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spatially flat, homogeneous and isotropic background with arbitrary constant deceleration
parameter. Our construction uses the operator formalism, by integrating the Fourier mode
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1 Introduction

On the largest scales, the visible universe is well described by a homogeneous, isotropic and
spatially flat geometry whose invariant element takes the form,

ds2 ≡ gµνdx
µdxν = −dt2 + a2(t)d~x · d~x . (1)

Two derivatives of the scale factor a(t) have great importance, the Hubble parameter H(t)
and the deceleration parameter q(t),

H(t) ≡ ȧ

a
, q(t) ≡ −1 − Ḣ

H2
≡ −1 + ǫ(t) . (2)

Although the Hubble parameter may have changed by as much as 57 orders of magnitude
from primordial inflation to now, the deceleration parameter is only thought to have varied
from nearly −1, during primordial inflation, to nearly +1, during the epoch of radiation
domination. And q(t) has been approximately constant for vast periods of cosmological
evolution. It is therefore interesting to consider physics during an epoch of constant q(t).

A field of great importance for primordial inflation is the massless, minimally coupled
scalar,

L = −1

2
∂µϕ∂νϕg

µν√−g =
1

2
ϕ̇2aD−1 − 1

2
‖~∇ϕ‖2aD−3 . (3)

This is true both as an approximation to the inflaton, on account of the very flat potential,
and also because dynamical gravitons have the same kinetic operator [1]. Note that we
are assuming the spatial manifold is (D−1)-dimensional in order to facilitate the use of
dimensional regularization.

The scalar propagator obeys the equation,

√
−g i∆(x; x′) ≡ ∂µ

(√
−ggµν∂νi∆(x; x′)

)

= iδD(x−x′) . (4)

An elegant solution to this equation has recently been obtained for the case of arbitrary
constant ǫ ≡ −Ḣ/H2, which of course means constant deceleration [2]. This solution has
been used to compute the one loop correction to the effective field equations in Einstein +
Scalar [3, 4]. Unfortunately, the solution diverges at certain values of ǫ, even off coincidence
and with the dimensional regularization in effect. The purpose of this paper is to elucidate
the physical basis of this divergence and to provide a very simple correction for it.

It is important to recognize that the propagator equation (4) only fixes i∆(x; x′) up to
the addition of a homogeneous solution. There is no guarantee that a particular solution
can be interpreted as the expectation value of the time-ordered product of ϕ(x) × ϕ(x′) in
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the presence of any state. One can see this even from the simple harmonic oscillator of
nonrelativistic quantum mechanics [5]. The Heisenberg position operator can be expressed
in terms of the initial position and momentum,

q(t) = q0 cos(ωt) +
p0

mω
sin(ωt) . (5)

The associated propagator in the presence of an arbitrary state |ψ〉 can be expressed in terms
of three real numbers,

〈ψ|T [q(t)q(t′)]|ψ〉 = − i

2mω
sin(ω|t−t′|)

+α cos(ωt) cos(ωt′) + β sin[ω(t+t′)] + γ sin(ωt) sin(ωt′) . (6)

The parameters α, β and γ are,

α ≡ 〈ψ|q2
0|ψ〉 , β ≡ 1

2mω
〈ψ|q0p0+p0q0|ψ〉 , γ ≡ 1

m2ω2
〈ψ|p2

0|ψ〉 . (7)

These parameters are not arbitrary. For example, the Uncertainty Principle implies,

αγ ≥ 1

4m2ω2
. (8)

However, the right hand side of (6) solves the propagator equation for any choice of α, β
and γ,

−m
( d2

dt2
+ ω2

)

i∆(t; t′) = iδ(t−t′) . (9)

We seek a true propagator, rather than just a Green’s function that solves (4). To ensure
this we construct i∆(x; x′) from its operator mode sum in Section 2, assuming that the
spatial manifold is R

D−1. This gives precisely the result obtained previously [2]. In Section
3 we note that the infinite space mode sum has an infrared divergence for any value of
ǫ ≤ 2(D−1)/D. In most cases this is a power-law divergence that the automatic subtraction
of dimensional regularization simply but erroneously discards. For certain special values of ǫ
the divergence becomes logarithmic, in which case the solution is infinite, even off coincidence
and for general D. In Section 4 we solve the problem by formulating the mode sum on a finite
spatial manifold. This changes the propagator by the addition of a series of homogeneous
solutions which cancels the divergences. Section 5 uses the corrected propagator to compute
the expectation value of the scalar stress tensor. Our discussion comprises Section 6.
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2 Infinite Space Mode Sum

The purpose of this section is to construct i∆(x; x′) from the canonical operator formalism,
assuming the spatial manifold is R

D−1. We begin by working out the Hubble parameter
and scale factor as functions of co-moving and conformal time. Then we give the free field
expansion of ϕ(x). Taking the expectation value of the time-ordered product of ϕ(x)×ϕ(x′)
gives a Fourier integral expression for the propagator which we are able to evaluate by
analytically continuing some integral identities. The section closes by noting the special
values of ǫ for which the resulting propagator diverges, away from coincidence and with
dimensional regularization in effect.

It is simple to reconstruct the Hubble parameter and the scale factor when ǫ is constant.
If we define H0 ≡ H(0) and a(0) ≡ 1 then relation (2) implies,

H(t) =
H0

1 + ǫH0t
and a(t) =

[

1+ǫH0t
]

1
ǫ

. (10)

The conformal time η is defined by dη = dt/a(t). We can choose the zero of conformal time
so that the following relations apply,

H(η) =
H0

[−(1−ǫ)H0η]
−ǫ
1−ǫ

and a(η) =
1

[−(1−ǫ)H0η]
1

1−ǫ

, (11)

For 0 ≤ ǫ < 1 the universe is accelerating and conformal time approaches zero from below;
for ǫ > 1 the universe is decelerating and η is positive with our convention. A very useful
relation is,

(1−ǫ)Ha = −1

η
. (12)

The massless, minimally coupled scalar on R
D−1 can be expressed as a Fourier integral

of plane waves,

ϕ∞(η, ~x) =

∫

dD−1k

(2π)D−1

{

u(η, k)ei~k·~xα(~k) + u∗(η, k)e−i~k·~xα†(~k)
}

. (13)

Since ϕ∞ is a minimally coupled massless scalar, it obeys the Klein Gordon equation ϕ∞ =
0. The mode functions are quite complicated for general, time-dependent ǫ(t) [6]. However,
for constant ǫ they obey the simple equation

(

− ∂2
η − k2 +

ν2 − 1
4

η2

)(

a
D
2
−1u(η, k)

)

= 0, ν ≡ D−1−ǫ
2(1−ǫ) , (14)
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where k = ‖~k‖. The solution to this equation takes in this case a simple form

u(η, k) =

√

π|η|
4

a1−D
2 H(1)

ν (k|η|). (15)

The creation and annihilation operators are canonically normalized,

[

α(~k), α†(~k′)
]

= (2π)D−1δD−1(~k−~k′) . (16)

The state |Ω〉 which is annihilated by α(~k) is known as Bunch-Davies vacuum [7]. It corre-
sponds to the Heisenberg state of minimum excitation in the distant past.

The infinite space propagator is easy to write as a mode sum,

i∆∞(x; x′) ≡
〈

Ω
∣

∣

∣
θ(t−t′)ϕ∞(x)ϕ∞(x′) + θ(t′−t)ϕ∞(x′)ϕ∞(x)

∣

∣

∣
Ω
〉

, (17)

=
π

4

√

ηη′ (aa′)1−D
2

∫

dD−1k

(2π)D−1
ei~k·(~x−~x′)

×
{

θ(∆η)H(1)
ν (k|η|)H(1)

ν (k|η′|)∗+ θ(−∆η)H(1)
ν (k|η|)∗H(1)

ν (k|η′|)
}

, (18)

where ∆η = η − η′. Now recall the D = 4 angular integral,

∫

d3k

(2π)3
ei~k·∆~xf(‖~k‖) =

1

2π2

∫ ∞

0

dk k2 sin(k∆x)

k∆x
f(k) . (19)

Here and henceforth we define ∆x ≡ ‖~x−~x′‖. Generalizing to D spacetime dimensions we

have dD−1k = kD−2dk dΩD−2, k = ‖~k‖, where

dΩD−2 = sinD−3(θD−3)dθD−3 sinD−4(θD−4)dθD−4 . . . dφ, (20)

where θD−3, θD−4, . . ., and φ are the angles on the sphere S
D−2. Making use of

∫

dΩD−2 =
2π

D−1
2

Γ
(

D−1
2

) =
2(4π)

D
2
−1Γ

(

D
2

)

Γ (D−1)
(21)

and Eq. (8.411.7) in [8] gives,

∫

dD−1k

(2π)D−1
ei~k·∆~xf(‖~k‖) =

1

2D−2π
D−1

2

∫ ∞

0

dk kD−2
JD−3

2
(k∆x)

(1
2
k∆x)

