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Chapter 1

Introduction

Crowd, noun:
A large number of persons gathered so closely together as to press upon
or impede each other; a throng, a dense multitude.
(The earlier term from 13th c. was `press'.)

1623 Shakespeare & J. Fletcher Henry VIII iv. i. 58:
Among the Crowd i' th' Abbey, where a �nger
Could not be wedg'd in more.

Source: Oxford English Dictionary

Throughout history, people have moved from the country into cities. The
number of people in the world keeps growing, resulting in the highest local
population densities of all time. Furthermore, the scale of events and ven-
ues such as football stadiums and concert halls increases. As a result, we
see more, larger crowds of people; their safety and well-being becomes more
important, while at the same time becoming more di�cult to predict. Recent
history has shown how quickly a situation can take a turn for the worse when
a large crowd is involved. Examples are the crushing disasters at the Hillsbor-
ough stadium in 1989 and the Love Parade in Duisburg in 2010. Computer
simulations of such events can help in various ways. Police, riot control and
medical sta� can use real-time crowd simulation for training purposes, and
test the e�ectiveness of their crowd management strategies in a safe and con-
trolled virtual environment. City council members and event planners can
also use simulations to investigate crowd �ow and �nd potentially dangerous
bottlenecks. Even before construction starts, building designs can be evalu-
ated for crowd �ow and evacuatability. In these simulations, it is vital that
the behaviour of the simulated crowd is representative of that of real people.

With developments in gaming hardware, realism of games has improved; char-
acters have become more plausible, and it has become possible to populate
virtual worlds with high numbers of such characters. The addition of back-
ground crowds to such games gives the player an increased sense of presence,
and helps avoid the appearance of a `ghost town'. A good example can be
seen when comparing the IO Interactive gameHitman: Codename 47 (2000,
Figure 1.1a) with the latest game in the series,Hitman: Absolution (2012,
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(a) Hong Kong, as depicted in Hitman: Agent 47 (2000).

(b) Chinatown in Chicago, as depicted in Hitman: Absolution (2012).

Figure 1.1: Two examples of city scenes in Hitman games. Images c IO Inter-
active.

Figure 1.1b). Where in the �rst game the city of Hong Kong, known for its
very high population density [CoHK15], is depicted as empty and deserted, its
eventual successor shows cities full of people, even though in reality those cit-
ies have a lower population density. Furthermore, in the latter game, crowds
are a much more integrated component of the gameplay.
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The main motivation for the research reported on in this thesis is the desire to
increase realism in simulations of dense crowds. Most simulation methods use
very simple, symmetrical shapes, such as discs or points, to represent members
of the crowd. Their orientation is directly related to their velocity, and as a
result characters rotate instantaneously. The common disc shape also results
in non-humanoid behaviour in dense situations; when many agents are pressed
into a small area, this shape becomes indirectly visible; their motion reminds
of beer bottles pushing against each other in a factory. This led to the use
of a capsule shape in Chapters 5 and 6, which also allows for more realistic
motion by allowing side-stepping, walking backward, and twisting the torso
to manoeuvre through narrow openings in the crowd.

Various metrics for comparing crowd simulation performance, most notably
SteerBench [SKFR09], focus on the avoidance of collisions. Although such
avoidance in itself is realistic, a simulation of a dense crowd that shows no
collisions at all is not. This led us to produce a fast collision detection tech-
nique in Chapter 3. Since that technique employs an approximation scheme,
we were also interested in the ability of people to recognise collisions, and to
investigate how well the choices made in that chapter suit our human obser-
vation. This user study and its �ndings are presented in Chapter 4.

1.1 | Definition of terms

We use the wordsparticipant , personand peopleto mean actual human beings.
The words agent and crowd agent are used interchangeably, and indicate an
abstract representation of people, often associated with a simple shape (see
Section 2.2.1). A character model, sometimes shortened tocharacter, is a
three-dimensional model of a human (see Section 2.2.2). The termcharac-
ter animation is understood as the movement of individual body parts of
characters, such as walking, waving, falling down, et cetera, whereasmotion,
movement, or manoeuvring refers to the displacement of the entire body. The
term crowd animation refers to the animation of characters in a crowd. It
is used in contrast to crowd simulation, which is generally understood as the
simulation of agent movement.

1.2 | Thesis Outline

The remainder of this thesis is divided into six chapters, each covering a
di�erent aspect of dense crowd animation. Each chapter, except for Chapter 2,
places the research it describes within the body of knowledge in science on
that topic.
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Chapter 2 provides fundamental background information on coordinate sys-
tems, distance metrics, notation, character and crowd animation, PID con-
trollers, and statistical methods.

Chapter 3 discusses a fast collision detection strategy based on hierarchies
of cylinders. As people in dense crowds have a high chance to collide, fast
collision detections are important in such crowds. Single cylinders are often
used to detect collisions between virtual characters; by re�ning the single
cylinder using gradually smaller cylinders we detail this shape, and make the
collision detection more precise.

Chapter 4 describes a user study into the ability of human observers to recog-
nise collisions between virtual characters. We observe that people are gener-
ally good at recognising non-collisions, and less so at recognising collisions.
Furthermore, we identify several parameters signi�cant to this recognition.

Chapter 5 describes an experiment, with a real crowd of 23 participants in
a motion capture studio, to obtain information on the crowd manoeuvring
behaviour of people. We observe that a generalized Voronoi diagram of the
participants can be used to predict the direction in which they manoeuvre
through the crowd.

Chapter 6 describes a crowd simulation method aimed at the simulation of
dense crowds, and is based on the results of the user studies. It introduces a
capsule shape to represent people in the crowd, and supports di�erent beha-
viour for actively manoeuvring people and people that have no incentive to
move. It also discusses a character animation method for holonomic motion.

Chapter 7 concludes the thesis by providing an overview of the accomplished
work. It also discusses limitations of the work, and covers possible avenues
for future research.



Chapter 2

Background

This chapter provides background knowledge for the remainder of this thesis.
Section 2.1 discusses the choice of coordinate systems, distance metrics, and
notation. Section 2.2 describes character animation and crowd simulation;
simple abstract representations are discussed �rst, and then extended to a
human shape, deformation, animation, and �nally integration with crowd
simulation systems. In Section 2.3, we give an overview of the history and use
of the most-used feedback control mechanism, the PID controller, which we
use in the crowd simulation system discussed in Chapter 6. Finally, Section 2.4
discusses linear regression, a statistical technique to �t a model to a system,
which is used in Chapter 4 to interpret the result of a user study.

2.1 | Coordinate systems

In this section we discuss coordinate systems and distance metrics commonly
used in the �eld of computer graphics. We live in an environment consisting
of three spatial dimensions and one temporal dimension: space-time. In this
section we discuss spatial coordinates, whereas in the next section we also
look at the addition of time.

Any point in space can be uniquely addressed by a list of coordinates, one
for each spatial dimension, which express the signed distance to a set of or-
thogonal coordinate axes. In three-dimensional space, these coordinates are
usually given the letters x, y and z. Unfortunately, there are di�erent inter-
pretations of the directions denoted by these letters. It seems that everybody
agrees on the 2D coordinate system of a monitor:x for left-right and y for
up-down. However, the introduction of a third coordinate for displaying 3D
scenes is still controversial. Arguing from the point of view that the third di-
mension expands on the 2D projection of the monitor, some people feel that
z should indicate the in-out dimension. As a result, the ground plane of their
virtual environment is modelled as the xz plane, with the y direction still in-
dicating up-down. In contrast, in the �eld of crowd simulation, computations
are often performed on the ground plane; the height of the ground is then
ignored. These 2D simulations use the �rst two available letters: x and y.
Many other real-life problems are also solved by projection of the 3D world
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onto the ground plane, whereas few problems are solved by projecting onto
the remaining two planes. For those reasons, in this thesis, we denote the
ground plane asxy, and usez for the up-down axis.

To di�erentiate between the individual coordinates (or just any scalar) x 2 R
and the vector x = ( x1; x2; : : : ; xn ) 2 Rn , we denote vectors with a bold
symbol. The di�erential of a scalar or vector is denoted with a dot, such as _x
or _x, when it is clear from the context over which variable the di�erential is
taken.

A general distance metric between two pointsu and v is given by the p-norm:

dp(u; v ) = jjv � ujjp =

 
nX

i =1

jvi � ui jp
! 1=p

;

where n is the number of dimensions. Forp = 1 this gives the Manhattan
distance, which is used as distance metric in those cellular automaton crowd
simulations (see Section 2.2.5) where diagonal movement is not allowed. The
special casep = 1 results in the Chebyshev distance, which is the greatest
di�erence between the coordinates along any of the dimensions. The most
commonly used distance metric is the Euclidean distance obtained byp = 2 ,
which we use in this thesis.

Regardless of the distance metric used, there are multiple ways to de�ne the
distance between objects. We de�ne an object by the collection of points
occupied by the object. As is common in the �eld of computer animation,
in this thesis we assume that objects are closed, i.e. the boundary is part
of the object. Given two objects A; B � Rn , their distance is de�ned as the
minimum distance between their points:

d(A; B ) = min f d(a; b) j a 2 A; b 2 B g

This metric can also be used when the objects overlap, in which cased(A; B ) =
0. Unfortunately, this does not provide any indication as to the amount of
overlap. This is measured by thepenetration depth, denoted as� (A; B ), which
is de�ned as the minimum translation distance required to bring the pair in
touching contact [AGHP + 00, vdB01]:

� (A; B ) = min fjj t jj j int (A + t ) \ B = ; ; t 2 Rn g

Computing the penetration depth for non-convex objects, such as virtual hu-
mans, is a di�cult problem. It is generally solved by decomposing the object
into convex pieces, and �nding their penetration depth [KOLM02, HTKG04].
The two metrics for object distance and penetration depth can be com-
bined into a continuous distance function dc(A; B ), by taking d(A; B ) when
A \ B = ; , and � � (A; B ) otherwise. Finally, we can compute the Hausdor�
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distance [Hau14], which is de�ned as:

dH (A; B ) = max
�

max
a2 A

min
b 2 B

d(a; b); max
b 2 B

min
a2 A

d(a; b)
�

Informally, the Hausdor� distance is the longest distance one can be forced
to travel by an adversary who chooses a point in one of the two sets, from
where you must travel to the other set. As such, if two objects have similar
shape and placement, they will be close in the Hausdor� distance [ZZYS13].
For the humanoid shapes typically used in character animation, the opposite
is also true, a property we use in Chapter 3.

2.2 | Agents, characters, and crowds

In this section we discuss various aspects of crowds of virtual characters. We
look at the shape and behaviour of crowd members, mechanisms to deform
those shapes, and methods to animate those deformations.

2.2.1 | Crowd agents

The term agent as used in computer science stems from the �eld of arti�-
cial intelligence, and, confusingly, has no clear de�nition. Nwana describes
an agent as referring to a component of software and/or hardware which is
capable of acting exactingly in order to accomplish tasks on behalf of its user
[Nwa96]. In the author's view, agents are (or should be) disembodied bits
of `intelligence'1 In this thesis we borrow this broad de�nition, and de�ne a
crowd agent as an abstract entity that can make steering and behavioural
decisions on behalf of a character in the crowd. A crowd agent is mobile,
in the sense that it has an associated placement in the virtual environment
that can change over time. It engages in deliberative planning, in order to
achieve coordination with other agents, and to reach a certain abstract goal.
Even though there are crowd simulation systems that have explicit cooper-
ation [KHHL12], usually coordination is limited to collision and congestion
avoidance [vdBLM08, vTCG12].

A human body has many ways in which it can move, so calleddegrees of
freedom. An adult human skeleton has an estimated total of 244 degrees of
freedom [ZP12]. Many of these DoF can be redundant in certain situations;
for example, when placing your hand at a �xed spot on a surface, when your
shoulder stays in the same spot your elbow can still move around. However,

1The term `intelligence' is explicitly left unde�ned by Nwana, but is understood to
include the ability to learn.
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this redundancy disappears when the goal is to place your elbow at a �xed
spot. This redundancy and the large number of degrees of freedom make
it hard to plan realistic full body motion for a single body, and even more
di�cult for an entire crowd. As described above, a crowd agent makes steering
and behavioural decisions on behalf of a character. To increase computation
performance, these decisions are generally based on a simpli�ed representation
of that character. Even though agents are abstract, disembodied entities, this
representation is usually referred to as the agent'sshape.

The character's behaviour is determined by the agent; the chosen shape de-
termines the range of possible behaviours. Most crowd simulation systems
represent characters as points(x i ; yi ) [Hen71, KS05, JCG13] or discs(x i ; yi ; r i )
[NGCL09, vdBGLM11, CGZM11] moving in the ground plane. The big ad-
vantage of these shapes are their simplicity. Due to the rotational symmetry,
they have two positional DoFs (x; y); the disc's radius is generally not a DoF,
as the agents do not change size. Since crowd simulation systems generally try
to avoid collisions, distance checks are frequent, and discs allow for simple and
fast distance computations. Some simulations extend the disc model by taking
the character's height into account, resulting in a cylindrical representation.
If this height is used for path planning, but the collision detection is still per-
formed in the ground plane, the simulation is considered 2.5-dimensional. The
disc and cylinder models are well suited for sparse crowds of forward-walking
characters. However, when the crowd becomes dense, the agent shape be-
comes visible as characters slide against each other in a circular pattern.

As de�ned in standard textbooks [Cra68], a holonomic system is a system
that has the same number of independent degrees of freedom as the number
of generalised coordinates to locate the system [WA92]. The placement of a
crowd agent on the ground plane is de�ned by three generalised coordinates2:
two for the position and one for the orientation of the agent. Disc- and
point-based crowd simulation methods generally assume that the orientation
of the agent is determined by the linear velocity vector. The agent is thus
always oriented along its path, which e�ectively removes a degree of freedom.
Consequently, such systems are callednonholonomic.

Agent representations more complex than points and discs are used as well.
Singh et al. use multiple discs [SKRF11] to represent a single agent, and plan
their motion using a predictive footstep model. This produces a wider range
of motions, including holonomic motion such as side-stepping.

Although the disc and cylinder models are used in the majority of crowd
simulation systems, we observe that they actually are a rather bad match
for a human shape in Chapter 3. Instead, we use a capsule-shaped agent in
Chapters 5 and 6, which �ts the human shape better than a disc, and allows
the planning of side-stepping and backward-stepping motions.

2Here we assume that the crowd agent has a non-articulated, rigid shape.
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2.2.2 | Character shape representation and control

Approaches to represent a shape in the virtual environment can be generally
divided into two categories: aboundary representationand a solid represent-
ation. Suppose we would like to de�ne a model of a planet. Using a boundary
representation, we might write the equation of a sphere that roughly coincides
with the planet's surface. Using a solid representation, we would describe the
set of all points that are contained in the sphere[LaV06]. Solid representa-
tions are hardly used in the �eld of character modelling and animation, as
the boundary is su�cient for most purposes, and gives more freedom to the
modeler by allowing non-manifold objects.

Boundary representations can be divided further into algebraic and polyhedral
models. Algebraic models use algebraic expressions, such asf x j d(x; c) = r g
for a sphere around pointc and radius r . Collision detection checks are trivial
in such simple representations, but quickly become impossible to solve ana-
lytically when the expression becomes more complex. Other operations also
become harder; for example, a cartoon style upper arm could be represented
by an oblong ellipse, but modifying the algebraic formula to show the bulging
of biceps is rather complex. Polyhedral representations work around these
issues by approximating the character shape with connected small, planar,
polygonal patches. Such a representation is called amesh, and consists of
three types of components: points in space calledvertices, which are connec-
ted by edges, which in turn connect and delimit planar faces.

By manipulating the vertex coordinates, the model can be deformed. Al-
though this gives ultimate control over the shape of the character, it is also
hard to work with. Not only does it take e�ort to specify all positions of
all vertices, it is also hard to ensure that limbs bend correctly at the joints,
or that their length remains constant. Furthermore, the deformation cannot
be easily transferred to other meshes, as it is dependent on the exact vertex
structure.

Di�erent techniques have been developed that allow describing a deformation
in more abstract terms, or make it adaptable to di�erent 3D objects. Free-
form deformation [SP86], also known as lattice deformation, uses a limited
set of control points around a three-dimensional model. By moving those con-
trol points, the enclosed model is deformed. This allows for rapid modelling
of objects by deforming simple shapes, but still su�ers from the same down-
sides as direct vertex manipulation; care has to be taken to correctly bend at
joints or to keep limbs at the correct length. Linear blend skinning (LBS),
also known as skeletal subspace deformation (see Figure 2.1), was established
by Magnenat-Thalmann et al. [MTLT88]. Even though there are notable im-
provements to their method, such as dual quaternion skinning [KCvO07], LBS
is still the most common technique seen in 3D software and game engines.
In contrast to the animation of the character mesh itself, a skeleton-based
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Figure 2.1: Mesh in rest pose (left), skeletal structure (middle), and the resulting
deformed and textured mesh (right).

approach allows for model-independent animations, as well as fewer paramet-
ers to manipulate. Although the animation is model-independent, it is still
dependent on the structure and proportions of the skeleton. Usually, this
skeleton is constructed in a hierarchical fashion, with several branches for the
limbs and head. The base of the hierarchy is called theroot joint , and is usu-
ally placed in the centre of mass of the character. It also de�nes the position
of the character in cases where a single point is required. The animation data
can be adjusted to a skeleton of identical structure but di�erent proportions
using a retargeting technique [Gle98].

2.2.3 | Animation

The Oxford English Dictionary describes animation as `the action or process
of imparting life, vitality, or (as a sign of life) motion'. In contrast, Parent
foregoes the aspect of imparting life, and describescomputer animation as any
computer-based computation used in producing images intended to create the
perception of motion [Par12]. In the �eld of computer graphics, animation is
often seen as a synonym for just `motion graphics', which is how the term is
used in this thesis as well. Motion is obtained by introducing the concept of
time to otherwise static graphics. In this section, we follow the description
of animation by Egges [Egg06]. In its simplest form, a computer animation
is represented as a set of valuesF , also called aframe, that can change over
time: A : t 7! F . The continuous function A is de�ned for all timekeys
t 2 [ts; te] � R. In general, A(t) is just a set of time-varying parameters.
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In character animation these parameters control the placement and shape
of the character. Its continuity is important, as it provides the character's
shape at each moment in time. Since the number of timekeys in any non-
empty interval is in�nite, it is not possible to explicitly specify a frame F for
each timekey. Instead, most animation systems rely on a discrete sequence
of keyframes, each associated with a distinct timekey. To obtain the required
continuity, an interpolation technique is used. In computer animation, the
term `keyframe' has been generalised to apply to any variable whose value is
set at speci�c time keys, and from which values for the intermediate frames are
interpolated according to some predescribed procedure [Par12]. The choice
of interpolation technique depends on the representation of the keyframes, as
well as the requiredlook of the animation.

An important point to consider when one conceives an animation system, is
its usability from the animator's point of view. When we look at the design
process for animations, there are several commonly used techniques:

Manual approach: an animation is constructed from a set of keyframes,
manually designed by an animator. Many Open Source and commercial
packages (such as Blender [ble15] and Maya [may15]) are available that
allow an animator to create keyframes. Since the animator has complete
control over the resulting animation, this is a very popular approach.
However, the manual creation of a convincing, life-like animation re-
quires a lot of time and skill.

Pre-recorded animations: an animation is recorded using a motion cap-
ture or tracking system (such as Vicon [vic15] or MotionStar [mot15]).
The MotionStar system uses magnetic tracking, which su�ers much less
from occlusion issues than the Vicon tracking system, which uses a
multi-camera optical tracking approach. The Vicon system, however,
has a higher spatial precision, which is why in many commercial applic-
ations, such as games or movies, an optical motion capture system is
used to drive the character motions. A motion capture system can be an
excellent time-saver, because a lot less manual work is required to pro-
duce animations. A major disadvantage of using such a system, is that
the animations need to be adapted so that they look good on di�erent
characters, and that the system is limited to recording existing people,
animals and objects. Due to the large amount of data produced by mo-
tion capture systems, generally in the order of 100 frames per second,
such adaptation can be cumbersome. Also, when using recorded motion
clips, one must address the problems of selecting suitable clips from the
recorded corpus, and prevent unnatural transitions between those clips.

Procedural animations: an animation is de�ned by a set of mathematical
formulae. Periodic motions can be de�ned by period functions, such
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as the sine function. By careful combination of such functions, anima-
tions such as walking [BC89] or waving can be constructed. Contrary to
the discrete representation of the manual and pre-recorded approaches,
which need interpolation rules to obtain the required continuity of A(t),
procedural animations are explicitly de�ned as continuous functions.
Perlin used tiling pseudo-random noise textures to blend between dif-
ferent motions [Per95]. Such animation systems are light-weight, as no
memory is required for keyframes or motion capture data. However, a
procedural walk cycle system generally provides only a limited set of
high-level parameters, such as velocity, step length and step frequency
[BC89].

Physics simulation: an animation is produced by simulating mass and force.
By employing Newtonian laws of physics, physically correct motions
are generated. Although such simulations can be computationally ex-
pensive, the resulting animations generally look life-like. Dynamically
simulated characters were �rst proposed 30 years ago [AG85, WB85].
Characters animated in this way can respond to external perturbations
without requiring pre-recorded or pre-constructed animation data spe-
ci�cally tailored for those perturbations [FvdPT01]. Furthermore, it
allows for plausible animation of non-existing creatures.

Two main approaches to animation and character control are kinematic and
dynamic control. Kinematic control refers to the movement of objects irre-
spective of the forces involved in producing the movement [Par12]. For ex-
ample, the manual, pre-recorded and procedural approaches described above
are concerned with kinematic control. A downside of kinematic control is that
physical correctness, or even believability, is not guaranteed. This can be seen
in many crowd simulations and games, where characters can instantaneously
rotate, slide their feet along the ground, or do not respond to collisions. How-
ever, owing to the absolute, direct control over the character's pose, kinematic
control is widely used. Dynamic control is concerned with computing the un-
derlying forces that are then used to produce movement. Among the dynamic
control algorithms are the methods based on physics simulation. In such sim-
ulations, it is hard to attain kinematic constraints, such as placing a hand
at a speci�c position on a table, even though such control is often desired
in character animation. PD controllers (see Section 2.3) are often used to
produce forces that guide a dynamically controlled character into a speci�c
pose. Another major issue with physically based systems is stability. Often
the simulation requires very small update steps, in the order of a millisecond
per step, to produce stable results. Dynamic control methods are not limited
to character animation; other examples are the simulation of hair, cloth and
particles. Kinematic and dynamic control can be combined to animate dif-
ferent aspects of a character, by kinematically controlling the body pose and
then dynamically simulating hair and clothing.
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2.2.4 | Path planning

Many crowd simulation techniques produce a path for each agent to follow,
towards some goal position. Path planning methods can be subdivided into
�ow-based and rule-based models, cellular automata, agent-based models, and
road maps. These approaches not only have an impact on the produced
paths, but also have their own implicit or explicit agent shapes. For a general
overview of crowd simulation techniques and topics, we refer to the books by
Thalmann and Musse [TM13], and Pelechano et al. [PAB08].

Flow-based modelsare macroscopic, and simulate crowds as a whole. Ex-
amples are the seminal work by Henderson et al. who used �uid dynamics
[Hen71, Hen72], or the gas kinetics model by Kerr and Spears [KS05]. In
these models, characters are represented by particles, i.e. orientation-less,
compressible discs. Due to the simple representation, and by putting aside
individual behaviour, these models can simulate very large crowds.

Rule-based models, such as Reynolds'boids [Rey87] andautonomous charac-
ters [Rey99], can create realistic looking, complex behaviours and are suitable
for low and medium density crowds, such as �ocks of birds. The motion and
behaviour of these boids are determined by rules, and creating those rules
can be di�cult. These models were designed for simple, uniform �ocks, but
when humans are concerned, we expect more individuality and detail than
for a �ock of birds far away in the sky. Those simple models are not suitable
for modelling contact between agents, as they were built to avoid collisions.
When contact cannot be avoided, we humans will move out of the way by
side-stepping or simply collide and push through the crowd. In these models,
characters are represented by oriented particles, i.e. points inR3 that are
associated with some geometry to model their orientation.

Cellular automata discretise �oor space into cells. Every character can oc-
cupy exactly one cell, and vice versa. The character is implicitly modelled
as a cell-shaped object, usually an axis-aligned square. This results in even
spacing between agents, which will become unnatural when densities are high.
Pushing behaviour is also impossible with this approach. However, it is com-
putationally simple and easy to implement, and can often be seen in older
strategy games such as the Command & Conquer series [Lar02]. An altern-
ative approach, which also employs discretised �oor space, stores information
used by the crowd in each �oor grid cell, such as the desired velocity of the
characters in that cell [LMM03, Che04, Ali11]. Such an approach can sim-
ulate large crowds, but is limited in the number of goals for the agents to
move to. It also does not allow for individual preference of characters, so it
is impossible to model a heterogeneous crowd.

Agent-basedmethods employing social forces, or planning in velocity space,
such as the Reciprocal Velocity Obstacles (RVO) model [vdBGLM11, CGZM11,
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vdBLM08], generally allow for reasonably high density crowds of abstract
agents, while supporting individual behaviour of those agents. However, there
are limits to their e�ectiveness and realism at higher densities, as we will dis-
cuss in Chapter 6. RVO can be extended to support physical interaction with
obstacles and the environment [KGM13]. Social forces, introduced by Helbing
et al. [HM95], are not directly exerted by the environment, but are used to
represent the internal motivation of the individuals, such as the attraction
to a target position and avoidance of other people. This concept was further
extended by Pelechano et al. by combining these internal forces with physiolo-
gical aspects of the character and geometrical information of the surroundings
[PAB07].

