
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Figure 6.

Measures of WM efficiency and capacity. On the vertical axis, the difference in activity between NT and PT is 

shown as a measure of efficient WM function. A larger value indicates a larger reduction in brain activity; i.e. 

increased efficiency. The horizontal axis represents performance cost, which is inferred from comparing single 

task performance to dual task performance. A larger value corresponds with larger performance decrement in the 

dual task. 

Discussion

To investigate whether inefficient WM function and reduced capacity in 

schizophrenia were associated with a failure in automatization, schizophrenia and 

healthy subjects performed a WM task with novel and practiced stimuli  during fMRI 

and a dual-task outside fMRI. 

Although RT were generally longer and more variable in schizophrenia, patients 

displayed normal accuracy on the novel WM task which was accompanied by 

excessive brain activity in WM regions.  Practice improved performance in patients 

to the same extent as in controls and normalized excessive levels of activity. While 

practice reduced [39] performance cost in both groups, patients exhibited overall 

disproportionate performance cost in the dual-task, especially during tone-counting. 

The difference in WM activity after practice predicted STERN performance cost in 

controls but not in patients.
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Excessive WM activity during novel WM performance in patients confirms the notion 

of inefficient WM function in schizophrenia [5,6,8,9,13,40]. Patients were able to 

improve performance and reduce inefficient activity down to normal levels with 

practice. This is in line with most behavioral studies [21,22], however not many 

studies have yet investigated the effect of practice on brain function in 

schizophrenia. Most studies investigated procedural learning [41,42]; a rule-based 

type of skill  acquisition that is implicitly acquired through practice [42], and have 

reported  abnormal patterns of brain activity associated with either intact [41] or 

impaired procedural  learning [42]. A major difference with procedural learning 

however is that automatization does not involve implicit acquisition as memory sets 

were explicitly practiced during training. 

Excessive performance cost in patients complements other studies reporting 

impaired dual-task performance in patients with schizophrenia [21,22,23,24]. A 

study by Oram et al. [39] however reported that a tone-counting task did not 

significantly affect performance on a simple visual search task in patients with 

schizophrenia. In our study the impact of the visual  task (STERN) on tone-counting 

was larger than the reciprocal  effect of tone-counting on STERN performance. In 

Oram et al.’s study the effect of the visual search task on tone-counting 

performance was not reported. This does not exclude the possibility that visual 

search may have affected tone-counting performance as was the case in our study. 

The drop in WM activity after practice predicted performance cost in controls. Thus 

subjects with a larger difference in WM activity after practice were better capable to 

utilize WM capacity to resolve interference between tasks when executed 

simultaneously [20]. The lack of such a relationship with performance cost in 

schizophrenia suggests that the dual-task was too difficult and that patients may 

have failed to recruit WM to accommodate concurrent task performance. Our data 

thus shows that patients were able to normalize initial  inefficient WM function with 

practice. The question however remains why concurrent performance results in 

greater performance cost in schizophrenia.

SAT and STERN both activate WM, which is most likely involved in storage of 

verbal and auditory information and executive processes associated with response 

selection (STERN) or updating the count of target tones (SAT). Executive 

processes in a dual-task cannot be performed on more than one task at the time 

[43,44]. When SAT and STERN are performed concurrently processing conflicts 
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may thus arise as they compete for common WM resources [45,46,47]. This may 

induce errors as the interfering task temporarily disrupts and delays ongoing 

processing [43,44]. Excessive performance cost in schizophrenia may therefore 

reflect aggravated disruption of ongoing processing in a dual-task and may be 

associated with greater competition for WM to resolve processing conflicts when 

simultaneously performing STERN and SAT.

Performance cost was most pronounced for SAT. This task requires continuous 

adjustment of temporarily stored information each time an oddball  is detected. 

Disproportionate SAT performance cost in schizophrenia further suggests that 

patients are most susceptible to the disruptive effect of a concurrent task when 

information needs to be frequently updated. Together with our finding of inefficient 

brain function during WM performance with continuously changing information, this 

may indicate that schizophrenia is associated with a failure to properly recruit WM 

when information changes frequently and thus requires continuous updating.

In spite of overall impaired dual-task performance, practice reduced performance 

cost in patients as well. This is in agreement with other behavioral studies reporting 

that patients are able to improve dual-task performance to some extent with 

practice on a single task [21,22]. The question may rise whether practicing the dual-

task would have reduced performance cost in patients. Dual-task practice may 

reorganize two tasks into a single task, which may eliminate processing conflicts 

[48]. A recent study [48] compared the effects of single-task and dual-task practice 

on subsequent dual-task performance, but did not find evidence that dual-task 

practice induced more efficient task integration than single-task practice. Although it 

is likely that patients would improve dual-task performance with dual-task practice 

we do not expect that this would eliminate the difference in performance cost with 

controls.

The training session in the current study to induce automatization was relatively 

short. It has been argued that automaticity is not completed until  performance has 

reached plateau level [49]. On the other hand it has been suggested that 

automaticity is induced after only a few trials of practice [50].  Although we cannot 

draw conclusions about potential long-term changes in brain function and 

performance associated with automatization, our current results suggests that 

during the early phase of practice patients were able to improve task performance 

and reduce demands on WM.
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RT may be a more precise measure for performance cost [44]. In the current study 

however we used accuracy to calculate performance cost, as in our previous work 

this was found to be correlated with the difference in WM activity after practice in 

controls. In addition, in order to minimize interference at the level of response 

selection between the two tasks, only one task in this paradigm required a manual 

response, RT measures were therefore not available for both tasks. 