D−3
2

f(k) . (22)
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Hence the scalar propagator can be reduced to a single integral,

i∆∞(x; x′) =

√
ηη′ (aa′)1−D

2

2Dπ
D−3

2

∫ ∞

0

dk kD−2
JD−3

2
(k∆x)

(1
2
k∆x)

D−3
2

×
{

θ(∆η)H(1)
ν (k|η|)H(1)

ν (k|η′|)∗+ θ(−∆η)H(1)
ν (k|η|)∗H(1)

ν (k|η′|)
}

. (23)

To reach the final form we make the change of variable,

z ≡
√

ηη′ k =⇒ k∆x =
∆x√
ηη′

z , k|η| =

√

η

η′
z , k|η′| =

√

η′

η
z . (24)

Recalling that 1/(ηa) = −(1−ǫ)H gives,

i∆∞(x; x′) =
(ηη′ aa′)1−D

2

2Dπ
D−3

2

∫ ∞

0

dz zD−2 ×
JD−3

2

(

∆x√
ηη′
z
)

(

1
2

∆x√
ηη′
z
)

D−3
2

×
{

θ(∆η)H(1)
ν

(

√

η

η′
z
)

H(1)
ν

(

√

η′

η
z
)∗

+ θ(−∆η) ×
(

conjugate
)

}

, (25)

=

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

× π
3
2 2

D−3
2

(

∆x√
ηη′

)
D−3

2

×
∫ ∞

0

dz z
D−1

2 × JD−3
2

( ∆x√
ηη′

z
)

×
{

θ(∆η)H(1)
ν

(

√

η

η′
z
)

H(1)
ν

(

√

η′

η
z
)∗

+ θ(−∆η) ×
(

conjugate
)

}

. (26)

By analytic continuation of relation (6.578.10) and employing relations (8.702), (8.407.1),
(8.476.10) and (9.131.1) in [8] one can show,

∫ ∞

0

dx xµ+1Jµ(cx)H
(1)
ν (ax)H(1)

ν (bx)∗ =
Γ(µ+1+ν)Γ(µ+1−ν)

π
3
2 Γ(µ+ 3

2
)

× (1
2
c)µ

(ab)µ+1 2F1

(

µ+1+ν, µ+1−ν;µ+
3

2
;
(a+b)2−c2

4ab

)

. (27)

Now make the following assignments for the various parameters in (27),

µ −→ D−3

2
, a −→

√

η

η′
, b −→

√

η′

η
and c −→ ∆x√

ηη′
. (28)
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With these assignments we have,

(a+b)2−c2
4ab

= 1 −
(c2−(a−b)2

4ab

)

−→ 1 −
(∆x2 − ∆η2

4ηη′

)

. (29)

Hence the mode sum (26) for the propagator can be given the simple spacetime expression,

i∆∞(x; x′) =

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

Γ(D−1
2

+ν)Γ(D−1
2

−ν)
Γ(D

2
)

2F1

(

D−1

2
+ν,

D−1

2
−ν; D

2
; 1− y

4

)

.

(30)

Here and henceforth we define the quantity y = y(x; x′) as,

y(x; x′) ≡
∥

∥~x−~x ′∥
∥

2 −
(

|η−η′|−iε
)2

ηη′
. (31)

Note the distinction between the infinitesimal quantity ε, used to define the pole prescription,
and the parameter ǫ ≡ −Ḣ/H2. The propagator (30) is the generalization of the Chernikov-
Tagirov propagator for de Sitter space to space-times with constant, but arbitrary ǫ [9]. The
constant ǫ propagator was already found for D = 4 in [10].

Expression (30) is precisely the result that was obtained previously by solving the prop-

agator equation (4) with the ansatz of (HH ′)
D
2
−1 times a function of y(x; x′) [3, 4]. If

we employ the transformation formulae for hypergeometric functions and then their series
expansion we can write this as,

i∆∞(x; x′) =

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

{

Γ
(D

2
−1
)(4

y

)
D
2
−1

2F1

(1

2
+ν,

1

2
−ν; 2−D

2
;
y

4

)

+
Γ(D−1

2
+ν)Γ(D−1

2
−ν)Γ(1−D

2
)

Γ(1
2
+ν)Γ(1

2
−ν) 2F1

(D − 1

2
+ν,

D − 1

2
−ν; D

2
;
y

4

)

}

, (32)

=

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

Γ
(D

2
−1
)

{

(4

y

)
D
2
−1

+
Γ(2−D

2
)

Γ(1
2
+ν)Γ(1

2
−ν)

×
∞
∑

n=0

[

Γ(3
2
+ν+n)Γ(3

2
−ν+n)

Γ(3−D
2
+n) (n+1)!

(y

4

)n−D
2

+2

−Γ(D−1
2

+ν+n)Γ(D−1
2

−ν+n)

Γ(D
2
+n)n!

(y

4

)n
]}

. (33)
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The problem with (33) is that the gamma functions on the last line diverge for certain values
of ǫ, irrespective of whether or not x′µ = xµ and with the dimensional regularization still in
effect. For the inflationary case 0 ≤ ǫ < 1 divergences occur at,

ǫ =
2N

D−2+2N
=⇒ Γ

(D−1

2
− ν + n

)

= Γ(−N + n) for N = 0, 1, 2, . . . (34)

For the decelerating case of 1 < ǫ divergences are found at,

ǫ = 2
D−1+N

D+2N
=⇒ Γ

(D−1

2
+ ν + n

)

= Γ(−N + n) for N = 0, 1, 2, . . . (35)

3 Origin of the Problem

The purpose of this section is to explain why the infinite space propagator (33) diverges
for the special values of ǫ given in (34-35). We begin by discussing infrared divergences
of the mode sum (26). The discrete values of ǫ result from how these infrared divergences
are handled by dimensional regularization. Of course an infrared divergence should not be
subtracted like an ultraviolet divergence! The correct procedure is to instead identify and
remove whatever unphysical feature led to the infrared divergence. We close by doing this
for the scalar propagator.

It has long been known that the infinite space mode sum (26) has infrared divergences
for broad ranges of constant ǫ [11]. They follow from the small argument expansions of the
Bessel function,

Jν(z) =
∞
∑

n=0

(−1)n(1
2
z)ν+2n

n!Γ(ν+n+1)
, (36)

and from its relation to the Hankel function,

H(1)
ν (z) ≡ Jν(z) + iNν(z) =

i

sin(νπ)

{

e−iνπJν(z) − J−ν(z)
}

. (37)

The leading small z behavior for the terms on the first line of (26) is universal,

z
D−1

2 × JD−3
2

( ∆x√
ηη′

z
)

−→ zD−2

Γ(D−1
2

)
×
( ∆x

2
√
ηη′

)
D−3

2
. (38)

What we get for the two Hankel functions on the second line depends upon whether the
universe is accelerating or decelerating. For the inflationary case of 0 ≤ ǫ < 1 the index ν is
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positive and it is the J−ν terms in the Hankel functions which make the leading contributions
for small z,

H(1)
ν

(

√

η

η′
z
)

H(1)
ν

(

√

η′

η
z
)∗

−→ (1
2
z)−2ν

sin2(νπ)Γ2(−ν+1)
=

22νΓ2(ν)

π2
× z−2ν . (39)

For the decelerating case of 1 < ǫ ≤ (D−1) the index ν is negative and it is the J+ν terms
in the Hankel functions which make the leading contributions for small z,

H(1)
ν

(

√

η

η′
z
)

H(1)
ν

(

√

η′

η
z
)∗

−→ (1
2
z)2ν

sin2(νπ)Γ2(ν+1)
=

2−2νΓ2(−ν)
π2

× z2ν . (40)

From the preceding discussion we see that the asymptotic small z form of the integrand
in (26) is a constant times,

zD−2−2|ν| . (41)

For this to produce an infrared divergence requires the exponent to be −1 or less. For
inflationary case of 0 ≤ ǫ < 1 we have ν > 0 and the condition for a divergence is always
met,

0 ≤ ǫ < 1 =⇒ −1 ≥ D−2 − D−1−ǫ
1−ǫ = −1 − ǫ(D−2)

1−ǫ . (42)

For the decelerating case of 1 < ǫ < (D−1) we have ν < 0 and the condition is met as long
as ǫ ≤ 2(D−1)/D,

1 < ǫ ≤ 2(D−1)

D
=⇒ −1 ≥ D−2 +

D−1−ǫ
1−ǫ = −1 − 2(D−1)−Dǫ

ǫ−1
. (43)

Although the mode sum (26) has infrared divergences for all 0 ≤ ǫ ≤ 2(D−1)/D, the
final result (33) only diverges for the discrete values of ǫ given by expressions (34-35). This
is because dimensional regularization [12, 13] automatically subtracts power law divergences
and only registers logarithmic divergences. For most values of ǫ the infrared divergence is a
power law, and dimensional regularization — quite incorrectly — sets it to zero. It is only
for the discrete values (34-35) that a logarithmic divergence occurs and causes expression
(33) to become ill-defined. To see this, note that the logarithmic divergence could derive
from any of the order z2N series corrections to the leading small z term. For the inflationary
range of 0 ≤ ǫ < 1 the condition for a logarithmic infrared divergence corresponds precisely
to (34),

0 ≤ ǫ < 1 =⇒ (D−2) + 2N − D−1−ǫ
1−ǫ = −1 , (44)

=⇒ ǫ =
2N

D−2+2N
for N = 0, 1, 2, . . . (45)
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In D = 4 dimensions the problem values are ǫ = 0, 1
2
, 2

3
, 3

4
, . . . For the decelerating case of

1 < ǫ ≤ 2(D−1)/D the condition for a logarithmic infrared divergence agrees with (35),

1 < ǫ ≤ 2(D−1)

D
=⇒ (D−2) + 2N +

D−1−ǫ
1−ǫ = −1 , (46)

=⇒ ǫ = 2
D−1+N

D+2N
for N = 0, 1, 2, . . . (47)

For D = 4 this corresponds to ǫ = 3
2
, 4

3
, 5

4
, . . .