In the described methods, the members of the crowd generally have limited
knowledge about their environment, and only take very local information into
account. As a result, they can get stuck in places where real humans would
not. To solve this, higher level planning is needed, such asroad maps[SKG05,
BBLA02, Ger10]. The high-level paths can be used directly, or processed
further [KGO09].

2.2.5 | Path following

Visualizing animated human characters based on the output of a crowd simu-
lation system is not a trivial task. Some crowd simulation systems avoid this
by visualizing only the abstract agent representation [KGM13, Ali11]. Other
methods directly use a corpus of prede�ned animation data to drive the char-
acters [KHHL12, JPCC14], also producing realistically animated characters.
A downside to these approaches is that high-level planning, such as speci�c
characters moving towards their exact goal positions, is harder to do, as the
required motions may be missing from the corpus.

The most commonly used approach is to place human characters at the sim-
ulated agents' positions and orientations. Such crowd simulation methods
produce paths for characters to follow, de�ning the character's global posi-
tion p(t) and orientation � (t) at each moment in time t. After placement of
the character, the body is animated using walk cycles [vdBGLM11, SAC+ 08,
PAB07]. This results in an animated character, but, due to a lack of co-
ordination between the animation and simulation subsystems, the animations
often show artefacts such as foot skating or unnatural animation speeds. Foot
skating is caused by the simpli�ed agent model. The agent can slide over the
ground plane with a linear motion. However, when walking, a human body
sways left and right, and accelerates and decelerates at every step. As a res-
ult, there is no single point in the body that exactly follows the agent's path
[vBEG11]. A carefully constructed walk cycle can model this swaying around
a central pivot point, and let that pivot point follow the path. This prevents
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foot skating when the agent is moving forward in a straight line, but, due to
the simplicity of the walk cycle approach, it is not a solution for curved paths.
In Chapter 6, we extend the common forward-walking walk cycle approach
with backward walking, sidestepping, and diagonal steps.

Singh et al. [SKRF11] plan foot placements in their crowd simulation system.
Contrary to the agent path described above, which does not correspond to
any point in the body, this model uses a biomechanical inverted pendulum
model to produce believable foot placement, steered by a space-time planner.
Not only does this prevent foot skating, it also allows for tighter collision
bounds and more precise control over character placement and motion. Once
the foot placements are planned, several methods are available [vdP97, CH99,
VBSE11] to animate a virtual character.

In contrast to the described approach, of �rst planning a path, and then
planning an animated character that follows that path, full-body motion cap-
ture data has been used directly as the basis for crowd animation techniques.
Lee et al. [LCL06] introduced `motion patches', later extended by Yersin et
al. [YMPT09] and Kim et al. [KHHL12]. These approaches use precomputed
human motion, often obtained from motion capture, to animate and stitch
together cyclic and collision-free behaviour. A small number of people (in
certain cases just a single person) are recorded simultaneously, and multiple
recordings are stitched together to form a crowd. As such, these patches could
possibly be intertwined into a crowd of high density, but due to the low-density
recording, the individuals in the crowd will still show low-density behaviour.
Furthermore, due to the high-level planning of these methods, planning the
motion of individuals, such as speci�c characters moving towards their re-
spective goal positions, is much harder to do.

2.3 | PD Controllers

Physical simulation techniques are used for animation (also see Section 2.2.3).
In the �eld of character animation, proportional-integral-derivative controllers
(PID controllers ) are employed to move physically simulated characters into
their desired poses [FvdPT01, YLvdP07]. The PID controller is the most
commonly used mechanism for control systems, and was �rst described in a
scienti�c journal by Minorsky in 1922 [Min22]. These feedback control systems
are used in many industrial control applications [AH96], such as controlling
temperature of the wort at a beer brewery, controlling the joint angles in a
robotic arm, or automatic steering of battleships. It is the latter application
in which the PID controller originated.

A PID controller is a single-input, single-output controller that consists of
three components. The input is the di�erence between the desiredset point
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and the current process value; this di�erence is known as the error . For ex-
ample, in the case of the beer brewery, the set point is the desired temperature
of the wort, the process value is the current temperature, and the error is the
signed di�erence between those. The �rst component of the PID controller is
directly proportional to the error (P). The second component is proportional
to the integral of the error (I), and counters systematic drift by taking into
account previous errors, such as heat escaping due to a lack of insulation of
the kettle. The third component is proportional to the derivative of the error
(D), and prevents overshoot of the set point. For the beer brewery, it causes
the gas burner to throttle down before reaching the desired temperature. The
output is the required change in the control variable, such as the throttle
for the gas burner in the case of the beer brewery, or the rudder angle of a
battleship. It takes the form

u(t) = K pe+ K i

Z t

0
e(� )d� + K d

de(t)
dt

;

wheree(t) is the current error, the output u(t) indicates the change in control
value, and t 2 [0; 1 ) is the current time. The K p; K i ; K d 2 [0; 1 ) factors
are known asgains, and in�uence the controller's behaviour. The appropri-
ate values depend on the controller's application, and algorithms for �nding
these values are subject to research [MMC96, Luy96, WC02] For an in-depth
discussion of PID controllers we refer to Åström and Hägglund [AH06].

In the �eld of character animation, a slightly simpli�ed model is used. The in-
tegral term counters systematic drift, which is relevant only for longer-running
processes and of little importance to the rapid changes in pose of an animated
character. The integral term is removed by choosingK i = 0 , resulting in a PD
controller. In Chapter 6, we employ PD controllers to steer agents towards a
desired placement in a crowd simulation system.

2.4 | Statistics

In this section we discuss two statistical methods. Section 2.4.1 explains
linear regression, which is commonly used to �t a model to observations.
Section 2.4.2 discusses the use of a binomial test to determine bias, for example
of participants in a user study.

2.4.1 | Linear regression

A problem that occurs in many forms of scienti�c research is the �tting of
a model to observations of some system. It is obvious that having more
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observations results in a better understanding of the system, leading to an
overdetermined system (i.e. more observations than degrees of freedom in the
model). The most commonly used approach is the minimization of the sum
of square residuals, where the residual is de�ned as the di�erence between
the observed value and the value the model predicts. This `method of least
squares' was �rst published by Adrien Marie Legendre in 1805 [Leg05]. How-
ever, its invention is somewhat controversially accredited to Carl Friedrich
Gauss, who claimed to have invented the method as early as 1795, when he
was eighteen years old, but did not publish it until 1809 [Gau09]. Gauss, how-
ever, was the �rst to link the method to probability, and provided algorithms
for the computation of estimates [Sti81]. A stable numerical solution was
formulated by Golub in 1965 [Gol65].

Linear regression is the application of the least squares method to a linear
model. Such a model takes a set of parametersx1, x2, . . . , xn , and provides
an expected outcomeE[y] by taking a linear combination of the parameters:

E [y] = B0 + B1x1 + B2x2 + � � � + Bn xn

Note that a linear model is not necessarily limited to straight lines, as long as
it is linear in the B i variables. An example isE [y] = B0 + B1x2

1. In a similar
way, the interaction between two parameters can be investigated by choosing
x i = x j xk . The result of a linear regression is usually shown in a table similar
to Table 2.1. The standardized coe�cients � indicate the relative importance
of the factors; these are basically the same coe�cients asB , after performing
a z-transform on the data. The z-transform modi�es the data such that it has
an average0 and standard deviation 1. This removes any scaling factor and
o�set. For example, temperatures measured inoC would result in the same
� as when measured inoF. This allows only for comparison between factors
in the same linear regression model, and not between models.

As with many statistical methods, there is a null hypothesis; p denotes the
probability that this null hypothesis is true, given the observations. In the case
of linear regression, the null hypothesis states that the average observation̂y
is a good model for the system, i.e.E [y] = ŷ, implying that the parameters x i

have no in�uence on E[y]. The t-statistic is well known from Student's t-test
[Stu08]; it is a measurement of the statistical signi�cance of the parameter to
the rejection of the null hypothesis, and used to computep. When p < 0:05 it
is generally assumed that the null hypothesis can be rejected, and thus that
variance in x i results in a signi�cant variance in E [y].

Next to statistical signi�cance, it is interesting to see how muchof the variance
in the observations can be explained by the model. The R2 value mentioned in
each regression analysis table caption denotes the percentage of the variance
in y that matches the variance in the factorsx i . In other words, R2 indicates
the percentage of the variance explained by the model. Note that this doesnot
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Coe�cients Standardized Signi�cance
B Std.Err. Coe�cients t p

(Constant) B0= 0:59 0:11 5:32 0:000
x1 B1= 0:12 0:16 � 1 = 0:28 0:79 0:446
x2 B2= 0:10 0:04 � 2 = 1:12 2:78 0:017
x1 � x2 B3= � 0:08 0:05 � 3 = � 0:76 � 1:54 0:148

Table 2.1: Example of the result of a linear regression analysis; R2 = 80%

imply that this model is correct only for R 2 of the cases. GivenN observations
with parameters x i and observed outcomesyi , average observationŷ, and
model f (x), R2 is computed as the ratio of the sum of squared residuals
SSreg to the total variance of the observations SStot :

SSreg =
NX

i =1

(yi � f (x i ))
2

SStot =
NX

i =1

(yi � ŷ)2

R2 = 1 �
SSreg

SStot

R2 is a deceptively simple metric. Choosing a linear model solely based on
high values for R2 can result in over-�tting the data, and in an overly complex
model; adding more parametersx i increases the degrees of freedom in the
model, which will always result in a better �t of the data. Similarly, in
Chapter 4, we avoid a more complex model that �ts better, since we cannot
explain why this more complex model would be correct.

There are more ways in which a linear regression analysis can produce the
wrong results. Care should be taken with the resulting model; as it is based
only on the observations, it cannot be assumed to be �t for extrapolation.
As a simple example, one could study the e�ect of a training, by analyzing
the e�ect of the number of days of training (x1) on the e�ectiveness of the
training, expressed as the number of correct questions in an exam (y). If the
found B 1 is positive, after a certain number of days of training, the model
would predict more correct questions than there are questions in the exam.

2.4.2 | Binomial test to determine bias

Linear regression can provide a model, for example of the number of correct
answers in a test, but it does not provide information on the bias of those
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answers. In Chapter 4, we compute a model that predicts how accurate
people are at recognising a certain situation. This model, however, does not
provide information about the type of error when the accuracy is low. A type
1 error is the incorrect rejection of a true null hypothesis, also known as a
false positive(FP). A type 2 error is the opposite: the failure to reject a false
null hypothesis, also known as afalse negative(FN).

The ratio FP:FN provides information to the bias in the observations, and
its signi�cance can be computed using a binomial test. Thebinomial test is
an exact test to compare the distribution of observations with an expected
distribution, and can only be applied when there are two categories of obser-
vations (in this case, `false positive' and `false negative') [FLP13]. When there
is no bias, the FP:FN ratio of N observations will show the same distribution
as the ratio of heads:tails in N fair coin tosses; this is the null hypothesis.
The binomial test results in the probability p that, given the observations,
these distributions are indeed equal. Whenp < 0:05, it is 95% certain that
the null hypothesis can be rejected, and we can interpret the FP:FN ratio as
signi�cantly di�erent from fair coin tosses, and thus biased.

Care should be taken to apply this analysis to the correct data set. For
example, when the aggregated FP and FN counts of a user study are used,
a signi�cant bias toward FP of one participant can cancel out a signi�cant
bias toward FN of another participant. Computing and reporting the bias per
participant provides a more detailed and meaningful view.





Chapter 3

Hierarchical Structures
for Collision Checking

Simulating a crowded scene requires tight packing of virtual characters, as
shown for example in the side view in Figure 3.1 and the top-down view in
Figure 3.2. In such cases, collisions are likely to occur, and the choice in colli-
sion detection shape will in�uence how characters are allowed to intermingle.
When a crowd is densely packed, collision detection on all characters can be-
come computationally expensive. A brute-force approach to collision detec-
tion would check every face of one character mesh with all faces of the others.
This is unattainable for a real-time crowd, so a smarter approach is needed.
Most agent-based crowd simulation systems use a simpli�cation, where crowd
agents are modelled as a cylinder sliding on a ground plane, animating a
character inside this cylinder using a walk cycle [HM95, PAB07, OPOD10,
AMTT12]. Typically, the character's orientation is identi�ed with the cyl-
inder's velocity, and the cylinder's radius is independent of the character's
pose. For sparse to medium-density crowds, this method is often su�cient.
However, when the density of the crowd increases such that the movement of

Figure 3.1: A crowded pavement.
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Figure 3.2: A top-down view of the crowd shown in Figure 3.1, using cylinders
with a 30 cm radius. Typical in literature are radii between 25 cm and 40 cm (also
see Section 3.4.2).

an agent may be impaired, a more precise representation of the space that
virtual characters occupy is needed. An example can be seen in Figure 3.2: in
such a densely crowded situation, cylinders of any �xed radius would result
in either undetected penetrations (when body parts are outside the cylinders)
or super�uous empty space between characters.

As a possible solution to the problem described above, we introduce thebound-
ing cylinder hierarchy (BCH), a bounding volume hierarchy that uses vertical
cylinders as bounding shapes. Since the BCH is a generalization of the single
cylinder, we expect that this representation can be easily integrated with ex-
isting crowd simulation systems. To be able to compare the BCH with existing
collision detection structures, namely the oriented bounding box tree and the
shape most widely used in crowd simulation, the single cylinder, we set cri-
teria based on query performance, construction speed and represented volume.
Based on the outcome of a comparative experiment, we show which collision
structure is preferable for which use case. To get an indication of possible
crowd densities, we investigate how close characters can be before collision is
detected, and �nally propose a critical maximum depth for the BCH. Here we
only look at collision detection, not collision perception. The latter provides a
useful measure for optimizing real-time graphics applications, and is studied
in Chapter 4 of this thesis.

Note that we focus on the problem of detecting collisions between two given
characters, which is known as thenarrow phasein collision detection. We do
not consider the precedingbroad phase. The broad phase �nds pairs of objects
that may collide, and eliminates pairs that are far away from each other,
usually employing space partitioning structures such as voxel grids [Rey06] or
space partitioning trees [VLOG10]. The narrow phase then takes these pairs
of objects, and performs the actual collision test. In this chapter we look at
discrete collision detection: for every time step in the simulation, stationary
shapes are intersected. This is also known asinterference detection. We also
do not consider the computation of the penetration depth. Penetration depth
is important for the computation of a physically plausible collision response.
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Collision is usually only detected after two objects have some measure of
interpenetration, and the penetration depth is then used as a measure of
the collision force [HTKG04]. Computing this penetration depth requires a
volumetric representation of the colliding objects. However, most applications
use a boundary representation, where objects consist of a polyhedral mesh.
As a result, we are limited to detecting intersections of the boundaries of the
objects.

Related work is discussed in the next section. Section 3.2 formalizes bounding
volume hierarchies for collision detection, and de�nes the bounding cylinder
hierarchy (BCH) and OBB tree within that formal de�nition. Section 3.3
details our experimental comparison between the single cylinder, the BCH
and OBB tree. In Section 3.4, we investigate di�erent properties of the BCH.
We discuss possible future work and conclude in Section 3.5.

3.1 | Related Work

Applications of collision detection include robotics, computer aided design and
manufacturing, and of course crowd simulation. It is common that simpli�ed
shapes are used in order to reduce computational complexity, such as a set
of bounding shapes for the head, the torso and the limbs. By using algebraic
de�nitions, such shapes can be used for collision detection. However, �nding
the correct algebraic shapes that tightly �t a given mesh can be cumbersome.

A di�erent approach to speed up the narrow phase is the use of model par-
titioning techniques such as bounding volume hierarchies (BVHs) that allow
for quick determination of non-intersection. Commonly used BVHs are sphere
trees [Hub96], axis-aligned bounding box trees [vdB97], oriented bounding box
trees [GLM96] and k-DOP trees [KHM+ 98].

Other authors have also compared di�erent BVHs. Gottschalk et al. [Got00]
proved that oriented bounding box (OBB) trees are superior in terms of query
performance over sphere trees and axis-aligned bounding box (AABB) trees
for surface based BVHs. Their method is widely used, and will be used for
comparison with the bounding circle hierarchy. Van den Bergen showed that
AABB trees are easy to adjust after the object has been deformed, so for real-
time adaptation of the collision hierarchy AABB trees are preferred [vdB97].
Both box-based methods use a bounding shape with straight edges and square
corners, which is not a good match for the human shape. This in itself is not
an issue as the hierarchy contains all the necessary details, but when the
maximum recursion depth is limited (as we investigate in Section 3.4) this
becomes relevant. Sphere trees do not have such square corners, and have
been proven useful for the estimation of penetration depth [OD99]. Collision
tests on spheres are simple as they are independent of the character's rotation.



24 Chapter 3: Hierarchical Structures for Collision Checking

However, a sphere bounding a virtual character would contain much empty
space. For a more detailed survey on collision detection techniques we refer
to the work of Kockara et al. [KHI + 07].

In this chapter, we introduce the bounding cylinder hierarchy for discrete col-
lision detection, also known as interference detection. The cylinder is the
prevalent shape in crowd simulation, and is widely accepted as a rough ap-
proximation of the human shape. By employing a hierarchical re�nement
strategy, we ensure that the BCH represents a much tighter �t than possible
with a single cylinder. The cylinder's rotational symmetry allows for fast
intersection tests and e�cient storage.

3.2 | Hierarchical structures for detecting
collisions

In the previous section, we have described a family of bounding volume hier-
archies that are commonly used for collision or interference detection. This
section presents a formal de�nition of such structures, providing us with a
common reference frame to compare members of this family. We introduce
the bounding cylinder hierarchy as a hierarchical generalization of the com-
monly used cylinder, and rede�ne the oriented bounding box tree within the
terms of our reference frame. Section 3.3 will use these de�nitions in a com-
parative experiment. We use polyhedral character meshes, and assume the
mesh consists of triangular faces; non-triangular faces can be triangulated
without loss of generality.

For an object P the ingredients for a hierarchical collision structureH(P) are:

1. A family of shapes, such as cylinders, boxes or spheres;

2. A �nite tree structure, where every node � contains a bounding volume
B (� ) of the aforementioned shape family, and represents a sub-object
P(� ) � P ;

3. A subdivision strategy, de�ning nodes in tree layer i +1 given the nodes
in layer i ;

4. A stop criterion for the subdivision.

Let � be any node in the tree, andC(� ) = f � 1; : : : ; � k g denote its child
nodes. We impose the following requirements for the hierarchical structures
we consider in this chapter, whereint (X ) denotes the interior of X :
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� P(� ) =
S

� 2 C ( � ) P(� ) ;

� For all �; � 0 2 C(� ), � 6= � 0 : int (P(� )) \ int (P(� 0)) = ; .

So in other words, P(� ) is partitioned into the sub-objects associated with
the members ofC(� ). A crucial property of bounding volumes is that for any
query object Q and node� , if Q \ B (� ) = ; then Q \ P(� ) = ; .

The above properties rule out certain bounding volume hierarchies, such as
using bounding boxes for torso (root node) and head, arms and legs (child
nodes), or the elliptical and cylindrical collision shapes by Dube et al. [DTT11]

3.2.1 | Bounding Cylinder Hierarchy

In this section, we de�ne the Bounding Cylinder Hierarchy (BCH). It re�nes
the cylindrical representation commonly used in crowd simulation. Note that
in this chapter we use bounding shapes for collision detection of characters
(and parts of characters), which is not always the case in the �eld of an-
imation; often approximations are used that do not necessarily contain the
entire character, in order to arti�cially allow increased crowd densities at the
expense of realism (also discussed in Chapter 4). We de�ne the structure
BCH(P) as follows.

1. A vertical cylinder is used as the bounding shapeB (� ).

2. The tree is binary; the root represents the entire objectP with its
smallest enclosing cylinder.

3. P(� ) is subdivided by a vertical separation plane. This plane is de�ned
by a point (for we will test several approaches, described below), and a
normal vector. To �nd this vector, we consider the projections of P(� )
onto the two horizontal global coordinate axes; the axis for which the
projection has the largest extent de�nes the normal. P(� 1) and P(� 2)
are de�ned as a partition of P(� ) by that plane � details are given below.

B (� i ) is de�ned as the smallest enclosing cylinder ofP(� i ).

4. When the radius ofB (� ) is less than a prede�ned threshold, subdivision
stops.

P(� 1) and P(� 2) are separated by a vertical plane, hence their interiors are
disjoint. As P(� 1) [ P(� 2) = P(� ), it follows that P(� ) is partitioned prop-
erly. A binary split was chosen in favour of a split into four parts, as the
latter can result in longer, thinner subdivisions that are not a good match
for a cylindrical bounding shape. Furthermore, splitting into four parts can
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Figure 3.3: Visualization of the contour BCH for the green mesh. The cylinders
are vertically cropped, so that the green mesh is still visible in this �gure.

be seen as a specialized, more restricted variant of binary splitting. In our
implementation we consider the bounding cylinders to be of in�nite height,
e�ectively ignoring the height of the character. This is common practice in
crowd simulations using single cylinders. Future development could include
the height information in intersection tests.

We have investigated four methods of representingP(� ) and chosen appro-
priate subdivision schemes accordingly.

Contour: In this approach we only consider the contour from the top view
of P(� ). The separation plane is then de�ned by its normal as described
in item 3 in the list above, and the centroid of the contour polygon. The
centroid is commonly used, as opposed to the centre of the bounding box,
as it often results in a more balanced tree and better query performance.
We have chosen to use the centroid of the contour rather than that of the
projected mesh vertices, in order to prevent bias to more detailed areas.



Chapter 3: Hierarchical Structures for Collision Checking 27

The contour is interpreted as a sequence of line segmentsS = f S0; : : : ; Sn g.
For each segment the centre point is computed; depending on the side of the
separating plane the centroid lies on, the segment is used to de�neP(� 1) or
P(� 2), taking care that neither set will be empty.

When S only contains a single line segment, and the segment is longer than
twice the threshold radius, the line segment is split into two halves and de-
composed as described above. This results in very little overlap between
the cylinders associated with the leaf nodes of the hierarchy, as shown in
Figure 3.3. The separation of line segments into smaller segments is not per-
formed when there are multiple line segments inS, as doing so would result
in a much larger number of cylinders in the hierarchy.

Contour (centre): This approach is almost identical to the contour ap-
proach, di�ering only in that, rather than the centroid, it uses the centre
point of the axis-aligned bounding box.

All projected triangles: In this method we eliminate the need to compute
the contour explicitly, by simply including all triangles of the character mesh
into the hierarchy. This will allow for faster construction at the cost of an
increase of the query time. This approach mimics the decomposition used
by Gottschalk et al. [GLM96]. A triangle is never subdivided into smaller
pieces, but is placed into a subdivisionP(� i ) depending on the position of
its centroid with respect to the separating plane. The separation plane is
chosen as described above, except that the centroid of the mesh vertices is
used. Subdivision stops when a node contains a single triangle. Since they
are not subdivided, we cannot get arbitrarily small cylinders. However, we
do have the ability to perform e�cient, exact intersection tests as every leaf
in the tree contains exactly one triangle.

Single cylinder: This method could be described as theall projected tri-
anglesmethod, but using an in�nite number of triangles for the stop criterion.
This results in a hierarchy with one node, containing only a single bounding
cylinder. As this form is so common, we handle it as a special case.

3.2.2 | Oriented Bounding Box tree

The OBB tree by Gottschalk et al. [GLM96] is a well-known and widely used
method for collision detection, and thus forms a good comparison for the
BCH. It follows the formal de�nition given at the start of this section:

1. An oriented box is used as the bounding shape.
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2. The tree is binary; the root represents the entire objectP with its
oriented bounding box.

3. Triangles of the mesh are stored in the leaves, based on which side of
a separating plane their centroid lies. For the exact spatial subdivision
rules we refer to [GLM96].

4. When a node contains only a single triangle, subdivision stops.

At every internal node, every triangle in P(� ) is represented by exactly one
child node. This ensures thatP(� ) is partitioned properly. At the leaf nodes,
the OBB collision test performs triangle-triangle intersection tests. We de�ne
three techniques to construct the OBB tree:

Full: The OBB tree is populated with the triangles of the original mesh.
This is thus an exact, three-dimensional representation of the mesh. Even
though the BCH and the other OBB approaches all use a projection onto the
ground plane, we are interested in a comparison with an exact representation
of the mesh.

Contour: We compute the contour of the projection of the mesh, as in Sec-
tion 3.2.1. The line segments that make up this contour are used to populate
the OBB tree.

All projected triangles: We use all triangles of the character mesh pro-
jected onto the ground plane to populate the hierarchy, as in Section 3.2.1.
Our hypothesis is that this will be less e�cient to query than the contour
case, but faster to construct. It may be faster to query than the full case.

3.3 | Comparison

In order to compare the BCH and OBB trees, we perform two timing experi-
ments. Each experiment uses two character meshes, one male and one female
(see Figure 3.4) of approximately 2850 triangles each. We use motion capture
recordings totalling 212 seconds of walking, turning, side-stepping and idling
motions; such motions are common in crowds. For each of the two meshes,
we randomly select 100 motion capture frames, resulting in a total of 200
randomly posed character meshes. For the experiments, those are regarded
simply as a collection of triangles; the fact that they were posed using an
articulated structure was of no relevance, and we do not use any metrics that
depend on such a structure. Tests are run multiple times to reduce jitter and
to average out external factors, on an Intel Core i7 3630QM 3.2 GHz laptop.
The BCH radius threshold is set at 1 cm.
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Figure 3.4: The two characters we used for testing. We removed non-manifold
edges such as hair strands to allow for volume computations.

