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Descriptive neural network analyses have provided important insights into the organization of structural and
functional networks in the human brain. However, these analyses have limitations for inter-subject or
between-group comparisons in which network sizes and edge densities may differ, such as in studies on
neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate ge-
neric null model and a unifying framework. These issues may be solved with an alternative framework based on a
Bayesian generative modeling approach, i.e. Bayesian exponential random graph modeling (ERGM), which ex-
plains an observed network by the joint contribution of local network structures or features (for which we
chose neurobiologically meaningful constructs such as connectedness, local clustering or global efficiency). We
aimed to identify how these local network structures (or features) are evolving across the life-span, and how sen-
sitive these features are to random and targeted lesions. To that aim we applied Bayesian exponential random
graph modeling on structural networks derived from whole-brain diffusion tensor imaging-based tractography
of 382 healthy adult subjects (age range: 20.2-86.2 years), with and without lesion simulations. Networks
were successfully generated from four local network structures that resulted in excellent goodness-of-fit, i.e.
measures of connectedness, local clustering, global efficiency and intrahemispheric connectivity. We found
that local structures (i.e. connectedness, local clustering and global efficiency), which give rise to the global net-
work topology, were stable even after lesion simulations across the lifespan, in contrast to overall descriptive net-
work changes - e.g. lower network density and higher clustering - during aging, and despite clear effects of hub
damage on network topologies. Our study demonstrates the potential of Bayesian generative modeling to char-
acterize the underlying network structures that drive the brain's global network topology at different develop-
mental stages and/or under pathological conditions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

changes in brain connectivity across the lifespan contribute to increased
risk and development of age-related neurological disorders, even in the

Aging is a major risk factor of prevalent diseases in society, including
neurodegenerative disorders such as Alzheimer's and Parkinson's dis-
ease (Collier and Kordower, 2012; Niccoli and Partridge, 2012). During
aging the human brain is subject to structural and functional changes
that can cause behavioral problems and cognitive decline (e.g. reduced
executive functioning or memory impairment). However, many elderly
people do not suffer from behavioral and cognitive problems and are
functioning well, despite structural and functional changes in brain net-
works. Therefore it is important to understand to what extent specific
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absence of significant brain pathology (Burke and Barnes, 2006).
Graph analysis has proven to be an elegant tool to assess topological
aspects of structural and functional connectivity in the brain (Bullmore
and Sporns, 2009). Graph analysis describes the brain as a set of nodes,
representing neural elements, linked by edges, representing some mea-
sure of structural, functional or causal interaction between the nodes.
Many studies have successfully applied graph analysis to capture net-
work topologies with either individual or aggregated node metrics
(e.g. the average shortest path length, maximum betweenness central-
ity or overall clustering coefficient) (Bullmore and Sporns, 2009) and/or
network properties such as small-worldness, rich club connectedness
(Bullmore and Sporns, 2012; Cao et al., 2014) and modularity
(Rubinov and Sporns, 2010). In the past decade, multiple studies have
shown that normal aging is associated with substantial alterations in
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structural (Betzel et al., 2014; Dennis et al., 2013; Gong et al., 2009;
Hagmann et al., 2010; Lim et al., 2015; Montembeault et al., 2012;
Otte et al., 2015; Wu et al., 2012; Zhu et al., 2012) and functional
(Achard and Bullmore, 2007; Andrews-Hanna et al., 2007; Betzel et al.,
2014; Meier et al., 2012; Meunier et al., 2009; Nathan Spreng and
Schacter, 2012; Wang et al., 2012) brain networks. Some of these stud-
ies focused on specific age categories: childhood to adulthood (Dennis
et al.,, 2013; Hagmann et al., 2010) or young and older adults (e.g.
(Meunier et al., 2009; Zhu et al.,, 2012)). From childhood to adulthood
a decrease in path length and clustering, and increase in efficiency
have been observed (Dennis et al., 2013; Hagmann et al., 2010)
which may differ between the hemispheres (Dennis et al., 2013).
Other studies have shown a higher local clustering and lower global
efficiency in older adults compared to younger adults (Zhu et al,,
2012), where modularity decreases across networks (Meunier
et al,, 2009). In line with these findings several studies have shown
inverted-U shaped global efficiency across lifespan (Otte et al.,
2015; Wu et al., 2012). Functional connectivity assessment has re-
vealed increased integration and decreased randomness, whereas
connectivity decreased significantly during adulthood (Smit et al.,
2016). Despite these significant network changes, throughout devel-
opment brain networks largely maintain small-world properties,
modularity and stable hub-regions (Dennis et al., 2013; Gong et al.,
2009; Hagmann et al., 2007). In general, the aging brain can be char-
acterized by reduced centrality of hub regions with a decrease in
global efficiency and an increase in local network clustering. Similar
changes in hub regions and subsequent effects on global efficiency
have also been characterized in various neurological disorders
(Crossley et al., 2014; Stam, 2014).

Despite the popularity of descriptive graph analysis, it has non-
trivial intrinsic limitations, particularly for intersubject or between-
group comparisons where networks have different sizes, densities and
degree distributions (Fornito et al., 2013; van Wijk et al., 2010). The
most commonly used node metrics, like the clustering coefficient and
path length, are highly dependent on the total number of connections
and the average degree of a network (Stam et al., 2014; van Wijk
et al., 2010). This hampers comparability of brain network topology
across the human lifespan, as network densities substantially differ be-
tween ages (Dennis et al., 2013; Gong et al., 2009; Hagmann et al.,
2010), which may be explained by changes in the integrity of
connecting fibers or the cortical density of neurons (Salat, 2011;
Westlye et al., 2010).

