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Marco Polo descrive un ponte, pietra per pietra.
“Ma qual è la pietra che sostiene il ponte?” chiede Kublai Kan.

“Il ponte non è sostenuto da questa o quella pietra,” risponde Marco,
“ma dalla linea dell’arco che esse formano.”

Kublai Kan rimane silenzioso, riflettendo. Poi soggiunge:
“Perché mi parli delle pietre? È solo dell’arco che m’importa.”

Polo risponde: “Senza pietre non c’è arco.”

Le città invisibili, Italo Calvino

Marco Polo describes a bridge, stone by stone.
“But which is the stone that supports the bridge?” Kublai Khan asks.

“The bridge is not supported by one stone or another,” Marco answers,
“but by the line of the arch that they form.”

Kublai Khan remains silent, reflecting. Then he adds:
“Why do you speak to me of the stones? It is only the arch that matters to me.”

Polo answers: “Without stones there is no arch.”

Invisible Cities, Italo Calvino
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Chapter 1

Introduction

Together with great achievements, general relativity and quantum field theory come
with unresolved problems. Among others, these include quantisation of gravity and
a feasible description of strongly-coupled gauge theories. Recent developments have
proved that string theory is a useful framework to investigate open issues in theoreti-
cal Physics. One sign of this success may be seen in the discovery of dualities, through
which we are able to relate seemingly different concepts. In the most celebrated “holo-
graphic duality”, gravity and gauge theories turn out to be two sides of the same coin. A
prominent role in the study of this correspondence has been played by Integrability. The
term “Integrability” is very broad, and actually collects many different concepts—from
classical integrable models to factorisation of scattering in two-dimensional quantum
field theories, et cetera. For the moment we point out that methods borrowed from Inte-
grability allow one to obtain exact results that go beyond the usual perturbative analy-
sis, thus giving stringent tests for holography. Interestingly, Integrability provides a new
language to describe both the string and the gauge theory forming the holographic pair.
In this introductory chapter we review some of these achievements and explain how this
thesis fits in this context.

Maldacena’s proposal [10] currently known as the AdS/CFT correspondence is a con-
crete version of the holographic principle anticipated by ’t Hooft in 1974 [11]. AdS/CFT
conjectures the equivalence between a gravity theory living in an (asymptotically) Anti-
de Sitter (AdS) spacetime in d + 1 dimensions, and a gauge theory—or more precisely
a conformal field theory (CFT)—in flat d-dimensional Minkowski spacetime. Often one
refers to AdS as the bulk and interprets the gauge theory as living on the boundary of this
spacetime.

The best understood example of this conjecture is the pair AdS5/CFT4. On the one
side we have string theory on the ten-dimensional background AdS5×S5, the product
of a five-dimensional Anti-de Sitter and a five-dimensional sphere. On the other side
we find N = 4 super Yang-Mills (SYM), the maximally supersymmetric gauge theory in
four dimensions. Although the equivalence is believed to hold precisely at any point in
the parameter space, it becomes more testable in the planar or large-N limit.

For the gauge theory, N is the number of colors of the gauge group SU(N), and as
pointed out already by ’t Hooft [11] sending N → ∞ is a way to simplify the problem
while keeping some of its non-trivial feautures. In some sense it is an approximation
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6 Chapter 1. Introduction

along a direction different from the usual perturbation theory, the latter being an expan-
sion in the number of loops. At large N an indefinite number of loops remains, but at
leading order only planar graphs survive. These are the Feynman graphs that can be
drawn on genus-zero surfaces like the sphere, as opposed to the ones that can be drawn
only on surfaces with handles. To be more precise, when N → ∞ we have to send the
Yang-Mills coupling gYM to zero in such a way that the effective coupling λ = g2

YMN
remains finite. After this limit is taken, one may still implement the usual perturbation
theory by performing an expansion at small values of λ—the point λ = 0 corresponding
to the free theory.

On the string side, the planar limit corresponds to considering free, i.e. non interact-
ing, strings. More precisely, for N large the string coupling constant gs is related to the
’t Hooft coupling λ as gs = λ/4πN and it tends to zero, while the tension g =

√
λ/2π

remains finite. These relations show one of the most exciting features of the AdS/CFT
correspondence, namely that it is a weak/strong duality. In fact, the regime in which the
string theory is more tractable is not for small values of λ, but rather for λ � 1. This
is when the tension is large and the string moves like a rigid object. Therefore, if we
decide to make our life easier by considering the “simple” regime for the string, this ac-
tually corresponds to the—usually unaccessible—gauge theory at strong coupling, and
vice versa!

The AdS/CFT correspondence is made quantitatively more precise by saying how
to match observables on the two sides of the duality. In particular, conformal dimen-
sions of operators correspond to the energies of the dual string configurations [12, 13].
Integrability for gauge and string theory has the power of computing exactly the depen-
dence of these observables on the effective coupling λ. We are then able to go beyond
a perturbative expansion at weak or at strong coupling, and we can actually interpolate
the spectrum between the two sides for any finite value of λ. The achievement is not
just computational, but also conceptual. In fact, with these methods we find a unified
description of both the gauge and the string theory in a single quantum integrable model
in 1+1 dimensions. From the point of view of the gauge theory, the interpretation is that
of a spin-chain with long-range interactions; the different flavors of the field content of
N = 4 SYM correspond in fact to the directions of the spins. For the string, the quan-
tum integrable model is the one arising on the worldsheet after gauge-fixing, where the
excitations now correspond to the bosonic and fermionic coordinates that parameterise
the spacetime in which the superstring is living. Integrability allows one to compute the
all-loop S-matrix governing the scattering of the excitations, on the spin-chain or on the
worldsheet. The remarkable fact is that both sides of the AdS/CFT correspondence lead
to the same result.

Gauge theory and Integrability The first hint about the presence of Integrability in the
large-N limit appeared on the gauge theory side1. In their seminal paper [16], Minahan
and Zarembo showed that the problem of finding the spectrum of the gauge theory can
be rephrased in terms of an integrable spin-chain. Let us say a few words about this.

Because of conformal symmetry, interesting observables to consider are the confor-
mal dimensions of gauge-invariant operators. These are formed by taking traces of

1Integrability in the context of four-dimensional gauge theories appeared already in [14, 15], where it was
shown that it manifests itself in some specific regimes of Quantum Chromodynamics (QCD).
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products of fields, where the trace is needed to ensure gauge invariance2. The one-
dimensional object that we get by taking this product already suggests how a spin-chain
comes into the game. The various fields here play the role of the spins pointing in dif-
ferent directions in the space of flavors. Because of the cyclicity of the trace, we can
anticipate that what we consider are periodic spin-chains. The analogy becomes more
precise when one computes loop corrections to the dilatation operator. For simplicity
let us focus on an “su(2) sector” with just two scalar fields of N = 4 SYM, that we will
interpret as “spin up” and “spin down”. One finds that at one loop the operator mea-
suring the anomalous dimension mixes operators that differ by permutations of fields
sitting at neighbouring sites. Its expression actually matches that of the Hamiltonian
of the Heisenberg spin-chain, solved by Bethe with a method that is commonly called
the Bethe Ansatz [17]. It is then really nice to discover that we can compute anomalous
dimensions by using the same diagonalisation techniques.

The story is not restricted to this su(2) sector, as the complete dilatation operator at
one loop still has the form of an integrable Hamiltonian [18]. Also higher loops can
be accounted for [19, 18], and one finds that at higher orders interactions become more
and more non-local, meaning that not only nearest-neighbour sites are coupled, but also
next-to-nearest neighbour, et cetera. We refer to [20] for a review.

In the Heisenberg spin-chain that arises at one-loop, an S-matrix can be defined to de-
scribe the scattering of the magnons. It turns out that the key object on which one should
focus to obtain all-loop results is not the Hamiltonian—which becomes more and more
complicated at higher orders—but rather the S-matrix. In fact, this can be fixed even at fi-
nite values of the effective coupling by imposing compatibility with the symmetries [21],
which for N = 4 SYM are given by two copies of a central extension of the Lie super-
algebra su(2|2). The possibility of bootstrapping the S-matrix is a consequence, on the
one hand, of the presence of these powerful symmetries, and on the other hand of the
knowledge of the exact dependence of the central charges on the momenta of the excita-
tions and on the effective coupling [21]. It is clear that this bootstrapping method relies
on the assumption that Integrability extends to all loop orders; let us review here some
important points and refer to Chapter 4 for a more detailed discussion.

The S-matrix that is considered dictates just 2→ 2 scattering. This is enough for inte-
grable models, since the number of particles is conserved and genericN → N scatterings
can be derived just from the knowledge of the two-body S-matrix. This is a crucial prop-
erty of integrable theories that goes under the name of factorisation of scattering, and we
refer to [22] for a nice review. The idea is that thanks to the large amount of symmetry
generators, one is allowed to move the wave packets of the excitations independently,
to disentangle interactions in such a way that only two particles are involved every time
an interaction takes place. If this is possible, then any generic process can be reinter-
preted as a sequence of two-body interactions. In Figure 1.1 we show how this works
in the example of the scattering of three particles. Notice that in this case we have two
different possibilities to achieve factorisation. It is clear that for consistency it should not
matter which choice of factorisation we pick. This imposes a constraint on the two-body
S-matrix S that goes under the name of Yang-Baxter equation. It is found by equating the

2In the large-N limit it is enough to consider single-trace operators, as at leading order the conformal
dimension of multi-trace operators is additive.
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(a)

=

p1 p2 p3

p1p2p3

(b)

=

(c)

Figure 1.1: The vertical axis corresponds to propagation in time, while the horizontal axis param-
eterises space. A process like the one in the center involving three particles may be factorised as a
sequence of two-body scatterings in two possible ways, as in the left or right figure. Consistency
between the two factorisations yields the Yang-Baxter equation.

left and right processes in Figure 1.1

S23 · S13 · S12 = S12 · S13 · S23 ,

and one can check that this is enough to ensure consistency also for factorisation of scat-
tering with more than three particles.

Symmetries actually allow one to fix the S-matrix only up to an overall scalar func-
tion, which in this context is called the “dressing factor” [23]. Without this factor “just”
ratios of scattering elements would be known exactly in the effective coupling λ. How-
ever, the dressing factor for N = 4 SYM is actually known [24], and it can be found
by solving the equation obtained by imposing crossing invariance [25, 26], which relates
physical processes to the ones in which one particle is analytically continued to an un-
physical channel.

As we will explain in more detail later, in this thesis we will show how it is possible to
apply similar methods to a specific instance of the AdS3/CFT2 correspondence, allowing
us to find an all-loop S-matrix for that case. This opens the possibility of implementing
the same program that proved to be successful for AdS5/CFT4, and solve another dual
pair exactly in the planar limit, suggesting that the presence of Integrability might be
more general than expected. Rather than the ones used forN = 4 SYM, the methods we
exploit are actually borrowed from the description of strings on AdS5×S5. Let us briefly
review the situation there.

String theory and Integrability In parallel to the findings for the gauge theory, devel-
opments were achieved also on the string theory side of the AdS/CFT correspondence.
The string is described as a non-linear σ-model on the background AdS5×S5, and thanks
to the realisation in terms of the supercoset PSU(2, 2|4)/(SO(4, 1) × SO(5)) it is possible
to write down its action to all orders in the fields [27].

Integrability starts appearing at the classical level. In fact, the equations of motion
for the superstring on the background AdS5×S5 admit a formulation in terms of a Lax
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connection Lα(z, τ, σ) [28], which depends on the worldsheet coordinates (τ, σ) and a
spectral parameter that we denote by z. It is a way to encode the dynamics of the model,
as the flatness condition

∂τLσ − ∂σLτ − [Lτ , Lσ] = 0 ,

provides the equations of motion for the string. The Lax connection is of primary im-
portance, since expanding the trace of its path-ordered exponential—that goes under the
name of transfer matrix—around any value of the spectral parameter generates the com-
plete tower of conserved charges of the system. These charges can be used to construct
solutions of the equations of motion. Classical integrability is inherited also by reduced
models, obtained by confining the motion of the string to specific dynamics, and one
of the finite-dimensional integrable models that may be recovered is e.g. the Neumann
model [29, 30].

The action for the string has a local invariance, which generates unphysical modes
that should be removed by fixing a gauge. It turns out that, to make contact with the
description of the gauge theory, the proper gauge choice is a combination of the light-
cone gauge for the bosonic coordinates and a specific “kappa-gauge” for the fermions.
We will review this procedure in Chapter 2. The Hamiltonian of the light-cone gauge-
fixed two-dimensional model is highly non-linear, and a standard way to study it is by
implementing the usual expansion in powers of fields. The quadratic Hamiltonian turns
out to be the free Hamiltonian for eight massive bosons and eight massive fermions of
unit mass. From the quartic contribution one can extract the tree-level two-body scat-
tering processes [31] that satisfy the classical Yang-Baxter equation—the semiclassical
limit of the equation that we encountered before. Loop contributions may be taken into
account to construct the S-matrix perturbatively [32], confirming again consistency with
factorised scattering. Let us stress again that now the perturbative expansion is per-
formed for large values of λ, as opposed to the small-λ expansion used for the perturba-
tion theory in N = 4 SYM.

The perturbative results suggest that the approach used on the gauge-theory side
to construct an all-loop S-matrix may be considered also for the string. In this context
the scattering will involve excitations on the worldsheet, and rather than a spin-chain
we now encounter a field theory in 1 + 1 dimensions, to be quantised to all orders.
For the string there exists actually a derivation of the exact eigenvalues of the central
charges [33] that are crucial in the all-loop construction. Exploiting the symmetries, one
finds an S-matrix that is essentially the same as the one derived from the point of view
of the gauge theory [34]—the two objects being related by a change of the two-particle
basis. This S-matrix is supposed to describe to all-loops the scattering of the excitations
on the worldsheet. The results rely on the assumption that Integrability extends from the
classical to the quantum level; however, the strongest indication of its validity is that the
all-loop S-matrix matches with the perturbative results of both the string and the gauge
theory.

The program of finding the S-matrix is so important because its knowledge allows
one to construct the Bethe-Yang equations by imposing periodicity of the wave-function.
These are the equations that one should solve to compute the spectrum of the theory [35].
Let us mention that the Bethe-Yang equations derived from the all-loop S-matrix actu-
ally describe the spectrum only in the so-called asymptotic limit. In fact, as anticipated,
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from the point of view of the gauge theory higher-loop corrections introduce long-range
interactions, and these eventually lead to virtual particles travelling all around the spin-
chain. These wrapping interactions give contributions that are exponentially suppressed
in the length of the spin-chain, and become important for precision computations when
this is finite. The same issue has a counterpart on the string side. In fact, in order to de-
fine asymptotic states on the worldsheet and an S-matrix, one has to consider the limit
of large length of the light-cone gauge-fixed string. In both cases, therefore, to compute
the exact spectrum one has to account for finite-size corrections [36].

A way to incorporate the wrapping corrections is to use the trick of the mirror model,
first introduced by Zamolodchikov in the context of relativistic integrable systems [37].
Rather than considering a model with finite length, one chooses to reinterpret the prob-
lem as the one of finding the spectrum for another model, with infinite size but at finite
temperature. The treatment can be done with the method of the Thermodynamic Bethe
Ansatz (TBA) [38], which can be applied to the case of the ground state of AdS5×S5 [39,
40, 41] as well as the excited states [42, 43, 44], allowing one to obtain numerical results
for the spectrum with arbitrary precision. Thanks to the inclusion of the finite-size ef-
fects [45, 46], it was possible to match with perturbative results at five loops in the gauge
theory [47]. A more recent and refined version of the TBA is the Quantum Spectral
Curve [48], through which it is possible to efficiently obtain analytic results for anoma-
lous dimensions of operators up to ten loops [49].

AdS3/CFT2 The striking presence of Integrability for AdS5/CFT4 at large-N and the
great success achieved raise the natural question of whether it is possible to apply the
same methods also to other instances of the AdS/CFT correspondence. We may wonder
whether also lower-dimensional and less supersymmetric models still have the chance
of being solvable. The answer was shown to be positive for the ABJM theory [50], see [51]
for a review. The case that is of interest for this thesis is rather AdS3/CFT2.

AdS3 gravity was actually the first ante litteram example of the holographic duality.
In 1986 Brown and Henneaux showed that its asymptotic symmetry algebra—the gauge
transformations that leave the field configurations invariant at the boundary—coincides
with the Virasoro algebra, that is the symmetry of two-dimensional CFTs [52].

On the one hand, gravity in three dimensions is remarkably simpler than the one
we experience in our world, and it can be seen as an easier set-up to investigate some
questions. An example of this is that it does not contain a propagating graviton. On
the other hand, this does not make it a trivial theory at all. As shown by Bañados, Teit-
elboim and Zanelli, gravity in three dimensions with a negative cosmological constant
admits black hole solutions [53]. These are locally isomorphic to empty AdS3, differing
from it because of global identifications [54]. Also these black holes follow the famous
Bekenstein-Hawking area-law for the entropy [55, 56], making AdS3 a nice playground
to further understand the nature of these objects. For black holes whose near-horizon
geometry is (locally) AdS3, it was actually possible to derive the area-law by performing
a micro-state counting in the dual CFT2 [57]. This computation generalises the one for
black holes arising in string theory, as considered in [58, 59, 60]. Let us mention that
AdS3/CFT2 appears also in this context because of a particular D-brane construction,
the D1-D5 system. In Chapters 3, 4 and 5 we will actually study strings propagating
on the background that arises as the near-horizon limit of D1-D5. Let us briefly review
some facts about backgrounds that are relevant for AdS3/CFT2.
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The backgrounds that we want to consider here preserve a total of 16 supercharges,
and are AdS3×S3×S3×S1 and AdS3×S3×T4. The former is actually a family of back-
grounds, as the amount of supersymmetry is preserved if the radii of AdS and the two
three-spheres S3

(1) and S3
(2) satisfy the constraint

R−2
AdS = R−2

(1) +R−2
(2) .

We then find a family parameterised by a continuous parameter α = R2
AdS/R

2
(1), where

0 < α < 1. The algebra of isometries is given by d(2, 1;α)L ⊕ d(2, 1;α)R, where the
labels for the two copies of the exceptional Lie superalgebra [61] refer to the Left and
Right movers of the dual CFT2. The background AdS3×S3×T4 may be understood as a
contraction of the previous case, when we blow up the radius of one of the S3’s and then
compactify these directions together with the remaining S1 to get a four-dimensional
torus. At the level of the algebra this is achieved by a proper α→ 0 limit, or alternatively
α→ 1. In this case the algebra of isometries is psu(1, 1|2)L ⊕ psu(1, 1|2)R.

The above backgrounds provide a rich structure since they can be supported by a
mixture of Ramond-Ramond (R-R) and Neveu-Schwarz–Neveu-Schwarz (NS-NS) fluxes,
where a parameter permits to interpolate between the pure R-R and the pure NS-NS
backgrounds. The latter case was solved by using methods of representations of chiral
algebras [62, 63, 64, 65]. On the contrary the case of pure R-R cannot be addressed with
these techniques [66] and we will argue that the right language to study it in the planar
limit is indeed Integrability.

One of the main challenges of AdS3/CFT2 is that the gauge theories dual to the above
backgrounds are not as well understood as the example of N = 4 SYM in four dimen-
sions. Maldacena argued that the dual CFT2 should be found at the infra-red fixed point
of the Higgs branch of the dual gauge theory [10]. In the case of AdS3×S3×T4 the finite-
dimensional algebra mentioned before is completed to small N = (4, 4) superconformal
symmetry [67], while for AdS3×S3×S3×S1 one finds largeN = (4, 4) [68]. Constructions
of long-range spin-chains for the dual CFT2’s are unfortunately lacking. A first proposal
of a weakly coupled spin-chain description of the CFT2 dual to AdS3×S3×T4 appeared
in [69], for a different and more recent description see [70]. In this thesis we show that
addressing the problem on the string theory side of the correspondence allows us to
derive the desired all-loop S-matrix.

One of the new features common to backgrounds relevant for the AdS3/CFT2 corre-
spondence is the presence of massless worldsheet excitations, corresponding to flat direc-
tions3. For some time they have been elusive in the Integrability description, but we will
show that they can be naturally included in it. The massive sectors of AdS3×S3×S3×S1

and AdS3×S3×T4 may be described respectively by the cosets

D(2, 1;α)L ×D(2, 1;α)R

SO(1, 2)× SO(3)× SO(3)
,

PSU(1, 1|2)L × PSU(1, 1|2)R

SO(1, 2)× SO(3)
,

and following the method of Ref. [27] one can construct the action for the non-linear σ-
models on AdS3×S3×S3 and AdS3×S3 [71, 72, 73]. The missing flat directions can then
be re-inserted by hand, and agreement with the Green-Schwarz action can be shown in
a certain kappa-gauge for fermions [74].

3For AdS3×S3×S3×S1 directions corresponding to massless modes are the circle S1 and a linear combina-
tion of the two equators of the S3’s. For AdS3×S3×T4 the flat directions correspond to the torus.
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Classical Integrability for the pure R-R backgrounds4 was demonstrated in [74]. In
fact, these cosets enjoy a Z4 symmetry that allows one to borrow the construction for the
Lax representation of the AdS5×S5 background [28], see also [76, 77, 78].

In this thesis we will consider the case of strings on the pure R-R AdS3×S3×T4 back-
ground, and by assuming that Integrability extends from the classical to the quantum
level we will derive an all-loop S-matrix, in the spirit of what was done for strings
on AdS5×S5. For the case of mixed flux see [79], and for results on AdS3×S3×S3×S1

see [7, 8, 9].

Deforming AdS5×S5 Together with the study of lower-dimensional AdS models, one
may wonder whether it is possible to deform the superstring on AdS5×S5 and its dual
N = 4 SYM, to relax some of the symmetries while preserving the integrable structure.
This would teach us what the conditions are under which Integrability is still present,
and it would allow us to study cases that are less special than the maximally supersym-
metric theory in four dimensions.

Examples of deformations of the σ-model that preserve its classical Integrability are
orbifolds of either AdS5 or S5 [80, 81], where the fields living on the worldsheet are
identified through the action of a discrete subgroup of the bosonic isometries. Another
class of deformations is generated by the so-called “TsT-transformations”, that can be
implemented any time the background possesses at least two commuting isometries.
Let us call φ1 and φ2 the two directions on which these isometries act as shifts. The
TsT-transformation is a sequence of a T-duality, a shift, and a T-duality on φ1 and φ2.
The first T-duality transformation acts on φ1, producing the dual coordinate φ̃1; the shift
is implemented on φ2 as φ2 → φ2 + γφ̃1; to conclude, one performs another T-duality
along φ̃1 [82]. Multi-parameter deformations are made possible by the various choices of
pairs of U(1)-isometries used to implement the TsT-transformation, and in general they
can break all supersymmetries [83]. A restriction to a one-parameter real deformation of
the sphere reproduces the Lunin-Maldacena background [84], which preserves N = 1
supersymmetry. The effects of these classes of deformations on the gauge theory and on
the quantum integrable model have also been studied, and we refer to [85] for a review
on this.

A different approach consists of deforming the symmetry algebra by a continuous
parameter. The case we want to discuss is generally referred to as q-deformation, where
q is indeed the deformation parameter. This deformation replaces a Lie algebra f by its
quantum group version Uq(f), which we will just denote by fq . To show how this works
in a simple example5, let us consider the case of the sl(2) algebra where we denote by S3

the Cartan element and by S± the positive and negative roots, i.e. the ladder operators.
The slq(2) relations are given by

[S3,S±] = ±2S± , [S+,S−] =
qS3 − q−S3

q − q−1
,

meaning that the deformation modifies the right-hand-side of the commutation relation
of the two ladder operators. Sending the deformation parameter q → 1 we recover

4It is interesting that classical Integrability was extended also to the case in which aB-field is present in the
background [75].

