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1
Introduction

1.1 Surface plasmon polaritons

Surface plasmon polaritons (SPPs) are electromagnetic waves that are strongly cou-
pled to the collective oscillation of free electrons at an interface between a dielectric
and a metal [1]. They are transverse magnetic wave solutions of Maxwell’s equations
that propagate along the metal/dielectric interface and decay evanescently perpendic-
ular to the interface into the metal and the dielectric (see inset Fig. 1.1). The decay
length into the metal is comparable to the skin depth, while the decay into the dielec-
tric is on the order of 100 nm in the visible. Therefore, the electromagnetic energy of
SPPs is strongly localized in the vicinity to the surface, allowing the confinement of
optical waves to the nanoscale.

The strong coupling between the conduction electrons and the electromagnetic
wave leads to a dispersion relation that differs from that for light in a dielectric.
For a single interface between a metal and a dielectric the dispersion relation can be
derived from Maxwell’s equations and boundary conditions.

kSPP (ω) = k0

√

ǫd(ω)ǫm(ω)

ǫd(ω) + ǫm(ω)
, (1.1)

with ǫm(ω) and ǫd(ω) being the permittivity of the metal and the dielectric, re-
spectively. The dispersion relation for SPPs propagating at the interface between a
Drude metal and a dielectric is shown in Fig. 1.1 together with the dispersion of light
in the dielectric (”light line”). Since metals have a negative permittivity (ǫm < 0)
in the visible wavelength range, the SPP wavevector is larger than for light in the
dielectric (ǫd > 0) and the dispersion relation lies right to the light line. For low
frequencies SPPs have a very photon-like character and the dispersion relation lies
close to the light line. For higher frequencies, the SPP dispersion deviates further
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CHAPTER 1. INTRODUCTION

from the light line towards larger wavevectors and shorter SPP wavelengths. The
largest wavevectors are found at the surface plasmon resonance ωSPP which for a
Drude metal is located at ωSPP = ωp/

√
1 + ǫd with ωp the plasmon resonance. For

noble metals the surface plasmon resonance lies in the visible. The dependence of the
SPP dispersion on the permittivity of the dielectric allows effective engineering of the
dispersion relation.

As is clear from the dispersion relation, the SPP wavevector is always larger than
that for light in the dielectric. To excite SPPs by light a coupling technique is required
that provides the wavevector mismatch. Coupling using a subwavelength scatterer or
a periodic grating are commonly used techniques to provide the additional momentum
[1]. Attenuated total reflection to couple evanescent field components to SPPs is also
being used [2, 3]. A less popular but very interesting method to excite SPPs is by
electron irradiation [4, 5], which is the topic of this thesis.

The large tunability of the dispersion that can be achieved with SPPs comes at
the price of higher propagation loss. As part of the SPP field propagates in the metal,
it is attenuated by Ohmic losses in the metal, an effect that is largest for wavelengths
close to the surface plasmon resonance. The propagation length is given by

LSPP =
1

2Im(kSPP )
. (1.2)

For noble metals SPPs can propagate in the order of 100 µm in the near-infrared, but
close to the SPP resonance LSPP decreases to values as short as 100 nm [6].

1.2 Plasmonics - opportunities and challenges

The possibility to confine light to the nanoscale and the ability to tune the disper-
sion relation of light has raised large interest and led to rapid growth of the field of
plasmonic research. The parallel development of nanoscale fabrication techniques
like electron beam lithography or focused ion beam milling, has opened up new
ways to structure metals surfaces and control SPP propagation and dispersion at
the nanoscale.

The large field enhancement of SPPs localized at the metal surface makes SPPs
very sensitive to changes in the permittivity of the adjacent dielectric. By functional-
izing the metal surface, biological molecules or chemicals can be selectively bound to
the surface, shifting the wavelength of the SPP resonance [7, 8, 9]. Research in this
field is far advanced and sensors relying on the effect of the surface plasmon resonance
shift are commercially available.

Similarly, SPPs can be used to efficiently couple sunlight into waveguide modes of
thin semiconductor layers. The strong field enhancement and guiding properties of
SPPs increase in this case the light absorption and thereby the efficiency of thin-film
semiconductor solar cells [10].

As the SPP wavelength for a given energy is shorter than in the dielectric, SPPs
can be employed to overcome the classical diffraction limit and to shrink optical
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Figure 1.1: Dispersion relation for surface plasmon polaritons propagat-
ing at the interface between a dielectric and a Drude metal. The light
line in vacuum is drawn in black. Inset: Schematic of the electric field
intensity associated to a SPP propagating at the interface between a
dielectric and a metal.

integrated circuits. Several studies have shown guiding of SPPs in thin metal stripe
waveguides [11] or grooves in metal surfaces [12] and the first optical circuits have been
demonstrated [13]. By structuring metal stripe waveguides the propagation speed of
SPPs can be reduced well below the speed of light [14]. Tapering of planar waveguides
allows the concentration of SPPs to hot spots with length scales of only a fraction of
the SPP wavelength [15, 16].

While metal stripe geometries allow efficient guiding of SPPs, the SPP field around
such waveguides extends far into the dielectric. Metal-insulator-metal (MIM) geome-
tries, in which SPPs propagating on the two interfaces are coupled, allow confinement
of the SPP field to the thin dielectric gap between the metal layers. The strong interac-
tion of the two coupled SPP waves allows further design of the dispersion relation. By
reducing the size of the dielectric layer extremely short wavelengths can be achieved at
optical frequencies. Indeed, MIM plasmons with wavelengths as short as 58 nm have
been demonstrated at optical frequencies [17]. For certain geometries MIM waveg-
uides exhibit a negative refractive index for the guided plasmons. Two-dimensional
negative refraction of plasmons has been demonstrated in the visible [18], and was
also confirmed theoretically [19].

Despite these advances in the field of plasmonics, several important open questions
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CHAPTER 1. INTRODUCTION

and problems remain. For example: how can plasmons be efficiently excited with
nanoscale resolution? So far, the excitation of SPPs is mostly performed using far-field
optical techniques which have a resolution that is larger than plasmonic phenomena
under investigation. However, for true nanoscale plasmonic studies a SPP point source
with nanoscale dimensions is required. Another important question is: what are
the fundamental processes that determine the losses of SPPs? Practical plasmon
experiments are performed on poly-crystalline surfaces, and the limits to the losses
due to e.g. surface roughness and grain boundaries are not known.

To manipulate SPPs on a surface, reflectors are needed. So far, macroscopic Bragg
reflectors structured into the surface have been used. For true nanoscale integration,
nanoscale SPP mirrors are required and a question is, how these can be made. Once
these are realized, nanoscale cavities to confine SPPs can also be designed. The limits
to the plasmonic cavity mode volumes and quality factor are not yet known.

And finally, the use of a particle beam rather than a light beam to excite SPP
raises questions and novel opportunities regarding the selectivity with which surface
plasmon modes with different symmetry can be excited.

1.3 Outline of this thesis

This thesis focuses on acquiring fundamental understanding of the generation and
confinement of SPPs using electron beam irradiation.

• In chapter 2, we give an introduction into cathodoluminescence spectroscopy
and describe the measurement setup that we are using. We present the deriva-
tion of the generation rates for transition radiation and SPPs that are used
in the analysis of the following chapters and compare these to experiments.
Chapter 2 also contains a short description of the two-dimensional boundary-
element-method that is used to calculate the electromagnetic fields arising from
the electron impact. We describe the basic concepts used and how they are
numerically implemented.

• An electron beam impinging onto a gold surface coherently generates transition
radiation and surface plasmon polaritons which interfere in the far-field. The
interference leads to oscillations of the CL intensity in front of a grating as is
observed in measurements that are presented in chapter 3. We show that we
can model our measurements using the analytical generation rates derived in
chapter 2. Further modeling allows us to establish a connection between the
measured CL signal and the local density of states for SPPs.

• In chapter 4, we present measurement of the propagation length of SPPs on
gold surfaces. The observed losses are higher than expected for Ohmic losses
solely and depend strongly on the grain characteristics of the gold interfaces.
By comparing different gold films grain boundary scattering is identified as an
important loss factor for plasmon propagation.
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1.3. OUTLINE OF THIS THESIS

• Chapter 5 describes how we can use grooves structured into a gold surface to
confine SPPs. We show CL measurements of the mode structure between two
parallel grooves that act as Fabry-Perot resonators. We determine the quality
factor of those cavities, which shows a maximum for a certain groove depth. We
present finite-difference time domain (FDTD) calculations for the reflectivity
that confirm our measurement results.

• In chapter 6, we present numerical results for the SPP reflectivity of single
linear grooves. We use FDTD and a boundary-element-method (BEM) to de-
termine the reflectivity and investigate the near field of grooves with varying
geometrical parameters. We show that single grooves have resonances of high
reflectivity, which can be attributed to the coupling of propagating SPPs to
resonant localized groove modes.

• Chapter 7 presents CL measurements of SPPs confined to boxes bounded by
grooves in a gold surface. Two-dimensional standing SPP modes are observed in
those boxes. We model the measurements with a two-dimensional image source
model.

• In chapter 8, we present results on the excitation of metal-insulator-metal plas-
mons in a Ag/SiO2/Ag structure with cathodoluminescence. We use resonator
structures to determine the MIM plasmon wavelengths which we find to be as
short as 227 nm. Measurements of MIM disk resonators show modes with mode
volumes as small as 0.04λ3. The dependence of the excitation probability of
MIM modes due to phase retardation effects resulting from the finite electron
velocity is discussed.

This thesis gives an overview of the opportunities that cathodoluminescence imag-
ing spectroscopy provides for the field of plasmonics. The presented results show that
an electron beam can be used as a point source for SPPs to study basic plasmonic
properties in a quantitative manner. Our work provides insight in the physical mech-
anisms determining excitation, propagation, reflection and confinement of surface
plasmon polaritons. These insights can lead to novel applications of surface plasmons
in (bio-)sensing, nanoscale optical integrated circuits, opto-electronic integration and
photovoltaics.
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2
Cathodoluminescence

In this chapter we introduce the different sources of cathodoluminescence (CL). We
present the theoretical derivation of the CL emission probability for an electron cross-
ing the interface between two media. We calculate the emission probabilities for sur-
face plasmon polaritons and transition radiation. A description of the experimental
setup as well as some basic measurements will be presented.
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CHAPTER 2. CATHODOLUMINESCENCE

2.1 Introduction

Cathodoluminescence (CL) was first discovered in the mid-nineteenth century as the
light emission stemming from cathode electron rays hitting a glass substrate. The
CL spectra are very material specific, and CL is now routinely used as a material
characterization technique in mineralogy, semiconductor physics, and many other
fields. CL found extensive application as the emission source in cathode-ray-tube
computer monitors and televisions.

The main direct emission processes involved in CL are Cherenkov radiation and
transition radiation. Both of them are coherent with the external field of the incoming
electron as their fields are described by the same set of Maxwell’s equations. The
generation of surface plasmon polaritons can be considered as an indirect emission
process, but also falls into the group of coherent emission. As we will see later, the
coherence between the different radiation sources can result in interference detected
in the far-field.

Incoherent emission is generally associated with the highly localized creation of
electron-hole pairs which subsequently recombine and emit radiation. In metals elec-
tronic relaxation channels are much faster than radiative recombination, so that in-
coherent radiation is only a minor contribution to CL.

A charged particle like an electron passing through a transparent medium will
emit Cherenkov radiation if its speed v is faster than the phase velocity of light in
that medium, i.e. v > c/n where n is the refractive index of the medium. This
effect is e.g. the source of the blue glow in the water coolant bath of nuclear reactors
and is commonly used in particle physics to detect and trace charged particles [20].
Cherenkov radiation is mainly observed in dielectrics and not in metals, and will not
be considered in the context of this thesis.

Transition radiation is emitted if a charged particle passes through a boundary
between two media with different dielectric constants. It is created by the time
dependent variation and eventual collapse of the dipole moment formed by the incident
electron and its image charge in the dielectric. This effect was first predicted by
Ginzburg and Frank [21] and observed by Goldsmith and Jelly [22] for metals. It is
employed in crystallography to identify and characterize materials [23].

For metals bombarded with electron beams the excitation of bulk or surface plas-
mons can occur when the moving charge couples to the free electrons in the metal.
This effect was observed first in electron energy loss spectroscopy and provided a
first proof of the excitation of bulk and surface plasmons [4]. First observations of
light emission from SPPs, excited by electrons and coupled out using gratings, were
done by Teng and Stern [24]. Heitmann used electron excitation of SPPs to map
their dispersion relation on silver gratings [5]. Yamamoto et al. first reported the use
of electron irradiation to determine the spatially-resolved mode distribution of plas-
mons localized in silver nanoparticles [25]. More recently, the imaging of localized
SPP modes in Au nanowires using electron irradiation was demonstrated [26] and
the propagation and scattering of SPPs on metal surfaces have recently been directly
resolved [6, 27, 28].
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2.2. THEORY

In this chapter we will derive the excitation probabilitiy for emission for an elec-
tron passing through the boundary between a metal and a dielectric from Maxwell’s
equations. We will focus on surface plasmon generation and transition generation as
these are the most important contributions in the context of this thesis. The results
of these derivation will be discussed. We will describe the used experimental setup
and present initial measurements, that are compared to theoretical results.

2.2 Theory

An electron in uniform motion in a straight line in free space does not emit radiation.
If the electron is incident from vacuum onto the boundary of a material it perturbs
the electrons in the uppermost layers due to its external field and creates a polar-
ization charge. This charge together with the incoming electron can be considered
as an effective dipole. In case of a metal substrate the dipole can decay into two
channels: direct emission into the far field (transition radiation) and generation of
surface plasmons.

2.2.1 Transition radiation

The first predictions of transition radiation date from a paper by Ginzburg and Frank
[21] and more detailed studies were done by Ter-Mikaelian [29]. We will follow a
derivation which can be found in textbooks [30, 31].

We consider an electron, with charge −e and constant velocity v along the z-
axis. The electron is incident from the lower half space z < 0 taken to be vacuum
(ǫ1 = 1) and crosses the interface with the upper half space filled with a dielectric of
permittivity ǫ2 = ǫ at z = 0 and time t = 0. The dielectric can be either a metal
(Re(ǫ) < 0) or dielectric (Re(ǫ) > 0). The electromagnetic fields E(r,t) and H(r,t) in
each medium j satisfy Maxwell’s equations:

∇ ·H = 0 , (2.1)

∇× E = −1

c

∂H

∂t
, (2.2)

∇ · ǫjE = 4πρ , (2.3)

∇× H = −1

c

ǫj∂E

∂t
+

4π

c
j , (2.4)

with c the speed of light and ρ and j the charge and current density associated with
the moving electron. More precisely,

ρ(z, t) = −eδ(z − vt) , (2.5)

j(z, t) = −evδ(z − vt) . (2.6)

The solution of Maxwell’s equations for this problem can be most readily found in
the frequency and momentum domain. Therefore, we Fourier transform the electric
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Figure 2.1: External magnetic field Hbulk from Eqn. 2.11 as a function
of radial distance from the electron trajectory. The top horizontal axis
plots the corresponding positions for 30 keV electrons and a wavelength
of 800 nm.

and magnetic fields E(r,t) and H(r,t):

H(r, t) =
1

(2π)4

∫

dωe−iωt

∫

d3qH(q, z, ω)eiq·r . (2.7)

The Fourier transforms of the source distributions can be readily found to be:

ρ(k, ω) = − e

2π
δ(ω − k · v) , (2.8)

j(k, ω) = vρ(k, ω) . (2.9)

We decompose the fields H in each region into a part describing the field in a bulk
medium Hbulk

j and the induced field Hind
j that is used to match the boundary condi-

tions at the interfaces. The bulk part can be found solving Maxwell’s equations for
an homogeneous medium of permittivity ǫj:

Hbulk
j (Q, z, ω) =

4πieQ

c
eiωz/v t̂

k2
j − q2

, (2.10)

j = 1, 2 referring to vacuum and the metal, respectively, kj is the wave vector in

each medium, t̂ = ẑ × Q̂, and Q is the in-plane momentum vector obtained after
integration of the z-component of the momentum leading to q = (Q, ω/v).

10



2.2. THEORY

Performing the q-integral in Eqn. 2.7 and transforming the fields into real space,
we find for the field of the moving electron

Hbulk
j (r, ω) = −2eω

vcγ
eiωz/vK1

(

ωρ

γv

)

φ̂ , (2.11)

where ρ is the distance from the electron trajectory, γ = 1/
√

1 − v2/c2 is the Lorentz

contraction factor, where φ̂ is the azimuthal unit vector, and K1 is the modified Bessel-
function of the second kind . We see that the moving electron acts as a broadband
source of electromagnetic field with the frequency components of the field moving
with velocity v along the electron trajectory. The field decays away from the electron
trajectory with the Bessel function with its argument inversely proportional to the
velocity v.

Interestingly, the external field of the electron (Eqn. 2.11) diverges at the position
of the trajectory (see Fig. 2.1), resulting in a theoretically infinite resolution. This
means that the actual resolution of experiments is only limited by the finite size of the
beam spot. In practice, the delocalized character of the material response must be
also considered: an upper limit of the resolution is given by the distance of exponential
decay (vγ/2ω) of the K1 function in the external field intensity. For example, vγ/2ω =
13 nm for 30 keV electrons and excitations of wavelength λ = 800 nm.