We represent characters by their boundaries and do not see them as solids; we
consider two objects as colliding when their boundaries intersect. This means
that we will not be able to detect the case where one character completely
envelopes another. In our intended scenario this will not be an issue, as this
cannot happen given the character shapes and possible poses.

In our �rst experiment we measure the time required to construct the rep-
resentations for each of the 200 random poses; the results are shown in Fig-
ure 3.5a, where the `BCH single cylinder' row shows the time needed to com-
pute a single bounding cylinder for the posed mesh using a linear programming
method [MSW96]. The time to load the mesh data from disk is excluded from
the test.

The second experiment measures the duration of intersection tests. Each
of our 500 test cases is created by selecting two random poses, a random
translation along the ground plane and a rotation about the up-vector. The
process of randomization is repeated until a true collision is detected using
the exact full OBB method. This presents us with a worst case test set, as
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Figure 3.5: Comparison between the BCH and OBB tree variants.

negative tests often do not require descending the entire tree where positive
tests do. All tests are binary, i.e. only report whether an intersection is found.

We run 10,000 test iterations, where each iteration tests all 500 test cases
sequentially, preventing over-optimistic results due to caching. To illustrate
the e�ect of caching, we have performed the experiment in a di�erent order
by running each individual test case 10,000 times. This resulted in an approx-
imately 15% faster performance, but as this would not re�ect a real use case,
it will not be included in our results.

The experiments show a query time of2:66 �s for the BCH contour method,
and 4:63 �s for the OBB contour method; in our scenario the BCH is 74%
faster to query than the OBB tree (see Figure 3.5b). In general, the amount
of overlap between cylinders of the same hierarchical layer of a BCH is higher
than the overlap between boxes in the corresponding OBB tree. However, the
simplicity of intersection tests between cylinders makes up for this when using
our contour approach. The more or less fat shape of the projected mesh is a
reasonably good �t for the cylinders, whereas the OBB tree is more e�cient
for long, thin shapes such as individual triangles. This is clearly shown in
the di�erence in intersection speed between the BCH and OBBall projected
triangles cases, where the trees are of the same size and both well balanced,
but due to the lesser amount of overlap the OBB tree is more than twice as
fast to query.

There is no signi�cant di�erence between the centre and centroid BCH meth-
ods, with respect to construction and query duration. Since using the centroid
results in a slightly smaller tree (see Figure 3.5c), the remainder of this chapter
will use this approach.

For interactive, multi-character purposes, use of the BCH requires a prepro-
cessing step in which the data structures are computed, as this cannot be
done at interactive rates for multiple characters (yet). However, the resulting
structure is nearly 8 times faster to query than the 20:66 �s of the fastest-to-
construct projected triangles OBB method.
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The OBB tree provides an exact collision test, whereas the precision of the
BCH depends on the threshold radius. For cases where exactness is more
important than performance the OBB tree would be a more suitable repres-
entation. We measure this in Section 3.4.

The implementation by Gottschalk et al. was used in all three OBB cases.
The contour tests were performed using this 3D implementation, where the
contour line segments are input as degenerate triangles. A pilot experiment
showed that this did not cause signi�cantly di�erent results compared to using
non-degenerate triangles. Our experimental results thus re�ect a worst case
scenario; an alternative implementation optimized for two-dimensional shapes
could provide di�erent results, but was not available.

The BCH reports a collision when the cylinder at a leaf node collides with
another cylinder at some leaf node. By instead reporting a collision when a
given maximum recursion depth is reached, we can allow for alevel of detail
approach. A possible application would be in a crowd simulation scenario.
More precision is required close to the camera than further away in the crowd,
as most of the collisions will be occluded [KOOP11]. Crowd density could
also be used to in�uence the maximum recursion depth, reverting to a single
cylinder for low-density crowds. A similar technique could be applied to the
OBB tree, although at coarser levels the corners of the bounding boxes may
induce unnatural behaviour and visual artefacts. At the coarsest level the
BCH collapses to a single cylinder, which has already been proven to be
useful for crowd simulations.

These experiments are purely quantitative, and do not consider the quality of
the results. A qualitative experiment is performed in Chapter 4.

3.4 | Properties of the BCH

In the previous section we have shown that the BCH is a suitable collision
structure for virtual characters. This section investigates the BCH further.
One of the goals of this thesis is to look at ways to e�ectively deal with crowds
of high density. We look at the e�ect of employing a maximum recursion depth
for intersection tests, to see how much closer meshes can get to each other,
before a collision is reported, by using a more detailed representation.

In real life, a collision between two people occurs when there is a collision
between the two occupied volumes. The more precise the collision shape
represents this volume, the smaller the risk of false positives. In Section 3.4.2
we investigate the represented volumes of the BCH and compare those to the
commonly used single cylinder.
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Figure 3.6: The distance test, where one character is slid towards the other until
collision is detected.

These experiments have been performed using the same 200 randomly posed
meshes as described in Section 3.3. Also for these experiments, the posed
meshes were regarded simply as a collection of triangles.

3.4.1 | Residual distance

Our premise is that a better-�tting collision shape will allow for tighter pack-
ing of virtual characters, as less false positives will be detected. In this section,
we investigate the residual distance between two characters when we detect a
collision. Often, the root joint is used as the position of a character, and the
planar di�erence in root joint positions denotes the distance between them.
However, the choice of root joint can be arbitrary, and the reported distance
should also depend on the pose. Instead of the root joint distance, we use the
actual distance between the two meshes (see Section 2.1); when this distance
is zero, there is a true collision.
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Figure 3.7: Residual distance between meshes before collision. (a) The bar chart
shows the average residual distance between two characters at which a collision is
reported. (b) The graph shows a thin red line for each test case and thick lines for
medians. The dark green, curved line shows the median residual distance obtained
with the BCH.

We use a coordinate frame where thex- and y-axes span the ground plane.
In our experiment we randomly orient two posed meshes. We place one at
the origin, and the other at (2; y) where y 2 [� 0:5; 0:5] is chosen such that
the meshes will collide. We then slide the �rst mesh along the positivex-axis
until a collision is reported, as shown in Figure 3.6. In the resulting con�gur-
ation, the actual distance between the two meshes is reported as theresidual
distance. We chose this approach over explicitly computing the distance at
which a collision would occur, as our approach requires no knowledge of the
actual collision detection algorithm and is very simple to implement. We re-
peated this process for all 200 meshes in a total of 500 random orientations,
and for several collision detection approaches.

The bar chart in Figure 3.7a shows the average residual distance for the
minimum bounding cylinder, the contour BCH and contour OBB tree. The
full OBB method is not included in the �gure, as this is an exact collision
detection scheme, so the distance is zero with zero standard deviation.

At an average residual distance of 5 cm, theBCH contour method allows
characters to get signi�cantly closer to each other before a collision is reported
than the 20 cm allowed by a single cylinder. The situation shown in Figure 3.1
is impossible to attain when representing characters with a single cylinder.
However, even in this dense situation the contours do not intersect.

On average theOBB contour allows for a residual distance of 4 cm, which is
1 cm closer than theBCH contour allows. This is explained by the fact that
the BCH is an approximation; in our experiment we used a threshold radius
of 1 cm, which is re�ected in these results.

To investigate the level of detail possibilities of the BCH we limit the recursion
depth of collision tests. Figure 3.7b shows the distance at which a collision is
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detected given a maximum recursion depthd. The single cylinder always has
the same distance asd = 0 . A higher d results in a tighter �t of the mesh,
except in some speci�c cases (for example the small peak in one of the test
cases atd = 3 ). At d = 9 the distance is only1% larger than at d = 1 , so for
many practical purposes this represents a critical maximum recursion depth.
As the number of reachable nodes in the tree isO(2d), imposing such a limit
will increase query performance.

3.4.2 | Represented volume

When checking for collisions using simpli�ed shapes, one aims to use a collision
shape that approximates the actual shape in a su�ciently precise manner. To
see how well a cylinder matches a human shape, we have compared for all 200
random poses: the smallest enclosing axis-aligned cylinder and the volume
represented by the BCH. We normalized the volumes by the volume of the
mesh, to make it easier to compare between meshes of di�erent sizes.

We posed the meshes using linear blend skinning, also known as skeletal sub-
space deformation. This is a conventional skinning method that does not
preserve volume [GB08]. However, we do not use heavily deforming poses;
we measured a standard deviation of 0.01m3. The average of the measured
volumes was used for normalization. We de�ne the volume represented by
a BCH as the volume of the union of the cylinders stored in the leaf nodes
of the all projected triangles representation. For simplicity we use a discret-
ization by drawing the bases of the cylinders onto a high-resolution image
(> 6 megapixels/m2), counting the drawn pixels and multiplying with the
character's height.

The results can be seen in Figure 3.8, with numeric data in Table 3.1. From
this, we can observe that the cylinder may not be the best representation of
the human shape, as it represents a volume approximately seven to ten times
larger than the actual character.

The radii most often used in literature are around 0.25 m [KGO09, vTCG12,
HFV00], or around 0.40 m [Ger10, AMTT12], and sometimes up to 2.00 m
[GKLM11]. We used character models that are slightly taller than the world
average (1.74 m for the female character, 1.88 m for the male character),
probably because the models were created in The Netherlands. The average
radii we have found for the random poses are consistent with what is used
in literature. However, given our results, we can safely say that for average-
sized characters a radius of 0.25 m will cause unnoticed intersections (i.e. false
negatives), whereas a radius of much more than 0.40 m will cause more spacing
between characters than strictly necessary (i.e. false positives). In Chapter 4,
we investigate the perception of collisions, and report on the observed bias of
the participants towards false positives or negatives.
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Figure 3.8: Volumes occupied by the minimal bounding cylinder and by the BCH.
The volumes are expressed as multiples of the actual mesh volume, to allow com-
parison between di�erent meshes.

average median stdev
Cylinder radii (m) Female 0.34 0.31 0.05

Male 0.42 0.40 0.05
Volumes (norm.) Cylinder Female 11.09 9.50 3.55

BCH Female 4.61 6.99 0.76
Cylinder Male 7.70 6.99 1.75
BCH Male 3.57 3.34 0.51

Table 3.1: The observed radii of the minimal spanning cylinders, and the di�er-
ence in volumes occupied by those cylinders and the BCH. All volumes have been
normalized by the mesh volume to allow comparison between di�erent meshes.

3.5 | Conclusion

We have introduced a bounding cylinder hierarchy for e�cient collision check-
ing with a �exible level of detail. We have compared it with the commonly
used OBB tree, and seen that in the scenario we tested � humanoid character
collisions � the BCH provides a better query-time performance.

We suspect that the BCH is more resistant to an increase in detail of the model
than the OBB tree. The latter typically contains all triangles of the mesh,
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and thus depends on the mesh complexity. The BCH complexity is bound
by the threshold radius, providing tunable mesh simpli�cation for collision
checking.

In contrast to many single-cylinder systems, we have consistently used the
smallest bounding cylinder of the posed character. This resulted in a worst
case scenario, as often in crowd simulations a �xed pose-independent radius
is used. In such a case, visualizing a dense crowd is guaranteed to show
undetected interpenetration of body parts, which we want to avoid. We have
shown that the volume that is represented by the BCH is much smaller than
that of a single bounding cylinder, and that the BCH also allows characters
to move much closer together before collision is detected.

The walking, turning, side-stepping and idling motions we used in our ex-
periment are fairly commonly seen in real crowds. When performing such
motions, people are fairly cylinder-like, in that they are standing straight up,
and are taller than they are wide. It would be interesting to see how well
the BCH and other representations compare when di�erent motions are used,
such as cartwheeling, belly �opping and breakdancing.

It is trivial to compute the distance between two cylinders. This is important
for crowd simulation systems, as many distance checks are performed between
neighbouring crowd agents. Such distance checks provide a more detailed in-
dication of proximity than a binary collision check. A fast distance metric
between BCHs would enable a crowd simulation system to use the charac-
ter poses in their proximity computation, and thus produce a more realistic
results. We leave the construction of such a distance metric to future work.
However, in Chapters 5 and 6 we introduce a capsule shape for collision de-
tection, which �ts better than a cylinder; distances between capsules are also
relatively easy to compute.

In our current implementation, the vertical plane used in the construction of
the BCH is always aligned with a horizontal coordinate axis, as suggested by
Kolowski [Kol98]. Using a similar covariance analysis as used by Gottschalk
in the OBB construction could result in a more optimal subdivision and faster
query times, at the potential expense of longer construction times.

The cylinders in the BCH span the full height of the pose. To facilitate a
closer �t, we could horizontally slice the mesh, and create a BCH for each
slice. Possible slices would be for the legs, torso, and head. This would
provide a tighter �t at only a constant factor in processing and storage costs.
Furthermore, such subdivision would allow for di�erent levels of detail in
collision checking for di�erent body parts.

We have limited our comparison to static poses. The BCH for one pose is
completely unrelated to the BCH of the next pose of the character. We are
interested in investigating an optimization technique to �nd a set of animated
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cylinders that �t an entire animation. Not only would this allow for more
e�cient storage, but such temporal coherence would also make interpolation
between motions possible. The method by Van Basten et al. [VBSE11] is an
example in which prede�ned animation segments are interpolated and where
such preprocessing is possible.

The BCH represents an approximation of the character's shape. It is con-
structed such that it never produces a false negative, but does produce false
positives. This is a common approach in robotics, where the collision between
robots can result in expensive damage. However, this is not the case for vir-
tual characters, as they can freely move through each other. In a virtual
environment, the precision of collision detection is not determined by possible
damage, but rather by the available computational power, the requirements
to the level of realism, and the accuracy of the observer. In the next chapter,
we try to measure the latter aspect, and follow up with a qualitative study
to �nd out how well people can recognise collisions in both animations and
static poses.





Chapter 4

Perception of Collisions
between Virtual

Characters

In the previous chapter, we described the Bounding Cylinder Hierarchy (BCH)
and Oriented Bounding Box (OBB) collision detection techniques. The BCH
represents an approximation of the character shape, and so does the OBB
when applied to the ground projection of the character. However, many other
collision detection schemes, including the OBB applied to the original charac-
ter shape, aim at exactness, which is vital in areas like computer aided design
and robotic product manufacturing. Such exactness may not be the best ap-
proach for collision detection between virtual characters. People observing
virtual characters may not be able to recognise collisions in certain con�gur-
ations, and thus certain optimisations could exploit this to improve collision
detection performance without sacri�cing perceived quality, or to provide a
better match between observed and detected collisions. Exactness seems even
less crucial in crowds of virtual characters; people observing a crowd of vir-
tual characters do not always have all the information to determine whether
a collision occurs.

This chapter presents an investigation into the accuracy of human observers
with regard to the recognition of collisions between virtual characters. We
have performed two user studies into the perception of collisions between
virtual characters, to determine how accurate human observers can classify a
situation as `colliding' or `not colliding'. A pilot experiment investigates the
perception of static images. The main experiment uses video to explore the
e�ects of movement; we have investigated the angle between the characters
and the severity of the (near) collision, and present a statistical model for the
expected accuracy.

Our results show that the average observer has a bias towards negative (`not
colliding') answers, mostly in cases of minor collisions, and that the accuracy
of the answers has an asymmetrical relation with the severity of the (near)
collisions. To conclude we suggest a technique to improve performance of
collision handling possible collision shape, and a simpli�cation scheme that
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matches human perception. Contrary to our approach in Chapter 3, this sim-
pli�cation is based on inner approximations rather than the coarse cylindrical
outer approximations that are commonly used in animations. Furthermore,
we investigate the di�erence in perception of lower-body and upper-body col-
lisions, which, to our knowledge, has not been explored yet.

The rest of the chapter is organised as follows. Section 4.1 discusses re-
lated work. The overall experiment design is described in Section 4.2. The
pilot experiment is described in Section 4.3, and the main experiment in Sec-
tion 4.4. The implications are discussed in Section 4.5. Section 4.6 concludes
the chapter.

4.1 | Related work

The perception of collisions between large numbers of objects was studied by
O'Sullivan et al. [ORC99, OD01]. They showed that when the simulation
becomes more complex, such as when looking at animated characters rather
than simple geometric shapes, observers `rely on their own naïve or common-
sense judgements of dynamics, which are often inaccurate' [OD01]. We will
come back to this later in this section.

Perceptual studies of virtual characters have been performed with regards
to motion, emotion, timing and sound [EMO10, MEDO09, EHEM13]. An
experiment by Hoyet et al. [HMO12] investigated the perception of causality
in virtual interactions, dealing with pushing interactions between characters.
Their focus lies on the perceived realism of a scene, after applying alterations
commonly found in virtual environments such as games. In contrast, our
experiment does not focus on perceived realism, but on whether collisions can
be perceived at all.

Perception of collisions between a real user and a virtual entity has also been
studied. DeLucia [DeL13] investigated the perception of collision with respect
to tra�c safety, i.e. collision between moving obstacles and a stationary ob-
server. Olivier et al. [OOP+ 10] performed a user experiment to assess whether
real humans are also able to accurately estimate a virtual human motion be-
fore collision avoidance, and conclude that, when an observer is in front of a
simple display, judgement of crossing order was easier than recognition of fu-
ture collisions. This shows that perceiving collisions, at least when one virtual
character is involved, is nontrivial. They continue to show that the `bearing
angle', the angle at which one entity sees the other, plays a large role in the
perception of collisions.

Kulpa et al. present an experiment of both the perception of crowds of vir-
tual humans, and an accompanying LOD technique for collision detection
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[KOOP11]. Their focus lies on the accuracy of human observers in recog-
nising collisions, based on various parameters such as camera distance, hori-
zontal and vertical camera angle, and character distance. They measure the
latter as the distance between the characters' root joints, which, although easy
to compute, provides only a rough estimate for the distance between the two
characters. In contrast, in this chapter we use the actual distance between
the character shapes, as de�ned in Section 2.1. This metric also determines
whether there is actually a collision or not. Another contrast to the aforemen-
tioned work by Kulpa et al. lies in the placement of the camera. We place the
camera such that the collision itself is maximally visible. Furthermore, rather
than having the characters walk along parallel paths, we consider crossing
paths of the characters, and measure the e�ect of the angle between those
paths on the perception of the collision.

To speed up collision detection algorithms, it is common to forego the pos-
sibly complex shape of the object, and use a simpli�ed shape instead.Level
of detail (LOD) techniques can generate such shapes, most notably applied
to model simpli�cation for rendering acceleration [CVM + 96, LWC+ 02]. LOD
techniques have seen less emphasis in the area of collision detection, and, as
we have done in Chapter 3, mostly focus on the simpli�cation of the collid-
ing shapes [DO00, YSLM04]. Otaduy and Lin [OL03] introduced a technique
that also considers the velocity and view size of the objects, and allows for
time-critical detection in a similar way as introduced by Hubbard [Hub94].
Apart from the velocity-based LOD technique, these techniques do not focus
on human perception of collisions, and taking this into account could lead to
better algorithms. O'Sullivan et al. [OCV + 02] incorporated LOD techniques
not only in rendering and collision handling, but also in the animation and
behavioural algorithms. In the discussion section we explore possible adapt-
ations of LOD techniques to bring them in line with our �ndings on human
perception.

We have performed two user studies. The �rst experiment is a pilot experi-
ment, the main goal of which is to determine reasonable ranges of parameters
to be used in the main experiment. The pilot experiment uses static poses
rather than animated characters, since it is nearly impossible to �nd animated
cases corresponding to speci�c desired parameter values, even though we are
aware of the limitation that the lack of movement may make it di�cult to
fully assess the situation. As such, the participants' answers may depend on
common-sense judgements, which O'Sullivan and Dingliana [OD01] described
as inaccurate. However, their conclusions are based on geometric shapes, and
it will be interesting to see how accurate or inaccurate the results are for hu-
man shapes. The main user experiment uses animated characters, since we
aim at applying our results to collision detection strategies for moving char-
acters. We examine the e�ect of the severity of the (near) collision, and the
angle between the paths of the two characters.
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4.2 | Experiment design

In this section, we describe the common experiment design, which is shared by
both the pilot and main experiments. In both user studies, we show rendered
3D scenes involving two virtual characters in an otherwise empty virtual world.
One of the characters is male, the other is female. The two characters are
posed using previously recorded motion capture data of a walking person.
The following invariants are taken into account.

� No sharp shadow is rendered, as that would e�ectively provide a second
angle of view.

� The ground plane is evenly textured, and blends into a solid background,
such that it gives the user some sense of perspective without distracting.

� Characters are fully textured and rendered using smooth shading. This
provides the most realistic rendering of our character models, while
maintaining the exact triangular shape used in the distance and col-
lision computations.

� The characters are placed such that the (near) collision occurs in the
vicinity of the origin.

� The camera is placed at an eye height of 1.75 metres and slightly look-
ing downward as to show both characters from head to toe, mimicking
the viewpoint of a human observer in a similar real-life situation. The
downward angle is adjusted such that the point at 0.89 metres above
the origin is at the centre of the view.

� The camera's �eld of view is chosen to mimic a 50 mm lens on a 35 mm
(`full-frame') camera, which is known to result in a perspective distortion
similar to that of the human eye.

� Lights are attached to the camera at an o�set; lighting is constant with
respect to the camera angle.

Participants are presented with an online web-based questionnaire. Before
starting the test, they are instructed that any physical contact between the
displayed characters (including the slightest touch) is considered `a collision'.
Each participant is shown a scene, advancing to the next after the question
`Do these characters collide?' is answered. The questions are binary; it is
only possible to answer `yes' or `no'. Answer buttons are always visible, and
can be used at any time. Participants have to click on their answer, and then
on a con�rmation button, which is placed equidistant to the `yes' and `no'
buttons (see Figure 4.1). This ensures that the mouse has to travel a similar
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Figure 4.1: Screenshot of the questionnaire.

distance regardless of the answer to the previous question, preventing bias
towards repeating answers.

The questionnaire, for both the pilot and main experiment, was open to any
participant, who were sourced among colleagues, students, members of com-
puter science and game development forums, and several other non-computer
science forums. A small reward was ra�ed o� among interested participants
that completed the survey.

Four types of answers are considered: true positive (TP) when there was a
collision and it was recognised as such; false positive (FP) when there was no
collision but it was recognised as one; true negative (TN) when there was no
collision and recognised as such; false negative (FN) when there was a collision
but not recognised as one. AccuracyA is computed in a similar way as by
Kulpa et al. [KOOP11], as the fraction of correct answers

A =
T P + T N

T P + F P + T N + F N
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Absolute uncertainty (i.e. pure guesswork) would result in A = 50%. With
continuous data, absolute uncertainty would result in a normal distribution
around A = 50%; analysis of the standard deviation would be needed to
determine whether the observed distribution di�ers signi�cantly from pure
guesswork. However, due to the binary nature of our data, the standard
deviation contains no information regarding the spread of the answers.

4.3 | Pilot experiment

In this section we describe our pilot experiment. We investigate the ability of
observers to recognise collisions between virtual characters instatic situations.
Using static images allows us to test a wider range of situations that are
di�cult to create in an animated context, especially given the requirements
that there is only a single collision and that the forward velocity is more or
less constant.

4.3.1 | Overview

This section describes the pilot experiment design, invariants and variables.
The invariants as described in Section 4.2 are taken into account, and shadow
is not rendered at all.

The characters are placed on the ground (xy) plane such that the distance
between their meshes (see the de�nition ofd(A; B ) in Section 2.1) is Dm

metres. Both are initially placed in a random pose at the origin, and then
moved apart along thex-axis until the desired distance is obtained. A negative
value for Dm models the penetration depth. For simplicity of computation,
we use a reasonable approximation, and de�ne it as the minimum distance to
travel along the x-axis in order to separate the two meshes1. To generate such
cases we use a two-step approach. First the characters are placed atDm = 0
as described above, then they are both moved along thex-axis towards the
origin by Dm =2; by moving both meshes, the collision will still be near the
origin. The line segmentL is de�ned by the closest points on the two meshes,
hencejjL jj = max(0 ; Dm ) (assuming L is unique). When Dm < 0, jjL jj is a
degenerate line segment, and de�ned as the point where the meshes touched
in the �rst step of the two-step approach we described earlier.

The camera is placed at a random distanceD c to the centroid of L and a
random angle, and an image is rendered. A selection of these images are then
used in the user experiment; details are presented in Section 4.3.2. Thefront

1Although theoretically there is the possibility that this metric is very di�erent from the
penetration depth, in our test cases this di�erence is only small.
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and rear character are de�ned respectively as the characters closest to and
furthest from the camera, based on their root joint positions.

Our pilot experiment considers three variables. The �rst two variables are
randomly sampled from a suitable distribution, and used as input to generate
the images used in the experiment. The other variable is derived from the
randomly generated scene.

� Mesh-mesh distanceDm was chosen uniformly from the interval [� 0:09,
0:15], in metres. We do not use any image withjDm j < 0:001.

� Camera distanceD c 2 [4; 16], from camera to centroid of L , in metres.
In the case of animated characters, Kulpa et al. [KOOP11] found that
up to a certain projected size of the characters camera distance had little
in�uence on accuracy. We are interested to see if this holds for static
situations as well. This variable is chosen from an exponential distribu-
tion, such that more samples are chosen at smaller distances. When a
character is close to the camera, perspective distortion is stronger and
resulting e�ects are easier to measure. The lower bound is chosen such
that characters �t entirely inside the camera frustum.

