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1 Introduction

In string theory, D-branes [1, 2] are fundamental objects at the same level as strings them-

selves. They play a central role in non-perturbative string dualities, are essential ingredients

in string phenomenology, and string theory realizations of inflationary or de Sitter space-

times often involve branes and antibranes. However, compared to strings (or particles) we

have a poor understanding of D-brane dynamics. There is no systematic approach, and

the study of brane/brane scattering has been mostly restricted to situations in which some

trick or special symmetry can be utilized — for instance nearly supersymmetric situations

such as parallel brane-brane scattering at low velocities (with some notable exceptions,

for instance [3–5]). To our knowledge there has been little or no study of brane-antibrane

scattering. In this work we will take a few steps in that direction.

Pairs of D-branes can interact through open strings that begin on one brane and end

on the other, or closed strings they emit/absorb. In string perturbation theory, the leading

diagram contributing to this interaction is the annulus figure 1, which can be interpreted

either as the tree-level exchange of a closed string or as a 1-loop diagram describing open

strings stretching between the branes. If the two branes are in relative motion (or for
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Dramatis Personæ

σ ∈ [0, π], τ string worldsheet coordinates

α′ = 1/2, T0 ≡ 1/(2πα′) = 1/π string scale and tension in our units

v0, vπ; e0, eπ velocities of the branes; charges of the string ends

γ =
(
1− v20

)−1/2
=

(
1− v2π

)−1/2
Lorentz factor, used in center of mass frame v0 = −vπ

χ= 1
π

∣∣tanh−1 (vπ)− tanh−1 (v0)
∣∣ relative rapidity times π−1 in the brane scattering frame,

χ= 1
π

∣∣tanh−1 (πe0E)+tanh−1 (πeπE)
∣∣ goes to infinity at the critical field in the electric frame

D; 〈n〉 degeneracy of states; particle or string number density

b; p+ 1 impact parameter; Dp-brane worldvolume dimension

2Im (A) = − lnPvac A is the vacuum-vacuum amplitude, Pvac the vacuum

persistence probability (prob. of producing nothing)

l∗ stopping distance (cf. intro to section 3)

Table 1. Symbols and notation.

Figure 1. The annulus diagram can either be interpreted as the tree level exchange of a closed-

string, or a 1-loop open string vacuum diagram. Cutting the diagram along the oriented red dashed

lines shows a pair of stretched open strings produced as the branes scatter.

the case of brane-antibrane in close proximity [6]) this diagram has an imaginary part

that computes the rate of pair production of open string states that stretch between the

branes [3]. In this work we will focus on the annulus amplitude, and not consider higher-

order in gs processes such as closed string Bremsstrahlung.

The physical reason for open string production is that the masses of strings stretched

between the branes change with time as the branes approach and then recede from each

other. At small gs, the spectrum of string states for a static string is schematically

m2 ∼ j + l2,
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Figure 2. Brane scattering with impact parameter b, and a stretched open string.

where l is proportional to the length of the string and j is an integer corresponding to

the excitation mode of the string. Hence, for one stationary brane and one moving with

constant velocity v (so that v0 = 0, vπ = v; see figure 2) one expects the mass of stretched

strings to obey a formula like

m2
naive ∼ j + b2 + (vt)2. (1.1)

This raises two interesting questions, which much of the paper is devoted to answering:

• Since v < 1, the naive formula (1.1) implies that string production should be expo-

nentially suppressed for string states with j � 1 even if b = 0, and for all j if b� 1.

This follows from the fact that the non-adiabaticity parameter ṁ/m2 < v/(b2 + j)

for all times t. Concretely, one expects

〈n〉naive ∼ e−(b2+j)/v, (1.2)

where 〈n〉 is the number density at level j. Instead, the annulus diagram (and results

from open string field theory) imply that

〈n〉string theory ∼ e−(b2+j)/πχ, (1.3)

where πχ ≡ | tanh−1 v| is the rapidity. Hence, for b2 + j . πχ the production is

unsuppressed. Why is this, and what are the implications?

• For brane-antibrane the lowest value of j is −1, so there is a tachyon when b < 1

and t = 0. This tachyon can condense, which if v = 0 leads to brane-antibrane

annihilation. What happens when v > 0?

Tachyon condensation. Our answer to the second question is as follows. If a field with

m2 initially greater than zero becomes tachyonic, its wavefunction spreads by an amount

that depends on how long it remains in the tachyonic regime. This is under analytical

control so long as non-linear corrections to the quadratic action do not become important,
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and if the field eventually acquires m2 > 0 again, this spread simply corresponds to a finite

amount of particle production. In string theory at small gs, interactions of the canonically

normalized tachyon field are suppressed by powers of gs, meaning the wavefunction must

spread a distance ∼ 1/
√
gs before the quadratic approximation breaks down. Since the time

the mode remains tachyonic is t ∼ 1/v, for gs � 1 there is a velocity v � 1 above which

the field is very unlikely to have time to reach the non-linear regime. Furthermore the

kinetic energy of the branes scales as 1/gs. Hence while the j = −1 mode of the stretched

strings is always produced copiously, at weak coupling this has a small effect on the motion

of the branes, and annihilation is very improbable. Interestingly, this conclusion becomes

incorrect at ultrarelativistic velocities, for reasons related to the first question raised above.

Enhanced string production. The formula (1.3) has a very interesting consequence.

Because the density of open string modes grows exponentially with
√
j, when the scattering

is ultra-relativistic (χ ∼ ln γ � 1) there is an exponentially large amount of open string

production.1 For scattering at the moderately relativistic regime χ ∼ 1, the production of

open strings occurs primarily in the lowest few modes.

The energy to produce strings comes from the brane kinetic energy. Since the number of

produced strings can be very large, in the ultrarelativistic regime this can cause the branes

to stop very suddenly. In order to calculate this stopping distance, one needs the number

density of produced strings and the energy per string. The enhancement in the production

rate (1.3) relative to (1.2) is an intrinsically stringy phenomenon that in string field theory

manifests itself in a modification of m2
0, but not of the energy in a long stretched string ∼ vt

(so that contrary to the proposal of [5], the force the stretched strings exert on the branes

at large separations is not velocity-dependent). We investigate this by direct calculation

of the classical string energy, by Euclidean instanton methods, and from the equations of

motion of the open string field theory describing charged open strings in a background

electric field. With this formula in hand we compute the stopping distance, and confirm

that the qualitative conclusion of [5] is indeed correct — the stopping distance in ultra-

relativistic brane-brane scattering decreases with increasing brane velocity. Interestingly,

for brane-antibrane scattering and for p-brane-p-brane scattering with p ≤ 4 the behavior is

more complex: the stopping distance increases with velocity in the non-relativistic regime,

and then turns over and decreases at higher velocities (figure 4, figure 5).

This dynamics is of particular interest in brane inflation models. For instance, in un-

winding inflation [8], string production alters the classical trajectory of the inflaton (which

is the distance between two branes moving around a compact space and repeatedly passing

close to each other) by providing an additional force. It also provides a source for inflaton

fluctuations, since the production of a string is a local process. Perhaps most importantly,

brane-antibrane annihilation ends inflation and the resulting radiation reheats the universe.

1In this regime at finite gs there can be a large amount of closed string Bremsstrahlung [7] which may

dominate the open string production, and one must be careful that the force exerted by this radiation does

not substantially alter the velocities of the branes and invalidate the constant-v approximation used to

derive these results.
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The phenomenon of enhanced massive mode string production also has a fundamental

implication for brane world-volume electric fields. Branes in relative motion are T-dual

to branes with a nonzero electric field, and strings stretched between the moving branes

map to strings with a non-zero net charge under the dual field. The statement that neither

brane’s velocity can exceed the speed of light translates into the existence of a maximum

value for the electric field, Ecrit = 1/(2πα′|max ei|), where ei are the charges at the ends

of the string. In this electric frame, charged open strings are produced on the branes,

in the string theoretic analogue of Schwinger’s classic result [9] for electron-positron pair

production in an electric field [10]. The key difference with naive field theory is again the

factor of χ in (1.3), together with the exponentially growing density of states. In standard

field theories like QED, super-Schwinger electric fields E > m2/e are possible and physical,

and the rate of discharge due to charged particle production is finite (for example, an E > 0

initial state is perfectly well-behaved in the 1+1 dimensional massless Schwinger model).