When the electron approaches an interface it can induce a polarization charge
which in turn generates an induced field given by:

Hind
j (Q, z, ω) = 2πekjsje

ikzj |z|αj t̂ , (2.12)

where kzj =
√

k2
j − Q2, s1 = −1, s2 = 1, and αj are boundary coefficients that are

determined by applying the boundary conditions for the electromagnetic field at the
interface z = 0. The continuity of the parallel component of the electric and magnetic
fields leads to a set of linear equations which can be solved for the coefficients, resulting
in

α1(Q) =
2Qi/c

kz1ǫ2 + kz2ǫ1

[−ω/vǫ2 + kz2ǫ1
q2 − k2

1

− −ω/vǫ1 + kz2ǫ1
q2 − k2

2

]

, (2.13)

α2(Q) =
2Qi/c

kz1ǫ2 + kz2ǫ1

[

ω/vǫ2 + kz1ǫ2
q2 − k2

1

− ω/vǫ1 + kz1ǫ2
q2 − k2

2

]

. (2.14)

To obtain the induced field at the interface we insert these coefficients into Eqn. 2.7
and perform the integral. The fields are azimuthally symmetric so we can integrate
over the azimuthal angle of Q

Hind
1 (r, ω) = −iφ̂esj

∫ ∞

0

QdQαje
ikzi|z|J1(QR) , (2.15)

R is the radial distance from the electron trajectory, and J1 is the first order Bessel
function.

11



CHAPTER 2. CATHODOLUMINESCENCE

In our experiment we observe the CL signal in the far field, far away from the actual
impact position of the electron. As apparent from Eqn. 2.11 the field directly emitted
by the moving electron decays exponentially away from the electron trajectory as K1.
The CL emission observed in the far-field must thus arise from the induced fields at the
boundary. Therefore, we perform an asymptotic analysis for r → ∞ for the induced
field (Eqn. 2.12) to obtain the far-field, which we write as Hind → f(θ, ω)eikr/r, with
f(θ, ω) the emission amplitude

f(θ, ω) = −ikeα1(k sin θ) cos θφ̂ , (2.16)

with θ the zenith angle with respect to the surface normal. To obtain the emission
probability P (ω) as a function of frequency, we calculate the emission intensity I
which is related to P (ω) by I =

∫ ∞

0
dωP (ω). The intensity I equals the flux of

the Poynting-vector S = E × H∗ integrated over the vacuum hemisphere. Inserting
the results for the electromagnetic fields leads us to an expression for the transition
radiation intensity PTR which we will use in the following chapters.

PTR(ω) =
1

h̄k

∫ 0

π/2

dθ|f(θ, ω)|2 . (2.17)

2.2.2 Surface plasmons

In the previous section we derived the solutions of Maxwell’s equations for transition
radiation. An electron incident onto a metal surface also excites SPPs. We can derive
the plasmon generation rate from the results of the previous section. The wave vector
condition describing SPPs can be identified as the pole of the boundary coefficients
αj (Eqs. 2.13 and 2.14) corresponding to the SPP dispersion relation:

kz1ǫ2 + kz2ǫ1 = 0 (2.18)

Note, that Eqn. 2.18 implies directly the commonly know form of the SPP disper-
sion relation Eqn. 1.1 [1]. A Taylor expansion of Eqn. 2.18 to first order around the
plasmon wave vector Qp allows us to determine the fields by avoiding the plasmon
pole [32]. The integration of the wave vector in the complex plane is determined by
the contribution of the pole (Cauchy’s integral theorem). By separating the Bessel

function into Hankel functions J1 = 1/2(H
(1)
1 + H

(2)
1 ) we can determine the electro-

magnetic fields of the plasmons.

Hind
j (ω) = πeQpAje

−ikzi|z|H
(1)
1 (QpR)φ̂ , (2.19)

with αj = Aj/(Q − Qp) and assuming for the imaginary part of the wave vector
ImQp > 0. As in the case of transition radiation the plasmon emission probability
can be calculated from the flux of the Poynting vector over a surface. In the case for
plasmons we have to consider both contributions j = 1, 2 into the air and into the
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Figure 2.2: Generation rate of transition radiation (blue) and surface
plasmons (red) as a function of wavelength per incoming electron. The
rates are calculated for 30 keV electrons incident on a gold surface.
Inset: Angular distribution of transition radiation with a wavelength
of 700 nm for an incoming 30 keV electron.

metal as SPP fields extend to both sides of the interface. As a result we obtain the
excitation probability for SPPs by the electron:

PSPP (ω) =
∑

j

|Aj |2e2

2h̄k2Im(kzi)
e−2Im(Q)RRe

(

Q|Q|
ǫj

)

. (2.20)

2.2.3 Discussion

Using equations 2.17 and 2.20 we can calculate the emission probability for transition
radiation and surface plasmons, respectively. In Fig. 2.2 we show the excitation prob-
ability as a function of wavelength for 30 keV electrons incident onto a gold surface,
experimental conditions similar to those in the following chapters. The transition
radiation was integrated over the full upper half space.

The emission rate for transition radiation increases with wavelength but stays be-
low the plasmon generation rate over the observed wavelength range. The generation
rate of surface plasmons increases for shorter wavelengths and shows a strong maxi-
mum close to the plasmon resonance around 520 nm. Integrating over the wavelength
range of 500-1000 nm approximately 0.005 transition radiation photons and 0.002
plasmons are produced per incident electron.
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Figure 2.3: Generation rate of transition radiation( blue) and surface
plasmons (red) as a function of electron energy. The rates are calcu-
lated for a wavelength of 800 nm for electrons incident from vacuum
onto a gold surface.

Note that these spectra show only the excitation rate. The measured emission
will differ and depend on the efficiency of collection and detection system. Since the
bound SPPs have to be coupled to light to be detected, the SPP related emission will
also depend strongly on the scattering coefficients of the coupling structures.

The inset of Fig. 2.2 shows the angular distribution of the emission rate for tran-
sition radiation at a wavelength of 700 nm. The observed emission pattern resembles
that of a classical dipole placed infinitesimally close to a planar metal surface. The
shape of the pattern can be understood from the transition radiation amplitude f

(Eqn. 2.16) which has an angular dependence of sin θ cos θ.
In Fig.2.3 we show the emission rate for TR and SPPs as a function of electron

energy for a free-space wavelength of 800 nm. Both contributions increase with elec-
tron energy. As we have seen in the previous section, the external field for an electron
(Eqn. 2.11) extends further for higher electron energies. Therefore, the coupling to
the material is increased, leading to a larger polarization charge and stronger emission
in response.

2.3 Cathodoluminescence imaging spectroscopy

Cathodoluminescence measurements rely on the detection of radiation that is emitted
as a sample is bombarded by an electron beam. To perform spectroscopy the emitted
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Figure 2.4: (a) Schematic of the CL mirror position above the sample.
Distances and sizes are to scale. (b) Acceptance of the CL mirror as
a function of azimuth and zenith angle. The red area is within, the
blue area outside the acceptance angles.

radiation has to be spectrally resolved. Imaging requires the possibility to spatially
resolve the position where the emission originates. Contrary to many commonly used
spectroscopic techniques, in CL the spatial resolution is determined by the excitation
source and not the detection.

For excitation we use the focused electron beam of an FEI SFEG-XL30 scanning
electron microscope (SEM) which is equipped with a field emission tip. The acceler-
ation voltage of the electron beam can be tuned between 1 and 30 keV. The beam
current depends both on aperture/spot size and voltage and can be varied between
several pA and approximately 40 nA. The latter corresponds to an electron impact
on average every 5 ps, which is ∼ 2500 times longer than an optical cycle in the
visible spectral range and ∼ 100 longer than the typical electronic relaxation times in
gold [33]. Therefore, we can neglect electron-electron interactions and calculate the
emission using single electron excitations. The beam diameter for a 30 keV electron
beam at a current of 30 nA is approximately 10 nm on the sample surface. Accurate
positioning of the electron beam over the sample is achieved using the electrostatic
beam controls of the SEM.

The emitted light is detected using a Gatan MonoCL system. The light is collected
using a parabolic aluminum mirror which is placed 1 mm above the sample so that
its focal point coincides with the sample surface (see schematic Fig. 2.4(a)). The size
of the focus is approximately 10 µm across. The mirror has a large acceptance angle
covering, 1.42 π sr of the full 2π of the upper half sphere. The angular range of
acceptance angles is shown in Fig. 2.4 for the azimuth angle φ (φ = 0 towards the
wave guide) and zenith angle θ. As can be seen in the plot a large fraction of the
radiation emitted with φ = 0 is lost. Emission at large zenith angles towards the
surface passes underneath the mirror edge and is not detected either. The hole in
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Figure 2.5: Transition radiation spectrum measured for 30 keV electrons
incident on gold for a beam current of 30 nA.

the mirror through which the electron beam passes will not allow any detection for
θ < 2◦, an effect that is not taken into account in the calculation.

The light collected from the focal point is reflected as a parallel beam through a
hollow waveguide tube and focused onto the entrance slits of a monochromator. The
light is spectrally resolved using a 150 lines/mm grating which is blazed for a wave-
length of 500 nm. The light is dispersed and detected using a liquid-nitrogen cooled,
front-illuminated CCD array detector with 1340x100 pixels. For the 150 lines/mm
grating the bandwidth of detection is 560 nm with a resolution of approximately 10
nm for a typically used slit width of 2 mm. The dark count rate of the CCD was
approximately 100 counts/s and was subtracted from the measurements.

2.4 Measurements

We have measured the TR emission as a function of electron energy for single crys-
talline gold. The electron beam was positioned far away from any structures on the
flat surface so that no scattered SPPs would contribute to the CL signal. A typical
spectrum for transition radiation measured for 30 keV electrons for a beam current
of 30 nA is shown in Fig. 2.5. The emission has a broad spectrum covering the entire
sensitivity range of our detector from around 350 to 900 nm and peaks around 600
nm, close to the surface plasmon resonance for Au at 540 nm.

To determine the beam energy dependence of emission intensity we have measured

16



2.5. MEASUREMENT OF THE SYSTEM RESPONSE

E
m

is
s
io

n
 (

1
0
  
c
o
u
n
ts

/e
 )

-6
-

1.2

1.0

0.6

0.8

0.4

0.2

0.0

Electron energy (keV)
0 5 10 15 20 25 30

Figure 2.6: Transition radiation as a function of electron energy for
electrons incident on a single crystalline gold surface. The emission
was integrated over the detector range from 350 nm to 900 nm. The
data were normalized by the beam current.

the transition radiation spectrum for energies from 1-30 keV. The measured emission
spectrum was integrated over the range of the detector from 350-900 nm. The beam
current was measured before and after our measurements using a Faraday cup and
averaged. The beam current variation for a given energy is approximately 5 %. The
TR emission was normalized by the beam current. The normalized TR intensity as
a function of electron energy is shown in Fig. 2.6. A clear increase of the integrated
emission with electron energy is observed, in agreement with theory (see in Fig. 2.3).

2.5 Measurement of the system response

The spectrum in Fig. 2.5 was not corrected for the spectral sensitivity of the CL sys-
tem. While the sensitivity of the CCD detector is known, an accurate independent
determination of the system response, including wavelength dependent mirror reflec-
tivity, grating reflection efficiency and spectrometer throughput, is difficult. However,
by measuring the transition radiation spectrum and comparing it to the theoretical
emission spectrum we can obtain the system response [34]. This procedure allows to
compare further measurements to electromagnetic calculations on absolute scales.

To do so, we measured the TR spectrum for 30 keV electrons with known beam
current on a known material, in our case gold. The theoretical TR spectrum can
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Figure 2.7: (a) Normalized system response of the CL setup calculated
by dividing a transition radiation spectrum for 30 keV electrons on
gold through the calculated emission spectrum. (b) Normalized spectral
response of the spectrometer grating and the CCD measured using a
halogen lamp.

be calculated for gold from the excitation probability integrated over the known ac-
ceptance angle of the CL mirror (Fig. 2.4). Dividing the measured curve over the
calculated one results in a system response for the CL setup which can be used in
further measurements.

In Fig. 2.7(a) we show the CL system response obtained in the described way. It
increases with wavelength up to a maximum around 570 nm and decreases again for
longer wavelengths. For comparison, the known normalized response of the spectrom-
eter and the CCD array is shown in Fig. 2.7(b). It shows a similar behavior but does
peak at a higher wavelength. As it was measured by inserting a halogen lamp behind
the entrance slit of the spectrometer, it does neither include effects the wavelength
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dependent outcoupling from the mirror nor the transmittivity of the vacuum windows
in the beam path.

2.6 Boundary element method

In section 2.2 we have derived the excitation rates for transition radiation and surface
plasmons for electrons incident onto the interface between a dielectric and a metal. For
the simple case of planar, infinite media analytical solutions of Maxwell’s equations
can be derived. For more complex geometries like structured surfaces more elaborate
calculation techniques are required.

In the course of this thesis we will use the retarded boundary-element-method
(BEM) to calculate fields induced by an incident electron. Generally, in BEM the
fields inside each homogeneous region are expressed in terms of boundary charges
and currents that are calculated by imposing electromagnetic boundary conditions on
the interfaces.

First calculations using nonretarded BEM were introduced by Fuchs [35] to com-
pute optical properties of small, dielectric nanoparticles. Later, BEM has been used
to calculate plasmonic modes inside channels cut into otherwise planar surfaces [36].
More recently, electron energy loss spectroscopy results were simulated using BEM
for several particle structures [37].

We will show the derivation of BEM from Maxwell’s equations as outlined by
Garćıa de Abajo and Howie [38, 39]. The resulting equations can be used to calcu-
late cathodoluminescence emission for structures with translationally or rotationally
invariant interfaces.

2.6.1 Derivation of the basic elements of BEM

The basis for the BEM calculations are Maxwell’s equations in the frequency domain.
For media described by a position and frequency dependent dielectric function ǫ(r, ω)
and assuming a non-magnetic material (µ = 1), Maxwell’s equations are given by
Eqs. (2.1-2.4). The charge distribution ρ and current j for the incoming electron are
given by Eqs. (2.5 and 2.6).

We rewrite Maxwell’s equations by expressing the electric and magnetic fields in
terms of scalar and vector potentials φ and A.

E = ikA−∇φ , (2.21)

H =
1

µ
∇× A . (2.22)

Using the Lorenz gauge

∇ ·A = ikǫµφ, (2.23)
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Maxwell’s equations take the following form for the potentials:

(∇2 + k2ǫµ)φ = −4π
(ρ

ǫ
+ σs

)

, (2.24)

(∇2 + k2ǫµ)A = −4π

c
(µj + m) . (2.25)

The quantities σs and m are proportional to the gradient in the dielectric and mag-
netic constants and take nonzero values only at the interfaces. Therefore, they can
be understood as additional charges and currents introduced by the boundary. They
do not represent physical quantities and are only related but not equal to any real
boundary charges or currents. For the further derivation we will introduce surface
charges σj and currents hj that are determined by the boundary conditions for the
electromagnetic fields at the interface between two materials. The general solutions
for the potentials that vanish in each medium j at infinity can be written as:

φ(r) =
1

ǫj(ω)

∫

dr′Gj(|r − r′|)ρ(r′) +

∫

Sj

dsGj(|r − r′|)σj(s) , (2.26)

A(r) =
µj(ω)

c

∫

dr′Gj(|r − r′|)j(r′) +

∫

Sj

dsGj(|r − r′|)hj(s) , (2.27)

where Sj refers to the boundary of each medium and

Gj(r) =
eikjr

r
(2.28)

is the Green’s function which is a solution of the the scalar wave equation

[∇2 + k2
j ]Gj(r) = −4πδ(r). (2.29)

The solutions for the potentials (Eqs. 2.26 and 2.27) are composed of two parts,
where the first integral satisfies Eqn. 2.24 and 2.25 outside the interfaces for σs = 0
and m = 0. The surface integral includes the effects of σs and m at the boundaries.

To find the solutions of Eqs. 2.24 and 2.25 we choose the boundary charges σj and
currents hj such that the electromagnetic fields satisfy the boundary conditions. The
continuity of the tangential electric field and the normal magnetic field, lead together
with the Lorentz gauge to the continuity of the potentials φ and A. With Eqs. 2.26
and 2.27 the the boundary conditions can be rewritten as:

G1σ1 − G2σ2 = φe
2 − φe

1 , (2.30)

G1h1 − G2h2 = Ae
2 − Ae

1 . (2.31)

In Eqs. 2.30 and 2.31 we use a matrix form of the integrals, so that coordinates are
used as matrix and vector indices, and matrix-vector products involve integration over
the surface. The values φe

j and Ae
j are equivalent boundary sources that represent

the respective surface integrals in Eqs. 2.26 and 2.27. These boundary sources are

20



2.6. BOUNDARY ELEMENT METHOD

1µm

Position (nm)

P
o

s
it
io

n
 (

n
m

)

Figure 2.8: Example of part of the discretized interface curve for BEM
calculations. The boundary points on the flat areas are spaced by 10
nm, along the groove surface the step size is 5 nm. The inset shows
the complete closed structure.

potentials that would, in case of a homogeneous space filled with medium j, be created
at the interface by the external charges and currents and scale linearly with those
perturbations.