� Variable � 2 [0; 1 ) measures the length of the visible (i.e. not occluded
by the front character) part of L , measured in metres. � is unde�ned
when the characters are colliding, as there is no visible gap between the
characters in those cases. Note that this metric does not denote the gap
between thesilhouettesof the characters; there are many cases in which
the visible part of L lies in front of the rear character, such as depicted
in Figure 4.2a.

We want to investigate the role of these variables in the perception of collision
detection. Given a con�guration of two characters, variables Dm and � are
relatively hard to compute, since computing L is a non-trivial task. This
means that these variables cannot be directly used in a crowd simulation
system. Nevertheless, we suspect that they model important aspects of the
perception of the observers. With respect to variableDm , we expect the
accuracy to be the lowest aroundDm = 0 , with a linear positive dependency
between jDm j and the accuracy of observers. We expect a positive linear
correlation between the accuracy and� , as a more visible `gap' should result
in higher accuracy.

Note that the camera angle is not directly part of the variables we consider.
Even though the angle of the camera with respect to the walking direction of
the characters has been shown in previous work to be relevant to perception
[KOOP11], our characters do not share a single direction, hence this metric
loses its meaning.
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��
(a) Front view as seen from the camera, showing � as the visible part
of line segment L in red. The striped area indicates the occluded part
of the rear character.

L

(b) Top-down view, showing line segment L in red

Figure 4.2: Front and top-down view of the experiment setup.
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4.3.2 | Experiment

To generate the images, the characters were posed using a randomly selec-
ted frame from a motion capture corpus consisting of stepping and walking
motions. An additional random orientation around their up-axis prevented
correlation between the test cases and the absolute orientation recorded in
the motion capture lab. The images are rendered at a resolution of800� 600
pixels.

Each variable's range is uniformly split up into eight bins, as shown in Fig-
ure 4.3. Each image is assigned a bin index for each of the three variables.
The interval [� 0:09; 0:15] metres allows us to placeDm = 0 at a bin boundary,
separating colliding and non-colliding images into di�erent bins. A random
sampling technique described by Wand and Straÿer [WS02] is used to ensure
at least 22 images per bin, resulting in a total of 373 images.

Participants are presented with an online web-based questionnaire, as de-
scribed in Section 4.2. Each image is shown for 6 seconds and is then hidden;
this timeout ensures that all participants look at an image for a more or less
equal duration. In order to prevent bias towards positive or negative answers,
we include both colliding (i.e. Dm < 0) and non-colliding (i.e. Dm > 0)
images in the experiment. An exact 50%/50% distribution for any single
participant who completes the survey is ensured, and approximated for par-
ticipants that do not.

Per participant, a random subset of the test cases is shown. This allows us to
use a large test set without forcing participants to answer all 373 questions.
Image selection is biased towards images in bins containing the least number
of answers, providing a more even spread of answers over the bins than when
uniformly selecting images.

4.3.3 | Results

A total of 212 actively participating users provided 9179 answers, averaging
43 answers per participant. The accuracy over all participants was 72% for
this experiment.

For each variable, a graph is shown in Figure 4.3. These graphs show the
likelihood that the participants correctly identi�ed the situation, averaged
over the images in each bin. The solid blue graph shows theaverage accuracy
per bin, with the error bars indicating the standard deviation. The scatter
plot shows a dot for each image in the survey. The dark red dashed graph
shows thetrend, and consists of one or two linear pieces.
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Figure 4.3: Plots of the results of the static experiment. Results are binned; the
blue, continuous line shows the accuracy of each bin, with red error bars denoting the
standard deviation. The red dotted line shows the linear �t of the accuracy. Note
that the R 2 numbers relate only to a single parameter of our model with respect to
the entire variance in the observations.

To de�ne the trend of the accuracy, we investigate, in order of simplicity, a
linear function or a piecewise linear function. We accept the simplest function
that describes the data well. An analysis of the variance shows how well the
found trend �ts the data (R 2).

As the projected size of� is dependent onDm , we also investigated the visible
percentage� 0 = �=D m to remove this dependency. However, as can be seen
in Figure 4.3, the results are less relevant than for� (R2 = 8%).

The e�ect of camera distanceD c (not included in graph) is negligible, resulting
in R2 = 0% for camera distances up to12 metres. This con�rms that the
�ndings by Kulpa et al.[KOOP11] are also applicable to static situations.

Computing the average over all participants, we see that 53% of the answers
was `not colliding' and 47% was `colliding'. We follow the binomial approach
detailed in Section 2.4.2 to compute the number of participants that are neut-
ral, err towards false positives, or err towards false negatives. Using a 95%
con�dence interval, none of the participants had a signi�cant bias towards
false positives, i.e. incorrectly answering `colliding'. 163 participants did not
show any bias, whereas 115 participants showed a signi�cant bias towards
false negatives, i.e. incorrectly answering `not colliding'. These results may
impact strategies for collision detection, as those are generally aimed at the
prevention of false negatives; this analysis will be performed in the main ex-
periment as well, to investigate whether the same bias towards false negatives
is seen in animated situations.
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Figure 4.4: Still from one of the videos used in the animated experiment. Only
9% of the participants recognised the left scenario as a collision. The feet of the
characters intersect, as can be seen from the side view on the right.

4.4 | Main experiment

In this section we describe our main experiment, in which we investigate
the ability of observers to recognise collisions between virtual characters in
animated scenarios. Using animated characters, we aim for our results to be
applicable to other animated situations, such as crowds of virtual characters.

4.4.1 | Overview and variables

This section provides an overview of the main experiment design. The two
characters are animated using previously recorded motion capture data of
a person walking in a straight line. Collision responses were not animated;
participants could not discriminate colliding from non-colliding scenarios by
looking at the animated behaviour. Figure 4.4 shows an example still from
one of the animations.

The same invariants as in Section 4.2 are taken into account, albeit with
two di�erences with the pilot experiment. Firstly, to improve the perceived
realism, and to visually ground the characters on the �oor plane, shadows
are rendered. These are very soft (i.e. no hard edges) by employing multiple,
large light sources, preventing a second angle of view onto the scene. Secondly,
since Kulpa et al. [KOOP11] showed that there is no statistical signi�cance
of the camera distance, the camera is placed at a �xed distance of 6.6 metres
from the collision point.

The characters are placed on the ground (XY) plane, such that their paths
cross at an angle� . By modifying this angle, the starting positions, and
animation o�sets, a total of 16 colliding and 16 non-colliding scenarios were
constructed. To allow reasoning aboutthe collision, we make sure that for
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Label Colliding : I V Label Non-colliding : Dm

LOW 0.5 cm3s LOW 0.5 cm
MODEST 12.5 cm3s MODEST 1.0 cm
CONSIDERABLE 67.2 cm3s CONSIDERABLE 3.0 cm
HIGH 132.0 cm3s HIGH 5.0 cm

Table 4.1: Severity labels for the colliding and non-colliding cases, based on a
small pilot experiment.

the colliding cases there was only a single, continuous time interval in which
the characters were intersecting. As a result,� = 0 could not be investigated,
as it would be impossible to create a scenario with a single collision of the
intended severity.

To give the best view of the (near) collision the camera is placed on either
the positive or negative side of one of the two bisectors of the character's
paths. For each video we manually select which of those four possible positions
provides the best view. This provides us with a worst case scenario, as when
looking at animated characters in general, often the user will not have an
unobstructed view of the collision.

Our experiment considers four variables, de�ned below. The �rst two are
selected from a set of prede�ned values. The character animation is adjusted
as described earlier, to produce a video that adheres to those parameters.
The second two parameters are derived from this animation, and allow us
to perform more statistical analyses on our data in order to �nd out which
component is important for the recognition of collisions. The variables are
de�ned as follows.

� Character angle � 2 f 45; 90; 135; 180g degrees. This de�nes the angle
between the forward vectors of the characters.

� The severity S of the (near) collision labeled as LOW, MODEST, CON-
SIDERABLE or HIGH, and expressed either as intersection volume in-
tegrated over time (I V ) when colliding, or as the minimum mesh distance
(Dm ) otherwise. See Table 4.1 for the values used; each scenario used
one of the displayed values, precise up to one decimal.

� Collision duration � is derived from the animation created to obtain the
�rst two parameters. This variable is only de�ned for colliding videos.

� Average intersection volumeI A = I V =� . This variable is de�ned only
for colliding videos.
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The severity labels have di�erent meaning for colliding and non-colliding cases.
In the colliding cases, there is a temporary overlap between the two characters.
This is expressed in the size of the intersecting volume (in cm3) integrated over
time (in seconds), giving us the integral I V in cm3s. Both aspects (size and
duration) are important to quantify the potential recognisability of the colli-
sion, as even a small intersection will be seen when existing for a long enough
time. In the non-colliding cases, the severity was de�ned as the minimum
distance between the meshesDm , which is identical to the Dm parameter
as de�ned in Section 4.3.1, except that now this minimum is taken over the
entire spatio-temporal domain.

To �nd a suitable range for the collision severity, we have conducted a small
pilot experiment with three participants. It took the same form as the actual
experiment, and used the following values for the variables:

� � 2 f 45; 90; 135; 180g degrees

� I V 2 f 0:5; 30; 150; 300g cm3s

� Dm 2 f 0:00; � 0:05; � 0:10; � 0:20g metres

This small pilot showed that for the larger values of the collision severities
I V and Dm , in respectively the colliding and non-colliding cases, it was very
easy to recognise a (non-)collision. Removing these values allows us to have
a �ner granularity in the lower, more interesting range, without increasing
the number of required videos. As stated before, the values used for the �nal
experiment are shown in Table 4.1.

4.4.2 | Image generation and questionnaire

This section describes the details of the main user experiment. Two textured
character models were selected for the experiment; every image uses the same
two models with the same textures to prevent dependence on the appearance.
We ensured a high contrast between arms and legs of both characters, to make
distinguishing the two characters as easy as possible.

We used four slightly di�erent walking motions to reduce the learning e�ect,
and ensured that the two characters never used the same motion in the same
video. For each combination of variables, and for both colliding and non-
colliding, we generated a video at a standard resolution of1280� 720 pixels
at 30 frames per second. Each video was 2.5 seconds long. The time of
the (near) collision was randomly chosen between the 50% and 75% mark,
to prevent a learning e�ect. The starting position of the character and the
o�set into the walking animation were chosen manually, in order to be able
to ensure a (near) collision of the intended severity.
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Participants are presented with an online web-based questionnaire (see Sec-
tion 4.2 and Figure 4.1). Each participant is shown all 32 video clips in
random order. Each clip is played once, advancing to the next video after the
question `Do these characters collide?' is answered.

4.4.3 | Results

The data of the animated experiment is based on the answers of 164 partici-
pants, each providing exactly 32 answers. In total 195 people participated;
30 did not complete the survey, and one participant completed the survey on
a mobile device. That mobile user's data was not considered, as the small
size of the screen makes recognising collisions harder. The accuracy over all
participants was 68% for this animated experiment. Note that the di�erence
between this result and the 72% accuracy observed in the pilot experiment
does not imply that people are better at recognising static scenarios, since
there are more di�erences between the experiments than just being static or
animated. The hardest to recognise collision is shown in Figure 4.4. For the
colliding cases, i.e. the scenarios in whichF P = T N = 0 , the accuracy is
58%. For the non-colliding cases, i.e. in whichT P = F N = 0 , the accuracy
is 79%.

In order to understand the relation of our variables � and S, and the expected
accuracy E[A], we apply linear regression analysis (see Section 2.4.1). The
analysis is performed on all answers, and not just on the averages per bin; this
implicitly takes variance of the answers into account. Firstly, we linearise our
input by �nding as simple as possible functions f 1(� ) and f 2(S). Secondly,
we use a statistical software package to �nd the best-�tting B0, B1, B2 and
B3 such that:

E [A] = B0 + B1f 1(� ) + B2f 2(S) + B3f 1(� )f 2(S)

Since S is expressed di�erently for colliding and non-colliding scenarios, we
perform the linear regression method for each separately.

Before applying the linear regression analysis, we need to �nd suitable func-
tions f 1(� ) and f 2(S). The � graph in Figure 4.5 shows a more or less sine-like
shape, which could indicate a relation betweenE[A] and the size of the pro-
jection of one of the trajectories onto the other. We choosef 1(� ) = sin( � );
as rotations are periodic, we expect the in�uence of� on E[A] to be periodic
as well, supporting the choice for a periodic linearisation2. The I V graph is
fairly linear, except for the data point at LOW. We use f 2(I V ) = I V , but we
may consider a di�erent linearisation in the future; we will get back to this in

2We also investigated f 1 (� ) = � , f 1 (� ) = � 2 , f 1 (� ) = cos( � ), and f 1 (� ) = sin( � + �= 4),
but all these variants resulted in a lower R 2 than f 1 (� ) = sin( � ).
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Coe�cients Standardized Signi�cance
B Std.Err. Coe�cients t p

(Constant) B0= 0:89 0:10 8:98 0:000
sin (� ) B1= � 0:73 0:13 � 1 = � 0:77 � 5:54 0:000
I V B2= 0:01 0:00 � 2 = 0:02 3:21 0:008
sin (� ) � I V B3= 0:00 0:00 � 3 = 0:52 � 1:95 0:074

Table 4.2: Linear regression model for the colliding cases; R2 = 78%.

Section 4.5. We feel that the accuracy distribution curve ofDm is su�ciently
linear, resulting in f 2(Dm ) = Dm .

Results of the linear regression are shown in Tables 4.2, 4.3, 4.4, and 4.5, with
the B i coe�cients in the second column. The R2 value mentioned in each
caption denotes the percentage of the variance explained by these models.
Any row with p < 0:05 is consideredsigni�cant , and with p < 0:01 considered
strongly signi�cant .

When the characters are colliding, a linear combination ofsin(� ) and I V

predicts 78% of the variance inA (see Table 4.2). The interaction between
the two variables is not signi�cant ( p = 0 :07). Since I V is the volume of the
intersection integrated over time, we can split its value into average volumeI A

and duration � , to investigate which aspect is more important to the correct
classi�cation of the video by observers. This results in the model shown in
Table 4.3, with R2 = 80%. Even though there is variation in A that we did
not capture in our model, such as the characters' exact poses at the moment
of collision, our model is signi�cant to A. The interaction between I A and � is
expressed asI V , and is not included in this analysis due to its insigni�cance.
Interestingly, with � 1 = � 0:77, the angle between the characters is the most
important factor. The sign of � 1 indicates a negative correlation, as the
minimum accuracy was measured at� = 90o. The duration of the collision is
slightly less important, with � 3 = 0 :52. The average volume of the collision
is insigni�cant ( p = 0 :879).

In the non-colliding cases, the model based onsin(� ), Dm , and their interac-
tion seems to predicts 47% of the variance inA (see Table 4.4). However, since
a linear model always produces a better �t when there are more parameters,
we have to remove the non-signi�cant parameters from the analysis3. This is
also re�ected in Figure 4.5, which shows howsin(� ) alone explains52%of the
variance of the colliding cases, but only2% of the non-colliding cases. The
model based on onlyDm , shown in Table 4.5, results in R2 = 34%. Even
though this R2 is moderate, the results are signi�cant.

3This was not necessary for the analysis shown in Table 4.3; due to the very small � 2 ,
the outcome would not change signi�cantly.
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Figure 4.5: Plots of the contribution of � to the results of the animated experiment.
The blue line shows the accuracy of each bin, with red error bars denoting the
standard deviation. The dashed red line indicates the linear �t.

Coe�cients Standardized Signi�cance
B Std.Err. Coe�cients t p

(Constant) B0= 0:72 0:10 7:58 0:000
sin (� ) B1= � 0:63 0:11 � 1 = � 0:77 5:88 0:000
I A B2= 0:00 0:00 � 2 = 0:02 0:16 0:879
� B3= 1:47 0:45 � 3 = 0:52 3:29 0:007

Table 4.3: Linear regression model for the colliding cases; R2 = 80%. Interaction
between the variables is insigni�cant ( p > 0:7) and not included in this table.
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Figure 4.6: Plots of the contribution of I V , I A and � to the results of the animated
experiment. The blue line shows the accuracy of each bin, with red error bars
denoting the standard deviation. The dashed red line indicates the linear �t. The
graph of log2(I V ) is discussed in Section 4.5.

Coe�cients Standardized Signi�cance
B Std.Err. Coe�cients t p

(Constant) B0= 0:59 0:11 5:32 0:000
sin(� ) B1= 0:12 0:16 � 1 = 0:28 0:79 0:446
Dm B2= 0:10 0:04 � 2 = 1:12 2:78 0:017
sin(� ) � Dm B3= � 0:08 0:05 � 3 = � 0:76 � 1:54 0:148

Table 4.4: Linear regression model based onsin(� ) and D m for the non-colliding
cases; R2 = 47%.
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Figure 4.7: Plot of the results of the animated experiment. The blue line shows
the accuracy of each bin, with red error bars denoting the standard deviation. The
dashed red line indicates the linear �t.

Coe�cients Standardized Signi�cance
B Std.Err. Coe�cients t p

(Constant) B0= 0:66 0:06 11:08 0:000
Dm B1= 0:05 0:02 � 1 = 0:59 2:70 0:017

Table 4.5: Linear regression model based onD m for the non-colliding cases; R2 =
34%.

Computing the average over all participants, we see that 60% of the answers
was `not colliding' and 40% `colliding'. To obtain more detail of the nature of
this apparent bias, we investigate the ratio of false positives and false negat-
ives for each participant. A two-tailed binomial test using a 95% con�dence
interval (as detailed in Section 2.4.2) showed that 72 of the participants did
not have a bias, and no participants had a bias towards false positives. The
remaining 92 participants had a bias towards false negatives; in other words,
the majority of the participants signi�cantly erred towards answering `not
colliding'.

4.5 | Discussion

Looking at our �ndings, we can conclude that in general the subjects were
better at recognising non-collisions than collisions. The results from both
experiments show the same trends, and although they cannot directly be
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mapped onto each other, this could indicate that trends observed in static
situations may be applicable to animated scenarios as well.

In our main experiment, an intersection volume integral of 0.5 cm3s resulted
in an accuracy of only 33%. Apparently, for the average observer, it is the
most di�cult to classify a scenario as `colliding' or `not colliding' when there
is a small amount of interpenetration. This is also observed in the pilot
experiment, where we see a remarkable dip in accuracy in the intervalDm 2
[� 0:03; 0:00). The bias towards answering `not colliding', observed in both
experiments, corroborates these observations. This knowledge may be used
to speed up collision detection algorithms. A simpli�ed version of the mesh
could be created, taking care that it is an `inner approximation' bounded by
the original mesh. By ensuring a Hausdor� distance [Hau14] of at most 1.5 cm
the total penetration of two such meshes would be at most 3.0 cm and fall
within the interval of minimal accuracy. The algorithm to create a simple
mesh that meets those requirements, and the e�ect on both the perception
of collisions and the performance of collision detection, is an interesting open
problem. These observations also seem to indicate that, for collision detection
between humanoid shapes, a bounding volume collision detection scheme may
not be the best choice. Employing abounded volume method representing
an inner approximation could be more e�cient, and a better match for our
perception.

Intersections are allowed in certain commercial crowd simulation systems,
such as the implementation in IO Interactive's Hitman: Absolution ; appar-
ently large game companies assume that people do not mind such partial in-
tersections [SEE14]. Such an approach also allows for denser crowds, simply
by decreasing the personal radius of the characters, without sacri�cing too
much believability. The low importance of the intersection volume I V (see
Table 4.2), coupled with the high importance of the angle � also suggests
varying the e�ective personal radius for collision checking based on the angle
between the paths of the checked characters.

From the � accuracy graph, it is clear that the more visible the gap between
the characters, the easier it is to see that they do not collide. Note that this
metric does not denote the gap between thesilhouettes of the characters -
there are many cases in which the visible part ofL lies in front of the rear
character.

Alternate linearisations for � , I V and Dm might produce a better �tting
model. The I V accuracy graph resembles a logarithmic curve, so we have also
investigated f 2(I V ) = log 2(I V ), resulting in the curve shown in the top left of
Figure 4.6. This model is a tighter �t for the data (R 2 = 82% for the entire
model, instead of80%). However, even though visually a logarithm may �t
the graph well, this does not imply that it is the best model to use. For
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(a) Animated experiment

Figure 4.8: Histogram of the height of the (near) collisions, clustered into `upper'
and `lower' collisions.

this reason, we have kept the linearisation simple, and leave more complex
linearisations to future research.

By using the height of the (near) collision, we separate the stimuli into `upper
body' and `lower body'. Figure 4.8 shows the distribution of the height of
the collision, or the average height of the two closest points in non-colliding
cases, and con�rms that such a distinction is sensible. We use k-means clus-
tering (k=2) to separate the test cases into `upper body' and `lower body'
clusters, and apply the same analysis as before to each cluster individually.
The accuracy in the main experiment shows a remarkable di�erence, with
A = 54% and A = 85% for respectively the upper and lower body collisions.
The overall FN:FP ratio is also di�erent, with 19% : 81%for the upper body
and 80% : 20%for the lower body. A per-participant binomial bias analysis
showed interesting di�erences between upper-body collisions and lower-body
collisions: We observed a stronger bias towards answering `not colliding' for
lower-body collisions than for the upper-body collisions (see Table 4.6). These
results for upper- and lower-body di�erences are only preliminary; for every

Collision height FP Neutral FN
Entire body 0 72 92
Upper body 0 86 78
Lower body 0 130 34

Table 4.6: The number of participants showing a biased error. `FP' shows a bias
towards false positives, i.e. perceiving a collision where there is none. `FN' shows
a bias towards false negatives, i.e. perceiving no collision when in fact there is one.
`Neutral' shows the number of participants that had no such bias.



Chapter 4: Perception of Collisions between Virtual Characters 59

pair of parameters (� , S) there was only one sample, i.e. only an upper or a
lower body collision. We leave studying these di�erences to future work.

4.6 | Conclusion

In this chapter, we have conducted a perceptual experiment to determine the
accuracy of human observers in determining whether two virtual characters
collide. We have identi�ed an asymmetry in the recognition of collisions, a
critical penetration depth interval where the accuracy is minimal, and pro-
posed a level of detail technique that utilizes this knowledge to speed up colli-
sion detection. New collision response criteria that increase performance and
allow denser crowds by focusing on pairs of characters have been introduced.

Care should be taken in those cases where crowd behaviour is changed based
on any camera-related metric. When crowd simulation is used to mimic real
humans, for example to evaluate evacuation scenarios, such view-dependent
behaviour will change the outcome of the simulation. When crowd simula-
tion is used in games, view-dependent behaviour could be exploited to gain
unfair advantage over other players. For example, one could turn o� collision
detection of crowd agents when they are not in view of the player; this would
make traversing a crowd easier when walking backward than when walking
forward.

Simpli�ed shapes are often used in physics simulation software. Future re-
search could investigate whether the results in this chapter are applicable only
to humanoid shapes or generalize to other objects or even abstract geometric
shapes.

In our surveys we have not rendered crisp shadows and ambient occlusion.
This simpli�es rendering; shadowless rendering is also used in commercial
applications [SEE14] to enable real-time rendering of crowds. It would be
interesting to see the e�ect of di�erent types of shading and lighting on the
perception of the crowd in general and collisions in particular.

The backgrounds were rendered as simple as possible, to ensure our results
depend only on the two virtual characters and the camera position. The
e�ects of the background behind the characters, especially when visible in the
space between the characters, is still an open research question.

We observed an asymmetry in the recognition of collisions, and a bias towards
answering `not colliding'. These e�ects could have several causes. Firstly, the
characters did not employ a collision response animation. Because of this,
and because real humans do not intersect each other when colliding, the non-
colliding and colliding scenarios could be classi�ed as respectively realistic
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and unrealistic, causing this bias towards realistic scenarios. Secondly, par-
ticipants may have focused on the spot where they anticipated a collision. In
cases where they anticipated incorrectly, such focus may have caused them
to miss the collision. Since the other way around cannot occur, this likely
contributed to the observed bias. Thirdly, we also observed that most of the
collisions occurred between the hands or the feet. This was likely caused by
the use of a simple walk animation that was not adapting to the proxim-
ity of the other character. Real humans would probably be able to slightly
change their hand or foot position to avoid a collision without changing their
own global position or trajectory. Expecting such behaviour may have also
accounted for the bias towards answering `not colliding'. In the next two
chapters, we use this bias by choosing a representation that allows for some
undetected collisions. In future work, it would be interesting to see how col-
lision avoidance and response animations in�uence this bias speci�cally, and
the perception of collisions in general.



Chapter 5

An Analysis of
Manoeuvring in Dense

Crowds

While walking through any crowd, a person balances several desires, such as
reaching some goal position, avoiding collisions with others, and conserving
energy. Crowd models generally try to mimic this behaviour by planning short
paths that avoid collisions. However, when the crowd density increases, choos-
ing a collision-free path becomes more di�cult. Furthermore, in such high-
density crowds, one can observe regular steps, side-steps, andtorso twists;
people rotate their upper body to decrease their width perpendicular to the
motion path, in order to squeeze through the narrow spaces between other
crowd members. Rather thanwalking, such motions are better described as
manoeuvring through the crowd. In our daily lives, we often face such crowded
situations, such as a busy lift, bus or pop concert. In such cases, the members
of the crowd are often stationary, moving only when someone wants to pass.