A second limitation is the lack of an appropriate generic null model
to test the significance of a particular network measure against. A fre-
quently used null model is a network with randomly shuffled edges
that shares basic characteristics with the measured network, like degree
distribution, size and density. Different network metrics require distinct
null models if compared between networks (e.g., networks with asym-
metric degree distributions cannot be explained by the Watts-Strogatz
small-world network null model but require the Barabasi-Albert scale-
free model) (Fornito et al., 2013).

A third limitation of graph analysis is the type I error inflation if mul-
tiple network nodes are compared within the same brain, or if different
network metrics are calculated from a single network.

Fourthly, graph analysis consists of univariable comparisons
(i.e., network metrics are determined independent from each other)
due to lack of a unifying framework (Telesford et al., 2011). However,
many metrics are highly correlated and non-exclusive (Bounova and
De Weck, 2012; Meghanathan, 2015).

A promising alternative analysis approach, which may in theory
overcome the abovementioned limitations in descriptive graph analysis,
is the framework of generative modeling (Fornito et al., 2013; Klimm
et al., 2014), which aims to condense a complex network topology
into a parsimonious description (i.e. mathematical equation). Growth
models are a relatively well known class of generative models. They in-
volve growing of artificial networks via addition of nodes and edges and

rewiring of existing edges according to pre-specified mechanisms, and
comparing topologies between these artificially grown and observed
networks. Relatively simple growing mechanisms (i.e., the mathemati-
cal local structures) provide a generative model that allows growing
of networks that closely resemble observed brain networks. A recent
successful example is a growth model with two local structures: a com-
bined distance penalty based on the cost of maintaining long-range con-
nections and a topological term that favors links between regions
sharing similar input (Vertes et al., 2012). Similar principles have been
successfully applied by other recent studies on neural networks
(Betzel et al., 2015; Goni et al., 2014). However, unambiguous determi-
nation of distances between non-connecting pairs of network nodes -
required for distance penalties - is difficult.

Another recent and powerful class of generative models are the ex-
ponential random graph models. Their usefulness has been emphasized
in social network studies (Robins et al., 2007b), but they may have equal
potential for neuronal networks (Simpson et al., 2011). Until recently,
exponential random graph models have been difficult to handle from
a statistical point of view, due to the intractability of the normalizing
constant and the problem of model degeneracy (Handcock, 2003),
which has limited their applicability. The recent presentation of a Bayes-
ian inference framework, using adaptive Markov chain Monte Carlo ap-
proaches to fit exponential random graph models, mitigated the issue of
model degeneracy and significantly improved fitting performance
(Caimo and Friel, 2011). Exponential random graph models are able to
explore multiple local network features (e.g. connectedness, local clus-
tering or global efficiency) simultaneously and assess how these local
features give rise to the global network topology, thereby taking into ac-
count their mutual dependencies (note that the term ‘local’ is defined
from a topological and not from a physical perspective, i.e. local cluster-
ing does not necessary imply physical proximity of involved nodes). In
addition, exponential random graph models inherently account for
bias due to density differences (van Wijk et al.,, 2010). More technically,
the models capture the joint probability of a (global) network G,
governed by ¥, a set of network parameters (e.g. local clustering,
edges) of a postulated generative process. If % is estimated well, syn-
thetic networks — which are structurally similar to G - may be drawn
from a probability distribution P(G|#). Exponential random graph
modeling may thus also be considered as a mathematical framework
to condense the (global) topological information of a network into a
limited set of parameters (i.e. the local network structures or features).
This mathematical description theoretically provides: i) compression of
the observed network data into a basic equation, ii) capturing of the
most relevant patterns within the observed network, iii) generalization
from the observed network to unobserved networks of the same type,
iv) generalization across network sizes, and v) prediction of network
topologies.

Exponential random graph models may provide unambiguous an-
swers to fundamental questions related to brain-wide network organi-
zation and changes across lifespan, such as: how do local network
features (i.e. neurobiologically meaningful constructs such as local clus-
tering, connectedness and global efficiency) simultaneously give rise to
(i.e. explain) the global network topology, and what is the relative sig-
nificance (i.e. contribution) of those local structures during develop-
ment and aging? Will there still be changes across lifespan in brain
global efficiency or local clustering, if confounding effects such as corre-
lations between metrics and decreased network density with increased
age, are effectively taken into account? In fact, surprisingly little is
known on how local network features simultaneously shape the global
network characteristics so commonly reported in descriptive graph
analysis studies. Furthermore, it is unknown to what extent local struc-
tures are affected by specific network damage in brain injuries and pa-
thologies. For example, does damage to central hub regions result in
distinct local features (such as brain network clustering or connected-
ness) as compared to diffuse network damage, and does this differ
across the lifespan?
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Our study objective was to characterize the relative contributions of
local network structures that might explain the configuration of struc-
tural whole-brain networks across the human lifespan. To that aim we
fitted Bayesian exponential random graph models on structural net-
works, obtained from diffusion tensor imaging (DTI) data from 382
healthy subjects in the age range of 20 to 86 years. As these models
are based on probability estimates, we were able to directly compare
the optimally fitted parameters that explain the network topology be-
tween different age groups. Furthermore we evaluated in simulations
the consequences of hub lesioning and diffuse network damage on the
local structures across the human lifespan. We hypothesized that Bayes-
ian exponential random graph modeling could characterize the ob-
served networks with a limited set of network parameters, and would
allow generation of synthetic networks that are topologically similar
to the observed networks. Based on findings from descriptive graph
analysis in healthy subjects (Otte et al., 2015) we expected: i) a decrease
in contribution of global network efficiency structures and density (e.g.
total number of edges) with age, ii) an increase in local clustering struc-
tures with age, and iii) significant changes in relative contributions of
local substructures when hub nodes are damaged.