The continuity of the tangential magnetic field and the vector potential imply that
the tangential derivatives of all components of the vector potential and the normal
derivative of the normal vector potential are continuous. Using this, together with
the Lorenz gauge we find:

H1h1 − H2h2 − ikns(G1ǫ1µ1σ1 − G2ǫ2µ2σ2) = α , (2.32)

with α = (n2 ·∇s)(A
e
2 −Ae

1)+ ikns(ǫ1µ1φ
e
1 − ǫ2µ2φ

e
2), ns the surface normal, and Hj

the normal derivative of the Green’s function Gj .
The continuity of the normal dielectric displacement leads to another equation:

H1ǫ1σ1 − H2ǫ2σ2 − ikns · (G1ǫ1h1 − G1ǫ1h1) = De , (2.33)

where De = ns · [ǫ1(ikA
e
1 − ∇φe

1) − ǫ2(ikA
e
2 − ∇φe

2)] is the difference in normal
displacement, that would be created at the interface by the external sources for an
homogeneous space filled with the respective medium.

From Eqs. 2.30-2.33 the boundary charges σj and currents hj can be self-consis-
tently calculated. The incoming electron is introduced as an external charge via the
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inhomogeneous terms. Using Eqs. 2.24 and 2.25 one finds the solutions to Maxwell’s
equations that vanish at infinity and satisfy the boundary conditions at the interfaces.

2.6.2 Numerical procedure

Equations (2.30 - 2.33) in the previous section constitute a set of linear surface-integral
equations with σj and hj being the unknown complex functions. To solve the set of
equations we discretize the interface integrals by evaluating the spatial dependence
of each quantity to a number of N surface points along the interface. The interface
itself is discretized into a set of of interface elements that cover the surface and are
chosen small enough so that the unknown boundary charges σj and currents hj can
be assumed constant over each element.

With this discretization we can approximate the operators in Eqs. 2.30 - 2.33 by
N ×N matrices and the interface charges and currents by complex vectors of dimen-
sion N . The resulting discretized system comprises of 8N linear equations with 8N
complex variables that must be solved. For interfaces that are translationally invari-
ant along one direction the number of points can be considerably reduced by working
in Fourier space. In Fig. 2.8 we show a typical discretization of the boundary between
two media. While small structures like the pictured groove must be discretized with
a small step size of typically 2-5 nm, the step size for flat areas can increased to 10
nm due to the slowly varying fields in those regions.

The solutions of the numerical procedure for σj and hj can be further used to
determine the near-field close to the structure, the far field emission, the local density
of states and the energy loss experienced by a passing electron.
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3
Local density of states, spectrum and far-field

interference

The surface plasmons polariton (SPP) field intensity in the vicinity of gratings pat-
terned in an otherwise planar gold surface is spatially resolved using cathodolumines-
cence (CL). A detailed theoretical analysis is presented that successfully explains the
measured CL signal based upon interference of transition radiation directly generated
by electron impact and SPPs launched by the electron and outcoupled by the grating.
The measured spectral dependence of the SPP yield per incoming electron is in excel-
lent agreement with rigorous electromagnetic calculations. The CL emission is shown
to be similar to that of a dipole oriented perpendicular to the surface and situated at
the point of electron impact, which allows us to establish a solid connection between
the CL signal and the photonic local density of states associated to the SPP.
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INTERFERENCE

3.1 Introduction

Surface plasmon polaritons (SPPs) are electromagnetic waves bound to the interface
between a metal and a dielectric [1]. The strong coupling between optical radiation
and the collective plasmon oscillations of the conduction electrons near the metal
surface leads to a complex SPP dispersion behavior that can give rise to large field
enhancements [15], negative refraction [18], and many other interesting phenomena
resulting from sub-100nm optics intrinsic to SPPs at visible and near-infrared fre-
quencies.

A major bottleneck in nearly all studies on the fundamental properties of SPPs is
the limited spatial resolution by which plasmonic phenomena can be measured. Opti-
cal microscopy suffers from the diffraction limit, whereas near-field microscopy has a
resolution limited by the tip aperture to typically 100 nm. In contrast, SPPs can also
be excited using high-energy electron irradiation, with the electron beam focused to a
nanometer size spot, thus enabling the excitation of SPPs with nanoscale resolution.
Only a few studies of electron-beam irradiation of plasmonic structures have been
reported, mainly focusing on measurements of the mode distribution of plasmons in
nanoparticles [25, 26, 40] or plasmon losses in planar surfaces [27, 28]. However, no
detailed analysis of the different emission components and their interaction has been
presented and no connection of the emission to the plasmonic density of states has
been established.

In this chapter, we use electron-beam irradiation to study fundamental properties
of SPPs propagating on a two-dimensional substrate. In particular, we use the electron
beam of a scanning electron microscope (SEM) impinging on a single-crystalline Au
substrate as a nanoscale source of SPPs with a broad spectral range. Our key findings
are as follows: (1) We have developed a model of cathodoluminescence emission which
includes the excitation of SPPs, eventually outcoupled from the Au surface, and
transition radiation (TR) [22, 34], as well as the interference of the two components;
(2) Extensive CL measurements performed over the visible spectrum and at distances
up to a few microns from the grating are well reproduced by this model; (3) We
measure the SPP generation yield per electron and find it to be in excellent agreement
with rigorous electromagnetic calculations of this quantity; (4) The CL emission is
found to be similar to that of a dipole positioned at the position of electron impact;
(5) This similarity allows us to establish a solid connection beteween the CL signal
and the photonic local density of states (LDOS) associated to SPPs.

3.2 Experimental

In our experiments, we use spatially-resolved cathodoluminescence spectroscopy (CL),
a technique that combines scanning electron microscopy with the detection of optical
radiation which is emitted from the sample. As described in chapter 2 the incident
electron serves as a source of SPPs [32]. The SPPs propagate until they interact
with a grating structured into the surface, where they are decoupled from the surface
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Figure 3.1: (a) Schematic of an electron impinging on a gold surface
generating surface plasmons (SPP) and transition radiation (TR) (all
calculations are done for a wavelength of 700 nm and th electron inci-
dent 1000 nm away from the grating). The colored background shows
the two-dimensional interference pattern of SPPs outcoupled by a grat-
ing with 400 nm period and TR calculated using the boundary element
method. The calculated angular dependence of the emitted TR inten-
sity is shown as a polar plot curve in red; the angular dependence of
the emission of a dipole placed close to the metal is shown in dashed
green. Azimuthal projection of calculated TR (b), radiation from scat-
tered SPPs (c), and interference of TR and SPPs in the far field (d).
All plots are normalized to their maximum value. The white contours
reflect the collection range of the mirror. The grating is oriented ver-
tically and its edge is located at the center of the plots.

as light that can be detected in far field [see schematic Fig. 3.1(a)]. The impinging
electron also produces TR [22, 34], the angular dependence of which is shown in Fig.
3.1(a). The angular emission pattern for TR resembles very much that of a classical
dipole placed infinitesimally close above a planar metal surface, also shown in Fig.
3.1(a). The SPP and TR components of the emission are mutually coherent, so they
produce interference in the far field where the CL detection takes place. To illustrate
the interference, the colored background of Fig. 3.1(a) shows the two-dimensional
near-field intensity distribution calculated using a two-dimensional boundary element
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Figure 3.2: Cathodoluminescence intensity for 30 keV electrons incident
on single-crystalline Au, plotted as a function of detection wavelength
and distance to the grating of Fig. 3.1. The grating period is 300
nm in (a) and (b), and 400 nm in (c) and (d). (a) and (c) are
measurements for gratings carved in a single-crystal gold sample. (b)
and (d) are calculations. The experimental data were corrected for
system response.

method [39] for an electron incident on a Au surface. The induced electric field is
calculated for a geometry that is translational invariant along the direction perpen-
dicular to the page and for wavevector components only in the plane of the page.
The separate emission components from TR and outcoupled SPPs, as well as their
interference, are easily identified.

In our experiments the sample consists of a single-crystal Au pellet of 1 mm thick-
ness of which the surface was chemically polished down to nanometer roughness.
Linear grating structures were milled into the surface with a 30 keV Ga+ focused
ion beam. Gratings consisting of 10 grooves were carved with periods a =300nm,
400nm, and 500 nm, respectively, groove width ≈ a/2, depth ≈ 50nm, and length
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50µm. Spatially-resolved CL spectroscopy was performed in a SEM using a 30 keV
electron beam from a field-emission source focused onto the sample to a ∼ 10 nm di-
ameter spot. A parabolic mirror, positioned above the sample, collects light emitted
above it. Light is then spectrally resolved using a CCD array detector (bandwidth
≈ 10 nm) after passing a monochromator. The mirror acceptance solid angle is 1.4π.
Spectra were corrected for system response, which was determined by normalizing
measured raw data from a planar Au sample (no grating) to the calculated TR spec-
trum for Au [34]. This normalization allows us to compare the measured data to
calculations on absolute scales and to compensate for the spectral response of our
measurement system.

Figures 3.2(a,c) show the measured CL intensity, plotted as a function of wave-
length and distance to the grating, for grating periods of a = 300nm and a = 400nm,
respectively. Several characteristic features are clearly resolved in these plots:

(i) For wavelengths below 600nm the CL intensity decays with distance from the
grating. This is attributed to the strong damping of SPPs due to Ohmic losses in this
wavelength range close to the SPP resonance at 540nm. The observed CL decay with
distance corresponds well to the decay length calculated using the dielectric constant
for Au. At longer wavelengths, the SPP propagation distance is calculated to be larger
than the scan range in Fig. 3.2, and only a weak decay is observed [27, 28]. These
data confirm that a large portion of the CL intensity in Fig. 3.2 is due to outscattered
SPPs.

(ii) Superimposed on the decay, we observe a periodic modulation of the CL in-
tensity with distance with a period of about half the detection wavelength. This is
clear evidence of the noted interference between TR and SPPs contributions to the
emission, which can be either constructive or destructive depending on the phase
difference φ [see Eq. (3.1)], increasing linearly with d.

(iii) For the longer wavelengths the amplitude of the oscillations decreases with
distance roughly as 1/

√
d, which is consistent with the distance dependence exhibited

by any planar surface excitation originating in a point source, and in particular the
SPP waves launched at the position of the electron beam [41].

3.3 Analysis

To model our experiment we have calculated the emission probability into SPPs and
TR for an electron incident on a gold surface using the equation shown in chapter
2. Figures 3.1(b-d) show the calculated angle-resolved maps of the light intensity
distribution due to outcoupled SPPs (b), TR (c), and their interference (d), respec-
tively, all calculated for 30 keV electrons on Au at a wavelength of 600 nm. The TR
is clearly isotropic in the azimuthal plane, while the scattered SPP distribution is
highly anisotropic due to the presence of the grating. The solid angle of the parabolic
mirror used to collect the CL is indicated by the white contours in Figs. 3.1(b-d).

The experimentally collected CL intensity corresponds to the integral over the
emission angles Ω of the interference within the collection solid angles of the CL
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mirror:

ICL =

∫

mirror

dΩ
∣

∣ASPP S(Ω)eiφ + fTR(Ω)
∣

∣

2
, (3.1)

where ASPP is the SPP-excitation amplitude, S is the normalized far-field amplitude
of a SPP scattered by the grating, fTR is the far-field amplitude of TR, and φ is the
phase difference between the SPP and TR emission components. This expression is
exact at large distances d between the beam spot and the grating, and in particular,
the TR field decays as 1/d, whereas the SPP field becomes dominant near the grating,
since it dies off only as 1/

√
d so that TR scattering by the grating is negligible for d

above a few hundred nanometers. In our calculations, we have used rigorous, analyt-
ical solutions of Maxwell’s equations for ASPP [42] and fTR [30] that are presented
in chapter 2. In particular, ASPP is obtained from the plasmon-pole contribution to
the field produced by the electron crossing a semi-infinite metal-vacuum boundary.
The dependence of ICL on the separation d between electron beam and grating comes
exclusively through the relative phase of SPP and TR contributions, φ ∝ d. The
grating scattering factor is approximated as S(Ω) = S0/(kx − 2π/a − iΓ/2), where
kx is the projection of the emitted photon momentum along the surface direction
perpendicular to the grating, a is the grating period, and Γ = 1/(N · a) accounts for
inelastic and radiative damping in the grating. We assume a mean free path of N = 5
periods, and a typical scattering efficiency S0 = 40% [43]. These two constants are
the only adjustable parameters in our model.

The calculated CL emission for two gratings of periods of 300nm and 400nm is
shown in Figs. 3.2(b,d). We observe overall good agreement between measurements
and calculated CL signal. Both the overall intensity as well as the periodic oscillations
are very well resolved. Additionally, the period of the oscillations is a non-linear
function of wavelength and depends on the pitch of the grating. This becomes clear
by comparing the data with the white lines in Fig. 3.2, which are intended to guide
the eye through a range of interference maxima. These curves both show a kink near a
wavelength of 700nm and quite different slopes above 700nm, both in experiment and
theory. Indeed, for the 400nm grating the first-order grating coupling mode for SPPs
with a wavelength longer than 700 nm lies outside the acceptance range of the mirror.
This provides further evidence for coherent interaction between SPPs scattered from
the grating and TR. From the good agreement of experiment and theory we conclude
that far-field emission measurements are well described by the model of Eq. (3.1).

In a next step, we have extracted from the spatially resolved CL data in Fig. 3.2
the spectral distribution of SPPs generated by the electron beam. At each wavelength
the CL intensity was integrated over the distance range of Fig. 3.2 correcting for the
(measured) decay (thereby averaging out the oscillations). The obtained spectrum
was then corrected for TR acquired at a position far away from the grating. Fig. 3.3(a)
shows the result of this analysis for three different values of the grating pitch (sym-
bols). A quite similar spectral shape is observed for all gratings, consistent with the
fact that the generated SPP spectrum is independent of grating pitch. Fig. 3.3(a)
also shows the calculated SPP spectrum under 30 keV electron excitation as well as
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Figure 3.3: (a) Spectrum of surface plasmon polaritons on single-crystal
gold excited by 30 keV electrons and integrated over a line next to grat-
ings with three different grating pitches [a =300 nm - yellow triangles,
400 nm - violet dots, 500 nm - red squares]. The solid lines show cal-
culated spectra for SPPs generated by a 30 keV electron impinging on
the surface (blue, dashed) and by a dipole positioned at the surface
(black,solid). (b) Calculated transition radiation spectrum for 30 keV
electrons on Au.

the spectrum of SPPs that would be excited by a point dipole positioned at the metal
surface. The dipole strength is taken as frequency independent in our calculations.
These two calculations are analytical, rigorous solutions of Maxwell’s equations [42].
The SPP emission rate of the dipole is plotted by normalizing the spectral integral
of TR and the far-field dipole radiation. The small difference between these two cal-
culated SPP spectra is attributed to the fact that the electron excites SPPs as it
travels along its path, while the modeled point dipole is stationary. For comparison,
Fig. 3.3(b) shows the calculated transition radiation spectrum which amounts to 30%
of the SPP signal. The calculated spectra in Fig. 3.3(a) agree well with the experi-
mentally determined spectra for longer wavelengths. The variations of the measured
spectra for shorter wavelengths are ascribed to differences in coupling characteristics
of the gratings and uncertainties in the correction for the SPP decay close to the SPP
resonance.

The oscillations with distance in Fig. 3.2 are reminiscent of experiments performed
by Drexhage, who studied the spontaneous emission of a rare earth complex in front
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Figure 3.4: The main figure shows the real part of the wave vector as a
function of free space wavelength for surface plasmon polaritons ex-
cited on single-crystal gold. The red symbols are results of fitting a
LDOS model to the measurements. The solid gray line is the calcu-
lated dispersion expected from optical constants. The inset shows the
measured CL intensity (red symbols) as a function of distance for a
wavelength of 750 nm. The solid blue line is calculated from the LDOS
model of Eq. (3.2) with R adjusted to fit the experimental data.

of a metal mirror [44]. It is well known that the spontaneous emission rate of op-
tical emitters is proportional to the LDOS, as first experimentally demonstrated by
Drexhage. Now, this allows us to construct an intuitive picture of the radiation
generated by an impinging electron, which was shown to have an angular TR emis-
sion distribution (Fig. 3.1) and spectral coupling to SPPs similar to that of a point
dipole[Fig. 3.3(a)]. The decay of this effective dipole into SPPs and TR is governed
by the LDOS. The total decay rate is related to the LDOS ρ through the dipole decay
rate Γ = (4π2ωD2/h̄)ρ [45], where ω is the emission frequency and D is the dipole
strength. The LDOS can be obtained from the projected field induced by the dipole
on itself Eind

⊥ as [46]

ρ =
ω2

3π2c3
+

1

2π2ω
Im

{

Eind
⊥ /D

}

, (3.2)

where the first term on the right hand side is the vacuum LDOS. The normal induced
field Eind

⊥ has a component due to the interaction of the dipole with the infinite planar
surface and a distance dependent contribution arising from reflection of SPPs at the
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grating:

Eind
⊥ = E0

⊥

[

1 +
1√

2kSPP d
Re2ikSP P d

]

, (3.3)

where kSPP is the momentum of the SPP and R is the reflection coefficient of the
grating. Equation (3.3) predicts oscillations with distance d of period equal to half
the SPP wavelength, in good agreement with our measurements.