In this chapter, we describe an experiment aimed at understanding such
dense crowd manoeuvring behaviour, by recording and analysing a dense
crowd. Apart from the common approach to crowd analysis, where only
the position of each person in the crowd is recorded, we also record and
analyse the torso orientations. To the best of our knowledge, this has not
been done before in the context of dense crowds. The underlying motiva-
tion is to obtain a data set that supports an implementation of such beha-
viour in a crowd simulation algorithm (which we implement in Chapter 6).
In our experiment, the participants form a crowd of such density that it is
sparse enough to manoeuvre through, but dense enough to require torso ro-
tations in order to do so; an example is shown in Figure 5.1. We explicitly
ignore the lower body in our analysis. As we have shown in Chapter 4,
small intersections between characters are hard to see in general, and even
harder to see in a dense crowd. Furthermore, it has also been shown that
the shoulder movements through space are a good indication of the move-
ment of the entire body [ALHB08a]. Our accompanying video at https:
//stuvel.eu/video/dense-crowd-manoeuvring shows one of the trials we
have recorded, including aspects that play a role in our analysis, namely a
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capsule-based representation and a generalized Voronoi diagram of that rep-
resentation.

In each trial, the person in the centre of the crowd must manoeuvre towards
a prede�ned goal position, while the other participants remain more or less
stationary inside a circle drawn around that centre. To reduce ambiguity in
the analysis of the data, in each trial only a single participant manoeuvres
towards this goal position.

In this chapter, we show that in dense crowds people follow generalized Voro-
noi diagrams based on a line-segment representation of the agents. Two pos-
sible methods for de�ning those line segments are investigated, and we show
that the medial axis of a capsule representation of the torso is a good choice
for such line segments. We identify relations between instantaneous speed and
plan-ahead distance, and between the torso orientations and goal positions of
the moving participants. We also show that there is no apparent correlation
between linear and angular velocities of those participants' torsos.

Figure 5.1: Stills of one of the trials, showing a participant escaping the crowd.
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The rest of the chapter is organised as follows. Section 5.1 discusses re-
lated work. The details and execution of the experiment are described in
Section 5.2, with analysis of the results in Section 5.3. The implications and
possible future work are discussed in Section 5.4, which concludes the chapter.

5.1 | Related work

The study of crowd behaviour spans a large research area, ranging from com-
puter vision techniques to assess human behaviour [ZL14] to the simulation
of evacuation scenarios [ZZL09], and application in (serious) games. In this
section, we focus on the works relevant to the study ofdense crowds.

Two possible ways of simultaneously capturing the motions of multiple indi-
viduals in a crowd are video recordings and motion capture systems.Video
recordings are most often used; as these require no markers to be attached
to the participants, the data are easier to obtain. A common approach to
process a video stream is either pure visual comparison [NGCL09], or the use
of feature point tracking in order to determine movement of people in a crowd
[SBTM08, RSLA11, CKGC14]. Feature point tracking is also used by Lee et
al. [LCHL07] to train a crowd simulation system such that it exhibits beha-
viours imitating real human crowds. The opposite of using video tracking to
improve crowd models is also possible, by using a crowd simulation model to
improve the result of feature tracking in videos [MOS09, BM14]. All these
works use the video data to determine the positions of the recorded people;
under the assumption of nonholonomic motion (see Section 2.2.1), the orient-
ation is determined from the velocity vector. Such techniques are not suitable
for studying the torso twisting behaviour in crowds, as �rstly the position
alone is not enough to study the torso twist, and secondly the nonholonomy
assumption is no longer valid for dense crowds [MTL10, TFP+ 10]. For these
reasons, we have chosen to not employ video tracking for our experiment in
favour of using amotion capture system, which can precisely track individual
body parts.

Motion capture systems have been used by Wolinski et al. [WJGO+ 14] to op-
timize parameters for various crowd simulation systems to increase similarity
between the simulated and recorded crowd behaviour. Jelic et al. [JARLP12]
and later Lemercier et al. [LJK+ 12] used motion capture to study following
behaviour in crowds, by recording people following each other in a circular
fashion. In all those works, the participants are represented as moving discs
on the ground plane, even though a motion capture system might have been
able to capture more detailed motions. Hence, as with the video-driven tech-
niques described earlier, the resulting data are unsuitable for the study of
torso twisting behaviour. Truong et al. [Tru10] used a motion capture sys-
tem to study the nonholonomic and holonomic behaviours in human motion,
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and extend the work by Arechavaleta et al. [ALHB08b] to include holonomic
motion. They distinguish between those two behaviours by observing the ori-
entation of the shoulders with respect to the velocity vector of the body. To
capture the motion, three motion capture markers are placed on the upper
body and three on the legs. Truong et al. observed only a single participant
at the time, allowing for an unobstructed view from the motion capture cam-
eras. We use a similar approach, except that in our experiment we actually
study a crowd, so any marker below the shoulders is likely to be occluded
by the other participants. Therefore, we use markers on the shoulders only.
The motion of the line segment spanned by those markers has been shown by
Arechavaleta et al. [ALHB08a] to be a good �t for human motion prediction,
further strengthening our choice to investigate torso motions. In this chapter
we improve on the work by Arechavaleta et al., in the context of the analysis
of dense crowd manoeuvring, by de�ning the length of the line segment in a
di�erent way.

Current crowd simulation techniques are able to simulate crowds of high dens-
ities. However, most represent agents as points [JCG13] or discs [vdBGLM11,
KSG14, CGZM11, NGCL09] (also see Section 2.2). By employing such a ro-
tationally symmetric representation, planning the torso twist is impossible.

In our experiment, we compare the motions of people in dense crowds to the
motions predicted by a Generalized Voronoi Diagram. It has been shown
that such diagrams can be used to steer medium-density crowds [SAC+ 08].
However, it is unknown whether people in dense crowds also follow a Voronoi
Diagram. To our knowledge, we are the �rst to investigate this. Another
aspect we investigate is the relation between linear and angular velocities of
the actively manoeuvring participants. Hicheur et al. [HVR + 05] have shown
that a close relationship exists between linear velocity and path curvature,
but have not investigated the angular velocity of the torso. We expect to �nd
a negative correlation between linear and angular velocity; turning at higher
speeds may be harder (to plan for), while at the same time it may be harder
to walk faster while turning.

5.2 | Experiment

This section describes the experiment design, execution, and representation
of the participants in our analysis. In short, the goal of the experiment is
to obtain information on how people manoeuvre through dense crowds. We
observe and analyse torso motions; even though we do not explicitly consider
hip rotations, their e�ect is encoded in the motion of the torso.
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5.2.1 | Experiment design

The experiment consists of a repetition of trials. In each trial, the person in the
centre of the crowd, the designatedwalker, manoeuvres towards a prede�ned
goal position, while the other participants remain more or less stationary. The
experiment is aimed at providing ground truth data, which can be analysed
to further understand crowd behaviour, as well as provide empirical data to
improve crowd simulation methods. We are particularly interested in the
following aspects:

� Typical values for linear and angular velocity, for the crowd densities
we consider, and the possible relation between them;

� Typical values for the angle between the normal of the torso and the
direction towards a goal position;

� A geometric model that predicts the chosen path through the crowd.

When recording people using an optical motion capture system, marker oc-
clusions are very common. When the number of people increases, the chance
that occlusions occur also increases, and more so when those people stand
closer together. This makes it impossible to capture the full-body motion
of each member of a large, dense group. Consequently, we chose to reduce
the marker set, and place them on the body in areas that are least likely
to be occluded from the overhead cameras. Three motion capture markers
are attached to each participant: one on the left shoulder, and two on the
right. The asymmetry in the marker layout allows us to distinguish between
the participants' left and right shoulders. Each participant started at a pre-
determined position, simplifying the identi�cation and labelling during the
post-processing of the recorded data.

A circle with a radius of 1.75 metres was drawn in the middle of the mo-
tion capture studio. All participants except the walker were prohibited from
leaving this circle during each trial, to allow for a consistent overall crowd
density and a symmetric distribution of the participants around the centre.
The location and size of the circle depended on the limitations of the motion
capture system as well as the intended crowd density. Around the circle, the
letters A-H, printed on A4 paper, were hung 2 meters high and 45 degrees
apart, as shown in Figure 5.3. The motion capture system employs fourteen
cameras recording at 120 Hz.

The experiment trials were grouped into sets. For each set, a single participant
was chosen for the role of walker. For each walker, we recorded a set of seven
trials. The walker received a randomized set of task cards: a random subset
of six of the eight letters, and a question mark. He/she was instructed to keep
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Figure 5.2: Prede�ned starting positions (top) and randomization step (bottom).

these cards hidden from the other participants. As two letters were excluded
for each walker, the other participants would not be able to predict the tasks.

Participants were invited on the notion that the intended goal of the experi-
ment was to test the limits of our motion capture lab: to see how many people
it can hold, and how many markers it can track simultaneously. This way,
the behaviour of the participants would not be in�uenced by any knowledge
about the actual goal of the experiment. Furthermore, the non-walker par-
ticipants were asked to treat the situation as a densely packed bar, and to
crowd together to such a degree that it would be non-trivial but still possible
to manoeuvre through. As for dealing with the walker, we asked participants
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Figure 5.3: Top view of a single trial, showing the blue walker in the starting
con�guration, and letter G as the goal. The light blue curve indicates the path of
the participant.

to let him/her through as they would have in similar situations in real life
and not anticipate their movement too much.

5.2.2 | Execution

Each participant was measured for their shoulder width, chest thickness, and
distance between the left and right shoulder markers. The latter measure-
ment allows us to model the participants as a line segment translating and
rotating on the ground plane, which we used for most of our analyses (see
Section 5.2.3). The other dimensions are used to de�ne an alternative capsule-
shaped representation, which will discussed in Section 5.3.2. Furthermore, we
recorded each participant's name, age, and gender, and starting position for
each trial.

Each walker was hand-picked from the participants on the basis of height and
gender. We chose participants of average height (compared to the partici-
pants, not the country or world population), on the assumption that being
too short or too tall will in�uence the behaviour � we leave the in�uence of
height on the behaviour in crowd to future work. We alternated the gender
of the walker to eliminate gender bias.
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Each trial consisted of the following steps:

1. All participants move to their prede�ned starting positions. Recording
starts.

2. The walker moves to the centre of the circle and rotates to face letter
G, while the other participants walk around in a more or less random
fashion. This ensures the crowd is di�erent in each trial, and gives the
walker ample time to covertly inspect his/her set of cards to determine
the task to perform.

3. When the crowd is su�ciently randomized and evenly distributed around
the walker, a verbal signal is given. The participants move to �ll possible
gaps in their vicinity, and then stop walking.

4. The walker manoeuvres through the crowd. Depending on the task,
he/she tries to reach the goal letter, or, when the task card indicates a
question mark, tries to exit the crowd in the easiest direction of his/her
own choice.

5. When the task is complete, recording stops, and the next trial begins.

A total of 23 people (16 male, 7 female) participated in the experiment, with
an average age of 24 years (� = 8 :4). Their average chest width was0:44metre
(� = 0 :03), and chest thickness0:23metre (� = 0 :03). Seven participants took
the role of walker, and a total of 47 usable trials were recorded; two recordings
were rejected due to a technical issue and a participant not adhering to the
task.

5.2.3 | Representation

After the experiment, all motion capture data was post-processed, manu-
ally labelled, and mapped to an abstract agent representation for analysis
purposes. Each agent consists of a line segment, de�ned by the ground pro-
jections of the left shoulder marker and the centroid of the two right shoulder
markers. The centroid of the segment de�nes the position of the abstract
agent. The torso normal of the agent is de�ned as the normal of the line
segment facing the front of the torso. Hence, it is always perpendicular to the
line segment, regardless of the direction of motion. This process is repeated
for each participant at each frame of the motion capture data, and results
in the set of agents translating and rotating in the ground plane used in our
analysis. This representation has been shown to be suitable for human motion
analysis [ALHB08a].
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5.3 | Results

In this section we describe our experimental results, based on an analysis of
the abstract representation of the motion capture data, as described in the
previous section. At the start of each trial, the walker turns towards the target
position, investigates the situation, and shifts balance in order to start man-
oeuvring. This initial turning towards the target position occurred naturally,
and was not instructed. What follows is a period ofdense manoeuvring, until
the walker exits the crowd; the recordings from this period are the subject of
our analysis.

Figure 5.4: Linear and angular velocities, sampled for each motion capture frame.
The scatter plot shows that there is no signi�cant correlation between the two velo-
cities. The histograms show the densities of the samples, separately for linear and
angular velocities, and �tted Gaussian curves.

The linear and angular velocities observed in our recordings are shown in
Figure 5.4. These were computed for each frame, by numerical di�erentiation
per frame and applying a smoothing �lter to improve numerical stability. The
average linear velocity is 0.41 m/s (� = 0 :23 m/s), and the average angular
velocity is 39 deg/s (� = 31 deg/s), with maxima at respectively 1.36 m/s
and 176 deg/s. Figure 5.4 shows a large spread of the velocities in a near-
Gaussian distribution. Fitting a linear correlation results in R 2 = 0 :01; in
other words, variance in the linear velocity explains only 1% of the variance in
angular velocity. We can conclude that we have found no correlation between
angular and linear velocities. This means that a crowd simulation method can
plan linear and angular velocity independently, as we do in our Torso Crowd
method (see Chapter 6).

The angle � between the torso normal of the walker and the vector towards
the target position tells us something about how often people keep their body
oriented towards their target, and which angles are generally preferred. A
histogram of these angles is shown in Figure 5.5. Fitting a Gaussian curve
using a minimum-squared-error-approach shows an average anglê� = 45o

(� = 35o). The right-hand graph in the same �gure shows the percentage of
time in which this angle is within a certain range. The relation between the
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angle limit and the time spent within that limit is more or less linear between
0 and 72 degrees, and then gradually �attens out until reaching its maximum
of 100%at � = 120o. Angle � � 50o in 50% of the time, and � � 84o in 90%
of the time. These statistics are used in our Torso Crowds simulation method,
in order to choose the direction in which characters rotate while navigating
the crowd.

Figure 5.5: Angle between the agents' torso normal and to-goal vector. The right-
hand graph shows the percentage of recorded frames for which that angle is within
a certain limit.

For the `question mark' tasks the letter most often chosen was E, with 4 out
of 7 walkers choosing this letter. Second was the letter G with 2 out of 7.
The third letter picked was C. The letter E is to the left of the walkers, letter
G directly in front, and letter C directly behind the walkers. It is interesting
to see that one participant took the e�ort to turn 180 o to �nd an easy way
out of the crowd. We intend to use the recordings of these fastest possible
crowd escape tasks in future work, to analyse crowd simulation performance
for such situations.

5.3.1 | Modelling direction of movement

It is a known fact that people minimize their perceived energy use when
walking [Zip49, GCC+ 10]. We predict that this holds true for dense crowds as
well, and hypothesize that in such a crowd people no longer attempt avoiding
single individuals, but choose an opening between pairs of individuals to pass
through, and thus:

1. Move towards themidpoint of the opening, as this provides a path with
the smallest probability of collision;

2. Move towards the area of largest clearancebehind that midpoint when
the planning agent is closer to the other individuals than the individuals
are to each other.
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A midpoint is de�ned as the middle of the opening between two agents. In
our model, we use the middle of the line segment that represents the shortest
distance between the agents' line segments. By de�nition, this point lies on
an edge of a Generalized Voronoi Diagram (GVD) [LDI81], or on an extension
of such an edge when a third agent is close by (as described in item 2 above).
In such a case, the midpoint would lie on a GVD edge if the third agent were
to be removed; see the right-hand image in Figure 5.6 for an example. This
Voronoi edge is called thecorresponding edgeof the midpoint. The GVD is
de�ned as a pair (V; E) of verticesV and arc-shaped edgesE that partition the
ground plane. Each cell of this partition is de�ned by an agent, and consists
of all points that are closer to that agent than to any other. The centre of
the area of largest clearancebehind the aforementioned opening corresponds
to a vertex of the GVD.

In our analyses we simplify the GVD by using the agents' line segments (see
Section 5.2.3), rather than using their exact shape. In this section, we will
use the line segments de�ned by the shoulder markers. In Section 5.3.2 we
will investigate an alternative line segment, namely the medial axis of a torso-
�tting capsule, that produces even better results.

To verify our expectations, we have analysed the di�erence between the ac-
tual direction of movement and the direction predicted by the expectations
described above. In our analysis, we use three di�erent methods to test our
expectations, �rst per hypothesis, and then integrally:

MIDPOINT Only midpoints are considered, regardless of the distance to
the planning agent. This corresponds to testing only the �rst hypothesis.

VERTEX Only vertices of the Voronoi cell de�ned by the planning agent
are considered. This corresponds to testing only the second hypothesis,
regardless of the distances.

LIMITED MIDPOINT Midpoints are considered, but limited to the closest
point on their corresponding edges. This corresponds to both hypo-
theses.

Figure 5.6 shows the di�erence between themidpoint of the two green agents
in dark red, and the vertex that indicates the start of the path between them
in light orange. In both cases, the LIMITED MIDPOINT approach would
use the dot that is furthest away from the cyan planning agent.

We aim to compare the directions predicted by the methods described above
with the short-term direction of movement of the participant, in the order of
magnitude of up to one second to capture short-term human decision making;
we are not interested in the long-term overall direction, as we know it will
approach the vector from the starting point to the goal position. This direction
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Figure 5.6: Two situations that show the di�erence between the midpoint (dark
red) of the two green agents, and the vertex (light orange) that indicates the start
of the path between them. The planning agent is displayed in cyan.

cannot be directly determined by the instantaneous velocity vector, since this
vector varies too rapidly. Such rapid changes are especially noticeable at low
velocities, where merely shifting weight can rotate the velocity vector by180o.
To �lter out these variations, we consider the recorded path of the agent, and
obtain the vector from the current position to the path at a given Euclidean
distance ofD 2 [0:05; 1:5] metres (see Figure 5.7). The participant's position
at this distance D is uniquely de�ned due to the nature of our recordings, as
the participants move more or less monotonically towards their target. By
choosing this distance too small, the resulting direction vector will mimic the
instantaneous velocity vector and thus vary rapidly and be an ill match for the
overall direction of the participant. On the other hand, choosing this distance
too large will result in a direction vector that matches the long-term behaviour
of the participant, instead of the short-term behaviour we are interested in.
The maximum velocity we have measured during the experiment is 1.4 m/s;
we are interested in short-term decisions in the order of one second, resulting
in an upper bound of 1.4 metre. We have chosen our interval slightly larger
than strictly necessary to ensure that the optimal distance falls within the
parameters of the experiment. The search spaceD 2 [0:05; 1:5] is sampled
uniformly into 10 bins; we have observed that dividing into more �ne-grained
bins does not produce signi�cantly di�erent results. Distance D is named
the plan-ahead distance, as it could indicate the distance people consider in
order to plan their direction. An example is shown in Figure 5.7. To our
best knowledge, the relation between the agent's instantaneous speed and the
preferred plan-ahead distance has not been studied in the context of dense
crowds.
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D1 D2 D3

Figure 5.7: Direction vectors determined by three di�erent plan-ahead distances
D 1 , D 2 and D 3 . The cyan dot indicates the position of the participant, and the
dotted line shows their recorded path.

As mentioned in the introduction of this section, our analysis will be limited
to the time span of dense manoeuvring, which ends when the participant
exits the dense crowd. We continually observe the participant's Voronoi cell;
when the cell is incident to a Voronoi cell de�ned by the bounding box, we
no longer consider the participant to be in the dense crowd. This de�nition
works well in practice. An additional criterion makes this de�nition slightly
more strict; by limiting the surface area of the Voronoi cell to 0.32 m2 we
truncate a small number of trials and ensure that all analysed data describe
dense manoeuvring. An important aspect of our de�nition is that it does
not consider the aggregate crowd density, but categorizes the situation of
individual agents.

Now that we can compute a direction of movement and de�ne the time span
of dense manoeuvring, we can test our hypothesis. Since there is a correlation
between crowd density and walking speed [Daa04], we have included the speed
of the agent as a variable in our analysis. Figure 5.10 shows the graphs
for the MIDPOINT, VERTEX and LIMITED MIDPOINT testing methods.
For each recorded frameF , we determine the instantaneous speed of the
walker s(F ). We partition the measured speeds into twelve bins, allowing
us to average similar results from di�erent frames. This number of bins was
chosen by balancing a high enough bin count to obtain detailed data, and low
enough count to ensure a su�ciently large number of data points in each bin.
Speeds(F ) determines the bin column in which the data for that frame is
plotted. We then vary plan-ahead distanceD for each frameF incrementally
to determine direction of movement vectorsd, an example of which is shown
in Figure 5.7. This plan-ahead distance determines the row in the graph. We
then compute error e(d; P) with respect to a prediction P, as described in
the next paragraph. The error is stored at the appropriate bin; the graphs in
Figure 5.10 show the average error (left) and standard deviation (middle) of
the binned errors, and the number of data points in each bin (right).
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Figure 5.8: Recorded motion is shown as a light blue trajectory. The yellow circle
indicates a plan-ahead distance of0:4 metre.

The error e(d; P) depends on predictionP, which is the set of points con-
sidered by the di�erent prediction methods MIDPOINT, VERTEX and LIM-
ITED MIDPOINT. The error is de�ned as the minimal angle between the
direction of movement d and the prediction points in P

e(d; P) = min
p 2 P

�
arccos

�
d

jjdjj
�

p � x
jjp � x jj

��
;

where x is the position of the participant.

For each binned speed we �nd the plan-ahead distance that results in the
smallest predicted error e. These bins are marked with a white dot in Fig-
ure 5.10, and indicate the most likely plan-ahead distanceL for each speedv.
The �gure shows that, on average,L = 0 :34, with a minute dependence on
speedv; di�erences between the approaches are discussed in the next para-
graph. As we try to predict future motions based on the static situation in the
current frame F , and the participants can obviously change their trajectory
dynamically at any moment in time, it is impossible to obtain a zero error.
However, the low average error in these bins (� 7:2 degrees) shows that there
is only a small di�erence between the direction of movement of the partici-
pants, and the directions predicted by the Generalized Voronoi Diagram of
the crowd.

The white lines in Figure 5.10 indicate the best linear regressions through the
bins of minimal error, weighted by the sample density. The MIDPOINT and
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LIMITED MIDPOINT methods show a plan-ahead distance of approximately
0.40 metres (see Figure 5.8), whereas the VERTEX method shows a distance
of 0.24 metres. This di�erence is caused by the VERTEX method generally
predicting points closer to the participant than the other methods. From
the minimal in�uence of the speed on the regression line we can conclude
that people in dense crowds seem to generally plan for a constant distance,
regardless of their speed.

5.3.2 | Capsule-shaped agent representations

In the previous section, we have shown that people manoeuvring in dense
crowds tend to follow a Generalized Voronoi Diagram (GVD). We used a
simple representation for each participant: a line segment spanned by the
motion capture markers on the shoulders. Even though this is an accepted
way to capture human motion [ALHB08a], it is based on more or less arbitrary
points on the shoulders, and the distance from the line segment to the edge
of the participant's torso is not constant in all directions. Hence, the GVD
of the participants will di�er from the GVD de�ned by those line segments.
This di�erence can be reduced by slightly changing the length of the used line
segment such that the distance from the edge of the torso to the line segment
is more or less constant. The result is a capsule-shaped representation of the
torso, as shown in Figure 5.9a. When using this representation, the inter-
agent distances di�er only by a constant amount from the distances between
the line segments, in all directions.

r

w

(a) Schematic view of the capsule rep-
resentation. The dashed arrow indic-
ates the torso normal of the agent.

(b) Top view of a motion captured situation. It can
clearly be seen how the capsule model �ts the torso
of the characters. We can show this for our character
models only, as we did not have an orthographic
overhead camera during the experiment.

Figure 5.9: Our abstract crowd agent representation, consisting of an oriented line
segment with a radius.
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Each capsule consists of a line segment of lengthw in�ated by a radius r , as
shown in Figure 5.9a. For each participant, the measured chest thicknessT
determines radiusr = T=2, and the measured chest widthW determines the
line segment lengthw = W � 2r . Figure 5.9b shows an overhead view of a
motion captured situation, and demonstrates how well the capsule shapes �t
the torsos. Of course, the legs extend from the capsule, but this is a common
property of cylinder-based crowd simulations too, hence not an issue speci�c
to the chosen representation. This approach resulted in a shortening of the
line segments by an average of10 cm (� = 3 cm).

We have repeated the same analysis as described in Section 5.3.1, replacing
the line segments based on motion capture markers by line segments based on
the capsule representation. Figure 5.11 shows the graphs for the LIMITED
MIDPOINT, MIDPOINT and VERTEX testing methods. As expected, the
capsule-based representation results in a smaller error, hence a better model
for the participants' motions. The best results are obtained with the LIM-
ITED MIDPOINT method, resulting in an error of only 6:65o (� = 5 :33o);
this translates to an 8% smaller error and 30% smaller standard deviation.
This is corroborated by visually comparing the graphs shown in Figures 5.10
and 5.11; we can observe that this representation and method also result in
the smoothest distribution of the error, and smallest standard deviation with
the smoothest distribution, and hence produces the most reliable results.

5.4 | Discussion and Conclusion

Our most prominent result is the correlation between dense crowd manoeuv-
ring patterns and Generalized Voronoi Diagrams. We generated this Voronoi
diagram by modelling the participants as line segments, and analysed the mo-
tions of the agents. Our results show that with an average error of less than 7o

(� = 5 o) our LIMITED MIDPOINT method successfully matches the paths
of our participants. In comparison, representing agents using shoulder marker
line segments results in not only a higher average error, but also higher �uc-
tuations in the standard deviation. We expect that this Voronoi-based model
allows for a crowd simulation algorithm that mimics people's behaviour in
dense crowds. Our capsule-based line segment representation will result in
more natural, human-like behaviour in such a simulation, and is used in our
crowd simulation method described in Chapter 6.

