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Suppes’s outlines of an empirical measurement theory

Marcel Boumans*

School of Economics, Utrecht University, Utrecht, The Netherlands

(Received 2 October 2015; accepted 21 December 2015)

According to Suppes, measurement theory, like any scientific theory, should consist of
two parts, a set-theoretical defined structure and the empirical interpretation of that
structure. An empirical interpretation means the specification – ‘coordinating defini-
tions’ – of a ‘hierarchy of models’ between the theory and the experimental results.
But in the case of measurement theory, he defined the relationship between numerical
structure and the empirical structure specifically in terms of homomorphism. This is
rather a highly restrictive relation between models, and therefore he never succeeded
in giving his measurement theory empirical content. This paper discusses what an
empirical measurement theory will look like if we would use less restrictive ‘coordi-
nating definitions’ to specify the relationships between the various models.

Keywords: measurement theory; model of data; correspondence rule; Patrick Suppes

Introduction

One of Patrick Suppes’s most influential contributions is his theory of measurement,
which later evolved into what is now the most dominant theory of measurement: the
representational theory of measurement. This latter theory was canonized in the three-
volume survey Foundations of Measurement, edited by Krantz, Luce, Suppes, and
Tversky (1971/1989/1990). These volumes present measurement theory as a highly for-
malistic axiomatic theory. The first version of this axiomatic theory of measurement is
the ‘Basic Measurement Theory’ by Suppes and Zinnes (1963).

This highly abstract theory of measurement is criticized for its abstractness, that is,
its lack of giving an account of actual practical measurement. It does not account for
measurement procedures, devices, and methods; and it applies only to error-free data,
in the sense that it says nothing about handling the response variability in real data. A
recent discussion of the representational theory of measurement aptly characterizes it as
‘a library of mathematical theorems […] useful for investigating problems of concept
formation’ (Heilmann, 2015, p. 788).

Suppes’s contributions to the development of this abstract account of measurement
is in sharp contrast with his accounts of experiments in psychology, which have a much
more practical focus; they are about procedures, devices, methods, errors, and variabil-
ity. It is as if Suppes was never able to connect these two kinds of studies. This paper
is a proposal of how this potential connection could be conceived, based on expanding
Suppes’s account of experimental practices into the practices of measurement.

According to Suppes (2002), a scientific theory should consist of two parts, a set-
theoretical defined structure and the empirical interpretation of that structure.1 The reason
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for having set-theoretical structures play a central role is that ‘such structures provided
the right settings for investigating problems of representation and invariance in any sys-
tematic part of past or present science’ (p. xiii). Suppes argues that these ‘right settings’
cannot be provided by any of the logical languages,

the artificial-language treatment of problems of evidence are inadequate. [It gives] a much
too simplified account of the extraordinarily complex and technically involved practical
problems of assessing evidence in the empirical sciences. (Suppes, 2002, p. 2)

In addition to his interest in theory structure, Suppes’s also emphasized empirical
details: particularly those of the experiments in psychology, some of which he had con-
ducted himself. He hoped to extend his work on set-theoretical structures to include an
account of set-theoretical representations of data, ‘as a necessary, but still desirable,
abstraction of the complicated activity of conducting experiments’ (p. xiv), but he
never managed to complete the project . In his 2002 book, however, section 8.6 ‘exem-
plifies’ what he had in mind.

This penultimate section of his 2002 book (the very last section is an epilog) dis-
cusses Suppes’s most recent experimental work on brain-wave representations of words
and sentences. He suggests that most of the activities related to these kinds of experi-
ments are actually attempts to ‘clean up’ the data:

As in many areas of science, so with EEG recordings, statistical and experimental methods
for removing artifacts and other anomalies in data constitute a large subject with a compli-
cated literature. […] I am happy to end with this one example of a typical method of
‘cleaning up’ data.2 (Suppes, 2002, p. 465)

In addition to favoring a set-theoretical account of structure over the syntactic account
of theories, he also favored an approach in which the correspondence rules between
theory and data were defined in terms of models instead of empirical interpretations of
the syntactical terms. Correspondence should be defined – ‘coordinating definitions’ –
in terms of a ‘hierarchy of models’ between theory and experimental results. This hier-
archy of models consists of various levels of models, with the top level being a model
of the theory and the bottom level an empirical model. The reason for using a hierarchy
of models instead of direct empirical interpretations of theories is that the correspon-
dence between theory and data is ‘much more complicated,’ in part because ‘the model
of the experimental results is of a relatively different logical type from that of any
model of the theory’ (p. 7).