2. Material and methods
2.1. Dataset

Standardized high quality, DTI and T;-weighted datasets were ob-
tained from the freely available ‘Information extraction from images’
database (http://biomedic.doc.ic.ac.uk/brain-development/). We in-
cluded scans from 382 healthy adults recruited from the general
United Kingdom population. The age range was 20.2 to 86.2 years.
This DTI dataset has been analyzed previously to characterize the back-
bone of the structural whole-brain network across the lifespan (Otte
et al, 2015).

Subjects were scanned once with a 1.5T (205 subjects, Philips Med-
ical Systems Gyroscan Intera) or 3T (177 subjects, Philips Medical Sys-
tems Intera). Ethical approval was given by the Thames Valley
multicenter ethics committee. Images were acquired using a single-
shot echo-planar (EPI) DTI sequence. Imaging parameters were: 15
diffusion-weighted images with b = 1000 s/mm?, 2 images without
diffusion-weighting, 56 axial slices, 2.35 mm slice-thickness,
128 x 128 acquisition matrix, 1.75 x 1.75 mm voxels; repetition time
(TR)/echo time (TE) 9.1 s/80 ms (at 1.5T) or 11.9 s/51 ms (at 3T). In ad-
dition, T;-weighted images were acquired using a spin-echo sequence
with the following parameters: 8° flip angle, TR/TE 9.6/4.6 ms (at
1.5T) or TR/TE 9.8/4.6 ms (at 3T), 150 axial slices, 1.2 mm slice-
thickness, 256 x 256 acquisition matrix, 0.94 x 0.94 mm voxels.

2.2. Image processing

All diffusion-weighted images were corrected for subject motion
using FLIRT followed by B-matrix adjustment using the affine registra-
tion parameters. Within-subject diffusion-weighted and T;-weighted
images were non-rigidly aligned, and subsequently registered to a T-
weighted reference image that was matched to the Harvard-Oxford
atlas (Desikan et al., 2006). Using the 50% probability threshold Har-
vard-Oxford cortical parcellation masks, we partitioned each hemi-
sphere in 48 cortical network regions, i.e. 96 network regions
bilaterally, based on standard anatomical boundaries.

Analysis of DTI data was performed using the Diffusion Toolkit
(Wang et al., 2007). Diffusion images were resampled on an isotropic
1.75 mm grid, and fractional anisotropy (FA) maps were calculated
based on voxel-wise estimates of the diffusion tensor. Whole-brain
tractography was obtained from seeds in each voxel according to
FA > 0.2 using the interpolated streamline algorithm implementation
(Euler integration method with step size of 0.5 mm), with streamlines
originating from ten random seeds in each voxel, a maximal 70° angle

threshold and minimal FA threshold of 0.2 (DtiStudio version 0.6). The
algorithm is based on the Fiber Assignment by Continuous Tracking
(FACT) approach, by which tracking is performed using a continuous co-
ordinate system rather than a discrete voxel grid. Structural connections
between any pair of cortical network regions were identified from
streamlines that had end points in both regions.

The image processing pipeline is schematically illustrated in Fig. 1.

2.3. Construction of whole-brain structural networks

For each of the 382 sets of whole-brain structural connections we
constructed a binary undirected network, described by the graph G =
(N, E) where N is the set of 96 bilateral cortical network regions and E
is the set of edges e;; in the N x N adjacency matrix, with e; set to 1 if re-
gion pairs were connected with one or more streamlines, or 0 other-
wise. No self-connections were allowed.

Participants were divided into different age-categories: 20-34, 35—
50, 51-70 and &70 years. For each age category individual graphs
were summed and divided by the total number of participants within
each age category, resulting in an average (weighted) connectivity ma-
trix that shows the proportion of participants having a specific connec-
tion for each node pair (Fig. S1). Edges in the age-category graphs were
defined as present if >35% of subjects within that age range contained
an edge in their individual network (Fig. S2). By using this 35% threshold
we included at least 25% of prevalent connections over all age catego-
ries. All subsequent analyses were based on these binary age-category
graphs.

The ‘hubness’ of individual nodes - required for the network damage
simulations — was calculated as the betweenness centrality and ranked
from high to low (i.e., central to peripheral centrality) (Rubinov and
Sporns, 2010). Hub nodes have a high betweenness centrality, i.e. a rel-
atively high number of shortest paths passing through the network
nodes. The betweenness centrality of node i is defined as

gjk(i)
ek e Sk

1
b6 = =T)n—2)

where gj is the shortest path between a pair of other nodes and gj(i) is
the number of those node paths that pass through node i.