Our model shows an average error of less than 7o, which seems small. How-
ever, given that we introduced a new method of crowd analysis, the question
whether this error is good or bad remains to be answered. A perception
study may give more information about usable bounds on this error, where
the resulting crowd behaviour is considered humanoid.
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(a) MIDPOINT method; L = � 0:03v + 0 :40 .

(b) VERTEX method; L = 0 :08v + 0 :24 .

(c) LIMITED MIDPOINT method; L = 0 :01v + 0 :39 .

Figure 5.10: (a), (b), and (c) show results of our analysis for the motion capture
marker based approach described in Section 5.3.1. The agent's instantaneous speed
is shown on thex-axis; the chosen plan-ahead distanceD is shown on they-axis. The
colour indicates the average error over all recorded trials (left), standard deviation
(middle) and number of data points (right). The white dots indicate the bins with
the smallest error.

We have measured the participants in the directions that are relevant to an
analysis performed on the ground projection of the data. It would be interest-
ing to investigate the in�uence of the participant's relative height to the other
participants on their behaviour, as this may both in�uence the participant as
well as the others in their proximity.
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(a) MIDPOINT method; L = 0 :02v + 0 :39 .

(b) VERTEX method; L = 0 :11v + 0 :23 .

(c) LIMITED MIDPOINT method; L = 0 :08v + 0 :36 .

Figure 5.11: (a), (b), and (c) show results of our analysis for the capsule based
approach described in Section 5.3.2. The agent's instantaneous speed is shown on
the x-axis; the chosen plan-ahead distanceD is shown on the y-axis. The colour
indicates the average error over all recorded trials (left), standard deviation (middle)
and number of data points (right). The white dots indicate the bins with the smallest
error.

Similar to Hicheur et al. [HVR + 05], who investigated the relationship between
linear velocity and path curvature, we looked at the relation between linear
velocity and angular velocity of the torso. Contrary to our expectations, we
have found no such relation. Furthermore, we could study the relation between
linear velocity and the proximity to other torsos in the forward direction.
In other words, investigate whether people slow down when getting close to
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Figure 5.12: LIMITED MIDPOINT method, but using points instead of line
segments to represent the agents;L = 0 :14v + 0 :34 .

others, and manoeuvre slowly when squeezing between others? We have seen
examples of such behaviour in our experiment, but leave a thorough analysis
to future work.

As we focus on torso orientations, the orientation of the head was not recorded
during our experiment. A future experiment, employing a cap with motion
capture markers, could record head movement. This may produce more nat-
ural results when applying full-body animation, as well as provide interesting
data on the impact of vision on manoeuvring behaviour.

During the experiment, the participants let us know that they felt uncomfort-
ably close to each other. We suspect that this is not only caused by the higher
density; after all, in daily life there are denser crowds where even manoeuv-
ring is sheer impossible. However, in such cases there is often something that
draws away the attention of the crowd, such as a performing artist, whereas
in our case there was little to focus on except each other. It is interesting to
investigate the e�ect of such a distractor on the natural density of a crowd.
Finally, the experiment was performed in a controlled environment. We would
like to perform similar experiments using real crowds, for example during a
large concert.





Chapter 6

Torso Crowds

The shapes most often used to represent characters in crowd simulations are
points and discs. In sparse crowd simulations, such a simple shape works well;
the chosen representation does not have a large impact on the behaviour, as
there is ample space around the agents. However, when the agents move very
close to each other, motion follows shape. A common motion in dense crowds
is the twisting of the torso, to squeeze through an opening between people.
Points and discs are ill suited for such situations, as the rotational symmetry
prohibits planning of such twist. Instead, in this chapter, we investigate an
agent representation based on the torso. By employing the capsule-shaped
representation introduced in Chapter 5, which is closer to the human shape
(see Figures 5.9b and 6.1), we expect to obtain more realistic human-like
motions than disc-based crowd simulation methods.

Contrary to other crowd simulation systems, which often focus on the move-
ment of the entire crowd, our method distinguishes between passive agents
that have no incentive to move from their present location, and active agents
that try to manoeuvre through the crowd towards a goal position. We in-
troduce the concept of afocus point for crowd agents, which allows for more
control and more realistic, social, and complex behaviour. Furthermore, we
validate the active agent behaviour using ground truth data, obtained in the
experiment described in Chapter 5; our proposed model produces equivalent

Figure 6.1: Our crowd simulation model, showing di�erent stages of the process.
From left to right: the agent representation, computation of the Voronoi diagram,
planning a path towards a goal position, and �nally the animation of torso-twisting
virtual characters.
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paths for 85% of the validation set. We mostly consider the motions of the
upper body, i.e. the torso. The lower body is considered only at the �nal
visualization step, where humanoid body animation is generated. We present
a character animation technique that uses the results from our crowd model
to generate torso-twisting and side-stepping characters. In this chapter,torso
twist is de�ned as the rotation of the torso relative to the agent's trajectory.

Our implementation does not focus on computational speed. The computation
of an exact Voronoi diagram comprises the majority of the execution time, and
can be quickly approximated using a GPU-based technique such as described
by Sud et al. [SAC+ 08]. Instead, our focus lies on obtaining realistic results
that match our ground truth data. Regardless, the simulations we included
in the accompanying video are all simulated in real-time. The accompanying
video is available at https://stuvel.eu/video/torso-crowds .

The rest of the chapter is organised as follows. Section 6.1 discusses related
work. Section 6.2 provides a description of the overall problem setting, fol-
lowed by the design of active (Section 6.3) and passive (Section 6.4) agents.
Section 6.5 discusses obstacles, and explains how anticipation of predictable
movement is modelled. We show our results, compare with a cylinder-based
simulation method and with ground truth obtained from motion capture, and
describe several simulated scenarios in Section 6.6. Section 6.7 describes the
animation technique used to display the moving crowd agents as walking hu-
manoid �gures. Section 6.8 discusses future work, and concludes the chapter.

6.1 | Related work

As we described in Chapter 2, there are many approaches to simulating
crowds. Each leads to di�erent behaviour in dense situations, which we brie�y
describe here. Flow-based methods are, due to their macroscopic nature,
particularly suitable for high-density simulations. However, such approaches
model a global optimum, whereas humans generally behave less optimally and
can even get stuck in very dense situations.Cellular automaton approaches
are computationally inexpensive and thus support large crowds. They also
result in even spacing between agents, which will appear unnatural when
densities are high. Both �ow-based and cellular automaton systems do not
consider how people move, and thus generally do not result in believable
human crowds. Agent-basedmethods generally avoid agent collisions at all
costs, even to the point where all agents stop moving. In contrast, in actual
dense crowds people frequently bump into each other. This is re�ected in our
method, as by design our agents prioritize motion over collision avoidance.

The common agent shapes, points and discs, have proven to be suitable to
simulate abstract (i.e. non-humanoid) crowds of any density. However, when
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using such a simple, rotationally symmetric representation, it becomes hard
to animate more detailed human motion. This results in artefacts such as
interpenetration of characters, unnatural distances between characters, and
a lack of torso rotations. Furthermore, we have shown that a disc does not
accurately represent the actual volume occupied by the character in 3D space
(see Chapter 3). In Section 6.6, we show the importance of the agent shape in
dense crowds, not just for realism of the motions, but also to support higher
densities without getting stuck. Singh et al. use multiple discs [SKRF11] to
represent an agent, and plan their motion using a footstep model. This ap-
proach allows for denser crowds than body-enclosing discs, and o�ers realistic
walking animations. However, the ability to simulate dense crowds remains to
be investigated. Our agent-based method extends the walk cycle approach, by
employing multiple walk cycle animations and, obviously, twisting the torso.
To our knowledge, our method is the �rst to use a capsule as agent represent-
ation in crowd simulations.

In Section 3.4, we investigated the residual distance between the meshes when
a collision is reported, and compared the volumes occupied by the bounding
cylinder and by the BCH. To further validate the choice for the capsule as
collision detection shape, we have performed the same two analyses using the
capsule, extruding it over the character's height. Since collision detection
using the capsule approach allows for false negatives, whereas the other colli-
sion detection strategies discussed in that chapter do not, the results are not
directly comparable: any false negative, where the character meshes intersect
when the capsule shapes do not, are reported as a zero residual distance. The
average residual distance obtained in that way is 2.3 cm (� =3.5 cm), which
is closer than the single cylinder (20 cm) or BCH (5 cm). The volume rep-
resented by the extruded capsule is closer to the actual mesh volume than
the single cylinder and BCH representations. For respectively the female and
male characters, the extruded capsule volumes were 3.21 and 2.45 times lar-
ger than the character mesh volume. See Figure 6.2 for a comparison with
the cylinder and the BCH. As the capsule is pose-independent, the standard
deviations are zero; the minute variations in character mesh volume due to
the linear blend skinning are ignored.

Our method employs Voronoi diagrams for planning motions through the
crowd. The edges of such a diagram represent the paths of maximum clear-
ance between agents; intuitively this corresponds well with the desire of people
to minimize perceived e�ort when walking [Zip49, GCC+ 10]. In Chapter 5,
we showed that in a dense crowd people indeed move along such paths. The
Explicit Corridor Map method by Geraerts [Ger10] uses city-scale general-
ized Voronoi diagrams for path planning. Sud et al. [SAC+ 08] perform path
planning based on 1st and 2nd order Voronoi diagrams, containing informa-
tion about respectively the closest agent and the closest pair of agents. They
employ a path scoring technique slightly resembling our proposed method.
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Figure 6.2: Volumes occupied by the minimal bounding cylinder, the BCH, and
the extruded Torso Crowd capsule. The volumes are expressed as multiples of the
actual mesh volume, to allow comparison between di�erent meshes.

While their article promotes speed of computation, our approach focuses on
a richer character representation, and validation against real crowd data.

6.2 | Setting and Problem Formulation

Our crowd simulation system considers the torso as the main moving element.
The algorithm is based on our �ndings described in Chapter 5, where we ob-
served and recorded dense crowd behaviour. In that experiment, participants
were given the task of manoeuvring through the crowd to prede�ned points.
The movement of the crowd was recorded using a motion capture system,
and these data serve as a ground truth for the behaviour of people actively
manoeuvring through dense crowds. Our Torso Crowd model is designed to
support the observed motions of the crowd-escaping participants, and believ-
able simulation of essentially stationary people.

When observing dense crowds in general, and the previously mentioned re-
cordings speci�cally, it is clear that torso rotations are critical when manoeuv-
ring through a dense crowd. To support such rotations, our agents extend the
common disc-based crowd agents, as shown in Figure 6.3. The common agent
is de�ned as a point with a radius r 0; our agent model extends this point to
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a line segment of length`, with a (probably di�erent) radius r , resulting in a
capsuleshape, which is also known as arace track. This extension eliminates
the rotational symmetry, thereby making it possible to plan torso rotations.
Note that the capsule forms a generalization of the circular crowd agent, as
such a form may be obtained by taking` = 0 and increasing the radius by
`=2 to compensate for the reduction in width.

People standing still in a crowd behave di�erently from people trying to reach
a certain goal position. In order to model these di�erences in behaviour,
two types of agents are used in our crowd simulation technique.Active agents
move to reach their goal position, whereaspassive agentsmostly stay in place,
moving only to make room for other agents. Section 6.3 describes the beha-
viour of the active agents, while Section 6.4 describes the passive agents. Dif-
ferent aspects of theenvironment, such as walls, doors, and other obstacles,
are handled by our method in a uni�ed way; this is described in Section 6.5.
The goals of the agents are determined by a high-level planner, which is
scenario-dependent and not described further. When an active agent reaches
its goal, depending on the intended scenario, the agent optionally switches to
passive behaviour. Similarly, when the high-level planner provides a passive
agent with a new goal position, that agent will switch to active behaviour.

The crowd consists ofN agentsA i , i 2 [1; : : : ; N ]. Each agentA i in reference
placement is de�ned as the Minkowski sum of a line segment of length̀ i

centred around the origin and aligned with the x-axis, referred to as the
central axis, and a disc of radiusr i . The placement of an agent is represented
by a pair (ai ; � i ), where ai and � i are the agent's position and orientation.
For ease of discussion, we denote the direction of the forward-facing normal of
the torso of agentA i in placement (ai ; � i ) by n i , the continuous set of points
covered by its central axis by si , and its linear velocity vector as _ai . These
concepts will be detailed in the following sections.

r i

` i

n i
r 0

Figure 6.3: Two types of crowd agent representation. On the left a common crowd
agent: a point with a radius. On the right our crowd agent: a line segment with a
radius.
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6.3 | Active agents

From observation of the previously mentioned ground truth data, and dense
crowds in general, we formulate the following assumptions as basis for our
active agent model.

� People tend to choose a comfortable path, that is, maximize clearance,
by avoiding areas of very high density. Occasionally, a less comfortable
path may be chosen, when the discomfort is only temporary and the
path leads to an area of larger clearance.

� People tend to minimize perceived energy use [Zip49], and thus prefer
short, straight paths.

� People generally move in the direction of their goal, but divert from
the shortest path when it is obstructed or when an alternative path is
signi�cantly more comfortable.

� Averaging at 0.4 m/sec, the traversing speed through a dense crowd
is relatively low (see Section 5.3). This, combined with the dynamic
nature of crowds and possibly a lack of overview of the situation, makes
long-distance planning of exact paths to the goal impractical.

The generalized Voronoi diagram (GVD) is a partitioning of the plane. In our
crowd model, a cell is de�ned for each agent, being the set of all points that
is closest to that agent. The GVD is represented as a pairf V; Eg of vertices
V and edgesE � V � V that represent the boundaries of those cells, where
the edges are arcs (possibly with zero curvature). Every point on an edge or a
vertex is equidistant to its neighbouring crowd agents. These edges form the
medial axis between the agents, and thus represent a more or less comfortable
path that maximizes local clearance. In Chapter 5, we observed that people
in dense crowds indeed follow such paths (also see Figure 6.4).

In real situations, observing surrounding people, planning a path, and man-
oeuvring through the crowd, are intertwined in a continuous process. How-
ever, people are not continually reconsidering all their options all the time, but
rather make more or less discrete decisions. Our agents re�ect this behaviour
by replanning their actions at a moderate rate.

Similar to Sud et al. [SAC+ 08], all active agents use the same GVD for plan-
ning their motion. The passive agents use a slightly altered GVD, modelling
all doors as closed as described in Section 6.4. As a result, the GVD needs to
be computed at most twice per simulation update, regardless of the crowd size
and frequency of planning. For simplicity of computation, we use the central
axessi to compute the GVD, rather than the agent shapes themselves. Due
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Figure 6.4: Top-down view of a real, motion captured crowd, with the generalized
Voronoi diagram in white lines.

to the nature of the capsule, where the distance from the axis to the edge of
the shape is constant, this approximated GVD is very similar to the exact
GVD (see Figure 6.5); the distances between the corresponding edges are in
the order of magnitude of the di�erences between the agent radii. Such small
di�erences, in our case in the order of centimetres [SdGvdSE15], are unlikely
to cause noticeable changes in the crowd's behaviour.

Our Torso Crowd method is suitable for simulating dense crowd manoeuv-
ring, and based on experimental observations of such behaviour. However, in
situations where the crowd is not dense, we have no proof of validity. As a
consequence, our implementation switches to the less complex and thus faster
RVO2 crowd simulation algorithm [vdBGLM11] when agents move out of the
dense crowd. This can be seen in the accompanying video, when agents walk
out of a lift and into an empty hallway. We reuse the de�nition of densesitu-
ations from Section 5.3.1, namely those situations where there is an average
of at least three humans per square metre, as measured by the area of their
Voronoi cell. Since we can measure this density on a per-agent basis, this
decision is also made for each agent individually.

In the next subsections, we discuss the planning and execution of the agent's
movement. Firstly, similar to real people, a desired position is planned, tak-
ing into account potential torso twists needed to reach that position. Since
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Figure 6.5: The exact Generalized Voronoi Diagram of the capsules (black) and
the approximated diagram of their central axes (white). The distance between
corresponding edges depend on the di�erence in capsule radius.

the available clearance at the planned position poses a bound on the torso
orientation, this orientation is planned in a second step.

6.3.1 | Limited-horizon path planning

To plan the movement of an active agent, the following steps are taken:

1. Find paths by exploring the vicinity in the GVD of the Voronoi cell
containing the agent.

2. Compute a score for each path, and determine the best-scoring path.

3. Compute the desired agent orientation at the start of the path, account-
ing for available clearance.

The GVD provides proximity information in a natural way; the cell of the
active agent represents its proximity, and the outgoing edges of that cell's
vertices form paths between agents in its direct vicinity. The search is ini-
tialized by taking these outgoing edges, i.e. the edges that only have a single
vertex incident to the active agent's Voronoi cell. This set is then extended,
parametrized by given values for Euclidean distancesHD and H � , and edge
count limit HC , as follows: the outgoing edges are followed depth-�rst until
either distance HD , or edge count limit HC is reached. For the latter limit,
edges shorter thanH � are ignored (as circled in Figure 6.6). Such short edges
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Figure 6.6: Candidate paths in white lines, with the best-scoring path as a thick,
red line. The circled edge was shorter than H � . The paths are extended to the agent
position. The goal position is bottom left outside the frame. Note that the paths
along curved Voronoi edges are just drawn as straight line segments for simplicity.

occur, for example, when four agents are almost equidistant to a point, and
the clearance between the agents would likely be perceived as a single space.
Hence, such edges are unlikely to correspond to human perception. Even
though this approach could theoretically lead to a path consisting of an arbit-
rarily large number of edges, such a situation does not occur in dense crowds
when using crowd agents of more or less realistic human-like sizes. The res-
ulting path P consists of a sequence of GVD edges; following the path should
bring the agent closer to its goal.

After a set of candidate paths is found, each path is given a score. The agent
will attempt to use the path with the highest score. The composite score
function S(i; P ) takes agentA i and path P. It enforces the behaviour of real
people in dense crowds, based on our observations in Chapter 5. As all score
functions should be balanced to make a �nal decision as to the best possible
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path, they are combined into a weighted sum:

S(i; P ) = wgSg(i; P ) + wcSc(P) + wl Sl (P) + wm Sm (i; P ) ;

where Sg(i; P ), Sc(P), Sl (P) and Sm (i; P ) are score functions, andwg, wc,
wl and wm are weights given to these sub-scores. Values for these weights
are determined in Section 6.6.1. In the following descriptions of each score
function, p0 and p f respectively indicate the initial and �nal vertex positions
of path P. Note that the path's �nal point p f does not necessarily correspond
to the agent's goal position gi , due to the limit on the path length described
earlier.

Score function Sg(i; P ) drives the agent towards its goal. It measures how
well the path leads to the goal positiongi , expressing the distance, from the
end of the path to the goal, as a ratio of the total Euclidean distance to the
goal. This normalization ensures that the resulting score is independent of
the absolute distance to the goal:

Sg(i; P ) = 1 �
jgi � p f j
jgi � ai j

:

Score function Sc(P) measures the clearance radius along the path, ensuring
that the agent prefers comfortable routes with large clearances. It consists
of two components. The �rst component stems from the moderate rate re-
planning principle. It assumes that a person plans a motion towards a more
spacious area; when this area is reached, a new decision can be made. The
second component prefers motion along paths with as much clearance as pos-
sible. The GVD structure enables e�cient computation of clearance radius
C(x) at any point x 2 R2.

Sc(P) = wF
c C(p f ) + wA

c
1

jP j

Z

x 2 P
C(x) dx ;

where jP j indicates the total arc length of P, x 2 P are the collection of
all points along path P, and wF

c and wA
c are weights for respectively the

�nal and the average clearance of the path. Due to implementation details of
our GVD library, we only had access to the minimal clearance of edges, and
approximated the integral using discretized summation. This score function
also serves as a term to minimize the relative rotation of the torso with respect
to the motion trajectory, due to the way the clearance information is used to
plan torso orientations (as described in Section 6.3.2).

The conservation of energy can be broken down into two components: the
minimization of the distance travelled, and the e�ort required to travel that
distance. Score functionSl (P) models the �rst component, and measures path
length. This function combines with Sg(i; P ) into the preference of short paths
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leading to the goal:
Sl (P) = �

X

e2 P

jej :

Score function Sm (i; P ) represents the second component of energy conser-
vation, by penalizing changes in momentum, i.e. sharp turns. Since we can
safely assume that the mass of the agent is constant, any change in mo-
mentum is explained by a change (in the direction of) the velocity vector,
which in turn can be modelled by the cosine similarity of the current velocity
and the direction towards the path:

Sm (i; P ) =
_ai � e0

j _ai jje0j
;

where e0 = p0 � ai , the vector connecting the agent to the starting point of
the path.

A more elaborate alternative for Sm (i; P ) could compute the weighted integ-
ral of the curvature along e0 and P, with the weight inversely proportional to
the distance from the agent. This would take the curvature of the entire path
into account, emphasizing more immediate momentum changes. However, our
proposed approach is simpler, and seems to be su�cient in practice. Further-
more, due to the agent replanning while it is en route to its goal, e�ectively
the curvature of the entire path is taken into account.

6.3.2 | Torso rotation planning

Once the best path P has been chosen, which determines the next torso
position, the torso orientation To is determined. For this we use the torso
normal n i of agent A i . Torso orientation To consists of two components:
headingTh and torso twist Tt . The �rst component, Th , represents a common
nonholonomic walking motion along the start of the path. Its computation is
trivial and not described here. The second component, torso twistTt , adjusts
for the minimal clearance along the start of the path. The clearance at later
parts of the path is of less importance for the current torso twist planning,
due to the moderate-rate replanning principle. The �rst edge of the path
lies between two neighbouring agents, and ends at a point of local maximum
clearance1 behind those two agents. It is this part of the path that is used for
the planning of the torso twist. The clearance at a point indicates the distance
from that point to the nearest agent capsule. To maximize the time for the
agent to smoothly change its torso orientation towards the desired twist, we
compute the minimal clearancec along the �rst edge of path P. The torso

1This statement is not strictly true for Voronoi diagrams in general. However, it is valid
for our dense crowds in constrained environments
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twist Tt can then be expressed in degrees as:

Tt =

8
><

>:

0o : c � r i � wi

arccos
�

c� r i
w i

�
: 0 < c � r i < w i

90o : c � r i � 0

where wi = ` i =2 + r i is the half-width of the capsule. This results in two
possible orientations, both of which will �t the available clearance equally
well: Th + Tt and Th � Tt . In Section 5.3, we observe that, while manoeuvring
through a dense crowd, people tend to aim their torso normal towards their
goal position. The absolute angle between the torso normal and the vector to
their goal is limited to 90o for 90% of the time, and never more than 120o.
Consequently, we chooseTo = Th � Tt such that this angle is minimized.

6.3.3 | Performing the planned movement

Like most crowd simulation systems, our system is not able to avoid every
collision, and since collisions frequently occur in real dense crowds, this is
actually desirable. As the likelihood of collisions increases with density, it
is critical to detect and handle collisions in a correct way. For this, we use
a physics engine, as such engines are optimized for e�cient collision detec-
tion and handling. Since instantaneous displacement of objects can interfere
with realistic collision handling in such an engine, our agents are moved using
virtual forces. Once the desired positionp0 and orientation To have been
computed, each agent employs proportional-derivative controllers to steer to-
wards the planned con�guration. For our implementation we use the Blender
Game Engine [ble15], which contains a physics simulation engine based on
Bullet [bul15].

So far we have discussed the general approach for an active agent. Based on
observations from real crowds, we deviate from this approach when a character
starts to move towards a goal. In Section 5.3, we observed that, before they
start manoeuvring, people orient their torso towards their goal. Similar be-
haviour is incorporated into our crowd model. When an agent becomes active
and starts planning its movements, it performs the same planning steps as de-
scribed in the previous subsections. However, it discards the planned position
p0, and rotates on the spot towards the planned orientationTo. Subsequent
planning steps are performed as described earlier.

The agents' maximum translation speed is enforced by a parameter of the
physics engine, which is controlled by an agent-dependent functionm(i ) that
interpolates between a minimum and maximum speed based on the available
clearance at the planned location. In our implementation, we use the following
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function:

m(i ) =

(
(M x � M n )

�
c
r i

� 
+ M n if c < r i

M x otherwise

where r i is the radius of agentA i , c is the available clearance at the agent's
planned location p0, M n and M x are minimum and maximum bounds on
the speed, and is a curvature tuning parameter. In our implementation,
we obtained polite behaviour usingM n = 0 :05 m/sec, M x = 0 :6 m/sec and
 = 2 . By choosing  > 1 and M n fairly low, the agent slows down when
the crowd density is high, giving the other agents ample time to make space
before moving forward. A more aggressive agent can be modelled by lowering
 and increasingM n .

Before planning a new path, an agent performs a ray-cast on the GVD. When
a direct, linear path from the agent to the goal is available with a minimal
clearance radius of the agent's half-width` i =2 + r i , the agent foregoes the
planning stage, moves directly to the goal position, and stops there. This
approach is suitable when the goal can actually be easily reached by the
agent. Alternatively, for example when the goal position is occupied by an-
other agent, the agent detects that the goal is within a threshold distance,
and stops manoeuvring.