But for the reasons described just above in the context of brane scattering, the closer the

field comes to the critical value, the less time it takes to discharge it to zero, consistent

with the hypothesis that (1.3) prevents E from exceeding Ecrit even temporarily.

Organization. The paper is organized as follows. In section 2 we begin by expanding

the imaginary part of the annulus diagram in an appropriate limit, noting the differences

between brane-brane and brane-antibrane, and between brane scattering and its T-dual —

charged strings in a worldvolume electric field. In section 2.1 we review the relation be-

tween the imaginary part of the vacuum loop diagram and the number density of produced

particles in field theory, and apply the results to string theory. In section 2.2 and section 2.3

we derive the stringy e−m
2/χ dependence in three different ways: from the annulus, from a

string instanton, and using the equations of motion of string field theory in a background

electric field. In section 3 we consider the dynamics of brane-brane and brane-antibrane

scattering. Section 3.1 computes the “stopping length” — the distance the branes recede

before the energy in stretched strings equals their initial kinetic energy — while section 3.2

computes the probability for brane-antibrane annihilation. In section 4 we discuss the ap-

plication of our results to unwinding inflation, and then conclude in section 5 with a list

of open questions.

2 The annulus diagram

Consider two parallel Dirichlet p-branes moving with constant relative velocity ~v in flat

spacetime (figure 2). The branes approach each other until they reach some minimal

distance b, and then recede. Since D-branes have a mass that scales as ∼ 1/gs, in the limit

gs → 0 any acceleration due to string production or radiation should be small and the

approximation of constant v valid, at least for short time-scales.

T-duality in the v̂ direction maps this scenario to a pair of p + 1 branes a distance

b apart that are extended in the v̂ direction with a constant world-volume electric field

pointing in that direction. The electric field maps to the velocity via

~v0 + ~vπ ↔ 2πα′(eπ − e0) ~E.
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The notation here refers to a string parametrized by σ ∈ (0, π), so that ~v0(π) (correspond-

ingly, e0(π)) are the velocity (respectively, charge) at the boundaries σ = 0(π) [3]. The

relative velocity between the branes ~v = ~v0 − ~vπ, and we can also choose a frame in which

all velocities are parallel and transverse to the brane worldvolume. Again, in the limit

gs → 0 the discharge of the electric field by charged string production will be slow, and the

approximation of constant ~E should be valid.

The imaginary part of the annulus amplitude is related to the probability of producing

string pairs that stretch between the branes (the real part, which we will not be interested

in, computes the force between the branes). For the case of two parallel p-branes — either

charged strings in a world-volume electric field or brane scattering — the imaginary part

of the annulus amplitude is [3, 10, 11]:

Im[A]=
C

4

(
L

2π

)λ
χλ/2

∞∑
r=1

1

r(λ+2)/2
exp

(
−rπm2

0

χ

)
2

{
ZF

(
i
r

χ

)
−(−1)rZB

(
i
r

χ

)}
(2.1)

where we use units in which α′ = 1/2 and the string tension T0 = 1/(2πα′) = 1/π,

m0 = T0b = b/π is the string mass corresponding to the minimal distance between the

branes b, L is the side length of the box in which we quantize momenta (i.e. Lp is the

volume of the brane), and ZF (B) is the fermion (boson) string partition function. Lastly,

C =

{
TL|E(e0+eπ)|

2π Electric

1 Scattering
λ =

{
p− 1 Electric

p Scattering

χ =

{∣∣ 1
π

(
tanh−1 (πe0E) + tanh−1 (πeπE)

)∣∣ Electric∣∣ 1
π

(
tanh−1 (vπ)− tanh−1 (v0)

)∣∣ Scattering

(2.2)

where T is a time interval. Due to supersymmetry, ZF (i rχ) = ZB(i rχ) = 1
2Θ2(i rχ)4η(i rχ)−12,

where Θ and η are the theta function and Dedekind η functions respectively (we use the

conventions defined in [12]). The factor of 2 multiplying the curly braces in (2.1) arises

because one can interchange the ends of the string.

It is important to emphasize that this result is exact in α′ and m2
0/χ, so long as ~v,E is

constant. (There are of course corrections at higher order in gs and from terms proportional

to derivatives of ~v,E.)

The factor of the time-interval T arises in the electric case because the production of

charged states is a continuous process that occurs at a constant rate, at least so long as the

electric field remains constant and non-zero. By contrast in brane scattering strings are

produced mostly during the interval when the branes are close together and the string mass

is near its minimum, and the total number produced (in a single scattering event) is finite.2

2Given this, one might wonder how the two results can be T-dual. To see the answer, note that (2.1)

is the result for a single brane-brane scattering event in non-compact space. To perform a T-duality the

v̂ direction should instead be a circle, say of circumference L. Then in a time T , T |v0 − vπ|/L scattering

events will occur. T-dualizing this factor and equating |v0−vπ| with π|E(e0+eπ)|, one finds T |v0−vπ|/L↔
TL′E(e0 + eπ)/(2π) = C.
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Expanding the partition functions in exp (−2πr/χ)� 1, we can re-write eq. (2.1) as:

Im[A] =
C

4

(
L

2π

)λ
χλ/2

∞∑
r=1,3,5

1

r(λ+2)/2
exp

(
−rπm2

0

χ

)
×
{

32 + 512 exp

(
−2πr

χ

)
+ 4608 exp

(
−4πr

χ

)
+ · · ·

}
.

(2.3)

One can interpret (2.3) by looking at its field theoretic counterpart. Schwinger’s classic

result for the imaginary part of the vacuum amplitude for a charged particle in a back-

ground, constant electric field E in d spacetime dimensions is:

Im[Afield theory] =
D

4
T

(
L

2π

)d−1

(eE)
d
2

∞∑
r=1

(−1)(r+1)(2S+1)

rd/2
exp

(
−rπm2

eE

)
, (2.4)

where S is the spin of the produced particle, e,m its charge, mass, D the number of degrees

of freedom, and T is again a time interval. To compare this to string theory, set p = d− 1,

consider the weak field limit χ ≈ eE, and note that the quantity in curly braces in (2.3)

can be re-written as

∞∑
r=1,2,3,4,···

{
16(−1)r+1 + 16 + 256(−1)r+1 exp

(
−2πr

χ

)
+ 256 exp

(
−2πr

χ

)
+ · · ·

}
.

The integers are the degeneracies of open string states stretched between two D-branes, with

the appropriate factors of (−1)r+1 and e−rm
2
j/χ corresponding to their spin and mass at level

j. Thus, the only apparent difference between Schwinger’s result in field theory and the

string theory annulus amplitude is at strong fields where πχ ∼ tanh−1 eE differs from eE.

In the case of a parallel brane-antibrane pair, supersymmetry is broken and the parti-

tion functions are altered in the simple way described in [8], resulting in:

Im[A]=−C
4

(
L

2π

)λ
χλ/2

∞∑
r=1

1

r(λ+2)/2
exp

(
−rπm2

0

χ

)

× η
(
i
r

χ

)−12
{

(−1 + (−1)r)Θ3

(
i
r

χ

)4

+ (1 + (−1)r)Θ4

(
i
r

χ

)4
}

=
C

4

(
L

2π

)λ
χλ/2

∞∑
r=1

1

r(λ+2)/2
exp

(
−rπm2

0

χ

)
×
{

2(−1)r+1exp

(
πr

χ

)
+16+72(−1)r+1exp

(
−πr
χ

)
+256 exp

(
−2πr

χ

)
+· · ·

}
.