We have calculated the local density of states from Eq. (3.2) under the approxi-
mation of Eq. (3.3) and adjusted R to fit the data in Fig. 3.2. The inset of Fig. 3.4
shows the experimental CL intensity as a function of position from Fig. 3.2(a) for a
wavelength of 750nm together with the calculated relative LDOS from our model.
The used fit parameters were the reflectivity of the grating and the SPP wave vector.
Good agreement between model and measurements is achieved without any convolu-
tion with a spatial resolution, proving the high resolution of the CL imaging technique.
The main panel of Fig. 3.4 shows the real part of the SPP wave-vector extracted from
these fits to the measurements for each wavelength. The experimentally determined
SPP wave vectors agree well with the calculated dispersion using the dielectric func-
tion obtained from spectroscopic ellipsometry measurements of single-crystal gold. It
should be noted that the present experiment probes the radiative part of (and not
the absolute) LDOS, as (i) SPPs exhibit losses, in particular those incident to the
grating at glancing incidence, and (ii) in the present geometry only SPPs in one two-
dimensional half space (i.e., those launched towards the grating) are collected and
interfere with the full TR contribution.

3.4 Conclusions

In conclusion, we have shown that spatially resolved cathodoluminescence spectrosco-
py on single-crystalline gold shows oscillations in CL emission with distance from
a grating. These oscillations are ascribed to the interference between outcoupled
SPPs and transition radiation. This interference holds great potential for exploring
absolute phase changes during SPP scattering in nanostructured surfaces and provides
a direct measure for the photonic local density of states associated to SPPs. Due to
the nanoscale resolution of the exciting electron beam, cathodoluminescence yields
information on basic plasmon properties that is not accessible to any other technique.
The current measurement of the photonic LDOS with unprecedented resolution is
of fundamental interest in photonics, as the LDOS controls the efficiency of several
useful phenomena involving light absorption and emission.
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4
Loss mechanisms of surface plasmon polaritons on

gold

We use cathodoluminescence imaging spectroscopy to excite surface plasmon polari-
tons and measure their decay length on single-crystal and polycrystalline gold surfaces.
The surface plasmon polaritons are excited on a gold surface by a nanoscale focused
electron beam and are coupled into free space radiation by gratings fabricated into
the surface. By scanning the electron beam on a line perpendicular to the gratings the
propagation length is determined. Data for single-crystal gold are in agreement with
calculations based on dielectric constants. For poly-crystalline films grain bound-
ary scattering is identified as additional loss mechanism, with a scattering coefficient
SG = 0.2%.
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CHAPTER 4. LOSS MECHANISMS OF SURFACE PLASMON POLARITONS

ON GOLD

4.1 Introduction

Surface plasmon polaritions (SPPs) are electromagnetic waves bound to the interface
between a metal and a dielectric [1]. They are being intensively investigated due
to their possible application in nanophotonic integrated circuits, sensors, solar cells
and other devices that take advantage of the strong optical field confinement at the
metal/dielectric interface. SPPs decay by Ohmic losses in the metal which are largest
for wavelengths close to the surface plasmon resonance. In addition, scattering from
surface roughness, grain boundaries, and other imperfections causes losses. Ohmic
losses can be readily calculated from optical constants that can be measured indepen-
dently. In practice, experimental loss rates are often much higher than the calculated
Ohmic loss [47]. Calculation of scattering processes is difficult because they depend
on minute details in the structure. Therefore, experimental techniques are required to
identify the loss processes for SPPs. If these mechanisms are known, metal fabrication
techniques can be optimized so that metal structures with longer SPP propagation
lengths can be made.

In this chapter we use cathodoluminescence imaging spectroscopy to measure the
SPP decay [27, 28, 48] and present a detailed study of the propagation length of SPPs
on gold surfaces. We compare a single-crystalline gold surface with poly-crystalline
gold films with different grain sizes. We measure the SPP decay close to the plasmon
resonance with nanometer resolution and extract the decay constants for a broad
range of wavelengths. We show that losses are determined both by Ohmic losses and
scattering at grain boundaries, and that surface scattering plays only a minor role.

4.2 Experimental

In cathodoluminescence (CL) an electron beam impinges onto the gold surface to
create a perturbation in the density of conduction electrons. The corresponding ef-
fective dipole oscillation is the source for cathodoluminescence. The dipole decays by
emitting into the far-field (transition radiation [34]) and by exciting SPPs [32, 41]. In
our experiment the excited SPPs propagate over the surface and are coupled to the
far-field using a grating structured into the metal surface. By measuring the amount
of light coupled out from the grating as a function of distance between excitation
point and grating the SPPs propagation length can be determined.

We prepared three different samples for our measurements. One sample consists of
a single-crystalline gold pellet with a thickness of 1 mm. The surface was polished via
chemical-mechanical polishing to sub-nanometer roughness as confirmed by atomic
force microscopy (AFM). Two more samples were produced by electron-beam evapo-
ration of a 120nm thick gold film on a silicon substrate. Before the evaporation, the
silicon substrates were cleaned in vacuum with a 300 eV argon ion beam. The films
were evaporated at a rate of 0.05nm/s under a pressure of 3× 10−7mbar. To achieve
different grain sizes for the films one sample substrate was cooled during evaporation
to liquid nitrogen temperature while the other was kept at room temperature. To
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Figure 4.1: (a,b) Atomic force microscope images of gold films evapo-
rated at room temperature (a) and onto a cooled substrate (b). The
scale bar is 100nm and the height variation is 1nm. (c) Scanning
electron micrograph image of a grating fabricated in the single-crystal
gold substrate. (d) Schematic drawing of SPPs propagating from the
source to the grating over broad angular range. (e) Cathodolumines-
cence intensity as a function of detection wavelength and distance to
a grating in a single crystalline gold surface. The edge of the grating
at zero distance and the CL intensity was normalized to the intensity
at zero distance for each wavelength. The white dot shows the fitted
SPP propagation length, LSPP , for this sample.

reduce surface roughness of the evaporated metal both samples were irradiated with
300 eV argon ions at the last 30 s of the evaporation [49]. The two-dimensional sur-
face profiles of the evaporated films, measured with AFM are shown in Figs. 4.1(a,b).
Grain boundaries were easily identified in AFM and the average grain diameter was
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determined to be d = 80 nm for the film deposited at room temperature (a) and
d = 20 nm for the film deposited onto a cooled substrate (b).The root-mean-square
surface roughness was 1.6 nm and 1.3 nm for the room-temperature and cooled de-
position, respectively. Grating structures were milled into the surfaces of the metal
with a 30keV focused ion beam from a liquid gallium source. The gratings consisted
of 10 grooves with a period of 400nm and a groove depth of 50nm (Fig. 4.1(c)). The
single-crystalline gold sample will be referred as x-Au, the poly-crystalline sample
as poly-LN and poly-RT for the cooled and the room temperature evaporated film,
respectively.

We used the 30 kV electron beam of FEI XL-30 scanning-electron-microscope
(SEM) using a field-emission source focused to a beam diameter of approximately
10 nm to excite SPPs on the gold surfaces. The scanning electron beam passes through
a 1mm-diameter hole in a parabolic mirror that is positioned above the sample. The
light coming from the sample was collected using the parabolic mirror with an accep-
tance angle of about 1.4π sr. The collected light was sent through a monochromator
and spectrally resolved with a CCD array detector with a resolution of approximately
10 nm.

4.3 Results and analyis

We measured the CL intensity as a function of position on a line normal to the grating
up to a distance of 25µm from the grating. The electron beam was scanned with a
step size of 100 nm and at each position a spectrum was measured with an integration
time of 10 s. The measured emission spectrum ranges from around 500 nm to the
near-infrared region and peaks around 600nm. The measured spectrum due to SPPs
for a fixed position is determined by the excitation spectrum of SPPs by the electron
beam, the propagation losses, the wavelength dependent outcoupling efficiency of the
grating and the spectral response of the CL system. Since we are interested in the
relative decay of the CL intensity, for each wavelength the measured CL signal was
normalized to the intensity measured at the edge of the grating.

Figure 4.1(e) shows the normalized CL intensity for a line scan close to the grating
as a function of position and detection wavelength for the single-crystalline gold sam-
ple. The edge of the grating is located on the left side at zero distance. As can be seen,
for every wavelength the CL intensity decreases for increasing distance. For wave-
lengths above 550 nm the decrease in CL intensity is weaker for longer wavelengths,
corresponding to a larger propagation for longer wavelengths. For 550 nm a minimum
of the propagation length is observed; for shorter wavelengths the propagation length
appears increased, as will be discussed.

The CL intensity I(x) for the electron beam at a distance x away from the grating
is given by the initial SPP generation rate I0(λ, φ), the SPP decay length LSPP (λ)
and the grating outcoupling efficiency α(λ, φ), which depends on the incident angle φ
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Figure 4.2: Surface plasmon polariton propagation length as a function
of wavelengths for three different samples from fits to measurements
as in Fig.4.1(e). The green dots are for single-crystalline gold (x-
Au), the blue and red dots are for poly-crystalline gold films deposited
at room-temperature (poly-RT) and liquid-nitrogen temperature (poly-
LN), respectively. The solid lines are propagation lengths calculated
from the dielectric constants measured for the respective samples.

relative to the grating normal (see schematic in Fig. 4.1(d)):

I(x) = ITR +
1

2π

∫ π/2

−π/2

α(λ, φ)I0(λ, φ) exp(
−x

LSPP (λ) cos(φ)
)dφ (4.1)

Eqn. (4.1) also includes a constant background, ITR, to account for transition radia-
tion. To obtain the plasmon propagation length LSPP (λ) we fitted Eqn. (4.1) for each
wavelength in the data set of Fig. 4.1(e) assuming an angle-independent coupling ef-
ficiency a(λ, φ) = 1. The results of the fits for LSPP are shown in Fig. 4.1(e) as white
dots. We have plotted the values for LSPP only above 600nm. In this region, we
observe an increase of propagation length with wavelength as expected.

Interestingly, as can be seen in Fig. 4.1(e) for wavelengths shorter than 600 nm we
observe CL intensity farther away from the grating. This would mean that the SPP
propagation length seems to increase with decreasing wavelength. In this wavelength
range SPPs are not purely bound to the surface, as their real part of the normal
wavevector component kz increases strongly with decreasing wavelength. The result-

37



CHAPTER 4. LOSS MECHANISMS OF SURFACE PLASMON POLARITONS

ON GOLD

ing radiative loss causes a strong decrease in propagation of bound SPPs. However,
in the present experiment, the effect of this loss process, radiation, is collected by the
detection system. As Eqn. 4.1 does not account for this effect, these data are not
further analyzed here.

A similar analysis as in Fig. 4.1(e) for the single crystalline sample was done for
the two poly-crystalline samples. Figure 4.2 (symbols) shows the fitted propagation
lengths for the three different samples. The spread in data extracted from different
measurements for the same sample was approximately 10-20%. For fitted propagation
lengths that are longer than the scan range of 50 µm we have added error bars.
The longest propagation lengths are found for the single crystalline gold sample.
The shortest propagation lengths are found for the poly-crystalline samples with the
smallest grain size.

Considering only Ohmic losses the SPP propagation length can be calculated from
the imaginary part of the SPP wave vector kx

LΩ =
1

2Imkx
(4.2)

For a semi-infinite metal in air the wavevector is given by kx = λ/(2π)
√

ǫ/(ǫ + 1)
with ǫ the dielectric constant of gold and λ the free-space wavelength. For a thin film
on a substrate leakage radiation must also be taken into account. We have calculated
the dispersion relation for the three-layer system of a gold film in air on a silicon
substrate and derived LΩ from kx as in Eqn. (4.2) for the poly-crystalline films. The
dielectric constants of the three different samples were measured by ellipsometry.

The drawn lines in Fig. 4.2 show the propagation lengths for SPPs on our three
samples calculated from these dielectric constants. Note that these include no free
parameters. Already the calculated propagation lengths differ for the studied samples
by an order of magnitude mainly due to different dielectric constants. The large
variation of dielectric constants can be explained by a reduction of the mean free
path for electrons by introduction of grain boundaries, voids and roughness [50]. For
single-crystalline gold, for wavelengths longer than 600 nm the measured values of
propagation length are in good agreement with the calculations. For the large-grain
poly-crystalline (poly-RT) sample data and calculation are in reasonable agreement
for longer wavelengths. For the small grain size sample the experimental data lie
well below the calculation for larger wavelengths. This indicates that additional loss
mechanisms are involved which decrease the SPP propagation length and can not be
described by Ohmic losses.

One possible additional loss mechanism is scattering at surface roughness of the
metal. However, given the small surface roughness of our samples as measured using
AFM this effect is negligible [51]. With the given geometrical parameters of our
samples the contribution of scattering at roughness can be estimated to be a factor
of 500 smaller than the Ohmic losses. Even more, as the roughness values for all our
samples are very similar the effect of scattering at roughness should be similar for all
samples. Therefore, we can not explain the deviations in SPPs propagation length by
surface roughness.
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Figure 4.3: Surface plasmon polariton propagation length as a function
of wavelengths for two different grain sizes. The symbols are the de-
cay lengths as obtained from measurements. The drawn curves are
calculated including grain boundary scattering for grain sizes of 20
and 80 nm, respectively and a grain boundary scattering coefficient
SG = 0.2%.

Next, we consider grain boundary scattering of SPPs. In few other studies the
effect of grain boundary scattering has been considered as a loss mechanism for both
bulk and surface plasmons [52, 53]. The proposed reason for the scattering lies mainly
in inhomogeneities of the free-electron gas due to grain boundaries. As far as we know,
no quantitative studies on the effect of grain boundary scattering of SPPs have been
published. In a simple model for grain boundary scattering the effective propagation
length equals LG = d/SG, with SG the grain boundary scattering coefficient and d the
average grain diameter (for d ≪ LG). Adding this loss term to the Ohmic losses, we
fitted our data for λ ≫ 600 nm for the two poly-crystalline samples, with d taken from
AFM measurements and SG as a free parameter, but identical for both samples. We
find a reasonable fit of the calculation with both data sets assuming SG = 0.2%. The
results of our calculations are plotted as lines in Fig. 4.3 together with the measured
curves for the polycrystalline films. So far, a model for Ohmic and scattering losses
is found that fits well the data for all three samples in the wavelength range above
600nm.
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4.4 Conclusions

In conclusion, we have performed cathodoluminescence imaging spectroscopy to mea-
sure the propagation length of surface plasmon polariton propagation on single-
crystalline and poly-crystalline gold surfaces. From the measurements we have deter-
mined the SPP decay lengths as a function of wavelength in the 600-750 nm range.
Largest propagation lengths (10-80 µm), in agreement with optical constants, are
found for single-crystalline Au. Much reduced propagation lengths are found for
polycrystalline films. We find that grain boundary scattering is an important plas-
mon loss mechanism in polycrystalline thin films. The data is consistently fitted using
a grain boundary scattering coefficient of 0.2%.
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5
Fabry-Perot resonators for surface plasmon

polaritons

Surface plasmon polariton Fabry-Perot resonators were made in single-crystalline gold
by focused ion beam milling of two parallel 100 nm deep grooves. The plasmonic cavity
modes were spatially and spectrally resolved using cathodoluminescence spectroscopy.
Mode numbers up to n = 10 were observed. The cavity quality factor Q depends
strongly on groove depth; the highest Q = 21 was found for groove depth of 100 nm
at λ = 690 nm. The data are consistent with finite-difference time domain calculations
that show that the wavelength of maximum reflectivity is strongly correlated to groove
depth.
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POLARITONS

5.1 Introduction

Surface plasmon polaritons (SPPs) are electromagnetic waves bound to the interface
between a metal and a dielectric [1]. The strong coupling between optical radiation
and the collective plasmon oscillations of the conduction electrons near the metal
surface leads to large field enhancements at the interface. At frequencies close to the
plasmon resonance, SPPs possess large wave vectors, enabling sub-100 nm optics at
optical frequencies. By varying the metal thickness, the SPP dispersion can be further
tailored. SPPs thus enable two-dimensional optics in which optical information can
be guided and processed at the nanoscale. While the propagation of SPPs has been
well studied [6, 27, 28, 54], a next challenge is to obtain control over the confinement
of SPPs.

So far, reflectors composed of arrays of nanoparticles [55] and Bragg cavities [56]
composed of arrays of very shallow grooves or ridges have been studied to achieve
SPP confinement. Weeber et al. showed that two parallel ridge gratings can act
as Bragg-mirrors and can confine plasmons between the mirrors. Because of the
narrowband reflection of these gratings the field enhancement was only observed for
a small wavelength range. Kuzmin et al. measured standing SPPs modes generated
between two slits in a gold film in a transmission configuration [57].

In this chapter, we use a single deep groove in the surface of single crystalline gold
as an effective mirror for surface plasmons. By placing two parallel grooves on the
surface we construct a Fabry-Perot resonator for SPPs. We use cathodoluminescence
imaging spectroscopy [27, 28] to excite the resonators and determine the spatially
resolved cavity field profile. From the observed field profile we determine the mode
numbers and cavity quality factor. Studies of the quality factor as a function of groove
depth show a maximum of Q = 21 at a groove depth of 100 nm. Finite-difference time
domain (FDTD) calculations of the groove reflectivity show an increase of reflectivity
for these depths, supporting the experimental observations.