It is important to understand that the infinite space propagator has physical problems
for every value of ǫ in the infrared divergent range 0 ≤ ǫ ≤ 2(D−1)/D, whether or not ǫ
happens to take one of the critical values (34-35) necessary for a logarithmic divergence. This
is because ultraviolet and infrared divergences mean different things. Ultraviolet divergences
indicate that loop corrections have made an infinite change between observed parameters
and the corresponding parameters of the Lagrangian. They can be canceled by expressing
the parameters of the Lagrangian in terms of observed quantities plus counterterms which
subtract off the divergences [14]. The automatic subtraction of dimensional regularization
is not an error for ultraviolet divergences; it merely saves one the trouble of defining and
subtracting the appropriate counterterm to cancel a power law divergence.

Infrared divergences do not mean anything about parameters in the Lagrangian. Instead,
they signify that there is something wildly unphysical about the computation being done.
One does not deal with an infrared divergence by subtracting a counterterm; the correct
procedure is rather to compute physically well-defined quantities. The classic example is
the Bloch-Nordsieck switch from infrared divergent, exclusive processes to infrared finite,
inclusive processes in quantum electrodynamics [14]. It will be seen that employing the au-
tomatic subtraction of dimensional regularization to remove a power law infrared divergence
corresponds to adding an illegal counterterm to make an unphysical question return a finite
answer, instead of reformulating the question in more physical terms.

The unphysical thing about the infinite space propagator is that a local observer cannot
prepare the initially super-horizon modes of the state in coherent Bunch-Davies vacuum.
Two plausible fixes have been proposed:

• One could work on infinite space as in (13) but assume that the super-horizon modes are
less singular than Bunch-Davies vacuum [15]. Because only the super-horizon modes
change there would be no effect on the Hadamard behavior of the propagator. If one
continues to regard the state as obeying α(~k)|Ω〉 = 0, this fix corresponds to changing
the super-horizon mode functions u(t, k) from the Bunch-Davies choice (15). Of course
their time dependence is determined by the scalar field equation but their initial values
and those of their first time derivatives can be freely specified. For example, if these
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initial values were chosen to be those of the Bunch-Davies mode functions for ǫ = D/2
(regardless of the actual value of ǫ) then there would be no infrared divergence, either
initially or at any later time[16].

• One could also work on a compact spatial manifold such as a torus TD−1 for which
there are no initially super-horizon modes [17]. In this case the free field expansion
becomes a sum rather than an integral but it is generally valid to make the integral
approximation to this sum, with a nonzero lower limit. When this was done for the
graviton propagator on de Sitter background (ǫ = 0) there is no disturbance to powerful
consistency checks such as the one loop Ward identity [18] and the nature of allowed
counterterms [19, 20]. The renormalization of scalar field theories is not even affected
at two loop order [21, 22, 23].

4 Finite Space Mode Sum

The purpose of this section is to implement the second of the two fixes described above: the
one based upon a finite-sized spatial manifold [17]. We show how this changes the mode
sum for the propagator. We also derive the corrections it makes to the integrated, position-
space form. Explicit demonstrations are given that the correction terms cure the N = 0
and N = 1 divergences in expressions (34-35). And certain special cases are checked against
known results [21, 24].

We work on TD−1, which supports the spatially flat FRW geometry (1). If the coordinate
radius in each direction is 2π/k0 then the integral approximation for the free field expansion

of the operator is the same as (13) except that the integral is cut off at ‖~k‖ = k0,

ϕ(t, ~x) =

∫

dD−1k

(2π)D−1
θ(k − k0)

{

u(t, k)ei~k·~xα(~k) + u∗(t, k)e−i~k·~xα†(~k)
}

. (48)

Of course the same cutoff works its way into the mode sum for the propagator (26),

i∆(x; x′) =
[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

π
3
2 2

D−3
2

(

∆x√
ηη′

)
D−3

2

∫ ∞

z0

dz z
D−1

2 JD−3
2

( ∆x√
ηη′

z
)

×
{

θ(∆η)H(1)
ν

(

√

η

η′
z
)

H(1)
ν

(

√

η′

η
z
)∗

+ θ(−∆η) ×
(

conjugate
)

}

. (49)
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Here and subsequently z0 ≡ k0

√
ηη′.

We can obviously break the integral over z up into two parts,
∫ ∞

z0

dz =

∫ ∞

0

dz −
∫ z0

0

dz . (50)

This means that the result for (49) is what we already have (33) from the work of [2, 3, 4],
minus the finite range integral. It would be simple enough to expand the integrand of this
second contribution and then integrate termwise, but we really only need the most infrared
singular parts. For the inflationary case of 0 ≤ ǫ < 1 the index ν is positive and the most
infrared singular parts of the integrand derive from the J−ν contributions to the Hankel
functions. For the decelerating case of 1 < ǫ ≤ 2(D−1)/D the index ν is negative and it
is the J+ν parts of the Hankel functions that are the most infrared singular. We shall work
out the series of leading corrections in each case.

Let us begin with the most infrared singular correction for the inflationary case of 0 ≤
ǫ < 1. From the small z forms (38) and (39) we see that the desired correction is,

δi∆0(x; x
′) = −

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

22νΓ2(ν)

π
1
2 Γ(D−1

2
)

∫ z0

0

dz zD−2−2ν

=

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

Γ(2ν)Γ(ν)

Γ(1
2
+ν)Γ(D−1

2
)

2(1−ǫ)
ǫ(D−2)

( 1

k2
0ηη

′

)

ǫ(D−2)
2(1−ǫ)

. (51)

To reach the last form (51) we have used the doubling formula for the Gamma function,

Γ(2x) =
22x−1

π
1
2

Γ(x)Γ
(

x+
1

2

)

. (52)

Of course the infrared divergence at z = 0 in δi∆0 was dimensionally regulated, the same
way as in the infinite space result i∆∞. This is wrong for δi∆0, just as it was for i∆∞, but
expression (50) implies that the two errors must cancel and we will shortly see this explicitly.

We shall use the notation δi∆N to indicate the N -th order correction in the case of an
inflationary universe (ǫ < 1). For the correction in the decelerating case (1 < ǫ ≤ 2(D−1)/D)
we use the notation δi∆N . Before deriving the higher corrections, let us see that the addition
of (51) eliminates the N = 0 divergence (34). Both (51) and the n = 0 term from the last
line of (33) have a common factor that we may as well omit,

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

× 1

Γ(1
2
+ν)

. (53)
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The remaining contributions are,

2(1−ǫ)Γ(2ν)Γ(ν)

ǫ(D−2)Γ(D−1
2

)

( 1

k2
0ηη

′

)

ǫ(D−2)
2(1−ǫ) − Γ(D

2
−1)Γ(2−D

2
)

Γ(1
2
−ν)

Γ(D−1
2

+ν)Γ(D−1
2

−ν)
Γ(D

2
)

=
2(1−ǫ)Γ(2ν)Γ(ν)

ǫ(D−2)Γ(D−1
2

)

{

( 1

k2
0ηη

′

)

ǫ(D−2)
2(1−ǫ)

+
Γ(D−1

2
)

Γ(ν)

Γ(1−D
2
)

Γ(1
2
−ν)

Γ(D−1
2

+ν)

Γ(2ν)

Γ(D−1
2

−ν)
2(1−ǫ)
ǫ(D−2)

}

. (54)

It is convenient to expand this expression in terms of the small parameter α ≡ ǫ(D−2)/[2(1−ǫ)]
such that in the limit when ǫ vanishes expression (54) reduces to

lim
ǫ→0

2(1−ǫ)Γ(2ν)Γ(ν)

ǫ(D−2)Γ(D−1
2

)

{

( 1

k2
0ηη

′

)

ǫ(D−2)
2(1−ǫ)

+
Γ(D−1

2
)

Γ(ν)

Γ(1−D
2
)

Γ(1
2
−ν)