24. Bayesian exponential random graph modeling

Exponential random graph models constitute a broad class of net-
work models that assume that the topological structure of an observed
network x,,s can be explained in terms of the relative contribution of a
set of mutual dependent local structures or features g(x) (e.g. clustering
coefficient, path length, location in the brain). The models require a de-
fined network distribution y(n) that contains all possible binary net-
works with size n. In our study, n was 96, the number of atlas regions.
A network can then be represented by a random variable X. A realization
of X is denoted by x = {x;}. An observed network (e.g. one of the four
age-category graphs) X,y is regarded as just one realization from the
set of all possible networks X with similar network topology. In other
words, Xops is assumed to be the outcome of some stochastic process.
The goal of exponential random graph models is to propose a plausible
model for this stochastic process (Frank and Strauss, 1986; Pattison and
Wasserman, 1996). More formally, exponential random graph models
are a particular class of discrete linear exponential families that repre-
sent the probability distribution of X as:

o exp{f'g(x)}

m(X = x[0) T e (1)
where €60 C %Y is the vector of model coefficients (that has to be esti-
mated) related to g(x) which quantifies the relative contribution (i.e.
significance) of each local network feature (e.g. local clustering, global
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Whole-brain tractography (n = 382)

ERGM metrics
G\NNSP
GWESP

Harvard-Oxford atlas

Fig. 1. Schematic overview of the image processing pipeline. Diffusion-weighted and T,-weighted images were non-rigidly aligned and subsequently registered to a T, reference scan
matched with the Harvard-Oxford atlas (50% probability threshold, 96 bilateral cortical regions). Whole-brain tractography was performed using an Euler integration method
(FA>0.2, 70° angle threshold). For all 382 subjects binary undirected networks were constructed, where a connection is set to 1 if region pairs were connected with one or more
streamlines, or 0 otherwise. Graphs were averaged into four age-category networks. ERGM metrics (e.g. GWgsp, GWnsp) were calculated from these networks.

efficiency) in explaining the global structure of x,s, thereby taking into
account the contribution of other network features in the model. The 6
represents the change in log-odds of an edge existing for each unit in-
crease for a specific explanatory parameter (i.e. clustering) in the
model. If 6 is large and positive for this specific local structure, then
this metric plays an important role in explaining the global network
structure (i.e. local clustering contributes more to the network than
you would expect by chance). If @ is large and negative, then this metric
also plays an important role in explaining the overall network topology,
but is less important (i.e. there is less local clustering) than expected by
chance. Furthermore, z(6) = ; exp{0'g(x)} is the normalizing con-
XEx

stant which is generated over the entire network space y(n) to ensure
that (1) is a proper probability distribution. Since y(n) consists of
2™ * " possible networks, the normalizing constant z(8) (i.e. ensures
that the probabilities sum to one) is intractable. To avoid the need to cal-
culate z(0), a pseudolikelihood estimation method has been proposed
(Strauss and Ikeda, 1990). Although fitting exponential random graphs
using this pseudolikelihood estimation is computationally relatively
easy, the properties of the estimator are not well understood and the es-
timated 6 are known to be inaccurate in many cases (Robins et al.,
2007a). An alternative and more straightforward method to fit expo-
nential random graph models is by means of Monte Carlo maximum
likelihood estimation (Hunter and Handcock, 2006). This form of esti-
mation simulates a distribution of random networks from a starting

set of model parameters, 6y, and subsequently refines the parameter
values by comparing the distribution of networks against the measured
network x,ps. A crucial aspect of this estimation is a proper choice of 6.
Poorly chosen initial values may lead to non-convergence or degenerative
probability distributions, and thus result in unreasonable estimates of 6.
For details on this issue see (Handcock, 2003) and (Fienberg et al., 2008).

Recently a Bayesian solution for this issue of proper initialization of 6
was proposed and successfully tested in the area of social network
modeling (Caimo and Friel, 2011; Caimo and Mira, 2014). In this meth-
od a prior distribution 11(0) is assigned to 6. The posterior distribution
(0] x) «m(x|0)m(6) is subsequently solved with a Monte Carlo maxi-
mum likelihood method based on the exchange algorithm (Murray
et al., 2006). This Bayesian framework has been shown to perform
very well, and was used in the current study as the method of choice
in fitting exponential random graph models.

2.5. Local structure definitions

A large set of local structures are provided in the literature to use
with exponential random graph models (Hunter et al., 2009). Two pre-
vious studies (Simpson et al., 2011, 2012) included local structures that
resemble most of the descriptive network characteristics used in classi-
cal graph analysis studies, i.e. connectedness, local clustering and global
efficiency (Bullmore and Sporns, 2009; Morris et al., 2008; Rubinov and
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Sporns, 2010). These studies showed that three local structures or fea-
tures, i.e. the non-edgewise share partners, edgewise shared partners
and edges, contributed significantly in most functional brain networks
(Simpson etal., 2011, 2012). Although we investigated structural rather
than functional networks, we used the same structures for our analyses;
first, because many (classical) graph analysis studies have also used
similar graph metrics (e.g. clustering coefficient, path length, modulari-
ty) to describe both functional and structural networks; second, because
there is a strong correlation between structural and functional net-
works; and third, because it has been shown that structural connections
are predictive of functional connections (Hagmann et al., 2007; Honey
et al., 2009; Sporns, 2010). In addition, we included a local structure
based on the hemispheric attribution of a node (i.e. whether a node
tended to make more connections within or between hemispheres) as
the white matter connectivity within hemispheres is found to be higher
in comparison to the connectivity between hemispheres (Hagmann
et al.,, 2008). Fig. 2 shows a graphical representations of local structures
used in network generation. These were defined as:
The number of edges

s(x) = Ziqxij 2)

A measure of connectedness compatible with exponential random
graph modeling, i.e. an increase in the edge coefficient means an in-
crease in number of connections, or a higher network density.