5For higher-rank algebras, the deformed commutation relations in the Serre-Chevalley basis must be sup-
plemented by the q-deformed Serre relations.
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the undeformed algebra. The q-deformation is not just a beautiful mathematical con-
struction, it is also physically motivated. The most famous realisation of it is the XXZ
spin-chain [86]. In fact, allowing for anisotropy (i.e. a different coupling related to q for
the spins in the z-direction) one obtains a q-deformation, in the sense presented above,
of the XXX spin-chain.

The interest for this type of deformation in the context of AdS/CFT first sparkled
when Beisert and Koroteev studied the q-deformation of the R-matrix of the Hubbard
model [87], see also [88, 89]. After solving the crossing equation for the dressing factor, it
was possible to define an all-loop S-matrix for the q-deformation of the integrable model
describing the dual pair of AdS5/CFT4 [90]. The case considered was that of q being a
root of unity, and it was shown that the “vertex to IRF” transformation can be used to
restore unitarity of the corresponding S-matrix [91]. Much progress has been made, and
thanks to the TBA construction of [92, 93] it is even possible to compute the spectrum at
finite size. We want to stress that all this work was pursued just by using the description
of the deformed quantum integrable model, bypassing the meaning of this deformation
for both the gauge and the string theory.

The gap was filled on the string side by Delduc, Magro and Vicedo, who proposed
a method to deform the action for the superstring on AdS5×S5 [94]. This realises a q-
deformation of the symmetry algebra of the classical charges [95], where now the de-
formation parameter is real. It is a generalisation of deformations valid for bosonic
cosets [96] and it is of the type of the Yang-Baxter σ-model of Klimčı́k [97, 98]. It is
sometimes referred to as “η-deformation”, where η is a deformation parameter that is
related to q. The limit η → 0 gives back the undeformed model. The remarkable fact
is that by construction the deformation procedure preserves the classical Integrability of
the original model. In this thesis we will study this deformation when it is applied to
strings on AdS5×S5, and we will compare it to the S-matrix of Beisert and Koroteev.

Let us mention that recently a new method was studied, going under the name of “λ-
deformation”. It is conjectured to realise the q-deformation in the case of q being root of
unity. The λ-deformation was first introduced by gauging a combination of a principal
chiral model and a Wess-Zumino-Witten model [99], and it was then extended to strings
on symmetric spaces [100] and on AdS5×S5 [101]. It was recently shown [102, 103] that
the η- and λ-deformation are actually related to each other by the Poisson-Lie T-duality
of [104, 105].

To conclude this paragraph let us point out that it is still unclear how to construct
the duals of these σ-models, in other words how to q-deform N = 4 SYM. The result is
expected to be a non-commutative gauge theory, and it would be extremely interesting
to build it explicitly.

About this thesis This thesis contains some of the author’s contributions to the re-
search on Integrability applied to AdS/CFT. Part of this work has been devoted to the
understanding of lower dimensional examples, and we will present in particular the
derivation of an all-loop S-matrix for the case of AdS3×S3×T4. A different direction was
motivated by questions on the η-deformation of strings on AdS5×S5.

We start in Chapter 2 with a review on basic notions that will be useful for the re-
maining chapters of the thesis. We begin with a discussion on bosonic strings and on
how to fix light-cone gauge. We follow [106], but we include also the possibility in
which a background B-field is present. The main consequences of the light-cone gauge-
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|Y L〉

|ηL1〉 |ηL2〉

|ZL〉

|ZR〉

|ηR
2〉 |ηR

1〉

|Y R〉

Figure 1.2: The Left and Right massive modules. Excitations ZL,R correspond to transverse di-
rections in AdS3, while Y L,R in S3. Fermions are denoted by η. The arrows correspond to super-
charges, while the dotted lines correspond to the action of an su(2).

fixing are explained. We then extend the discussion to include fermions. We present
the generic action for type IIB superstring at quadratic order in fermions, and explain
how to fix a proper kappa-gauge. After presenting the decompactification limit of the
worldsheet—necessary to define asymptotic states—we discuss the large-tension expan-
sion, equivalent to the usual expansion in powers of fields on the worldsheet. We review
also perturbative quantisation and the corresponding scattering theory, whose all-loop
generalisation will be a major topic in the following.

Chapter 3 is the first one specifically devoted to AdS3/CFT2. We consider the back-
ground AdS3×S3×T4 and we study the centrally-extended symmetry algebra A of the
charges commuting with the light-cone Hamiltonian. We derive the exact momentum-
dependence of the central charges, and then we study the representation of A under
which the excitations are organised, in a limit in which the dispersion relation is rela-
tivistic. The analysis shows that this representation is reducible, a feature of AdS3×S3×T4

that was not there for the known case of AdS5×S5. We find a total of three irreducible
representations, labelled by the eigenvalue of an angular momentum in AdS3×S3. Fig-
ure 1.2 shows the two massive representations, where this eigenvalue takes value +1 and
−1 on Left and Right excitations respectively. Here Left and Right refer to the two copies
of psu(1, 1|2), that are isometries of the background. The algebra A was first identified
in [1] from the point of view of the spin-chain with symmetry psu(1, 1|2)L ⊕ psu(1, 1|2)R.
The excitations on this spin-chain correspond to the massive worldsheet excitations of
AdS3×S3×T4. In this chapter we take instead the point of view of the string theory de-
scription and we follow [4, 5], where massless excitations—see Figure 1.3—were finally
included. Using the knowledge of the central charges and arguments of representation
theory, we generalise the representations to all loops in the large-N limit. We further
study these representations and introduce the notion of Left-Right symmetry.

In Chapter 4 we impose compatibility with symmetries and bootstrap the all-loop S-
matrix for the worldsheet excitations, as done in [4, 5]. Remarkably, the S-matrix satisfies
the Yang-Baxter equation, confirming compatibility with the assumption of factorisation
of scattering. The S-matrix is actually fixed completely up to some dressing factors that
cannot be found from symmetries. Taking into account the constraints of unitarity and
of Left-Right symmetry, we find a total of four unspecified functions. Further constraints
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|χ1〉

|T 11〉 |T 21〉

|χ̃1〉

|χ2〉

|T 12〉 |T 22〉

|χ̃2〉

Figure 1.3: The massless module. T ȧa are excitations on T4, and the fermions are denoted by χa

and χ̃a. Dotted and dashed lines correspond to the actions of two su(2) algebras.

are imposed on them by the crossing equations, that we derive. We then explain how to
impose the periodicity condition on the wave-function to derive the Bethe-Yang equa-
tions. We guide the reader through the diagonalisation procedure, introducing the var-
ious complications in different steps, until the nesting procedure is used. We conclude
by presenting the complete6 set of Bethe-Yang equations for AdS3×S3×T4.

We restrict our attention to the massive sector7 in Chapter 5. First we show that
the previous results are closely related to a spin-chain description, following [1]. This
spin-chain needs to be dynamical—the interactions change its length—in order to cor-
rectly account for the central extension of the algebra. An all-loop S-matrix can be deter-
mined, which is related to the worldsheet S-matrix by a similarity transformation. We
also present solutions to the crossing equations for the dressing factors of the massive
sector, and we provide some checks for their validity. These solutions and the corre-
sponding discussion were first presented in [2]. By taking a proper thermodynamical
limit in the regime of large string tension, we also recover the so-called “finite-gap equa-
tions” from the Bethe-Yang equations, repeating the calculation in [1]. We conclude by
referring to the independent perturbative calculations that confirm our all-loop results.

In Chapter 6 we begin the investigation of the η-deformation of the string on AdS5×S5.
Here we restrict to the bosonic model. After a brief introduction to the undeformed
model and to the deformation procedure, we derive the results first obtained in [3]. We
find that the background metric is deformed and aB-field is generated. A representation
of the squashing-effect of the deformation in the case of a two-dimensional sphere may
be seen in Figure 1.4. The bosonic action is studied perturbatively by computing the tree-
level S-matrix for the scattering of bosonic worldsheet excitations. The result allows us
to succesfully match with the large-tension limit of the all-loop S-matrix found by fixing
the psuq(2|2)c.e. symmetry. In particular, we can relate the two deformation parameters
η and q on the two sides. We conclude the chapter with some concluding remarks.

6This result has not yet been published in a research paper. In [1] the Bethe-Yang equations in the massive
sector were derived from the all-loop S-matrix of the spin-chain description.

7The massive sector of AdS3×S3×T4 has been discussed in detail also in the thesis of A. Sfondrini [107], to
which we refer for an alternative presentation.
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Figure 1.4: When we apply the η-deformation to a two-dimensional sphere—left figure—we find
that its effect is a squashing—right figure.

In Chapter 7 we want to address the question of whether the deformed metric and
B-field can be completed to a full type IIB supergravity background. With this mo-
tivation we compute the action of the deformed coset at quadratic order in fermions,
as done in [6]. We cure the—only apparent—mismatch with the standard form of the
Green-Schwarz action by implementing proper field redefinitions on the bosonic and
fermionic coordinates. From the action we extract the couplings to the odd-rank ten-
sors that should correspond to the Ramond-Ramond fields multiplied by the exponen-
tial of the dilaton. We also compute the kappa-symmetry variations of the bosonic and
fermionic coordinates, and of the worldsheet metric at leading order. From this compu-
tation we confirm the results obtained from the Lagrangian, and we show that they are
not compatible with the equations of motion of type IIB supergravity. We conclude the
chapter with a discussion of the results and of the possible resolutions of the puzzles.



Chapter 2

Strings in light-cone gauge

This chapter serves as an introduction and a review of notions that are needed to derive
the results in the rest of the thesis. In fact, we will use the same methods for strings
on both the AdS3×S3×T4 background and on the η-deformed AdS5×S5. We find then
useful to present here a slightly more general discussion valid for both cases.

We explain how to fix uniform light-cone gauge for bosonic and fermionic degrees of
freedom in the action of a freely propagating string. The need of fixing a gauge that
removes some unphysical bosonic degrees of freedom comes from reparameterisation
invariance on the worldsheet. At the same time, another local symmetry called “kappa-
symmetry”—now parameterised by Grassmann quantities—suggests that half of the
fermions should be gauged away. Clearly, different gauge fixings are possible, all being
equivalent in the sense that the physical observables that we compute will not depend on
any particular choice. However, it is obvious that some of them may be more convenient
than others. The type of gauge-fixing used for backgrounds relevant for the AdS/CFT
correspondence appears to provide models that are solvable by non-perturbative meth-
ods.

This gauge is a generalisation of what was first introduced in flat space in [108].
In fact the procedure is quite general and the only necessary requirement to impose it
is the presence of two commuting isometries—in our case these are shifts of time and
an angle. Although other choices are possible—one might choose the angle being in
Anti-de Sitter [109]—the most convenient one for AdS/CFT is to combine into the light-
cone coordinates the time of AdS and an angle of the compact space. The procedure we
present here was used to gauge-fix the σ-model describing the string on AdS5×S5 [110,
111, 112] and corresponds to the one used to study spinning strings [113, 114].

We start with the gauge-fixing procedure for bosons in Section 2.1 and then extend it
to fermions in Section 2.2. In Section 2.3 we explain how to define an S-matrix that gov-
erns scattering of worldsheet excitations—in the limit of long strings—and we provide a
discussion on perturbation theory. We refer to [106] for a more detailed review on these
topics.

17
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2.1 Bosonic strings

Restricting to the bosonic model, we can already capture the essential features of the
gauge-fixing procedure. The string moves on a target manifold parameterised by ten
coordinates XM , M = 0, . . . , 9. Two of them—for defineteness X0 ≡ t that is time and
X5 ≡ φ that for us will be an angle of a compact manifold—correspond to the abelian
isometries of the full action that we will exploit to fix light-cone gauge. Invariance un-
der shifts of two such coordinates results in a dependence of the action on just their
derivatives.

A rank−2 symmetric tensor GMN defines a metric on the target space, that we as-
sume to be written in “block form”

ds2 = GMNdXMdXN

= Gttdt
2 +Gφφdφ2 +GµνdXµdXν ,

(2.1)

where Xµ are the eight transversal coordinates and Gtt < 0. In general one might
have also a rank−2 anti-symmetric tensor BMN . We include this possibility, as it will
be needed in Chapter 6 and Chapter 7. The action for the bosonic string then takes the
form of the Polyakov action

Sb =

∫ L
2

−L2
dσdτ L b ,

L b = −g
2

(
γαβ∂αX

M∂βX
NGMN − εαβ∂αXM∂βX

NBMN

)
.

(2.2)

Here τ and σ are respectively the timelike and spatial coordinates parameterising the
worldsheet, for which we use Greek indices α, β. For closed strings σ ∈ [−L2 ,

L
2 ] parame-

terises a circle of length L and periodic boundary conditions for the fields are used. The
symmetric tensor γαβ = hαβ

√
−h is the Weyl-invariant combination1 of the world-sheet

metric hαβ , and for us the component γττ < 0. For the anti-symmetric tensor εαβ we use
the convention ετσ = 1. The whole action is multiplied by g, that plays the role of the
string tension.

We use first-order formalism and introduce conjugate momenta

pM =
δSb

δẊM
= −gγτβ∂βXNGMN + gX

′NBMN , (2.3)

where we are using the shorthand notation Ẋ ≡ ∂τX(τ, σ), X ′ ≡ ∂σX(τ, σ). Using
det γαβ = −1 we can rewrite the action as

Sb =

∫ L
2

−L2
dσdτ

(
pM Ẋ

M +
γτσ

γττ
C1 +

1

2gγττ
C2

)
, (2.4)

where C1, C2 are the Virasoro constraints. They explicitly read as

C1 = pMX
′M ,

C2 = GMNpMpN + g2X ′MX ′NGMN − 2g pMX
′QGMNBNQ + g2X ′PX ′QBMPBNQG

MN .
(2.5)

1With abuse of language we will always refer to it as just the worldsheet metric.
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The components of γαβ are Lagrange multipliers, implying that we should solve the
equations C1 = 0 and C2 = 0 in a certain gauge. It is convenient to introduce light-cone
coordinates x+ and x− as linear combinations of t, φ [112]

x+ = (1− a) t+ aφ, x− = φ− t. (2.6)

To be more general, we make the combination defining x+ dependent on a generic pa-
rameter a. The above combinations have been chosen in such a way that the conjugate
momentum2 of x+ is the sum of the conjugate momenta of t and φ

p+ =
δS

δẋ+
= pt + pφ , p− =

δS

δẋ−
= −a pt + (1− a) pφ . (2.7)

In these coordinates the two Virasoro constraints are rewritten as

C1 =p+x
′+ + p−x

′− + pµX
′µ ,

C2 =G++p2
+ + 2G+−p+p− +G−−p2

−

+ g2G−−(x′−)2 + 2g2G+−x
′+x′− + g2G++(x′+)2 +Hb

x ,

(2.8)

where we have assumed that the B-field vanishes along light-cone directions—as this is
valid for the examples that we will consider—and

G++ = a2G−1
φφ + (a− 1)2G−1

tt , G+− = aG−1
φφ + (a− 1)G−1

tt , G−− = G−1
φφ +G−1

tt ,

G−− = (a− 1)2Gφφ + a2Gtt, G+− = −(a− 1)Gφφ − aGtt, G++ = Gφφ +Gtt .

In C2 we have collected all expressions that depend only on the transverse coordinates
Xµ into the object

Hb
x = Gµνpµpν + g2X ′µX ′νGµν − 2gpµX

′ρGµνBνρ + g2X ′λX ′ρBµλBνρG
µν . (2.9)

The uniform light-cone gauge is achieved by fixing

x+ = τ + amσ, p− = 1, (2.10)

where we allow the coordinate φ to wind m times around the circle φ(L2 ) − φ(−L2 ) =
2πm. The name “uniform” comes from the fact that we choose p− to be independent
of σ, and this choice makes this light-cone momentum uniformly distributed along the
string. Thanks to this gauge, the term pM Ẋ

M = p+ẋ
++p−ẋ

−+pµẊ
µ in the action (2.4) is

simplified, and we are led to identify the light-cone momentum p+ with the Hamiltonian
(density) of the gauge-fixed model3

Sb
g.f. =

∫ L
2

−L2
dσdτ

(
pµẊ

µ −Hb
)
, Hb = −p+(Xµ, pµ) , (2.11)

once the Virasoro constraints are satisfied. In this gauge the first Virasoro constraint
C1 = 0 may be used to solve for x′− as

x′− = −pµX ′µ − amp+. (2.12)

2We use a different convention from [106] for what we call p+ and p−.
3We have dropped the total derivative term ẋ−.
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Notice that only the derivative of this light-cone coordinate can be written as a local ex-
pression of the transverse fields. Since we are describing closed strings, we should actu-
ally impose the following periodicity condition

2πm = x−(L/2)− x−(−L/2) =

∫ L
2

−L2
dσ x′− = −

∫ L
2

−L2
dσ pµX

′µ + am

∫ L
2

−L2
dσHb ,

(2.13)
that we call level-matching condition. We recognise that the above is a constraint involv-
ing the woldsheet momentum

pws = −
∫ L

2

−L2
dσ pµX

′µ , (2.14)

which is the charge associated to shifts of the worldsheet coordinate σ, under which
the action is invariant. From now on we will just consider the case of zero winding
m = 0, as it yields a well-defined large-tension limit, see Section 2.3. In this case the level-
matching condition imposes that the worldsheet momentum must vanish for physical
configurations

pws = 0, (when m = 0) . (2.15)

In Chapter 3 we actually use a method where we first need to relax the level-matching
condition, meaning that we allow for the configuations to have non-vanishing world-
sheet momentum. The above condition is then imposed only at the end, as a constraint
on the states of the Hilbert space.

Solving the second Virasoro constraint C2 = 0, we find explicitly the light-cone
Hamiltonian (density). The solution to this quadratic equation that yields a positive
Hamiltonian is

Hb = −p+ =
G+− +

√
(G+−)2 −G++ (G−− + g2G−−(x′−)2 +Hb

x)

G++
. (2.16)

To relate the Hamiltonian on the worldsheet to the spacetime energy of the string, let us
note that—because of the invariance of the action under shifts of t and φ—we can define
two conserved quantities

E = −
∫ L

2

−L2
dσ pt , J =

∫ L
2

−L2
dσ pφ . (2.17)

The first of them is the spacetime energy, while the second measures the angular mo-
mentum in the direction of φ. After going to light-cone coordinates, these are combined
into

P+ =

∫ L
2

−L2
dσ p+ = J − E , P− =

∫ L
2

−L2
dσ p− = (1− a) J + aE . (2.18)

On the one hand, we immediately discover the relation between the light-cone Hamilto-
nian and the spacetime charges E and J . On the other hand, using (2.10) we find how
these fix the length L of the string∫ L

2

−L2
dσHb = E − J , L = P− = (1− a) J + aE . (2.19)
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The first of these equations justifies the choice of the gauge. From the point of view of
the AdS/CFT correspondence it is indeed desirable to compute the spacetime energy
E, that is then related by a simple formula to the Hamiltonian on the worldsheet. The
second of the above equations shows that the Hamiltonian secretely depends on P− as
well, although just through the integration limits. The length of the string is a gauge-
dependent quantity, as it is confirmed by the explicit a-dependence.

After this discussion on the gauge-fixing procedure for the bosonic model, let us now
include also the fermionic degrees of freedom.

2.2 Fermions and type IIB

When symmetries allow for a supercoset description, the action of the string may be
computed perturbatively in powers of fermions as it was done for the case of AdS5×S5

in [27] following the ideas of [115]. For our discussions we will need only the contribu-
tion to the action at quadratic order in fermions. In order to be more general and account
also for cases in which a coset description is not valid, we review the Green-Schwarz
action for the superstring [116].

We work in type IIB, where we have two sets of 32-components Majorana-Weyl
fermions ΘI labelled by I = 1, 2. In most expressions we write only these labels and
we omit the spinor indices, on which the ten-dimensional Gamma-matrices are acting.
We get a total of 32 real degrees of freedom after imposing the chirality and the Majorana
conditions

Γ11ΘI = ΘI , Θ̄I = Θt
IC . (2.20)

In the above equations, Γ11 is constructed by multiplying all the 32× 32 rank-1 Gamma-
matrices, and C is the charge conjugation matrix. The barred version of the fermions is
defined in the standard way Θ̄I ≡ Θ†IΓ

0.
The Green-Schwarz action of type II superstring [117] may be found order by order

in fermions, and its explicit form is known to fourth order in Θ [118]. For us it will be
enough to stop at second order [117, 119]

Sf2 =

∫ L
2

−L2
dσdτ L f2 ,

L f2 = −g
2
i Θ̄I

(
γαβδIJ + εαβσIJ3

)
emα ΓmD

JK
β ΘK .

(2.21)

In type IIB the operator DIJ
α acting on Θ has the following expression

DIJ
α =δIJ

(
∂α −

1

4
ωmnβ Γmn

)
+

1

8
σIJ3 emαHmnpΓ

np

− 1

8
eϕ
(
εIJΓpF (1)

p +
1

3!
σIJ1 ΓpqrF (3)

pqr +
1

2 · 5!
εIJΓpqrstF

(5)
pqrst

)
emα Γm.

(2.22)

In the equations above, emα = ∂αX
MemM is the pullback of the vielbein on the worldsheet,

and it is related to the spacetime metric as

GMN = emMe
n
Nηmn . (2.23)
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The spin connection ωmnα = ∂αX
MωmnM satisfies the equation

ωmnM = −eN [m
(
∂Me

n]
N − ∂Ne

n]
M + en]P epM∂P eNp

)
, (2.24)

where the factor 1/2 is included in the anti-symmetrisation of the indices m,n. Also the
field-strength of the B-field appears in the fermionic action

HMNP = 3∂[MBNP ] = ∂MBNP + ∂NBPM + ∂PBMN . (2.25)

The quantities denoted by F (n) are the Ramond-Ramond field-strengths and ϕ is the
dilaton. The whole set of fields satisfies the supergravity equations of motion [120]. We
refer to Appendix A where we collect these equations.

The Green-Schwarz action presented above enjoys a local fermionic symmetry called
“kappa-symmetry” [116, 117]. This is a generalisation of the symmetry found for super-
particles [121] and it allows one to gauge away half of the fermions, thus recovering the
correct number of physical degrees of freedom. At lowest order, the kappa-variation is
implemented on the bosonic and fermionic coordinates as

δκX
M = − i

2
Θ̄IΓ

MδκΘI +O(Θ3) , ΓM = eMmΓm ,

δκΘI = −1

4
(δIJγαβ − σIJ3 εαβ)ΓβKαJ +O(Θ2) , Γβ = emβ Γm ,

(2.26)

where we have introduces local fermionic parameters KαI with chirality opposite to the
one of the fermions Γ11KαI = −KαI . Together with the kappa-variation of the world-
sheet metric

δκγ
αβ = 2i ΠIJ αα′ΠJK ββ′ K̄Iα′D

KL
β′ ΘL +O(Θ3),

ΠIJ αα′ ≡ δIJγαα
′
+ σIJ3 εαα

′

2
,

(2.27)

one finds invariance of the action under kappa-symmetry δκ(Sb + Sf2) = 0 at first order
in Θ.

Let us use this freedom to gauge away half of the fermions. We consider the Gamma-
matrices Γ0 and Γ5—corresponding to the coordinates t and φ used in Section 2.1 to fix
the gauge for bosonic strings—and we define the combinations4

Γ± =
1

2
(Γ5 ± Γ0) . (2.28)

Kappa-symmetry is fixed by imposing [109]

Γ+ΘI = 0 =⇒ Θ̄IΓ
+ = 0 . (2.29)

This gauge simplifies considerably the form of the Lagrangian. To start, in this gauge
all terms containing an even number of Gamma-matrices in the light-cone directions
vanish, as it is seen by using the identity

Γ+Γ− + Γ−Γ+ = 132 . (2.30)
4Another definition that seems natural from the point of view of a generic a-gauge is Γ+ = (1 − a)Γ0 +

aΓ5, Γ− = −Γ0 + Γ5.



2.2. Fermions and type IIB 23

Moreover, the motivation for choosing this gauge is that at leading order in the usual
perturbative expansion in powers of fields it gives a non-vanishing and standard kinetic
term for fermions, see Section 2.3.