(2.5)

Again, this takes the form of a sum over the string states, with the integer coefficients

being the multiplicities of the stretched open string states. The first term corresponds to

the tachyon (a complex boson, hence the factor of 2(−1)r+1), the next term are the 16

massless fermions, etc.
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2.1 The rate of open string production

The rate of string or particle production is determined by the imaginary part of the effective

action (2.3) or (2.5), but the precise relation has sometimes been misunderstood in the

literature (both in string and field theory). In field theory, the number density of produced

pairs of particles is given by the first term in the sum over r, not the entire sum (a very

clear discussion in the context of the Schwinger effect can be found in [13]). This difference

between the sum and the first term is crucial for tachyonic or massless fields, where the

terms in the sum are unsuppressed or exponentially increasing with increasing r. Before

considering string production, we review these facts for a field with a time-dependent mass.

Recent work that considered related issues in string theory is [14].

Consider a free field that satisfies the time-dependent equation of motion

�ψ +m(t)2ψ = 0, m(t)2 = m2
0 +A2t2 , (2.6)

where m0 and A are constants. The imaginary part of the effective action in d space-time

dimensions for D bosonic or fermionic degrees of freedom is (cf. appendix A)

− 2Im[Afield theory] = −D
2

(
L

2π

)d−1

A
d−1
2

∞∑
r=1

(−1)(r+1)(2S+1)

r(d+1)/2
exp

(
−rπm2

0

A

)
= ln(Pvac),

(2.7)

where S = 0, 1/2 for bosons, fermions. The last equality follows because the norm-

square of the vacuum-to-vacuum transition amplitude is the vacuum persistence probability

Pvac (the probability of producing zero particles after infinite time, given that the initial

state was the vacuum).

For a Poisson process, the probability of zero events is e−〈N〉. If pair production were

a Poisson process (i.e. if each pair production event was independent of any others), one

would have 〈npair〉 = 〈n〉/2 = − ln(Pvac) = 2Im[A]. However, pair production cannot be a

Poisson process. This is most obvious for a fermionic field, where the statistics prohibits

the production of more than one pair in the same state. In fact in the model (2.6) we can

explicitly compute both Pvac and 〈n〉 (see appendix A). As we will now show, the result is

very simple: for both bosons and fermions 〈n〉/2 = 〈npair〉 is equal to the first term in the

sum over r in (2.7).

Fermions. Due to Fermi statistics, for each wavenumber ~k we can either produce zero

or one pair of particles with zero total momentum. The expected number of particles with

wave number ~k and spin λ is:

〈n~k,λ〉 = 0× P0(~k) + 1× P0(~k)ωk, (2.8)

where P0(~k) is the probability of producing zero particles with wavenumber ~k and spin λ,

and ωk ≡ P1(~k)/P0(~k), so that P0(~k) + P0(~k)ωk = 1. Therefore

P0(~k) =
1

1 + ωk
= 1− 〈n~k,λ〉 = 1− e−π(k2+m2

0)/A , (2.9)

– 8 –



J
H
E
P
0
1
(
2
0
1
5
)
0
5
0

where in the last equality we have used (A.8) for 〈n~k〉, which we compute using standard

Bogolyubov methods in appendix A.

The overall number of particles in volume Ld−1 is therefore

〈n〉 =

(
L

2π

)d−1∑
λ

∫
dd−1k e−π(k2+m2

0)/A = D

(
L

2π

)d−1

A(d−1)/2 exp

(
−πm2

0

A

)
, (2.10)

which is twice the first term in the sum for 2Im[A] (2.7). To check the consistency of this

result with (2.7), note that the vacuum persistence probability Pvac is the probability of

producing zero pairs of any wavenumber ~k and any spin λ. Therefore:

ln(Pvac) =
1

2
ln
∏
~k,λ

P0(~k) =
D

2

(
L

2π

)d−1 ∫
dd−1k ln(P0(k))

= −D
2

(
L

2π

)d−1 2π
d−1
2

Γ(d−1
2 )

∫
dk kd−2

∞∑
r=1

1

r
exp

(
−rπ(k2 +m2

0)/A
)

= −D
2

(
L

2π

)d−1

A
d−1
2

∞∑
r=1

1

r(d+1)/2
exp

(
−πrm2

0

A

)
,

(2.11)

in agreement with (2.7). The factor of 1/2 in the first equality arises from momentum

conservation — the number of produced particles of momentum ~k equals the number with

momentum −~k, and hence the product over all ~k is a double counting.

Bosons. The case of bosonic modes is slightly more complicated, since Bose-Einstein

statistics allow for multiple pairs to be produced — but the statistics are still not classical,

the process is not Poisson, and the expected number of pairs again turns out to be simply

the first term in the sum in (2.7). It turns out (see appendix A) that

Pj(~k)

Pj−1(~k)
= ωk, (2.12)

independent of j. Thus we can write the expected number of particles with wavenumber
~k as:

〈n~k,λ〉 = 0× P0(~k) + 1× P0(~k)ωk + 2× P0(~k)ω2
k + 3× P0(~k)ω3

k + . . .

=
P0(~k)ωk
(1− ωk)2

.
(2.13)

The total probability sums to one:

1 = P0(~k)(1 + ωk + ω2
k + ω3

k + . . . ) (2.14)

and therefore,

P0(~k) = 1− ωk =
1

1 + 〈n~k,λ〉
. (2.15)
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Again, we can verify the statement that 〈n〉/2 is simply the first term in (2.7) by using the

above relations to calculate the vacuum persistence probability:

ln(Pvac) = −D
2

(
L

2π

)d−1 ∫
dd−1k ln(1 + 〈nk,λ〉)

= −D
2

(
L

2π

)d−1 2π
d−1
2

Γ(d−1
2 )

∫
dk kd−2

∞∑
r=1

(−1)r+1

r
exp

(
−rπ(k2 +m2

0)/A
)

= −D
2

(
L

2π

)d−1

A
d−1
2

∞∑
r=1

(−1)r+1

r(d+1)/2
exp

(
−πrm2

0

A

)
.

(2.16)

String theory. The imaginary part of the annulus amplitude computes Pvac in string

theory. Because it follows from the quantum statistics in free field theory, the analysis

above should apply to the string modes at weak coupling. Therefore we conclude that the

expected number density of produced strings is simply two times the first term in the sum

over r in (2.3) for the brane-brane case and in (2.5) for the brane-antibrane case, i.e.:

〈n〉DD =

(
1

2π

)p
χp/2 exp

(
−b2

πχ

)
×
{

32 + 512 exp

(
−2π

χ

)
+ 4608 exp

(
−4π

χ

)
+ · · ·

}
〈n〉DD̄ =

(
1

2π

)p
χp/2 exp

(
−b2

πχ

)
×
{

2 exp

(
π

χ

)
+ 16 + 72 exp

(
−π
χ

)
+ 256 exp

(
−2π

χ

)
+ · · ·

}
,

(2.17)

where for future convenience we have specialized to the scattering scenario. In (2.17), each

term appears to correspond to the expectation value of the number of strings produced in

the corresponding mode. For instance, in the scattering of two p-branes the number density

after infinite time of the lightest stretched strings (the modes that would be massless for

coincident branes, of which there are 32) is 32
(

1
2π

)p
χp/2 exp

(
−b2
πχ

)
.

In principle, one could compute Pvac and the string number density directly using open

string field theory. As we will see in section 2.3, at least for the lowest mode the string

field theory result agrees with (2.17).