The geometrically weighted edgewise shared partner (GWESP)

WX, b,) = e¢WZZ:{1 —(1 —e*¢W)"}EPk(x) 3)

With EP,(x) defined as the number of pairs {i, j} such that x; = 1 and
i and j have exactly k common neighbors, which is a measure of local
clustering compatible with exponential random graph modeling. An in-
crease in GWgsp coefficient means more local clustering (segregation).
In other words, two connected nodes (brain regions) tend to connect
to similar other brain regions (i.e. shared partners).

The geometrically weighted non-edgewise shared partner (GWNSP)

p(x.,) = > {1—(1—e ) INPy(x) )

With NP, (x) defined as the number of pairs {i, j} such that x; = 0 and
i and j have exactly k common neighbors, which is a measure of global
efficiency compatible with exponential random graph modeling. An in-
crease in GWysp coefficient indicates there is more global efficiency (in-
tegration); an increase in non-connected nodes, sharing one or more

A

connections to the same brain regions (i.e. shared partners). This
could be more distant brain regions which are indirectly connected
(i.e. via a shared partner), or a so-called connector-hub, connecting
two network modules (Bullmore and Sporns, 2009).

The parameter ¢ in Eqs. (3) and (4) dampens the effect of large
changes in the statistics of higher k and was in this study fixed to 0.75
so that the model remains a regular exponential random graph model
(Hunter and Handcock, 2006).

The hemispheric nodematch

A binary nodematch-local structure, called hemispheric nodematch,
captured whether two nodes belong to the same hemisphere (left or right).

]’l(X) = Ziqxijxﬁ M =m; (5)

With m as the hemisphere membership.
2.6. Summary estimates

The Bayesian exponential random graph models provide full proba-
bility density estimates. We summarized the posterior probability den-
sity estimates of the 8 coefficients - which correspond with the local
structures — as the mean and 95% credibility intervals.

2.7. Goodness-of-fit

We assessed the data goodness-of-fit to the posterior model by com-
paring the network data y by means of a set of network simulations (y;,
Y32, --.ys) from S independent realizations (84, 85, ... 8s) of the posterior
density estimate. We then compared the observed network with the
simulated network based on three global descriptive network charac-
teristics: degree (connectivity), geodic distance (shortest path) and
edge-wise shared partners (clustering) from the Bergm package
(Caimo and Friel, 2014). Additionally, we implemented the triad census
(i.e., subset of motifs), that determines the contributions, as a probabil-
ity, of one, two or three connections between all possible node triples
(Hunter et al., 2009; Morris et al., 2008), and compared these contribu-
tions between the observed and simulated networks.

2.8. Effect of simulated network damage

We estimated the effect of network damage on the local structures/
features by simulating lesions in our data. First we simulated lesions by
randomly eliminating 5% to 25% of the nodes and connecting edges in
steps of 5%. We applied the same procedure for the hub-nodes, removing

Fig. 2. Local structures used in network generation. (A) Edges, a connection between two nodes (measure of connectivity), (B) GWgsp, weighted sum of number of connected nodes
(striped) having exactly i shared partners (measure of local clustering), (C) GWysp, weighted sum of number of non-connected nodes (striped) having exactly I shared partners
(measure of global efficiency), (D) Hemispheric nodematch, where blue-blue (filled-filled) connections represent within hemisphere connections and green-blue (striped-filled)

connections represent between hemisphere connections.
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Table 1
Log transformed Bayes factors and their interpretation in the comparison of a baseline and
alternative model (Raftery, 1995).

log(Bayes factor) Interpretation

<=5 Very strong support for baseline model
—5to—3 Strong support for baseline model

—3to—1 Positive support for baseline model

1to0 Weak support for baseline model

0 No support for baseline model

Oto1 Weak support for alternative model
1to3 Positive support for alternative model
3to5 Strong support for alternative

>5 Very strong support for alternative model

increasing percentages of nodes with the highest betweenness centrality.
We evaluated the consequences of random-node and hub-node damage
on the local structure parameters (e.g. edges, GWgsp, GWysp, and hemi-
spheric nodematch). The effect of simulated damage between percentages
of eliminated nodes was quantified with 95% credibility intervals obtained
from the difference between the posterior distributions.

Age 20-34

ol )
X\ 4

R i
A\ AN 2

Vulnerability to hub-node elimination - defined as a change in local
substructure parameter between 0% and 25% eliminated nodes - was
subsequently compared between age categories based on Bayes factors ob-
tained from a Bayesian equivalent of an independent two sample t-test
(Rouder et al., 2009). Bayes factors give the ratio of model likelihoods,
thereby providing which model (i.e., the presence or absence of a difference
in the parameter change) is supported (i.e., more likely to occur) (Caimo
and Friel, 2011). The interpretation of Bayes factors is given in Table 1.

