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a  b  s  t  r  a  c  t

The  transmission  of infectious  diseases  of  livestock  does  not  differ  in  principle  from  disease  transmis-
sion  in  any  other  animals,  apart  from  that  the  aim of  control  is ultimately  economic,  with  the  influence
of  social,  political  and  welfare  constraints  often  poorly  defined.  Modelling  of livestock  diseases  suffers
simultaneously  from  a wealth  and  a lack  of  data.  On  the  one  hand,  the  ability  to conduct  transmis-
sion  experiments,  detailed  within-host  studies  and track  individual  animals  between  geocoded  locations
eywords:
hallenges
ivestock diseases
athematical modelling
ata-driven modelling
odelling for policy

make  livestock  diseases  a particularly  rich  potential  source  of  realistic  data  for illuminating  biological
mechanisms  of transmission  and  conducting  explicit  analyses  of  contact  networks.  On  the  other  hand,
scarcity  of  funding,  as compared  to  human  diseases,  often  results  in  incomplete  and  partial  data  for  many
livestock  diseases  and  regions  of  the  world.  In  this  overview  of  challenges  in  livestock  disease  modelling,
we  highlight  eight  areas  unique  to livestock  that,  if addressed,  would  mark  major  progress  in the  area.

©  2014  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
ntroduction

The global livestock population is growing rapidly in order to
eet the increasing demand for meat and dairy products from

he expanding human population. The Food and Agricultural Orga-
ization (FAO) estimate that there are currently upwards of 1.5
illion cattle, 1.1 billion sheep, 0.97 billion pigs and goats and
0 million horses in an industry that employs at least 1.3 billion
eople. Infectious diseases pose a persistent challenge for the live-
tock industry. The World Organisation for Animal Health’s list of
otifiable diseases includes 65 diseases that affect livestock and
2 diseases of poultry and fowl, including well-known infections
uch as Foot-and-Mouth Disease (FMD), Classical Swine Fever (CSF)
nd Highly Pathogenic Avian Influenza (HPAI). A major motiva-
ion for countries reporting and controlling infectious threats is
nternational trade as losing a “disease-free” status can have major
conomic consequences.
In this paper we define eight challenges related to modelling
iseases of livestock. They are broadly ordered by scale: challenges

 and 2 deal with transmission within farms and herds; challenges
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3 and 4 deal with the need for data and methodological challenges
involved in repurposing veterinary databases; challenges 5, 6 and 7
place livestock modelling within a wider context with the need for
improved spatial models, unifying multiple scales of transmission
and links with other species. Finally, challenge 8 deals with the
politics and economics of modelling livestock diseases.

1. Linking models to transmission experiments

To draw reliable conclusions from data analyses, it is essential
that there is a clear relationship between models and data, whether
obtained by experiments or field observations. Much attention is
given to host and microbe heterogeneity (see challenges 2 and 6),
but a third issue is at least as relevant: the type and frequency
of transmissive contacts between infected and recipient hosts,
and how this depends on circumstances. Density of the host is
often used as a proxy to scale contact rates, but this is depend-
ent on knowledge of transmission pathways. Observational data
on endemic diseases could be used to address such questions in the
field (Carslake et al., 2011). Transmission experiments are also valid
tools to address these questions; for instance, it has been shown
experimentally that, for some diseases at least, if the relevant den-

sity is constant, contact rates should not scale with population size
(De Jong et al., 1995).

Recent experimental results have shown that simple extrapola-
tions are not valid if transmission is indirect, via the environment.

nder the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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n the case of faecal-oral transmission, when starting with a few
nfected individuals in a clean environment, the transmission rate

ill initially increase, then reach a plateau (Velkers et al., 2012),
nd continue but decrease after the last infected individual has
een removed. If indirect transmission occurs when individuals are
patially separated, when starting with a clean environment, the
ransmission rate remains zero for some time, and then gradually
ncreases (Dekker et al., 2013; Van Bunnik et al., 2014). These results
how that a proper way to scale indirect transmission with popu-
ation size and density is needed: an important new challenge to
e addressed by transmission experiments and, wherever possible,
eld observations to ground experimental data.