Γ(D−1
2

+ν)

Γ(2ν)

Γ(D−1
2

−ν)
2(1−ǫ)
ǫ(D−2)

}

(55)

= Γ(D−1)

{

ln(aa′) − π cot
(πD

2

)

+ 2 ln
(H0

k0

)

+ ψ
(D−1

2

)

− ψ
(D

2

)

+ ψ(D−1) − γ

}

,

where ψ(z) = (d/dz) ln(Γ(z)) indicates the digamma function, we used a = −1/H0η (valid
for ǫ = 0), ψ(1) = −γ and the reflection formula for the digamma function,

ψ(1−x) = ψ(x) + π cot(πx) . (56)

Multiplying (55) by the common factor (53), and then adding the rest of (33) — which is
not singular for ǫ = 0 — gives the following result,

lim
ǫ→0

i∆(x; x′) =
HD−2

0

(4π)
D
2

{

Γ(D
2
)

D
2
− 1

(4

y

)
D
2
−1

+
Γ(D

2
+1)

D
2
−2

(4

y

)
D
2
−2

+
Γ(D−1)

Γ(D
2
)

[

ln(aa′)

−π cot
(πD

2

)

+ 2 ln
(H0

k0

)

+ ψ
(D−1

2

)

− ψ
(D

2

)

+ ψ(D−1) − γ

]

+

∞
∑

n=1

[

Γ(D−1+n)

nΓ(D
2
+n)

(y

4

)n

− Γ(D
2
+1+n)

(2−D
2
+n) (n+1)!

(y

4

)n−D
2

+2
]

+O(k2
0)

}

. (57)

Except for the order k2
0 corrections, and for some constant, finite factors on the second line,

expression (57) agrees precisely with the result first obtained in [21] and used subsequently
in many one and two loop computations [19, 20, 22, 23, 25] on de Sitter background.

12



It is straightforward to work out the next contributions from the lower limit. We merely
add up the three first order corrections from the Bessel and Hankel functions for the case of
ν positive,

JD−3
2

( ∆x√
ηη′

z
)

=
( ∆x

2
√
ηη′

)
D−3

2 × z
D−3

2

Γ(D−1
2

)

{

1 −
∆x2

ηη′

z2

4

(D−1
2

)
+O(z4)

}

, (58)

H(1)
ν

(

√

η

η′
z
)

=
−i(1

2
z)−ν(η/η′)−ν/2

sin(νπ)Γ(1−ν)

{

1 −
η
η′

z2

4

1−ν +O(z4)

}

, (59)

H(1)
ν

(

√

η′

η
z
)∗

=
i(1

2
z)−ν(η′/η)−ν/2

sin(νπ)Γ(1−ν)

{

1 −
η′

η
z2

4

1−ν +O(z4)

}

. (60)

The resulting lower limit term is,

δi∆1 = −

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

2Γ(2ν)Γ(ν)

Γ(1
2
+ν)Γ(D−1

2
)

[

(η2+η′2)

4(ν−1)ηη′
− ∆x2

2(D−1)ηη′

]

∫ z0

0

dz zD−2ν

=

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

2Γ(2ν)Γ(ν)

Γ(1
2
+ν)Γ(D−1

2
)

×
[

(η2+η′2)

4(ν−1)ηη′
− ∆x2

2(D−1)ηη′

]

−zD+1−2ν
0

D+1−2ν
. (61)

This should cancel the N = 1 diverge of (34) at ǫ = 2/D, which affects the n = 0 and n = 1
terms on the last line of (33),

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

Γ(D+1
2

+ν)Γ(D+1
2

−ν)Γ(−D
2
)

Γ(1
2
+ν)Γ(1

2
−ν)

[

−D
2

(D−1
2

)2−ν2
− y

4

]

. (62)

The key to seeing that the infrared divergence of (61) cancels that in (62) is to express
both in terms of the small parameter,

α ≡ ν −
(D+1

2

)

=
(Dǫ−2)

2(1−ǫ) . (63)

As before, we extract the common factor of,
[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

1

Γ(1
2
+ν)

=

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

1

Γ(D
2
+1+α)

. (64)
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The lower limit contribution from (61) is this factor times,

2Γ(2ν)Γ(ν)

Γ(D−1
2

)

[

(η2+η′2)

4(ν−1)ηη′
− ∆x2

2(D−1)ηη′

]

−zD+1−2ν
0

D+1−2ν

=
Γ(D+1+2α)Γ(D+1

2
+α)

4αΓ(D+1
2

)

[

1

1+ 2α
D−1

(η2+η′2

ηη′

)

− ∆x2

ηη′

]

( 1

k2
0ηη

′

)α

, (65)

=
Γ(D+1)

4

{

2−y
α

+ (2−y)
[

2ψ(D+1) + ψ
(D+1

2

)

+ ln
( 1

k2
0ηη

′

)

]

− 2

D−1

(η2+η′2

ηη′

)

+O(α)

}

. (66)

In contrast, the contribution from (62) is (64) times,

Γ(D+1
2

+ν)Γ(D+1
2

−ν)Γ(−D
2
)

Γ(1
2
−ν)

[

−D
2

(D−1
2

)2−ν2
− y

4

]

= −Γ(D+1+α)Γ(1−α)Γ(−D
2
)

4αΓ(−D
2
−α)

[

2

(1+ α
D

)(1+α)
− y

]

, (67)

=
Γ(D+1)

4

{

−
(2−y

α

)

+ (2−y)
[

−ψ(D+1) + ψ(1) − ψ
(

−D
2

)

]

+2
(D+1

D

)

+O(α)

}

. (68)
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Adding (66) to (68) and taking α = 0 (which implies ǫ = 2/D) gives,

Γ(D+1)

4

{

(2−y)
[

ln
( 1

k2
0ηη

′

)

+ ψ(D+1) + ψ
(D+1

2

)

− γ − ψ
(

−D
2

)

]

− 2

D−1

(η2+η′2

ηη′

)

+ 2
(D+1

D

)

}

, (69)

=
Γ(D+1)

4

{

(2−y)
[

(D−2

D

)

ln(aa′) + 2 ln
[(D−2)H0

Dk0

]

− π cot
(πD

2

)

+ψ(D+1) + ψ
(D+1

2

)

− γ − ψ
(D

2
+1
)

]

− 2

D−1

(η2+η′2

ηη′

)

+ 2
(D+1

D

)

}

. (70)

We can get the full propagator for ǫ = 2/D by multiplying (70) by the common factor
(64), and then adding the rest of (33) with the now finite N = 0 correction (51),

lim
ǫ→ 2

D

i∆(x; x′) =

[(1− 2
D

)2HH ′]
D
2
−1

(4π)
D
2

{

Γ
(

D
2

+ 1
)

(

1 − D
2

)(

− D
2

)

(4

y

)
D
2
−1

+
Γ(D

2
+2)

(2−D
2
)(1−D

2
)

(4

y

)
D
2
−2

+
1

2!

Γ(D
2
+3)

(3−D
2
)(2−D

2
)

(4

y

)
D
2
−3

+
Γ(D+1)

4Γ(D
2
+1)

[

2(D−1)

k2
0ηη

′ − 2

D−1

( η

η′
+
η′

η

)

+2 +
2

D
+ (2−y)

{(

1− 2

D

)

ln(aa′) − π cot
(πD

2

)

+KD

}

]

+

∞
∑

n=2

[

Γ(D
2
+2+n)

(2−D
2
+n)(1−D

2
+n) (n+1)!

(y

4

)n−D
2

+2

− Γ(D+n)

n(n−1) Γ(D
2
+n)

(y

4

)n
]

+O(k2
0)

}

. (71)

Here the constant KD is,

KD ≡ 2 ln
[(

1− 2

D

)H0

k0

]

+ ψ(D+1) + ψ
(D+1

2

)

− γ − ψ
(D

2
+1
)

. (72)
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As far as we know the literature contains no result against which we can check (71) but its
limit in D = 4 dimensions has been worked out,

lim
D→4

lim
ǫ→ 2

D

i∆(x; x′) =
HH ′

64π2

{

4

y
+

18

k2
0ηη

′ − 2
( η

η′
+
η′

η

)

− 11y + 16

+3(2−y)
[

− ln
(

y
)

+ 2 ln
(H0

2k0

)

+
1

2
ln(aa′) − 2γ

]

+O(k2
0)

}

. (73)

This agrees perfectly with equation (3.82) of [24].
We have seen that the lower limit term which corrects the N = 0 problem in (34) is given

by (51). For the N = 1 problem the corresponding lower limit correction is (61). To see the
general pattern, first substitute the relation for H in terms of η,

H = H0

[

−(1−ǫ)H0η
]

ǫ
1−ǫ

. (74)

This reveals the N = 0 correction (51) to be constant,

δi∆0 ≡

[

(1−ǫ)2H2
0

]
D
2
−1

(4π)
D
2

Γ(2ν)Γ(ν)

Γ(1
2
+ν)Γ(D−1

2
)