All  patients in the present study received pharmacological  treatment with atypical 

antipsychotics. Studies have indicated that antipsychotics facilitate automatization 

in schizophrenia [21]. Particularly patients taking atypical antipsychotics became 

more efficient than patients on typical antipsychotics in performing a practiced task 

simultaneously with an additional cognitive task [22]. It is therefore possible that 

atypical  antipsychotic  medication may have positively affected automatization in 

schizophrenia. However this cannot explain the disproportional performance loss in 

the dual-task in our patients. 

Several  other potential limitations could be relevant to the interpretation and 

implications of the present study. For one, general  intelligence may have been 

different for both groups. Although IQ was not assessed in the present study, we did 

find that both groups had equal numbers of years of education (Table 1). Moreover, 

elevated activity during NT is not likely to be the result of potentially lower IQ levels 

in patients: previous studies in healthy volunteers have reported a positive 

correlation between intelligence and magnitude of brain activity (eg [51]), which 

would predict patients to exhibit less rather than more activity in the WM network. 

As with other studies, the implications for schizophrenia as a whole should be 

considered with several limitations in mind. Given the fact that only 18 patients were 

included who were all  capable of performing the task, that only a few females were 

assessed and that the duration of illness (i.e. 5 years) was relatively short, the 

results may not generalize across the schizophrenia spectrum. It may well be that 

more severe, chronic patients would perform more poorly and exhibit different brain 

activity levels. Inclusion of such patients, however, requires a different approach to 

data analysis and interpretation because poor task performance has complex 

effects on brain activity (e.g. [20]).

To conclude, the ability to reduce inefficient WM function with practice does not 

support the notion that automatization is impaired in schizophrenia. We also did not 

find a relationship between the difference in WM activity after practice and 

performance cost in schizophrenia. Together, this may suggest that inefficient WM 
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function and reduced capacity in schizophrenia are associated with a failure to 

properly engage WM when task demands are increased (i.e. during novel WM 

performance and when performing an additional task concurrently). In addition, this 

WM failure may be specifically related to an inability to process continuously 

changing information requiring frequent updating. 
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Chapter 6 

Summary and general discussion



Summary 

The research in this thesis investigates the effect of automatization on brain 

function, to better understand the neurophysiology behind practice and its 

beneficial effect on our limited processing capacity. This thesis also aims to 

explain the neural basis of deficient processing capacity in schizophrenia. 

Patients suffering from this disease seem to have a more serious limitation 

in the amount of information they can process. Here we investigate whether 

a deficit in automatization can explain the severely limited processing 

capacity in schizophrenia. 

This thesis builds on previous work suggesting an important role for 

working memory in the development of automatization and the ability to 

improve processing capacity with practice. The nature of activity changes in 

working memory regions and how they contribute to processing capacity 

are still  poorly understood. Much remains unknown about the course of 

activity decreases for distinct behavioral  components of automatization. In 

chapter 2 we examined automatization of different components of 

performance. These components involve encoding and response selection. 

A rapid event-related fMRI design [1] was used to isolate effects of practice 

on brain activity related to encoding and response selection. Practice 

promptly reduced activity across the entire regional network involved in 

encoding, even before response selection activity and performance were 

affected. Changes in response selection activity emerged later and were 

not present in all regions. Our results indicate that practice can 

independently reduce working memory activation for different components 

of performance over the course of practice. These heterogeneous changes 

in activity do not fully support the view that practice induces domain-general 

(i.e. task-independent) effects on brain activity [2]. Our findings are more in 

line with current views on working memory [3,4] and cognitive control [5], by 

showing that over the course of practice, performance is supported by a 

dynamic allocation of working memory, depending on the level of control 

needed. Our findings may bear importance in understanding the role of 

automatization in human information processing [6], as increased efficiency 

of encoding sensory input in early stages of practice possibly improves 

processing capacity to otherwise interfering information. 

Another question pertains to whether decreases in activity in brain regions 

important for working memory are accompanied by compensatory changes 
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elsewhere in the brain. In chapter 3 we investigated three scenarios. First 

we tested whether practice shifts activity from one set of regions to another 

set. Second, we tested whether practice shifts activity within the initially 

active network(s), i.e. from cognitive control regions to perceptual  and 

motor systems. Third we investigated whether practice induced a coherent 

decline in activity in the same networks that are involved from beginning to 

the end of training. In this study we investigated changes in brain activity 

following practice of a working memory task in a large sample of healthy 

subjects, and acquired whole-brain fMRI scans on a 3T  scanner with an 8-

channel head coil to obtain a high sensitivity for signal  changes. In addition, 

we made use of the variability in practice-induced effects on brain activity 

among subjects, reflecting the rate or speed at which automaticity is 

achieved, to assess changes within and across networks. With practice, 

activity decreased in all regions associated with working memory. There 

was a set of regions where the BOLD signal increased with practice, but in 

all  of these the signal was decreased relative to rest. Activity in motor 

regions remained mostly constant across tasks. The main finding hence 

supports the notion that practice does not lead to a shift from one network 

to another. To test whether practice induces shifts of involvement within the 

initially active network we assessed correlational structures within each of 

several sets of regions that emerged from the statistical image analyses 

(i.e. where signal  decreased with practice, where signal was increased, and 

where signal was sustained during all tasks). Partial  correlation and factor 

analyses revealed strong correlations between regions within the sets, in 

how they respond to practice. However, there were no significant negative 

correlations within sets, which should be present if activity shifts between 

regions within a set. Hence, our findings also do not support the notion that 

specific regions within the initially active network(s) gain in involvement. 