In case of measurement, the empirical model is:

an abstraction from most of the empirical details of the actual empirical process of mea-
surement. The function of the empirical model is to organize in a systematical way the re-
sults of the measurement procedures used. (Suppes, 2002, p. 4)

But as an experimental practitioner he knew that these abstractions do not account suf-
ficiently for the various practices of experimentation, so he hoped to supplement these
abstractions of the experimental results with abstractions of the procedures:

It would be desirable also to develop models of the experimental procedures, not just the
results. A really detailed move in this direction would necessarily use psychological and
related psychological concepts to describe what experimental scientists actually do in their
laboratories. This important foundational topic is not developed here and it has little
systematic development in the literature of the philosophy of science. (Suppes, 2002,
p. 7)3
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In contrast with the acknowledgment of multiple levels of models between theory and
data in experimental practice, in his theory of measurement Suppes distinguishes only
two levels: a numerical and an empirical level. Moreover, the correspondence between
the numerical structure and the empirical structure is defined solely in terms of a homo-
morphism. This narrow definition of correspondence is in contrast with the more liberal
coordinating definitions determining the hierarchy of models for experiments. These
experimental models could be different in nature for each correspondence between two
consecutive levels in the hierarchy, and thus include other types of correspondence than
homomorphism alone. This narrow definition of correspondence in measurement is prob-
ably the main reason that Suppes’s theory of measurement never has become a theory
that accounts for practice of measurement, and remained primarily a mathematical theory.

This paper will explore the framework Suppes set out for experimental practices: as
he developed for the experimental results and also as he hoped that someone would
develop for procedures, see last quotation. The aim of this paper is to see how Suppes’s
framework might be applied to measurement practice, with the goal of ending up with
an empirical measurement theory. To do so, I will use my own measurement account
that does not require a homomorphic relationship between the numerical and empirical
level, because the model structures are modular instead of relational.4

Models of data

Before I discuss Suppes’s hierarchy of models in more detail, it is useful to clarify what
Suppes meant by the terms ‘model’ and ‘theory.’ Unfortunately his two textbooks
Introduction to Logic (1957) and Axiomatic Set Theory (1960a) do not provide clear
unique definitions of models and theories. The Axiomatic Set Theory does not discuss
models and theories at all, and the Introduction to Logic gives three different defini-
tions of a ‘model for a theory’: one used in logic, one in mathematical economics, and
one in empirical science:

Logic: ‘when a theory is axiomatized by defining a set-theoretical predicate, by a model
for the theory we mean simply an entity which satisfies the predicate’ (1957, p. 253).

Mathematical economics: ‘the model for a theory is the set of all models for the theory in
the logicians’ sense. What the logicians call a model is labeled a structure’ (p. 253).

Empirical science: a model is ‘an exact mathematical theory’, and a theory is a set of
‘non-mathematical, relatively inexact statements about the fundamental ideas of a given
domain in science’ (p. 254).

Suppes’s habit of listing the definitions of models used in various disciplines rather
than providing a single definition of a model was continued in his 1960 article on the
‘Comparison of the Meaning and Uses of Models in Mathematics and the Empirical
Science.’5 In that case the disciplines were mathematical logic, physics, economics,
psychology, and mathematical statistics, but he also made his preferences more explicit.
He considered Tarski’s definition as ‘a fundamental concept’ in all the above disci-
plines: ‘I would assert that the meaning of the concept of model is the same in mathe-
matics and the empirical sciences’ (1960b, p. 289). Tarski defined a model of a theory
T as ‘a possible realization in which all valid sentences of a theory T are satisfied’
(Tarski quoted in Suppes, 1960b, p. 287). A theory is thus a linguistic entity consisting
of a set of sentences and models are non-linguistic entities in which the theory is
satisfied (1960b, p. 290).6
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It is striking that in these early papers, models were exclusively defined in relation
to a theory, evidenced by calling them ‘model of a theory,’ or ‘model for a theory.’ It
is, however, in the same period that Suppes started to think about models in relation to
data, which he called ‘models of data.’