Experiments are also very useful to make the link between
pidemiology and within-host dynamics, as they allow intensive
esting during the course of an infection. This allows quantification
f heterogeneity between animals based on underlying (immuno-
ogical) processes and thus helps to explain and predict infectivity
Chase-Topping et al., 2013).

. Disease control by selective breeding

The increasing use of genetic data on infectious diseases is one
f the current major developments in infectious disease modelling.
y far most of this work is related to genetics of the pathogen, either
o reconstruct transmission pathways or to study the evolutionary
rocess itself, for example with respect to escape from vaccine con-
rol or virulence (Hoa et al., 2011). In veterinary applications, the
enetics of the host is relevant as well, not only to identify carri-
rs of genes or SNPs related to increased susceptibility, but also in
reeding programmes.

Breeding for production traits and health characteristics is gen-
rally done by use of quantitative genetic methods. Breeding for
nfectious disease resistance is generally not very successful for sev-
ral reasons. Firstly, heritability estimates from observational data
n disease development are generally low (Bishop and Woolliams,
010). Secondly, selection of animals is ineffective because it takes
ime until symptoms of disease develop and development of dis-
ase depends on the level of exposure. Thirdly, by selecting animals
hat do not develop the disease, one might select for lower sus-
eptibility or higher tolerance, but not necessarily for reduced
nfectivity. For control of infectious diseases, the latter is as least
s relevant to reduce transmission and thus incidence in the popu-
ation (Lipschutz-Powell et al., 2012). Moreover, modern transgenic
echniques may  allow introduction and rapid selection through
reeding pyramids of animals with substantial resistance to infec-
ion and less infectivity (Lyall et al., 2011).

With the advancement of sequencing techniques, selective
reeding may  become more relevant as a method for disease con-
rol in the future as selection can be based on genetic information
nstead of phenotype. A first challenge in this respect is the further
evelopment of statistical techniques to relate measured (genetic)
ariation to observable traits in animals related to infectious dis-
ases, and to predict the effectiveness of selection. Breeding for
nfectious disease resistance is still relatively new, as heritability of
esistance measured by classic methods has been low and breeding
neffective (Van Hulzen et al., 2014). When favourable genetic traits
re identified, a second challenge is the incorporation of infectivity
easures in breeding programmes. Quantification of variation in

nfectivity, in relation to more easily observable traits for selection,
an only be done indirectly and may  be done experimentally or by
se of transmission models with observational data.
. Applying models to data/resource-poor settings

The global burden of livestock diseases disproportionately
ffects the world’s poorest countries, however many of the
emics 10 (2015) 1–5

state-of-the-art livestock models are heavily based on large-scale
databases which are not available in resource-poor settings. Epi-
demic data are often patchy or not available for less-common
endemic diseases. There are multiple challenges involved in data
collection, including maintaining anonymity and controlling access
to sensitive information, consistent recording and database main-
tenance, and sharing of (raw) data when publishing analyses of
these data. Our challenge here is to model diseases in a global
context, share expertise and data, develop methods for repurpos-
ing existing models for limited data and to develop efficient and
targeted data capture systems.

Only a small proportion of diseases that affect livestock have
compulsory reporting and are of high political priority, therefore
often little is known about their epidemiology (Carslake et al.,
2011). Furthermore, modelling livestock epidemics at a national
level often involves spatial models that can capture local het-
erogeneity and predict the impact of localised control measures
(Keeling et al., 2001). Essential information for developing spatial
models includes locations, sizes and types of farms and livestock
holdings. Livestock tracing systems have been used to refine spa-
tial models (see challenge 4) and the FAO help implement national
agricultural censuses. However, as of 2014, nearly 50% of countries,
mainly in Africa, South-East Asia and Latin America, had yet to con-
duct a census. This is reflected further in the use of models for
contingency planning: only 28% of countries in Africa and the Mid-
dle East use models due to either a lack of data, expertise, resources
or perceived need (Dube et al., 2007).