2.2 Enhanced production rate

In this section we explore the origin of the factor of πχ =
(
tanh−1 (πe0E) + tanh−1 (πeπE)

)
(rather than (e0 + eπ)E = eE) that appears in the exponentials in (2.17):

Im[Aannulus] ∝ exp

(
−rπm2

0

χ

)
versus Im[ASchwinger] ∝ exp

(
−rπm2

0

eE

)
. (2.18)

We begin by re-deriving the annulus result in the electric case using Euclidean instanton

methods. A similar analysis can be found in [15]. Before considering strings, we review

– 10 –



J
H
E
P
0
1
(
2
0
1
5
)
0
5
0

a simple instanton derivation of the Schwinger rate for charged particle production. The

action for a relativistic charged particle is

S =

∫
dτ

{
− 1

2η
∂τX

µ∂τXµ +
1

2
m2η + eAµ∂τX

µ

}
. (2.19)

In Euclidean signature τ → iτE , X0 → iXd, A0 → Ad and Aj → iAj . The action becomes:

SE =

∫
dτE

{
1

2η
δij∂τEX

i∂τEX
j +

1

2
m2η + eAi∂τEX

i

}
. (2.20)

The equations of motion are:

m∂2
τE
Xi − eFij∂τEX

j = 0

η = m−1
√
∂τEX

i∂τEXi

(2.21)

For a constant electric field in the X1 direction, the non-trivial equations are:

∂2
τE
Xd = R−1∂τEX

1

∂2
τE
X1 = −R−1∂τEX

d,
(2.22)

where R−1 ≡ eEη. The solution is a circle in the Xd −X1 plane:

Xd = R sin(τE/R)

X1 = R cos(τE/R)

η = m−1.

(2.23)

Plugging this back into the action gives

SE = 2πRm− eEπR2 = π
m2

eE
, (2.24)

which reproduces the leading exponential in Schwinger’s result (2.4). The term 2πRm

in (2.24) is the mass times the length of the worldline, while eEπR2 is the field times the

charge times the area enclosed by the worldline of the charge.

The solution can be analytically continued to describe a pair of particles that are at

rest at t = 0 and separated by a distance 2R in the direction of the field, and then undergo

constant proper acceleration. The separation distance R = m/eE is a consequence of

conservation of energy, since the electrostatic energy of the charged pair is −eE ·2R = −2m.

Now consider an open string with net charge e = e0 + eπ 6= 0. For our purposes it is

convenient to consider open strings that stretch between two separated branes a distance b

apart. With zero electric field the energy of such a classical, non-vibrating string is simply

m = b/π (in units where the string tension is T0 = 1/π). Hence in a non-zero electric

field, Schwinger’s result leads one to expect the rate of string pair production to scale as

e−b
2/(πeE), rather than e−b

2/πχ as in (2.17).

However, as we will see just below, from the Euclidian point of view the rate for

producing a string pair is enhanced due to the fact that the bulk of the string can re-arrange
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itself. Instead of all being concentrated on the circle of radius R where the charged endpoint

is, the bulk of the string “dangles” down to smaller radius where its action cost is lower.

From eq. (B.1), the Euclidean action for a charged string in conformal gauge is

SE =

∫
dτE

∫ π

0
dσ

{
1

2π

[
ẊiẊi +X ′iX ′i

]
− E

2
[e0δD(σ) + eπδD(σ − π)] (ẊdX1 − Ẋ1Xd)

}
, (2.25)

where we choose the gauge Aµ = −1
2F

µ
νXν , with the electric field in the X1-direction.

For a string stretching between branes separated by a distance b in the X2 direction,

the solution to the equations of motion that follow from this action is (see appendix B):

Xd = R(σ) sinχτE , X
1 = R(σ) cosχτE , X

2 =
b

π
σ , (2.26)

with the other coordinates constant. Here R(σ) = b
πχ cosh(χ0 − χσ), where χ0 =

tanh−1(e0Eπ).

The Euclidean action on this solution is

SE =

∫ π

0
dσ 2R(σ)

√
R′2(σ) + b2/π2 − Eπ(e0R(0)2 + eπR(π)2) =

b2

πχ
, (2.27)

which correctly reproduces the exponent of the annulus diagram. The first term is the area

of the worldsheet times the tension, while the second is the field times the charge times

the area enclosed by the worldlines of the charged ends of the string.

This is closely analogous to the case of the charged point particle. For simplicity

consider a string with one neutral end (e0 = 0, for instance). Then the solution (2.26)

is an annulus in the Xd − X1 plane, with the worldline of the charged end a circle at

the outer radius R(π) = b cosh(πχ)/πχ and the neutral end at the inner radius R(0) =

b/πχ (figure 3). Applying the formula R = m/eE, the radius of the charged end would

correspond to a mass eER = b sinh(πχ)/π2χ. In fact this is the total mass of the (bulk

of) the string, as can be seen from (B.13).3 Hence, the contribution to the action from the

charged end is identical to that of a charged particle with charge e moving at the radius

one would expect if it had mass b sinh(πχ)/π2χ.

However, the crucial difference is that the contribution to the action from the bulk of

the string is modified relative to the particle case. Each infinitesimal segment of the string

with mass δm contributes to the action like a particle with that mass: namely it adds

δS = 2πR(σ)δm, where R(σ) is the radius of the circle described by that piece of string.

Because R(σ) ≤ R(π), the bulk of the string contributes less to the action than the charged

end does, enhancing the production rate and reproducing the exponent (2.18). The moral

is that strings are easier to produce than particles, because they have internal degrees of

freedom and can arrange themselves to lower the action cost for pair production.

3That this is larger than b/π can be understood from the fact that the string curves, rather than

stretching straight between the branes. The force from the electric field requires the charged end of the string

to connect to its brane at an angle that depends on the charge times the field, so the string cannot be straight.
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Figure 3. String instanton computing the rate for charged string pair production in a brane

worldvolume electric field. Cutting the diagram along the red dashed lines reveals the (oppositely

oriented) string pair.

The analytic continuation of (2.26) τE → −iτ,Xd → −iX0 describes a pair of oppo-

sitely charged strings at rest at X0 = τ = 0 that then accelerate in opposite directions.

Using the results of appendix B.1, one can check that both the nucleation and subsequent

motion of the pair conserves energy.

2.3 Open string field theory

The equations of motion for charged string modes in background fields can be found in [16].

The physical state conditions for the string state |φ〉 can be expressed in terms of the

Virasoro generators as

(Lj − δ0j)|φ〉 = 0. (2.28)

Focusing on the tachyon of the bosonic string as an example, the only non-trivial

equation is j = 0 in (2.28), since the remaining ones are trivially satisfied.

Expanded in terms of creation and annihilation operators, L0 is

L0 = −1

2
D2 +

1

4
TrG2 +

∞∑
m=1

(m+ iG)µνa
†µ
m a

ν
m, (2.29)

where

G =
1

π

[
tanh−1(πe0F ) + tanh−1(πeπF )

]
(2.30)

Dµ =

√
G

eF

µ

ν
Dν (2.31)

Fµν = ∂µAν − ∂νAµ, (2.32)

and e = |e0 + eπ|. For the tachyon, the last term in 2.29 vanishes.

Consider an electric field E in the X1 direction, and choose the gauge A1 = −Et.
With χ = 1

π [tanh−1(πeπE) + tanh−1(πe0E)] as usual,

G = χ

(
0 −1

−1 0

)
, (2.33)

in the (X0, X1) subspace, and is zero elsewhere.
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Then (2.28) gives{
−∂2

0 − 4ieEX0∂1 +∇2 − (eEX0)2 +
eE

χ

[
−χ2 + 2

]}
|T 〉 = 0. (2.34)

The “2” in (2.34) is the tachyon mass in bosonic string theory in our units, but here it is

multiplied by eE/χ, evidently due to the effect of the electric field. The χ2 arises from

TrG2 in (2.28), and cancels for the superstring due to worldsheet supersymmetry. As usual

in the calculation of the (electric) Schwinger effect, the term involving ∂1 can be removed

by a k1-dependent time shift once one goes to momentum space; after integrating over

momenta this gives rise to the TeE = T |E(e0 + eπ)| prefactor in (2.1).