Suppes’s account of hierarchy of models was introduced for the first time in his
1960 article on the meaning and uses of models. His reason for introducing this idea of
hierarchy of models was the ‘radical’ difference between the ‘logical type’ of models
used in theory and those used in experiment: ‘The maddeningly diverse and complex
experience which constitutes an experiment is not the entity which is directly compared
with a model of a theory’ (p. 297). To make a comparison between theory and experi-
ment possible ‘drastic assumptions of all sorts are made in reducing the experimental
experience […] to a simple entity ready for comparison’ (p. 297). A plurality of mod-
els between these two levels could reduce the need for drastic assumptions.

A more detailed discussion of the hierarchy of models appeared in his ‘Models of
Data’ (1962). He argued that this paper was written to overcome the ‘sins of philoso-
phers of science […] to overly simplify the structure of science’ (p. 260) by represent-
ing scientific theories as logical calculi and then to ‘go on to say that a theory is given
empirical meaning by providing interpretations or coordinating definitions for some of
the primitive or defined terms of the calculus’ (p. 260). Instead of this overly simplistic
view of how theories are related to data, Suppes argued that ‘a whole hierarchy of
models stands between the model of the basic theory and the complete experimental
experience’ (p. 260). A model at one level is given empirical meaning by a specifically
defined connection with the model at a lower level. Because the models at each level
are of a different ‘logical type,’ the connections between them will be also of different
types.

According to Suppes a systematic account of these connections should be formal,
which for him meant set-theoretical. He did not make clear why he took this position
(‘a general defense of this conclusion cannot be made here’, p. 261), but it seems to
contradict his more liberal principle acknowledging the difference between logical types
of models, and, as will be shown below, it also prevented him from providing an
account that would connect all the various levels down the hierarchy.

The lowest level of the hierarchy, however, could not be modeled. This lowest level
is that pertaining to ‘noises, lighting, odors, phases of the moon,’ see Table 1, ‘here is
placed every intuitive consideration of experimental design that involves no formal
statistics’ (p. 258). In contrast to this lowest level, the level just above, the level of
experimental design, can be formalized, which makes the relationship between the level
of experimental design and the level above it (models of data), explicit. This was con-
sidered to be impossible for the lowest level because of ‘the seemingly endless number

Table 1. Hierarchy of theories, models, and problems.

Theory of Typical problems

Linear response models Estimation of θ, goodness of fit to models of data
Models of experiment Number of trials, choice of experimental parameters
Models of data Homogeneity, stationarity, fit of experimental parameters
Experimental design Left–right randomization, assignment of subjects
Ceteris paribus conditions Noises, lighting, odors, phases of the moon

Source: Suppes (1962, p. 259).
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of unstated ceteris paribus conditions’ (p. 259). In other words, this lowest layer of
dealing with the ceteris paribus conditions cannot be covered by any model because of
the infinite number of conditions one has to account for. Therefore it cannot be con-
nected to the level of experimental design above it.

The level of ceteris paribus conditions aims at reducing sources of errors: to mute
loud noises, to fresh the air from bad odors, or to reorganize the schedule for observa-
tions. These attempts to reduce sources of errors are what I would like to call cleaning
activities, since they reduce errors or even remove the sources of them. According to
Suppes, these activities, unlike experimental design, cannot be accounted for by any
model or theory, and hence cannot be connected to the higher levels.

Notwithstanding that this hierarchy of models account was too restricted to allow
for a systematic account of the basic – often most time-consuming – research activities,
such as cleaning the environment before any experiment can be run, it is more liberal
than the standard view on the relationship between theories and data. In the first place
it allows for other types of correspondence rules; and secondly, ignoring the problems
of correspondence, the level of the cleaning activities was explicit in the hierarchy. This
was exceptional at the time and still is today.