The data support the scenario where practice induces a general  decline in 

the working memory system without compensatory changes elsewhere in 

the brain. We argue that working memory may engage in ‘chunking’ 

strategies that enables stimuli  to acquire a new feature (e.g. target or non-

target). Following practice the working memory network is no longer 

involved because stimuli  have acquired a novel feature that allows for rapid 

classification.

Previous research [6,7] suggests an important role of working memory in 

establishing automatization. Yet the critical contributions of working memory 
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in the development of automatization remain undetermined. In chapter 4 

we used a combination of fMRI and transcranial magnetic  stimulation to 

asses the critical importance of working memory in automatization. First, 

participants performed the Sternberg automatization paradigm while fMRI 

images were acquired. The fMRI maps were used to localize left 

dorsolateral prefrontal  and parietal  regions, where activity decreases with 

practice. Participants received rTMS stimulation of these regions during 

performance of the automatization task. As was expected novel task 

accuracy for target responses was more susceptible to interference than 

practiced task accuracy. This shows that automatization induces a gradual 

decline in cognitive control. Accuracy of the control  task with overlearned 

associations was not affected by brief disruption of brain activity. This 

suggests that with sufficient practice, performance may become 

independent of cognitive control. We propose that working memory enables 

the development of automatization by restructuring of task-relevant 

information that allows more efficient implementation of internal task goals. 

Automatization not only improves performance on the task that is practiced, 

it also allows processing of additional information. Automatization therefore 

seems an important mechanism by which we can overcome the limitations 

of our processing capacity. Patients with schizophrenia however, seem to 

have serious problems in processing as much informations as healthy 

individuals can [8]. When task load is within the boundaries of their 

capacity, brain regions are typically more activated than control subjects. 

This is thought to reflect inefficient brain function. In chapter 5, we 

investigated whether inefficient working memory function and reduced 

capacity in schizophrenia were associated with a failure in automatization. 

Both groups performed a modified version of the Sternberg task with novel 

and practiced material  during fMRI. The difference in activity levels for 

performance of the novel and the practiced task was a measure of 

efficiency. It was expected that compared to healthy controls, patients 

would inefficiently activate working memory areas after practice and 

therefore exhibit only a small reduction in activity. It was predicted that as a 

consequence patients have decreased capacity to execute an additional 

cognitive task. After the fMRI session, both groups participated in a dual-

task session. The difference in accuracy between dual  task and single task 

performance was calculated and the drop in performance (performance 

cost) indicated how well  subjects could process two tasks at the same time. 
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Performance cost was therefore a measure of capacity. Practice improved 

performance in patients to the same extent as in controls and normalized 

excessive levels of activity. Practice reduced performance cost in both 

groups, but patients exhibited overall disproportionate performance cost in 

the dual-task. The proportion of activity decreases in the working memory 

network after practice predicted performance cost in controls but not in 

patients. The findings do not support the idea that automatization is 

impaired in clinically stable patients with schizophrenia. In addition, there 

was no clear relationship between automatization and excessive 

performance cost in schizophrenia. Together, this suggests that inefficient 

working memory function and reduced capacity in schizophrenia are 

associated with a failure to properly engage working memory when task 

goals require frequent updating, for instance during novel performance and 

when performing an additional task concurrently. 

The automatic brain

Efficiency and processing capacity

In chapter 3 and chapter 4 we postulate that working memory contributes 

to automatization by enabling a restructuring of information that allows for 

more efficient information processing. Possibly, sequentially presented 

information, such as the strings of letters that we used in the experiments, 

is pieced together in an information ‘chunk’ (e.g. pseudo-words), thereby 

optimizing its memorization and retrieval. The findings in chapter 2 support 

this idea, where it was shown that automatization affects encoding very 

early in practice. This suggests that with repeated exposure of information, 

encoding strategies become less important as more efficient 

representations become established. This idea was confirmed by the 

findings in chapter 4, showing that working memory contributions diminish 

over the course of practice. More efficient representation of information may 

facilitate its retrieval  when needed to guide task execution, resulting in 

faster and more accurate task performance. Also, if working memory is no 

longer needed to update or modify the internally represented task goals, 

this enables processing of otherwise interfering information at the same 

time. Automatization thus reflects the flexible and adaptive nature of human 

information processing that is often emphasized in theories on cognitive 

control [5]. 
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Automatization and schizophrenia: reconciling discrepant findings

The present work strongly implicates working memory in the development 

of automatization. Patients with schizophrenia exhibit a profound working 

memory deficit, but contrary to what we expected, show intact 

automatization. At first glance, it seems difficult to reconcile these 

incompatible findings. If working memory enables automatization as we 

postulated in chapter 4, the question rises why patients with schizophrenia 

were not impaired on automatization as we initially expected. 

In chapter 5 we argued that inefficient brain function and reduced 

processing capacity in schizophrenia were best explained by a deficit in 

updating or modifying the contents of working memory when novel 

information was presented (e.g. a novel set of letters) or when information 

kept in mind required manipulation (updating the count of oddballs). This 

idea is supported by our findings discussed in chapter 2, where it was 

shown that automatization immediately reduced demands on encoding of 

sensory input. If processed information does not change over the course of 

performance, the internal  representation with task information does not 

require modification or updating. Repeated exposure of consistent 

information may thus facilitate internally representing of task goals in 

working memory in patients with schizophrenia. Also, in chapter 4  we 

created a ‘virtual lesion’ by temporarily disrupting prefrontal  and parietal 

activity. We found that this predominantly affected novel processing and 

only moderately affected practiced performance. This supports the idea that 

prefrontal dysfunction in schizophrenia predominantly affects the ability to 

represent frequently changing information. If one is unable to represent 

novel  information, this may lead to stereotypical responses that are often 

observed in schizophrenia and other psychiatric  diseases such as autism. 