Developing models for livestock epidemics in the absence of
population or epidemic data is challenging and relies on many
inbuilt assumptions. Even when data are available, adapting exist-
ing models to new countries can be problematic and at least require
a re-estimation of parameters (Tildesley and Keeling, 2008). Some
novel methods for overcoming a lack of spatial population data
include using land-use cover to infer farm locations (Tildesley
and Ryan, 2012), predicting disease spread based on environmen-
tal data (Purse et al., 2007) and reconstructing transmission trees
based on spatial case data alone (Metras et al., 2013). International
collaborations are key, and in data-poor settings there are oppor-
tunities for developing model-guided surveillance methods.

4. How best to exploit rich livestock data?

In contrast to the previous challenge, there is a need to develop
models and techniques for capturing the rich detail of livestock
data. Livestock are closely managed populations that can yield
both targeted data on infection and transmission in small groups
of animals and detailed population-wide statistics, that would be
regarded as impractical or invasive in other species. The many
dimensions of livestock data can be collapsed in a multitude of ways
to address a wide variety of different problems. This particularly
rich potential source of realistic data provides crucial information
for modelling disease transmission and can be used to investigate
the role of population structure in models of other species and
systems.

Over the past 20 years, individual animal tracing has become
a routine component of livestock management in many indus-
trialised countries and is being implemented in new regions and
for new species. The United States of America is a notable excep-
tion, where the implementation of a national system has been
limited by privacy concerns. Birth, death and movement records
provide a daily census of the current population that can be used

to estimate seasonal forcing and timing of epidemics (Kao et al.,
2006), the impact of diseases in subpopulations (Brooks-Pollock
et al., 2013) and the role of farm management in disease risk
(Gates et al., 2013), to name just a few applications. An approach
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eing developed for human diseases is evidence synthesis, in
hich diverse data sources are combined in a single framework

Presanis et al., 2011). The wealth of information available for live-
tock has led to a temptation for incorporating as much detail as
ossible into simulation models. However, parameters inference,
odel selection and understanding fundamental mechanisms from

uch models is a challenge in itself (Brooks-Pollock et al., 2014).
etwork models provide an abstraction that has been used to

nvestigate vulnerabilities of the system such as highly connected
remises (Woolhouse et al., 2005) and times of year (Kao et al.,
006). However, linking the highly detailed demographic data
ith epidemiological data can be challenging due to mismatches

n the scale and extent of recording and many network model
redictions are made in the absence of disease data. Livestock
atabases still contain much unexploited potential in disease mod-
lling; the challenge is to develop tractable models that can be
inked with disease data from surveillance programmes and field
tudies.

. Improving spatial models

Unlike human populations where people move freely and
otentially make many epidemiologically relevant connections
ach day, livestock are generally characterised by their tendency
o remain on a farm for extended periods of time. This means that
ivestock epidemics affecting multiple farms have a strong spa-
ial component and require models that can capture the spatial
ransmission routes between farms. Two main routes have been
nvestigated, direct transmission through the movement of live-
tock (e.g. Kao et al., 2006) and indirect transmission considered to
e a function of the separation between farms (e.g. Keeling et al.,
001). Both of these require improvements.

The network of livestock movements is often seen as key to
he long-range dispersal of infection. In many countries these net-
ork data are being routinely collected and greatly aid predictive
odelling. Theoretically, there are challenges in interpreting this

ynamic network; understanding how the wealth of tools and intu-
tion developed for static networks translates to a network formed
y discrete movements (Keeling et al., 2010). Practically, we  would
ish to understand what this network means for the early spread

f novel infections and for position of sentinel farms or surveil-
ance operations. Finally, the movement data is always historic so

odels are necessarily retrospective; being able to predict future
ovement patterns and how these would respond to changes in

conomics or legislation would have substantial policy implica-
ions.