Let us first show how to generalise the procedure of Section 2.1 by including the
fermionic contributions. We first define an effective metric ĜMN and an effective B-field
B̂MN containing all the couplings to the fermions that do not involve derivatives on
them

ĜMN =GMN + i Θ̄I e
m
(MΓm

[
− 1

4
δIJωpqN)Γpq +

1

8
σIJ3 enN)HnpqΓ

pq

− 1

8
eϕ
(
εIJΓpF (1)

p +
1

3!
σIJ1 ΓpqrF (3)

pqr +
1

2 · 5!
εIJΓpqrstF

(5)
pqrst

)
enN)Γn

]
ΘJ ,

B̂MN =BMN − i σIK3 Θ̄I e
m
[MΓm

[
− 1

4
δKJωpqN ]Γpq +

1

8
σKJ3 enN ]HnpqΓ

pq

− 1

8
eϕ
(
εKJΓpF (1)

p +
1

3!
σKJ1 ΓpqrF (3)

pqr +
1

2 · 5!
εKJΓpqrstF

(5)
pqrst

)
enN ]Γn

]
ΘJ .

(2.31)
This allows us to rewrite the sum of the bosonic and fermionic Lagrangians as

L b + L f2 = −g
2

(
γαβ∂αX

M∂βX
N ĜMN − εαβ∂αXM∂βX

N B̂MN

+ i Θ̄I

(
γαβδIJ + εαβσIJ3

)
emα Γm ∂βΘJ

)
.

(2.32)

The momenta pM conjugate to the bosonic coordinatesXM receive fermionic corrections,
that using the above rewriting are

pM =− gγτβ∂βXN ĜMN + gX
′N B̂MN

− g i
2

Θ̄I

(
γτβδIJΓM ∂βΘJ + σIJ3 ΓM Θ′J

)
.

(2.33)

After inverting the above relation for ẊM we find that the Lagrangian is

L b + L f2 =pM Ẋ
M +

i

2
pM Θ̄IΓ

M Θ̇I

+
i

2
g σIJ3 X ′M Θ̄IΓM Θ̇J +

i

2
g BMNX

′M Θ̄IΓ
N Θ̇I

+
γτσ

γττ
C1 +

1

2gγττ
C2 .

(2.34)
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At second order in fermions, the two Virasoro constraints read as

C1 =pMX
′M +

i

2
pM Θ̄IΓ

MΘ′I +
i

2
g σIJ3 X ′M Θ̄IΓMΘ′J +

i

2
g BMNX

′M Θ̄IΓ
NΘ′I ,

C2 =ĜMNpMpN + g2X ′MX ′N ĜMN − 2g pMX
′QĜMN B̂NQ + g2X ′PX ′QB̂MP B̂NQĜ

MN

+ ig2X ′M Θ̄IΓMΘ′I + ig σIJ3 pM Θ̄IΓ
MΘ′J − ig2BMPX

′PσIJ3 Θ̄IΓ
MΘ′J .

(2.35)
At this point we introduce bosonic light-cone coordinates as in (2.6) and fix the gauge
as in (2.10). Together with the gauge fixing for the fermions (2.29), we then find the
gauge-fixed Lagrangian at order Θ2. Now x′− and p+ must be determined by solving
the Virasoro constraints C1 = 0, C2 = 0 that include the fermionic contributions as
in (2.35). The gauge-fixed Lagrangian5

(
L b + L f2

)
g.f.

=pµẊ
µ +

i

2
Θ̄I

[
δIJ

(
p+Γ+̌ + p−Γ−̌

)
+ g σIJ3 X ′−Γ−̌

]
Θ̇I

+ p+ ,

(2.36)

shows that the Hamiltonian for the gauge-fixed model remains to be related to the
momentum conjugate to x+, namely H = −p+(Xµ, pµ,ΘI). In the kinetic term for
fermions of the gauge-fixed Lagrangian, Gamma-matrices with transverse indices dis-
appear thanks to the kappa-gauge (2.29). We defined Gamma-matrices with checks on
the indices to distinguish them from the ones introduced in (2.28), as now we consider
linear combinations of Gamma-matrices with curved indices ΓM = emMΓm

Γ+̌ = aΓφ + (1− a)Γt , Γ−̌ = Γφ − Γt ,

Γ−̌ = −aΓt + (1− a)Γφ , Γ+̌ = Γt + Γφ .
(2.37)

The kinetic term for the fermions defines a Poisson structure that in general is not canon-
ical. One may choose to keep this or rather implement field redefinitions to recast the
kinetic term in the standard form.

The description simplifies when we use the usual perturbative expansion in pow-
ers of fields. We explain how to implement it in the next section, after presenting the
decompactification limit.

2.3 Decompactification limit and quantisation

After fixing light-cone gauge for bosons and fermions as in the previous sections, we
obtain a Hamiltonian on a cilinder, defining the time evolution of a closed strings. In
general this model is complicated because of the non-linear nature of the interactions.

The first step that we take is the so-called decompactification limit. It essentially consists
in taking the length of the string to be very large L� 1. The model originally defined on
the cylinder becomes then a problem on the two-dimensional plane. When this limit is
taken, one should replace the periodic boundary conditions for the fields with the ones
decaying at infinity. The strategy is then to solve the model in the L → ∞ limit, and to
take into account the finite-length corrections in a later step.

5We have assumed as in the previous section that the B-field vanishes along light-cone coordinates.
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P−→∞−−−−−→

Figure 2.1: In the decompactification limit we take the total light-cone momentum P− to be very
large. This is equivalent to taking the limit of infinite length of the string. The original model
defined on a cylinder lives now on a plane.

The technical reason why the decompactification limit can be taken is that in uni-
form light-cone gauge the length of the string L = P− is equal to the total momen-
tum conjugate to x−, see (2.19). The momentum P− enters the light-cone Hamiltonian
only through the integration limits for the worldsheet coordinate σ, therefore sending
P− →∞ has really just the effect of decompactifying the cylinder.

The light-cone Hamiltonian is expressed in terms of the target-space charges asE−J .
This means that in order to get configurations with finite worldsheet energy, we should
take both E and J to be large, in such a way that their difference is finite.

2.3.1 Large tension expansion

In [122] Berenstein, Maldacena and Nastase (BMN) showed that there exists a limit of
AdSn×Sn spaces that reproduces plane-wave geometries. For the σ-model on AdS5×S5

this matches the plane-wave background of [123, 124]. In the light-cone gauge-fixed
theory, this limit is equivalent to the usual expansion in powers of fields truncated at
leading order. In this section we want to look at the “near-BMN limit”, where we take
this expansion beyond the leading order.

In fact, in our case we can look at it as a large-tension expansion. To implement it
one has to rescale the worldsheet coordinate σ → gσ and then the bosonic and fermionic
fields as

Xµ → 1
√
g
Xµ , pµ →

1
√
g
pµ , ΘI →

1
√
g

ΘI . (2.38)

In the action, inverse powers of the string tension g organise the contributions at different
powers in the fields

Sg.f. =

∫ ∞
−∞

dτdσ

(
L2 +

1

g
L4 +

1

g2
L6 + · · ·

)
. (2.39)

Here Ln is the contribution to the Lagrangian containing n powers of the physical fields.
Using (2.36), at lowest order we find simply

L2 = pµẊ
µ + i Θ̄IΓ0Θ̇I −H2. (2.40)
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The first two terms define a canonical Poisson structure for bosons and fermions6.
The form of the quadratic Hamiltonian depends on the specific theory considered.

For the case of AdS5×S5 (this will be true also for its η-deformations),H2 is the Hamilto-
nian for eight free massive bosons and eight free massive fermions, see Section 6.3.1. For
the case of AdS3×S3×T4 we find instead a collection of four bosons and four fermions
that are massive, plus four bosons and four fermions that are massless, see Section 3.1.2.
The massless fields are a consequence of the presence of the four-dimensional torus in
the background.

The higher order contributions to the Lagrangian define the interactions of the fields,
which are organised in inverse powers of the string tension g.

We notice that under this rescaling of the physical fields, the quantity x′− that solves
the constraint C1 in (2.35) has the form

x′− = −1

g

(
pµX

′µ + i Θ̄IΓ0Θ′I
)

+O(1/g2) , (2.41)

and the leading contribution is at order 1/g. Let us now discuss quantisation of the
model.

2.3.2 Perturbative quantisation

Here we address the quantisation of the two-dimensional quantum field theory that we
find on the worldsheet after the gauge-fixing and the decompactification limit. Assum-
ing that a canonical Poisson structure for both bosons and fermions of the classical the-
ory was achieved, in the quantised theory we can write equal-time commutation and
anti-commutation relations

[Xµ(σ, τ), pν(σ′, τ)] = i δµν δ(σ − σ′) , {Θa(σ, τ),Θ†b(σ
′, τ)} = δ

a
b δ(σ − σ

′) . (2.42)

Here a, b are indices that span all the eight complex fermionic degrees of freedom, re-
maining after gauge fixing. One may introduce oscillators for the bosonic fields

Xµ(σ, τ) =
1√
2π

∫
dp

1√
2ω(p)

(
eipσaµ(p, τ) + e−ipσaµ†(p, τ)

)
,

pµ(σ, τ) =
1√
2π

∫
dp

i

2

√
2ω(p)

(
e−ipσa†µ(p, τ)− eipσaµ(p, τ)

)
,

(2.43)

in such a way that the creation and annihilation operators satisfy canonical commutation
relations

[aµ(p, τ), a†ν(p′, τ)] = δµν δ(p− p′) . (2.44)

The explicit form of the frequency ω(p) is dictated by the quadratic Hamiltonian H2.
Similarly, for fermions we may write

Θa(σ, τ) =
ei φa√

2π

∫
dp√
ω(p)

(
eipσf(p) aa(p, τ) + e−ipσg(p) aa†(p, τ)

)
, (2.45)

6The kinetic term for fermions comes from the term i
2
pM Θ̄IΓM Θ̇I = i

2
p+Θ̄I [(1 − a)Γt + aΓφ]Θ̇ +

i
2
p−Θ̄I [−Γt + Γφ]Θ̇ in (2.34), where Gamma matrices along transverse directions do not contribute thanks to

the gauge-fixing for fermions (2.29). At leading order we have to consider just the contribution of p− = 1, and
we assume that e0t ∼ 1, e5φ ∼ 1 expanding in transverse bosons.
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where we have the freedom of choosing a phase φa, and we have introduced the wave-
function parameters f(p), g(p). The creation and annihilation operators satisfy canonical
anti-commutation relations

{aa(p, τ), a†b(p
′, τ)} = δ

a
b δ(p− p

′) , (2.46)

if these functions satisfy7

f2(p) + g2(p) = ω(p) ,
f(−p)g(−p)
ω(−p)

= −f(p)g(p)

ω(p)
. (2.47)

For simplicity, let us collect all bosonic and fermionic oscillators together and label them
by k = (µ, a). The time evolution for these operators is dictated by

ȧk(p, τ) = i [H(a†, a), ak(p, τ)] , (2.48)

and similarly for creation operators. Here H(a†, a) is the full Hamiltonian written in
terms of the oscillators. Because of the complicated nature of the interactions, one prefers
to formulate the problem in terms of scattering.

We do not try to describe interactions at any time τ , but rather we focus on the in-
and out-operators that evolve freely and coincide with the ones of the interacting theory
at τ = −∞ and τ = +∞

a|τ=−∞ = ain|τ=−∞ , a|τ=+∞ = aout|τ=+∞ . (2.49)

They create in- and out-states

|p1, p2, . . . , pn〉ink1,k2,...,kn
= a†in,k1

(p1) · · · a†in,kn(pn) |0〉 ,

|p1, p2, . . . , pn〉out
k1,k2,...,kn

= a†out,k1
(p1) · · · a†out,kn(pn) |0〉 ,

(2.50)

from the vacuum |0〉, which is killed by annihilation operators. These operators are
particularly simple because by definition interactions are switched off

ȧkin(p, τ) = i [H2(a†in, ain), akin(p, τ)] ,

ȧkout(p, τ) = i [H2(a†out, aout), a
k
out(p, τ)] ,

(2.51)

meaning that their time evolution is dictated just by the quadratic Hamiltonian H2.
Since we want all pairs of creation and annihilation operators (a†in, ain),(a†out, aout) and

(a†, a) to satisfy canonical commutation relations, they all must be related by unitarity
operators. In particular, in- and out-operators are related to the interacting operators by

a(p, τ) = U†in(τ) · ain(p, τ) · Uin(τ) ,

a(p, τ) = Uout(τ) · aout(p, τ) · U†out(τ) ,
(2.52)

where we require Uin(τ = −∞) = 1, Uout(τ = +∞) = 1 to respect the boundary condi-
tions (2.49). The unitary operator that we call S is actually the most interesting of them,
as it relates in- and out-operators

ain(p, τ) = S · aout(p, τ) · S† , S |0〉 = |0〉 . (2.53)

7Typically one also sets f2(p) − g2(p) = m, so that Θ†IΘI in H2 generates a mass term written for the
oscillators a, a† multiplied by the mass m.
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From this definition we have that the map between in- and out-states is given by the
S-matrix

|p1, p2, . . . , pn〉ink1,k2,...,kn
= S |p1, p2, . . . , pn〉out

k1,k2,...,kn
, (2.54)

and consistency of the above relations implies

S = Uin(τ) · Uout(τ). (2.55)

Let us mention that the time dependence on the right hand side is only apparent; in
fact, the in- and out-operators are free and evolve with the same time dependence, that
cancels. This means that we may evaluate the expression at any preferred value of τ .
The three unitary operators are determined by imposing that the time evolutions (2.48)
and (2.51) are respected. For Uin,Uout one can check that

Uin(τ) = T exp
(
−i
∫ τ

−∞
dτ ′ V

(
a†in(τ ′), ain(τ ′)

))
,

Uout(τ) = T exp
(
−i
∫ +∞

τ

dτ ′ V
(
a†out(τ

′), aout(τ
′)
))

,

(2.56)

solves the desired equations, where we have introduced the potential V = H−H2, and
T exp is the time-ordered exponential. For evaluating the S-matrix we can use the fact
that boundary conditions simplify the formulae and write two equivalent results

S = Uin(+∞) = T exp
(
−i
∫ ∞
−∞

dτ ′ V
(
a†in(τ ′), ain(τ ′)

))
,

= Uout(−∞) = T exp
(
−i
∫ ∞
−∞

dτ ′ V
(
a†out(τ

′), aout(τ
′)
))

.

(2.57)

We conclude pointing out that perturbation theory is a useful tool to compute the scat-
tering processes. We get approximate and simpler results if we define the T-matrix as

S = 1 +
i

g
T , (2.58)

and we take the large-tension expansion of (2.57). At leading order we obtain

T = −g
∫ ∞
−∞

dτ ′ V(τ ′) + . . . , (2.59)

where V = 1/gH4 + O(1/g2). We then recover the known fact that the quartic Hamil-
tonian provides the 2 → 2 tree-level scattering elements. Subleading contributions in
inverse powers of g for the matrix T will give the quantum corrections for the 2 → 2
scattering processes. In the next chapter we show how in some cases non-perturbative
methods may be used to account for quantum corrections to all orders.



Chapter 3

Symmetries of AdS3×S3×T4

In this chapter we study the 1+1-dimensional model that emerges as a description for
strings on the AdS3×S3×T4 background, after fixing light-cone gauge on the worldsheet
and taking the decompactification limit. The symmetry algebra of the original model—
the isometries of this background are given by psu(1, 1|2)L ⊕ psu(1, 1|2)R—is broken to a
smaller algebra under the gauge-fixing procedure explained in Chapter 2. The genera-
tors that commute with the light-cone Hamiltonian close into the superalgebra that we
call A. The explicit commutation relations are presented in the next section. Here it is
enough to say that the vector space underlying A can be decomposed as

psu(1|1)4 ⊕ u(1)2 ⊕ so(4)⊕ u(1)2 .

The four copies of psu(1|1) provide a total of eight real supercharges. As it can be seen
in (3.1), their anti-commutators yield the u(1) central charges corresponding to the light-
cone Hamiltonian H and an angular momentum M in AdS3×S3. The so(4) symme-
try is present only in the decompactification limit, where we have to consider the zero-
winding sector for the torus and use vanishing boundary conditions for the worldsheet
fields. This so(4) may be decomposed into su(2)• ⊕ su(2)◦, to show more conveniently
that the supercharges transform in doublets of su(2)•, and are not charged under su(2)◦.

Let us introduce some terminology and say that on-shell—when we consider states
for which the total worldsheet momentum vanishes—these are the only generators ap-
pearing. Going off-shell we relax the condition on the momentum and we getA, a central
extension of the on-shell algebra. The two new u(1) generators C,C measure the mo-
mentum of the state and play a major role in the whole construction.

For the reader’s convenience, we start by presenting the commutation relations defin-
ing the algebra A, and we explain how to rewrite its generators in terms of the ele-
ments of a smaller superalgebra, namely su(1|1)2

c.e.. The explicitly form of the charges
at quadratic order in the fields permits, on the one hand, to check the closure under the
correct commutation relations. On the other hand, it suffices to derive the exact mo-
mentum dependence of the eigenvalues of the central charges C,C . We also study the
representations of A under which the worldsheet excitations are organised, first in the
near-BMN limit and then to all-loops. We also rewrite them as bi-fundamental represen-
tations of su(1|1)2

c.e., and we show that we can define a discrete “Left-Right symmetry”
that will be crucial for constructing the S-matrix in the next chapter. We conclude with

29
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an explicit parameterisation of the action of the charges, as a function of the momenta of
the worldsheet excitations. We collect in an appendix the calculations of the gauge-fixed
action needed to obtain these results.

3.1 Off-shell symmetry algebra of AdS3×S3×T4

To accustom the reader to the symmetry algebraA derived in [4], we start by introducing
the notation for the bosonic and fermionic charges, and we present the (anti)commutation
relations that they satisfy. To begin we have the anti-commutators

{Q ȧ
L ,QLḃ} =

1

2
δȧ
ḃ

(H + M), {Q ȧ
L ,QRḃ} = δȧ

ḃ
C,

{QRȧ,Q
ḃ

R } =
1

2
δ ḃȧ (H−M), {QLȧ,Q

ḃ
R } = δ ḃȧ C.

(3.1)

Here H,M,C,C are central elements of the algebra. The charge H corresponds to the
Hamiltonian, and M to a combination of angular momenta in AdS3×S3. The charges
C,C are related by complex conjugation and they appear only after relaxing the level
matching condition, see Chapter 2. If we set C = C = 0 we remove the central extension,
and the two copies Left (L) and Right (R) of the algebra decouple.

The supercharges are denoted by Q and the bar means complex conjugation. The
labels L or R are inherited from the superisometry algebra psu(1, 1|2)L ⊕ psu(1, 1|2)R,
where they refer to the chirality in the dual CFT2. The supercharges transform under the
fundamental and anti-fundamental representations of su(2)•, whose indices are denoted
by ȧ = 1, 2

[J•ȧ
ḃ,Qċ] = δḃċQȧ −

1

2
δ ḃȧ Qċ, [J•ȧ

ḃ,Qċ] = −δ ċȧ Qḃ +
1

2
δ ḃȧ Qċ. (3.2)

Here J•ȧ
ḃ denotes the generators of su(2)•. Together with the generators J◦a

b of su(2)◦—
under which the supercharges are not charged—they span the algebra so(4) = su(2)• ⊕
su(2)◦

[J•ȧ
ḃ,J•ċ

ḋ] = δḃċ J•ȧ
ḋ − δḋȧ J•ċ

ḃ, [J◦a
b,J◦c

d] = δbc J◦a
d − δda J◦c

b. (3.3)

The whole set of (anti-)commutation relations defines the algebraA, that we continue to
study in more detail in the rest of the chapter.

3.1.1 The symmetry algebra as a tensor product

Focusing on the subalgebra psu(1|1)4
c.e. ⊂ A, it is convenient to rewrite its generators—

namely the supercharges and the central charges—in terms of generators of a smaller
algebra,1 that we call su(1|1)2

c.e.. Let us start from su(1|1)2 = su(1|1)L ⊕ su(1|1)R, defined

1This possibility has a counterpart in the case of AdS5×S5, where the generators that commute with the
light-cone Hamiltonian close into two copies of su(2|2)c.e. [33]. The S-matrix may be then written as a tensor
product of two su(2|2)c.e.-invariant S-matrices. In Section 4.2.2 we will show how in the case of AdS3×S3×T4

we may rewrite an S-matrix compatible with psu(1|1)4
c.e. ⊂ A as a tensor product of two su(1|1)2

c.e.-invariant
S-matrices.
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as the sum of two copies of su(1|1) labelled by L and R

{QL,QL} = HL, {QR,QR} = HR. (3.4)

A central extension of this is the algebra su(1|1)2
c.e. that we want to consider. The two new

central elements C,C appear on the right hand side of the following anti-commutators
mixing L and R [7]

{QL,QR} = C , {QL,QR} = C . (3.5)

It is now easy to see that the supercharges of psu(1|1)4 appearing in the previous subsec-
tion may be constructed via the elements of su(1|1)2

c.e.. Intuitively, we identify the su(2)•
index “1” with the first space in a tensor product, and the index “2” with the second
space2 and we write

Q 1
L = QL ⊗ 1, QL1 = QL ⊗ 1, Q 2

L = Σ⊗QL, QL2 = Σ⊗QL,

QR1 = QR ⊗ 1, Q 1
R = QR ⊗ 1, QR2 = Σ⊗QR, Q 2

R = Σ⊗QR.
(3.6)

The matrix Σ is defined as the diagonal matrix taking value +1 on bosons and −1 on
fermions. In this way we can take into account the odd nature of the supercharges while
using the ordinary tensor product ⊗. Following the same rule, for the central elements
we first define

H 1
L = HL ⊗ 1, H 2

L = 1⊗HL, C1 = C⊗ 1, C2 = 1⊗ C,
H 1

R = HR ⊗ 1, H 2
R = 1⊗HR, C1 = C⊗ 1, C2 = 1⊗ C.

(3.7)

To reproduce the property that these generators are not charged under the su(2)• algebra,
we identify the charges in the two spaces as

HL ≡ H 1
L = H 2

L , HR ≡ H 1
R = H 2

R , C ≡ C1 = C2, C ≡ C1 = C2. (3.8)

Another consequence of this requirement is that the above generators become propor-
tional to the identity operator on irreducible representations.

Using these identifications and the anti-commutation relations (3.4)-(3.5), one can
check that the anti-commutation relations (3.1) of psu(1|1)4

c.e. are satisfied, where we have

H = HL + HR, M = HL −HR . (3.9)

The tensor product construction presented here will be particularly useful when study-
ing the representations of the algebra A, and we refer to Section 3.2.3 for further details.

3.1.2 Charges quadratic in the fields

We present the expressions for the bosonic and fermionic conserved charges that en-
ter the superalgebra A, as derived from the worldsheet Lagrangian. We refer to Ap-
pendix B.1 for notation, and for the calculations of the gauged-fixed action following

2It is important to make this identification when Left supercharges have an upper su(2)• index, while for
Right supercharges the index is lower. In fact, for this rewriting to work, if Left supercharges transform in the
anti-fundamental representation of su(2)•, then Right supercharges have to transform in the fundamental—or
viceversa. Hermitian conjugation swaps fundamental and anti-fundamental representations.
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the general explanation of Chapter 2. We parameterise the transverse directions of AdS3

with complex coordinates Z, Z̄ and the transverse directions of S3 with Y, Ȳ , such that
Z† = Z̄, Y † = Ȳ . The directions on T4 are denoted by X ȧa. The index ȧ = 1, 2 cor-
responds to su(2)•, while a = 1, 2 to su(2)◦. The reality condition on these bosons is
(X11)† = X22, (X12)† = −X21.

Half of the fermions are denoted with the letter η and carry a label L or R. Being
charged under su(2)• they carry also an index ȧ = 1, 2. The other half of the fermions
are denoted with the letter χ and are equipped with a label + or − and the su(2)◦ index
a = 1, 2. In both cases a bar means charge conjugation. Later we show that the former
are massive, the latter are massless.