The cognitive deficit in schizophrenia is thus not explained by a deficit in 

automatization, where familiar information is inefficiently processed in a 

novel  way. Rather the opposite may explain the cognitive impairments 

associated with schizophrenia. Due to an inability to process frequently 

changing information patients with schizophrenia may tend to engage in 

automatic behaviors in circumstances that ask for flexible and adaptive 

behavior.
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Limitations and future directions

Although this work has elucidated some important contributions of working 

memory in the development of automatization, the neural  mechanism that 

enables working memory to disengage from processing over the course of 

practice remains elusive. Remarkably, in spite of an evident working 

memory deficit, patients with schizophrenia show intact automatization. 

This suggests that the working memory system and in particular the 

prefrontal cortex, cannot account for the development of automatization all 

by itself. The focus in future research therefore should extend to regions 

interacting with the cognitive control  network, that may jointly drive the 

transition from controlled to automatic processing. 

Insights on this mechanism may come from theories on human perceptual 

category learning [9,10]. These theories emphasize the putative role of the 

basal  ganglia in the establishment of automatic behaviors. The putamen, 

which is part of the basal ganglia, showed sustained activity during both 

novel  and practiced performance in chapter 3. Although there was no clear 

evidence that this region gained in activity with practice, it does not exclude 

the possibility that this area contributes to automatization. The basal 

ganglia is well-known for its contributions to ‘chunking’ sequential  motor 

actions into ‘performance units’ that allow for more efficient implementation 

of learned motor behaviors [11,12]. Evidence is increasing that the basal 

ganglia may play a similar role in learning cognitive behaviors [10,13]. In 

their reviews Ashby [9] and Seger [10] describe how pathways between the 

basal  ganglia and the prefrontal cortex interact to allow for strengthening of 

corticocortical connections between visual and motor cortices over the 

course of practice. With sufficient practice this eventually enables 

performance that becomes independent on cognitive control. Also, 

interactions between the basal ganglia and prefrontal cortex are important 

for detecting and responding to unexpected or novel stimuli  [5,14]. If this 

pathway does not function properly, this may induce a tendency to respond 

in a perseverative or stereotyped manner, which could be considered as an 

aggravated automatic response. This implicates a role of the frontostriatal 

pathway in controlled and automatic processing.

It is possible that the experimental task design used in the studies was not 

sensitive enough to elicit changes in other regions that may be important for 

automatization. The paradigm in the current studies is an example of 
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observational learning, where knowledge about categories (e.g. targets and 

distracters) is explicit, while parts of the basal ganglia important for learning 

such as the caudate nucleus are primarily sensitive to feedback-based 

learning, where knowledge is acquired implicitly [10]. Also, the number of 

items that are processed are well  within the boundaries of normal  human 

processing capacity (i.e. +/- 7 items), which may have attenuated the effort 

to engage in more efficient recoding strategies with practice. The findings in 

chapter 2 show that activity related to encoding decreased very fast. With 

the limited temporal resolution of fMRI, changes in other regions relevant to 

automatization may therefore have occurred unnoticed. Novel task designs 

should be considered in future experiments to further elucidate the neural 

mechanism underlying automatization. These should include feedback 

learning and stimulus material that challenges subjects to engage in 

restructuring strategies. 

 

A more speculative idea, and therefore a bit controversial, is that regions in 

the ‘default mode’ network may play a role in automatization. Of particular 

interest are the changes in activity in the default mode regions that 

occurred after practice, reported in chapter 3. Brain activity in the default 

mode network was decreased during novel processing and returned to 

similar levels compared to passive rest (i.e. ‘baseline’) after practice. The 

functional  properties of this network in human behavior remain unclear. 

Research however suggests that it is implicated in internal  processing of 

thoughts, emotions and awareness [15,16]. Our findings suggest that 

during novel performance the default mode network is suppressed (to 

inhibit interfering task-irrelevant internal thoughts and emotions) to enable 

controlled processing. With practice, activity levels in the default mode 

network may be restored as control diminishes and performance becomes 

resistant to interference of intrusive internal  thoughts. This may suggest 

that the transition from controlled to automatic processing is linked to a 

switch in activation and ‘deactivation’ in these two distinct networks. The 

neural  mechanisms underlying the switch between activation and 

deactivation of brain networks remain largely unknown. Recently however, 

a critical role has been suggested for the right frontoinsular cortex and the 

anterior cingulate cortex [17]. Both were present in the networks that we 

identified in chapter 3. It is possible that closer investigation of the 

interactions between ‘task-positive’ and ‘task-negative’ networks may reveal 
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how the transition between controlled and automatic  processing may take 

place.

Conclusion

The research in this thesis shows that automatization involves a dynamic 

distribution of available processing resources that allows organizing and 

structuring of the large amounts of complex information present in our 

environment. Contrary to what was expected, the cognitive deficit in 

schizophrenia is not explained by a deficit in automatization. Here we 

postulate that due to an inability to process frequently changing information, 

patients with schizophrenia will tend to engage in automatic  behaviors in 

circumstances that ask for flexible and adaptive behavior. The focus in 

future research on automatization should involve closer investigation of the 

neural  mechanism that enables disengagement of working memory from 

processing. Putative candidate regions involve the basal  ganglia and 

regions in the default mode network that interact with cognitive control 

under task conditions with high and low demands.
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Color Figures



Chapter 2 / Figure 3. Heterogeneous effect of practice on regions activated by both encoding 

and response selection

Example of bold activity (arbitrary units) in regions activated by both phases: a. left DLPFC (top) and b. 

anterior cingulate cortex  (bottom) during the novel task (left), after one practice run (middle) and six 

practice runs (right); showing the heterogeneous effects of practice for encoding and response 

selection. 
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Chapter 2 / Figure 4. Encoding ROI’s

ROIs showing activity related to encoding. The numbers in the color bar refer to the encoding phase 

ROIs (E1-E7) in table 2.