2(1−ǫ)
ǫ(D−2)

[

(1−ǫ)2H2
0

k2
0

]

ǫ(D−2)
2(1−ǫ)

. (75)

The same substitution reveals that the N = 1 correction (61) is quadratic,

δi∆1 ≡

[

(1−ǫ)2H2
0

]
D
2
−1

(4π)
D
2

Γ(2ν)Γ(ν)

Γ(1
2
+ν)Γ(D−1

2
)

×
[

k2
0(η

2+η′2)

4(ν−1)
− k2

0∆x
2

2(D−1)

]

2(1−ǫ)
(Dǫ−2)

[

(1−ǫ)2H2
0

k2
0

]

ǫ(D−2)
2(1−ǫ)

. (76)

Both corrections are homogeneous solutions of the propagator equation (4),

∂µ

(√
−ggµν∂νδi∆N

)

= 0 . (77)

Note that each lower limit correction δi∆N must separately solve (77) because each goes like
a distinct power of k0. The freedom to add such homogeneous terms is precisely what is not
fixed by just solving the propagator equation rather than using the mode sum.
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We could work out the N-th lower limit correction δi∆N from the mode sum but that
would involve tedious multiplications of corrections from the Bessel function and the two
Hankel functions. A simpler technique is to use the fact that the correction must have the
form,

δi∆N =

[

(1−ǫ)2H2
0

]
D
2
−1

(4π)
D
2

Γ(2ν)Γ(ν)

Γ(1
2
+ν)Γ(D−1

2
)

2(1−ǫ)
(D−2+2N)ǫ−2N

×
[

(1−ǫ)2H2
0

k2
0

]

ǫ(D−2)
2(1−ǫ)

k2N
0

N
∑

k=0

N−k
∑

ℓ=0

akℓ∆x
2kη2ℓη′

2(N−k−ℓ)
. (78)

Then we determine the coefficients akℓ by three requirements:

1. The coefficient aN0 derives entirely from the z2N correction of the Bessel function and,
by direct examination of (49), we can see that it is,

aN0 =
(−1)NΓ(D−1

2
)

N !4NΓ(D−1
2

+N)
; (79)

2. Symmetry under η ↔ η′ implies,

akℓ = ak(N−k−ℓ) ; (80)

3. The series must of course solve (77).

The differential equation (77) implies,

0 =
[

∂2 +
2ν−1

η
∂0

]

N
∑

k=0

N−k
∑

ℓ=0

akℓ∆x
2kη2ℓη′

2(N−k−ℓ)
, (81)

=
N
∑

k=0

N−k
∑

ℓ=0

2k(2k+D−3)akℓ∆x
2k−2η2ℓη′

2(N−k−ℓ)

−
N
∑

k=0

N−k
∑

ℓ=0

4ℓ(ℓ− ν)akℓ∆x
2kη2ℓ−2η′

2(N−k−ℓ)
, (82)

=
N−1
∑

k=0

N−1−k
∑

ℓ=0

2(k+1)(2k+D−1)ak+1 ℓ∆x
2kη2ℓη′

2(N−1−k−ℓ)

−
N−1
∑

k=0

N−1−k
∑

ℓ=0

4(ℓ+1)(ℓ+ 1 − ν)ak ℓ+1∆x
2kη2ℓη′

2(N−1−k−ℓ)
. (83)
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Hence the coefficients must obey,

(k+1)(2k+D−1)ak+1 ℓ = 2(ℓ+1)(ℓ+1−ν)ak ℓ+1 . (84)

The unique solution consistent with the other two of the three properties is,

akℓ =
(

−1

4

)N 1

k! ℓ! (N−k−ℓ)!
Γ(D−1

2
) Γ2(1−ν)

Γ(k+ D−1
2

)Γ(ℓ+1−ν)Γ(N−k−ℓ+1−ν) . (85)

For N = 0 this gives the known result ,

N = 0 =⇒ a00 = 1 . (86)

A less trivial check is that it also works for N = 1,

N = 1 =⇒ a00 = a01 =
1

4(ν−1)
and a10 = − 1

2(D−1)
. (87)

Let us turn now to the decelerating case of 1 < ǫ ≤ 2(D−1)/D for which the infinite
space propagator (33) diverges at the discrete values given in (35). By paralleling what we
did for the inflationary case one can show that the lower limit term which corrects the N = 0
problem is,

δi∆0 = −

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

Γ(−2ν)Γ(−ν)
Γ(1

2
−ν)Γ(D−1

2
)

2

∫ z0

0

dz zD−2+2ν ,

=

[

(1−ǫ)2HH ′
]

D
2
−1

(4π)
D
2

Γ(−2ν)Γ(−ν)
Γ(1

2
−ν)Γ(D−1

2
)

2(ǫ−1)

2(D−1)−Dǫ
( 1

k2
0ηη

′

)

2(D−1)−Dǫ

2(ǫ−1)

, (88)

=

[

(1−ǫ)2H2
0

]
D
2
−1

(4π)
D
2

Γ(−2ν)Γ(−ν)
Γ(1

2
−ν)Γ(D−1

2
)

2(ǫ−1)

2(D−1)−Dǫ

[

(1−ǫ)2H2
0

k2
0

]

ǫ(D−2)
2(1−ǫ)

(

k2
0ηη

′
)2ν

. (89)

One can easily check that (k2
0ηη

′)2ν solves the homogeneous equation (77). So the full
series of these lower limit corrections should take the form,

δi∆N =

[

(1−ǫ)2H2
0

]
D
2
−1

(4π)
D
2

Γ(−2ν)Γ(−ν)
Γ(1

2
−ν)Γ(D−1

2
)

2(ǫ−1)

2(D−1+N)−(D+2N)ǫ

×
[

(1−ǫ)2H2
0

k2
0

]

ǫ(D−2)
2(1−ǫ)

(k2
0ηη

′)2νk2N
0

N
∑

k=0

N−k
∑

ℓ=0

bkℓ∆x
2kη2ℓη′

2(N−k−ℓ)
. (90)

18



We determine the coefficients bkℓ by the same three requirements as the akℓ, although the
solution will be different because the ansatz (90) is.

We need to commute the differential operator in (77) through the prefactor of (k2
0ηη

′)2ν

in the ansatz (90),

[

∂2 +
2ν−1

η
∂0

](

k2
0ηη

′
)2ν

=
(

k2
0ηη

′
)2ν[

∂2 +
−2ν−1

η
∂0

]

. (91)

That is a highly significant result because it means the equation the bare series obeys is the
same as we already solved for the lower series but with the replacement ν → −ν. So we can
write down the answer immediately,

bkℓ =
(

−1

4

)N 1

k! ℓ! (N−k−ℓ)!
Γ(D−1

2
) Γ2(1+ν)

Γ(k+ D−1
2

)Γ(ℓ+1+ν)Γ(N−k−ℓ+1+ν)
. (92)

It is worth explicitly checking that the lowest N corrections δi∆N cancel the ǫ poles in
(33) from the upper series (35). From (90) and (92) we see that the N = 0 correction is,

δi∆0 =
[(1−ǫ)2HH ′]

D
2
−1

(4π)D/2

Γ(−ν)Γ(−2ν)

Γ(D−1
2

)Γ(1
2
−ν)

2(ǫ−1)
[

2(D−1)−Dǫ
]

(

1

k2
0ηη

′

)

2(D−1)−Dǫ

2(ǫ−1)

. (93)

This should cancel the divergence at ǫ = 2(D−1)/D in the n = 0 term on the last line of
(33),

[(1−ǫ)2HH ′]
D
2
−1

(4π)D/2

Γ(1−D
2
)Γ(D−1

2
+ν)Γ(D−1

2
−ν)

Γ(1
2
+ν)Γ(1

2
−ν) . (94)

The relevant small parameter is,

α ≡ 2(D−1)−Dǫ
2(ǫ−1)

= −D−1

2
− ν . (95)
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Adding (93) to (94) and taking the limit that α vanishes gives,

lim
α→0

[(1−ǫ)2HH ′]
D
2
−1

(4π)D/2

Γ(D−1
2

+α)Γ(D−1+2α)

Γ(D
2
+α)Γ(D−1

2
)α

{(

1

k2
0ηη

′

)α

− Γ(D−1
2

)

Γ(D−1
2

+α)

Γ(D−1+α)

Γ(D−1+2α)

Γ(1−D
2
)

Γ(1−D
2
−α)

Γ(1−α)

Γ(1)

}

. (96)

=
[(1− 2

D
)2HH ′]

D
2
−1

(4π)D/2

Γ(D−1)

Γ(D
2
)

{

2 ln
[(

1− 2

D

)H0

k0

]

−
(

1− 2

D

)

ln(aa′)

−π cot
(Dπ

2

)

− γ − ψ
(D

2

)

+ ψ(D−1) + ψ
(D−1

2

)

}

. (97)

By using ǫ−1 = 1−2/D the final result for the propagator can be expressed in a form that
is identical with the de Sitter case (57),

lim
ǫ→ 2(D−1)

D

i∆(x; x′) =

[(1−ǫ)2HH ′]
D
2
−1

(4π)
D
2

{

Γ(D
2
)

D
2
− 1

(4

y

)
D
2
−1

+
Γ(D

2
+1)

D
2
−2

(4

y

)
D
2
−2

+
Γ(D−1)

Γ(D
2
)

[

(1−ǫ) ln(aa′)

−π cot
(πD

2

)

+2 ln
[

|1 − ǫ|H0

k0

]

+ψ
(D−1

2

)

−ψ
(D

2

)

+ψ(D−1)−γ
]

+

∞
∑

n=1

[

Γ(D−1+n)

nΓ(D
2
+n)

(y

4

)n

− Γ(D
2
+1+n)

(2−D
2
+n) (n+1)!