If we consider two branes separated by an impact parameter b in the X2 direction,

D2 is shifted:{
−∂2

0 − 4ieEX0∂1 +∇2 − (eEX0)2 +
eE

χ

[
−χ2 + 2− b2

π2

]}
|T 〉 = 0 . (2.35)

Referring to (2.6) and (2.7), (2.34) correctly reproduces the exponent in the annulus

amplitude corresponding to the bosonic string tachyon, which is e2π/χ−χπ [10], and (2.35)

adds e−b
2/πχ as expected.

Note that (2.34) differs from the proposal of [5]. In particular, the energy of the string

at late times goes as eEX0, or vX0/π for brane scattering. In the latter case, at late times

the string is very long and straight and the motion of its endpoints is almost parallel to its

extent, even for b 6= 0 (appendix C). Since the tension and mass density of a relativistic

string depend only on its transverse velocity, the energy of such a string should be given

by its length at leading order. In the T-dual electric frame the string has a non-zero net

charge, and its endpoints undergo constant proper acceleration. Therefore the work done

by the field on the string is eE∆X1 ≈ eEX0, in agreement with (2.34) (see appendix B.1).

3 Brane scattering

Once pairs of open strings are produced they create a force that binds the branes together.

This is the stringy version of the moduli trapping mechanism of [17], and after the scattering

it eventually brings the branes to a stop, or potentially into some sort of orbit in the case

b 6= 0 (in the electric frame, this deceleration corresponds to the decrease of the electric

field as a result of charged pair production).

The scattering dynamics is quite complex in general, so in this section we will focus on

a simple proxy — the stopping distance l∗ as a function of velocity. That is, the distance

the branes move apart in the center of mass frame after a b = 0 collision before the energy

in stretched strings equals the brane kinetic energy. (In the electric frame this corresponds

to the time it takes to discharge the field.) As we will see, a surprising feature of brane

scattering is that at least for sufficiently high Lorentz factor, the stopping distance decreases

as a function of increasing velocity (as previously noted in [5]).

One must be cautious in pushing our method of analysis too far. The annulus result

allows us to infer the number density of strings a long time after the scattering, in the
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approximation of constant brane velocity. This means that significant changes in the

brane velocity as a result of string production will invalidate the analysis. Furthermore,

string production is a quantum process, and not all pairs of strings are produced at the

moment of closest approach (or indeed, at any definite time). Hence one cannot be sure

precisely when or at what brane separation to begin including the force due to produced

strings. Lastly, the energy in strings with moving end points is subtle, as we have seen in

the previous section in the electric case.

Fortunately, all of these issues can be dealt with as long as we remain in a certain

parametric regime. Strings are produced when their masses are changing most rapidly,

namely when the branes are relatively close together. Furthermore, as we establish

carefully in appendix C the energy in a very long string with endpoints moving in the

direction nearly parallel to its length is at leading order simply equal to its length (divided

by π in our units). This is the case for the stretched strings at late times, and so the

force all strings exert at late times is simply 1/π — independent of the brane velocity,

and independent of the string mode.4 In other words any uncertainty in the string force

arises when the branes are relatively close together, and in this regime we also do not

know precisely when the strings are produced.

3.1 Stopping distance

We can trust the number densities (2.17) well after the collision when the branes are far

apart. At sufficiently large separations, l, the energy per string is close to l/π. There-

fore, in this limit the energy density in strings produced during brane-brane scattering is

approximately

ρs =
l

π

(
1

2π

)p
χp/2

{
32 + 512 exp

(
−2π

χ

)
+ 4608 exp

(
−4π

χ

)
+ · · ·

}
(3.1)

where we have used equation (2.17). The corresponding formula for brane-antibrane scat-

tering uses the second line of (2.17) in the obvious way.

Non- and moderately relativistic velocities. In the non-relativistic regime, open

string production is exponentially suppressed for all massive modes. However if b < 1 the

lightest modes (massless and tachyonic) are still produced copiously — and at sufficiently

low velocities in brane-antibrane scattering the tachyon can condense and the branes an-

nihilate into closed strings (cf. section 3.2).

For γ ∼ O(1) no simple analytic approximation to (3.1) is available, but only the

first few terms in the sum in (3.1) are relevant so there is no difficulty in finding the

stopping distance numerically. The results are plotted in figure 4 and figure 5. For brane-

brane scattering with p > 4 and for all p at γv & 10, the stopping distance decreases

with increasing velocity. This counter-intuitive behavior results from the fact that at

higher velocities, more and more massive modes are produced (since the suppression e−m
2/χ

becomes less relevant at larger χ), and the rapidly growing degeneracies mean that this

effect is so strong it more than compensates for the additional brane momentum.

4Our analysis differs from [5] on this point.
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Figure 4. The stopping distance l∗ in units α′ = 1/2 in the center of mass frame for the scattering

of two 4-branes, or a 4-brane anti-4-brane pair, as a function of the Lorentz factor γ times the speed

v of either brane. The lower two curves are computed by equating (3.1) to the initial brane kinetic

energy and should be accurate for all γv at sufficiently small gs; the top curve is (3.7), accurate for

large γ. The stopping distance scales linearly with the D-brane tension ∼ g−1s .

At sufficiently small values of γv in brane-brane scattering only the massless modes

are relevant, so from (3.1), one has ρs ∼ χp/2 ∼ vp/2. This combined with the fact that

kinetic energy scales as v2 for small v explains the p-dependent behavior plotted in figure 5.

The same qualitative behavior occurs for brane-antibrane scattering for any p. In that

case at low velocities the tachyonic contribution to the string energy density ∼ χp/2e+π/χ

dominates, which is a rapidly decreasing function of v in the small v regime.

The ultra-relativistic limit. For either branes or a brane-antibrane pair, the density

of states ν(j) at large j can be approximated by

ν(j) ≈ j−11/4e2π
√
j . (3.2)

Using this expression, (3.1) (and its equivalent for brane-antibrane) can be approximated by

ρs ≈
l

π

(
1

2π

)p
χp/2

∫ ∞
dj j−11/4 exp

(
2π
√
j − πj

χ

)
. (3.3)

The exponential increase in the multiplicity of states combines with the exponential

suppression at large j so that the integral is peaked at jpeak ≈ χ2. For large χ the integral

can be approximated by:∫ ∞
dj j−11/4 exp

(
2π
√
j − πj

χ

)
≈ eπχ

χ4
. (3.4)

– 16 –



J
H
E
P
0
1
(
2
0
1
5
)
0
5
0

p = 3

p = 4

p = 5

0 5 10 15 20 25 30
50

100

150

200

250

300

350

Γ v

l*´Hgs�10
-2L

Figure 5. The stopping distance l∗ in units α′ = 1/2 in the center of mass frame for the scattering

of two p-branes, for p = 3, 4, 5, as a function of the Lorentz factor γ times the speed v of either

brane, computed by equating (3.1) to the initial brane kinetic energy. The stopping distance scales

linearly with the D-brane tension ∼ g−1s .

Using this approximation to rewrite (3.1) we have

ρs ≈
l

π

(
1

2π

)p
χp/2−4eπχ . (3.5)

The kinetic energy density of the brane pair is 2(γ − 1) times the brane tension τp

ρDp = 2(γ − 1)× τp = 2(γ − 1)× 2(p+1)/2

gs(2π)p
≈ 2(p+1)/2

gs(2π)p
eπχ/2 . (3.6)

Setting ρDp = ρs(l∗) one finds the stopping length

l∗ ≈ 2
p+1
2 π

χ4−p/2e−πχ/2

gs
≈ 2

p−1
2 π

χ4−p/2

γgs
. (3.7)

For χ � 1 (where the approximations used to derive (3.7) are valid) this is a decreasing

function of χ. In other words, the branes exhibit the counterintuitive behavior that the

stopping distance decreases with increasing initial velocity [5].