Chapter 2 / Figure 5. Response Selection ROI’s

ROIs showing activity related to the response selection. The numbers in the color bar refer to the 

response selection ROIs (RS1-RS14) in table 3.
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Chapter 2 / Figure 6. Practice and brain activity

a. activity in arbitrary units during encoding averaged over encoding phase ROIs (left) and b. activity 

during response selection averaged over response selection ROIs (right). Activity is displayed for novel 

task (NT) and each practice run (PT1-PT6).
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Chapter 3 / Figure 3. Regions of Interest 

Group contrast images (average contrast map of all 46 subjects) showing the regions of interest. 

Contrasts were thresholded with t=4.5. The top panel shows the NT vs. PT  contrast image. Red areas 

show the cortical  network that was more active in NT (NT>PT). Blue areas show the cortical regions 

that were more active in PT (inverse contrast PT>NT). The bottom panel shows areas in red that were 

commonly active in the three task conditions: NT!PT!CT (i.e. the intersection of NT, PT and CT vs. 

rest). The numbers in the slices correspond to MNI z-coordinates. Slices are in radiological orientation 

(left side is right hemisphere and vice versa). 

Chapter 3 / Figure 5. Positive and negative regions of interest

Surface representation of the positive (red) and negative (blue) regions of interest. Numbers 

correspond to those in Table 2. Negative regions 2, 3 and 6 are below the surface (see figure 3). 
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Chapter 3 / Figure 6. Interactions within and between regional networks

Correlations within regions (left 4 columns) and between (right column) regions. Left 3 columns display 

correlations of task versus rest values (not corrected for mean activity level, see text). Fourth column 

displays correlations of practice-induced signal change (NT - PT), corrected for mean activity of CT, 

PT and NT  versus rest. Right column display correlations between regions across networks, corrected 

for mean activity of CT, PT and NT versus rest. Positive ROIs (NT > PT) are displayed in red, negative 

ROIs (NT < PT) in blue, and the common ROIs (NT> rest AND PT > rest) in purple. Numbers 

correspond to regions listed in Table 2. Right side is left hemisphere. 
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Chapter 3 / Figure S1

Color indication of significance of task versus rest. Positive ROIs (NT > PT) are displayed in red, 

negative ROIs (NT  < PT) in blue. Colored regions are significantly (de)activated versus rest (p<0.05). 

Grey circles are not. Numbers correspond to regions listed in Table 2. Right side is left hemisphere. 

Common ROIs are not displayed, they are significant in all tasks.
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Chapter 3 / Figure S2

Scatterplots of positive ROI’s versus each other, for the NT-PT change in brain activity. Red frames 

indicate significant correlations (see text for details). Diagonals display distributions of values across 

subjects, within ROI’s.
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Chapter 3 / Figure S3

Scatterplots of networks versus each other, for the NT-PT change in brain activity. Red frames indicate 

significant correlations (see text for details). Diagonals display distributions of values across subjects, 

within networks.
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Chapter 3 / Figure S4

Mean levels of activity change (NT minus PT, displayed on y-axis) for all subjects. Values are shown 

for the 5 networks on the x-axis. Significant correlations between networks are displayed in the figure.
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Chapter 4 / Figure 2.

An individual  t-map in native space (single subject, t=3; p<0.05 corrected, L=left, A= anterior, z=15) is 

shown, displaying activation in the left prefrontal cortex (1) and left parietal cortex (2). 
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Chapter 4 / Figure 3.

The individual stimulation locations in the prefrontal (shown in red) and the parietal cortex   (shown in 

green) are displayed in MNI space for all  participants in the study. In blue the control region in the mid-

saggital plane is  displayed that was stimulated in five subjects. The top panel shows a posterior and 

an anterior view of the stimulation locations. The bottom panel displays a superior and lateral view of 

the individual stimulation locations.
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Chapter 5 / Figure 3.

Combined group map of patients and controls showing WM regions: 1. left fusiform gyrus LFG, 2. left 

prefrontal  cortex  LPFC, 3. left superior parietal cortex  LSPC, 4. right superior parietal cortex  RSPC, 5. 

anterior cingulate cortex  ACC. The numbers in the slices correspond to MNI z-coordinates. Slices are 

in radiological orientation (left side is right hemisphere and vice versa). 
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Oefening baart kunst. Dit is met name het geval  wanneer een handeling 

herhaaldelijk op dezelfde wijze uitgevoerd wordt. Deze vorm van leren 

wordt ook wel automatiseren genoemd. In tegenstelling tot het effect van 

automatiseren op ons gedrag, is over het effect van automatiseren op 

hersenfunctie nog weinig bekend. Het doel  van dit proefschrift is om de 

neurale basis van automatiseren en het vermogen om onze beperkte 

informatieverwerkingscapaciteit te vergroten als gevolg van training, te 

onderzoeken. Patiënten met schizofrenie lijken een grotere beperking te 

hebben in de hoeveelheid informatie die zij  kunnen verwerken. In dit 

proefschrift onderzoeken we tevens of een stoornis in automatiseren de 

verminderde cognitieve capaciteit bij schizofrenie kan verklaren.