5.2 Experimental

Experiments were performed on a single-crystal Au pellet of 1mm thickness (effec-
tively semi-infinite for optical fields) of which the surface was chemically polished
down to nanometer roughness. Two parallel linear grooves were milled into the sur-
face with a 30 keV Ga+ focused ion beam (see schematic in Fig. 5.1 (a)). The groove
separation w was 3000 nm, the depth d was 100 nm, and the groove width was 50 nm
full width at half maximum(FWHM). The groove shape and geometry were deter-
mined from scanning electron microscopy (SEM) images of a cross-section of a groove
pair (see Fig. 5.1(b)). To fabricate the cross-section a box was milled into the surface
next to the grooves. To achieve the proper contrast to image the gold profile, platinum
was first deposited over the grooves with focused-ion beam assisted deposition.

Spatially-resolved cathodoluminescence (CL) spectroscopy was performed in a
SEM using a 30 keV electron beam from a field-emission source focused onto the
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Figure 5.1: (a) Schematic of the double-groove Fabry-Perot cavity in
a gold surface. (b) Cross-section SEM image of the double groove
structure. The grooves were filled with platinum and then a box was
structured to allow side view. (c) SEM top-view of the double groove
structure. w indicates the center-to-center groove spacing.

sample to a ∼ 10nm diameter spot. The electron beam effectively acts as a point
source for SPPs with a broadband spectrum ranging from the SPP resonance at 550
nm well into the infrared [27, 28]. The scanning electron beam passes through a hole
in a parabolic mirror that is positioned above the sample. The mirror collects light
emitted from the sample, that is then focused on the entrance slit of a monochroma-
tor and spectrally resolved using a CCD array detector (bandwidth ≈ 10 nm). The
mirror acceptance solid angle is 1.42π. The measured CL spectra were corrected for
system response, which was determined by normalizing the measured raw data from
a planar Au sample (no grating) to the calculated transition radiation spectrum for
30 keV electron-irradiated Au [34]. The experimental count rate was 100-500 counts
per second per wavelength channel at an electron beam current of 28 nA.

We measured the CL spectra as a function of electron beam position along line
scans perpendicular to the groove pairs with a step size of 5 nm and integration time of
1 s. Figure 5.2 shows the CL intensity for line scans over the double grooves for three
different wavelengths (650 nm, 765 nm, and 840 nm). The peaks in the CL intensity
coincide with the position of the grooves. Between the grooves a periodic pattern of
the CL emission is observed for all wavelengths. The period of the oscillation equals
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Figure 5.2: Cathodoluminescence line scans (30 keV electron beam) over
a double groove structure (w=3000 nm, d=100 nm) for wavelengths
of 650 nm (black symbols), 765 nm (red symbols), and 840 nm (blue
symbols). The grooves are located at 0 and 3 µm. The curves are
shifted vertically by 0.05 (765 nm) and 0.1 (840 nm) for clarity.

approximately half the free-space wavelength for all three studied wavelengths.

The oscillations in the CL intensity are consistent with a standing SPP wave
between the two grooves of the structure. The double-groove structure thus acts as
a Fabry-Perot resonator with the grooves acting as SPP reflectors. The interference
condition for the SPP Fabry-Perot cavity is given by 2dkSPP + 2φ = 2πn with d
the cavity length, kSPP the SPP wave vector, φ a phase shift upon reflection and n
the mode number. Note that in CL spectroscopy the spatial resolution results from
the known profile of the exciting electron beam. The oscillations in the radiation
that are observed in the far-field are due to the fact that the electron preferentially
excites SPPs at positions of maximal electric field amplitude i.e. the antinodes in the
standing wave pattern.

Figure 5.2 also shows that the visibility of the interference fringes increases with
increasing wavelength. This is consistent with the larger SPP propagation length for
larger wavelengths. For the shortest wavelengths the amplitude of the oscillations
increases closer to the grooves again consistent with the shorter propagation length.
Indeed, the SPP propagation length at 650 nm is a factor five shorter than at 840 nm
[6].
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Figure 5.3: Cathodoluminescence as a function of position and wave-
length for line scans across three SPP Fabry-Perot resonators with
different center-to-center groove separation ((a) w =1000, (b) 2000,
and (c) 3000 nm). Multimode spectra with n = 2 − 10 are observed.
(d) Reconstruction of the data in (c) using a factor analysis method.

5.3 Mode numbers

To further study the Fabry-Perot interference condition, we structured groove pairs
with different groove separations into the gold surface, keeping the groove depth and
width constant. Figure 5.3 (a-c) shows the measured CL intensity as a function of
position and wavelength for three groove separations of 1000, 2000, and 3000 nm,
respectively. As can be seen, for wavelengths above 600 nm the measurements clearly
show the standing wave pattern in the CL intensity. In the region below 600 nm the
CL intensity decreases as a function of distance to the grooves showing only weak
oscillations in particular for the largest cavity. In this region the SPP propagation
length is shorter than the cavity length and no standing waves can form.

From the intensity maxima observed in Fig. 5.3 the resonant modes can be iden-
tified. For example, for the 1000 nm wide resonator two maxima are observed in the
standing wave pattern at 700 nm, corresponding to a n = 3 mode. Similarly, n = 6
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Figure 5.4: Quality factor for groove resonators for the resonance at 690
nm as a function of groove depth, extracted from cathodoluminescence
line scans. The inset shows the resonance spectra at 640 nm, 690 nm,
765 nm, 870 nm, and 980 nm derived from CL data for a resonator
with 100 nm deep grooves (w = 3000 nm, last panel in Fig. 3

and n = 9 modes are observed for the 2000 nm and 3000 nm wide resonators. Due
to the smaller free spectral range for the 3000 nm wide cavity a wide distribution of
modes is observed around 700 nm ranging from n = 7 − 11.

It is interesting to note that a n = 3 mode at 700 nm would correspond to a
resonator width of 1020 nm (taking into account the dispersion of SPPs at 700 nm)
which is 20 nm wider than the center-to-center spacing of the grooves. This implies
that the effective cavity length is larger than the center-to-center spacing. This is
consistent with the fact that the SPPs ’probe’ the depth of the grooves in their
reflection. In this model the effective cavity length offset should be identical (20 nm)
for all cavity lengths. Indeed, the n = 6 and n = 9 modes shift to slightly shorter
wavelengths for the 2000 nm and 3000 nm resonators. Note that this analysis assumes
no phase shift upon reflection from the grooves.

5.4 Analysis of the quality factor

Next, we determined the quality factor of the resonators. To do so, we have structured
a range of resonators into the single-crystal gold surface for which we varied the groove
depth and thereby the reflectivity. The depth was varied in the range of 20 nm to 200
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Figure 5.5: Reflection coefficient for SPPs at a single 50 nm wide groove
in gold as a function of groove depth and SPP wavelength, as deter-
mined from FDTD calculations.

nm keeping the width approximately constant to 50 nm FWHM. The CL intensity
was measured on a line perpendicular to the grooves with a step size of 10 nm. The
CL line scans show interference fringes as in Fig. 5.2 for all wavelengths but with
different degrees of visibility. The visibility increases with increasing depth for groove
depths up to 100-120 nm. For deeper grooves the visibility decreases.

To determine the quality factors we performed a factor analysis [58] on the spectral
CL line scan for a groove depth of 100 nm and width of 3000 nm (see Fig. 5.2(c)) to
determine the resonance spectra. Five significant resonances at wavelengths of 640
nm (n = 10), 690 nm (n = 9), 765 nm (n = 8), 870 nm (n = 7), and 980 nm (n = 6)
were found to represent the data well. We reconstructed the experimental data from
the resonances by fitting their line width and spatial position. The reconstructed
data is shown in Fig. 5.3(d) and shows very good agreement with the data. The inset
of Fig. 5.4 shows the five resonance spectra. The quality factor for each resonance
is given by the resonance wavelength divided by the line width. The smallest line
widths are observed for the central modes at 695 and 740 nm. Lower quality factors
are observed for the 640 as well as the 870 and 890 nm modes.

The quality factor of the resonator is determined by propagation losses and the
reflectivity of the mirrors. For the shortest wavelength (640 nm), propagation losses
dominate, as was also apparent from Fig. 5.2 and a larger line width is observed
(see inset Fig. 5.4). To determine the reflectivity of a single groove for SPPs we have
performed FDTD calculations. We used a two-dimensional simulation with the groove
profile modeled according to the SEM images of the cross cuts. The SPP mode was
generated at a distance of 2 µm away from the groove. Reflection and transmission of
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the groove were monitored using field monitors past the groove and behind the source.
Figure 5.5 shows the calculated groove reflectivity as a function of wavelength and
groove depth. For each wavelength a maximum of the reflection coefficient is observed
for a certain groove depth. The wavelength of the maximum increases with groove
depth. The maximum reflection coefficient for 100 nm deep grooves is observed in the
range of 650-700 nm. This is consistent with the smaller line width observed for the
modes in that wavelength range in the inset of Fig. 5.4 or, correspondingly, the fact
that the highest visibility resonances in Fig. 5.3 are observed around 700 nm.

We have performed the factor analysis for the line scans of the other depths (20-
200 nm). Figure 5.4 shows the quality factor for the resonance near 690 nm as a
function of groove depth. The quality factor increases for increasing groove depth
reaching a maximum of Q = 21 at 100 nm, and decreases for for larger groove depths.
This is again consistent with Fig. 5.5.

5.5 Conclusions

In conclusion, we have investigated Fabry-Perot resonators for surface plasmon polari-
tons consisting of two parallel grooves. Cathodoluminescence allowed direct imaging
of the field profile inside the cavities and determine mode numbers up to n = 10. The
cavity quality factor was found to depend strongly on groove depth and wavelength,
showing a maximum of Q = 21 at 700 nm for a groove depth of 100 nm. Further
work will focus on achieving understanding of the details of the groove reflection of
SPPs, taking into account localized modes inside the groove cavities [59].
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6
How grooves reflect and absorb surface plasmon

polaritons

The reflection of surface plasmon polaritons by deep linear grooves structured into
gold surfaces is investigated with numerical finite-difference-in-time-domain as well as
boundary-element-method calculations. Groove widths of 25 and 100 nm are studied,
with depths as large as 500 nm. The reflection depends strongly on wavelength, groove
depth and width. By systematically varying these parameters and studying the field
profiles in the grooves as well as dispersion, we relate the resonances of the reflectivity
to resonant coupling of propagating planar plasmon modes to cavity modes inside the
grooves. By careful design of the groove width and depth the reflectivity can be tuned
to values up to at least 30% for either a narrow or wide band of wavelengths.
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6.1 Introduction

Recent advances in nanoscale structuring have opened up new possibilities in the
field of nanophotonics. Surface plasmon polaritons (SPPs) [1] can be employed as a
way to improve the performance and reduce the size of photonic circuits. The two-
dimensional character of SPPs makes it possible to confine electromagnetic radiation
below the diffraction limit, offering unprecedented possibilities for subwavelength pho-
tonics [12].

Reflectors for SPPs are important elements in plasmonic integrated circuits, as
they allow guiding and steering of SPPs and constitute basic building blocks for
plasmonic resonators. Grating-like Bragg reflectors consisting of arrays of parallel
shallow grooves or ridges are widely used as reflecting components and much research
has been devoted to their optimization [60]. Reflectivities almost up to 100 % have
been reported experimentally for reflectors spanning tens of grating periods [61]. Sin-
gle grooves structured into the the surface can also act as a reflector for SPPs and
have much smaller size.

While the theoretical work on the reflectivity of Bragg reflectors is extensive
[62, 63, 64], the reflectivity of single grooves has not been investigated in much detail.
Moreover, a restricted range of groove geometries have been studied. Existing stud-
ies are mainly restricted to shallow grooves due to the used perturbation approach.
Recently, Nikitin et al. [65] reported on the reflectivity and scattering coefficients of
shallow grooves for normal in-plane incidence. Further work on grooves in metal sur-
faces focused mainly on the absorption properties of light by grooved surfaces rather
than SPP reflection [66, 67, 68].

In this chapter we investigate the possibility of using single grooves as efficient
reflectors for surface plasmons. We show that suitably designed deep single grooves
can perform as efficient and broadband reflectors for SPPs. We have used finite-
difference-in-time-domain as well as boundary-element-method calculations to deter-
mine the reflectivity for grooves with varying geometrical parameters. We show that
the observed high reflectivity is a result of efficient coupling of propagating planar
modes to resonant groove modes.

6.2 Reflectivity of single grooves

We used two-dimensional finite-difference-time-domain (FDTD) calculations to obtain
the reflection coefficient of surface plasmons incident onto a groove structured in an
otherwise planar gold surface. The system was modeled as an infinite box with the
optical constants of gold taken from Palik [69]. A groove was structured with a profile
similar to the ones used in experimental studies . In particular, the groove profile is
composed of two quarter-circles with radius r = 50 nm and a half-ellipse with minor
radius a equal to half the groove width and the major radius equal to b = d−r, with d
the groove depth (see inset Fig. 6.1(a)). A surface plasmon was launched at a distance
of 1 µm from the groove edge under normal incidence. The transmission through the
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Figure 6.1: Reflectivity for surface plasmons incident perpendicularly
onto a groove structured into a gold surface as a function of groove
depth and wavelength calculated using FDTD. Groove width: (a) 25
nm; (b) 100 nm. The inset shows a schematic of the groove shape.

groove was monitored with a frequency domain monitor positioned at the far side of
the groove while the reflection was recorded with a monitor behind the source. The
grid size for the calculations was 3 nm and was refined around the surface layer and
the groove to 0.9 nm. The simulation region was bound by perfectly matched layers
(PMLs) to absorb SPPs leaving the region of interest. The reflectivity of the PML
was found to be smaller than 0.1% and did therefore not significantly influence our
results.

In Figure 6.1 we show the reflectivity of the groove as a function of groove depth
and wavelength for groove widths (a) d = 25 nm and (b) d = 100 nm, respectively.
For both widths we observe maxima of the reflectivity that depend on wavelength and
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Figure 6.2: Magnetic field intensity calculated with the boundary ele-
ment method for a 500 nm deep groove at a wavelength of 640 nm.
The SPP was launched by an incoming electron impacting 2900 nm
to the left of the groove. The blue arrows denote the Poynting vector.

groove depth. The highest reflectivity (29%) is observed for the 100 nm wide grooves
and appears for groove depths of 100-120 nm at wavelengths between 600 and 750
nm. For the 25 nm wide groove a nearly as high reflectivity maximum (25%) is found
in the same wavelength range, for slightly smaller groove depth. The reflectivity
maxima in Fig. 6.1 roughly show a linear trend with increasing groove depth. The
narrower groves (a) are much more dispersive than the wider ones (b) as more maxima
are observed for the same wavelength. Moreover, maxima for deeper grooves show a
narrower width of the reflectivity resonances.

6.3 Reflectivity and field enhancement

To gain insight into the origin of the reflectivity maxima, we have computed the
local field inside a 25 nm wide, 500 nm deep groove at the wavelength of maximum
reflectivity (640 nm). We used the boundary element method (BEM) to calculate the
local magnetic field [39]. The magnetic near-field intensity calculated for a plasmon
incident from the left onto the groove is shown in Fig. 6.2. Inside the groove a
standing wave pattern can be observed and the maximum field intensity is a factor
of three higher than for the incoming plasmon. The arrows in Fig. 6.2 represent the
Poynting vector, which shows the energy flux in the system. Away from the groove
the energy flows from left to right, the direction of SPP propagation. Near the groove,
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Figure 6.3: FDTD calculations (black) of the reflectivity for surface
plasmons incident perpendicularly onto a groove structured into a gold
surface as a function of groove depth. Electric field intensity integrated
over the area A of the groove as calculated from BEM (red). (a) Cal-
culations as a function of groove depth at a free-space wavelength of
640 nm for a 25 nm wide groove; (b) Calculations as a function of
wavelength for a 500 nm deep, 25 nm wide groove.

the Poynting vector is directed towards the groove and energy is transmitted into the
groove. This is a clear sign of coupling of planar surface plasmons to a localized mode
confined in the groove.

To further investigate the relation between enhanced reflectivity and coupling of
SPPs to groove modes, we have compared the field inside the groove to the reflectivity.
Figure 6.3(a) shows the reflectivity as a function of groove depth at a free-space
wavelength of 640 nm (a horizontal cross-cut in Fig. 6.1). Also plotted is the electric
field intensity integrated over the area of the groove and then normalized to the
groove area. As can be seen, maximum reflectivity and maximum field intensity are
observed at the same groove depth. In Fig. 6.3(b) we show reflectivity and average
field intensity for a fixed groove depth of 500 nm as a function of wavelength for a 25
nm wide groove. Here too, the the calculated wavelengths of the maximum in both
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curves agree very well. From the data in Fig. 6.3 we can conclude that the increased
reflectivity is related to efficient coupling of the incident planar SPPs to resonant
groove modes.

On resonance, surface plasmons are coupled into the groove to excite the localized
groove mode. The re-radiation of the energy stored in the groove cavity into forward
and backward emission is observed as transmission and reflection, respectively. In
this model, the coupling of the incident plasmon wave with the resonant groove mode
is similar to Rayleigh scattering of a plane wave with a point dipole, that leads to
forward and backward radiation. In the limit of complete coupling of the incident
SPP into a small groove, and no groove cavity losses, a maximum reflection of 50%
would be observed.