3.2 Brane-antibrane annihilation

Despite the fact that there is a tachyon in the open string spectrum when the brane and

antibrane are within a string length, brane-antibrane scattering at small impact parameter

will not necessarily lead to annihilation. The reason is that at high velocity the branes spend

very little time within a string length of one another, so that the tachyon has limited time

to condense [8, 18]. Nevertheless, the phenomenon described in section 3.1 will strongly
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bind the brane-antibrane pair at sufficiently relativistic velocities, stopping them rapidly

and presumably then allowing the tachyon to condense. By contrast at low velocities, the

tachyon has ample time to condense. For this reason we will find a range of velocities that

is bounded from both below and above where the brane-antibrane pair can pass through

or near each other without annihilating.

The decay of the tachyon in a brane-antibrane system is a nonperturbative process that

is not well-understood. However for our purposes, the relevant physics can be captured by

an effective action, and as we will see the details of the action are not very important for

what we want to establish. In the remainder of this section we will be concerned with the

non-relativistic limit, v ≈ πχ, γ ≈ 1.

One concrete model is the proposal of [19], valid for a static brane-antibrane system:

S = −8τp

∫
dtdpx

[
1

2
e−2|y|2 |∂µy|2 +

1

4
e−2|y|2

]
. (3.8)

Here y is the (dimensionless) complex tachyon field and τp is the D-brane tension. The

potential has a maximum at |y| = 0 and a minimum at |y| =∞, which actually corresponds

to a finite distance ∼ g−1/2
s in field space for the canonically normalized field. The energy

difference between the maximum and the minimum is twice the tension of the D-brane.

If we consider scattering branes with non-relativistic velocity v and impact parameter

b = 0, a simple proposal is to modify the potential (3.8) as follows:

S = −8τp

∫
dtdpx

[
1

2
e−2|y|2 |∂µy|2 + e−2|y|2

{
1

4
+

1

2

(
vt

π

)2

|y|2
}]

. (3.9)

For t = 0 this coincides with (3.8), but the second derivative at y = 0 is modified to coincide

with the time-dependent mass of the tachyon. The potential for the canonically normalized

field still has global minima at a finite distance ∼ g−1/2
s , with an energy difference 2τp from

y = 0, but now in addition has maxima at sufficiently early and late times, with a height

that grows with |t|. These represent the tunneling barriers for the tachyon to condense

when the branes are separated by more than a string length.

If we start at t→ −∞, the (vacuum state) wavefunction will be concentrated at y = 0.

Expanded around this point, the action is

S2 = −
∫
dtdpx

(
|∂µφ|2 + 2τp +

(
−1 +

(
vt

π

)2
)
|φ|2 +O(gs|φ|4)

)
, (3.10)

where φ ≡ (4τp)
1/2y is canonically normalized up to non-linear corrections. As promised,

the mass has the correct time dependence. The only significant input from (3.8) is the

generic feature that the first non-linear term is of order gs|φ|4 (and so non-linearities become

important when |φ| ∼ 1/
√
gs). It is in this sense that the details of the effective action for

the tachyon are not important for our analysis — we will only make use of the quadratic ac-

tion and measure the variance of the wavefunction against the scale of non-linearities 1/gs.

As time goes on, the field becomes lighter and lighter until, around t = 0, it becomes

tachyonic and can decay. Here by “decay” we mean that the field takes a value |φ|2 ∼ 1/gs
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where non-linearities become important. We would like to calculate the decay probability,

per unit volume, as a function of the velocity of the branes.

The quadratic theory (3.10) has the exact solution:

φ̂(x) =

∫
dpk

(2π)p
k
[
ei
~k·~xuk(t)â~k + e−i

~k·~xu∗k(t)b̂
†
~k

]
(3.11)

where we take into account that the field is complex. The mode functions satisfy

ük +
[
k2 − 1 + (vt/π)2

]
uk = 0 . (3.12)

The properly normalized solution which corresponds to the in vacuum at past infinity is

uk(t) = (2v/π)−1/4e
π2

8v
(1−k2)Dλ

(
(i− 1)t

√
v/π

)
(3.13)

where Dp(z) is a parabolic cylinder function and the index is λ = −1
2 + iπ (k2−1)

2v .

The two-point function in Fourier space is simply

〈φ̂~kφ̂
†
~k′
〉 = δp(~k + ~k′)|uk(t)|2 . (3.14)

As long as this is small compared to 1/gs we can trust the quadratic approximation, and

the wavefunction for the mode will be Gaussian with this variance. However, we are not

interested in the k-modes themselves. Rather, we want the probability that in some region

of spatial volume Rp the field reaches the non-linear regime and decays. To find this, we

smear the field and compute the 2-point function of the smeared field:

φR(x) =

∫
dpyWR(|x− y|)φ(y) =

∫
dpk

(2π)p
W̃ (kR)φ~k, (3.15)

where WR(x) is a filter function such as a Gaussian or a top-hat. The variance of φR is

〈|φR|2〉 ≡ σ2
R =

∫
dpk

(2π)p
W̃ 2(kR)|uk(t)|2 (3.16)

which is independent of x by translation invariance.

For a generic filter function, we can estimate this integral by replacing k → 1/R and

dividing by the volume factor:

σ2
R ≈

1

Rp
|u1/R|2 . (3.17)

The probability that a region of volume Rp decays is the probability that the field is above

a critical value, which we take to be the order of the maximum of the barrier in (3.9),

which is φ ≈ 1/
√
gs.

Eq. (3.17) is easy to evaluate numerically. For large negative times it is small, as

expected because there is no particle production then. At t ∼ 0 it begins to increase,

reaches a maximum at t ∼ π/v, and then oscillates with a decreasing envelope at large

positive time. The maximum variance is well approximated (for R� 1) by

σ2
R,max ≈ R−p exp(π2/v) (3.18)

where the approximation is good at small v.
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Therefore, conservatively using the maximum value of σ(t), the probability that a

region of size R decays is

PR ≈ erfc

[
1

σ
√

2gs

]
≈ exp

[
− 1

2gsσ2
R,max

]
≈ exp

[
−Rpe−π2/v

2gs

]
. (3.19)

The main feature of this formula is the dependence on gs, which shows that for fixed R, v

the probability goes exponentially to zero as gs → 0.

For the relativistic regime, so long as the stopping length l∗ computed in the previous

section exceeds the string length, the tachyon will not condense at least on the the first pass

(although the branes may be pulled back together and subsequently annihilate). Therefore

we have established what we set out to show — that the probability for annihilation can

be made small in the limit gs → 0. One sees that the annihilation probability is small so

long as v & π2/| ln gs| and γ . 1/gs (cf. (3.7)), or simply

π

| ln gs|
. χ .

2

π
| ln gs|. (3.20)

4 Annihilation and reheating in unwinding inflation

One motivation for this work is unwinding inflation, where slow-roll inflation occurs due

to the gradual unwinding of a higher-form electric flux. Here we will only comment briefly

on brane-antibrane annihilation and its relevance to reheating in this model. For brevity

we will not review the model now; the reader can refer to [20] for a brief, self-contained

description, and to [8] for more detail, including some comments on reheating and tachyon

condensation.

Unwinding inflation requires that a spherical brane repeatedly self-intersect without

immediately annihilating as it expands around a compact direction(s). Locally after a

few efolds of inflation, the brane’s radius is large and hence the self-intersections are well

approximated by a planar brane-antibrane collision. Since the de Sitter radius is much

larger than the string length, flat space should be a good approximation within a few

string times of the collision. Inflation ends and reheating occurs when the brane slows

down enough (which happens naturally as the flux is reduced) and self-annihilates.

There is however a crucial difference relative to a flat space collision, due to the

presence of a background flux. If the brane annihilates in a region where some flux

remains, this region will have a larger energy density than regions where the unwinding

process continues and the flux is completely discharged, or reduced to a lower level. Such

high-energy regions will collapse into small black holes unless they are either larger than

the Hubble length or so dense that they percolate.