Het onderzoek bouwt voort op eerdere studies die hebben aangetoond dat 

automatiseren de activatie beïnvloedt van hersengebieden die belangrijk 

zijn voor het werkgeheugen. De aard van deze veranderingen en hoe deze 

bijdragen aan het verbeteren van de informatieverwerkingscapaciteit zijn 

nog grotendeels onbekend. In hoofdstuk 2 onderzochten we de 

veranderingen in hersenactiviteit als gevolg van training voor verschillende 

informatieverwerkingsprocessen binnen een cognitieve taak; het encoderen 

van informatie en responsselectie. De resultaten lieten een snelle daling in 

hersenactiviteit zien in gebieden die betrokken zijn bij het encoderen van 

visuele informatie. De activiteitsdaling in het netwerk van gebieden 

betrokken bij  responsselectie vond later plaats en beperkte zich tot een 

selectie van gebieden. Deze resultaten laten zien dat de mate waarin het 

werkgeheugen de informatieverwerking ondersteunt over het verloop van 

training, verschillend is voor afzonderlijke informatieverwerkingsprocessen 

binnen een cognitieve taak. De snelle daling in activiteit voor encoderen 

suggereert dat automatiseren met name het vermogen verbetert om 

meerdere bronnen van informatie tegelijkertijd te kunnen verwerken en te 

onthouden. 

In hoofdstuk 3 onderzochten we of de daling in hersenactiviteit in 

werkgeheugengebieden na training gepaard gaat met een compenserende 

toename in activiteit in andere hersengebieden. We hebben gekeken naar 

drie scenario’s. Ten eerste onderzochten we of er een verschuiving is van 

activiteit in het werkgeheugennetwerk naar een netwerk van andere 

gebieden. Ten tweede, of er sprake is van een verschuiving van activiteit 

binnen het netwerk van gebieden dat actief is voorafgaand aan de training. 
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Ten derde, of activiteit in zijn geheel daalde in de hersengebieden die van 

het begin tot het einde van de training bij  de cognitieve taak betrokken zijn. 

We identificeerden drie netwerken van gebieden die een zelfde effect van 

training op hersenactiviteit lieten zien. Buiten het netwerk van 

werkgeheugengebieden die een daling in activiteit lieten zien, steeg het 

BOLD signaal steeg als gevolg van training in een aantal  gebieden. Echter 

in deze gebieden was het signaal voorafgaand aan training lager dan 

tijdens rust. Daarnaast was er een netwerk van motorische gebieden waar 

het signaal constant bleef na training. Er is dus geen verschuiving in 

activiteit van het werkgeheugen netwerk naar een ander netwerk van 

gebieden waargenomen. Tevens waren er geen negatieve correlaties 

tussen gebieden in de geactiveerde netwerken als gevolg van training. Er 

was dus geen sprake van een verschuiving in activiteit binnen het netwerk 

dat actief was voorafgaand aan training. De bevindingen in deze studie 

ondersteunen het idee van een algehele daling in activiteit van het 

werkgeheugen als gevolg van training, zonder compensatie van 

toegenomen activatie elders in het brein. Deze bevindingen suggereren dat 

het werkgeheugen mogelijk belangrijk is voor ‘chunking’ tijdens training, 

waardoor informatie mogelijk opnieuw gecodeerd of gestructureerd wordt, 

voor een efficiëntere verwerking. 

Eerder onderzoek suggereert de betrokkenheid van het werkgeheugen bij 

de ontwikkeling van automatiseren. De kritische bijdrage van het 

werkgeheugen voor automatiseren is echter nog niet vastgesteld. In 

hoofdstuk 4 gebruikten we een combinatie van fMRI en transcraniële 

magnetische stimulatie (TMS) om de functionele betrokkenheid van het 

werkgeheugen bij  automatiseren vast te stellen. De fMRI beelden die 

tijdens het uitvoeren van een werkgeheugentaak waren gemaakt m.b.v. de 

MRI scanner werden gebruikt om op individuele basis de gebieden te 

lokaliseren die betrokken zijn bij het werkgeheugen en waar activiteit daalt 

als gevolg van training. Vervolgens werden deze gebieden gestimuleerd 

met TMS tijdens het uitvoeren van een nieuwe en een geoefende 

werkgeheugentaak. De resultaten laten zien dat interferentie met activiteit 

in de dorsolaterale prefrontaal  cortex en de parietaal  cortex, de 

taakprestatie verslechtert, voor zowel  nieuwe als (deels) geautomatiseerde 

taken. Dit effect is het sterkst bij  nieuwe taken. Kortdurende interferentie 

met werkgeheugenactiviteit had geen invloed op de prestatie op de controle 

taak. De associaties tussen stimuli  en responsen in de controle taak kan als 
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(volledig) geautomatiseerd worden beschouwd. Dit suggereert dat wanneer 

een taak volledig geautomatiseerd is na voldoende training, deze zonder 

betrokkenheid van het werkgeheugen uitgevoerd kan worden. Deze 

bevindingen ondersteunen het idee dat het werkgeheugen automatische 

informatieverwerking mogelijk maakt door informatie te herstructureren, 

waardoor het efficiënter verwerkt kan worden. 