(y

4

)n−D
2

+2
]

+O(k2
0)

}

. (98)

Of course one must remember that in de Sitter ǫ = 0 and H = H0, so (57) and (98) are only
formally the same.

We will content ourselves with working out one more propagator. From (90) and (92) we
see that the N = 1 correction is,

[(1−ǫ)2HH ′]
D
2
−1

(4π)D/2

2Γ(−ν)Γ(−2ν)

Γ(1
2
−ν)Γ(D−1

2
)

( −1

4ηη′

)

[

2∆x2

D−1
+
η2+η′2

1+ν

]

(k2
0ηη

′)−α

2α
, (99)

where we define the small parameter α as,

α ≡ 2D−(D+2)ǫ

2(ǫ−1)
= −D+1

2
− ν . (100)
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This should cancel the divergences from the n = 0 and n = 1 terms on the last line of (33),

[(1−ǫ)2HH ′]
D
2
−1

(4π)D/2

Γ(D+1
2

+ν)Γ(D+1
2

−ν)Γ(−D
2
)

Γ(1
2
+ν)Γ(1

2
−ν)

{

−y
4
−

D
2

(D−1
2

)2−ν2

}

. (101)

Adding (99) to (101) and taking α to zero gives,

[(1−ǫ)2HH ′]
D
2
−1

(4π)
D
2

Γ(D+1)

4Γ(D
2
+1)

{

− 2

D−1

( η

η′
+
η′

η

)

+ 2 +
2

D

+(2−y)
[

−
(D−2

D+2

)

ln(aa′) + 2 ln
[(D−2

D+2

)H0

k0

]

− π cot
(Dπ

2

)

−γ − ψ
(D

2
+1
)

+ ψ
(D+1

2

)

+ ψ(D+1)

]}

. (102)

By taking advantage of the fact that (1− ǫ) = −(D−2)/(D+2) we can express the full
propagator in a form identical to the N = 1 result (71) from the lower series,

lim
ǫ→ 2D

D+2

i∆(x; x′)

=
[(1−ǫ)2HH ′]

D
2
−1

(4π)
D
2

{

Γ(D
2
+1)

(1−D
2
)(−D

2
)

(4

y

)
D
2
−1

+
Γ(D

2
+2)

(2−D
2
)(1−D

2
)

(4

y

)
D
2
−2

+
1

2!

Γ(D
2
+3)

(3−D
2
)(2−D

2
)

(4

y

)
D
2
−3

+
Γ(D+1)

4Γ(D
2
+1)

[

2(D−1)

k2
0ηη

′ − 2

D−1

( η

η′
+
η′

η

)

+2 +
2

D
+ (2−y)

{

(1−ǫ) ln(aa′) − π cot
(πD

2

)

+ CD

}

]

+
∞
∑

n=2

[

Γ(D
2
+2+n)

(2−D
2
+n)(1−D

2
+n) (n+1)!

(y

4

)n−D
2

+2

− Γ(D+n)

n(n−1) Γ(D
2
+n)

(y

4

)n
]

+O(k2
0)

}

. (103)

Here the constant CD is,

CD ≡ 2 ln
[

|1−ǫ|H0

k0

]

+ ψ(D+1) + ψ
(D+1

2

)

− γ − ψ
(D

2
+1
)

. (104)
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5 The scalar stress-energy tensor

In this section we shall calculate the expectation value of the scalar stress-energy tensor
using the propagator obtained in the previous section. The stress-energy tensor for a scalar
field ϕ, with the Lagrangian (3), is given by

Tµν ≡ − 2√−g
δS

δgµν
= ∂µϕ∂νϕ− 1

2
gµνg

αβ∂αϕ∂βϕ. (105)

The expectation value with respect to the vacuum state |Ω〉 can be written as

〈Ω|Tµν |Ω〉 =
(

δρ
µδ

σ
ν − 1

2
gµνg

ρσ
)

〈Ω|∂ρϕ∂σϕ|Ω〉 =
(

δρ
µδ

σ
ν − 1

2
gµνg

ρσ
)

∂ρ∂
′
σi∆(x; x′)

∣

∣

∣

x=x′

, (106)

where ∂′µ ≡ ∂
∂x′µ . The propagator i∆ is given in terms of the infinite space propagator (30)

and the corrections (78) and (90),

i∆(x; x′) = i∆∞(x; x′) +
∞
∑

N=0

δi∆N (x; x′) +
∞
∑

N=0

δi∆N (x; x′) . (107)

5.1 The infinite space contribution

We first consider the contribution to (106) coming from i∆∞. From (31) we find that at
coincidence (y → 0) the following two identities hold

∂ρy
∣

∣

∣

y=0
= 0

∂ρ∂
′
σy
∣

∣

∣

y=0
= − 2

η2
ηρσ = −2(1 − ǫ)2H2gρσ .

(108)

Moreover, since in dimensional regularization all D dependent powers of y can be automati-
cally subtracted, we find using (6.131.2) in [8] that the contributions from the hypergeometric
function appearing in i∆∞ relevant for this calculation are

2F1

(D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − y

4

)
∣

∣

∣

y=0
=

Γ(1 − D
2
)Γ(D

2
)

Γ(1
2

+ ν)Γ(1
2
− ν)

d

dy
2F1

(D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − y

4

)
∣

∣

∣

y=0
=− 1

2D

(

ν2 −
(D−1

2

)2) Γ(1 − D
2
)Γ(D

2
)

Γ(1
2

+ ν)Γ(1
2
− ν)

.

(109)
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Using these identities we immediately find that

∂ρ∂
′
σi∆∞(x; x′)

∣

∣

∣

x=x′

=HD|1 − ǫ|D Γ(1 − D
2
)

(4π)
D
2

Γ(D−1
2

+ ν)Γ(D−1
2

− ν)

Γ(1
2

+ ν)Γ(1
2
− ν)

×
[

(D − 1

2
− ν
)2

a2δ0
ρδ

0
σ +

1

D

(

ν2 −
(D − 1

2

)2)

gρσ

]

.

(110)

Making use of Eq. (106) the one-loop contribution to the stress-energy from i∆∞ can be
written as,

〈Ω|Tµν |Ω〉∞ =
HD|1 − ǫ|D

(4π)D/2

Γ(1 − D
2
)Γ(D−1

2
+ ν)Γ(D−1

2
− ν)

Γ(1
2

+ ν)Γ(1
2
− ν)

×
(D − 1

2
− ν
)

[

(D − 1

2
− ν
)

a2δ0
µδ

0
ν +

1

D

((D − 1)2

2
− ν
)

gµν

]

. (111)

5.2 The ǫ < 1 correction

Next we consider the iδ∆N contribution (78). We define for convenience

AN =

(

H2
0 (1 − ǫ)2

)
D
2
−1

(4π)
D
2

(

H2
0 (1 − ǫ)2

k2
0

)

(D−2)ǫ
2(1−ǫ)

Γ(2ν)Γ(ν)

Γ(1
2

+ ν)Γ(D−1
2

)

−k2N
0

N + D−1
2

− ν
, (112)

such that

δi∆N(x; x′) = AN

N
∑

k=0

N−k
∑

ℓ=0

akℓ(∆x)
2kη2ℓη′2(N−k−ℓ) . (113)

Since at coincidence ∆x is zero, we find that the only nonzero contribution to (106) arises
from k = 1 when both derivatives hit ∆x, and from k = 0 when both derivatives hit η and
η′. Thus at coincidence we have

∂ρ∂
′
σδi∆N (x; x′)

∣

∣

∣

x=x′

=AN

(

N−1
∑

ℓ=0

a1ℓ

(

− 2η̄ρση
2(N−1)

)

+

N
∑

ℓ=0

a0ℓ

(

4ℓ(N − ℓ)δ0
ρδ

0
ση

2(N−1)
)

)

,

(114)

where
η̄ρσ = ηρσ + δ0

ρδ
0
σ . (115)
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Using the expression for akℓ (85) we find that we can resum the series over ℓ to obtain

∂ρ∂
′
σδi∆N (x; x′)

∣

∣

∣

x=x′

=AN
(−1)N

√
π4ν

Γ2(1 − ν)Γ(N − 1
2
− ν)

Γ(N)Γ(N − ν)Γ(N − 2ν)
η2(N−1)

×
(

− 1

D − 1
η̄ρσ +

N − 1

N − 2ν
δ0
ρδ

0
σ

)

,

(116)

where we made use of the identity,

N
∑

ℓ=0

N !