6.4 | Passive agents

In this section, we discuss the behaviour ofpassive crowd agents, which, in
contrast to active agents, do not have an explicit target to navigate to. We
consider two sometimes contradictory motivations for their placement: �nding
local comfort, and rotation towards a focus point. Our passive agents locally
optimize their placement, making themselves as comfortable as possible, i.e.
maximize the clearance around them, given the constraints of their immediate
surroundings. Similar to the planning method for active agents, we separate
the planning of translation and rotation. The translation t S to reach a more
comfortable placement is described in Section 6.4.1. When the geometry of the
environment and the con�guration of the crowd allow for it, a trade-o� is made
between rotating to a comfortable orientation and a rotation towards a focus
point. This can be the centre of a chatting group of people, the charismatic
front man of a performing band, or simply the �oor number display of the
lift. To our knowledge, we are the �rst to use such a focus point in a crowd
simulation system. The rotation � S from the current to the desired orientation
is described in Section 6.4.2. Passive members of a crowd temporarily accept
a less comfortable position in order to make way for someone else to pass; this
avoidance by translating (t A ) and rotating ( � A ) is described in Section 6.4.3.
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In Section 6.4.4 we show how these desires are combined into the agent's
motion.

6.4.1 | Space finding

Passive agents try to loosely maintain their position. For example, even when
a lift is crowded, the door is open, and outside the lift is a plethora of space,
agents waiting in the lift will remain in that lift. Manoeuvring to a di�erent
area, such as stepping out of the lift, is considered active behaviour, and is
described in the previous section; note that agents can switch from passive to
active behaviour when required. We use walls and doors (see Section 6.5) to
delineate areas in the environment. To restrict the space �nding algorithm to
the agents' current area, our passive agents consider all doors as closed, re-
gardless of their actual state. However, the agents do search for a better place
to stand in their direct vicinity; this is what we call space �nding behaviour.
This results in a translation vector t S from their current position to a more
spacious position. E�ectively it is a combination of comfort optimization and
avoidance of passive agents.

Whether the space �nding algorithm is engaged depends on the space around
the agents. We assume that our passive agents like to stand in a spot where
there is enough space surrounding them. When that is the case, i.e. the
distance to the nearest neighbouring agent or obstacle is larger than a certain
threshold, they remain stationary, even though there may be even more space
available to them; the agent is marked ashappy with its current placement,
and will not engage the space �nding algorithm (sot S = 0). This threshold
can be con�gured individually for each agent, and can be a function of culture,
scenario, or the geometry of the surroundings.

In tighter situations, our passive agents move to maximize their comfort. To
obtain nearby candidate positions of increased comfort, agents consider points
of maximum clearance between their surrounding neighbours. By de�nition,
such points correspond with vertices of a Generalized Voronoi Diagram (GVD,
described in Section 6.3) of those neighbours. Such alocal Generalized Voronoi
Diagram L i of agent A i is the GVD de�ned by N i , where N i is the set of
neighbouring agents and obstacles of agentA i . N i can be e�ciently extracted
from the GVD of the entire crowd, by iterating over the edges of the cell
containing A i , and taking the agents or obstacles on the opposite side of the
edges. Note that agentA i itself is not included in L i (as shown in Figure 6.7).
The vertices ofL i correspond to local clearance maxima, and thus potentially
comfortable positions for the agent to move to.

People try not to spend too much energy [Zip49], and will accept a marginally
more cramped situation when walking to a better spot would take a signi�cant
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Figure 6.7: Example of a local Generalized Voronoi Diagram (GVD), with points
of maximal local clearance, in orange. The GVD of the crowd is shown in white.
The features that de�ne the local GVD are shown in magenta. The dashed circle
shows the clearance of the agent.

e�ort. To take this into account, we use the following energy minimization
function to balance the gain (more available space) with the expended energy
(the distance to travel to that space). All vertices v j 2 L i are considered
potential better positions, and are given an energy cost

E(ai ; v j ) =
jv j � ai j

C(v j ) � C(ai )
vd = arg min

v j 2L i

E(ai ; v j )

t S = vd � ai

where C(x) indicates the clearance aroundx; vd denotes the vertex with
the lowest energy cost, and determines the agent's space �nding translation
vector t S . This scoring is e�cient; we have found that, in practice, 89% of the
time L i contains no more than three vertices, with an average of 2.7 vertices
(� =0.7). The energy function E(ai ; v j ) is intentionally left simple. Although
it is not based on actual knowledge on the human decision making process,
it works well in practice. We leave it to future work to discover whether the
preference of position is indeed linear in clearance and distance.
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6.4.2 | Orientation finding

When agents are squeezed into a small area, they rotate themselves to �t the
available space. However, if the constraints allow for it, the agents focus on
a given point (a performing band on a stage, �oor number display of a lift,
etc.). This results in a rotation � S from the current orientation of the agent
towards a desired orientation. The focus point is environment- and scenario-
dependent, and can of course change over time and be di�erent for each person
or agent. It is denoted asf i for agent A i . The accompanying video shows the
e�ect of this focus point. A group of agents have a focus point in the centre,
and the video demonstrates the e�ect of increased density on this group: the
group stays together, even though the focus point has no direct in�uence on
the position of the agents (see Figure 6.12).

In the remainder of this section, p is the passive agent's index number, soap

indicates its position. The angle between the agent's torso normalnp (see
Section 6.2) and the vector to its focus pointfp is de�ned as

� f = \ (fp � ap; np) ;

where \ (x ; y ) indicates the signed angle between two vectors on the interval
(� �; � ].

When marked ashappy with their current placement (which depends on the
available clearance, as described in Section 6.4.1), our crowd agents rotate
such that their torso normal points towards their focus point. In this case,
we take � S = � f .

The shape of the available space is the dominant factor in someone's orienta-
tion when that space is tight; one rotates to �t the little space available. The
narrower the space, the less important any focus point becomes. To include
this behaviour in our model, we inspect the shape of the agent's Voronoi cell.
Since this cell contains all points that are closer to the agent than to any other
agent, it is a good model for their available space. Thewidth of the cell is
de�ned as the minimal distance between two parallel tangents to the cell. The
direction of these tangents are a common measure for the oblong direction of
the cell. However, this direction is not stable under small variations in agent
con�gurations, so we use a more robust approach. To obtain a vector that
indicates the overall orientation of the space, a Principal Component Analysis
(PCA) [Hyv70] is applied. Such an analysis is applied to a point cloud, to
determine its dominant direction. Since it cannot be applied to continuous
shapes, intuitively we could sample the interior of the Voronoi cell to obtain
such a point cloud. However, to increase computational performance, we limit
this approach to the sampled cell edges; considering the results, this is suf-
�cient. The result of the PCA consists of the eigenvalues and eigenvectors
of a covariance matrix; when ordered from large to small by their absolute
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Figure 6.8: Example of a Voronoi cell, with the �rst and second principal com-
ponent in red, and scaled by their eigenvalues.

eigenvaluesc1 and c2, the eigenvectors indicate the �rst and second principal
components C1 and C2. In the remainder of this section, we assume that
the absolute eigenvalues are ordered by magnitude, i.e.c1 is the absolute
eigenvalue belonging to eigenvectorC1.

When the Voronoi cell of a passive agent has no clear orientation, the eigen-
vectors hold little information, and the eigenvalues will be more or less equal.
In this case, the agent rotates towards the focus point. When the shape of the
cell is elongated, and thus relevant for the orientation of the crowd agent, the
�rst principal component aligns with the cell's shape (see Figure 6.8). This
relevance is indicated by a large di�erence between the �rst and second eigen-
value of the covariance matrix, i.e. c1 � c2 � � 2 (� 1 will be introduced later as
a lower bound). In this case, there are two possible orientations for the agent,
in which the agent's central axis sp aligns with either C1 or � C1; the agent
chooses the orientation that minimizes� f . If there is no focus point, � f is
not de�ned, and the agent chooses the orientation that requires the smallest
rotation from its current orientation:

� c = \ (� C1; sp) :

To ensure smooth transition between� c and � f , we blend between them
depending on the eigenvalue di�erence:

� S =

8
<

:

� c if � 2 � c1 � c2

I (� c; � f ; t) if � 1 � c1 � c2< � 2

� f if c1 � c2< � 1 ;
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where � 1 < � 2, I (� c; � f ; t) indicates angular linear interpolation along the
shortest arc for t = ( c1 � � 1)=(� 1 � � 2). In our implementation, we use � 1 =
0:015 and � 2 = 0 :045.

We investigated simpler approaches for �nding the orientation of the shape,
such as a PCA on just the Voronoi vertices, or taking the two points furthest
apart on the Voronoi edges. However, our approach of performing a PCA on
the Voronoi edges produced the most stable and realistic results.

6.4.3 | Avoidance of active agents

The behaviour of passive and active agents is quite di�erent. Passive agents
move slower, and try to divide the available space between them. Active
agents move faster (when allowed by the constrained environment), and, more
importantly, try to reach a speci�c goal. These di�erences are also re�ected in
the way that passive agents perform agent avoidance. This section describes
how they avoid active agents; avoidance of passive agents is handled by the
space-�nding algorithm, which is described in Section 6.4.1.

Since distant agents have a negligible probability of colliding with the passive
agent, only those nearby are avoided. Of the active agents that are within
an avoidance distancedi of the passive agent, measuring distance between
the agents' capsules, the nearestK , with indices f i 1; : : : ; iK g, are considered
for avoidance. In our implementation we useddi = 0 :4r i and K = 4 . The
avoidance distancedi can be varied to model observant (using largerdi ) or
unaware (using smallerdi ) behaviour, and is not necessarily related to the
agent's radius. In the following description of the avoidance behaviour, we
denote the index of the active agent that is to be avoided asi 2 f i 1; : : : ; iK g,
and the index of the passive agent asp. Agents that move away from the
avoiding agent, i.e. where(ai � ap) � _ai > 0, are safely ignored, as their motion
is su�cient to avoid any collisions.

The avoidance behaviour consists of two components, a rotation� A and a
translation t A . The passive agent rotates to minimize its width in the active
agent's direction of movement, and it translates to move out of the way. The
active agent's position ai and velocity vector _ai are used to determine a �rst-
order approximation of its future trajectory.

Passive agentAp rotates to reduce its width perpendicular to _ai , allowing A i

as much space as possible to pass.� A is chosen such that the central axis
sp aligns with either _ai or � _ai , depending on which produces the smallest
rotation:

� i = \ (� _ai ; sp)
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x i

A i

Ap

_ai

t i

ai ap

Figure 6.9: Active agent avoidance; the passive agent Ap (green) will move to
avoid the active agent A i (cyan). Arrow t i indicates the resulting avoidance vector.

The �nal rotation � A is the sum of the individual rotations � i . This sum-
mation is very simple; we are interested in a more re�ned approach, such as
computing the rotation to avoid the one agent that is most likely to collide,
based on its position and velocity. The avoidance of other agents could then
be performed once that agent has been avoided. The investigation of more
elaborate methods is left as future work.

To step out of the way of agentA i , the passive agent translates perpendicular
to the velocity vector _ai (see Figure 6.9). For the active agent, we determine
the line through ai and oriented along _ai . For the passive agent, we determine
the line orthogonal to _ai and intersectingap. The intersection point x i of those
lines determines translation vectort i :

t i =
1
� i

ap � x i

jap � x i j

with dampening factor � i > 0. The dampening factor can be agent-speci�c, to
allow for di�erent personality traits. A high dampening factor will make the
agent slower to respond than a low dampening factor. In the accompanying
video we used� i = 200 for all agents. The �nal agent avoidance translation
vector t A is the sum of individual translations t i .

6.4.4 | Turning desire into action

The previous subsections described methods to obtain a vector towards more
spacet S , a rotation � S towards a focus point or to align with the available
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space, and translationt A and rotation � A to avoid active agents. This section
describes how our method selects which translation and rotation to use to
produce the agent's motion.

The space �nding translation vector t S is applied only when certain conditions
are met. Firstly, we make an assumption based on the principle of energy
minimization. We assume that people accept a marginally worse situation
when manoeuvring into a better spot would use signi�cantly more e�ort than
standing still. In our algorithm, the clearance at the found point must be
signi�cantly better than the agent's current situation; we use a threshold
value of 125% of the agent's current clearance. Not only does this produce
more natural results (an irregular distribution of free space among the crowd),
it also prevents oscillation between points of similar clearance. Secondly, when
making space for someone to pass (see Section 6.4.3), people generally accept
a worse situation, as it will only be temporarily. However, people try to
move towards an open space if one is available and can be reached while still
allowing someone to pass, since this will make it both easier for the passing
person and more comfortable for the avoiding person. To model this, space
�nding vector t S is applied only when agent avoidance and space �nding result
in a translation in roughly the same direction; in other words, when the dot
product t S � t A > 0. When these are more or less opposite, only the agent
avoidance is performed. The same approach is taken for� S and � A ; if both
rotate in the same direction, they are combined, otherwise only� A is applied.

To determine the movement of the agent, the planned positionp0 and torso
orientation To (described in Section 6.3) are de�ned as:

p0 = ap + t A +
�

t S if t S � t A > 0
0 otherwise

To = � p + � A +
�

� S if � A � S > 0
0 otherwise ;

where� p is the passive agent's current orientation. The movement of the agent
is controlled in the same way as described for active agents in Section 6.3, with
the exception of the maximum translation speed, which is constant for passive
agents.

6.5 | Walls, doors, and other obstacles

In order to model realistic scenarios, our method supports straight walls, doors
and polygonal obstacles. To integrate these into the crowd behaviour, they are
all modelled as line segments and included as additional sites in the generalized
Voronoi diagram (GVD). As a result, the GVD contains line segment sites for
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agents, walls, doors and obstacles. All these are interpreted by the crowd
agents as impenetrable obstacles. Due to the frequent computation of the
GVD, obstacles and walls can move dynamically. Agents will adjust for this,
but do not anticipate those movements. Such anticipation is left as future
work.

Doors are modelled as special wall segments that can be enabled when the door
is closed, and disabled when the door is opened. As described in Section 6.4.1,
doors are interpreted di�erently by active and passive crowd members. When
a door is open, its line segment simply is not inserted into the active agents'
GVD at the next simulation update. The GVD for the passive agents always
inserts door line segments, to ensure that the space �nding algorithm does
not cross area boundaries.

In real life, people anticipate the movement of others. Anticipation in crowd
simulation has been studied before [PPD07, KHvBO09, SYN12]; in these
works, crowd agents predict other agents' actions by their movement, and ad-
apt their own motion to avoid collisions. Our crowd model takes the opposite
approach; our active agents actively notify passive agents of their intentions,
by placing information in the environment, similar to the approach by Yeh
et al. [YCP+ 08]. As a real-life example of the intended behaviour, consider
a person entering a lift; people appear to mentally model the space required
for that person, and make space accordingly. Since the �nal orientation of
the person is not known a-priori, a point would be su�cient to model this.
In our simulation, active agents insert point obstacles in the passive GVD, at
their goal position gi . As a result, the passive agents make space around this
position, sooner than the avoidance behaviour would. This is applicable only
in situations where the active agent's behaviour is predictable, such as when
entering or exiting a lift or bus, which is why it is an optional feature of our
crowd simulation method.

6.6 | Results

In this section, we validate our Torso Crowd model against a real crowd,
in order to �nd values for parameters that result in human-like behaviour.
Furthermore, we investigate our model by looking at several scenarios. We also
compare our model with a disc-based crowd simulation: Reciprocal Velocity
Obstacles [vdBGLM11].
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6.6.1 | Validation and parameter optimization

To validate our crowd model behaviour, we used motion capture data of a
real crowd. This data set contains the torso width and thickness of each par-
ticipant, and a recording of their locations and torso orientations during each
of 47 trials. These recorded motions represent human behaviour in a real situ-
ation, and thus form a suitable ground truth for our parameter optimization
and model veri�cation. We do note that the recordings were performed in a
controlled environment, and thus may not be a faithful representation of day
to day scenarios. We leave evaluation using real crowds, for example using
video analysis, to future work. The data set is used to validate the behaviour
of the active agents, and the passive agents in the interior of the crowd. In the
experiment, the active participants had the concrete, reasonably realistic task
of manoeuvring through a crowd to a given point. The rest of the crowd had
to stand still in a dense con�guration, which was necessarily synthetic for the
participants at the edge of the crowd due to the set-up of the experiment. To
compare the behaviour of the active participants with our crowd simulation
system, we look at topological equivalence, rather than Euclidean distance
between paths, as the exact positions of the paths are highly dependent on
the behaviour of the passive crowd members. The behaviour of the passive
crowd agents was compared to the participants by observing how much they
align themselves with passing active agents. The parameters for the pass-
ive agents are simpler and more intuitive than those for the active agents,
and were chosen based on visual inspection of the simulation results of the
scenarios described in Section 6.6.2.

Our crowd model uses a number of parameters that determine the behaviour
of the active agents, as described in Section 6.2. These parameters, with their
optimized values, are shown in Table 6.1. To optimize these parameters, we
used the following approach:

1. Conversion: The motion capture data is converted to our abstract agent
representation, enabling us to input captured situations into our crowd
simulation method.

2. Test sets: We chooseN random frames from the recorded motion cap-
ture data. We ensure that each of the chosen frames represents a di�er-
ent situation. The set of frames is separated into two distinct, equally
sized, randomly chosen subsetsT for parameter tweaking and V for
veri�cation.

3. Parameter tweaking: For each frame inT , the choices of the path plan-
ning algorithm are compared with the choices of the participant. We
adjust parameters and repeat the comparison, until either all choices
made by the path planner are equal to the choices made by the partici-
pants, or no more improvements can be made. When the planned path
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category parameter value parameter value
Planner horizon HC 3 HD 1.50 m

H � 0.05 m
Score function
weights

wc 2.30 wg 1.41

wl 0.21 wm 1.00
Clearance weights wF

c 0.1 wA
c 0.9

Table 6.1: The path planner parameters obtained from our comparison with our
ground truth data. All values were obtained by manual optimization.

passes between the same agents as the participant's motion, they are
considered equal.

4. Veri�cation: For each frame in V, the same type of comparison is per-
formed, as a veri�cation of the parameters. We also measure the di�er-
ence in planned and recorded torso twist.

We used N = 80 to tweak and verify our parameters. Little adjustment
was needed during the tweaking phase, resulting in the parameters displayed
in Table 6.1. To prevent over-�tting to our motion capture data, we also
validated against the behaviour observed in the simulations seen in the ac-
companying video. During the veri�cation phase, the path planner chose a
path that was topologically equivalent to the participants in 85% of the cases.
Figure 6.10a shows examples of such correctly planned paths. In four of the
six cases where the planner diverted from the recorded data, the planned path
was equally plausible (see Figure 6.10b). In the recordings of the other two
cases, at the exact frame used for validation, the participant shifted weight
from one foot to the other while otherwise stationary, which resulted in a large
change in the instantaneous momentum vector and thus in a di�erent path
being chosen (see Figure 6.10c); within1=30 second after the test frame, the
planner chose the same path as the participant in both cases. Of course this
is not an issue when using simulated data, as our system does not model this
weight shifting.

The veri�cation of our model also includes a comparison between the planned
and recorded torso orientations for the 34 test cases where the predicted path
was topologically equivalent to the path of the recorded participant. To re-
move the in�uence of local path variations, we compare the torsotwists, since
these are relative to the agent's and participant's own paths. The twist is
de�ned as the angle between the torso normal and the torso's instantaneous
velocity vector (as described in Section 6.3.2). For each veri�cation frame,
our Torso Crowd method is used to plan the agent's next short-term target
position p0 and torso twist Tt . The recording is then forwarded to the time
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(a) We consider the blue and red paths as topologically equal, since they
choose the same route between the same agents.

(b) We consider those two paths as topologically di�erent, since they
choose a di�erent route towards the goal, but equally plausible routes
towards the goal position.

(c) In the left image, the planner took an unnatural decision, due to
noise in the recorded velocity vector. However, 1/60 second later (right
image) the planner made the same choice as the participant.

Figure 6.10: Comparison between the planned paths (thick red line) and the
recorded motion capture data (thin blue line).
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where the participant reachesp0, after which his/her torso twist T0
t is determ-

ined. The error is then expressed as the signed di�erence between the twists:
E = Tt � T0

t where the sign of errorE indicates whether our planner over-
estimates (with E positive) or under-estimates (with E negative) the required
twist. In 10 cases we under-estimated the required twist. We classify one of
those cases as outlier; it showed a� 42o di�erence due to the participant mov-
ing at that angle even though it was not needed given the available space. In
the other under-estimated cases the average error was small at� 12o, and the
error was never more than� 16o. In 25 of the 34 cases, we over-estimated the
required twist. This is easily explained by the fact that the plan is based on
the GVD, which represents the current situation. In the recorded data, it is
clear to see that the passive participants make space for the active participant,
resulting in more available space, hence less torso twist is required. The av-
erage error when over-estimating was22o. The largest error in the predicted
twist was 76o. However, in this case the planned global torso orientation was
reached within 0.8 seconds after reaching the planned position. Note that we
compare the torsos at the moment in time where the distance between the
recorded participant and the planned position is minimal. In 16 of the 34 test
cases, either the planned torso twistTt or the global torso orientation To is
approached (within a 2o error margin) within 0.5 seconds from that moment
in time. This indicates that the recorded participant rotates at a slightly
di�erent rate, but still assumes the planned con�guration shortly before or
after. The average of the absolute error is quite small at19o, and the median
of 16o indicates that more than half of the predictions have a smaller-than-
average error. We can conclude that our method for simulating active agents
corresponds well with the ground truth data.

The avoidance behaviour of the passive participants was also investigated, to
con�rm that they show the alignment behaviour we model in Section 6.4.3.
Since our aim is the simulation of dense crowds, we discarded the partici-
pants at the edge of the crowd, and limited this analysis to those that are in
a dense situation (see Section 5.3). Their continuous motion was segmented
into avoidance actions, which are de�ned as a period in which the participant
shows a translation and/or rotation in order to make way for the active parti-
cipant. In our data set, all avoidance actions consisted of at least a translation
(average 0:09 m, � = 0 :07 m), which allowed us to �nd the peak in trans-
lation speed, and use the local minima around this peak to de�ne the start
and end timekeys of each avoidance action. At both timekeys, we measured
the angle between the passive participant's torso segmentsp and the active
participant's velocity vector _ai . By analysing 94 avoidance actions, we found
that at the start of the avoidance action, the average angle was42o (� = 25o),
and at the end timekey it was 30o (� = 22o). A paired-samples T-test on
the angles shows that this is a strong signi�cant di�erence (p < 0:0001), in-
dicating that there is indeed a trend to align with the active agent's velocity
vector. The speci�c values of the observed averages are of relative importance;
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as we measured the angle at translation-dependent points in time, we did not
account for any anticipation or other temporal e�ects. Doing so may produce
stronger results, which is left for future research. The simulated avoidance
behaviour is parametrized, and can be adjusted to mimic these �ndings.

6.6.2 | Examples and comparison with disc-based simu-
lation

We have modelled several scenarios to test our crowd simulation method. As
we focus on situations where a large part of the crowd stands still, typical
tests where the entire crowd moves do not su�ce. Furthermore, in dense
crowds people often bump into each other, so a benchmarking method that
penalizes collisions, such as SteerBench [SKFR09], will produce unrealistic
scores. Instead, we have chosen to use a lift and a hallway to model crowded
spaces. All scenarios are simulated at real-time on a single CPU core of a
modern PC. The scenarios are shown in the accompanying video. For each
scenario, we �rst show the simulated agents, and then animated characters
that follow the motions of those agents.

Small lift In this scenario, the lift visits various �oors, and on each �oor
agents get in or out of the lift (see Figure 6.11). This scenario shows the
typical division of the available space seen in lifts: one person by itself stands
more or less in the middle of the lift, while the space gets divided when
more people enter. While waiting for their �oor, the agents turn towards a
common focus point: the �oor indicator panel above the door. When agents
leave the lift, the remaining space is used by the remaining agents. Note that,
mimicking real life, the space isnot optimally divided amongst the agents.
Instead, agents around a gap, where an agent stood before leaving the lift,
bene�t most from the newly available space. The e�ect of the insertion of the
immediate goal of active agents, as described in Section 6.5, can clearly be
seen when passive agents make space as an active agent enters the lift.

Figure 6.11: Stills of the �small lift� scenario. Three agents enter the lift, while
the others make space.

Large lift This scenario demonstrates what happens when a group of agents
share a focus point, and the density of the crowd increases. The three green
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agents (see Figure 6.12) share a focus point that is positioned at the centroid
of their positions. The other agents in the simulation do not have a focus
point. The behaviour of the agents entering the lift is not necessarily natural,
since half of them have been scripted to move to the back of the lift. This
behaviour is more disruptive to the agents already present, and thus forms a
more interesting scenario. Even though the focus point has no direct in�uence
on the agents positions, the three agents stay together.

Figure 6.12: Stills of the �large lift� scenario. The three green agents have a
common focus point (the red dot).

Hallway In this scenario we show a character manoeuvring through a larger
crowd in a hallway. One agent tries to manoeuvre towards its goal position,
while the remainder of the crowd is stationary; those agents have a zero pre-
ferred velocity. We use this scenario to compare the behaviour of our Torso
Crowd model with a widely accepted crowd simulation model: Reciprocal
Velocity Obstacles (RVO) [vdBGLM11]. This comparison does not aim spe-
ci�cally at RVO; we just use RVO as an example of a good and widely used
disc-based crowd simulation model. All passive Torso Crowd agents share the
same focus point, out of view on the right-hand side.