At quadratic order in the transverse fields3, the light-cone Hamiltonian H and the
angular momentum M are

H =

∫
dσ

(
2PZ̄PZ +

1

2
Z̄Z +

1

2
Z̄ ′Z ′ + 2PȲ PY +

1

2
Ȳ Y +

1

2
Ȳ ′Y ′

+ η̄Lȧη
ȧ

L + η̄ ȧR ηRȧ + η ȧL η
′
Rȧ − η̄ ȧR η̄′Lȧ

+ PȧaP
ȧa +

1

4
X ′ȧaX

ȧa′ + χ a
+χ
′
−a − χ̄ a

− χ̄
′
+a

)
,

(3.10)

M =

∫
dσ

(
iPZ̄Z − iPZZ̄ + iPȲ Y − iPY Ȳ + η̄Lȧη

ȧ
L − η̄ ȧR ηRȧ

)
. (3.11)

The Hamiltonian shows that the fields Z, Z̄, Y, Ȳ parameterising AdS and the sphere are
massive, with mass equal to 1 in our units. They are accompanied by fermions η with
the same value of the mass. The fields X ȧa that parameterise the torus are massless,
as well as the fermions denoted by χ. Taking the Poisson bracket of a given charge
with the various fields we may discover its action on them. In particular, when we do
it for the angular momentum M—a central element of the algebra—we discover that
it takes eigenvalues ±1 for massive fields, and 0 for massless fields. We learn that the
representation of A is reducible.

The knowledge of the supercharges allows us to compute the central charges C,C
exactly in the string tension g. In order to do that, one has to keep exact expressions
involving the light-cone coordinate x−, that carries the information about the worldsheet
momentum as showed in Chapter 2. On the other hand, we might want to perform an
expansion in transverse fields, and we actually decide to stop the expansion at quadratic
order. This is preferable from the point of view of the presentation, and it is enough for

3In this section we use bold face notation also for the charges written in terms of the fields.
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our purposes4. In this hybrid expansion, the supercharges read as

Q ȧ
L =

e−
π
4 i

2

∫
dσ e

i
2 x
−

(
2PZη

ȧ
L − iZ ′η̄ ȧR + iZη ȧL − εȧḃ

(
2iPȲ η̄Lḃ − Ȳ

′η
Rḃ + Ȳ η̄

Lḃ

)
− 2εȧḃPḃaχ

a
+ − i(X ȧa)′ χ̄−a

)
,

QRȧ =
e−

π
4 i

2

∫
dσ e

i
2 x
−

(
2PZ̄ηRȧ − iZ̄ ′η̄Lȧ + iZ̄ηRȧ + εȧḃ

(
2iPY η̄

ḃ
R − Y ′η ḃL + Y η̄ ḃR

)
+ 2Pȧaχ

a
− − iεȧḃ(X

ḃa)′ χ̄+a

)
,

(3.12)
while their Hermitian conjugates are found directly by

QLȧ = (Q ȧ
L )†, Q ȧ

R = (QRȧ)†. (3.13)

Using the canonical (anti-)commutation relations for the fields as in Appendix B.1, one
finds that the above supercharges indeed close into the algebra A defined by (3.1).

We now want to derive the form of the generators C,C introduced by the central
extension. Their exact eigenvalues are found thanks to the hybrid expansion of the su-
percharges, where expressions in x− have been kept exactly. In fact it is this light-cone
coordinate that carries information on the worldsheet momentum, as it can be seen from
the Virasoro constraints in Chapter 2. Computing, for example, {Q 1

L ,QR1} one finds5

C = − i
4

∫
dσ ei x

−

[
− 2i

(
PZZ̄

′ + PZ̄Z
′ + PY Ȳ

′ + PȲ Y
′ + PȧaX

ȧa′
)

+ ∂σ(Z̄Z + Ȳ Y +XȧaX
ȧa) + . . .

]

=
g

2

∫
dσ ei x

−
(x′− + total derivative) ,

(3.14)

where we have used the relation (2.41) that solves one of the Virasoro conditions, and
we have dropped a total derivative term. The combination that appears is particularly
nice and can be integrated as

− ig
2

∫ +∞

−∞
dσ

d

dσ
ei x
−

= − ig
2

(
ei x
−(+∞) − ei x

−(−∞)
)

= − ig
2
ei x
−(−∞)(eipws−1). (3.15)

Here g is the string tension. To be more general, from now on we write this result in terms
of a new effective coupling h(g), that may be identified with g in the semiclassical regime

4For expressions at quartic order—in particular at first order in fermions and third order in bosons— we
refer to [5].

5When we compute the anti-commutator of a Left and a Right supercharge, we should keep only terms at
order zero in the transverse fermions, as higher order terms mix with fermionic corrections to the supercharges
that we have dropped. This approximation does not prevent to find the result, since C is a central element and
the knowledge of its eigenvalue on bosonic fields is enough.
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h ∼ g. These central charges may be then written in terms of the charge P measuring
the worldsheet momentum as

C = +
ih

2
(e+iP − 1), C = − ih

2
(e−iP − 1) , (3.16)

where we have fixed a normalisation for ei x
−(−∞). This is the key result that will allow

us to find the exact S-matrix in Chapter 4. It is worth stressing that with this computa-
tion we were able to fix the exact momentum dependence of these central charges, and
one may take into account higher order corrections in power of fields to check that the
dependence is not modified. This derivation is classical, and it would be interesting to
explicitly show that the result is solid under quantum corrections, at least at the leading
orders in the near-BMN limit.

The eigenvalues of the central charges C,C that we have found match with those
computed in the case of AdS5×S5 [33]. In the context of AdS5/CFT4, these central
charges appear also in the construction of the gauge theory side, with exactly the same
eigenvalues [21]. This fact was a strong suggestion that they are not modified by quan-
tum corrections. We will assume that also in the case of AdS3×S3×T4 quantum correc-
tions do not spoil the result found with the classical computation presented above.

3.2 Representations of the off-shell symmetry algebra

In this section we want to study the representations of the off-shell symmetry algebra A
that are relevant for AdS3×S3×T4. For simplicity we start by considering the near-BMN
limit introduced in Section 2.3.1, and then we explain how we can extend the results to
all-loops. We further study these representations and we provide a parameterisation in
terms of the momentum of the excitation.

3.2.1 Near-BMN limit

We start by considering the near-BMN limit, where we truncate the charges at the quadratic
order in the fields. For the supercharges this means also that we will ignore the factor
ei x− in (3.12). Introducing creation and annihilation operators, we rewrite the charges
in momentum space and discuss the representations under which the excitations trans-
form. For the explicit map between fields and oscillators we refer to Appendix B.2. The
tables below summarise the notation for the annihilation operators that we use. Creation
operators are denoted with a dagger. We have bosonic ladder operators a carrying a la-
bel z or y, to distinguish excitations on AdS or the sphere respectively, and a label L or R.
As anticipated in the previous section, they create massive excitations on the worldsheet.
The labels L,R appear also for the ladder operators d of massive fermions, that also carry
a su(2)• index. For bosons of T4, creation and annihilation operators will carry two in-
dices, as they are charged under su(2)• and su(2)◦. They are massless excitations, and
together with them we find also massless fermions, whose ladder operators d, d̃ carry
just an su(2)◦ index.

Bosons:
AdS3 S3 T4

aLz , aRz aLy , aRy aȧa
Fermions:

massive massless

dL,ȧ, dR
ȧ da, d̃a
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When acting on the vacuum, we create the eight massive states that we denote as

|ZL,R〉 = a†L,R z |0〉 , |Y L,R〉 = a†L,R y |0〉 , |ηLȧ〉 = d ȧ†L |0〉 , |ηR
ȧ〉 = d†Rȧ |0〉 , (3.17)

and the eight massless ones

|T ȧa〉 = aȧa† |0〉 , |χa〉 = da † |0〉 , |χ̃a〉 = d̃a † |0〉 . (3.18)

The notation that we introduce here for states in the near-BMN limit is the same one
that we will use for the exact representations, starting in Section 3.2.2. In terms of ladder
operators, the central charges are written as

H =

∫
dp

[
ωp

(
a†LzaLz + a†LyaLy + a†RzaRz + a†RyaRy + d ȧ †L dLȧ + d†Rȧd

ȧ
R

)
+ ω̃p

(
aȧa†aȧa + da †da + d̃a †d̃a

)]
,

M =

∫
dp

[
a†LzaLz + a†LyaLy + d ȧ †L dLȧ −

(
a†RzaRz + a†RyaRy + d†Rȧd

ȧ
R

)]
,

C = −1

2

∫
dp p

[
a†LzaLz + a†LyaLy + a†RzaRz + a†RyaRy + d ȧ †L dLȧ + d†Rȧd

ȧ
R

+ aȧa†aȧa + da †da + d̃a †d̃a

]
.

(3.19)

As expected, in the near-BMN limit the frequencies for massive (ωp =
√

1 + p2) and
massless excitations (ω̃p = |p|) show a relativistic dispersion relation. We will see later
how this is deformed by the h-dependence, see (3.23). In the near-BMN limit, the el-
ement introduced by the central extension is essentially just the charge measuring the
worldsheet momentum C ∼ − 1

2P.
The quadratic supercharges of Eq. (3.12) take the form

Q ȧ
L =

∫
dp

[
fp(d

ȧ †
L aLy + εȧḃ a†LzdLḃ) + gp(a

†
Ryd

ȧ
R + εȧḃ d†

Rḃ
aRz)

+ f̃p

(
εȧḃ d̃a †aḃa + aȧa †da

)]
,

QRȧ =

∫
dp

[
fp(d

†
RȧaRy − εȧḃ a

†
Rzd

ḃ
R ) + gp(a

†
LydLȧ − εȧḃ d

ḃ †
L aLz)

+ g̃p

(
da †aȧa − εȧḃ a

ḃa †d̃a

)]
.

(3.20)

Here we have introduced the functions fp, gp and f̃p, g̃p for massive and massless excita-
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tions respectively, defined by

fp =

√
1 + ωp

2
, gp = − p

2fp
,

f̃p =

√
ω̃p
2
, g̃p = − p

2f̃p
.

(3.21)

The action of the bosonic and the fermionic charges on the states of Equation (3.17)
and (3.18) define the representation under which the excitations of AdS3×S3×T4 are
organised.

It is clear this representation is reducible. We find three irreducible representations,
that may be labelled by the eigenvalue m of the central charge M: m = +1 for Left
massive, m = −1 for Right massive, and m = 0 for massless excitations.

3.2.2 All-loop representations

The study of the charges at quadratic level allowed for the understanding of the rep-
resentations at the near-BMN order. We now want to go beyond this limit and write
down representations that are supposed to be valid to all loops. In particular we want to
reproduce the full non-linear momentum dependence of the charge C, as in Eq. (3.16).
Doing so we discover that the dispersion relation is modified, and for generic h it is not
relativistic. The results rely on the assumption that the eigenvalues of the central charges
C,C derived from the classical computation remain unmodified at the quantum level.
As already pointed out, the main motivation for believing this is the fact that the same
central charges were found on both sides of the AdS5/CFT4 dual pair [21, 33].

The key point of the construction is that each of the irreducible representations found
in the near-BMN limit—Left-massive, Right-massive and massless—is a short represen-
tation of psu(1|1)4

c.e.. Even beyond the near-BMN limit the dimensionality remains the
same, and they remain to be short. A generic short representation satisfies the important
constraint relating the central charges6

H2 = M2 + 4CC , (3.22)

called shortening condition. It allows us to solve immediately for the eigenvalue Ep of the
Hamiltonian H, in terms of the eigenvalues m and ih

2 (ei p − 1) of M and C, yielding

Ep =

√
m2 + 4h2 sin2 p

2
. (3.23)

This result is particularly important because it states what is the energy of a fundamental
worldsheet excitation at a generic value of h. For this reason it is often referred to as the
all-loop dispersion relation. M measures an angular momentum, and its eigenvalue will
continue to take the integer values m = +1,−1, 0. In other words it does not depend on
h and p even beyond the near-BMN limit.

6This equation is a consequence of the fact that in a short representation a highest weight state—defined
as being annihilated by the raising operators QLȧ,Q

ȧ
R —is annihilated also by a particular combination of

lowering operators 1
2

(H−M)Q ȧ
L −CQRȧ. Then the vanishing of the anti-commutator {QLȧ,

1
2

(H−M)Q ȧ
L −

CQRȧ} yields the desired constraint on the central elements.
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|Y L〉

|ηL1〉 |ηL2〉

|ZL〉

Q 1
L ,Q

1
R

QL1,QR1

QL2,QR2

Q 2
L ,Q

2
R

J ḃ
•ȧ

|ZR〉

|ηR
2〉 |ηR

1〉

|Y R〉

Q 1
L ,Q

1
R

QL1,QR1

QL2,QR2

Q 2
L ,Q

2
R

J ḃ
•ȧ

Figure 3.1: The Left and Right massive modules. The supercharges indicated explicitly correspond
to the outer arrows only. The two massive fermions within each module are related by su(2)•
ladder operators.

We now proceed with the discussion on the exact representations by presenting the
action of the supercharges on the states. The result is written in terms of the coefficients
ap, āp, bp, b̄p, that will be fixed in Section 3.2.5 by requiring that we reproduce the eigen-
values (3.16) and (3.23) of the central charges, and that we match with the results in the
near-BMN limit once we rescale the momentum p→ p/h and send h→∞. We show the
action of the supercharges separately for each of the irreducible modules.

Massive representations The Left and Right modules are depicted in Figure 3.1. Each
of them has the shape of a square, where supercharges connect adjacent corners. The
two corners hosting the fermions are related by su(2)• generators. More explicitly, the
action of the supercharges on the Left module is

Q ȧ
L |Y L

p 〉 = ap |ηLȧ
p 〉 , Q ȧ

L |ηLḃ
p 〉 = εȧḃ ap |ZL

p〉 ,

QLȧ |ZL
p〉 = −εȧḃ āp |η

Lḃ
p 〉 , QLȧ |ηLḃ

p 〉 = δ ḃȧ āp |Y L
p 〉 ,

QRȧ |ZL
p〉 = −εȧḃ bp |η

Lḃ
p 〉 , QRȧ |ηLḃ

p 〉 = δ ḃȧ bp |Y L
p 〉 ,

Q ȧ
R |Y L

p 〉 = b̄p |ηLȧ
p 〉 , Q ȧ

R |ηLḃ
p 〉 = εȧḃ b̄p |ZL

p〉 .

(3.24)

As it is clear also from the picture, if we define QL1,QR1 to be our raising operators, then
the bosonic excitation |Y L〉 of the sphere is the highest weight state of this module. For
the Right module the situation is different, as the highest weight state is the bosonic
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|χ1〉

|T 11〉 |T 21〉

|χ̃1〉

Q 1
L ,Q

1
R

Q 2
L ,Q

2
R

J ḃ
•ȧ

|χ2〉

|T 12〉 |T 22〉

|χ̃2〉

QL1,QR1

QL2,QR2

J b
◦a

Figure 3.2: The massless module. It is composed of two short representations of psu(1|1)4
c.e. that

are connected by the action of the su(2)◦ generators.

excitation |ZR〉 of AdS. The action of the supercharges in this case is7

Q ȧ
L |ZR

p〉 = bp |ηRȧ
p 〉 , Q ȧ

L |ηRḃ
p 〉 = −εȧḃ bp |Y R

p 〉 ,

QLȧ |Y R
p 〉 = εȧḃ b̄p |η

Rḃ
p 〉 , QLȧ |ηRḃ

p 〉 = δ ḃȧ b̄p |ZR
p〉 ,

QRȧ |Y R
p 〉 = εȧḃ ap |η

Rḃ
p 〉 , QRȧ |ηRḃ

p 〉 = δ ḃȧ ap |ZR
p〉 ,

Q ȧ
R |ZR

p〉 = āp |ηRȧ
p 〉 , Q ȧ

R |ηRḃ
p 〉 = −εȧḃ āp |Y R

p 〉 .

(3.25)

The above exact representations reproduce the ones found in the near-BMN limit after
identifying ap ∼ āp ∼ fp and bp ∼ b̄p ∼ gp. When going on-shell one has to set also
bp = b̄p = 0, with the result that only Left (Right) supercharges act non-trivially on Left
(Right) states.

Massless representations Figure 3.2 shows the massless module, with the shape of a
parallelepiped. It is obtained by gluing together two short psu(1|1)4

c.e. representations—
with the shape of a square, like in the case of massive excitations—related by the action
of su(2)◦ generators. The explicit action of the supercharges on the massless module is

Q ȧ
L |T ḃap 〉 = εȧḃap |χ̃ap〉 , Q ȧ

L |χap〉 = ap |T ȧap 〉 ,

QLȧ |χ̃ap〉 = −εȧḃāp |T
ḃa
p 〉 , QLȧ |T ḃap 〉 = δ ḃȧ āp |χap〉 ,

QRȧ |T ḃap 〉 = δ ḃȧ bp |χap〉 , QRȧ |χ̃ap〉 = −εȧḃbp |T
ḃa
p 〉 ,

Q ȧ
R |χap〉 = b̄p |T ȧap 〉 , Q ȧ

R |T ḃap 〉 = εȧḃb̄p |χ̃ap〉 .

(3.26)

7Although we have defined Right fermions with a lower su(2)• index in Eq. (3.17), here we prefer to raise
it, to avoid collision with the label for the momentum of the excitation. We raise su(2) indices with the help of
εȧḃ.
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|φL〉

|ψL〉

QL,QR

%L

|ψR〉

|φR〉

QL,QR

%R

|ψ̃L〉

|φ̃L〉

QL,QR

%̃L

|φ̃R〉

|ψ̃R〉

QL,QR

%̃R

Figure 3.3: Short representations of su(1|1)2
c.e.. They differ by the label L or R, and by the grading.

Masslessness of the excitations is encoded in the fact that they are annihilated by M,
which results in a constraint on the representation coefficients8

|ap|2 = |bp|2. (3.27)

To match with the near-BMN limit one has to take ap ∼ āp ∼ f̃p and bp ∼ b̄p ∼ g̃p. Dif-
ferently from the massive case, on-shell all supercharges annihilate massless excitations.

3.2.3 Bi-fundamental representations

In Section 3.1.1 we showed how it is possible to write the psu(1|1)4
c.e. algebra in terms of

su(1|1)2
c.e. generators. In this section we explain how the representations of psu(1|1)4

c.e.
that are relevant for AdS3×S3×T4 can be understood as proper tensor products of repre-
sentations of su(1|1)2

c.e.. The representations that we consider in this section are depicted
in Figure 3.3.

We start by considering a possible short representation of su(1|1)2
c.e. that we call %L.

It has dimension two, with one boson denoted by φL and one fermion denoted by ψL.
It is defined by the following action of the supercharges that satisfy the commutation
relations (3.4)-(3.5)

%L :

QL |φL
p〉 = ap |ψL

p〉 , QL |ψL
p〉 = 0,

QL |φL
p〉 = 0, QL |ψL

p〉 = āp |φL
p〉 ,

QR |φL
p〉 = 0, QR |ψL

p〉 = bp |φL
p〉 ,

QR |φL
p〉 = b̄p |ψL

p〉 , QR |ψL
p〉 = 0.

(3.28)

The choice of the coefficients makes sure that the Left and the Right Hamiltonians are
positive definite. The above equations identify a Left representation, in the sense that on-
shell bp = b̄p = 0 the Right charges annihilate the module. Similarly, one could consider

8We stress that the coefficients ap, āp, bp, b̄p appearing for the massless module are different from the ones
for the massive modules. The dependence on the eigenvalue m is not written explicitly not to burden the
notation.
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a Right representation %R where the role of Left and Right charges is exchanged

%R :

QR |φR
p〉 = ap |ψR

p〉 , QR |ψR
p〉 = 0,

QR |φR
p〉 = 0, QR |ψR

p〉 = āp |φR
p〉 ,

QL |φR
p〉 = 0, QL |ψR

p〉 = bp |φR
p〉 ,

QL |φR
p〉 = b̄p |ψR

p〉 , QL |ψ̄p〉 = 0.

(3.29)

If for lowering operators we conventionally choose the supercharges QL,QR—and for
raising operators QR,QL—then the representations %L and %R are identified by the fact
that the highest weight states are respectively φL and ψR. Other two possible representa-
tions are found by taking the opposite grading of the representations above, namely by
exchanging the role of the boson and the fermion. We call %̃L the Left representation in
which ψL is the highest weight state

%̃L :

QL |ψ̃L
p〉 = ap |φ̃L

p〉 , QL |φ̃L
p〉 = 0,

QL |ψ̃L
p〉 = 0, QL |φ̃L

p〉 = āp |ψ̃L
p〉 ,

QR |ψ̃L
p〉 = 0, QR |φ̃L

p〉 = bp |ψ̃L
p〉 ,

QR |ψ̃L
p〉 = b̄p |φ̃L

p〉 , QR |φ̃L
p〉 = 0,

(3.30)

and similarly %̃R the one in which φR is the highest weight state.
The study of short representations of su(1|1)2

c.e. is useful because the exact represen-
tations relevant for AdS3×S3×T4 are bi-fundamental representations of su(1|1)2

c.e.. It is easy
to check that the Left-massive, the Right-massive and the massless modules correspond
to the following tensor products of representations

Left : %L ⊗ %L, Right : %R ⊗ %R, massless : (%L ⊗ %̃L)
⊕2. (3.31)

For the massless module one has to consider two copies of %L⊗ %̃L, hence the symbol ⊕2.
These two modules transform one into the other under the fundamental representation
of su(2)◦. More precisely, one can identify the massive states as

Y L = φL ⊗ φL, ηL1 = ψL ⊗ φL, ηL2 = φL ⊗ ψL, ZL = ψL ⊗ ψL,

Y R = φR ⊗ φR, ηR
1 = ψR ⊗ φR, ηR

2 = φR ⊗ ψR, ZR = ψR ⊗ ψR,
(3.32)

and the massless ones as

T 1a =
(
ψL ⊗ ψ̃L

)a
, χ̃a =

(
ψL ⊗ φ̃L

)a
, χa =

(
φL ⊗ ψ̃L

)a
, T 2a =

(
φ⊗ φ̃L

)a
. (3.33)

Together with the identification (3.6) for the psu(1|1)4
c.e. charges in terms of the ones

of su(1|1)2
c.e., it is easy to check that we reproduce the action presented in (3.24)-(3.25)

and (3.26).

3.2.4 Left-Right symmetry

The labels L and R appearing in the representations for the massive excitations are in-
herited from the two copies psu(1, 1|2)L ⊕ psu(1, 1|2)R of the symmetry of the string [74].
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It is clear that exchanging the two labels in this case does not produce any difference.
Considering the commutation relations of A in (3.1) we see that they remain invariant
under the map

QL
ȧ ←→ QRȧ, M −→ −M. (3.34)

A Left supercharge with upper su(2)• index is mapped to a Right supercharge with lower
su(2)• index because they transform under the fundamental and anti-fundamental rep-
resentations of su(2)•, respectively. The Left and Right massive modules inherit a similar
Z2 symmetry that we call Left-Right (LR) symmetry. The map here is given by

Y L ←→ Y R, ZL ←→ ZR, ηLȧ ←→ ηR
ȧ. (3.35)

Combining the map for the charges and the one for the states, we find compatibility
for the representations (3.24) and (3.25). This will prove to be extremely useful when
constructing the S-matrix, see Section 3.2.4. At the level of the bi-fundamental repre-
sentations, it is clear that the map above is equivalent to exchanging the labels L and R
in (3.32).