2.9. Statistical analyses

All network analysis, statistical modeling and visualization were per-
formed in R (http://www.r-project.org/) using the open-source pack-
ages igraph, Bergm, Bayes Factor, network and ggplot2.
3. Results

3.1. Network matrices and model parameters

We generated group-based networks for each age category, which
are depicted in Fig. 3 as network graph representations (for binary

Age 20-34 vs Age 35-50

}'47‘

7
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PLAN N

Fig. 3. Graph changes across lifespan. Top left shows the network graph for age 20-34. Other graphs represent network differences with age 20-34 for each additional age. Red lines
represent ‘lost connections’ and green lines represent ‘new connections’. Density of networks change across the lifespan with + 1.6% (age 35-50), —4.4% (age 51-70) and — 8.0% (age>70).
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Table 2

Mean model parameter coefficients and 95% credible (i.e. posterior probability) intervals for each age category.
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Model parameter coefficients

Age category Edges GWEsp GWysp Hemispheric nodematch
20-34 —2.38(—345t0 —1.31) 1.52 (1.04-1.99) —0.27 (—0.34 to —0.20) —0.68 (—1.32 to —0.05)
35-50 —236(—341to —1.32) 1.49 (1.02-1.96) —0.27 (—0.34to —0.20) —0.72 (—1.35to —0.09)
51-70 —241(—343to —1.39) 1.53 (1.06-1.99) —0.27 (—0.34 to —0.20) —0.75 (—1.36 to —0.15)
>70 —2.61(—3.58to —1.64) 1.63 (1.20-2.06) —0.25(—0.31to —0.18) —0.89 (—1.53to0 —0.24)

adjacency matrices, see Fig. S3). Exponential random graph models
were estimated for each age category with the four local network struc-
tures edges, GWysp, GWgsp and hemispheric nodematch. All local struc-
tures were found to contribute significantly to the global network
topology. Parameter coefficients and corresponding credible intervals
are given in Table 2. Goodness-of-fit measures showed that the simulat-
ed networks matched well with the observed networks for all age cate-
gories. The goodness-of-fit metrics (i.e. degree, geodesic distance and
edge-wise shared partners) and triad census contributions of simulated
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networks almost completely matched with the metrics of the observed
networks, as seen in Fig. 4 and Fig. S4, respectively.

3.2. Global and local network features

Clear alterations in network topology were found in the older age
categories compared with the youngest age category of 20 to 34 years
(Fig. 3). Across the lifespan new connections are found and other con-
nections are lost (represented by green and red lines respectively),
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Fig. 4. Goodness of fit of simulated networks. Bayesian goodness of fit statistics for simulated networks for all age categories. The red, green and blue lines represent degree (connectivity),
distance (shortest path length) and edge-wise shared partners (local clustering), respectively. Bold lines represent the observed probabilities (i.e. proportions of nodes), and thin lines
represent the ‘averages’ of simulated networks, drawn from the posterior distribution, plotted with standard deviations (transparent bands).
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Fig. 5. Network parameters across lifespan. Edges, GWgsp, GWysp, and hemispheric nodematch for age categories 20-34, 35-50, 51-70, and >70 years of age.

resulting in density changes. However, the relative contribution of local
network structures was stable across age (Fig. 5). Using different thresh-
olds for constructing group based binary networks (Figs. S5 and S6) af-
fected the edges coefficient. This was expected as different thresholds
result in different network densities. The edges coefficient captures
the density. Different thresholds hardly affected the other coefficients
(Fig. S7). Furthermore, using an average of models fitted on ten individ-
ual networks, randomly picked from each age category, and resulted in
similar coefficients as found with the group-based networks (Fig. S8).

3.3. Hub-node and random-node damage

Effects of simulated hub-node lesions on network topology are visu-
alized in Fig. 6. Many connections, mostly in the temporal areas, were
lost when 5% of hub nodes were randomly eliminated. Substantial glob-
alloss of connections was evident after elimination of 25% of hub-nodes,
reflecting the abolishing effect of hub-damage on network density.

Quantitative effects of simulated random-node and hub-node le-
sions, across age categories, are presented in Fig. 7.

With random-node lesions the edges coefficient value decreased
with increasing levels of lesioned nodes. A small increasing trend was
detected for GWgsp. For GWysp and hemispheric nodematch

parameters, there was no consistent pattern in response to random-
node eliminations.

Hub-node lesions resulted in reduced value of the edges coefficient,
with a further decreasing effect as a function of age. GWgsp and GWysp
decreased, while hemispheric nodematch increased, after 15-25% hub
lesioning in the higher age categories.

Comparison of vulnerability to lesioning of hub-nodes across
lifespan, quantified with Bayes factors between age categories, is given
in Table 3. Strongest differences between hub-lesion vulnerability
across ages were found for local clustering and hemispheric nodematch.
A change in GWEgsp, after 25% hub damage, was more likely in the age
category >70 years than in the youngest age category. A change in
hemispheric nodematch was more likely in the >70 years age group in
comparison to the lowest age categories.

4. Discussion

We successfully applied Bayesian exponential random graph models
on DTI-based structural brain networks over the human lifespan. The
exponential random graph modeling approach (Robins et al., 2007a;
Snijders et al., 2006) contrasts with conventional graph analysis in
being generative instead of descriptive. Furthermore, exponential ran-

Fig. 6. Baseline networks versus 5% and 25% hub damaged networks across age categories. The left column shows the average network for each age category. The middle and right columns
show the lost edges (red lines) after randomly eliminating 5% and 25% of the hubs, respectively.
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dom graph models do not provide summaries of nodal and global net-
work metrics, but show which local structures contribute to the global
network topology and to what extent. Rather than providing solely
summary statistics, exponential random graph models allow unbiased
characterization of multiple network metric distributions and relational
properties in the presence of significant changes in network densities (a
problem of descriptive network studies in aging populations) (Caimo
and Friel, 2011; Robins et al., 2007a; van Wijk et al., 2010).