This leaves two possibilities. One is that unwinding inflation will end when all the flux

has been discharged, with a few rare regions where an “undershoot” or “overshoot” led to

annihilation with some residual flux. In this case, these regions will look like primordial

black holes produced during reheating, and will evaporate in much less than the life of the

universe.
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The other possibility is that the branes will annihilate before all the flux has discharged

(or even after — “momentum” can carry the discharge process past zero in some cases).

In that scenario, one expects the regions with the smallest amount of flux remaining to

expand, since their energy density is lowest. To see what can happen, suppose pN+1 ≈ 1,

pN ≈ e−180, and all other pi = 0, where pN is the probability for an inflationary Hubble

region to annihilate and reheat with N units of flux remaining. Then in the ∼ e3×60 Hubble

volumes at the end of inflation that are visible today, nearly all will have N + 1 units of

flux, but it is likely that a single region will have N units of flux instead. In that case the

region with N units of flux will expand rapidly, much like in old inflation, and this will

almost certainly lead to a cosmology that is inconsistent with observation. On the other

hand, if pN � e−180 there are unlikely to be any such regions.

Now consider instead the case where pN+1 ∼ 1, pN ∼ e−135 =
(
e15 × e−60

)3 � e−180.

In this case, the characteristic separation between the rare regions with N units of flux

will be ∼ e−15 times the horizon scale today, in other words a few thousands of parsecs.

When these bubbles collide they will produce large primordial density fluctuations on that

scale. However, because the CMB can only probe roughly 8 efolds of scale starting from

the dipole, and other direct probes of primordial perturbations extend this by only a few

more efolds, such peaks in the primordial spectrum are very poorly constrained.

Hence, it seems that there would be an (easily) observable signature only if p0 is very

small and there exists an N such that

e−135 . pN . e
−180,

(where the numbers “135” and “180” are uncertain at O(1)). This interesting conclusion

will be investigated further in future work.

5 Conclusions

There are many open questions remaining to be investigated. We list a few below.

From our point of view (again motivated by unwinding inflation), one of the most

interesting is the question of what happens to a spherical D-brane in flat spacetime that

initially has a large radius. Such a brane will collapse to a point as a result of its tension.

An F-string at gs = 0 would simply re-expand (with reversed orientation), and continue

to oscillate indefinitely, reversing orientation each time. If the brane passes through itself

without annihilating in a similar way, it can “unwind” the field it is electrically coupled to

(cf. appendix A of [8]). But for a D-brane the situation is more complicated than for an

F-string even (or especially) at small gs. Will the brane self-annihilate on the first pass,

or will it simply produce some strings that have a small effect on its motion, as in the

planar case we have analyzed here?

In the relativistic limit, the energy in a classical stretched string at the moment of

closest approach of the branes is ∼ (b/χ)eπχ (cf. (C.7)). This is greater than b because

the transverse velocity of the string increases its effective mass density, and it is also larger

than the energy implied by the equations of motion of string field theory or equivalently by

the rate of production of string pairs, which is ∼ b
√
v/χ (cf. (2.35)). While this difference
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is irrelevant for the dynamics of brane scattering in the limit gs → 0, it is important if one

wants to accurately estimate the stopping length (or rate of discharge of the field) at finite

gs. While our analysis partially clarifies this issue, there is likely more to be learned from

investigating it.

Another issue concerns closed string radiation and the real part of the annulus diagram.

The analysis of [7] shows that the power in closed string Bremsstrahlung grows like a

high power of γ. Hence at fixed gs, the ultrarelativistic limit of brane scattering will be

dominated by closed string radiation rather than open string production. The interplay

between these two and the resulting dynamics remain to be investigated.

More generally, it would be very interesting to study brane scattering at high energies

near the black hole formation threshold, or compare it to studies of string brane scattering

such as [21].
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A Production of scalar particles

In this appendix, we compute the rate of production for scalar particles with a time-varying

mass

m2(t) = m2
0 +A2t2 . (A.1)

Expanding the scalar field in k-modes,

φ(x) =

∫
dd−1kei

~k.~xφk(t) =

∫
dd−1kei

~k.~x
(
uk(t)ak + u∗k(t)a

†
−k

)
, (A.2)

the Klein-Gordon equation reduces to:

ük + (m2
0 + k2 +A2t2)uk = 0. (A.3)

The most general solution for uk is:

uk = C1D−ν−1(z) + C2Dν(iz) (A.4)

Where Dν(z) is a parabolic cylinder function, ν = −1/2 + im2
k/(2A), z = (1 + i)

√
At, and

we have defined m2
k = m2

0 + k2. We now define two independent sets of mode functions:

uin
k =

e−πm
2
k/(8A)

(2A)1/4
Dν(iz)

uout
k =

e−πm
2
k/(8A)

(2A)1/4
D−ν−1(z),

(A.5)
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where uin
k (uout

k ) is chosen to have positive frequency in the asymptotic past (future), and

the constants C1,2 are chosen by enforcing canonical commutation relations, [φ, φ̇] = i.

From this we can find the Bogolubov coefficients

aout
~k

= αkk′a
in
~k′

+ βkk′a
in†
−~k′

, (A.6)

to be

αkk′ =

√
2π exp

(
iπA−πm2

k
4A

)
Γ(1/2− im2

k/(2A))
δkk′

βkk′ = exp

(
iπA− πm2

k

2A

)
δkk′ .

(A.7)

One can easily see that

〈in|nout
k |in〉 = 〈in|aout†

~k
aout
~k
|in〉 = |βk|2 = exp

(
−πm2

k

A

)
, (A.8)

meaning that the in-vacuum contains (on average) |βk|2 particles of the out k-mode. The

total number of particles is:

〈n〉 =

(
L

2π

)d−1 ∫
dd−1k〈nk〉 =

(
L

2π

)d−1

A(d−1)/2 exp

(
−πm2

0

A

)
(A.9)

In section 2.1 we derived the vacuum persistence probability from the number den-

sity (A.8). We will do so again here by a slightly different method. To begin, we need the

probability of producing n pairs with a wave number ±~k:

Pn(k) = |〈in|
(aout†
~k

aout†
−~k

)n

n!
|out〉|2. (A.10)

To express the in-vacuum in terms of the out-Hilbert space, note that the in-vacuum

for the momentum modes is Gaussian, and in a free theory can only evolve into another

Gaussian. The most general Gaussian is a squeezed coherent state, but a coherent state

would violate conservation of momentum. A careful calculation using (A.6) and (A.7)

yields the squeezed state

|in〉 = C0 exp

(∫
dd−1q

(2π)d−1

βq
2α∗q

aout†
~q aout†

−~q

)
|out〉. (A.11)

Plugging this in to (A.10) one finds,

Pn(k) = |C0,k|2 | (βk/α∗k)
n |2, (A.12)

and using,
∞∑
n=0

Pn(k) = |C0,k|2
1

1− | βkαk |
2

= 1, (A.13)
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we find

|C0,k|2 = P0(k) =
1

1 + |βk|2
=

1

1 + 〈nk〉
. (A.14)

The vacuum persistence probability is the probability that we never produce any par-

ticles of any wavenumber, i.e.:

Pvac =
∏
~k/Z2

P0(~k) = exp

[
1

2
Ld−1

∫
dd−1k

(2π)d−1
ln(P0(k))

]
, (A.15)

where the product is over half the momentum space because particles are always produced

in pairs with momentum ±~k. Substituting (A.14) into (A.15), one finds:

ln(Pvac) = −1

2

(
L

2π

)d−1 ∫
dd−1k ln(1 + 〈nk〉)

= −1

2

(
L

2π

)d−1 2π(d−1)/2

Γ
(
d−1

2

) ∫ dk kd−2
∞∑
n=1

(−1)n+1

n
exp

(
−nπ(k2 +m2

0)/A
)

= −1

2

(
L

2π

)d−1

A(d−1)/2
∞∑
n=1

(−1)n+1

n(d+1)/2
exp

(
−nπm2

0

A

)
,

(A.16)

which reproduces (2.7) as promised.