Let us consider the massless representation in (3.26), or its bi-fundamental struc-
ture (3.33). Naı̈vely, it seems that the notion of LR symmetry cannot be extended to this
module, as only Left representations are used for the construction. It turns out that LR
symmetry is naturally implemented, and the resolution is in the masslessness of these
excitations: there exists a momentum-dependent change of basis for the massless states9

|χ̃ap〉 = −ap
bp
|χ̃ap〉 , |χap〉 =

bp
ap
|χap〉 , (3.36)

under which the action of the supercharges becomes

(%R ⊗ %̃R)⊕2 :

Q ȧ
L |T ḃap 〉 = −εȧḃbp |χ̃αp 〉 , Q ȧ

L |χap〉 = bp |T ȧap 〉 ,

QLȧ |χ̃ap〉 = εȧḃb̄p |T
ḃa
p 〉 , QLȧ |T ḃap 〉 = δ ḃȧ b̄p |χap〉 ,

QRȧ |T ḃap 〉 = δ ḃȧ ap |χap〉 , QRȧ |χ̃ap〉 = εȧḃap |T
ḃa
p 〉 ,

Q ȧ
R |χap〉 = āp |T ȧap 〉 , Q ȧ

R |T ḃap 〉 = −εȧḃāp |χ̃ap〉 .

(3.37)

The bi-fundamental structure in this case corresponds to the identifications

T1a =
(
ψR ⊗ ψ̃R

)
a
, χ̃a =

(
φR ⊗ ψ̃R

)
a
, χa =

(
ψR ⊗ φ̃R

)
a
, T2a =

(
φR ⊗ φ̃R

)
a
. (3.38)

This change of basis yields the above representation only when the states are massless,
as we need to use explicitly |ap|2 = |bp|2. It is then clear that a notion of LR symmetry is
present also for the massless module, where we have the rules

|T ȧa〉 ←→ |Tȧa〉 , |χ̃a〉 ←→ +
bp
ap
|χa〉 , |χa〉 ←→ −ap

bp
|χ̃a〉 . (3.39)

It is interesting to note that one might perform also a different rescaling

|χ̃1
p〉 = |χ̃1

p〉 , |χ1
p〉 = |χ1

p〉 , |χ̃2
p〉 = −ap

bp
|χ̃2
p〉 , |χ2

p〉 =
bp
ap
|χ2
p〉 . (3.40)

9Using the parameterisation of the Section 3.2.5 one can check that the rescalings are in fact just a sign,
ap
bp

= −sign
(

sin p
2

)
.
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Doing this, one would get a bi-fundamental structure of the form (%L⊗%̃L)⊕(%R⊗%̃R). Now
both Left and Right representations would be used to construct the massless module,
where Left corresponds to the su(2)• index ȧ = 1 and Right to ȧ = 2. LR symmetry
would be implemented just by swapping the two su(2)• flavors.

3.2.5 Representation coefficients

In the previous section we presented the action of the odd generators ofA on the massive
and massless states. It is written in terms of two complex coefficients ap, bp—depending
on the mometum p of the excitation and the eigenvalue m of the central charge M on the
specific module—and their complex conjugates āp, b̄p. Computing anti-commutators of
supercharges we are able to write the relation between these coefficients and the eigen-
values of the central charges. These are known at any value of the coupling constant,
thanks to the results coming from the explicit worldsheet computation (3.16) and the
shortening condition (3.22)10

M : apāp − bpb̄p = |m| ,

H : apāp + bpb̄p =

√
m2 + 4h2 sin2 p

2
,

C : apbp = h
i

2
(eip − 1) ζ .

(3.41)

Here ζ = e2i ξ is a function that characterises the representation. On one-particle states
it can be taken to be 1, but in Section 4.1 we will show that this is not the case when
constructing two-particle states.

A way to solve the above equations is to introduce the Zhukovski parameters x±,
that satisfy

x+
p +

1

x+
p
− x−p −

1

x−p
=

2i |m|
h

,
x+
p

x−p
= eip. (3.42)

Then we can take the representation coefficients to be

ap = ηpe
iξ, āp = ηp

(
x+
p

x−p

)−1/2

e−iξ, bp = − ηp
x−p

(
x+
p

x−p

)−1/2

eiξ, b̄p = − ηp
x+
p
e−iξ,

(3.43)
where we have introduced the function

ηp =

(
x+
p

x−p

)1/4√
ih

2
(x−p − x+

p ) . (3.44)

This parameterisation coincides with the one of [106]. The constraints on the spectral
parameters x± can be solved by taking

x±p =
e±

ip
2 csc

(
p
2

) (
|m|+

√
m2 + 4h2 sin2

(
p
2

))
2h

, (3.45)

10The eigenvalue of the charge M is denoted by m. In these equations we have the absolute value of m
appearing becuase we get apāp − bpb̄p = m = +1 for Left states and apāp − bpb̄p = −m = +1 for Right
states. On massless states we have apāp − bpb̄p = m = 0.
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where the branch of the square root has been chosen such that |x±p | > 1 for real values
of the momentum p, when we consider massive states |m| > 0. For massless states, we
have simply

x±p = e±
ip
2 , Ep = 2h

∣∣∣sin p
2

∣∣∣ . (3.46)

In the massless case the spectral parameters lie on the unit circle. Similarly to the situa-
tion of massive excitations, the dispersion relation is not relativistic, and now it actually
gets the form of a giant magnon dispersion relation at strong coupling [125].

3.3 Summary

In this chapter we have studied the symmetry algebra that remains after fixing light-
cone gauge for strings on AdS3×S3×T4. We have considered the charges written in
terms of worldsheet fields, and to simplify the computations we have truncated them
at quadratic order in the expansion in powers of fields. We actually used a “hybrid
expansion”, in the sense that the dependence on the light-cone coordinate x− was kept
exact. The coordinate x− is related to the worldsheet momentum through the Virasoro
constraint.

Computing anti-commutators of supercharges we have verified the presence of a cen-
tral extension when we are off-shell, i.e. when we relax the level-matching condition and
we consider states whose total worldsheet momentum is not zero. The hybrid expansion
allowed us to derive the exact momentum-dependence of the central charges.

The computation at the near-BMN order revealed that we have four bosonic and four
fermionic massive excitations, together with four bosonic and four fermionic massless
excitations. The massive excitations correspond to transverse directions in AdS3×S3,
and they are further divided into two irreducible representations—labelled by Left and
Right—of the off-shell symmetry algebra A. Massless modes correspond to excitations
on T4.

We showed that it is possible to deform the near-BMN representations introducing
a dependence on the parameter h—related to the string tension—that reproduces the
exact non-linear momentum dependence of the central charges. We also obtained the
“all-loop dispersion relation” for the worldsheet excitations.

In the next chapter we will use compatibility with the charges constructed here to
bootstrap an all-loop S-matrix.
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Chapter 4

Exact S-matrix for AdS3×S3×T4

The Hamiltonian of the gauge-fixed model living on the worldsheet can, in principle,
be used to compute the S-matrix, responsible for the scattering of the excitations on the
string. To start, the quartic Hamiltonian provides the 2 → 2 scattering elements at tree-
level, and higher corrections may be computed.

In this chapter we want to take a different route. Rather than deriving the S-matrix in
perturbation theory, we use a bootstrap procedure to find it at all values of the coupling
h. This method relies on a crucial assumption, namely that the theory at hand is quantum
integrable. As anticipated in the introduction of Chapter 1, one can prove classical Inte-
grability for strings on AdS3×S3×T4 [74], meaning that there exists an infinite number of
conserved quantities in involution with each other. The assumption is that this property
survives at the quantum level, where we find an infinite set of commuting conserved
charges labelled by nj

[Jn1 ,Jn2 ] = 0.

Two of these are the familiar charges that measure momentum and energy of the state.
The others are called higher charges, and in relativisitic integrable field theories their
eigenvalues typically depend on higher order polynomials in the momenta. In general,
given a state with momentum p, each charge acts simply as Jnj |p〉 = jnj (p) |p〉. We
should appreciate that the situation is very much constrained, as we have at our disposal
an infinite set of independent functions jnj (p).

The consequences of this are important when we consider the scattering problem.
We focus on the in-states prepared at t = −∞ and on the out-states that remain after
the collision at t = +∞. We do not try to describe the details of the scattering when the
particles are close to each other, as the interactions might be very complicated. We define
an object S that we call S-matrix and that relates the inital and final states

S |X c1(p1) . . .X cNin (pNin)〉 = Ac1...cNin
c′1...c

′
Nout

(p1, . . . pNin ; p′1, . . . p
′
Nout

) |X c
′
1(p′1) . . .X c

′
Nout (p′Nout

)〉 .

For a generic quantum field theory, the first requirement that we might want to impose
on this S-matrix is compatibility with symmetries. Additionally, we should also impose
the unitarity condition, to be sure that no state is missing in the description.

The generic problem is very complicated; in fact, creation and annihilation processes
may take place, meaning that interactions might modify the number of particles after

45
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(a)

=

p1 p2 p3

p1p2p3

(b)

=

(c)

Figure 4.1: Parallel lines with the same style correspond to particles having the same momentum.
The vertical axis parameterises time, while the horizontal axis space. The action of the higher
conserved charges allows us to independently move the wave-packets of the excitations that are
scattering. A three-body process like the one in the central figure becomes then equivalent to either
the process depicted in the left or the one in the right. In both cases we get a sequence of two-
body scatterings. Constistency imposes that these two factorisations should be equivalent. This
requirement results in the Yang-Baxter equation, a constraint that the two-body S-matrix should
satisfy.

the scattering. Following Alexander and Alexei Zamolodchikov [126], if in a quantum
integrable model we impose conservation for each of the charges Jn

Nin∑
k=1

jn(pk) =

Nout∑
k=1

jn(p′k), ∀n,

we conclude that the only way to satisfy all these constraints is to conserve under the
scattering

• the number of particles Nin = Nout,

• the set of momenta {p1, . . . , pNin} = {p′1, . . . , p′Nout
}.

The momenta are allowed to be reshuffled under the scattering, but not to change their
values.

Already at this stage we find a problem that is much simpler than what is usually
considered in a generic quantum field theory. The fact that we have higher charges gives
even more powerful consequences than the ones already mentioned, as one can show
that any N -particle scattering is factorisable into a sequence of two-body processes. The
idea is that the action of the higher charges allows us to move independently the wave
packets corresponding to each of the particles that scatter. Thanks to this property, a
three-body process like the one in Figure 4.1b becomes equivalent to either 4.1a or 4.1c.

It is clear that factorisability is possible only if we satisfy the consistency condition
stating that the order of factorisation is unimportant. We then find that the S-matrix has
to satisfy the Yang-Baxter equation

S23 S13 S12 = S12 S13 S23 .
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When the above equation is satisfied, the consistency of factorisation of any N -body
scattering is automatically ensured. To derive any scattering process it is then enough to
know the two-body S-matrix, and this object is indeed the subject of this chapter.

In Section 4.1 we explain how to obtain the action of the charges on two-particle
states. Demanding compatibility with these charges, in Section 4.2 we bootstrap the all-
loop two-body S-matrix. The S-matrix is naturally divided into blocks corresponding
to the various sectors of scattering—massive, massless, mixed-mass. In each sector we
write the S-matrix as a tensor product of two smaller S-matrices, compatible with the ten-
sor product representations of the previous chapter. Taking into account the constraints
coming from unitarity and LR-symmetry, we show that the S-matrix is fixed completely
up to a total of four undetermined scalar function of the momenta, that we call “dressing
factors”. Further contraints on them are imposed by the crossing equations, that we de-
rive. Compatibility with the assumption of factorisation of scattering is confirmed by the
Yang-Baxter equation, that our S-matrix satisfies. Section 4.3 is devoted to the derivation
of the Bethe-Yang equations. We first present the procedure and then write explicitly the
Bethe-Yang equations that we obtain for AdS3×S3×T4.

4.1 Two-particle representations

In this section we study the action of the charges on two-particle states. We will show
that not all the charges are defined via the standard co-product—for some of them this
has to be non-local. Given a charge J acting on a one-particle state |X 〉 as J |X 〉 = |Y〉, the
corresponding charge on two-particle states that we get by using the standard co-product
is

J12 ≡ J⊗ 1 + 1⊗ J, =⇒ J12 |X1X2〉 = |Y1X2〉+ |X1Y2〉 . (4.1)

In case J is an odd charge one has to take care of the signs arising when commuting
with a fermionic state. It is easy to check that the standard co-product cannot be used to
define the action of the central charge C12 on two-particle states [127, 34]. Another way
to phrase this is to say that we cannot set to zero the parameters ξ1 and ξ2 entering the
definition (3.43). Indeed using C = + ih

2 (e+iP − 1) we find

C |X1X2〉 =
ih

2
(e+i(p1+p2) − 1) |X1X2〉 , (4.2)

while using the combined action on one-particle states we get

C |X1X2〉 =
ih

2

(
e2iξ1(e+ip1 − 1) + e2iξ2(e+ip2 − 1)

)
|X1X2〉 . (4.3)

In order to have compatibility of the two results, we cannot set eiξ1 = eiξ2 = 1. If we
require that these factors lie on the unit circle, then we get two possible solutions

{e2iξ1 = 1, e2iξ2 = ei p1}, {e2iξ1 = ei p2 , e2iξ2 = 1}. (4.4)

Both these solutions imply that C12 is defined by a non-local product, as the action on
one of the two states depends on the momentum of the other. In the rest of the chapter
we will choose the first of the above solutions, namely ξ1 = 0, ξ2 = p1/2. This choice
agrees with the one of [106].
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It is obvious that also the action of supercharges on two-particle states is defined by
a non-local co-product, and the exact action is found by replacing the value of ξi in the
definitions of the coefficients ap, āp, bp, b̄p in (3.43). As an explicit example, when we
consider the action of Q 1

L on a two-particle state, we find

Q 1
L (p1, p2) = Q 1

L (p1)⊗ 1 + ei p1/2 Σ⊗Q 1
L (p2) . (4.5)

The matrix Σ takes into account the even or odd grading of the states, and is +1 on
bosons and −1 on fermions. For this reason we can use the ordinary tensor product ⊗.

On the other hand, computing the action of the generators corresponding to the
Hamiltonian H and the angular momentum M, it is clear that the dependence on the
parameters ξi cancels, and the action on two-particle states is just given by the standard
co-product1

H(p1, p2) = H(p1)⊗ 1 + 1⊗H(p2) ,

M(p1, p2) = M(p1)⊗ 1 + 1⊗M(p2) .
(4.6)

The same is true for the su(2)•⊕ su(2)◦ generators, whose action does not depend on the
above coefficients.

We note that a generalisation of this discussion to multi-particle states is possible.
The requirement that C = + ih

2 (e+iP − 1) still holds is fullfilled by taking ξ1 = 0 and
ξi =

∑i−1
j=1 pj/2, for i > 1.

4.2 The S-matrix

In this section we present the explicit form of the exact two-body S-matrix for the world-
sheet excitations of AdS3×S3×T4. This is found by fixing invariance of the S-matrix
under the symmetry algebra A. Depending on convenience, we will use two objects de-
noted by S and S. They are related to each other by a simple permutation in the two
body space2

S = Π S . (4.7)

After constructing the generators on two-particle states as explained in the previous sec-
tion, we impose compatibility as3

S12(p, q) J12(p, q)− J12(q, p)S12(p, q) = 0 ,

S12(p, q) J12(p, q)− J21(q, p) S12(p, q) = 0 .
(4.8)

Invariance under the action of the generators M and H allows us to identify three possi-
ble sectors, that we use to divide the S-matrix:

- the massive sector (••),

- the massless sector (◦◦),

- the mixed-mass sector (•◦, ◦•).

1Although we indicate the momentum dependence in both cases, we remind that the eigenvalue of M is
momentum-independent.

2The object that here is called S is denoted by S in [106].
3The difference between the two is how we apply the charge after the action of the proper S-matrix.
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In each of these sectors the set of masses is conserved under the scattering. In the mixed-
mass sector we have in addition that the mass is transmitted. In other words, the mass
can be thought as a label attached to the momentum of the excitation.

The next generators to consider are the ones of su(2)• ⊕ su(2)◦. Their action is mo-
mentum independent, and compatibility of the S-matrix with them allows us to relate
or set to zero different scattering elements, in such a way that the su(2) structures are
respected.

Another powerful way to constrain the S-matrix is to consider the Z2-symmetry in-
troduced in Section 3.2.4, that we called LR-symmetry. We will then impose that scatter-
ing elements that are related by the rules (3.35) and (3.39) should be the same.

It is considering compatibility with the supercharges that we see the dependence of
the scattering elements on the momenta of the excitations. In particular, this fixes in-
variance under the psu(1|1)4

c.e. subalgebra of A. We will use the fact that fundamental
representations of psu(1|1)4

c.e. can be understood as bi-fundamental representations of
psu(1|1)2

c.e. to rewrite an S-matrix compatible with psu(1|1)4
c.e.-invariance as a proper ten-

sor product of two copies of psu(1|1)2
c.e.-invariant S-matrices. Let us first construct the

relevant S-matrices in this simpler case.

4.2.1 The su(1|1)2c.e.-invariant S-matrices

In Section 3.2.3 we presented the possible fundamental representations of su(1|1)2
c.e., that

we called %L, %R, %̃L, %̃R. They are related by exchanging the labels L and R on the states
and on the supercharges, or by exchanging the role of the boson φ and the fermion ψ
composing the short representation. Using the four possible fundamental representa-
tions one can construct sixteen different two-particle representations. In this section we
discuss only the ones that are relevant for the S-matrix of AdS3×S3×T4, in particular we
start by considering the case in which both particles that scatter belong to the represen-
tation %L. Invariance under the algebra yields an S-matrix SLL of the form [7, 4]

SLL |φL
pφ

L
q〉 = ALL

pq |φL
qφ

L
p〉 , SLL |φL

pψ
L
q〉 = BLL

pq |ψL
qφ

L
p〉+ CLL

pq |φL
qψ

L
p〉 ,

SLL |ψL
pψ

L
q〉 = F LL

pq |ψL
qψ

L
p〉 , SLL |ψL

pφ
L
q〉 = DLL

pq |φL
qψ

L
p〉+ ELL

pq |ψL
qφ

L
p〉 ,

(4.9)

The coefficients appearing are determined up to an overall factor. As a convention we
decide to normalise ALL

pq = 1 and we find

ALL
pq = 1, BLL

pq =

(
x−p

x+
p

)1/2
x+
p − x+

q

x−p − x+
q
,

CLL
pq =

(
x−p

x+
p

x+
q

x−q

)1/2
x−q − x+

q

x−p − x+
q

ηp
ηq
, DLL

pq =

(
x+
q

x−q

)1/2
x−p − x−q
x−p − x+

q
,

ELL
pq =

x−p − x+
p

x−p − x+
q

ηq
ηp
, F LL

pq = −
(
x−p

x+
p

x+
q

x−q

)1/2
x+
p − x−q
x−p − x+

q
.

(4.10)

The result is written in terms of the Zhukovski variables introduced in Section 3.2.5. In
particular the result above holds for any value of the masses |m|—that appear in the
quadratic constraint of (3.42)—of the two particles, and are valid also for scattering of
particles of different masses.
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When considering scattering of two %̃L representations, we find that the result can be
rewritten using the above coefficients. Also in this case the overall normalisation is a
convention and we decide to write it as

S L̃̃L |φ̃L
pφ̃

L
q〉 = −F LL

pq |φ̃L
qφ̃

L
p〉 , S L̃̃L |φ̃L

pψ̃
L
q〉 = DLL

pq |ψ̃L
qφ̃

L
p〉 − ELL

pq |φ̃L
qψ̃

L
p〉 ,

S L̃̃L |ψ̃L
pψ̃

L
q〉 = −ALL

pq |ψ̃L
qψ̃

L
p〉 , S L̃̃L |ψ̃L

pφ̃
L
q〉 = BLL

pq |φ̃L
qψ̃

L
p〉 − CLL

pq |ψ̃L
qφ̃

L
p〉 .

(4.11)

The last Left-Left case that we want to consider—as it will be used to construct the S-
matrix of AdS3×S3×T4—concerns the scattering of %L and %̃L. We write it as

S L̃L |φL
pφ̃

L
q〉 = BLL

pq |φ̃L
qφ

L
p〉 − CLL

pq |ψ̃L
qψ

L
p〉 , S L̃L |φL

pψ̃
L
q〉 = ALL

pq |ψ̃L
qφ

L
p〉 ,

S L̃L |ψL
pψ̃

L
q〉 = −DLL

pq |ψ̃L
qψ

L
p〉+ ELL

pq |φ̃L
qφ

L
p〉 , S L̃L |ψL

pφ̃
L
q〉 = −F LL

pq |φ̃L
qψ

L
p〉 .

(4.12)

In order to complete the discussion and present all the material that is needed to
construct the full S-matrix, we now turn to Left-Right scattering. For the case of two
particles with equal masses, requiring just invariance under the symmetry algebra one
obtains an S-matrix that is a combination of transmission and reflection, where this ter-
minology should be applied to the LR-flavors. Imposing LR-symmetry and unitarity one
finds that only two solutions are allowed, namely pure transmission or pure reflection [7].
Compatibility with perturbative results then forces to choose the pure-transmission S-
matrix, that is the one presented here. Moreover it is only this S-matrix that satisfies
the Yang-Baxter equation. A process involving the representations %L and %R yields an
S-matrix of the form [7, 4]

SLR |φL
pφ

R
q〉 = ALR

pq |φR
qφ

L
p〉+BLR

pq |ψR
qψ

L
p〉 , SLR |φL

pψ
R
q〉 = CLR

pq |ψR
qφ

L
p〉 ,

SLR |ψL
pψ

R
q〉 = ELR

pq |ψR
qψ

L
p〉+ F LR

pq |φR
qφ

L
p〉 , SLR |ψL

pφ
R
q〉 = DLR

pq |φR
qψ

L
p〉 ,

(4.13)

where the scattering elements can be parametrised explicitly by

ALR
pq = ζpq

(
x+
p

x−p

)1/2 1− 1
x+
p x
−
q

1− 1
x−p x

−
q

, BLR
pq = −2i

h

(
x−p

x+
p

x+
q

x−q

)1/2
ηpηq

x−p x
+
q

ζpq

1− 1
x−p x

−
q

,

CLR
pq = ζpq , DLR

pq = ζpq

(
x+
p

x−p

x+
q

x−q

)1/2 1− 1
x+
p x

+
q

1− 1
x−p x

−
q

,

ELR
pq = −ζpq

(
x+
q

x−q

)1/2 1− 1
x−p x

+
q

1− 1
x−p x

−
q

, F LR
pq =

2i

h

(
x+
p

x−p

x+
q

x−q

)1/2
ηpηq

x+
p x

+
q

ζpq

1− 1
x−p x

−
q

,

(4.14)
and we have introduced a convenient factor

ζpq =

(
x+
p

x−p

)−1/4(
x+
q

x−q

)−1/4
(

1− 1
x−p x

−
q

1− 1
x+
p x

+
q

)1/2

. (4.15)

Similarly, an S-matrix SRL can be found by swapping the labels L and R in (4.13). Im-
posing LR-symmetry one has that the explicit parameterisation is the same as in the
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equations above ARL
pq = ALR

pq , et cetera. Changing the grading of the first of the two repre-
sentations, one finds for example an S-matrix

S L̃R |φ̃L
pφ

R
q〉 = +DLR

pq |φR
qφ̃

L
p〉 , S L̃R |φ̃L

pψ
R
q〉 = −ELR

pq |ψR
qφ̃

L
p〉 − F LR

pq |φR
qψ̃

L
p〉 ,

S L̃R |ψ̃L
pψ

R
q〉 = −CLR

pq |ψR
qψ̃

L
p〉 , S L̃R |ψ̃L

pφ
R
q〉 = +ALR

pq |φR
qψ̃

L
p〉+BLR

pq |ψR
qφ̃

L
p〉 .

(4.16)

To conclude we write down another result that we will need in the following

SRL̃ |φR
pφ̃

L
q〉 = +CRL

pq |φ̃L
qφ

R
p〉 , SRL̃ |φR

pψ̃
L
q〉 = +ARL

pq |ψ̃L
qφ

R
p〉 −BRL

pq |φ̃L
qψ

R
p〉 ,

SRL̃ |ψR
pψ̃

L
q〉 = −DRL

pq |ψ̃L
qψ

R
p〉 , SRL̃ |ψR

pφ̃
L
q〉 = −ERL

pq |φ̃L
qψ

R
p〉+ F RL

pq |ψ̃L
qφ

R
p〉 .