In the present study we used a model with three local structures and
one node attribute and we showed that simulations including these
structures give representative (i.e. well-fitting) networks. The excellent
goodness-of-fit of our limited number of local structures suggests that it
is possible to describe a complex binary network with a small set of local
parameters. We found that all included local structures contributed sig-
nificantly to the global network topology across the lifespan. The values
and signs of the parameters provide information about the relative con-
tribution of local structures to the overall network topology (Robins
et al,, 20073, 2007b). The negative coefficients for edges and global effi-
ciency (GWysp) as well as the positive coefficient for local clustering
(GWEksp) are in line with previous studies using the same approach in
functional connectivity datasets (Simpson et al,, 2011, 2012). The nega-
tive edges coefficient imply a lower expected edge density in compari-
son to a random graph with 50% edge probability, meaning that the
brain network is relatively sparse, which is considered to be economical
in terms of wiring costs (Achard and Bullmore, 2007; Bullmore and
Sporns, 2012). The positive GWEgsp reflects the many connections con-
tributing to clustering in the brain. Clustering (and segregation) is a
well-known property of the brain contributing to local efficiency and
segregation of brain function (Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010). The negative values for GWysp imply that non-
connected nodes sharing one or multiple partners (i.e., indirectly con-
nected) are also sparse. In this case we might think of long-range (with-
in- and between-hemisphere) connections that are important for the
global efficiency (and integration) of brain function, which is an impor-
tant feature of brain organization, also in terms of (a trade-off between)
wiring costs and efficiency in brain organization (Bullmore and Sporns,
2012). The negative hemispheric nodematch values indicate a tendency
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Table 3

Influence of simulated hub-damage on relative contributions of substructures (edges,
GWEsp, GWsp and hemispheric nodematch) compared between age categories (20-34
years; 35-50 years; 51-70 years; >70 years). Difference in the relative contribution of sub-
structures between 0% (baseline network) and 25% (hub-lesioned network) hub lesioning
is expressed by the log(Bayes factor).

Substructure Age category, Age category, log(Bayes
baseline network hub-lesioned network factor)
Edges 20-34 35-50 2.7
Edges 20-34 51-70 2.3
Edges 20-34 >70 2.1
Edges 35-50 51-70 —04
Edges 35-50 >70 —0.6
Edges 51-70 >70 —0.2
GWesp 20-34 35-50 —0.2
GWesp 20-34 51-70 0.0
GWegsp 20-34 >70 —0.2
GWesp 35-50 51-70 0.2
GWesp 35-50 >70 —0.1
GWesp 51-70 >70 —-03
GWnsp 20-34 35-50 1.9
GWhnisp 20-34 51-70 —-1.7
GWnsp 20-34 >70 —04
GWhsp 35-50 51-70 —3.6
GWnsp 35-50 >70 —24
GWnisp 51-70 >70 13
Hemispheric nodematch 20-34 35-50 5.1
Hemispheric nodematch  20-34 51-70 1.9
Hemispheric nodematch 20-34 >70 3.6
Hemispheric nodematch  35-50 51-70 —32
Hemispheric nodematch  35-50 >70 —15
Hemispheric nodematch 51-70 >70 1.7

of nodes to make more connections within hemispheres than between
hemispheres, which has been shown by many connectivity studies.
Statistical analyses of exponential random graph models across the
lifespan revealed a relatively stable contribution of network properties
(i.e. local clustering and global efficiency) over all age categories, in con-
trast with previous literature showing alterations in both structural
(Dennis et al., 2013; Gong et al., 2009; Hagmann et al., 2010;
Montembeault et al., 2012; Otte et al., 2015; Wu et al., 2012; Zhu
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Fig. 7. Effects of random-node and hub-node lesioning across age categories. Edge, GWgsp, GWysp and hemispheric nodematch plotted for age categories 20-34, 35-50, 51-70 and
>70 years of age, at different percentages (color-coded) of simulated random-node (left) and hub-node (right) lesioning.


Image of Fig. 7

M.RT. Sinke et al. / Neurolmage 135 (2016) 79-91 89

etal., 2012) and functional brain networks across life-span (Achard and
Bullmore, 2007; Betzel et al., 2014; Meier et al., 2012; Meunier et al.,
2009; Nathan Spreng and Schacter, 2012; Simpson and Laurienti,
2015; Smit et al., 2016; Wang et al., 2012). Furthermore, our findings
are also in contrast with significant differences found in a previous ex-
ponential random graph modeling study in functional networks
(Simpson et al., 2011), and a recently developed similar approach
(also discussed below) which revealed differences in functional net-
works across the lifespan, such as older adults having stronger connec-
tions between highly clustered nodes, or less assortativity in visual and
multisensory regions (Simpson and Laurienti, 2015). We speculate that
functional networks might be more prone to changes across the
lifespan, while structural networks remain quite stable, when taking
into account density differences and mutual dependencies of network
properties.

Simulation of random and hub lesions showed minimal effects on
the contribution of local structures (posterior probabilities in favor of
a change were between 80 and 90%) within age categories. This empha-
sizes the relative robustness to (simulated) brain network damage of
local network structures, i.e. unless brain damage local network fea-
tures that give rise to the global network topology, such as local cluster-
ing and global efficiency, are not significantly affected. Nevertheless,
hub-node lesioning had a stronger effect in people above 70 years of
age as compared to the youngest age category (i.e. log(Bayes factor)
>3). We found trends of increasing local clustering (GWgsp) with
more random-node eliminations up to 70 years of age, after which
GWresp remained the same or tended to decrease with increasing hub
damage. Hub-node lesioning resulted in lower GWysp and higher hemi-
spheric nodematches. These two trends increased with higher age,
which may indicate that older people are more vulnerable to hub-
node damage (possibly associated with degenerative disease such as
Alzheimer's disease (Crossley et al., 2014)) than younger people. This
may be due to the overall decrease in network density across age, per-
haps in combination with increased vulnerability due to high intrinsic
neuronal activity of hub node regions (de Haan et al., 2012). Our find-
ings are in line with previous simulation studies in human and animals,
which have shown that computational lesioning of hub regions has
stronger effects on structural and functional network topology than
lesioning of random nodes (Alstott et al., 2009; Crossley et al., 2014;
Kaiser et al., 2007).