Automatiseren verbetert niet alleen de prestatie na training, maar verbetert 

tevens het vermogen om meerdere bronnen van informatie tegelijkertijd te 

verwerken. Patiënten met schizofrenie hebben een beperktere informatie-

verwerkingscapaciteit dan gezonde mensen. Schizofrenie kenmerkt zich 

bovendien door een inefficiënte hersenfunctie. Wanneer de hoeveelheid  te 

verwerken informatie binnen de grenzen is van hun capaciteit, zijn 

hersengebieden vaak actiever vergeleken met controle deelnemers. In 

hoofdstuk 5 hebben we onderzocht of inefficiënte werkgeheugenfunctie en 

verminderde informatieverwerkingscapaciteit bij schizofrenie gerelateerd 

zijn aan een stoornis in automatiseren. We verwachtten dat werkgeheugen-

gebieden bij  patiënten met schizofrenie inefficiënter zouden functioneren na 

training, omdat hersenactiviteit in deze gebieden minder zou dalen. We 

verwachtten dat daardoor dat minder capaciteit vrijgemaakt kan worden 

voor het simultaan uitvoeren van een tweede cognitieve taak. De resultaten 

laten zien dat training de prestatie bij  patiënten verbeterde en tevens 

excessieve hersenactiviteit normaliseerde. Training verbeterde het 

vermogen om twee taken tegelijkertijd uit te voeren in beide groepen, maar 

desondanks waren patiënten minder goed in staat dan controle deelnemers 

om simultaan twee taken uit te voeren. De daling in werkgeheugenactiviteit 

als gevolg van training voorspelde hoe goed iemand in staat was om twee 

taken tegelijkertijd uit te voeren bij de controle deelnemers, maar dit was 

niet het geval bij de patiënten. Deze bevindingen laten zien dat 

automatiseren intact lijkt te zijn bij klinisch stabiele patiënten. Bovendien 

was er geen relatie tussen automatiseren en beperkte informatie-

verwerkingscapaciteit bij patiënten met schizofrenie. De resultaten 

suggereren dat inefficiënte hersenfunctie en beperkte verwerkingscapaciteit 

bij schizofrenie gerelateerd zijn aan een onvermogen het om het 

werkgeheugen adequaat te activeren wanneer het gedrag regelmatig 

aangepast moeten worden; bijvoorbeeld wanneer nieuwe informatie zich 

aandient of wanneer snel geschakeld moet worden tussen meerdere 

opdrachten.  
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Het automatische brein: efficiëntie en verwerkingscapaciteit

Op basis van de bevindingen in hoofdstuk 3 en 4 concluderen we dat het 

werkgeheugen belangrijk is voor automatiseren door efficiëntere verwerking 

van (complexe) informatie door middel van herstructurering mogelijk te 

maken. Wanneer informatie in een bepaalde structuur aangeboden wordt, 

kunnen deze gegevens samengevoegd worden in een ‘chunk’ (een serie 

van letters kan bijvoorbeeld samen een pseudo-woord vormen), wat het 

makkelijker maakt om de afzonderlijke stukjes informatie op te slaan of 

terug te halen uit het (werk)geheugen. Dit idee wordt ondersteund door de 

bevindingen in hoofdstuk 2 die laten zien dat automatiseren werkgeheugen-

functie beïnvloedt, voornamelijk tijdens het encoderen van informatie. Dit 

zou kunnen betekenen dat encoderingsstrategieën van het werkgeheugen 

na training vervangen worden door efficiëntere verwerking van informatie. 

Dit wordt ondersteund door de bevindingen in hoofdstuk 4 die aantonen dat 

de prestatie minder afhankelijk wordt van het werkgeheugen als gevolg van 

training. Efficiëntere informatieverwerking in het brein faciliteert mogelijk het 

terughalen van tijdelijk opgeslagen informatie waardoor de prestatie sneller 

en nauwkeuriger wordt. De vrijgekomen werkgeheugencapaciteit maakt het 

tevens mogelijk om nieuwe informatie tegelijkertijd te verwerken. 

Automatiseren weerspiegelt daarmee het flexibele en adaptieve cognitieve 

vermogen van de mens dat centraal staat in huidige cognitieve 

informatieverwerkingstheorieën.     

Het automatische brein bij schizofrenie

Het onderzoek in dit proefschrift toont de belangrijke rol  aan van het 

werkgeheugen bij automatiseren. Het onderzoek bevestigt tevens dat er 

sprake is van een werkgeheugenstoornis bij patiënten met schizofrenie. 

Desondanks lijkt automatiseren bij deze patiënten intact te zijn. In eerste 

instantie lijken deze bevindingen in tegenspraak met elkaar; als het 

werkgeheugen cruciaal voor automatiseren is, waarom laten patiënten met 

schizofrenie dan geen afwijking in automatiseren zien?

Het werkgeheugen is met name ontoereikend bij patiënten wanneer 

informatie snel verandert of het gedrag aan nieuwe informatie aangepast 

dient te worden. In hoofdstuk 2 lieten we zien dat de betrokkenheid van het 

werkgeheugen snel afneemt als gevolg van training bij  het encoderen van 

herhaaldelijk aangeboden consistente informatie. Dit wekt de suggestie dat 
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patiënten goed in staat zijn gestructureerde informatie te verwerken omdat 

het werkgeheugen dan minimaal belast wordt. Dit wordt ondersteund door 

de bevindingen in hoofdstuk 4, waar met behulp van een ‘virtuele lesie’ 

werd aangetoond dat interferentie met werkgeheugenactiviteit (in de 

dorsolaterale prefrontale en parietale cortex) met name de prestatie 

verslechterd wanneer nieuwe informatie verwerkt wordt. De prestatie-

verslechtering was minder wanneer tijdens stimulatie de getrainde taak 

werd uitgevoerd. Dit ondersteunt het idee dat de werkgeheugen-stoornis bij 

schizofrenie voornamelijk het vermogen beïnvloedt om informatie te 

verwerken die regelmatig verandert of vernieuwd wordt. Een onvermogen 

om nieuwe informatie adequaat te verwerken, kan leiden tot stereotype 

gedragingen, wat een belangrijk kenmerk is van psychiatrische 

aandoeningen als schizofrenie en autisme. De cognitieve problemen bij 

schizofrenie en mogelijk ook bij  aanverwante psychiatrische aandoeningen 

kunnen mogelijk verklaard worden door een onvermogen om onverwachte 

en nieuwe informatie te verwerken. Door een onvermogen om adequaat te 

reageren op nieuwe of onverwachte prikkels zijn psychiatrische patiënten 

meer geneigd om automatische strategieën te hanteren in omstandigheden 

die vragen om flexibel en adaptief gedrag.  