B Charged strings in a constant external electric field

Here we summarize some relevant results from [16] and calculate the energy of a charged

bosonic string in an electric field. The action of a charged string coupled to a U(1) field

Fµν = ∂µAν − ∂νAµ reads:

S =
1

2π

∫
dτdσ

(
ẊµẊµ −X ′µX ′µ

)
+

∫
dτdσ (e0δ(σ) + eπδ(σ − π))AµẊµ . (B.1)

The units are chosen such that the string tension is T = 1/π (α′ = 1/2) and e0,π are the

charges at the two endpoints of the string. The coupling to the field is a boundary term,

therefore the equations of motion are the ones for a free string

Ẍµ −X ′′µ = 0 , (B.2)

but with non-trivial boundary conditions

X ′µ = −πe0FµνẊ
ν (σ = 0) (B.3)

X ′µ = πeπFµνẊ
ν (σ = π) . (B.4)

The full solution of the equations above reads [16]:

Xµ(τ, σ) = xµ +

[
α0

(
e−G0

2
· e

G(τ+σ) −M+

G
+
eG0

2
· e

G(τ−σ) −M−
G

)]µ
+ oscillators

(B.5)
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where

G0,π = tanh−1 (πe0,πF ) and G =
1

π
(G0 +Gπ) (B.6)

and

M± =

√
G

(e0 + eπ)F
sech

(
Gπ −G0

2

)
e±πG/2 , (B.7)

and αµ0 = [G/(eF )]µνpν . The expression (B.5) has a smooth limit in the neutral string limit

eπ → −e0. For more details, we will refer the reader to [16]. In addition we need to impose

the constraints, which are those of the free theory:

(Ẋ ±X ′)2 = 0 . (B.8)

Consider a constant electric field E in the X1 direction and impose Dirichlet boundary

conditions in the X2 direction, so that the string is stretched between two D-branes sepa-

rated by b in the X2 direction. Without loss of generality we focus on a solution in which

the brane is at rest at τ = 0, which forces p1 = 0. The solution for the zero modes is then

X0 = x0 +
p0√

E(e0 + eπ)χ
cosh(χ0 − χσ) sinh(χτ)

X1 = x1 − p0

E(e0 + eπ)
+

p0√
E(e0 + eπ)χ

cosh(χ0 − χσ) cosh(χτ)

X2 = x2 +
b

π
σ

Xi = constant for i > 2,

(B.9)

where χ0 = tanh−1(πe0E). Enforcing the constraint (B.8) fixes p0 to:

p0 = ± b
π

√
E(e0 + eπ)

χ
. (B.10)

B.1 String energy

We want to compute the energy associated to a classical string in an electric field. To do so,

we calculate the Noether charges associated with translation symmetry in the action (B.1),

namely we will find the charges associated with the transformations Xµ → Xµ + εµ. The

conserved charge associated with translation of X0 is what we will call energy.

The free part of (B.1) is trivial and gives the expected contribution to the current

while the boundary terms add a non-standard contribution, giving

δS =

∫
dτdσ

{
1

π

(
Ẋµε̇µ −X ′µε′µ

)
− (e0δ(σ) + eπδ(σ − π))FµνX

ν ε̇µ
}
, (B.11)

where we have used the fact that Fµν is constant to integrate by parts. From this expression

we can read off the components of the conserved Noether currents:

(Pµτ , P
µ
σ ) =

(
1

π
Ẋµ − e0F

µ
νX

ν(σ = 0)− eπFµνXν(σ = π),
1

π
X ′µ

)
. (B.12)
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We will choose to calculate the energy by integrating on the fixedX0(τ, σ) slice, because

we want to identify the time dependence of the mass as seen by a space-time observer:

E=

∫
X0=const

(
dσP 0

τ + dτP 0
σ

)
=

∫ π

0
dσ

(
P 0
τ (X0, σ) +

∂τ(X0, σ)

∂σ
P 0
σ (X0, σ)

)

=

∫
dσ

 b2 cosh2(χ0−χσ)+ (πχX0)2

cosh2(χ0−χσ)

π2

√
b2 cosh2(χ0−χσ)+(πχX0)2

+
{
e0EX

1(X0, 0)+eπEX
1(X0, π)

}
=Ebulk + Eelectric

=
b

π

√
χ

E(e0 + eπ)
.

(B.13)

The energy splits into two terms, where the term in curly braces is readily interpretable as

the electric potential energy of the system. This allows us to identify the first term as the

energy of the bulk of the string. The time dependence cancels between the two terms so

that the total energy is constant.

In fact, the bulk energy Ebulk can also be computed by integrating an effective mass

density T0γT along the string:

Ebulk =

∫
dσT0γT , (B.14)

where γT is the Lorentz factor for the component of the velocity that is transverse to the

string, and T0 is the string tension (equal to 1/π in our units). This is the same expression

for the string energy that one would find in the E = 0 case [22], as we will see in appendix C

in the scattering frame.

C Energy conservation in brane scattering

Here we consider the energies of strings that are produced when branes scatter at constant

velocity. For concreteness, consider a string stretched between two parallell p−branes, one

at X2 = b and moving in the X1-direction with velocity v = tanh(πχ), and one which is at

rest at X2 = 0. (Note that there is no loss of generality here, because for pair of scattering

branes we can always boost to the frame where one is at rest.) One can find the classical

solution for such a string by T-dualizing (B.9):

(X0, X1, X2) =

(
b

πχ
sinh(χτ) cosh(χσ),

b

πχ
sinh(χτ) sinh(χσ),

b

π
σ

)
, (C.1)

or

X1 = X0 tanh(χσ) , v = ∂0X
1 = tanh(χσ) , γ = cosh(σχ) . (C.2)

We would like to understand the energy of the string, as well as the analog of the

electric potential energy: the work that the string does on the brane. The force that the

string endpoint exerts on the brane in its restframe is simply the usual string tension T0

(which in the rest of the paper we have set to 1/π). In the frame where the brane moves
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with velocity v, the X1-component of this force (the only component that does any work,

since the brane’s velocity is zero in the other directions) is:

F1 = T0
πχX0√

b2 cosh2(χσ) + (πχX0)2
= T0

πχX0√
b2γ2 + (πχX0)2

. (C.3)

Define γT as the Lorentz factor transverse to the string:

vT = v cos(θ) =
b tanhχσ√
b2 + χ2t2

cosh4(χσ)

γT =

1− b2 tanh2(χσ)

b2 + χ2t2

cosh4(χσ)

−1/2

=

√
b2 cosh4(χσ) + χ2t2

b2 cosh2(χσ) + χ2t2
.

(C.4)

Now, the work is simply:

W =

∫
dX1 F1(σ = π) =

∫ X0

0
dX0 tanh(πχ)F1(σ = π)

= T0

(
− b

πχ
sinh(πχ) +

tanh(πχ)

πχ

√
b2 cosh2(πχ) + (πχX0)2

) (C.5)

We have the work done on the brane, but in order to check energy conservation we

also need to consider the energy of the string itself. This is the integral of the effective

mass density along the length of the string:

Ebulk =

∫
dl T0γT =

∫
dσ

√
(∂σX1)2 +

(
b

π

)2

T0 γT

= T0
tanh(πχ)

πχ

√
b2 cosh2(πχ) + (πχX0)2.

(C.6)

It is important to note the asymptotic behavior of (C.6): at late times (or small impact

parameter) it is simply T0vX
0 = T0l.

The conserved energy of the system is:

Ebulk −W = T0
b

πχ
sinh(πχ). (C.7)

Energy is conserved, just as in the case of a constant electric field. Note that this constant

is arbitrary in both cases: in the case of the electric field it can be altered by changing

the zero-point of the electric potential, and in this case it can be altered by measuring the

work done on the brane starting from a different reference point.
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