There are several other approaches, which are of interest in light of
exponential random graph modeling that has been used to capture gen-
erative network information. One such approach is based on counting
motifs (Sporns and Kétter, 2004), which needs post-hoc statistical as-
sessment, while statistical testing is inherent for exponential random
graph models. However, motif counting and corresponding statistical
results can provide good starting conditions for choosing appropriate
exponential random graph models (van Wijk et al., 2010). In particular
because earlier problems such as the intractability of the normalizing
constant and model degeneracy have been solved (Caimo and Friel,
2011; Handcock, 2003). Other interesting approaches (complementary
with exponential random graph modeling) are mixed models (Simpson
etal., 2014) and Gibbs distribution models (La Rosa et al.,, 2016). In con-
trast to mixed models, exponential random graph models are limited in
examining specific connections and investigating associations between
network and phenotypes, and less suited for group comparisons, but are
able to capture the inherent dependence structure of complex networks
(Simpson et al., 2014). Recently, mixed models were adapted to two-
part mixed-effects modeling, to account for the dependence structure
(Simpson and Laurienti, 2015, 2016). In contrast to Gibbs distribution
models (i.e. modeling of graph populations), both exponential random
graph models and mixed models ignore overall network differences,
but are able to capture topological features (La Rosa et al., 2016). It
would be interesting to adapt and integrate modeling approaches, and
if impossible, it is recommended to consider the simultaneous use of
complementary approaches in future research.

In line with the earlier mentioned growth models (Betzel et al.,
2015; Vertes et al., 2012), exponential random graph models aim for a
parsimonious description of the human brain network. Comparison of
different generative models with several parameters provided the best
model or optimal parameters, resulting in the generation of synthetic
networks with very similar topological characteristics as real brain net-
works (Betzel et al., 2015; Vertes et al., 2012). These studies showed
that cost minimization alone does not explain the global network topol-
ogy, but that the models require information on the pairwise similarity
of nodes (i.e. homophily; e.g. similar function or similar degree) to
accurately simulate the brain network (Betzel et al., 2015; Vertes
etal,, 2012). Although modeling a geometrically preferential attach-
ment parameter (i.e. based on distance) is possible with exponential
random graph modeling, it requires distance information on all pos-
sible node pairs (which is difficult to determine with sparse connec-
tivity data; but Euclidean distance approximations could be used as
proxies, with good results). Our study shows that node attributes
(e.g. locational information like hemisphere) can be easily imple-
mented in the exponential random graph modeling approach
(Caimo and Friel, 2014). It would therefore be interesting to include
other attributes in future research (e.g. sensory, motor and associa-
tion areas) to test for assortativity (i.e. homophily) in terms of func-
tional or organizational similarity (Betzel et al., 2015; Vertes et al.,
2012). As such it would also be possible to simulate and compare dif-
ferent models to examine which parameters are of importance to the
global network topology.

Recently, another approach, minimum spanning trees, has been
proposed to circumvent the methodological issues that arise in the
comparison of networks that differ in size and density (Stam et al.,
2014). The tree describes the backbone of a network, which contains
only the strongest connections, thereby facilitating comparability of
different network topologies without aforementioned normalization
and correction steps. Several studies have shown the usefulness of
the minimum spanning tree approach by detecting subtle condition-
al and developmental network changes, both between and within
studies (Stam et al., 2014). To date, no comparative studies between
minimum spanning trees and generative network modeling are
known to us. Minimum spanning trees are potentially relevant for
modeling of very large (edge-weighted) networks, as exponential
random graph models are computationally much more demanding.
A drawback of exponential random graph models is the nonlinear in-
crease in computational load with increasing network size and
model complexity. Furthermore implementation for edge-valued
networks (Desmarais and Cranmer, 2012) are not yet available in
the Bayesian framework.

One limitation of the present study might be that subcortical regions
were not included. However, the accuracy of registration and alignment
of sub-cortical regions is difficult if compared with cortical regions, even
when nonlinear registration procedures are used, and might thus give
unreliable networks. Another limitation might be the construction of
representative group-networks based on a certain, but arbitrary, edge
prevalence threshold. Future studies might look into different ap-
proaches to fit group networks, e.g. based on exponential random
graph modeling (Simpson et al., 2012) or a fully Bayesian description
of networks (Hinne et al., 2012; Janssen et al., 2014). The present
study did not investigate whether exponential random graph models
can solve the problems with differences in network size. This highly in-
teresting and relevant question should therefore be addressed in future
research.

Future studies may explore Bayesian generative modeling in other
network datasets in health and disease, and extend the model with
more substructures and attributes (e.g. cortical regions, assortative con-
nections, brain location, interactions), to assess the effect of different
network properties between brain regions (Dennis et al., 2013) as
well as constraining influences of network topology and connections
(Bullmore and Sporns, 2012; Kaiser and Hilgetag, 2006).
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