The phase difference between the SPPs transmitted trough the groove and the
directly transmitted SPPs is determined by the groove geometry. If the groove ge-
ometry could be designed such that those two parts are equal in magnitude but are
out of phase, the transmission will vanish and full reflection will be observed. This
condition is similar to critical coupling observed for optical microcavities [70].

6.4 Coupling to groove modes

The coupling between the propagating plasmon and the localized groove mode be-
comes more clear when we investigate the depth-profile of the observed groove mode
field. In Fig. 6.4 we plot the electric field intensity profile along a line in the center of
the groove (a vertical cross-cut through Fig. 6.2) for different wavelengths and as a
function of position. The groove depth was 500 nm, the groove width 25 nm, and the
field was normalized to its maximum value for each wavelength. The wavelengths of
maximum groove reflectivity (see Fig. 6.3) are marked as dashed lines in the graph.
For each wavelength a standing wave pattern is observed with the position of high field
intensity moving upwards for increasing wavelength. For the marked wavelengths of
maximum reflectivity, a maximum of the electric field intensity reaches the upper end
of the grooves. The increased field at the groove opening enables efficient coupling of
incident SPPs to the standing groove mode. The higher intensity at the bottom of
the grooves for all wavelengths is due to the stronger confinement of the plasmons as
the grooves becomes narrower (see Fig. 6.1).

Propagating plasmon modes inside narrow grooves are known as channel plasmon
polaritons (CPPs) [12, 71]. The standing groove modes observed here are the special
case of CPPs for kz = 0, where kz is the wavevector along the propagation direction
along the length of the groove (i.e. normal to the plane of the cross section in Fig.
6.2). Using BEM calculations we determined the local density of states (LDOS) as a
function of wave vector and frequency inside the groove. A groove mode appears as a
maximum in the LDOS. We have determined the wavelength of maximum LDOS for
each wavevector to obtain the groove mode dispersion relation. In Fig. 6.5(a) we show
the dispersion relation for 300 nm and 500 nm deep grooves with a width of 25 nm.
Also plotted is the planar SPP dispersion and the light line in air. We observe flat
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Figure 6.4: Calculated electric field along a line in the center of a groove
as a function of wavelength and position for a 500 nm deep, 25 nm
wide groove in gold. For each wavelength the field was normalized to
its maximum. The dashed lines indicate the wavelengths of maximum
reflectivity from Fig. 6.3(b).

dispersion bands starting at k = 0 and crossing the light line. While the low energy
branches of the dispersion relation for the two depths overlap, higher-order-mode
branches are well separated.

In the Fig. 6.5(b) we plot the reflectivity for the same groove depths as a function
of wavelength. The crossings of the dispersion relation branches with the origin kz = 0
agree very well with the observed maxima in reflectivity, indicating that for normal
incidence the incoming plasmon is indeed coupled to a standing kz = 0 wave inside
the groove. Note that for non-normal incidence the plasmon can couple to a channel
plasmon propagating along the groove. This case is not studied here.

The electric field intensity profile associated to each wavelength of maximum re-
flection is shown in Fig. 6.5(c) and (d). We observe the standing wave pattern for
each mode with increasing mode number for decreasing wavelength.

6.5 Grooves as MIM cavities

The spectral width of the reflectivity maxima in Fig. 6.1 depends on the groove
width. Broad- or narrow-band reflection can thus be obtained by tuning the groove
width. To investigate the relation between groove width and resonance line width, we
have modeled the grooves as cavities of metal-insulator-metal (MIM) plasmons. The
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Figure 6.5: (a) Dispersion relation for plasmons propagating in 300 nm
(red line) and 500 nm (blue line) deep grooves with a width of 25
nm calculated using BEM. Light line in air (green) and single Au/air
interface SPP dispersion (black). (b) FDTD calculations of the re-
flectivity as a function of wavelength for SPPs incident perpendicular
onto a 300 nm (red line) and 500 nm (blue line) groove. (c) Electric
field intensity inside a 300 nm deep groove at wavelengths of maxi-
mum reflectivity (590 and 800 nm) . (d) Electric field intensity inside
a 500 nm deep groove a wavelengths of maximum reflectivity (640 and
820 nm).

width of the observed resonances is determined by the cavity quality factor Q which
describes the cavity losses. The cavity losses can be separated into losses which occur
due to non-unity reflectivity at the cavity ends and due to the propagation loss of a
plasmon inside the cavity due to Ohmic losses.

To determine the propagation losses we have used the analytical solution for the
MIM dispersion relation [72]. The propagation loss was calculated from the imaginary
part ki of the wave vector. As expected, for the same frequency we observe a larger
real part of the wave vector and higher losses for the 25 nm wide waveguide than
for the 100 nm wide waveguide. To determine the reflectivity of the open and closed
end of the groove we have performed FDTD calculations. For each groove width an
MIM plasmon mode was injected into a MIM waveguide, with the spacing between the
metal interfaces equal to the groove width. The MIM waveguide was terminated either
with an open or closed end with equal shape as the groove ends, and the reflection
from the end was monitored. While at the closed end a higher value of reflectivity is
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Figure 6.6: Cavity quality factor Q for 25 nm (black) and 100 nm (red)
wide grooves with depths of 120 nm and 500 nm. Q was calculated
from FDTD calculations of the groove end reflection coefficients and
propagation losses for MIM plasmons.

found for the 100 nm waveguide (∼ 91%) compared to the 25 nm waveguide(∼ 72%),
at the open end the reflectivity is higher for the 25 nm waveguide (∼ 51%) compared
to (∼ 21%) for 100 nm.

The quality factor of the cavity Q is defined by the ratio between the energy stored
in the cavity and the energy loss per optical cycle. Equivalently, the quality factor is
determined by the round trip time and the fractional energy loss per cavity round trip.
The energy loss ∆I per cavity round trip for a groove with depth d can be estimated
as ∆I = I0(1 − RoRcexp(−4kid)), where Ro and Rc are the reflectivity at the open
and closed ends, respectively. With the calculated propagation and reflection losses
we have determined the theoretical Q for cavities with depths of 100 nm and 500 nm
and widths of 25 nm and 100 nm; the results are shown in Fig. 6.6 as a function
wavelength. The highest cavity quality factor Q = 25 is observed for 25 nm wide
and 500 nm deep grooves. The fact that for the same width a higher Q is observed
for deeper grooves indicates that the cavity losses are dominated by the reflectivity
losses. The values of the cavity Q for 25 nm wide and 500 nm deep grooves agree
reasonably well with the line width observed in Fig. 6.3(b). The higher calculated
Q for the narrower cavity is in good agreement with the observed smaller resonance
width in the reflectivity plots of Fig. 6.1 and is thus related to the higher cavity mode
reflectivity for narrower cavities.
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6.6 Conclusions

In conclusion, we have shown that single linear grooves in a planar gold surface
can exhibit high reflectivity for incoming surface plasmon polaritons. The observed
reflectivity shows resonances depending strongly on wavelength, groove depth and
width and a maximum reflectivity of 29% is observed. The observed resonances in
reflectivity can be attributed to coupling with localized SPP modes inside the groove
cavity. The highest cavity quality factor Q for the studied geometries is Q = 25.
By engineering the coupling phase between incoming SPP and the groove resonance
higher reflectivity may be obtained. These results are important to design suitable
grooves acting as efficient reflectors for surface plasmons.
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7
Surface plasmon in a box

Surface plasmon polaritons (SPPs) on gold were confined to rectangular plateaus
bounded by grooves. We used cathodoluminescence spectroscopy to image the SPP
modes of the plateaus. Measurements were reproduced using a two-dimensional image
source model for the local density of states.
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7.1 Introduction

The first images of the electronic local density of states inside a quantum corral raised
great interest in scanning tunneling microscopy [73]. This was followed shortly after
by the predictions [74] and measurements [75] of a similar effect for light in optical
corrals. Surface plasmons polaritons (SPPs) are light waves bound to the interface
between a metal and a dielectric [1]. They are collective oscillations of the conduction
electrons in the metal that oscillate in unison with the electromagnetic field.

One-dimensional confinement of SPPs in Fabry-Perot type resonators has been
demonstrated using two parallel Bragg-gratings [56] or grooves (chapter 5) as reflec-
tors. Surface plasmons are confined in these structures only if their path is perpen-
dicular to the mirror plane, they can escape on paths with components parallel to
the reflectors. Drezet et al. used arrays of nanoparticles to confine SPPs to elliptical
corrals, thereby, completely restricting the SPP propagation in the plane [55]. Due
to the size of the ellipses and the used observation techniques SPPs but no confined
plasmon modes were observed in their experiments.

In this chapter, we use grooves structured into the surface of a single-crystalline
gold substrate to confine SPPs in two dimension, using box-shaped plateaus. We
use cathodoluminescence imaging spectroscopy [27, 28] to excite SPPs in the boxes
and spatially resolve the mode profiles. The observed SPP modes are similar to
those of a two-dimensional particle-in-a-box and are formed by SPPs reflected at the
boundaries. We find good agreement with calculations of the two-dimensional local
density of states for SPPs inside the boxes.

7.2 Experimental

We used a single-crystal Au pellet of 1mm thickness (effectively semi-infinite for
optical fields) as substrate. The surface of the gold pellet was chemically polished
down to nanometer roughness. Into the surface we structured rectangular and square
boxes bounded by grooves using a 30 keV Ga+ focused ion beam. The grooves were
120 nm deep and 100 nm wide as was determined from cross-sections made using
focused ion beam milling and imaged by scanning electron microscopy (SEM). This
groove geometry leads to optimum SPP reflectivity due to the resonant excitation of
localized groove modes as described in chapter 6. The side length of the boxes was
varied in the range from 0.5-2.0 µm. In Fig. 7.1(a) a schematic of the samples is
depicted and in (b) a SEM image of a 1 × 1 µm box is shown.

We used spatially-resolved cathodoluminescence spectroscopy to image the modes
of the boxes. We have measured the emission generated by the 30 keV electron beam
from a field-emission source focused in a SEM onto the sample. The scanning electron
beam passes through a hole in a parabolic mirror that is positioned above the sample
and is focused onto the sample to a ∼ 5 nm diameter spot. The electron beam is a
point source for SPPs in a broad spectral range. The mirror collects light emitted
from the sample with an acceptance solid angle of 1.42 π. The light is then focused
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500nm

Figure 7.1: (a) Schematic of of the structure under investigation. The
electron beam is shown as a blue arrow that excites surface plasmons
(b) Top-view SEM image of a 1 × 1 µm box bounded by 120 nm deep
grooves structured into the surface of a single-crystal gold pellet.

onto the entrance slit of a monochromator and spectrally resolved using a CCD array
detector (bandwidth ≈ 10 nm). The uncorrected experimental count rate was 100-
2000 counts per second per wavelength channel at an electron beam current of 30nA.
We corrected the measured spectra for system response using a calibration spectrum
determined by dividing the transition radiation spectrum collected from a planar
Au sample (no grooves) by the calculated transition radiation spectrum for 30 keV
electron-irradiated Au [34].

CL spectra were measured as a function of electron beam position in a square
grid with a step size of 30 nm and 1 s integration time. Figure 7.2(a) shows the CL
spectrum integrated over the entire box area for a scan of a box with dimensions
of 1 × 1µm. The spectrum shows broad emission spanning the wavelength range
from the SPP resonance around 540 nm to the near-infrared. Two main peaks are
observed, a broad peak at approximately 590 nm with a small shoulder at slightly
lower wavelength and a clear peak at 670 nm. Additionally, the faint shoulders are
observed around 800 nm, 850 nm and 900 nm.

In Fig. 7.2(b) we show the spatially resolved CL signal for the wavelengths of 550
nm, 670 nm, and 850 nm. At each position the spectra were binned 5 nm around
the central wavelength. The grooves bounding the box are clearly visible for all
wavelengths as lines of reduced CL emission. Inside the box on the plateau we see
a pattern of minima and maxima of the CL emission. For 550 nm three maxima
in x- and y-direction can be observed. The number of maxima decreases to two in
each direction for 660 nm and to one in the center for 850 nm. The observed higher
intensity in the lower part of the images is probably due to the asymmetry in the
detection system.

The observed patterns show that SPP modes, which are confined by the grooves,
are excited on the plateau. The reflection of SPPs on the grooves leads to a standing
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Figure 7.2: (a) Spectrum of cathodoluminescence detected from the
plateau of a 1 × 1 µm box, bounded by 120 nm deep and 100 nm wide
grooves, integrated over the box. The data was corrected for the sys-
tem response. (b) Cathodoluminescence images (30 keV electrons) of
a 1 × 1 µm box (groove width 100 nm, groove depth 120 nm) for four
wavelengths of 550, 670, and 850 nm.

wave pattern if the condition for constructive interference is fulfilled: 2Lx,ykSPP +
2φ = 2πnx,y with Lx,y the cavity length in x,y direction, kSPP the SPP wave vector,
φ a phase shift upon reflection and nx,y the mode numbers in each direction. We as-
signed mode numbers to the wavelengths for which a pattern was observed. Assuming
φ = 0, we find nx,y = (4, 4) for 550 nm, nx,y = (3, 3) for 670 nm, and nx,y = (2, 2) for
850 nm. Note, that the spatial resolution in CL spectroscopy results from the known
profile of the exciting electron beam. The intensity variations in the radiation that
are observed in the far-field are due to the fact that the electron preferentially excites
SPPs at positions of maximal electric field amplitude i.e. the antinodes of the mode
pattern.

Due to symmetry the mode numbers for square boxes are equal for the axis. For
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Figure 7.3: Cathodoluminescence images (30 keV electrons) of a rectan-
gular plateau with dimensions of 1.0 × 1.5 µm. The CL images are
taken for wavelengths of 700, 750, and 850 nm.

an asymmetric box the number of maxima along each axis and therefore the mode
numbers will differ between the short and long axis. To show this we have performed
CL measurements on a rectangular box with dimensions of 1.0 × 1.5 µm. In Fig.
7.3 we show the CL emission maps at wavelengths of 700 nm, 750 nm, and 850 nm.
For a wavelength of 700 nm we observe two antinodes along the horizontal axis and
three along the vertical axis equivalent to mode numbers of nx,y = (3, 4). For the
750 nm emission the mode number in horizontal direction decreases and only a single
maximum is observed: nx,y = (2, 4). For the 850 nm CL emission only two maxima
are observed along the vertical axes: nx,y = (2, 3).

7.3 LDOS model

To model our results we use a two-dimensional model of the local density of states
(LDOS). The generation of SPPs by the electron beam is modeled with a point source.
The reflections at the grooves are represented by image sources with relative strengths
corresponding to the reflectivity of the groove. In the image source model the reflec-
tivity is angle-independent, while in the experiment the reflectivity is angle-dependent
due to coupling to metal-insulator-metal modes propagating along the V-grooves (see
chapter 6). Figure 7.4 shows the wavelength dependent reflectivity for a 120 nm deep
and 100 nm wide groove determined using finite-difference-in-time-domain calcula-
tions for a plasmon at normal incidence (see chapter 6). The reflectivity for this
groove depth is maximum for a wavelength at 670 nm. This is in agreement with the
observation that the visibility of resonances in Fig. 7.2(a) is most pronounced around
700 nm.

To determine the LDOS we evaluate the Green’s function G(r, k) of the original
source at the position r = (x, y) and four image sources located at r1 = (Lx − x, y),
r2 = (−Lx−x, y), r3 = (x, Ly −y), and r4 = (x,−Ly−y). The Green’s function for a
SPP point source in two dimensions is given by G(r, k) = −1/(2π)K0(ikSPP |r − r′|),
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Figure 7.4: Reflectivity as a function of wavelength for surface plasmons
incident perpendicularly onto a groove structured into a gold surface
from FDTD calculations. The groove depth was 120 nm and the groove
width was 100 nm.

with K0 the modified Bessel function of second kind. We determine the Green’s
function of the entire system by summing up the terms for the image sources and
the original source. Taking the imaginary part of the Green’s function then gives the
LDOS for the system.

In Fig. 7.5 we show the calculated LDOS inside a 1 × 1 µm box for the three
wavelengths at which the CL images in Fig. 7.2(b) were taken. For 550, 670, and 850
nm we observe good overall agreement of the LDOS model and the measured pattern.
The number of anti-nodes in each direction is well reproduced. The fact that a lower
visibility of the mode pattern is observed in experiment may be due to the limitation
that a angle-independent groove reflectivity was not taken into account.

We have also calculated the LDOS for a rectangular box with dimensions of 1 ×
1.5 µm. The results are shown in Fig. 7.6 for wavelengths of 700, 750, and 850 nm.
For all wavelengths the calculations reproduce the overall pattern observed in the
measurements shown in Fig. 7.3.