Since RVO models agents as discs, we need to convert our capsule represent-
ation. We keep in mind that the agents actually represent humanoid shapes;
making the RVO agents narrower will result in many undetected intersections.
Therefore, the radius is chosen such that the disc encloses the torso capsule,
as shown in Figure 6.13b. The blue line shows how far the agent was able to
move: in such a dense, stationary crowd, the disc-shaped agents are too big
to manoeuvre, while this density is not a problem for Torso Crowd (see Fig-
ure 6.13a). One of the underlying issues is that RVO agents make space only
to avoid collisions. When the active agent slows down to avoid a collision,
the surrounding agents move with only half the speed necessary to avoid the
collision. This forces the active agent to slow down even more, �nally forcing
it to stand stand still. Its velocity vector then becomes zero and holds no
information, and the agents in its surroundings will no longer move.

To give the RVO agents more space, we reduce the agent radii, such that the
surface area of the agent's ground projection is equal to that of the capsule.
This makes the RVO agents narrower but still thicker than the Torso Crowd
agents, and results in an equal ground area for RVO and Torso Crowd. The



108 Chapter 6: Torso Crowds

(a) Torso Crowd �nds a path to the goal.

(b) RVO with the same width as the capsules does not
�nd a path to the goal.

(c) RVO with the same surface area as the capsules to
allow manoeuvring.

Figure 6.13: Motion paths of a Torso Crowd agent, and RVO approaches. The
RVO agents are displayed with a capsule shape overlay, to visualize intersections
between agent-driven humanoid characters.

RVO agent can then successfully navigate the crowd, at the expense of inter-
sections between the characters. Figure 6.13c shows this situation, with red
capsules to visualize the character torsos. Statistics on our choice of agent
sizes are shown in Table 6.2; the average width of 0.44 metres matches the
average torso width (measured shoulder to shoulder) of the participants of
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(a) Torso Crowd �nds a path to the goal.

(b) RVO with the smaller agents, with the same surface
area as the capsules, does not �nd a path to the goal.

Figure 6.14: Motion paths through an even denser crowd. RVO does not �nd
a path to the goal, while Torso Crowd does. The RVO agents are displayed with
a capsule shape overlay, to visualize intersections between agent-driven humanoid
characters.

Simulation shape min max mean
Torso Crowd capsule 0.382 0.504 0.443
Regular RVO disc 0.382 0.504 0.443
Same-area RVO disc 0.280 0.399 0.345

Table 6.2: Agent diameters used in the comparative scenario, in metres. For
capsule agents the diameter is de�ned as2r i + ` i , whereas for disc agents this is2r i .

our motion capture experiment (Chapter 5). We can further increase the
crowd density; even the smaller RVO agents move slowly, and eventually do
not �nd a path to the goal (Figure 6.14b). Our Torso Crowd model still
handles this situation, and allows the agent to manoeuvre to its goal position
(Figure 6.14a).

We can observe more di�erences. The Torso Crowd agent takes a longer path
through the crowd, as it has been con�gured to avoid areas of low clearance
(i.e. agents that stand close together). The RVO agent tries to maintain
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the shortest path by preferring velocities directly towards the goal position.
Another di�erence is that RVO agents are limited to nonholonomic behaviour;
an agent cannot take a step backward or to the side to make room for a passing
agent, resulting in unrealistic instantaneous rotations when a human character
is animated in its place. Where the passive Torso Crowd agents �ll up the
space in the wake of the blue agent to make themselves more comfortable, the
green RVO agents remain stationary. These results show that the disc shape
is not suitable for the simulation of dense crowds. We can also conclude that
our Torso Crowd model shows a wider range of motions.

6.7 | Character animation

In order to display a humanoid crowd, the motions of the crowd agents need to
be mapped to humanoid characters. This poses an under-speci�ed problem.
Since only the torso motion is simulated, the lower body orientation needs to
be reconstructed before further body animation is possible. In this section
we �rst describe our lower body estimation method, and then the proposed
skeletal animation method.

6.7.1 | Lower body orientation estimation

The motion data that contains the torso positions and orientations, either
from our Torso Crowd simulation or a motion capture recording, is represented
as mappings T p : R ! R2 and To : R ! S1, from time to respectively
position and orientation in the ground plane. Derivative _T p(t) is computed by
numerical di�erentiation. Jitter caused by the numerical approach is �ltered
out using Gaussian smoothing [Cul71].

The lower body orientation is estimated based on two observations. Firstly,
when manoeuvring, the lower body is oriented more or less in the same
direction as the torso, and slightly turned towards the direction of motion.
Secondly, the lower body cannot instantly change its orientation, so the res-
ulting orientations need to change smoothly. Together, these observations
lead to a smoothing scheme based on torso orientationTo(t).

The lower body estimation is expressed as a functionL o(t), representing the
angle of movement relative to the torso orientation. Together with T p(t) and
To(t), it is used for the skeletal animation system described in the next section.

Firstly, we smooth the torso orientation To(t). Ordinarily, when smoothing
a signal, the smoothed signal lags behind the original. Since the lower body
should introduce the motion, as per the �rst observation described earlier, we
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use this smoothing lag to our advantage by altering a simple In�nite Impulse
Response �lter such that it can be evaluated in reversed time:

T0
o(t) = T0

o(t + � ) + (1 � � )
�

To(t) � T0
o(t + � )

�

where � is the duration of a simulation frame, 1=60 second in our implement-
ation, and � 2 [0; 1] determines the amount of smoothing. (� = 1 results in a
perfectly smooth, hence constantT0

o(t), and � = 0 results in no smoothing).
Here and in the next equation, the minus sign denotes the signed angular dif-
ference on the interval (� �; � ] over the shortest arc. In our implementation,
we obtained su�cient smoothing using � = 0 :9. The smoothing �lter is ap-
plied in reverse time, thusT0

o(t + � ) is evaluated beforeT0
o(t). As a result, the

smoothed signal �lags in front� of the original signal, producing the desired
motion.

Secondly, we compute the angle between the smoothed torso orientationT0
o(t)

and the trajectory of the motion _T p(t):

L o(t) = \ _T p(t) � T0
o(t)

where \ _T p(t) denotes the signed angle of the velocity vector with the world
x-axis.

6.7.2 | Skeletal animation

Once the lower body orientation L o(t) is determined, we can animate the
skeletal structure that determines the character's pose. A commonly used
technique for crowd animation is the use of a single walk cycle to animate
characters at various speeds, where the animation playback rate depends on
each character's walking speed. Such an approach is simple to implement, but
does not support holonomic motion (such as side-stepping). Furthermore, it
results in a direct dependency between walking speed and cadence (steps per
minute). However, when people change their walking speed, both the cadence
and stride length change [KWJ85]. This change in stride length cannot be
captured in a single walk cycle, producing unnatural results. To address
these issues, the basis for our animation technique is two sets of ten gender-
speci�c walk cycles, consisting of an idle animation (0.0 m/sec), eight slow
(0.4 m/sec) walk animations in di�erent directions, and a faster (1.0 m/sec)
straight forward walk. Each walk cycle has a �xed pivot point, and hip swing
occurs around this point, resulting in a natural hip swing even when we �x the
pivot point to a straight path on the ground plane. The eight slow animations
consist of straight forward and backward walking, left and right sidestepping,
and diagonal steps in four directions. The speed of 0.4 m/sec was chosen for
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those animations as it was found to be the average speed when manoeuvring
through a dense crowd (see Section 5.3).

To produce a character that walks at the correct speed, the joint angles of
the animations are blended using weights that depend on the speed of the
crowd agent j _T p(t)j and the direction of the motion relative to the torso
L o(t). The speed determines whether we blend between the idle animation and
slow walking, and both the speed and direction determine whether we blend
between slow and fast walking. The animation's pivot point is positioned at
T p(t), and oriented at To(t) + L o(t) around the world up-axis. Constraints
are placed on the spine bones to incrementally rotate the torso such that it
is oriented at To(t) around the world up-axis, producing the required torso
twists. An example is shown in Figure 6.15.

For simplicity, the head animation is part of the prede�ned walk cycle anim-
ations. This produces slightly more believable results than simply aligning
the head with either the torso orientation or the motion trajectory. Future
research could combine our technique with a vision-based system, or results
from a gaze-in-crowd experiment, to produce natural head movement.

6.8 | Conclusion

In this chapter we introduced a novel crowd simulation method, based on the
manoeuvring of a number of people in otherwise stationary dense crowds. By
extending the common disc-based agent representation to capsules, we are
able to plan upper body twisting based on available clearance. Such torso
twisting is critical for believable dense crowd manoeuvring.

Our method has been validated against data obtained from real crowd beha-
viour. The active agent behaviour matches paths chosen by humans in 85%
of the cases, and produces di�erent but equally plausible paths in 10% of the
cases. The method's parameter values were manually optimized; it would be
interesting to investigate automatic parameter tuning such as proposed by
Wolinski et al. [WJGO + 14] and Berseth et al. [BKHF14]. Even though we
used a simpli�ed Voronoi diagram, the resulting behaviour is a close match to
the ground truth (as shown in Section 6.6.1). The majority of our validation
focused on the behaviour of active agents; further comparison, with di�erent
ground truth data, could improve realism of the passive crowd members as
well, and could strengthen our design decisions, such as the space-�nding be-
haviour, the assumption that passive agents do not move to di�erent rooms,
and show what role focus points play in real crowds.

Regardless of the method to obtain the parameters, it is likely that their
scope is limited to high-density situations. Since the planning of torso twist
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Figure 6.15: A crowd of animated, human characters in a lift. The man in the
blue clothing is the active character, whose torso twist is clearly visible. The path
is shown in blue on the ground plane.

is no longer a necessity in lower-density crowds, our crowd simulation system
switches between our proposed method and a di�erent agent-based method
aimed at regular locomotion, depending on the density of the crowd. Altern-
atively, our system could be extended to handle lower densities, by employing
density-dependent parameter values; this should be relatively straightforward,
since our density metric is agent-oriented, and the parameters are already ad-
justable for each agent. It would also be interesting to add velocity-based
path planning to our method; for example, the change of clearance over time
could be used to prefer small-but-growing openings in the crowd over larger-
but-shrinking ones.

The passive agents use a generalized Voronoi diagram to �nd comfortable
places to stand. There is no distinction between agents and walls in such a
diagram, and, by de�nition, it is symmetric in the front and rear of agents.
These aspects result in artefacts, such as agents standing too far away from
walls, or agents standing too far away from each other when back to back.
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A possible solution may be found in a multiplicatively or additively weighted
generalized Voronoi diagram [OBSC09], which might also be useful to model
the asymmetrical nature of people's personal space [Hay81]. However, since
there are no suitable, robust implementations available, we are unable to
implement such an approach at this time, and leave this to future work.

In our scenarios, each active agent was appointed a �xed, scenario-speci�c goal
position. When that goal is reached, the agent switches to passive behaviour.
Due to the dynamic nature of the crowd, the scripted goal position may not be
the most comfortable (see Section 6.4.1), and the agent will move to a desirable
point after reaching the goal. When approaching the goal, the active agent
could use a local GVD to �nd a comfortable position in the goal area, and
actively move there before switching to passive behaviour.

We presented an animation system that shows walking characters in a crowd
using the motions obtained from the simulation. Our system uses a kinematic
approach, hence it does not respond to inter-character collisions. Due to the
density of the crowd, however, such collisions are likely to occur. We are cur-
rently investigating a method employing physics-based characters that follows
our torso planning method [KKE15]. Such a system would be able to respond
to collisions in a physically correct way, and be used to plan lower-body mo-
tion. Another interesting way to extend our model is based on the observation
that in dense crowds people often use their arms for navigation. Not only are
they used to physically make space, but also for noti�cation as to the intent
to pass between people, and as a tactile addition to visual information about
one's neighbours in the crowd. A di�erent approach to improving the result
of the animation system would be the integration of a footstep-based method,
such as described by Singh et al. [SKRF11] and subsequently improved by
Berseth et al. [BKF15]; we expect that planning both footstep positions and
torso orientations may lead to more natural results.

Further research could extend the Torso Crowd model to allow for a crowd
of mostly active agents. It would be interesting to add a velocity component
similar to RVO to the planner. Furthermore, the Torso Crowd representation
could be employed to reduce the energy needed to manoeuvre a crowd for other
crowd simulations. For example, our passive agents anticipate the motions of
the active agents, and move aside and twist their torso to make space. Such
behaviour can also be observed in less dense crowds, in cases where twisting
the torso is not a geometric necessity for someone to pass, but does provide
them with a more energy-e�cient path. This happens, for example, when
making space for someone running towards a train. This shows that torso
planning is not limited to dense crowds.
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Conclusion and Closing
Remarks

In this thesis we presented a wide range of topics related to the simulation of
dense crowds. Our research has resulted in a number of scienti�c contribu-
tions, which we will summarise in this chapter. We also discuss some of the
limitations of our work, and of crowd simulation in general, and cover possible
avenues for future research.

7.1 | Summary and contributions

In Chapter 3 we introduced the Bounding Cylinder Hierarchy (BCH) as a fast
method for collision detection between virtual characters. Its performance is
high due to two choices. Firstly, the BCH encodes the contour of the ground
projection of a posed character, and thus reduces the three-dimensional prob-
lem to a two-dimensional one, at the expense of an increase in false positives.
Secondly, we used a tunable threshold radius to determine the precision of the
approximation. For di�erent collision detection schemes, namely the BCH and
the single cylinder, we measured the average distance between two characters
when a collision is reported, and observed a practical limit on the recursion
depth to obtain near-optimal results (compared to the result obtained using
an unlimited recursion depth). Finally, we showed that an enclosing cylin-
der contains a order of magnitude larger volume than the posed character
itself, and that the BCH and the capsule shape introduced Chapter 5 �t the
character much better.

We performed a user study in Chapter 4, to investigate the accuracy with
which people can classify a situation with two virtual characters as `colliding'
or `non-colliding'. We found that, with an accuracy of 72%, people are gener-
ally moderately good at recognising collisions. We also observed a bias in the
erroneous answers towards `non-colliding', which indicates that people mostly
make mistakes when observing colliding scenarios; people thus are generally
better at recognising non-collisions than collisions. We conclude that a con-
servative collision detection strategy that avoids false negatives, which is very
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common in robotics due to the potentially destructive result of collisions, does
not match our perception very well. Unfortunately, this is also applicable to
our BCH method. For virtual characters, we suggest a collision detection
scheme employing an `inner approximation' bounded by the character mesh.

In Chapter 5 we performed an experiment to obtain data about the manoeuv-
ring of people in dense crowds. The participants were recorded in a motion
capture studio, and subsequently modelled using line segments representing
their torsos. For each trial, one participant escaped the crowd, while the
other participants remained more or less stationary. We observed that the
manoeuvring participants followed edges of a generalized Voronoi diagram
based on the shoulder line segment. We investigated two line segments, one
between motion capture markers on the shoulders, and the medial axis of a
torso-enclosing capsule shape. The latter line segment showed improvement
in predicting the participants' movements over the former, strengthening our
choice for a capsule-based crowd model.

Based on the capsule shape model introduced in Chapter 5, and the observa-
tion in Chapter 4 that such a shape should not avoid all collisions at all costs,
we introduced a novel crowd simulation method in Chapter 6. Our model
supports e�cient manoeuvring through dense crowds, and, by employing a
rotationally asymmetric representation, supports the planning of torso twists
typically observed in dense crowds. We also distinguish between active and
passive agents, and introduce the concept of a focus point to in�uence the ori-
entation of individual agents and agent groups. We compared our model with
an established disc-based model, and showed that, for high crowd densities,
our model performs better. Furthermore, we presented an animation tech-
nique for virtual characters that allows not only forward walking motion, but
also side-stepping, diagonal stepping and backward walking. By basing the
method on actual perception and behaviour of real people, we created a more
realistic crowd simulation method for dense crowds than current disc-based
models.

7.2 | Limitations and future directions

Even though we provided several contributions to the scienti�c state of the
art, there are still many avenues for improvements. Ideas for future work stem
from the identi�cation of limitations, which we discuss in this section.

Many crowd simulation methods, Torso Crowd included, separate the plan-
ning of motion and body animation. Crowd agent motion is based on sim-
pli�ed shapes, while knowledge of the articulated humanoid structure is only
applied in the animation step. As a result, the overall character motion can-
not take into account any con�ict or constraint in that �nal step, such as
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con�icting collision states of the agent and character shapes, constraints like
putting a hand on a shoulder of another crowd member, or `simply' phys-
ically correct walking animations without foot skating. The footstep-based
method by Singh et al. [SKRF11] is an exception to this approach, and we
believe that a general solution lies in the uni�cation of motion and animation
planning. Such uni�cation could open up possibilities for crowd members to
extend their set of possible actions, and allow them to climb over obstacles,
push people out of the way, and generally show the type of behaviour seen in
riots and panic situations. Furthermore, in real dense crowds, people use their
hands, arms, and gaze to communicate their desired direction of movement.
In contrast, many crowd simulation systems only use collision avoidance as
means of `communication'. Making this communication more explicit could
also improve the realism of simulated crowds.

The Bounding Cylinder Hierarchy, introduced in Chapter 3, can be seen as
a step towards the integration of character pose and agent motion planning.
However, using it e�ectively in a dynamic environment necessitates further
research in three areas. The �rst area is the support for animated charac-
ters. Currently such characters are supported by preprocessing pre-existing
animations. A method to update the BCH hierarchy in real-time, similar to
the work of Van der Bergen [vdB97], would conserve memory and allow col-
lision detection for poses that are not part of pre-existing animations. The
second area of research is the creation of a fast distance metric and a method
to e�ciently compute tangent vectors. Both are used in collision avoidance
algorithms; both are also trivial for the cylinder shape, which we think is
another reason this shape is so commonly used in crowd simulation methods.
Finally, the BCH was constructed with the avoidance of collisions in mind. In
our perceptual user study (see Chapter 4), we observed that this common but
conservative approach may lead to behaviour that is perceived as unrealistic.
Adjusting the collision detection algorithm to form an inner approximation
could solve this.

To conclude, we would like to see the validation of crowd simulations using
real crowds to become more prevalent. A fundamental limitation of such val-
idations is posed by current markerless video tracking techniques. We are
not aware of any such method that can track both position and orientation
of members in a crowd. Often this limitation is caused by the inherent oc-
clusions in dense crowds. The advent of a�ordable drones equipped with
high-resolution cameras could possibly pose a technical solution to this lim-
itation; by �lming straight down from a high altitude, an almost orthogonal
projection onto the ground plane could be obtained, making tracking orient-
ations tractable. This would allow the collection of data of bigger crowds in
more realistic environments than possible in a motion capture studio.
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Samenvatting

Door de geschiedenis heen zijn mensen verhuisd van het platteland om zich
te concentreren in de steden; tevens blijft de wereldbevolking gestaag groeien.
Als gevolg zien we nu de hoogste populatiedichtheden ooit. Daarnaast worden
evenementen, en evenementslocaties zoals voetbalstadions en concerthallen,
steeds groter. Hierdoor zien we steeds vaker grote samenscholingen van men-
sen; hun veiligheid en welzijn wordt belangrijker, en tegelijkertijd moeilijker
te voorspellen. Recente gebeurtenissen laten zien hoe snel een situatie om kan
slaan wanneer er een groot publiek bij betrokken is. Voorbeelden zijn de ver-
pletterende rampen in het Hillsborough stadion in 1989 en de Love Parade in
Duisburg in 2010. Computersimulaties van dergelijke gebeurtenissen kunnen
op verschillende manieren helpen. Politie,riot control en medische medewer-
kers kunnen simulaties gebruiken voor trainingsdoeleinden, en voor het testen
van de e�ectiviteit van verschillende crowd management-strategieën in een
veilige en gecontroleerde virtuele omgeving. Gemeenteraadsleden en evene-
mentsorganisatoren kunnen ook simulaties gebruiken om mensenstromingen
te onderzoeken, en voor het vinden van potentieel gevaarlijke knelpunten.
Zelfs voordat de bouw begint kunnen gebouwontwerpen worden doorgerekend
op doorstroming en ontruimbaarheid. In deze simulaties is het essentieel dat
het gedrag van de gesimuleerde menigte representatief is voor het gedrag van
echte mensen.

Door ontwikkelingen in gaming hardware is het realisme van computer games
sterk verbeterd; karakters ogen en gedragen zich steeds realistischer, en het
is mogelijk geworden om virtuele werelden te bevolken met hoge aantallen
van dergelijke karakters. De toevoeging van mensenmassa's in games geeft de
speler een sterker gevoel van aanwezigheid in een `echte' virtuele wereld, en het
voorkomt dat de omgeving er uit ziet als een spookstad. Een goed voorbeeld
is te zien wanneer we IO Interactive's gameHitman: Codename 47 (2000, zie
Figuur 1.1a) vergelijken met de nieuwste game in de serie,Hitman: Absolution
(2012, zie Figuur 1.1b). Waar de eerste game de stad Hong Kong, bekend om
zijn zeer hoge bevolkingsdichtheid [CoHK15], afgeschildert als leeg en verlaten,
toont de opvolger uit 2012 steden vol met mensen, ook al hebben deze steden
in werkelijkheid een lagere bevolkingsdichtheid. Verder is in deze laatste game
de mensenmassa een meer geïntegreerd onderdeel van de spelervaring dan in
de voorgangers uit de serie.
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De belangrijkste motivatie voor het onderzoek gerapporteerd in dit proef-
schrift is het verlangen om het realisme van simulaties van dichte menigten
te verhogen. De meeste simulatiemethoden maken gebruik van zeer eenvou-
dige symmetrische vormen, namelijk schijven of punten, om de mensen in de
menigte te representeren. De oriëntatie van deze vormen wordt direct gerela-
teerd aan de bewegingsrichting, met als gevolg dat karakters instantaan om
hun as kunnen draaien. De gebruikelijke schijfvorm veroorzaakt ook onmen-
selijk gedrag in dichte situaties; wanneer veelagents worden samengedrukt
in een klein gebied, wordt de vorm indirect zichtbaar, doordat de bewegin-
gen lijken op die van langs elkaar schuivende bier�esjes in een fabriek. Deze
observaties leiden in Hoofdstukken 5 en 6 tot het gebruik van een capsule-
vorm, welke meer lijkt op de vorm van de menselijke torso dan een schijf of
punt, en tevens de mogelijkheid geeft tot meer realistische bewegingen, zoals
opzij stappen, achteruit lopen, en het verdraaien van de torso om door smalle
openingen in de menigte te manouvreren.

Metrieken om de prestaties van verschillende menigtesimulatiemethoden te
vergelijken, zoals Steer Bench [SKFR09], richten zich in het algemeen op de
het vermijden van botsingen. Hoewel het ontwijken van botsingen op zichzelf
realistisch is, is een simulatie van een dichte menigte die geheel geen botsingen
vertoont dat niet. Dit leidde ons tot het produceren van een techniek voor
het snel detecteren van botsingen, gepresenteerd in Hoofdstuk 3. Aangezien
deze techniek gebruik maakt van een benadering van de menselijke vorm,
waren we ook geïnteresseerd in de mogelijkheden van mensen om botsingen
tussen virtuele karakters te herkennen, en hebben we onderzocht hoe goed
deze benadering past bij onze menselijke waarneming. De gebruikersstudie en
onze bevindingen worden gepresenteerd in Hoofdstuk 4.

Deze thesis is onderverdeeld in zeven hoofdstukken, met een introductie in
Hoofdstuk 1.

Hoofdstuk 2behandelt fundamentele achtergrondinformatie over coördinaten-
stelsels, afstandsmetrieken, wiskundige notatie, karakter- en mensenmassa-
animatie, PID controllers, en enkele statistische methoden.

Hoofdstuk 3introduceert een snelle botsingsdetectiestrategie gebaseerd op hië-
rarchieën van cylinders. Enkele cylinders worden veel gebruikt voor het detec-
teren van botsingen tussen virtuele karakters; door middel van steeds kleinere
cylinders kunnen we deze vorm detailleren, en de botsingsdetectie preciezer
maken.

Hoofdstuk 4beschrijft een gebruikersonderzoek naar de mogelijkheid van men-
selijke observanten om botsingen tussen virtuele karakters te herkennen. We
zien dat mensen over het algemeen goed zijn in het herkennen van niet-
botsingen, maar minder goed in het herkennen van botsingen, en identi�ceren
enkele parameters die signi�cant zijn voor deze herkenning.
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Hoofdstuk 5 behandelt een experiment met een echte mensenmassa van 23
participanten in een motion capture studio, met als doel het verzamelen van
informatie over het mensenmassamanouvreergedrag. We observeren dat een
Voronoi diagram van de participanten gebruikt kan worden voor het voorspel-
len van de richting waarin ze zich door de mensenmassa bewegen.

Hoofdstuk 6beschrijft een mensenmassasimulatiemethode speci�ek gericht op
het simuleren van mensenmassa's van hoge dichtheid, gebaseerd op de re-
sultaten van de voorgaande hoofdstukken, en introduceren een capsule-vorm
als representatie van mensen in de massa. De mensenmassasimulatiemethode
ondersteunt verschillend gedrag voor mensen die actief door de massa man-
ouvreren en voor mensen die geen aanleiding hebben om dat te doen. Het
hoofdstuk behandelt ook een karakteranimatiemethode voor holonomische be-
wegingen, zoals het zetten van stappen opzij en achteruit.

Hoofdstuk 7sluit de thesis af door een overzicht te geven van het verwezenlijkte
werk. Tevens wordt er ingegaan op limitaties van ons werk, en behandelen we
mogelijke toekomstige onderzoeksrichtingen.
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