ℓ!(N − ℓ)!

Γ(N+1−2ν)

Γ(ℓ+1−ν)Γ(N+1−ℓ−ν) =
Γ(2N+1−2ν)

Γ2(N+1 −ν) . (117)

From Eqs. (106), (112) and (116) we find the following contribution to the stress-energy
tensor from the N -th correction,

〈Ω|Tµν |Ω〉N = −H
D|1 − ǫ|D
2(4π)D/2

(z2
0)

N+ D−1
2

−ν

N + D−1
2

− ν

Γ(1 −N + ν)Γ(−N + 2ν)

Γ(3
2
−N + ν)Γ(D+1

2
)Γ(N)

(118)

×
[(

−(D−1)+2ν+(D−2)N
)

a2δ0
µδ

0
ν +

1

2

(

−(D−1)−2(D−3)ν+2(D−2)N
)

gµν

]

,

where we have transformed the Gamma functions such that they are not singular at the
N -th pole (47) and we used

(

H2
0 (1 − ǫ)2

)
D
2
−1
(

H2
0 (1 − ǫ)2

k2
0

)

(D−2)ǫ
2(1−ǫ)

1

η2
= HD|1 − ǫ|D(z2

0)
D−1

2
−νa2 , (119)

with z0 = k0|η| at coincidence.

5.3 The ǫ > 1 correction

Finally we consider the correction due to δi∆N given by Eq. (90). We define for convenience

BN =

(

H2
0 (1 − ǫ)2

)
D
2
−1

(4π)
D
2

(

H2
0 (1 − ǫ)2

k2
0

)

(D−2)ǫ
2(1−ǫ)

Γ(−2ν)Γ(−ν)
Γ(1

2
− ν)Γ(D−1

2
)

−k2N
0

N + D−1
2

+ ν
, (120)

such that

δi∆N (x; x′) = BN(k2
0ηη

′)2ν
N
∑

k=0

N−k
∑

ℓ=0

bkℓ(∆x)
2kη2ℓη′2(N−k−ℓ). (121)
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The calculation is similar as in the ǫ < 1 case, and it yields:

∂ρ∂
′
σδi∆

N (x; x′)
∣

∣

∣

x=x′

= BN(k2
0η

2)2ν

(

N−1
∑

ℓ=0

b1ℓ

(

− 2η̄ρση
2(N−1)

)

+

N
∑

ℓ=0

b0ℓ

(

4(ℓ+ ν)(N − ℓ+ ν)δ0
ρδ

0
ση

2(N−1)
)

)

.

(122)

Summing over ℓ gives

∂ρ∂
′
σδi∆

N (x; x′)
∣

∣

∣

x=x′

=BN(k2
0η

2)2ν (−1)N4ν

√
π

Γ2(1 + ν)Γ(N − 1
2

+ ν)

Γ(N)Γ(N + ν)Γ(N + 2ν)
η2(N−1)

×
(

− 1

D − 1
η̄ρσ +

N − 1 + 2ν

N
δ0
ρδ

0
σ

)

,

(123)

resulting in the following contribution to the stress-energy tensor,

〈Ω|Tµν |Ω〉N = −H
D|1 − ǫ|D
2(4π)D/2

(z2
0)

N+ D−1
2

+ν

N + D−1
2

+ ν

Γ(1−N−ν)Γ(1−N−2ν)

Γ(3
2
−N−ν)Γ(D+1

2
)Γ(N+1)

(124)

×
[

(

(D−1)(1−2ν)−(D−2)N
)

a2δ0
µδ

0
ν +

1

2

(

(D−1)(1−2ν)−2(D−2)N
)

gµν

]

.

5.4 Renormalization

The total one-loop stress energy tensor is the sum of the three contributions (111), (118)
and (124),

〈Ω|Tµν |Ω〉 = 〈Ω|Tµν |Ω〉∞ +

∞
∑

N=0

〈Ω|Tµν |Ω〉N +

∞
∑

N=0

〈Ω|Tµν |Ω〉N . (125)

Note that the ultraviolet divergence (which in dimensional regularization appears as a term
multiplying 1/(D−4)) is confined to (111). Indeed, when expanded around D = 4, Eq. (111)
gives,

〈Ω|Tµν |Ω〉∞ =

{

− (2 − ǫ)ǫHD

8π2

1

D−4

−(2−ǫ)ǫH4

16π2

[

4 − ǫ+ γ + ln

(

(1 − ǫ)2

4π

)

+ ψ
( 1

1 − ǫ

)

+ ψ
(

− ǫ

1 − ǫ

)

]}

×
[

ǫa2δ0
µδ

0
ν +

(

ǫ− 3

4

)

gµν

]

+
(2 − ǫ)ǫH4

128π2
gµν + O(D−4) . (126)
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It is known that this theory can be renormalized by the R2 counterterm only. Indeed, taking
a functional derivative with respect to gµν of the counterterm action results in

− 2√−g
δ

δgµν

∫

dDx
√−gαR2 = α(4∇µ∇νR− 4gµν R + gµνR

2 − 4RRµν) . (127)

Making use of the corresponding expressions for R and Rµν in FLRW spaces (see e.g. Ref. [3])
this evaluates to

− 2√−g
δ

δgµν

∫

dDx
√
−gR2 = 144(2 − ǫ)ǫH4

[

ǫ a2δ0
µδ

0
ν +

(

ǫ− 3

4

)

gµν

]

−H4
(

48ǫ(1 − 4ǫ+ ǫ2)a2δ0
µδ

0
ν − 12(3 − 22ǫ+ 22ǫ2 − 4ǫ3)gµν

)

(D−4)

+O
(

(D−4)2
)

. (128)

Note that the HD term in Eq. (126) can be expanded as,

HD = H4µD−4

[

1 +
D−4

2
ln
(H2

µ2

)

]

+ O((D−4)2) , (129)

where µ is an arbitrary renormalization scale. From Eqs. (126) and (128) we see that the
divergence in (126) is canceled by

α =
µD−4

1152π2(D−4)
, (130)

where µ controls the undetermined finite part of α. The renormalized stress-energy tensor
can be now easily obtained

〈Ω|Tµν |Ω〉 = − H4

48π2

{

(2 + 16ǫ− 16ǫ2 + 3ǫ3)a2δ0
µδ

0
ν −

1

8
(12 + 62ǫ− 215ǫ2 + 146ǫ3 − 24ǫ4)gµν

+ 3ǫ(2 − ǫ)

(

γ + ψ
(

− ǫ

1 − ǫ

)

+ ψ
( 1

1 − ǫ

)

+ ln
((1 − ǫ)2H2

4πµ2

)

)

×
[

ǫ a2δ0
µδ

0
ν +

(

ǫ− 3

4

)

gµν

]}

+

∞
∑

N=0

(

〈Ω|Tµν |Ω〉N + 〈Ω|Tµν |Ω〉N
)

D→4
,

(131)
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where the terms in the last line denote the D → 4 limit of Eqs. (118) and (124).
The sums over N can be performed and the final result can than be recast in terms of a

hypergeometric function 2F3. This is a useful procedure for studying the ultraviolet behavior
of the corrections (when the cutoff |z0| → ∞). Since here we are primarily interested in the
infrared sector |z0| ≪ 1, we shall not perform the summation over N .

5.5 Resolving the divergencies of the digamma functions

Even though the ultraviolet divergences have been removed by dimensional renormalization,
the renormalized stress-energy (131) still seems to diverge at the poles of the (di)gamma
functions (34–35) (see also Eqs. (45–47)). We shall now show that these divergences are
only apparent however, and that they are canceled by the correction terms in (131) given
by (118) and (124), precisely as there were designed to do. 1

Let us first consider the case ǫ < 1. Expanding (34) around the N -th pole we have

− ǫ

1 − ǫ
= −N + δ ⇒ ǫ =

N − δ

N + 1 − δ
, ν =

3

2
+N − δ , (132)

where N is a positive integer and δ is an infinitesimal quantity. In this case the first digamma
function in (131) diverges, and its contribution to the stress-energy tensor is

H4

16π2

N(N + 2)

(N + 1)2

1

δ

[

ǫa2δ0
µδ

0
ν +

(

ǫ− 3

4

)

gµν

]

+ O(δ0) , (133)

where we used

ψ(−N + δ) = −1

δ
+ O

(

δ0
)

. (134)

To check that our construction works next we rewrite the N -th term (118) by using (132)

〈Ω|Tµν |Ω〉N D→4−→ − H4

32π2(1+N−δ)4

(z2
0)

δ

δ

Γ(5
2
−δ)Γ(N+3− 2δ)

Γ(3−δ)Γ(5
2
)Γ(N)

×
[

2(2N−δ)a2δ0
µδ

0
ν + (N−3+δ)gµν

]

. (135)

When expanded in powers of δ this gives,

〈Ω|Tµν |Ω〉N D→4−→ − H4

16π2

N(N+2)

(N+1)2

[

1

δ
+ ln(z2

0) − ψ
(5

2

)

− 2ψ
(

N + 3
)

+ ψ
(

3
)

+
4

N+1

]

×
[

N

N+1
a2δ0

µδ
0
ν +

N−3

4(N+1)
gµν−

δ

2(N+1)

(

a2δ0
µδ

0
ν−

1

2
gµν

)

]

+ O(δ) .(136)

1One might think that the second digamma function in (131) has a simple pole also at ǫ = 2, but that is
canceled by the (2 − ǫ) prefactor.
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Note that close to the pole N/(N+1) = ǫ+O(δ) and (N−3)/[4(N+1)] = ǫ−(3/4)+O(δ), such
that the tensor structures in (136) and (133) are (to leading order in δ) identical. Moreover,
by comparing Eq. (136) with (133) we see that the O(1/δ) terms cancel, as required. The
resulting leading order contribution to the one-loop stress-energy tensor is finite and depends
logarithmically on the scale factor as ∝ H4a2[ ln(a)+const.], where the constant term contains
a logarithm of the cutoff k0.