Theory of measurement

During the period when Suppes was developing his account of models of data, he,
together with Scott (Scott & Suppes, 1958), was also working on a theory of measure-
ment. Actually his model account is closely related to his theory of measurement,
because both were based on Alfred Tarski’s theory of models: ‘The main point of the
present paper is to show how foundational analyses of measurement may be grounded
in the general theory of models’ (p. 113). The core idea of such a theory was ‘to lay
bare the structure of a collection of empirical relations which may be used to measure
the characteristic of empirical phenomena corresponding to the concept’ (p. 113), and
therefore the main goal was ‘to construct relations which have an exact and reasonable
numerical interpretation and yet also have a technically practical empirical interpreta-
tion’ (p. 113).

To put it in set-theoretical terms, one has to define two relational systems A = < A,
R1, …, Rn>, and B = < B, S1, …, Sn>, where A is a non-empty set of qualitative empiri-
cal data, R1, …, Rn are relations on A, B is the set of all real numbers, and S1, …, Sn
are numerical relations such that B is a homomorphic image of A. B is a homomorphic
image of A if there is a function f from A onto B such that, for each i = 1, …, n and
for each sequence < a1, …, ami > of elements of A, Ri(a1, ….,ami ) if and only if Si(f
(a1), …., f(ami )). In other words, a ‘reasonable numerical interpretation’ of an empirical
relational system is a numerical relational system that is homomorphic to this empirical
relational system (see also Suppes & Zinnes, 1963, pp. 5, 6).

Forty years later, Suppes (1998) published this theory of measurement in a more
transparent but fairly condensed way as an entry in the Encyclopedia of Philosophy. Of
interest here is that this later account has an additional section on ‘Variability, Thresh-
olds and Errors,’ which examines the kind of problems that one encounters in the
empirical practice of measurement.

Variability in the quantity measured, as Suppes explains, can have different sources.
One source can be variability in the empirical properties of the object being measured.
The height of a person for example varies on a diurnal basis. Another source of vari-
ability lies in the procedures of measurement being used, and this kind of variability is
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usually attributed to measurement error. Suppes distinguished various kinds of errors:
instrumental errors due to imperfections of the measuring instrument, personal errors
due to the response characteristics of the observer, systematic errors due to
circumstances ‘that are themselves subject to observation and measurement’ (p. 248),
random errors due to variability in the conditions surrounding the observations, and
computational errors.

Although Suppes explicitly mentions these sources of variability, he also admits that
‘it is not possible here to examine in detail how the foundational investigations of mea-
surement procedures have been able to deal with such problems of errors’ (1998,
p. 248). However, he gave no such account elsewhere.

A model of ceteris paribus conditions

The requirement for connecting the lowest level of ceteris paribus conditions to the
level above it is the existence of a model representing this level. At this level ‘is placed
every intuitive consideration of experimental design that involves no formal statistics.
Control of loud noises, bad odors, wrong times of day or season go here’ (Suppes,
1962, p. 258). The level of ceteris paribus conditions is the level of controlling
variability, that is, of reducing sources of errors.

Although this level is not accounted for within Suppes’s theory of measurement,
nor in the more general representational theory of measurement (Krantz et al., 1971,
1989, 1990), it is accounted for by the current metrological theory of measurement.
This metrological measurement theory is mainly a practice-based account.7

The target of modeling the measurement process in metrology is the measurement
function f: In most cases, a measurand Y is not measured directly, but is determined
from N other quantities X1, X2, …, XN through a functional relationship f: Y = f(X1, X2,
…, XN), where X1, X2, …, XN are called the input quantities and Y the output quantity
(JCGM 100 2008, p. 8). If data indicate that f does not model the measurement to the
degree imposed by the required accuracy of the measurement result, additional input
quantities must be included in f to reduce this inaccuracy (see JCGM 100 2008, p. 9).