(4.17)

The S-matrices presented here are also compatible with braiding and physical unitarity

SLR SRL = 1 , (SLR)† SRL = 1 ,

S L̃R SRL̃ = 1 , (S L̃R)† SRL̃ = 1 .
(4.18)

We refer to Section 4.2.3 for a discussion on this.

4.2.2 The S-matrix as a tensor product

The results of the previous section allow us to rewrite a psu(1|1)4
c.e.-invariant S-matrix as

a tensor product of two su(1|1)2
c.e.-invariant S-matrices.

Spsu(1|1)4 = S0 · Ssu(1|1)2 ⊗̌ Ssu(1|1)2 ,

Spsu(1|1)4 = S0 · Ssu(1|1)2 ⊗̂ Ssu(1|1)2 ,
(4.19)

where S0 is a possible prefactor that is not fixed by symmetries. We introduced the
graded tensor products ⊗̌ and ⊗̂

(A⊗̌B)
KK′,LL′

MM ′,NN ′ = (−1)εM′ εN+εLεK′ AKLMN BK
′L′

M ′N ′ ,(
A ⊗̂B

)KK′,LL′
MM ′,NN ′

= (−1)εM′ εN+εL′ εK AKL
MN BK′L′

M ′N ′ ,
(4.20)

where the symbol ε is 1 for fermions and 0 for bosons. Depending on the representations
that we want to scatter we have to choose the proper su(1|1)2 S-matrices entering the
tensor product [4]. This construction is explained in the rest of this section, while the
explicit result for all the scattering elements may be found in Appendix B.3.

The massive sector (••)

When considering the massive sector, we can scatter two different irreducible represen-
tations %L ⊗ %L and %R ⊗ %R, identified by the eigenvalue m = ±1 of the generator M.
We see that this divides the massive sector into four different subsectors: Left-Left (LL),
Right-Right (RR), Left-Right (LR) and Right-Left (RL). In each of these subsectors the LR-
flavor is transmitted4. Scattering two Left excitations means that we need to consider the
tensor product

Left - Left: SLL
0 · SLL ⊗̌ SLL , (4.21)

4As explained in the previous section, one needs to impose also LR-symmetry and unitarity to get pure
transmission for the scattering of different flavors [7].
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where the explicit form of SLL is given in (4.9). We need to fix a proper normalisation and
we find convenient to do it as

SLL
0 (x±p , x

±
q ) =

x+
p

x−p

x−q

x+
q

x−p − x+
q

x+
p − x−q

1− 1
x−p x

+
q

1− 1
x+
p x
−
q

1(
σ••pq
)2 , (4.22)

where σ••pq is called dressing factor. Since it cannot be fixed by the symmetries, it will
be constrained later by solving the crossing equations derived in Section 4.2.4. This
normalisation is chosen to get for example the following scattering element

〈Y L
q Y

L
p | S |Y L

p Y
L
q 〉 =

x+
p

x−p

x−q

x+
q

x−p − x+
q

x+
p − x−q

1− 1
x−p x

+
q

1− 1
x+
p x
−
q

1(
σ••pq
)2 . (4.23)

When we scatter two Right excitations we find an S-matrix

Right - Right: SRR
0 · SRR ⊗̌ SRR , (4.24)

and imposing LR-symmetry allows us to relate this result to the previous one, SRR = SLL

and SRR
0 = SLL

0 . In particular one does not need to introduce a different dressing factor in
this subsector.

On the other hand, scattering a Left excitation with a Right one we get the S-matrix

Left - Right: SLR
0 · SLR ⊗̌ SLR , (4.25)

where SLR may be found in (4.13). The preferred normalisation in this case is

SLR
0 (x±p , x

±
q ) =

(
x+
p

x−p

)1/2(
x+
q

x−q

)−1/2 1− 1
x−p x

+
q

1− 1
x+
p x
−
q

1(
σ̃••pq
)2 , (4.26)

where a new dressing factor σ̃••pq is introduced. With this normalisation we get for exam-
ple the following scattering element

〈Y R
q Y

L
p | S |Y L

p Y
R
q 〉 =

x+
p

x−p

x−q

x+
q

1− 1
x+
p x
−
q

1− 1
x+
p x

+
q

1− 1
x−p x

+
q

1− 1
x−p x

−
q

1(
σ̃••pq
)2 . (4.27)

To conclude, in the massive sector we need to introduce two unconstrained factors
σ••pq , σ̃

••
pq .

The massless sector (◦◦)

Each one-particle massless representation transforms under two copies of %L ⊗ %̃L, that
are further organised in an su(2)◦ doublet. When scattering two massless modules, we
should then consider 16 copies of psu(1|1)4

c.e.-invariant S-matrices, relating each of the
4 possible in-states to each of the 4 possible out-states. Using the su(2)◦ symmetry one
is able to relate all these S-matrices, finding an object that is su(2)◦-invariant. More ex-
plicitly, the S-matrix in the massless sector can be written as the tensor product of an
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su(2)◦-invariant S-matrix and the relevant tensor product realisation of the psu(1|1)4
c.e.-

invariant S-matrix
(◦◦) : S◦◦0 · Ssu(2) ⊗

(
SLL ⊗̌ S L̃̃L

)
. (4.28)

Fixing a preferred normalisation we have

Ssu(2)(p, q) =
1

1 + ςpq

(
1 + ςpqΠ

)
=


1 0 0 0
0 1

1+ςpq

ςpq
1+ςpq

0

0
ςpq

1+ςpq
1

1+ςpq
0

0 0 0 1

 , (4.29)

where Π is the permutation matrix and ςpq is a function of the two momenta p, q that is
not fixed by the su(2)◦ symmetry. In Sections 4.2.3 and 4.2.4 we will see that further con-
straints are imposed on that by unitarity, Yang-Baxter equation and crossing invariance.
We choose to fix the overall normalisation as

S◦◦0 =

(
x+
p

x−p

x−q

x+
q

)1/2
x−p − x+

q

x+
p − x−q

1(
σ◦◦pq
)2 , (4.30)

where we introduced the dressing factor σ◦◦pq for the massless sector. With this choice,
the scattering of two identical bosons coming from the torus is just

〈T ȧaq T ȧap | S |T ȧap T ȧaq 〉 =
1(

σ◦◦pq
)2 . (4.31)

The mixed-mass sector (•◦), (◦•)

In the mixed-mass sector we may decide to scatter a massive particle with a massless
one (•◦) or vice-versa (◦•). Let us focus on the first case. We have also the possibility of
choosing the LR-flavor of the first excitation. When this is Left we find the S-matrix

Left (massive) - massless: SL◦
0 ·
(
SLL ⊗̌ S L̃L

)⊕2

. (4.32)

The symbol ⊕2 appears because massless excitations are organised in two psu(1|1)4
c.e.-

modules, identified by the two su(2)◦ flavors. Imposing su(2)◦-invariance one finds that
the S-matrix is just the sum of two identical copies. In other words the su(2)◦ flavor
stands as a spectator and it is transmitted under the scattering.

Similarly, for scattering involving Right-massive excitations

Right (massive) - massless: SR◦
0 ·
(
SRL ⊗̌ SRL̃

)⊕2

. (4.33)

This S-matrix is related by LR-symmetry to the previous one. Implementing LR-symmetry
as in Section 3.2.4 and using the fact that the second excitation satisfies a massless dis-
persion relation, one can check that the two S-matrices are mapped one into the other,
upon fixing the proper normalisations. This allows us to use just SL◦

0 ·
(
SLL ⊗̌ S L̃L

)⊕2
for

both cases. We also set the overall factor

S•◦0 ≡ SL◦
0 =

(
x+
p

x−p

)−1/2
(

1− 1
x−p x

+
q

1− 1
x+
p x
−
q

)1/2 (
1− 1

x−p x
−
q

1− 1
x+
p x

+
q

)1/2

1(
σ•◦pq
)2 , (4.34)
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where we have chosen a proper normalisation and introduced the dressing factor σ•◦pq for
massive-massless scattering.

Similar considerations apply when considering massless-massive scattering. The sec-
ond excitation is allowed to take the two different flavors L or R, and in the two cases
we find the S-matrices

massless - Left (massive): S◦L
0 ·
(
SLL ⊗̌ S L̃L

)⊕2

,

massless - Right (massive): S◦R
0 ·
(
SLR ⊗̌ S L̃R

)⊕2

.

(4.35)

LR-symmetry allows us to use just S◦L
0 ·

(
SLL ⊗̌ S L̃L

)⊕2
in both cases. We then introduce

the common factor S◦•0 that we decide to normalise as

S◦•0 ≡ S◦L
0 =

(
x+
q

x−q

)1/2
(

1− 1
x−p x

+
q

1− 1
x+
p x
−
q

)1/2 (
1− 1

x−p x
−
q

1− 1
x+
p x

+
q

)−1/2

1(
σ◦•pq
)2 . (4.36)

The chosen normalisations allow us to write for example the following scattering ele-
ments

〈T ȧaq Y L
p | S |Y L

p T
ȧa
q 〉 =

(
1− 1

x+
p x
−
q

1− 1
x+
p x

+
q

1− 1
x−p x

+
q

1− 1
x−p x

−
q

)1/2

1(
σ•◦pq
)2 ,

〈Y L
q T

ȧa
p | S |T ȧap Y L

q 〉 =

(
1− 1

x+
p x
−
q

1− 1
x+
p x

+
q

1− 1
x−p x

+
q

1− 1
x−p x

−
q

)1/2

1(
σ◦•pq
)2 .

(4.37)

Later we will discuss how massive-massless and massless-massive scatterings are re-
lated in a simple way by unitarity. In particular, this will give a relation between σ•◦pq and
σ◦•pq , motivating the statement that in the mixed-mass sector we have just one dressing
factor.

4.2.3 Unitarity and Yang-Baxter equation

After fixing the S-matrix based on symmetries, one finds that this is determined up to
five dressing factors. Two of them belong to the massive sector, describing scattering of
excitations with the same or with opposite LR flavors. Other two are responsible for the
mixed-mass sector, namely massive-massless and massless-massive scattering. The last
one belongs to the massless sector.

More constraints on those scalar factors come from unitarity. One notion of this is the
usual physical unitarity, that requires the S-matrix to be unitary as a matrix

S†pqSpq = 1 . (4.38)

Another natural constraint for scattering of particles on a line is braiding unitarity

SqpSpq = 1 . (4.39)
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Its interpretation is that scattering twice two excitations should just bring us back to
the initial situation5. We refer to [34] for a justification of this constraint from the point
of view of the formalism of the Zamolodchikov-Fadeev algebra applied to worldsheet
integrable scattering.

In our case we find the following equations

σ••qp =
(
σ••pq
)∗

=
1

σ••pq
, σ̃••qp =

(
σ̃••pq
)∗

=
1

σ̃••pq
, σ◦◦qp =

(
σ◦◦pq
)∗

=
1

σ◦◦pq
,

σ•◦qp =
(
σ◦•pq
)∗

=
1

σ◦•pq
, σ◦•qp =

(
σ•◦pq
)∗

=
1

σ•◦pq
.

(4.40)

The first line states that the dressing factors in the massive and massless sectors can
be written as exponentials of anti-symmetric functions of the two momenta, and for
physical momenta they take values on the unit circle. On the other hand, in the mixed-
mass sector unitarity relates massive-massless and massless-massive scattering. This
reduces to four the number of unconstrained dressing factors.

Unitarity imposes also the following constraint on the function ςpq appearing in the
su(2)◦-invariant S-matrix

ςqp =
(
ςpq
)∗

= −ςpq , (4.41)

meaning that it is a purely imaginary anti-symmetric function of p and q.

For the integrability of the model, it is necessary for the S-matrix to satisfy the Yang-
Baxter equation

S(q, r)⊗ 1 · 1⊗ S(p, r) · S(p, q)⊗ 1 = 1⊗ S(p, q) · S(p, r)⊗ 1 · 1⊗ S(q, r) . (4.42)

This is a crucial requirement to make factorisability of multi-particle scatterings possible.
One may check the Yang-Baxter equation for the full S-matrix, or equivalently for each
factor of the tensor product appearing in each sector. Since the su(1|1)2

c.e. S-matrices
of Section 4.2.1 satisfy the Yang-Baxter equation, it follows that this is true also for the
psu(1|1)4

c.e. S-matrices of the various sectors of our model.
On the S-matrix for the su(2)◦ factor, the Yang-Baxter equation yields a further con-

straint for ςpq
ς(p, q)− ς(p, r) + ς(q, r) = 0 . (4.43)

The above equation is linear thanks to a suitable choice of parameterisation for the su(2)◦
S-matrix. The solution is a function that is a difference of two rapidities, each depending
on just one momentum. Together with the constraints imposed by unitarity we can write

ς(p, q) = i
(
wp − wq

)
, (4.44)

where we have introduce a new real function of the momentum wp.

5We define the S-matrix such that the momentum of the first particle is larger than the one of the second.
If the first scattering happens for p > q, to evaluate the second process we have to analytically continue the
S-matrix to the region where the momentum of the first particle is less than the one of the second excitation.
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4.2.4 Crossing invariance

The analytic properties of the dressing factors are revealed after imposing crossing in-
variance of the S-matrix [25]. A crossing transformation corresponds to an analytic con-
tinuation to an unphysical channel, where the energy and the momentum flip sign.

We start the discussion by first considering the massive excitations. Their dispersion
relation satisfies

E2 = 1 + 4h2 sin2 p

2
, (4.45)

and we can uniformise it in terms of a complex parameter z with the parameterisa-
tion [128]

p = 2amz , sin
p

2
= sn(z, k) , E = dn(z, k) , (4.46)

where the elliptic modulus is defined as k = −4h2 < 0. The curve that we obtain is a
torus, and we call 2ω1 and 2ω2 the periods for real and imaginary shifts, respectively.
They are obtained by

2ω1 = 4 K(k) , 2ω2 = 4iK(1− k)− 4 K(k) , (4.47)

with K(k) the complete elliptic integral of the first kind. Real values of z correspond to
real values of the momentum p. If we take periodicity into account and we define the
physical range of the momentum to be−π 6 p < π, then we may take−ω1/2 6 z < ω1/2.

A crossing transformation corresponds to an analytic continuation to a complex value
that we denote by z̄, where we flip the signs of the momentum and the energy. We see
that this is implemented by shifting z by half of the imaginary period

z → z̄ = z + ω2 , =⇒ p→ p̄ = −p , E → Ē = −E . (4.48)

On the Zhukovski variables and the function ηp defined in (3.44), the crossing transfor-
mation implies

x±(z + ω2) =
1

x±(z)
, η(z + ω2) =

i

x+(z)
η(z) . (4.49)

We can easily check that for massless excitations the crossing transformation on the pa-
rameters x± is implemented in the same way, since they are given by x±p = ei p. It is
important to note that for the eigeinvalue of the central charge C, crossing does not
change just its sign

i h

2

(
ei p̄ − 1

)
= −e−i p i h

2

(
ei p − 1

)
, =⇒ C(z̄) = −ei pC(z) . (4.50)

A crucial step is now to note that we may mimic these transformation laws on the
central charges also in a different way, namely by defining a proper charge conjugation
matrix C (z). According to the previous discussion, on the central charges H and M we
should impose

H(z̄) = −C (z)H C (z)−1 , M = −C (z)M C (z)−1 . (4.51)
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In order to reproduce also the transformation (4.50) on the charge C, we impose that on
supercharges we have

Q ȧ
L (z + ω2)st = −e− i

2 p C (z) Q ȧ
L (z) C−1(z),

QRȧ(z + ω2)st = −e− i
2 p C (z) QRȧ(z) C−1(z),

QLȧ(z + ω2)st = −e+ i
2p C (z) QLȧ(z) C−1(z),

Q ȧ
R (z + ω2)st = −e+ i

2p C (z) Q ȧ
R (z) C−1(z).

(4.52)

Here st denotes supertransposition, that is implemented on supercharges as Qst = Qt Σ.
The diagonal matrix Σ is the fermion-sign matrix, taking values +1,−1 on bosons and
fermions respectively. Compatibility with the su(2)• generators requires that we ex-
change the highest and the lowest weight in the doublet representation. We follow the
same rule also for su(2)◦

J•ḃ
ȧ = −C (z) J•ȧ

ḃ C (z)−1 , J◦b
a = −C (z) J◦a

b C (z)−1 . (4.53)

The form of the charge conjugation matrix is not unique, nevertheless all choices yield
the same crossing equations. In the basis

{Y L, ηL1, ηL2, ZL} ⊕ {Y R, ηR1, ηR2, ZR} ⊕ {T 11, T 21, T 12, T 22} ⊕ {χ̃1, χ1, χ̃2, χ2}, (4.54)

we take it to be

Cp =



0 0 0 0 1 0 0 0

0 0 0 0 0 0 −i 0

0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 0 1 0 0 0 0


⊕



0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −iap
bp

0 0 0 0 0 0 i
bp
ap

0

0 0 0 0 0 i
ap
bp

0 0

0 0 0 0 −i bp
ap

0 0 0


. (4.55)

With the explicit form of the charge conjugation matrix we are able to impose crossing
invariance on the full S-matrix. They key is to consider the objects

S(zp, zq)
−1 and C1(zp) · St1(zp + ω2, zq) · C−1

1 (zp) , (4.56)

where we have used the notation C1(zp) = C (zp)⊗1, and t1 denotes transposition on the
first space. We can check that the compatibility condition with the charges for S(zp, zq)

−1

J12(zp, zq) S(zp, zq)
−1 − S(zp, zq)

−1 J21(zq, zp) = 0 , (4.57)

is satisfied also by C1(zp) ·St1(zp +ω2, zq) ·C−1
1 (zp). They might then differ just by some

factors, one for each of the sectors that we identified in Section 4.2.2. Crossing symmetry
fixes this freedom and states that these two objects are equal6

C1(zp) · St1(zp + ω2, zq) · C−1
1 (zp) · S(zp, zq) = 1 . (4.58)

6A similar statement can be made also for the object C−1
2 (zq) · St2 (zp, zq − ω2) · C2(zq), where crossing is

implemented by shifting the second entry in the opposite direction. This second equation would be related by
unitarity to the previous one.
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It is an important fact that the whole set of equations reduces to equations just for the
dressing factors

(
σ••pq
)2 (

σ̃••p̄q
)2

=

(
x−q

x+
q

)2
(x−p − x+

q )2

(x−p − x−q )(x+
p − x+

q )

1− 1
x−p x

+
q

1− 1
x+
p x
−
q

,

(
σ••p̄q
)2 (

σ̃••pq
)2

=

(
x−q

x+
q

)2
(

1− 1
x+
p x

+
q

)(
1− 1

x−p x
−
q

)
(

1− 1
x+
p x
−
q

)2

x−p − x+
q

x+
p − x−q

,

(4.59)

(
σ•◦p̄q
)2 (

σ•◦pq
)2

=
x+
p

x−p

x−p − x+
q

x+
p − x+

q

1− 1
x+
p x

+
q

1− 1
x−p x

+
q

,

(
σ◦•p̄q
)2 (

σ◦•pq
)2

=
x+
q

x−q

x+
p − x−q
x+
p − x+

q

1− 1
x+
p x

+
q

1− 1
x+
p x
−
q

(4.60)

(
σ◦◦p̄q
)2 (

σ◦◦pq
)2

=
ςpq − 1

ςpq

1− 1
x+
p x

+
q

1− 1
x+
p x
−
q

1− 1
x−p x

−
q

1− 1
x−p x

+
q

, (4.61)

and for the function ςpq of the su(2)◦ S-matrix

ςp̄q = ςpq − 1 =⇒ w(p̄) = w(p) + i . (4.62)

In Section 5.2 we present solutions of the crossing equations for the dressing factors of
the massive sector.

4.3 Bethe-Yang equations

The Bethe-Yang equations are quantisation conditions that allow one to solve for the
momenta of the excitations of a multi-particle state. With this data one can find the
spectrum of the theory in the decompactification limit. In integrable models the Bethe-
Yang equations arise when imposing periodicity of the wave-function of an eigenstate
of the Hamiltonian. In our case periodicity is motivated by the fact that we are studying
closed strings, and we depict this in Figure 4.2. Instead of looking for eigenstates of the
exact quantum Hamiltonian—that is not known—we will construct eigenstates of the
exact S-matrix derived in Section 4.2.

4.3.1 Deriving the Bethe-Yang equations

Rather then introducing a toy model to explain how to derive the Bethe-Yang equations,
we prefer to guide the reader through the main steps in the case of AdS3×S3×T4. In-
deed, deciding to turning on only certain flavors of the excitations reduces the problem
remarkably, and from the operational point of view it makes it conceptually equivalent
to other simpler integrable models, such as the Heisenberg spin-chain—see [129, 130, 86]
for nice reviews. The various complications are added gradually, until all the material to
construct the full set of Bethe-Yang equations is presented.
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=

Figure 4.2: The periodicity condition of the wave-function yields the Bethe-Yang equations. A
configuration with excitations localised at given points of the string is equivalent to another one
where the excitations are cyclically permuted.

Bethe Ansatz with one flavor. Let us start for simplicity with the case in which only
excitations of the type Y L are present. We make this choice because the scattering of two
Y L excitations is very simple

S |Y L
pY

L
q 〉 = Apq |Y L

q Y
L
p 〉 . (4.63)

Here Apq denotes the corresponding scattering element. What is important is that this
two-particle state does not mix with others under scattering. The simplest multiparticle
state that we might want to consider is a collection of plane-waves

|Y L
p1
Y L
p2
. . . Y L

pn〉 =
∑

σ1�σ2�...�σn

ei
∑n
j=1 pjσj |Y L

σ1
Y L
σ2
. . . Y L

σn〉 . (4.64)

Here and in the following we always assume that we deal with asymptotic states, mean-
ing that excitations with different momenta are ordered p1 > . . . > pn and well sep-
arated. As it is known from the simplest integrable models (e.g. the Heisenberg spin-
chain), the eigenstates of the Hamiltonian are specific superpositions of plane waves.
Let us focus on the case of just two excitations. We consider a generic state

|Ψ〉 =
∑

σ1�σ2

ψ(σ1, σ2) |Y L
σ1
Y L
σ2
〉

= |Y L
p1
Y L
p2
〉+ S(p1, p2) |Y L

p2
Y L
p1
〉 .

(4.65)

where by definition we restrict ourselves to the region σ1 � σ2 and we have defined the
generic wave-function

ψ(σ1, σ2) = ei(p1σ1+p2σ2) + S(p1, p2)ei(p2σ1+p1σ2). (4.66)

The choice S(p1, p2) = 1 would correspond to just the sum of the original plane-waves
with the reflected ones. We choose instead to identify S(p1, p2) = Ap1p2

, namely the
scattering element of the two excitations. Thanks to this choice |Ψ〉 becomes an eigenstate
of the S-matrix

S |Ψ〉 = Ap1p2
|Y L
p2
Y L
p1
〉+Ap1p2

Ap2p1
|Y L
p1
Y L
p2
〉 = |Ψ〉 , (4.67)
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that is proved using braiding unitarity, i.e. Ap1p2
Ap2p1

= 1. This justifies the choice for
the function S(p1, p2).

The important requirement that we want to impose now is the periodicity of the
wave-function, as depicted in Figure 4.2. An explicit computation gives

ψ(σ2, σ1 + L) = ei(p1σ2+p2σ1+p2L) +Ap1p2
ei(p2σ2+p1σ1+p1L)

= eip1LAp1p2

(
(Ap1p2

)
−1
ei(p1σ2+p2σ1+(p2−p1)L) + ei(p2σ2+p1σ1)

)
.