Aanknopingspunten voor toekomstig onderzoek naar automatiseren

Dit proefschrift levert een belangrijke bijdrage in de verduidelijking van de 

rol van het werkgeheugen bij automatiseren. Er blijven een aantal  vragen 

onbeantwoord. Opvallend is dat ondanks een werkgeheugenstoornis, het 

automatiseren bij (stabiele) patiënten met schizofrenie intact lijkt te zijn. Dit 

suggereert dat het werkgeheugen niet alleen verantwoordelijk kan zijn voor 

automatiseren. Toekomstig onderzoek zou zich moeten richten op 

mogelijke andere systemen in het brein die in interactie met het 

werkgeheugen automatiseren tot stand brengen. Mogelijke kandidaten zijn 

de basale ganglia. Deze subcorticale kernen in het brein spelen een 

belangrijke rol bij leren en bij  de totstandkoming van automatismen. Samen 

met de prefrontale cortex versterken de basale ganglia de verbindingen 

tussen sensorische en motor gebieden in het brein, waardoor na voldoende 

training bepaalde gedragingen direct uitgelokt kunnen worden door de 

juiste sensorische prikkel. Het frontostriatale circuit speelt tevens een 

belangrijke rol bij het vermogen om adequaat te reageren in onverwachte 

en nieuwe situaties. Wanneer het frontostriatale circuit niet optimaal 

functioneert, kan de neiging groter zijn om op stereotype of perseveratieve 
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wijze te handelen. Samen met de prefrontale cortex spelen de basale 

ganglia dus mogelijk een belangrijke rol in de overgang van gecontroleerde 

naar automatische informatieverwerking als gevolg van training.

Het is mogelijk dat de experimentele opzet in het huidige onderzoek niet 

sensitief genoeg was om veranderingen in hersenactiviteit als gevolg van 

training teweeg te brengen in andere gebieden die mogelijk betrokken zijn 

bij  automatiseren. De nadruk in de cognitieve taak lag op het expliciet leren 

van associaties tussen verbale stimuli en responsen. Het is mogelijk dat de 

basale ganglia hierdoor niet voldoende geactiveerd werden, omdat zij 

gevoeliger zijn voor het impliciet leren van relaties en patronen. Het is 

tevens mogelijk dat de hoeveelheid informatie (i.e. vijf letters) binnen de 

grenzen van de informatieverwerkingscapaciteit liggen en daardoor het 

vermogen om efficiëntere hercoderingsstrategieën te gebruiken 

onvoldoende prikkelde. 

Een meer speculatief idee, ingegeven door de resultaten van hoofdstuk 3, 

is dat gebieden in het ‘default mode’ netwerk een rol  zouden kunnen spelen 

bij  automatiseren. Activiteit in de ‘default mode’ gebieden is verlaagd tijdens 

cognitieve inspanning en herstelt zich tot het basis niveau tijdens rust na 

training. Het onderzoek naar de functionele eigenschappen van het default 

mode netwerk bevindt zich in een pril stadium. Recente publicaties 

suggereren dat dit netwerk mogelijk een rol speelt bij  introspectieve 

gedachten en emoties, en bij het bewustzijn. Tijdens cognitieve activiteit 

kunnen deze processen interfereren met de prestatie. Voor optimale 

prestatie is het daarom van belang om deze storende processen te 

onderdrukken. Na training neemt de cognitieve controle af en vormen 

introspectieve processen geen bedreiging meer voor de prestatie en wordt 

activiteit in dit netwerk weer hersteld. Het is daarom mogelijk dat de 

overgang van gecontroleerde naar automatische informatieverwerking 

gerelateerd is aan de balans tussen deze twee netwerken. 

Conclusie

Het onderzoek in dit proefschrift laat zien dat automatiseren ons in staat 

stelt de grote hoeveelheid informatie die het brein binnenkomt, op efficiënte 

wijze te organiseren en te structureren, en daarmee een gunstig effect 

heeft op de van nature beperkte verwerkingscapaciteit van het brein. In 

tegenstelling tot wat was verwacht, konden we de verminderde 
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verwerkingscapaciteit bij schizofrenie niet verklaren door een stoornis in het 

automatiseren. We concluderen dat de cognitieve beperking bij  patiënten 

met schizofrenie voortkomt uit een onvermogen om veranderlijke en 

inconsistente informatie adequaat te verwerken. Om de verwerkings-

capaciteit bij  mensen met en zonder psychiatrische aandoening beter te 

kunnen begrijpen zou de focus van toekomstig onderzoek naar 

automatiseren zich moeten richten op het neurale mechanisme dat het 

mogelijk maakt om cognitief functioneren onafhankelijk te maken van het 

werkgeheugen door training. De basale ganglia en het ‘default mode‘ 

netwerk lijken twee kandidaten die, in interactie met het werkgeheugen, 

hierbij betrokken zijn. 
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