Distance-based transmission is used to capture a multitude of
ransmission routes, from local movements of vehicles, to wind-
orne infection, to transmission by livestock movements and insect
ectors. Modelling each of these routes could be separated and
efined, allowing a better assessment of differing control policies.
raditionally, modellers seek to capture distanced-based transmis-
ion with a single isotropic and homogeneous kernel (e.g. Boender
t al., 2007) – but in practice transmission is likely to depend
n local conditions including topology, meteorology, farm den-
ity and many other factors (Ypma et al., 2013). Understanding
he dependencies and functional forms of such transmission ker-
els is key to their statistical estimation and their ability to be
sed for predictive modelling. Combined, these challenges call
or a deeper mechanistic understanding of livestock movements
nd infection dynamics that can only come from a detailed sta-

istical analysis of multiple examples of high-quality epidemic
ata. The ultimate goal would be to extrapolate the understanding
ained from past outbreaks to policy-relevant predictions in new
cenarios.
emics 10 (2015) 1–5 3

6. Unifying multiple scales of transmission

Generally, specific experiments are designed to address indi-
vidual questions where the scale is most appropriate for that
question. Examples are discussed above regarding parameterisa-
tion of between-host transmission experiments; typically, these
relate most closely to within epidemiological group, or within
farm models, as exist for different diseases in different species,
e.g. (Dekker et al., 2013). There are many other examples, includ-
ing foot and mouth disease (Keeling et al., 2001) or classical swine
fever (Jalvingh et al., 1999), where experiments would be imprac-
tical and epidemiological data have been used to develop models
of between farm transmission, as an aid to exploring different con-
trols. There are rather fewer examples of where models combine
within and between farm or epidemiological unit scales, especially
where there is statistical parameterisation of models from data
(Baguelin et al., 2010). There also are a multiplicity of experiments
conducted in individual animals to explore disease pathogenesis
and the impact of vaccination which provide exquisite individual
or within host data. These have sometimes been used to develop
within-host models, such as for influenza (Saenz et al., 2010), but
are often rather overlooked; their utility may  lie in linking immune
dynamics and understanding novel vaccination approaches in the
development of improved prevention and control.

Similar to epidemiological modelling approaches, pathogen
evolution in rapidly mutating pathogens such as influenza virus
is typically only studied at the epidemiological, or global phylo-
genetic scale. However, the use of deep sequencing techniques in
livestock experiments also allows study of within host evolution
and between host transmission of variants (Murcia et al., 2011),
but such detailed experiments are typically not currently linked by
models to larger scale data. In fact, how this should be done remains
unclear. Pathogen sequencing during epidemics can, in contrast, be
used to infer epidemiological links (e.g. HPAI in Netherlands Ypma
et al., 2013) and can also be used to provide estimates of transmis-
sion rates at different scales, although some of the techniques used
to do this may  be rather sensitive to missing data.

There are huge opportunities to gain simultaneous understand-
ing of pathogen transmission and control, including addressing of
important aspects of pathogen evolution in livestock, because of
the opportunity to make detailed observations and experiments,
but the methods needed to link these different scales are currently
poorly developed or absent. Filling this gap could facilitate major
progress in disease control.

7. Linking livestock populations to other species

Many livestock infections are not confined to domesticated
species. Three different cases can be studied: those diseases that
also infect humans (zoonotic infections); those diseases that can
persist in wildlife reservoirs; and those diseases that are spread by
insect vectors. For all of these cases the key challenge is to infer
the level of transmission between species. Often this is made more
complicated by the majority of data only being available on infec-
tion in livestock, with infection in wildlife or vectors difficult to
measure and zoonotic infections in humans being comparatively
rare. The controversy around bovine TB in the Great Britain and
Ireland illustrates this point; while the prevalence of infection is
relatively well recorded for cattle, the role-played by badgers as
a vector or reservoir of infection is still disputed despite years
of research (Godfray et al., 2013). Some of this relates to his-

toric veterinary dogma about specific diseases having wildlife
reservoirs, where there is a binary categorization of the role of
different species, rather than a more nuanced ecological, quanti-
tative approach. Similar questions arise for bTB in other countries,
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here the precise role of deer in North America and possums in
ew Zealand is still debated.