(4.68)

If we require ψ(σ2, σ1 + L) = ψ(σ1, σ2) we find the two equations

eip1L = (Ap1p2
)
−1
, eip2L = (Ap2p1

)
−1
. (4.69)

These are the Bethe-Yang equations for the particular case at hand. The generalisation to
N -particle states is straightforward. We define the wave-function

ψ(σ1, σ2, . . . , σN ) = ei
∑N
j=1 pjσj +

∑
π

Sπ(p1, . . . pN )ei
∑N
j=1 pπ(j)σj . (4.70)

where we sum over all possible permutations π. Once we rewrite a given permutation
π as a sequence of two-body permutations, we define the function Sπ(p1, . . . pN ) as the
product of the two-body scattering elements produced by the chosen factorisation.7 In-
tegrability ensures that different factorisations are equivalent. Similarly as before, it is
possible to check that the state

|Ψ〉 =
∑

σ1�σ2�...σN

ψ(σ1, σ2, . . . , σN ) |Y L
σ1
Y L
σ2
. . . Y L

σN 〉 (4.72)

is an eigenstate of the S-matrix S |Ψ〉 = |Ψ〉. Periodicity of the wave-function written as
ψ(σ2, . . . , σN , σ1 + L) = ψ(σ1, σ2, . . . , σN ) now imposes

eipkL =

N∏
j=1
j 6=k

(
Apkpj

)−1
, k = 1, . . . , N , (4.73)

for each of the momenta pk of the excitations on the worldsheet. The above result is
compatible with the level matching condition. Indeed multiplying all the Bethe equa-
tions together we get

ei
∑N
k=1 pkL =

N∏
k=1

N∏
j=1
j 6=k

(
Apkpj

)−1
= 1 , (4.74)

where we have used thatApkpjApjpk = 1, as a consequence of unitarity. We then recover
the quantisation condition on the sum of momenta

N∑
k=1

pk = 2πn , n ∈ Z, (4.75)

that characterises on-shell multi-particle states.
7For example, given the permutation 1234|3214 we define

S1234|3214 = Ap1p2Ap1p3Ap2p3 . (4.71)
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Bethe Ansatz with more flavors. It is clear that for the previous construction it was not
essential to have only excitations of the same flavor, and we can extend it also to the case
in which other types of excitations are present. The only characterising requirement is
that the scattering of any of the excitations involved is diagonal8. In AdS3×S3×T4 this
situation is realised if for example we allow also for the presence of excitations ZR. We
denote the relevant scattering elements by

S |ZR
pZ

R
q〉 = Cpq |ZR

qZ
R
p〉 , S |ZR

pY
L
q 〉 = B̃pq |Y L

q Z
R
p〉 . (4.76)

It is clear that unitarity implies that scattering Y L and ZR in the opposite order yields
S |Y L

pZ
R
q〉 = (B̃qp)−1 |ZR

qY
L
p 〉. The situation to consider—that is new with respect to the

case of just one flavor—is when both |ZR〉 and |Y L〉 are present. In the example of a
two-particle state we would define

|Ψ〉 = |Y L
p1
ZR
p2
〉+ (B̃p2p1

)−1 |ZR
p2
Y L
p1
〉 , (4.77)

to get an eigenstate of the S-matrix. The Bethe-Yang equations that we get now after
imposing periodicity of the wave-function are

eip1L = B̃p2p1
, eip2L =

(
B̃p2p1

)−1

. (4.78)

Multiplying these equations we recover again the level-matching condition. If we had
a total number of NL excitations of type Y L and NR excitations of type ZR we would
generalise the previous construction and find the Bethe-Yang equations

eipkL =

NL∏
j=1
j 6=k

(
Apkpj

)−1
NR∏
j=1

B̃pjpk , k = 1, . . . , NL ,

eipkL =

NR∏
j=1
j 6=k

(
Cpkpj

)−1
NL∏
j=1

(
B̃pkpj

)−1

, k = 1, . . . , NR .

(4.79)

The first are equations for pk being the momenta the excitations Y L, while the second for
the excitations ZR.

In AdS3×S3×T4 we may add another type of excitations that scatter diagonally with
both Y L and ZR. They belong to the massless module, and they can be chosen to be of
type χ1. The excitations Y L, ZR and χ1 that we have chosen here are the highest-weight
states in each of the irreducible one-particle representations at our disposal, as it can be
checked in Section 3.2.2, see also Figure 3.1 and 3.2.

Non-diagonal scattering: nesting procedure. To describe the most generic state we
have to allow also for excitations that do not scatter diagonally. We then have to appeal
to the nesting procedure to write the corresponding Bethe-Yang equations. The idea is to
organise the excitations at our disposal into different levels. Level-I corresponds to the

8When we write diagonal scattering we mean that other different flavors are not created after the scattering,
and that the flavors of the two in-states are transmitted to the out-states.
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set of excitations that scatter diagonally among each other, as considered in the previous
paragraphs. Level-II contains all the excitations that can be created from level-I by the
action of lowering operators. Depending on the algebra and representations considered,
one might need to go further than level-II, but this will not be our case.

In the following we explain how the nesting procedure works when we choose the
lowering operator QL1 acting on level-I excitations Y L. According to the exact repre-
sentation in Eq. (3.24) this creates a fermionic excitation ηL1. The S-matrix acts on a
two-particle state containing both of them as

S |Y L
p η

L1
q 〉 = SLL

0 (p, q)
(
ALL
pqB

LL
pq |ηL1

q Y
L
p 〉+ALL

pqC
LL
pq |Y L

q η
L1
p 〉
)
, (4.80)

where the su(1|1)2
c.e. scattering elements may be found in (4.10), and the normalisation

SLL
0 (p, q) was fixed in (4.22). The S-matrix does not act as simple permutation on the

above two-particle scattering elements. The idea is to find a state containing both Y L

and ηL1 where this is the case. A way to do it is to consider the linear combination
defined by

|Yy〉 = f(y, p1) |ηL1
p1
Y L
p2
〉+ f(y, p2)SII,I(y, p1) |Y L

p1
ηL1
p2
〉 . (4.81)

In order to parameterise the state we have introduced a variable y. It goes under the
name of auxiliary root and it is associated to the level-II excitation. Here f(y, pj) is in-
terpreted as a normalisation parameter and SII,I(y, p1) as the scattering element between
the level-II and the level-I excitation. The diagonal scattering is achieved by imposing
the equation

S |Yy〉 = Ap1p2
|Yy〉π , (4.82)

where |Yy〉π is the permuted state that is found from |Yy〉 after exchanging the momenta
p1 and p2. This equation is motivated by the fact that we want to interpret level-II excita-
tions as created on top of the ones of level-I. Thanks to the compatibility condition (4.82),
it is enough to define

|Ψ〉 = |Yy〉+Ap1p2 |Yy〉π , (4.83)

to get an eigenstate of the S-matrix. Because of the above definitions the wave-function
looks more involved

ψ(σ1, σ2) =
[
f(y, p1) + f(y, p2)SII,I(y, p1)

]
ei(p1σ1+p2σ2)

+Ap1p2

[
f(y, p2) + f(y, p1)SII,I(y, p2)

]
ei(p2σ1+p1σ2) .

(4.84)

Imposing the periodicity condition ψ(σ2, σ1 + L) = ψ(σ1, σ2) and matching the coeffi-
cients for f(y, p1) and f(y, p2) we find the Bethe equations

eip1L = (Ap1p2
)
−1

SII,I(y, p1), 1 = SII,I(y, p1) SII,I(y, p2) ,

eip2L = (Ap2p1)
−1

SII,I(y, p2) .
(4.85)

The introduction of level-II excitations then has the consequence of producing factors of
SII,I(y, pj) in the Bethe-Yang equations, confirming the interpretation of these terms as
scattering elements between excitations of different levels. We also find a new equation
for the auxiliary root y, conceptually similar to the equations for p1 and p2. The variable
y carries no momentum, and the left-hand-side of its equation is just 1.
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In the particular case we considered, when we impose (4.82) we find

f(y, pj) =
g(y)ηpj
y − x+

pj

, SII,I(y, pj) =

(
x+
pj

x−pj

)1/2
y − x−pj
y − x+

pj

. (4.86)

To derive the Bethe-Yang equations for a state with a number ofN I
L excitations Y L and

N II
L excitations ηL1 we repeat the above procedure, generalising it to multiparticle states.

One should also take into account the possibility of a non-trivial scattering of level-II
excitations among each other. To check whether such a scattering element SII,II(y1, y2)
exists, for two such excitations parameterised by the auxiliary roots y1 and y2, we con-
sider the state

|Yy1
Yy2
〉 = f(y1, p1)f(y2, p2)SII,I(y2, p1) |ηL1

p1
ηL1
p2
〉

+ f(y2, p1)f(y1, p2)SII,I(y1, p1)SII,II(y1, y2) |ηL1
p1
ηL1
p2
〉 ,

(4.87)

where the functions f(yj , pk) and SII,I(yj , pk) are the ones calculated previously. Impos-
ing the compatibility condition S |Yy1Yy2〉 = Ap1p2 |Yy1Yy2〉π—where the permuted state
is found by exchanging the momenta p1 and p2—we find

SII,II(y1, y2) = −1. (4.88)

The scattering element is trivial and there is no contribution to the Bethe-Yang equations.
The minus sign is present here because we are permuting two fermionic states. The
periodicity condition is then written as

eipkL =

NL∏
j=1
j 6=k

(
Apkpj

)−1
N II

L∏
j=1

SII,I(yj , pk) , k = 1, . . . , NL ,

1 =

NL∏
j=1

SII,I(yk, pj) , k = 1, . . . , N II
L ,

(4.89)

where we have defined the total number of excitations NL = N I
L +N II

L .
Similar computations may be done to consider scattering of different level-II excita-

tions with other level-I states. It is clear that we need to associate one auxiliary root to
each lowering operator of the algebra A, creating the corresponding level-II excitation.

4.3.2 Bethe-Yang equations for AdS3×S3×T4

Using the procedure explained in the previous section, we can derive the whole set of
Bethe-Yang equations for AdS3×S3×T4, when we allow for a generic number of excita-
tions of each type. We write them explicitly in Equations (4.90)-(4.97). In the following
we use the shorthand notation νk ≡ eipk . When restricting to the massive sector, the
factors of ν have also the meaning of frame-factors, and they allow us to relate the string
frame to the spin-chain frame, see Section 5.1.4.
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1 =
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−
j

ν
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K0∏
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j

ν
1
2
j , (4.95)
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+1 −1

Dynkin links

Fermionic inversion symmetry links

Dressing phase σ••pq
Dressing phase σ̃••pq
Dressing phases σ•◦pq , σ◦•pq
Dressing phase σ◦◦pq

Figure 4.3: The Dynkin diagram for psu(1, 1|2)2 plus the root for massless modes, with the various
interaction terms appearing in the Bethe ansatz indicated.
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1 =

K4∏
j=1
j 6=k

y4,k − y4,j + i

y4,k − y4,j − i

K0∏
j=1

y4,k − wj − i/2
y4,k − wj + i/2 (4.97)

A nice way to visualise the equations is done by considering Figure 4.3. We recognise
two copies of the Dynkin diagram of psu(1, 1|2), corresponding to L and R. The crossed
nodes denote fermionic roots, the other bosonic ones. The diagrams are in the su(2)
grading for the Left copy and in the sl(2) grading for the Right copy. We refer to Sec-
tion 5.1.1 for a discussion on the possible different gradings of psu(1, 1|2). Between these
two Dynkin diagrams we find two additional nodes, one fermionic and one bosonic.
The latter corresponds to the su(2)◦ lowering operator, and we associate to it the auxil-
iary root y4, whose Bethe-Yang equation is (4.97). The external fermionic nodes in the
diagram correspond to the four lowering fermionic operators ofA. We associate to them
the auxiliary roots y1, y3 for the Left part of the diagram, and y1̄, y3̄ for the Right part
of the diagram. The corresponding Bethe-Yang equations may be found in (4.90),(4.92)
and (4.93),(4.95). The three nodes aligned horizontally in Figure 4.3 are the momentum
carrying nodes. The one on the left corresponds to Left massive excitations, for which
we use parameters x±. To distinguish the Right massive excitations that correspond to
the node on the right, we use the notation x̄± for the spectral parameters. The two equa-
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tions for L and R are found in (4.91) and (4.94). The node in the middle of the diagram is
associated to massless excitations. For them we use the notation z±, and their equation
is (4.96). The table below recaps our notation for the spectral parameters and the number
of excitations in each case. We also write our choice of level I excitations.

Left massive Right massive Massless
spectral parameters x± x̄± z±

number of excitations K2 K2̄ K0

level I excitations Y L ZR χ1

These level I excitations have been chosen because they scatter diagonally among each
other. They are highest weight states for the raising operators Q̄L1, Q̄L2,QR1,QR2 and J 1

◦2 .
The table below shows the notation for the auxiliary root and number of excitations

associated to each lowering operator

QL1 QL2 Q̄R1 Q̄R2 J 2
◦1

auxiliary root y1 y3 y1̄ y3̄ y4

number of excitations K1 K3 K1̄ K3̄ K4

Solving the Bethe-Yang equations, one can find the spectrum of the theory in the de-
compactification limit. To do that, the knowledge of the dressing factors is needed. In
the next chapter we will actually determine the dressing factors of the massive sector by
solving the corresponding crossing equations.

As explained in Chapter 1, to compute the exact spectrum one should also account
for the wrapping corrections, which are suppressed in the decompactification limit and
have not been considered here.

4.4 Summary

In this chapter we have constructed the action of the charges on multi-particle states, us-
ing the results of the previous chapter. In particular, we have used a non-local co-product
to write supercharges acting on two-particle representations. This was needed in order
to reproduce the exact eigenvalues of the charges appearing in the central extension.

Compatibility with the bosonic and fermionic generators allowed us to fix the all-
loop S-matrix almost completely. We found a total of four “dressing factors” that are
not fixed by symmetries, and that are further constrained by unitarity, LR-symmetry
and crossing invariance. We have also checked that the S-matrix that we have derived
satisfies the Yang-Baxter equation, confirming compatibility with the assumption of fac-
torisation of scattering.

We have imposed periodicity of the wave-function, motivated by the fact that we
are describing closed strings. Using the “nesting procedure” we have derived the com-
plete set of Bethe-Yang equations, which should encode the spectrum of strings on the
background AdS3×S3×T4 in the limit of decompactification of the worldsheet.



Chapter 5

The massive sector of
AdS3×S3×T4

In this chapter we concentrate on the massive sector1 of AdS3×S3×T4. The massive
sector corresponds to strings moving only in the AdS3×S3 subspace of the background.
From the point of view of worldsheet scattering, the results of the previous chapter show
that we indeed identify a sector if we consider only massive excitations for the incom-
ing states. In fact, Integrability ensures that if we scatter two massive excitations, then
massless particles never appear in the asymptotic out-states.

Focusing on smaller sectors of the theory is a good method to better understand the
results obtained. Moreover, the study of the massive sector allows us to compare to the
case of AdS5×S5, where only massive excitations are present.

We start by explaining how we can encode the integrable model found from the
point of view of the string into a spin-chain description. As reviewed in Chapter 1,
in AdS5/CFT4 integrable spin-chains emerge when considering the spectrum of the di-
latation operator in the gauge theory [16]. The idea here is to construct a spin-chain from
which we can derive essentially the same all-loop S-matrix and Bethe-Yang equations
valid for the massive sector of the string.

We will also consider the crossing equations of Section 4.2.4 for the dressing factors
governing massive scattering, and derive solutions for them. The solution of these equa-
tions is not unique, and we will motivate our choice by commenting on the analytical
structure of these functions. We will also take a proper limit of the Bethe-Yang equations,
to obtain the “finite-gap equations”. We conclude with a discussion and with a collection
of the references to the perturbative calculations that succesfully tested our findings.

5.1 Spin-chain description

The spin-chain that we construct in this section shares the psu(1, 1|2)2 symmetry of the
massive sector of strings in AdS3×S3×T4 [74]. We start by presenting this superalgebra.

1The massive sector of AdS3×S3×T4 has been discussed in detail also in the thesis of A. Sfondrini [107], to
which we refer for an alternative presentation.

67
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5.1.1 psu(1, 1|2)2 algebra

The bosonic subalgrebra of psu(1, 1|2) is su(1, 1)⊕ su(2). In what follows it is more con-
venient to change the real form of the non-compact subalgebra and consider instead
sl(2) ⊕ su(2). We denote the corresponding generators by S0,S± and L5,L± respec-
tively. In addition to those we have also eight supercharges, that we denote with the
help of three indices Qaαα̇, each of them taking values ±. The commutation relations of
psu(1, 1|2) then read as

[S0,S±] = ±S±, [S+,S−] = 2S0,

[L5,L±] = ±L±, [L+,L−] = 2L5,
(5.1)

[S0,Q±ββ̇ ] = ±1

2
Q±ββ̇ , [S±,Q∓ββ̇ ] = Q±ββ̇ ,

[L5,Qb±β̇ ] = ±1

2
Qb±β̇ , [L±,Qb∓β̇ ] = Qb±β̇ ,

(5.2)

{Q±++,Q±−−} = ±S±, {Q±+−,Q±−+} = ∓S±,

{Q+±+,Q−±−} = ∓L±, {Q+±−,Q−±+} = ±L±,

{Q+±±,Q−∓∓} = −S0 ± L5, {Q+±∓,Q−∓±} = +S0 ∓ L5.

(5.3)

As it is clear from the equations above, the first index of a supercharge spans an sl(2)
doublet, while the second index an su(2) one. The last index is not associated to an su(2)
doublet2. The superalgebra admits a u(1) automorphism generated by the charge R8,
that acts on the supercharges as

[R8,Qbβ±] = ±1

2
Qbβ±, (5.4)

and that commutes with all bosonic generators.
Let us present the possible choices of Serre-Chevalley basis. For superalgebras the

inequivalent possibilities are associated to different Dynkin diagrams. Each of them
corresponds to the choice of Cartan generators hi and the corresponding raising and
lowering operators ei, fi. The index i runs from 1 to the rank of the superalgebra, that is
3 in the case of psu(1, 1|2). In this basis the commutation relations acquire the form3

[hi,hj ] = 0, [ei, fj ] = δijhj , [hi, ej ] = +Aijej , [hi, fj ] = −Aijfj , (5.5)

where Aij is the Cartan matrix.
The superalgebra psu(1, 1|2) admits three inequivalent gradings, see Figure 5.1 for

the corresponding Dynkin diagrams. The Dynkin diagram in Figure 5.1 (a) corresponds
to the su(2) grading. The choice for the Cartan generators and the simple roots is

h1 = −S0 − L5, e1 = +Q+−−, f1 = +Q−++,

h2 = +2L5, e2 = +L+, f2 = +L−,

h3 = −S0 − L5, e3 = +Q+−+, f3 = −Q−+−.

(5.6)

2The third index on a supercharge spans an su(2) doublet in the case of the d(2, 1, α) superalgebra, of which
psu(1, 1|2) can be seen as a particular contraction—a proper α→ 1 or α→ 0 limit. For generic α the generator
R8 is the Cartan element of the additional su(2).

3If both ei and fj are fermionic, then the commmutator [, ] should be replaced by the anti-commutator {, }.
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+1

(a)

−1

(b)

±1

(c)

Figure 5.1: Three Dynkin diagrams for psu(1, 1|2). A cross denotes a fermionic root.

This leads to the Cartan matrix  0 −1 0
−1 +2 −1
0 −1 0

 . (5.7)

In Figure 5.1 (b) we find the Dynkin diagram in the sl(2) grading. For Cartan generators
and simple roots we take

ĥ1 = +S0 + L5, ê1 = −Q−++, f̂1 = +Q+−−,

ĥ2 = −2S0, ê2 = +S+, f̂2 = −S−,

ĥ3 = +S0 + L5, ê3 = −Q−+−, f̂3 = −Q+−+,

(5.8)

with the Cartan matrix  0 +1 0
+1 −2 +1
0 +1 0

 . (5.9)

The two above are the gradings that will be more relevant for us. For completeness we
write down also the choice corresponding to Figure 5.1 (c), where all simple roots are
fermionic. The choice for the raising operators ei can be either

Q+−+, Q++−, Q−++ , or Q−+−, Q−−+, Q+−− . (5.10)

This leads to the Cartan matrices 0 +1 0
+1 0 −1
0 −1 0

 , and

 0 −1 0
−1 0 +1
0 +1 0

 . (5.11)

5.1.2 Spin-chain representation

To construct a spin-chain that transforms under one copy of psu(1, 1|2), we put at each
site an infinite dimensional representation denoted by (− 1

2 ; 1
2 ) [131, 1]. This consists of

the bosonic su(2) doublet φ(n)
± , where the indices ± label the two su(2) states, and two

su(2) singletsψ(n)
± . The index n indicates the sl(2) quantum number. Explicitly, the action



70 Chapter 5. The massive sector of AdS3×S3×T4

of the bosonic generators is

L5 |φ(n)
± 〉 = ±1

2
|φ(n)
± 〉 , L+ |φ(n)

− 〉 = |φ(n)
+ 〉 , L− |φ(n)

+ 〉 = |φ(n)
− 〉 ,

S0 |φ(n)
β 〉 = −

(
1
2 + n

)
|φ(n)
β 〉 , S0 |ψ(n)

β̇
〉 = − (1 + n) |ψ(n)

β̇
〉 ,

S+ |φ(n)
β 〉 = +n |φ(n−1)

β 〉 , S+ |ψ(n)

β̇
〉 = +

√
(n+ 1)n |ψ(n−1)

β̇
〉 ,

S− |φ(n)
β 〉 = −(n+ 1) |φ(n+1)

β 〉 , S− |ψ(n)

β̇
〉 = −

√
(n+ 2)(n+ 1) |ψ(n+1)

β̇
〉 .

(5.12)

The supercharges relate the bosons and the fermions as

Q−±β̇ |φ
(n)
∓ 〉 = ±

√
n+ 1 |ψ(n)

β̇
〉 , Q+±β̇ |φ

(n)
∓ 〉 = ±

√
n |ψ(n−1)

β̇
〉 ,

Q−β± |ψ(n)
∓ 〉 = ∓

√
n+ 1 |φ(n+1)

β 〉 , Q+β± |ψ(n)
∓ 〉 = ∓

√
n+ 1 |φ(n)

β 〉 .
(5.13)

In the su(2) grading the highest weight state is φ(0)
+ , since it is annihilated by the rais-

ing operators L+,Q+−−Q+−+. Nevertheless one can check that also the positive roots
Q−+± annihilate this state. For this reason the representation is short, and one has the
identity

{Q+−∓,Q−+±} |φ(0)
+ 〉 = ∓(S0 + L5) |φ(0)

+ 〉 = 0. (5.14)

When constructing a spin-chain of length L, we need to consider the L-fold tensor prod-
uct of the representation presented above. Since the symmetry algebra consists of two
copies of psu(1, 1|2) labelled by L and R, we actually need to take the tensor product
of two such spin-chains. In particular, we define the ground state of the psu(1, 1|2)L ⊕
psu(1, 1|2)R spin-chain as

|0〉L =
∣∣∣(φ(0)

+ )L
〉
⊗
∣∣∣(φ(0)

+ )L
〉
. (5.15)

This is the heighest weight state of the representation (−L2 ; L2 )⊗ (−L2 ; L2 ), where by def-
inition charges with label L act on the first L-fold product, while charges with label R
on the second one. The shortening condition is also inherited, giving a total of eight
supercharges preserving the ground state. We denote them as

Q 1
L = +QL

−++, Q 2
L = −QL

−+−, QL1 = +QL
+−−, QL2 = +QL

+−+,

QR1 = +QR
−++, QR2 = −QR

−+−, Q
1

R = +QR
+−−, Q

2

R = +QR
+−+,

(5.16)

where we use the same notation as for the charges derived from the string theory. The
ground state is preserved also by the central charges HL,HR defined as

HL,R = −SL,R
0 − LL,R

5 . (5.17)

Using the psu(1, 1|2) commutation relations one can check that these generators close
into four copies of su(1|1)2

{Q ȧ
I ,QJḃ} = δȧ

ḃ
δIJHI , I, J = L, R. (5.18)

It is clear that this algebra coincides with the one found from the string theory (3.1), once
the central extension is turned off C = C = 0 and we identify

H = HL + HR, M = HL −HR. (5.19)
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To introduce excited states of the spin-chain we just need to replace the highest weight
φ

(0)
+ with another state of the same module. A nice way to organise excited states is to

look at the eigenvalues of the charges HL,R. Considering the states φ(n)
+ or φ(n)

− sitting
on a site of one of the two copies of the spin-chain increases the eigenvalue of the corre-
sponding Hamiltonian by n and n + 1 respectively. For the states ψ(n)

± this is increased
by n+ 1. The lightest states—the ones increasing the Hamiltonian just by 1—are then

φ
(0)
− , ψ

(0)
+ , ψ

(0)
− , and φ

(1)
+ . (5.20)

They transform in the familiar fundamental representation of psu(1|1)4—equivalently in
the bi-fundamental representation of su(1|1)2, see e.g. Figure 3.1. We decide to introduce
a notation for the excited states of the spin-chain that makes clear the bi-fundamental
nature of the representation. We write

ΦI++ = +φ
I(0)
− , ΦI−− = +φ

I(1)
+ , ΦI−+ = +ψ

I(0)
+ , ΦI+− = −ψI(0)

− , (5.21)

where we introduced a label I=L,R to distinguish the two types of excitations on the
spin-chain. It is easy to check that these states transform under the two irreducible rep-
resentations %L ⊗ %L and %R ⊗ %R of Section 3.2.3, once the supercharges are rewritten in
terms of su(1|1)2 supercharges as in Section 3.1.1. To match with Equations (5.13) one
should set a = ā = 1 and b = b̄ = 0 in the exact short representations of psu(1, 1)4

c.e.. We
conclude that the lightest excitations in (5.13) correspond to an on-shell representation at
zero coupling. In the next section we discuss how the central extension and the coupling
dependence are implemented in the spin-chain description.