The problem with this modeling strategy, however, is that accuracy of measure-
ment does not provide a straightforward way to validate a measurement model. This is
because accuracy is defined with respect to the true value of the measurand: ‘closeness
of agreement between a measured quantity value and a true quantity value of a mea-
surand’ (JCGM 200 2012; p. 21). But a true value would only be obtained by ‘a per-
fect measurement,’ which is ‘only an idealized concept’ (JCGM 100 2008, p. 50);
therefore, ‘true values are by nature indeterminate’ (p. 32). This indeterminateness is
because there are potentially an infinite number of conditions that can influence the
measurand.8

The first step in making a measurement is to specify the measurand – the quantity to be
measured; the measurand cannot be specified by a value but only by a description of a
quantity. However, in principle, a measurand cannot be completely described without an
infinite amount of information. (JCGM 100 2008, p. 49)

Regarding this incomplete knowledge of the measurand, current metrology generally
acknowledges that measurement should be expressed in terms of uncertainty:

it is not possible to state how well the essentially unique true value of the measurand is
known, but only how well it is believed to be known. Measurement uncertainty can there-
fore be described as a measure of how well one believes one knows the essentially unique
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true value of the measurand. This uncertainty reflects the incomplete knowledge of the
measurand. (JCGM 104 2009, p. 3)

Thus, instead of evaluating measurement results in terms of errors, it is now preferred
to assess them in terms of uncertainty.

This uncertainty approach has consequences for the way in which measurement
models are built. Models should be built ‘to express what is learned about the measur-
and’ (JCGM 104 2009, p. 3). Uncertainty, defined as the ‘non-negative parameter char-
acterizing the dispersion of the quantity values being attributed to a measurand, based
on the information used’ (JCGM 100 2008, p. 25), reflects ‘the lack of knowledge of
the value of the measurand’ (JCGM 100 2008, p. 5), and consists of several compo-
nents, that is, sources of uncertainty.

In metrology the following sources of uncertainty are identified:

(a) incomplete definition of the measurand;
(b) imperfect realization of the definition of the measurand;
(c) the sample measured may not represent the defined measurand;
(d) inadequate knowledge of the effects of environmental conditions on the mea-

surement or imperfect measurement of environmental conditions;
(e) personal bias in reading analogue instruments;
(f) finite instrument resolution or discrimination threshold;
(g) inexact values of measurement standards and reference materials;
(h) inexact values of constants and other parameters obtained from external sources

and used in the data-reduction algorithm;
(i) approximation and assumptions incorporated in the measurement method and

procedure;
( j) variations in repeated observations of the measurand under apparently identical

conditions. (JCGM 100 2008, p. 6)

These sources are not necessarily independent, and an unrecognized causal factor
will contribute to measurement error. It is also acknowledged that ‘blunders in record-
ing or analyzing data can introduce a significant unknown error in the result of a mea-
surement’ (JCGM 100 2008, p. 8), but such blunders are not supposed to be accounted
for by the measurement model.

To evaluate uncertainty of measurement results, in metrology the recommendation
is to use two different ways of evaluating uncertainty components, a Type A evaluation
and a Type B evaluation:

Type A evaluation is the ‘method of evaluation of uncertainty by the statistical analysis of
series of observations’. (JCGM 100 2008, p. 3)

Type B evaluation is the ‘method of evaluation of uncertainty by means other than the
statistical analysis of series of observations’. (JCGM 100 2008, p. 3)

Type A evaluation can be objectively established as soon as a metric is chosen, since it
is a quantitative concept. Type B evaluation, however, is not based on a series of obser-
vations. It is considered to be a ‘scientific judgement’ based on professional skill ‘that
can be learned with practice’ (JCGM 100 2008, p. 12) depending on qualitative and
subjective knowledge of the measurand and ‘experience with or general knowledge of
the behavior and properties of relevant materials and instruments’ (p. 11).
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This distinction between Type A and Type B evaluations implies two different
stages of modeling, a Type A stage and a Type B stage. A Type A stage exploits the
measurement conditions under which the observations are obtained: ‘If all of the quan-
tities on which the result of a measurement depends are varied, its uncertainty can be
evaluated by statistical means’ (JCGM 100 2008, p. 7). A Type B stage depends on
‘skilled judgement’ and external sources, such as quantities associated with calibrated
measurement standards, certified reference materials, and reference data obtained from
handbooks, which may be used as an additional pool of information about whether the
model is complete. Combined, both stages lead to the following strategy of modeling:

Because the mathematical model may be incomplete, all relevant quantities should be var-
ied to the fullest practicable extent so that the evaluation of uncertainty can be based as
much as possible on observed data. Whenever feasible, the use of empirical models of the
measurement founded on long-term quantitative data, and the use of check standards and
control charts that can indicate if a measurement is under statistical control, should be part
of the effort to obtain reliable evaluations of uncertainty. The mathematical model should
always be revised when the observed data, including the result of independent determina-
tion of the same measurand, demonstrate that the model is incomplete. (JCGM 100 2008,
p. 7)

To arrive at a model of the ‘ceteris paribus conditions,’ both types of uncertainty evalu-
ations have to be accounted for. Modeling Type A evaluations is no more problematic
than any other kind of statistical modeling. The crucial problem is how to model the
judgments based on ‘other means.’9

The basic idea of modeling type B evaluations can be briefly summarized as fol-
lows: When modeling the measurement process, one should include every potential
input quantity, Xi, suggested by theory, experience, and general knowledge, regardless
of whether there are (enough) observations to assume its potential influence. Subse-
quently the validity of this encompassing model should be tested. The model may still
be incomplete, but the tests will tell whether a significant input quantity is still missing
or whether the input quantities not included in the model are negligible. To deal with
input quantities that are not measurable or for which there are not enough observations
for a Type A evaluation, the proposal is to use a gray-box modeling approach instead
of a white-box modeling approach.

The relationship between white-, gray-, and black-box modeling is as follows. A
white-box model is a set of causal-descriptive statements of how some aspect of a real
system actually operates. Testing this kind of model involves taking each relationship
individually and comparing it with observations of the real system. As will be shown
below, a Type B evaluation does not require this kind of model. For Type B evalua-
tions the model can be a less demanding gray-box model. A gray-box model is a mod-
ular designed model, where each of the modules are black boxes. Testing this kind of
model does not require having observations for each individual relationship.

To clarify this distinction between white-box, gray-box, and black-box models and
the different kinds of testing they require, Barlas’s (1996) distinction between three
stages of model validation is useful. These three stages are (1) direct structure tests, (2)
structure-oriented behavior tests, and (3) behavior pattern tests. Direct structure tests
assess the validity of the model structure, by direct comparison with knowledge about
the real system structure. This involves taking each relationship individually and com-
paring it with available knowledge about the real system. Structure-oriented behavior
tests assess the validity of the structure indirectly, by applying certain behavior tests on
model-generated behavior patterns. These tests involve simulation, and can be applied
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to the entire model, as well as to isolated sub-models of it. ‘These are “strong” behav-
ior tests that can help the modeler uncover potential structural flaws’ (Barlas, 1996,
p. 191). Behavior pattern tests do not evaluate the validity of the model structure,
either directly or indirectly, but measure how accurately the model can reproduce the
major behavior patterns exhibited by the real system.

For white-box models all three stages are equally important, while for black-box
models it is only the last stage of behavior pattern tests that matters. Barlas (1996) does
not refer to gray-box models. Although Barlas emphasizes that structure-oriented
behavior tests are designed to evaluate the validity of the model structure, his usage of
the notion of structure with respect to these tests allows for a notion of structure that is
not limited to realistic descriptions of real systems; it also includes other kinds of
arrangements like modular organizations. Structure-oriented behavior tests are also ade-
quate for the validation of modular-designed models and for these models the term
structure refers to the way the modules are assembled.

A module is a self-contained component (to be treated as a black box) with a
standard interface to other components within a system. I call these modular-designed
models gray-box models and they should pass the structure-oriented behavior tests and
the behavior pattern tests.

This concept of a gray-box model and the way it should be validated is useful for
outlining how to account for the lowest level of Suppes’s hierarchy of models. The first
step is to acknowledge that the model of the ceteris paribus conditions does not need
to be a complete representation of the relational system of these conditions, that is, a
white-box model. It is not required that the ceteris paribus model has to capture
detailed statistical knowledge about the complete set of the input quantities and the
relations between them. Notwithstanding these weaker requirements on knowledge of
these conditions and available observations, strong validation test – structure-oriented
behavior tests – exist that are able to identify and even to estimate the magnitude of
the uncertainty of neglected, ignored, or unknown influence quantities. As a conse-
quence, the model of the ceteris paribus conditions can be a validated gray-box model,
which does not require that an infinite number of conditions be accounted for, and
moreover, the involvement of ‘intuitive considerations that involve no formal statistics’
can nevertheless be validated by structure-oriented behavior tests.