7.4 Conclusions

In conclusion, we have determined the modal distribution of surface plasmon polari-
tons confined by grooves to square and rectangular plateaus in single-crystalline gold
using cathodoluminescence imaging spectroscopy. The confined SPPs form standing

64



7.4. CONCLUSIONS

0.0 0.50.5 0.0 0.5

0.5

0.0

0.5
0.0 0.5

550nm 670nm 850nm
P

o
s
it
io

n
 (

µ
m

) 

Position (µm) 

Figure 7.5: Local density of states for surface plasmon polaritons on a
1.0×1.0 µm sized, square plateau in gold as a function of position. The
LDOS was calculated using a two-dimensional image source model for
the wavelengths of 550, 670, and 850 nm.
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Figure 7.6: Local density of states for surface plasmon polaritons for a
1×1.5 µm sized, rectangular plateau in gold as a function of position.
The LDOS was calculated using a two-dimensionl image source model
for the wavelengths of 700, 750, and 850 nm.

wave patterns that are well reproduced by a two-dimensional image source model
that relates the CL intensity to the local density of states. The data demonstrate
that two-dimensional confinement of surface plasmon polaritons can be achieved in
these cavities with a high degree of control over the localization of the field intensity
by tuning the wavelength.
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8
Cathodoluminescence imaging spectroscopy of

plasmonic metal-insulator-metal modes

Cathodoluminecence imaging spectroscopy is used to excite and characterize the res-
onant modes of Fabry-Perot resonators for surface plasmon polaritons confined in a
metal-insulator-metal geometry. From the observed mode pattern we derive the MIM
plasmon wavelength which is found to be 227 nm in cavities with a 30 nm SiO2 layer
for a free-space wavelength of 600 nm. The measured wavelength agrees well with
values from analytical dispersion relation calculations. We also present measurements
of MIM plasmon modes confined to disc resonators with mode volumes as small as
V = 0.04λ3

0. Calculations of the excitation probability show that resonant excitation
of MIM plasmons depends strongly on the electron energy due to phase retardation
effects resulting from the finite electron velocity.
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8.1 Introduction

Surface plasmon polaritions (SPPs) are electromagnetic waves that propagate at the
surface of a metal. Their evanescent field tail typically extends several 100 nm into the
dielectric. Near the surface plasmon resonance, SPPs are highly dispersive enabling
short plasmon wavelengths at optical frequencies.

The dispersion of plasmons can be further enhanced in metal-insulator-metal
(MIM) geometries, in which the plasmon field is confined in a 10-100 nm dielectric gap
between two metal layers. Due to the coupling of plasmons at both metal-dielectric
interfaces, plasmon modes with symmetric and antisymmetric magnetic field distri-
bution exist, of which the latter show the largest dispersion and highest loss [72].

Due to their unique properties, MIM plasmons are currently a research topic
of great interest. The propagation of MIM modes in waveguides was measured in
the far-field [76] and the dispersion was determined using near-field microscopy [77].
Two-dimensional negative refraction of plasmons has been demonstrated in the visible
[18], and was also confirmed theoretically [19]. In these studies, MIM plasmons were
excited by an external light source using incoupling through slits in one of the metal
cladding layers.

In this chapter, we present cathodoluminescence spectroscopy measurements of
MIM plasmon modes. We use the electron beam of an SEM that travels through
the layer stack to directly excite MIM plasmons confined in resonator structures.
Measurements of the mode structure in Fabry-Perot and disc resonators allow us to
determine the MIM plasmon wavevector. The found wave vectors agree well with
analytical calculations of the dispersion relation.

8.2 Experimental

The MIM samples were prepared using physical vapor deposition from a thermal
evaporation source onto a cleaned silicon substrate. The layer stack consisted of
subsequent layers of 10 nm chromium, 100 nm silver, 30 or 50 nm silica, 100 nm
silver and 10 nm chromium. A control sample was evaporated at the same time and
shielded by a shutter during the silica evaporation leaving it without the SiO2 layer.

The 30 keV Ga+ beam of a focused ion beam system was used to structure out-
coupling and resonator structures into the MIM stack. The focused ion beam (beam
current 48 nA) etched through the entire layer stack and approximately 200 nm into
the underlying silicon substrate. Figure 8.1(a) shows a SEM image of a Fabry-Perot
resonator structured into a layer stack with a 50 nm SiO2 layer imaged under an angle
of 52◦ off the surface normal. The one-dimensional cavity is formed by two parallel
grooves of 1000 nm width that are spaced by a distance of 2000 nm. The groove
length is 5000 nm. The silicon substrate, the metal layers and the silica can be easily
identified. The contrast between silver and chromium is too small to see in the image.
Figure 8.1(b) shows the SEM image of a circular resonator bounded by a 1000 nm
wide groove, with a cavity plateau diameter of 2000 nm.
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1µm

(a) (b)

Figure 8.1: (a) Scanning electron microscopy (SEM) image of a one-
dimensional Fabry-Perot resonator in a MIM structure. The grooves
were structured using focused-ion-beam milling and were 1000 nm wide
and 5000 nm long. The spacing between the grooves is 2000 nm. (b)
SEM image of a MIM disc resonator bounded by a 1000 nm wide
groove. The disc diameter was 2000 nm.

We used spatially-resolved cathodoluminescence imaging spectroscopy to excite
plasmon modes in the MIM structures and measure the emission in the farfield. The
samples were excited by the 30 keV electron beam of an SEM which was focused to
a 10 nm spot onto the sample surface. Due to electron scattering in the upper metal
layers the beam diameter is increased as it penetrates into the layer stack. Figure 8.2
shows the result of a Monte-Carlo simulation of the electron beam profile assuming
a 10 nm diameter incident beam, determined at the center of the SiO2 layer. As can
be seen, the beam diameter is approximately 50 nm. A parabolic mirror (acceptance
angle 1.4 π sr) placed above the sample collects the light emitted from the sample
and guides it to a spectrometer. In the spectrometer the light is spectrally resolved
and detected using a liquid-nitrogen cooled CCD array. The detected spectra were
corrected for system response as described in chapter 2 by measuring the transition
radiation spectrum for a known gold sample and normalizing it to the calculated
transition radiation spectrum.

8.3 Fabry-Perot resonators

Figure 8.3 shows the CL emission as a function of wavelength and electron beam
position for a line scan across three Fabry-Perot resonator structures: (a) the control
sample without silica layer, (b) the MIM stack with 50 nm SiO2 layer, and (c) the
stack with 30 nm SiO2 layer. In all three scans the grooves are clearly resolved at top
and bottom of the image as areas of low emission. The emission is typically a factor
of two higher if the beam is pointed onto the area between the grooves.

For the control sample in Fig. 8.3(a) a very weak periodic pattern of emission is
observed between the grooves which is symmetric around the center of the plateau.
The amplitude of the oscillation decreases away from the grooves towards the center
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Figure 8.2: Electron probability as a function of position for 30 keV elec-
trons in the center of the silica layer of the MIM structure. The elec-
tron distribution was calculated using a Monte-Carlo simulation. The
inset shows a contour plot of the lateral electron straggle (5%, 10%,
25%, 50% 75%, and 90% intensity contours).

and close to the center only a diffuse pattern is observed. The period of the oscil-
lations increases linearly with increasing wavelength and is approximately half the
measurement wavelength.

The measurement of the MIM sample with 50 nm silica layer (Fig. 8.3(b)) shows
an intenser oscillatory pattern. Seven bands of higher emission are observed for
wavelengths of 610 nm, 640 nm, 680 nm, 730 nm, 780 nm, 850 nm and 920 nm.
The emission from the center of the resonator at these wavelengths shows oscillations
with a period that is much shorter than the detection wavelength. The amplitude
and visibility of the oscillations in each wavelength band strongly decrease for shorter
detection wavelength. Near the edges, a larger-period oscillation is observed as was
vaguely visible in Fig. 8.3(a).

The MIM sample with 30 nm silica layer (Fig. 8.3(c)) shows eight bands of high
emission at 600 nm, 630 nm, 660 nm, 695 nm, 740 nm, 790 nm, 850 nm, and 920 nm.
The period of the oscillations for these wavelength bands is slightly shorter than for
the 50 nm structure.

The observed CL emission of the measured samples stems from three sources that
have to be taken into account: transition radiation, radiation from SPPs propagating
at the Ag/Cr interface, and radiation from MIM plasmons.
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Figure 8.3: Cathodoluminescence intensity as a function of position and
wavelength for line scans across three Ag/SiO2/Ag MIM Fabry-Perot
resonators with 2000 nm groove separation. The grooves were 1000
nm wide. (a) control sample without silica layer, (b) MIM structure
with 50 nm silica layer, and (c) MIM structure with 30 nm silica layer.

The transition radiation contribution was determined by measuring the CL emis-
sion at a sample position where no structures are present that could scatter plasmons.
The transition radiation spectrum is very similar for all three samples showing that
it is mainly influenced by the uppermost layer.

As we have shown in chapter 3, SPPs that are excited on the surface by the electron
beam and are scattered out by a groove, will interfere with the coherently generated
transition radiation. This leads to oscillations in the CL emission that dampen out
for increasing distance from the groove.

To damp out single-interface SPPs propagating at the surface the chromium layers
were deposited. Figure 8.4 shows the propagation length as a function of wavelength
for the two MIM modes in comparison to the SPP mode propagating on the top
interface calculated using a vectorial finite-difference mode solver included in a com-
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Figure 8.4: Calculated propagation length as a function of wavelength
for MIM and surface SPP modes for samples with 50 nm or 30 nm
silica layer and a control sample. Symbols are calculated using a vec-
torial finite-difference mode solver, drawn lines are calculated from a
analytical solution of the dispersion relation.

mercial computation package [78]. We have also plotted the propagation length for
the MIM modes calculated using the analytical solution for the dispersion relation
[72]. The propagation length for the top SPP modes varies only slightly depending
on the underlying layer stack. For the longest wavelengths it is by a factor of 3 lower
than the propagation length for the MIM modes.

First, we analyze the measurements of the control sample. The oscillations close to
the grooves are attributed to interference of scattered SPPs with transition radiation.
The fact that only one oscillation is observed (rather than the extensive pattern in
Chapter 3) is due to the fact that the propagation length of the surface SPPs is less
than 1 µm. Due to the strong damping no standing SPP waves can form on the
plateau as observed in chapter 5.

The MIM sample with the 50 nm SiO2 layer also shows these oscillations near
the edges, but in addition clear oscillations with a period much shorter than half the
free-space wavelength. We attribute these to Fabry-Perot modes of MIM plasmons
that are reflected between the grooves.

To analyze the data, we have determined the period of the observed oscillations
by fitting the CL intensity as a function of position x for each band with a function
∝ sin2(kMIMx) with kMIM = 2π/λMIM the MIM plasmon wavevector. We find plas-
mon wavelengths of 330, 350, 370, and 430 nm for the wavelength bands at 730, 780,
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Figure 8.5: Dispersion relation for symmetric Ag/SiO2/Ag MIM plas-
mons with 30 nm (green line) and 50 nm silica layer (blue line).
The dots are derived from the cathodoluminescence line scans. The
drawn lines are analytical calculations based on measured dielectric
constants. The light line in silica is drawn in black.

850, and 920 nm, respectively. For the bands at shorter wavelengths the oscillations
are damped out too strongly to fit the period. However, we can still derive the MIM
plasmon wavelength for these bands from their mode number.

Each band of high emission in the CL scans corresponds to a cavity mode with
a successive mode number n given by 2dkMIM + φ = 2nπ where d is the resonator
width and φ is the phase change upon reflection (we assume φ = 0). For the above
identified bands we find mode numbers of n = 9 (920 nm), n = 10 (850 nm), n = 11
(780 nm), and n = 12 (730 nm). Therefore, the subsequent lower-wavelength bands
should have the mode numbers n = 13 (680 nm), n = 14 (640 nm), and n = 15 (610
nm). Given the resonator width we can then derive the corresponding MIM plasmons
wavelength of 305, 285, and 266 nm.

The MIM sample with 30 nm silica layer shows eight bands of high emission
corresponding to eight modes of the Fabry-Perot resonator. The bands are more
closely spaced, corresponding to a smaller free-spectral range which is in agreement
with the shorter plasmon wavelengths expected for this sample. The stronger damping
of the plasmons in this sample compared to the 50 nm silica sample leads to a smaller
oscillation amplitude. Due to the stronger damping only the oscillation period of
the three longest-wavelength bands can be fitted for this sample. We find plasmon
wavelengths of 320 nm (780 nm), 340 nm (850 nm), and 390 nm (920 nm) equivalent
to mode numbers of n = 12, n = 11, and n = 10, respectively. From the mode number
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the plasmon wavelengths for the other bands are derived to be 227 nm (600 nm), 240
nm (630 nm), 255 nm (660 nm), 272 nm (695 nm), and 280 nm (740 nm).

Figure 8.5 shows the dispersion relation for the MIM modes for the 30 nm and 50
nm thick SiO2 layers, with data points as derived above. The analytical dispersion
relation is also plotted, calculated based on the optical constants for the layer stack
measured using spectroscopic ellipsometry. The experimental data agree very well
with the calculation and lie far to the right of the light line in silica demonstrating
the strongly dispersive character of the MIM modes.

8.4 Disc resonators

Next, we measured the CL emission along a line scan across the center of a plasmonic
MIM disc cavity as shown in Fig. 8.1(b). The plateau of the disc had a diameter
of 2000 nm and was bounded by a 1000 nm wide groove. The measured CL signal
for the control sample and the MIM samples with 30 nm, and 50 nm silica layer are
shown in Fig. 8.6(a-c).

Similar to the Fabry-Perot resonator measurements we observe only a weak in-
terference pattern for the control sample with a period of approximately half the
free-space wavelength, which we attribute to the far-field interference of transition
radiation and scattering from SPPs propagating on the top of the Ag film.

For the sample with the 50 nm silica layer we observe several bright bands with
short oscillation period similar to the Fabry-Perot resonators. These oscillations are a
sign of plasmonic MIM disc modes. MIM plasmons are reflected from the boundaries
of the disc and interfere constructively or destructively depending on phase.

The sample with 30 nm silica layer shows oscillations with a smaller period and
the observed bands are narrower. This is again in good agreement with the larger
expected free spectral range due to the smaller plasmon wavelength for the smaller
silica layer thickness.

Due to the very small dielectric layer thickness, the mode volume of plasmons
confined in these cavities is extremely small. To investigate this, we have characterized
a disc with a diameter of 1000 nm and observed a bright wavelength band at 840 nm
for the 30 nm silica layer. At this wavelength the MIM plasmon wavelength is 337
nm. The mode volume of the plasmon cavity expressed in free-space wavelength is
V = 0.04λ3

0; when expressed in units of plasmon wavelengths it is V = 0.61λ3.

The mode volumes for the measured disc resonators are similar to mode vol-
umes observed for the smallest photonic crystal or dielectric Fabry-Perot cavities
[79]. Smaller cavities can be designed to sustain only the lowest order mode for the
shortest plasmon wavelength observed in the 30 nm Fabry-Perot resonator. The mode
volume in this cavity will be Vmin = 0.026λ3 in units of plasmon wavelengths (227
nm) or Vmin = 0.0014λ3

0 in units of the free-space wavelength (600 nm), which is
much smaller than for any classical dielectric cavity.
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Figure 8.6: Cathodoluminescence intensity as a function of position and
wavelength for line scans across the center of Ag/SiO2/Ag MIM disc
resonators with 2000 nm diameter. The discs were bounded by 1000
nm wide grooves. (a) control sample without silica layer, (b) MIM disk
with 50 nm silica layer, and (c) MIM disk with 30 nm silica layer.

8.5 Exitation probabilities of MIM modes

For the studied MIM cavities the incident electron crosses the boundary between the
metal and silica twice, generating excitations at both metal-dielectric interfaces. Due
to the finite velocity of the electrons, the plasmon fields excited at the two interfaces
will have a phase difference ∆φ depending on the thickness d of the silica core and
the electron velocity v:

∆φ = 2π
d

v

c

λ
+ φ0, (8.1)

with λ the free-space wavelength. The phase factor φ0 accounts for the phase
difference between the plasmon fields generated at the electron transition from metal
to dielectric and vice versa; for the MIM structure φ0 = π.
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Figure 8.7 shows the calculated phase difference as a function of electron velocity
at a free-space wavelength of 800 nm for three different silica layer thicknesses of 30,
50, and 100 nm. The phase difference increases inversely with decreasing electron
velocity and linearly with layer thickness. The inset of Fig. 8.7 shows the schematic
magnetic field profiles for the symmetric and antisymmetric MIM modes.

The phase difference leads to constructive or destructive interference between ex-
citations on the two interfaces. The experimentally observed MIM modes are of sym-
metric character and have the highest field intensity in the dielectric core as shown
in the inset of Fig. 8.7(a). Therefore, we expect a decrease in emission probability
for symmetric MIM plasmon at phase difference of ∆φ = (2n + 1)π, with integer n
(indicated by dashed lines in Fig. 8.7(a)).

At the marked positions, as well as in the limit of large v and small dielectric
thickness a plasmon mode with antisymmetric magnetic field distribution (see inset
Fig. 8.7) will be preferentially excited. We attribute the fact that this modes is not
observed in our measurements to the fact that the propagation length for this mode
is extremely short [72].

Similar to the calculations for the generation rate in chapter 2, the emission prob-
ability for the symmetric plasmon mode in an MIM cavity was calculated [80]. The
results are shown in Fig. 8.7(b) as a function of electron velocity for silica layer thick-
nesses of 30, 50, and 100 nm. We observe a decrease in the excitation rate with
decreasing electron velocity in agreement with higher localization of the external field
of the electron. Superimposed on this decrease we observe dips in the emission proba-
bility for electron velocities at which the phase difference equals an odd number times
π. Moreover, the number of the dips increases with layer thickness in agreement with
Eqn. (8.1).