For vector-borne infections, many of the challenges relate to
odelling the spatial spread of infection. When we are faced with

ases in the livestock population, how do we infer the types of
patial movement of vectors that govern the transmission process
Turner et al., 2012). This is made particularly challenging by the
ange of meteorological and environmental factors that can influ-
nce the behaviour of insect vectors. Once the question is framed in
his way, most of the issues are statistical. Given data on infection
n one species, how do we  infer the role of other species, the impact
f control targeted at a single species (Matthews et al., 2013), and
ost importantly, how can we determine if they act as a reservoir
hich could confound effects to eliminate the infection?

. Livestock modelling with political and economic
onstraints

The FMD  epidemic in the UK in 2001 provides a recent example
f when modelling played an integral part in forming control pol-
cy (Keeling et al., 2001; Ferguson et al., 2001). Modelling identified
hat depopulation of ‘dangerous contacts’ would be essential for
ringing the disease under control, but this became one of the most
ontroversial areas of government policy (Haydon et al., 2004). The
otivation for controlling livestock diseases is often a complex

and potentially poorly defined) mix  that includes economic con-
traints bound by trade agreements and regulations, animal health
nd welfare issues, political positioning, often based on historic
orms, practicalities of control and public opinion, even if control

s epidemiologically well defined (Carslake et al., 2011; Brooks-
ollock et al., 2014). Central questions to be addressed are what
efines cost effectiveness for livestock diseases and how are eco-
omic costs balanced against animal health, public opinion and
ther constraints. This is will require increased communication
etween interested parties, including modellers, policy makers,
eterinarians and farmers. Modellers can contribute with transpar-
nt modelling work, open access data and publicly available code.

For livestock diseases, there is no single quantity by which con-
rol interventions are judged, such as the cost per quality-adjusted
ife year (QALY) gained used to assess interventions against human
iseases. In economic terms, the impact can be broken down into
hree components: (a) economic impact on the individual farmer
ncluding loss of capital, reduction in productivity or quality and
reater use of inputs; (b) wider economic impacts such as costs of
urveillance, international trade restrictions and any human health
osts; and (c) economic impact on rural economies and tourism
Bennett, 2012). However, few data-driven models have included
conomic analyses as well as a dynamic transmission component
ue to a lack of data. Future models will also have to consider the
ublic acceptability of controls interventions, which is recognised
s an important factor in political decision making. Acceptabil-
ty depends on many factors including perceived risk, cultural
cceptability, and convenience and varies by region and country
MacRitchie et al., 2014).

To address this challenge, we need universally agreed meas-
res of cost effectiveness for livestock infections, more data on
he full economic and social impact of livestock infections and
mproved collaboration and communication with veterinarians,
olicy makers and animal health economists. Models that are used
s decision-support tools in real-time need to be developed in
dvance, preferably by multiple modelling groups, so that models

re held to the highest standards and subject to rigorous checks and
ross validation, as has been achieved for Foot-and-Mouth (Sanson
t al., 2011) and HIV (Pretorius et al., 2014). Such collaborative mod-
lling efforts increase the impact and utility of models by increasing
emics 10 (2015) 1–5

trust and being explicit about the strengths and weaknesses of
models.

Conclusions

Livestock diseases have often not received the attention from
the modelling community given to other aspects of disease mod-
elling. Yet, the highly detailed data, the potential to identify
fundamental aspects of transmission and the ability to explore a
wide range of control options mean that livestock modelling is a
fruitful area of research with plenty of scope for expansion and
influence in other areas.
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