Conclusions: connecting the bottom level of cleaning up activities

According to Suppes, a theory of empirical research practices, whether of measurement
or of experiment, should adequately account for the complex and technically involved
practical problems of assessing evidence. A major part of the activities involved in such
research practices are attempts to clean up the data, that is, treatments of errors and
their sources. Such a theory should focus more on procedures than on empirical results.

In connecting evidence with theory, Suppes preferred a set-theoretical interpretation
of structure because this would allow for a richer account of the correspondence
between theory and data than a logical calculus. This account proposes a hierarchy of
models as a layered connection between theory and data. The great benefit of such a
hierarchy of models is that it acknowledges that models on different levels can be of
different logical types. Another consequence is that the correspondences between con-
secutive models can also be of different types, determined by the types of models that
are connected.
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While Suppes had developed this challenging framework for a theory of experimen-
tal practices, particularly in his account of hierarchies of models, his theory of measure-
ment lacks these features and suffers from too drastic simplifications. One of these
crucial simplifications is that he restricted the kind of correspondence between an
empirical and a numerical structure exclusively to homomorphisms.

According to Suppes’s theory of measurement, the key requirement of measurement
is to find a homomorphism that maps the relations between the relevant features of the
measurand into a numerical model. This model is a representation of the empirical rela-
tional structure. The implicit consequence of the homomorphism requirement is that for
the measurement to be reliable, the model needs to be as complete as possible. Com-
pleteness means in this case that the model encompasses all possible influences that
may affect the measurand. Because the ceteris paribus conditions cannot be covered
completely by any white-box model (because of the potentially infinite number of con-
ditions one has to account for), Suppes assumed that this level could not be captured
by a model at all, and that only ‘intuitive considerations’ could play a role. The argu-
ment in this paper, however, suggests that with specific validation tests – structure-
oriented behavior tests – combined with a specific model design – gray box – a model
of ceteris paribus conditions is feasible. The consequence of this is that the measure-
ment model does not have to be a homomorphism of the structural relations describing
the measurand.
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Notes
1. Although this book is published nearly at the end of Suppes’s life, it represents his rather

invariant ideas as he had developed over many years: ‘I began this book as a young man.
Well, at least I think of under 40 as being young, certainly now. I finished it in my tenth year
of retirement, at the age of 80’ (p. xv).

2. An electroencephalogram (EEG) is a test that records the electrical activity of a brain.
3. These ‘psychological and related psychological concepts’ were not further explicated, but I

assume that these are related to the subjective judgements that have to be made while setting
up and running an experiment. As such they will be discussed in later sections.

4. This account can be found in Chapter 2 of Boumans (2015).
5. A habit which he actually also continued in his later work.
6. In his later work, Suppes would not anymore attempt to give such a definition of a ‘theory.’

For example, in his 2002 book in a section titled ‘What Is a Scientific Theory,’ he answers
this question by stating that ‘scientific theories cannot be defined simply or directly in terms
of other nonphysical, abstract objects’ (p. 2).

7. Metrology is a field within instrument and control engineering involved with measurement
and is the shared view on measurement of the international metrological organizations. This
shared view can be found in the publications of the Joint Committee for Guides in Metrol-
ogy. These publications are used here to outline this metrological measurement theory.

8. A quantity is very generally defined as ‘property of a phenomenon, body, or substance,
where the property has a magnitude that can be expressed as a number and a reference’
(JCGM 200 2012, p. 2). This definition of quantity is more general than the traditional defi-
nition of quantity where it is a property of an object.

9. A more detailed outline of this kind of modeling have been presented in Boumans (2013,
2015). The next paragraphs of the section are based on excerpts from these two publications.

314 M. Boumans
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