In the case when ǫ > 1 the singularities of the digamma functions in the stress-energy
tensor (131) conform with the poles (35). As above, expanding around the poles

1

1 − ǫ
= −2 −N + δ ⇒ ν = −3

2
−N + δ , ǫ =

N + 3 − δ

N + 2 − δ
, (137)

we obtain the following contribution to (131) from the digamma function:

H4

16π2

(N + 1)(N + 3)

(N + 2)2

1

δ

(

ǫ a2δ0
µδ

0
ν +

(

ǫ− 3

4

)

gµν

)

+ O(δ0) . (138)

On the other hand, the correction (124) contributes the following to the scalar stress-
energy (131)

〈Ω|Tµν |Ω〉N D→4−→ − H4

16π2

(N+1)(N+3)

(N+2)2

[

1

δ
+ ln(z2

0) − ψ
(5

2

)

− 2ψ
(

N+4
)

+ ψ
(

3
)

+
4

N+2

]

×
[

N+3

N+2
a2δ0

µδ
0
ν +

N+6

4(N+2)
gµν −

3δ

2(N+2)

(

a2δ0
µδ

0
ν +

1

2
gµν

)

]

+ O(δ) . (139)

Noting that here (N+3)/(N+2) = ǫ + O(δ) and (N+6)/[4(N+2)] = ǫ−(3/4) + O(δ), we
see that the pole contributions O(1/δ) in (139) and (138) cancel, resulting again in a finite
contribution to the scalar one-loop stress-energy of the form, ∝ H4a2[ ln(a)+const.].

6 Discussion

We studied the propagator of the massless, minimally coupled scalar on a spatially flat,
FLRW background of arbitrary dimension and constant ǫ = −Ḣ/H2. A previous result
(33), first derived [3, 4] by solving the propagator equation (4), was seen to agree with the
Bunch-Davies mode sum for infinite space. It diverges at discrete values of ǫ (34-35), even
away from coincidence and with the dimensional regularization in effect. The origin of these
divergences derives from the way dimensional regularization treats the infrared divergences
that the mode sum possesses for all ǫ in the range 0 ≤ ǫ ≤ 2(D−1)/D. For most values
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of ǫ in this range the infrared divergences are of the power law type that are set to zero by
the automatic subtraction of dimensional regularization. The infrared divergences become
logarithmic for the special values of ǫ given by the two series (34) and (35), which is why
the infinite space propagator (33) diverges for these values.

Of course one should never subtract infrared divergences, even power law ones. Infrared
divergences signify an unphysical feature of whatever question is being posed and the correct
way to avoid them is by making appropriate changes in the question. The unphysical feature
of the infinite space propagator is that no local observer could prepare the initial state in
coherent Bunch-Davies vacuum over more than a Hubble volume. A more realistic situation
is attained either by preparing the initially super-horizon modes in some less singular state
or else by simply not having any initially super-horizon modes.

We implemented the latter fix, making the integral approximation to the discrete mode
sum but with a nonzero lower limit. The resulting propagator (49) could be expressed as the
old result (33), minus a series of homogeneous solutions. Canceling the infrared divergences
requires only the most singular contributions. For the inflationary case of 0 ≤ ǫ < 1 our
results for the corrections are (78) and (85); for the decelerating case of 1 < ǫ ≤ 2(D−1)/D
they are (90) and (92). We showed explicitly that the first two divergences of (34) and
the first two divergences of (35) are canceled in this way, and we obtained the resulting
propagators with dimensional regularization still in effect. We also showed that these results
agree with special cases which have been reported in the literature [21, 24]. Moreover as an
example we calculated the one-loop expectation value of the stress-energy tensor and showed
that the divergences as discussed in [4] are canceled and replaced with a term that grows as
the logarithm of the infrared cutoff.

The case of ǫ = 1 deserves special comment. From the convergence of the lower sin-
gularities (34) and the upper ones (35) it might seem that the infinite space mode sum is
highly infrared divergent. However, this is just an illusion derived from the fact that our
convention for the zero of conformal time shifts discontinuously at ǫ = 1. If one takes the
limit ǫ → 1 while holding fixed the co-moving time and the initial Hubble parameter then
the mode functions have a perfectly well-behaved form,

lim
ǫ→1

u(t, k) =
a1−D

2

√
2H0

[

k2

H2
0

−
(D−2

2

)2
]− 1

4

exp

[

−i
√

k2

H2
0

−
(D−2

2

)2

ln(a)

]

. (140)

The propagator also has a smooth limit,

lim
ǫ→1

i∆∞(x; x′) =
[HH ′]

D
2
−1

(4π)
D
2

Γ
(D

2
−1
)( 4

Y

)
D
2
−1

, (141)
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where we define the symbol Y as

Y (x; x′) ≡ H2
0∆x2 −

(

∣

∣

∣
ln
( a

a′

)
∣

∣

∣
− iε

)2

. (142)

An important distinction exists between the inflationary case of 0 ≤ ǫ < 1 and the
case of deceleration. The reason for this is that the parameter used to characterize the
infrared cutoff, z0, approaches zero in an inflationary space, but it grows without bound in
a decelerating space-time. In an inflationary space-time the physical wavelength associated
with the infrared cutoff, a(t)/k0, grows faster than the Hubble radius. Thus a super-Hubble
cutoff stays super-Hubble at all times. In contrast, for a decelerating universe the Hubble
radius grows faster than a(t)/k0 and therefore an initial super-Hubble cutoff will eventually
enter the Hubble radius. Hence the effect of the cutoff becomes more and more profound
as time evolves. This behavior can be seen nicely from the expectation value of the stress-
energy tensor (131). The corrections from δi∆N and δi∆N have the following respective time
dependences:

H4(z2
0)

N− ǫ
1−ǫ ∝ a−2[ǫ+N(1−ǫ)]

H4(z2
0)

N+ 3−2ǫ
1−ǫ ∝ a−2[3+N(1−ǫ)] .

(143)

This behavior should be compared to the tree level contribution to the equation of motion,
which follows from the Friedmann equations, and scales as H2 ∝ a−2ǫ and Ḣ ∝ a−2ǫ. Thus
we see that for an inflationary space, ǫ < 1, all corrections N ≥ 1 decay faster with time
than the tree-level contributions, while the N = 0 correction scales with time equally as H2

and Ḣ . For a decelerating space ǫ > 1 however, there are infinitely many values of N for
which both corrections grow indefinitely as the universe expands. 2

Thus we conclude that for an inflationary universe, the initial conditions become less
visible as time progresses. In this case it does not matter much which of the two fixes for
the infrared problems of Section 3 is employed, or precisely how it is implemented, while the
opposite is true for a decelerating universe. Although we have worked out the fix based on a
finite spatial manifold, the absence of evidence for a finite size to the universe suggests that
the more physically relevant fix for deceleration is the one based on a less singular ensemble
of initially super-horizon modes [15]. Because the initial condition becomes progressively
more visible for deceleration, the physically relevant choice is probably the one consistent
with at least 60 e-foldings of primordial inflation. Note that modes which experience first

2In order to get the correct late time behavior in this case, one would have to sum the series in N and
consider the asymptotic behavior of the resulting hypergeometric function 2F3 in the limit when |z0| ≫ 1.
Since that limit corresponds to a sub-Hubble cutoff, it is not of great interest to us.
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horizon crossing will be even more infrared singular than for Bunch-Davies vacuum. It would
only be for currently unobservable super-horizon modes that one could use the less singular
mode functions needed to regulate the infrared divergence. Hence one expects the infrared
behavior of the physically relevant propagator for deceleration to be strongly influenced by
the initial condition provided by primordial inflation.
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