These calculations indicate that by varying the beam energy it is possible to
selectively excite a plasmon mode with desired symmetry. For the studied samples
the highest energy dips with reduced emission of symmetric MIM modes are found at
very low beam energies: 0.37 keV for the 30 nm silica layer (blue curves) and 1.01 keV
for the 50 nm silica layer (red curves). For these energies the inelastic mean free path
in silver is very short (9 and 15 nm, respectively [81]) and the electron transmission
through the upper silver layer is thus extremely low. For a silica layer thickness of
100 nm, a dip of reduced emission is found for an energy of 4 keV. In this case the
inelastic mean free path for the electron is 43 nm.

Due to the constraint of reduced electron transmission through the silver layer
at low energies it will be difficult to experimentally demonstrate selective excitation
of certain plasmon symmetry. Another possibility is to tilt the sample with respect
to the electron beam and thus increase the path length d through the silica layer.
The fact that the excitation is generated at different lateral positions leads to an
additional phase difference. The tilt required to achieve a minimum in symmetric
mode excitation such as in Fig. 8.7(b) for electrons incident on a MIM structure with
a 100 nm silica layer at 10 keV is 35◦ for a wavelength of 800 nm. For 30 keV electrons
the sample has to be tilted to 51◦.
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Figure 8.7: (a) Phase difference for plasmon excitation (free-space
wavelength 800 nm) by an electron passing through a metal-insulator-
metal structure as a function of electron velocity. The phase differ-
ence was calculated for an insulator thickness of 30 nm (blue), 50
nm (red), and 100 nm (black line). The gray horizontal dashed lines
denote phase differences of (2n + 1)π with integer n. Inset: H field
profile for the symmetric (red) and antisymmetric (blue) MIM mode.
(b) Plasmon emission probability as function of electron velocity for
the symmetric MIM mode.
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8.6 Conclusions

We have shown that cathodoluminescence imaging can be used to excite and map
plasmonic modes in Ag/SiO2/Ag MIM structures. The generated MIM plasmons
were confined in Fabry-Perot and disc resonators. From the spatially resolved mode
profile of the Fabry-Perot resonators the dispersion relation of the MIM plasmons
was derived, and found to be in good agreement with theory. We have confined the
light in plasmonic MIM disk resonators to mode volumes as small as 0.58λ3 when
expressed in units of plasmon wavelength or equivalently 0.04λ3

0 when expressed in
free-space wavelength. The smallest achievable cavity mode volume for a 30 nm SiO2

MIM cavity is 0.0014λ3
0, much smaller than for any classical dielectric cavity. Finally,

we have shown that excitation probability of resonant excitation of MIM plasmons
depends strongly on the electron energy due to phase retardation effects resulting
from the finite electron velocity.
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Summary

Plasmonics is a rapidly growing research field. Initially conceived as a fundamen-
tally interesting topic, attention has increased due to the promises that plasmonics
holds for future applications. Telecommunication, biological sensing, optoelectronics
and photovoltaics are all topics of great public interest which can benefit from of
improvements made by plasmonics. To fulfill those promises a thorough knowledge
of plasmon properties is of utmost importance and has to be established by studies
of basic plasmon principles.

In this thesis we present studies of the generation and confinement of surface
plasmon polaritons (SPPs) on metal surfaces. SPPs are generated using the focused
electron beam of a scanning electron microscope (SEM). The resulting emission is de-
tected using a cathodoluminescence (CL) spectroscopy setup. The electron beam acts
as SPP point source with circular SPP waves propagating radially in all directions.
To confine the SPPs we structure the surface and use grooves as reflectors for SPPs.

In chapter 2 we give an introduction to CL and explain the basic mechanisms
behind CL. We show that an electron incident onto a metal surface perturbs the con-
duction electrons at the surface of the metal due to its external field. The generated
polarization charge emits transition radiation and excites SPPs. The emission prob-
abilities for transition radiation and SPPs are derived from Maxwell’s equations and
are presented in chapter 2. Throughout this thesis we use a boundary-element-method
(BEM) to calculate the electromagnetic fields arising from the electron impact. The
basic concepts of this method are presented in chapter 2.

In chapter 3, the coherent interaction of transition radiation and SPPs is discussed,
which leads to interference in the far-field. We present spatially resolved CL measure-
ments that show oscillations in CL emission with distance from a grating patterned
in an otherwise planar gold surface. These oscillations are ascribed to the interference
between outcoupled SPPs and transition radiation. We present a detailed theoretical
analysis that successfully explains the measured CL signal based upon interference
of transition radiation directly generated by electron impact and SPPs launched by
the electron and outcoupled by the grating. The measured spectral dependence of
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the SPP yield per incoming electron is found to be in good agreement with rigorous
electromagnetic calculations. We show that the CL emission is similar to that of
a dipole oriented perpendicular to the surface and situated at the point of electron
impact. This allows us to establish a solid connection between the CL signal and the
photonic local density of states associated to SPPs.

In chapter 4 we present the application of CL measurements to determine the SPP
damping. By measuring the decay of the CL intensity on a line scan perpendicular
to gratings fabricated into the surface we are able to extract the SPP propagation
length. We find that the propagation length for single-crystalline gold is in agreement
with calculations based on dielectric constants and propagation lengths up to 80 µm
are found. For poly-crystalline films the propagation length is reduced. Scattering of
SPPs at grain boundaries is identified as additional loss mechanism. The propaga-
tion lengths found for these samples can be fitted using a grain boundary scattering
coefficient of SG = 0.2%.

In chapter 5 we use two parallel grooves structured into a single-crystalline gold
surface by focused ion beam milling as SPP Fabry-Perot resonators. SPPs excited
between the grooves are reflected and form standing waves. The plasmonic cavity
modes are spatially and spectrally resolved using CL measurements. The resonators
show a broad spectrum of modes with mode numbers up to n = 10. Additionally,
we determine the resonator quality factor Q. The observed cavity quality factor Q
depends strongly on groove depth and the highest Q = 21 was found for groove depth
of 100-120 nm for a mode at λ = 690 nm. We have explained this behavior with a
depth dependent reflectivity of the grooves which is confirmed using finite-difference
time domain (FDTD) calculations.

Chapter 6 focuses on understanding the reflection of SPPs from a single groove.
FDTD calculations show that the wavelength of maximum reflectivity is strongly
correlated to groove depth. The resonances of maximum reflectivity are related to
localized groove modes. The groove reflectivity is the result of coupling of the incident
plasmon wave to the localized modes, that then reradiate to cause a reflected plasmon
wave. Groove reflectivities as high as 29 % are found and may be increased by
engineering a critical coupling geometry.

Measurements of SPPs on single-crystalline gold which are confined to rectangular
plateaus bounded by grooves are presented in chapter 7. We use CL spectroscopy to
image the SPP modes of the plateaus. The observed modes show two-dimensional con-
finement with pronounced maxima. The positions of high emission depends on wave-
length and plateau size. The measurements are reproduced using a two-dimensional
image source model for the local density of states.

While the previous chapters concentrated on single-interface SPPs, in chapter 8
we use CL spectroscopy to excite metal-insulator-metal (MIM) plasmons. Similar to
chapter 5 we have structured two parallel slits into the MIM stack which act Fabry-
Perot resonators for MIM plasmons. CL measurements show that the excited MIM
plasmon modes form standing waves in the cavities. From the observed spatial mode
pattern we derive the MIM plasmon wavevector which agrees well with expected values
from analytical dispersion relation calculations. We also present measurements of disc
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resonators bounded by circular slits. The observed MIM plasmon modes are confined
to mode volumes as small as 0.58λ3 in units of plasmon wavelength or 0.04λ3

0 in
terms of the free-space wavelength. By using smaller disks, mode volumes as small as
0.0014λ3

0 are achievable, smaller than any dielectric cavity. The condition of resonant
excitation of MIM plasmons is found to depend strongly on the electron energy due
to phase retardation effects resulting from the finite electron velocity.

The results presented in this thesis are of twofold interest. First, we show that in
cathodoluminescence imaging spectroscopy an electron beam can be used as a point
source of SPPs to study basic SPP properties. Second, by using this technique, we
determine the fundamental loss mechanisms of SPPs, the nature of groove reflectors,
and study the confinement of SPPs in one-, two-, and three-dimensional plasmonic
cavities. Using these results, applications in sensing, nanoscale optical integrated
circuits, opto-electronic integration and photovoltaics may be pursued.
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Samenvatting

Plasmonica is een snel groeiend vakgebied. Het werd in eerste instantie als interessant
beschouwd vanuit fundamenteel oogpunt; het uitzicht op veelbelovende toepassingen
leidde daarna tot steeds meer belangstelling. Telecommunicatie, biologische sensoren,
opto-elektronica en zonnecellen zijn alle onderwerpen met grote maatschappelijke
relevantie waar verbeteringen vanuit plasmonica in het verschiet liggen. Om zulke
beloften waar te maken is het van groot belang om de grondbeginselen van plasmonen
te bestuderen en te begrijpen.

In dit proefschrift presenteren we een studie van het aanslaan en opsluiten van op-
pervlakteplasmonpolaritonen (SPP’s) op metaaloppervlakken. SPP’s worden aanges-
lagen door middel van de gefocusseerde elektronenbundel van een rasterelektronen-
microscoop (SEM). De lichtemissie die hier het gevolg van is, detecteren we in een
kathodeluminescentiespectroscopie-opstelling. De elektronenbundel fungeert hier als
een puntbron van SPP’s, waarbij cirkelvormige SPP-golven op een metaaloppervlak
in radiële richting worden uitgezonden. Om de SPP’s op te sluiten bewerken we het
oppervlak: groeven worden gebruikt als SPP-reflector.

In hoofdstuk 2 geven we een inleiding op kathodeluminescentie (CL) en een verk-
laring van de principes die aan deze techniek ten grondslag liggen. We laten zien dat
een elektron dat invalt op een metaaloppervlak de vrije elektronen aan het oppervlak
verstoort als gevolg van zijn uitwendige veld. De polarisatielading die hierdoor on-
staat, zendt overgangsstraling uit en slaat SPP’s aan. De emissiewaarschijnlijkheid
voor deze overgangsstraling en SPP’s wordt afgeleid uit de Maxwellvergelijkingen
en word in dit hoofdstuk beschreven. In het gehele proefschrift gebruiken we de
grensvlakelementenmethode (BEM) om de elektromagnetische velden die veroorza-
akt worden door de inval van een elektron te berekenen. De grondbeginselen van deze
methode worden ook in hoofdstuk 2 gepresenteerd.

In hoofdstuk 3 bespreken we de coherente interactie tussen overgangsstraling en
SPP’s, welke leidt tot interferentie in het verre veld. We laten ruimtelijk opgeloste
CL-metingen zien, die oscillaties in de CL-emissie vertonen als functie van de afstand
tot een tralie die is aangebracht op een verder vlakke goudfilm. Deze oscillaties worden
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toegeschreven aan de interferentie tussen uitgekoppelde SPP’s en overgangsstraling.
We geven een gedetailleerde theoretische analyse die er het mogelijk maakt het geme-
ten CL-signaal te verklaren vanuit de interferentie tussen overgangsstraling die direct
door de elektronenbundel wordt aangeslagen, en SPP’s, die eerst worden aangeslagen
en dan door de tralie worden uitgekoppeld. De gemeten spectraal opgeloste SPP-
opbrengst per invallend elektron is in goede overeenstemming met elektromagnetische
berekeningen. We laten zien dat de CL-emissie vergelijkbaar is met de straling van
een dipool loodrecht op het oppervlak, op de plek waar het elektron binnenvalt. Op
deze wijze demonstreren we de sterke relatie tussen de uitgezonden CL-straling en de
lokale optische toestandsdichtheid als gevolg van SPP’s.

In hoofdstuk 4 beschrijven we hoe CL-metingen gebruikt kunnen worden om
de mate van demping van SPP’s te bepalen. Uit het verval van de CL-intensiteit
langs een lijn loodrecht op een tralie vinden we de voortplantingslengte van SPP’s.
Op monokristallijn goud verkrijgen we een lengte die in overeenstemming is met
berekeningen gebaseerd op diëlektrische constanten en vinden waarden tot 80µm.
Deze voortplantingslengte is korter voor polykristallijn goud. We hebben hier ver-
strooiing van SPP’s aan kristalgrensvlakken gëıdentificeerd als extra verliesmecha-
nisme. Uit de voortplantingslengten die voor deze monsters gevonden zijn, vinden we
een kristalgrensvlak-verstrooiingscoëfficiënt SG = 0.2%.

In hoofdstuk 5 gebruiken we twee parallelle groeven die met een gefocusseerde
ionenbundel zijn aangebracht in een monokristallijn goud oppervlak, als Fabry-Perot-
resonatoren voor SPP’s. SPP’s die tussen de groeven worden aangeslagen worden
gereflecteerd en vormen staande golven. We lossen de plasmonische resonanties van
deze trilholte zowel spectraal als ruimtelijk op met CL-metingen. De resonatoren
laten een breed spectrum van resonanties zien met orde oplopend tot n = 10. Daar-
naast bepalen we de kwaliteitsfactor Q. De geobserveerde Q is sterk afhankelijk
van de groefdiepte; de hoogste Q = 21 werd gevonden voor een diepte van 100 –
200nm voor een resonantie bij λ = 690nm. We verkleeren dit uit als een groefdiepte-
afhankelijkheid van de reflectiviteit die bevestigd wordt door numerieke berekeningen
van de voortplanting van SPP’s bij groeven.

Hoofdstuk 6 concentreert zich op het begrip van reflectie van SPPs aan een enkele
groef. Numerieke berekeningen laten zien dat de golflengte waarbij de reflectiviteit
maximal is sterk verband houdt met de groefdiepte. De maxima in reflectiviteit
brengen we in verband met lokale resonanties in de groef. De reflectiviteit is het
resultaat van koppeling van invallende plasmongolven aan lokale resonanties, die op
hun beurt weer stralen en zo de plasmongolf reflecteren. Groefreflectiviteiten tot 29%
zijn zo gevonden; deze zouden nog vergroot worden kunnen door het construeren van
een geometrie met kritische koppeling.

Metingen van SPP’s die opgesloten worden op rechthoekige plateaus omgeven door
groeven in een monokristallijn goud oppervlak worden gepresenteerd in hoofdstuk 7.
We gebruiken CL-spectroscopie om een afbeelding te maken van SPP-resonanties van
de plateaus. De waargenomen resonanties laten een tweedimensionale opsluiting zien
met uitgesproken maxima in het elektrisch veld. De positie waarbij de grootste CL-
emissie optreedt hangt af van de detectiegolflengte en de grootte van het plateau.
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Berekeningen met een tweedimensionaal beeldbronmodel voor de lokale toestands-
dichtheid reproduceren de metingen.

De voorgaande hoofstukken concentreren zich op SPP’s aan een enkel grensvlak;
in hoofdstuk 8 gebruiken we CL-spectroscopie voor het aanslaan van metaal-isolator-
metaal(MIM)-plasmonen. Analoog aan hoofdstuk 5 hebben we twee parallelle spleten
aangebracht in een MIM-lagenstructuur, die fungeren als Fabry-Perot resonator voor
MIM-plasmonen. CL-metingen laten zien dat de aangeslagen MIM-plasmonresonanties
bestaan uit staande golven in de trilholte. Uit het geobserveerde ruimtelijke patroon
van de MIM-plasmonresonanties leiden we de golfvector af, die in goede overeen-
stemming is met waarden die we verwachten aan de hand van analytische disper-
sieberekeningen. We laten ook metingen zien aan schijfresonatoren die begrensd wor-
den door rondlopende spleten. De waargenomen MIM-plasmonresonanties zijn opges-
loten in volumina tot 0.58 λ3 in eenheden van plasmongolflengte, of 0.04 λ3

0 in termen
van vacuumgolflengte. Door gebruik van een nog kleinere schijf, kunnen volumina
van slechts 0.0014 λ3

0 bereikt worden, wat kleiner is dan enige diëlektrische trilholte.
De voorwaarde voor resonante excitatie van MIM-plasmonen blijkt sterk af te hangen
van de energie van het binnenvallend elektron, als gevolg van fasevertragingseffecten
door de eindige elektronsnelheid.

De resultaten beschreven in dit proefschrift hebben een tweeledige relevantie. Ten
eerste laten we zien dat in afbeeldende kathodeluminescentie-spectroscopie de elek-
tronenbundel gebruikt kan worden als een puntbron voor SPP’s om de grondprincipes
hiervan te onderzoeken. Ten tweede gebruiken we deze techniek voor het onderzoeken
van de fundamentele verliesmechanismen van SPP’s, de aard van groefreflectoren en de
opsluiting van SPP’s in een-, twee- en driedimensionale plasmonische trilholten. Deze
resultaten kunnen gebruikt worden voor het realiseren van toepassingen in sensoren,
gëıntegreerde circuits op de nanoschaal, opto-elektronische integratie en zonnecellen.
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modes, M. Kuttge, F. J. Garćıa de Abajo, and A. Polman, in preparation.
(Chapter 8)

• Surface plasmon in a box, M. Kuttge, F. J. Garćıa de Abajo, and A. Polman,
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