5.1.3 Central extension

In order to make the Hamiltonian H dependent on the coupling constant and the mo-
menta of the excitations, we need to deform the above representation. We give a mo-
mentum to a one-particle excitation by writing the plane-wave

|Xp〉 =

L∑
n=1

eipn |0n−1X0L−n〉 , (5.22)

where 0 denotes a vacuum site and L is the length of the spin-chain. When we consider
multi-particle states we write a similar expression, where we always assume that the
spin-chain length is very large L � 1 and the excitations are well separated. In other
words we consider only asymptotic states, and we make use of the S-matrix to relate in-
and out-states.

In order to get the central extension and find non-vanishing eigenvalues for the cen-
tral charges C,C like in Equation (3.1), we have to allow for a non-trivial action of the
Right supercharges on Left excitations and vice versa. We impose that this action pro-
duces length-changing effects on the spin-chain, by removing or adding vacuum sites.
The addition and the removal of vacuum sites is denoted by 0± and it produces new
momentum-dependent phase factors once these symbols are commuted to the far left of
the excitations

|Xp 0±〉 = e±i p |0± Xp〉 , (5.23)
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as it can be checked from the plane-wave Ansatz.
Once we consider a spin-chain invariant under su(1|1)2, a way to centrally-extend it

is to take [7]
QL |φL

p〉 = ap |ψL
p〉 , QL |ψL

p〉 = 0,

QL |φL
p〉 = 0, QL |ψL

p〉 = āp |φL
p〉 ,

QR |φL
p〉 = 0, QR |ψL

p〉 = bp |0+ φL
p〉 ,

QR |φL
p〉 = b̄p |0− ψL

p〉 , QR |ψL
p〉 = 0,

(5.24)

and similarly for the Right module, after we exchange the labels L and R. For the bi-
fundamental representations of the spin-chain excitations that we want to consider we
then get

Q 1
L |ΦL++

p 〉 = +ap |ΦL−+
p 〉 , Q 1

L |ΦL+−
p 〉 = +ap |ΦL−−

p 〉 ,
QL1 |ΦL−+

p 〉 = +bp |ΦL++
p 〉 , QL1 |ΦL−−

p 〉 = +bp |ΦL+−
p 〉 ,

Q 2
L |ΦL++

p 〉 = +ap |ΦL+−
p 〉 , Q 2

L |ΦL−+
p 〉 = −ap |ΦL−−

p 〉 ,
QL2 |ΦL+−

p 〉 = +bp |ΦL++
p 〉 , QL2 |ΦL−−

p 〉 = −bp |ΦL−+
p 〉 ,

(5.25)

QR1 |ΦL−−
p 〉 = +cp |0+ΦL+−

p 〉 , QR1 |ΦL−+
p 〉 = +cp |0+ΦL++

p 〉 ,

Q
1

R |ΦL++
p 〉 = +dp |0−ΦL−+

p 〉 , Q
1

R |ΦL+−
p 〉 = +dp |0−ΦL−−

p 〉 ,
QR2 |ΦL−−

p 〉 = −cp |0+ΦL−+
p 〉 , QR2 |ΦL+−

p 〉 = +cp |0+ΦL++
p 〉 ,

Q
2

R |ΦL++
p 〉 = +dp |0−ΦL+−

p 〉 , Q
2

R |ΦL−+
p 〉 = −dp |0−ΦL−−

p 〉 .

(5.26)

Using the commutation relations we find the actions of the central charges

HL |ΦL±±
p 〉 = apāp |ΦL±±

p 〉 , C |ΦL±±
p 〉 = apbp |0+ΦL±±

p 〉 ,
HR |ΦL±±

p 〉 = bpb̄p |ΦL±±
p 〉 , C |ΦL±±

p 〉 = āpb̄p |0−ΦL±±
p 〉 .

(5.27)

We stress that the length-changing effects are crucial if we want the central charges C,C
to have the correct eigenvalues also on multi-particle states. On two-particle states we
find4

C |ΦL±±
p ΦL±±

q 〉 = apbp |0+ΦL±±
p ΦL±±

q 〉+ aqbq |ΦL±±
p 0+ΦL±±

q 〉
= (apbp + e+i paqbq) |0+ΦL±±

p ΦL±±
q 〉 .

(5.28)

Setting

apbp =
ih

2
(eip − 1), (5.29)

we find the eigenvalue

apbp + e+i paqbq =
ih

2

(
ei(p+q) − 1

)
. (5.30)

One can repeat the discussion in Section 3.2.5 to find the expressions of the representa-
tion coefficients that reproduce the exact eigenvalues of the central charges. Even though

4Differently from the original paper [7, 1], we modify the construction by moving the added or removed
vacuum sites 0± to the left of the excitations. This allows us to get the central charge C = ih

2
(eiP − 1) that

matches the one derived from the worldsheet computation, rather than C = ih
2

(e−iP − 1). Moreover, the
relation between the S-matrix for excitations on the string discussed in Section 4.2 and the one for excitations
on the spin-chain can be related in a simple way, see (5.32).
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other choices are allowed, we prefer to keep the same parameterisation (3.43) used for
the description of the string.

In the spin-chain description one does not need to introduce the parameter ξ for
the coefficients in (3.43). This was introduced in the string picture to get a non-local
action of the supercharges and reproduce the correct eigenvalue of the central charges on
multiparticle states. In the context of the dynamical spin-chain, the same role is played
by the length-changing effects, allowing us to set ξ = 0 also for multiparticle states.

When considering one-particle states we can identify the representation of the string
with the one presented here for the spin-chain as follow

|ΦL++〉 = |Y L〉 , |ΦL−+〉 = |ηL1〉 , |ΦL+−〉 = |ηL2〉 , |ΦL−−〉 = |ZL〉 ,
|ΦR++〉 = |Y R〉 , |ΦR−+〉 = |ηR

1〉 , |ΦR+−〉 = |ηR
2〉 , |ΦR−−〉 = |ZR〉 .

(5.31)

This identification is possible by comparing the action of the supercharges on one-particle
states.

5.1.4 The S-matrix for the spin-chain

Repeating the derivation of Section 4.2 one may find the exact S-matrix governing the
scattering of the spin-chain excitations. This is essentially the same object as the one
found from the string description, with the only exception that it is written in a different
basis. Indeed, although the action of the charges on one-particle representations agrees
on the two side—yielding the identification (5.31)—one can check that it is different on
two-particle states. This is just a consequence of the fact that the basis for the two-particle
representations on the two sides are related by a matrix that acts non-locally on the states.

To be precise, the S-matrix Ssp-ch of the spin-chain picture is related to the one found
from the string theory Sstr as5

Ssp-ch
pq = (1⊗Uq) · Sstr

pq · (1⊗U†p). (5.32)

In the basis (
ΦL++, ΦL+−, ΦL−+, ΦL−−, ΦR++, ΦR+−, ΦR−+, ΦR−−,

)
, (5.33)

the matrix that we need is

Up = diag
(
ei p, ei p/2, ei p/2, 1, ei p, ei p/2, ei p/2, 1

)
. (5.34)

While the string-frame S-matrix satisfies the standard Yang-Baxter equation (4.42), it is
easy to check that the above redefinition implies that for the S-matrix of the spin-chain
we must have a twisted Yang-Baxter equation(

FpSqrF−1
p

)
⊗1 · 1⊗Spr ·

(
FrSpqF−1

r

)
⊗1 = 1⊗Spq ·

(
FqSprF−1

q

)
⊗1 · 1⊗Sqr, (5.35)

where Fp ≡ Up ⊗Up. The same result is actually found after carefully considering the
length changing effects on the three-particle states on which we want to check Yang-
Baxter.

5This relation may be found by realising that we can map the supercharges on the two sides by Qstr
pq =

(1⊗U†p) · Qsp-ch
pq · (1⊗Up).
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It is possible to repeat the derivation of the previous chapter and write down the
Bethe-Yang equations for the spin-chain. Doing so one finds the same six equations for
the massive excitations (4.90)-(4.95), where the interaction terms with massless excita-
tions are obviously missing. Moreover, because of the change of basis (5.32), the factors
νj are absent in the Bethe-Yang equations for the spin-chain. These factors can actually
be reabsorbed in the definition of the length, allowing us to relate the length of the string
to the length of the spin-chain.

It would be very interesting to construct a long-range spin-chain that describes the
CFT2 dual to AdS3×S3×T4 in the spirit of the succesful program carried on in AdS5/CFT4,
and compare it to our construction. We refer to [69, 70] for papers taking some prelimi-
nary steps in this direction.

5.2 Dressing factors

In Section 4.2.2 we determined the S-matrix up to a total of four unconstrained dressing
factors. In this section we present a solution to the crossing equations (4.59) for the
dressing factors in the massive sector [2].

5.2.1 Solution of the crossing equations

As explained in Section 4.2.3, thanks to the unitarity conditions the dressing factors are
written as

σ••pq = exp(i θ••pq ), σ̃••pq = exp(i θ̃••pq ), (5.36)

where θ••pq , θ̃••pq are real anti-symmetric functions of the physical momenta. In both cases
we will assume that it is possible to rewrite them as [26]

θ(p, q) = χ(x+
p , x

+
q ) + χ(x−p , x

−
q )− χ(x+

p , x
−
q )− χ(x−p , x

+
q ) , (5.37)

with χ anti-symmetric, to respect braiding unitarity. Instead of solving the crossing
equations

(
σ••pq
)2 (

σ̃••p̄q
)2

= c̃pq =

(
x−q

x+
q

)2
(x−p − x+

q )2

(x−p − x−q )(x+
p − x+

q )

1− 1
x−p x

+
q

1− 1
x+
p x
−
q

,

(
σ••p̄q
)2 (

σ̃••pq
)2

= cpq =

(
x−q

x+
q

)2
(

1− 1
x+
p x

+
q

)(
1− 1

x−p x
−
q

)
(

1− 1
x+
p x
−
q

)2

x−p − x+
q

x+
p − x−q

,

(5.38)

we prefer to study the ones obtained by taking the product and the ratio of these two(
σ+
pqσ

+
p̄q

)2
=
(
σ••pq σ̃

••
pq

)2 (
σ••p̄q σ̃

••
p̄q

)2
= cpq c̃pq,(

σ−pq
)2(

σ−p̄q
)2 =

(
σ••pq
σ̃••pq

)2 (σ••p̄q
σ̃••p̄q

)−2

=
c̃pq
cpq

,
(5.39)

where the symbols + and − are introduced to remind that the corresponding phases are
the sum and the difference of the original ones

θ+
pq = θ••pq + θ̃••pq , θ−pq = θ••pq − θ̃••pq . (5.40)
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This rewriting turns out to be very convenient, one reason being that the solution for θ+
pq

can be found by using the results valid for describing the integrable model of AdS5×S5.

Solution for the sum of the phases The right-hand-side of the crossing equation for
σ+
pq can be rewritten as

cpq c̃pq =
(cBES
pq )3

(cBES
pq )∗

, (5.41)

where ∗ denotes complex conjugation and cBES
pq is the right-hand-side of the crossing

equation of AdS5×S5 satisfied by the Beisert-Eden-Staudacher (BES) dressing factor [24]

σBES
pq σ

BES
p̄q = cBES

pq =
x−q

x+
q

x−p − x+
q

x−p − x−q

1− 1
x+
p x

+
q

1− 1
x+
p x
−
q

. (5.42)

A useful representation of this solution in the physical region was given by Dorey, Hof-
man and Maldacena (DHM) [132] in terms of a double integral on unit circles

χBES(x, y) = i

∫
	

dw

2πi

∫
	

dw′

2πi

1

x− w
1

y − w′
log

Γ[1 + ih2 (w + 1/w − w′ − 1/w′)]

Γ[1− ih2 (w + 1/w − w′ − 1/w′)]
. (5.43)

For later convenience, we note that taking the strong coupling limit h→∞ of this solu-
tion one recovers the Arutyunov-Frolov-Staudacher (AFS) phase [23], whose factor may
be written in terms of the spectral parameters as

σAFS
pq =

(
1− 1

x−p x
+
q

1− 1
x+
p x
−
q

)(
1− 1

x+
p x
−
q

1− 1
x+
p x

+
q

1− 1
x−p x

+
q

1− 1
x−p x

−
q

)ih2 (xp+1/xp−xq−1/xq)

. (5.44)

Pushing the expansion at strong coupling to the next-to-leading order one finds the
Hernández-López (HL) factor [133], that solves the crossing equation

σHL
pq σ

HL
p̄q =

√
cBES
pq

cBES
p̄q

=
√
cBES
pq (cBES

pq )∗ . (5.45)

A possible representation of this phase may be obtained by expanding the one for BES,
giving

χHL(x, y) =
π

2

∫
	

dw

2πi

∫
	

dw′

2πi

1

x− w
1

y − w′
sign(w′ + 1/w′ − w − 1/w) . (5.46)

The BES and HL phases can then be used as building blocks to construct the solution for
the sum of our phases. Using the identity (5.41) we see that we can solve the crossing
equation for σ+

pq if we define it as

σ+
pq =

(σBES
pq )2

σHL
pq

, θ+
pq = 2θBES

pq − θHL
pq . (5.47)

We now present the solution for the factor σ−pq .
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Solution for the difference of the phases The crossing equation for σ−pq is

(σ−pq)
2

(σ−p̄q)
2

=
`−(x+

p , x
−
q ) `−(x−p , x

+
q )

`−(x+
p , x

+
q ) `−(x−p , x

−
q )
, `−(x, y) ≡ (x− y)

(
1− 1

xy

)
. (5.48)

A solution of this equation is given by

χ−(x, y) =

∫
	

dw

8π

sign((w − 1/w)/i)

x− w
log `−(y, w) − x↔ y

=

( ∫
x −

∫

x

)
dw

8π

1

x− w
log `−(y, w) − x↔ y ,

(5.49)

where in the second line we have split the integration along the upper and the lower
semicircles. The proof that χ− satisfies the crossing equation may be found in Ap-
pendix B.4.

Recap of the solutions The above results allow us to write the following solution for
the dressing phases of the massive sector

χ••(x, y) = χBES(x, y) +
1

2

(
−χHL(x, y) + χ−(x, y)

)
,

χ̃••(x, y) = χBES(x, y) +
1

2

(
−χHL(x, y)− χ−(x, y)

)
.

(5.50)

A consequence of this result is that both factors σ•• and σ̃•• reduce to the AFS dressing
factor at strong coupling. At the next order they are not just the HL dressing factor: its
contribution to the phases is just half6 of what one has in the case of AdS5×S5, and we
discover a novel piece produced by χ−.

5.2.2 Bound states

In this section we discuss the possibility of bound states arising in the scattering pro-
cesses. This proves to be a good way to validate the proposed solutions of the crossing
equations.

Let us consider a two-particle state with excitations of momenta p, q described by the
wave-function7

ψ(σ1, σ2) = ei(pσ1+qσ2) + S(p, q)ei(pσ2+qσ1). (5.51)

Here we are considering just the region σ1 � σ2. The first and second terms correspond
to the in-coming and out-going waves, respectively. After the scattering one picks up a
phase-shift S(p, q). A bound state may arise when the S-matrix exibits a pole, and this
can happen for complex values of the two momenta

p =
p′

2
+ iv, q =

p′

2
− iv. (5.52)

6Remember that BES contains one power of HL in the expansion.
7Here σ1 and σ2 denote the worldsheet spatial coordinate. We trust it does not create confusion with the

notation for the dressing factors.
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The relevant behaviour of the wave-function is then ψ(σ1, σ2) ∼ e−v(σ2−σ1), and the
normalisability condition implies that we should impose v > 0.

This condition must be checked when studying the possible bound states that are
allowed by representation theory. These are found by studying when a generic multi-
particle representation becomes short. A feauture of psu(1|1)4

c.e. is that all short repre-
sentations8 have dimension 4, while all long representations have dimension 8. When
considering a two-particle representation obtained as the tensor product of two Left
massive modules, we find that in general it is a long representation. However, there
exist particular values for the momenta p, q of the excitations such that the representa-
tion becomes short. This happens for x+

p = x−q or for x−p = x+
q . In the first case we find

that the bosonic state |Y L
pY

L
q 〉 survives in the module, while in the second case |ZL

pZ
L
q〉.

We will refer to the two cases as su(2) and sl(2) bound states respectively. We see that
in these situations the momenta of the excitations develop a non-zero imaginary part, as
in (5.52). Nevertheless, only the su(2) bound state satisfies the condition v > 0, while for
the sl(2) case the imaginary part of p is negative. The former is considered to be a bound
state in the spectrum, while the latter should not appear. Later we will check that indeed
the S-matrix exibits a pole when scattering two Y L excitations, while it is regular when
scattering two ZL excitations. The case of two Right massive excitations is equivalent,
thanks to LR symmetry.

The situation is different when we consider two massive excitations with different
LR flavor. In that case the representation becomes short for x+

p = 1/x+
q or x−p = 1/x−q .

Neither of these cases satisfy |x±p | > 1 and |x±q | > 1, necessary to remain in the physical
region. For this reason there are no supersymmetric bound states in the LR-sector.

As anticipated, the above results must be checked at the level of the S-matrix of Sec-
tion 4.2.2 derived from symmetries, including the solutions (5.50) for the dressing factors
that satisfy the crossing equations. This provides a non-trivial check of the validity of
the solutions. The first process to consider is

Apq = 〈Y L
q Y

L
p | S |Y L

p Y
L
q 〉 =

x+
p

x−p

x−q

x+
q

x−p − x+
q

x+
p − x−q

1− 1
x−p x

+
q

1− 1
x+
p x
−
q

1(
σ••pq
)2 . (5.53)

The dressing factor 1/
(
σ••pq
)2 is regular at x+

p = x−q , as it is shown in B.4.2. The element
Apq has then a single pole at this point, confirming the presence of the expected su(2)
bound state.

Similarly we can check that in the LR sector there is no pole in the physical region.
We consider the scattering element

B̃pq = 〈Y L
q Z

R
p| S |ZR

pY
L
q 〉 =

x+
p

x−p

1− 1
x−p x

+
q

1− 1
x+
p x
−
q

1− 1
x+
p x

+
q

1− 1
x−p x

−
q

1(
σ̃••pq
)2 , (5.54)

and we see that both the rational factors and σ̃••pq are regular in the physical region, in
particular at the point x+

p = x−q .
It is interesting to see how these processes in the s-channel automatically give con-

straints for processes in the t-channel, as a consequence of crossing symmetry. The cross-

8Similarly, for su(1|1)2
c.e., short representations have dimension 2, and long ones dimension 4.
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ing equations (4.59) can be written in the simple form

ApqÃp̄q = 1, where Ãpq = 〈Y L
q Y

R
p | S |Y R

p Y
L
q 〉 ,

B̃pqBp̄q = 1, where Bpq = 〈Y L
q Z

L
p| S |ZL

pY
L
q 〉 ,

(5.55)

involving explicit scattering elements. It is clear that the presence of a single pole for
Apq at x+

p = x−q implies a zero for Ãp̄q at the point 1/x+
p̄ = x−q . This is then responsible

for a process in the t-channel. Similarly, regularity of B̃pq implies regularity of Bp̄q , and
consequently no corresponding process in the t-channel9.

The discussion on the pole structure of the S-matrix is important to justify the validity
of the solution to the crossing equations. It is indeed always possible to multiply the
solutions that we proposed by the so-called CDD factors, that solve the homogeneous
crossing equations

σCDD
pq σ̃CDD

p̄q = 1 , σCDD
p̄q σ̃CDD

pq = 1 . (5.56)

Usually these are meromorphic functions of the spectral parameters, obtained by taking

χCDD
pq =

i

2
log

(x− y)c1

(1− xy)c2
, χ̃CDD

pq =
i

2
log

(x− y)c2

(1− xy)c1
. (5.57)

It is clear that such solutions introduce new zeros and poles that modify the analytical
structure of the S-matrix elements, spoiling the bound state interpretation. These con-
siderations allow us to rule out the possibility of CDD factors of this form

σCDD
pq = 1 , σ̃CDD

pq = 1 . (5.58)

A possibility that might still be valid is to introduce factors that satisfy the homogeneous
crossing equation and that have no poles or zeros in the physical region. Nevertheless,
further independent validations of the phases proposed here appeared in the literature,
and we refer to Section 5.4 for a collection of them.

5.3 Finite-gap equations

Taking the limit of large string tension, one can make contact with solutions of rigid
strings that are constructed explicitly by solving the classical equations of motion. On
the other hand, the formulation in terms of a Lax connection allows one to write down
the so-called finite-gap equations, from which one can find the spectrum of the classical
integrable model. We refer to [134] for a review on this in the context of AdS/CFT. Here
we take a proper thermodynamic limit of the Bethe-Yang equations of Section 4.3.2 in
the limit of large tension, to recover the finite-gap equations for the massive sector of
AdS3×S3×T4.

To start, we expand x± for large values of the string tension. We consider the Zhukovski
parameters x±p expressed in terms of the momentum p as in Eq. (3.45), that solves the con-
straints (3.42). The large-tension limit of these parameters is obtained by first rescaling

9When checking regularity of Bp̄q one has to carefully analytically continue the dressing factor for crossed
values of the momentum p. Doing that one discovers that

(
σ••p̄q

)−2 has a zero at 1/x+
p̄ = x−q that cancels the

apparent pole coming from the rational terms.
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the momentum p = p/h and then expanding the expressions at large h, obtaining10

x±p =

√
m2 + p2 + |m|

p
±
i
(√

m2 + p2 + |m|
)

2h
+O(1/h2). (5.59)

We parameterise the leading contribution in the expansion with a spectral parameter x,
obtaining

x =

√
m2 + p2 + |m|

p
=⇒ p =

2|m|x
x2 − 1

, (5.60)

x±p = x± i |m|x2

h(x2 − 1)
+O(1/h2). (5.61)

Notice that it was important to assume that m 6= 0 when solving for p in terms of x. For
a single excitation, momentum and energy (difference) are given by

p = h p = −i h log
x+
p

x−p
=

2|m|x
x2 − 1

+O(1/h),

∆Ep = −|m|+
√
m2 + 4h2 sin2 p

2
= −i h

(
1

x−p
− 1

x+
p

)
=

2|m|
x2 − 1

+O(1/h).

(5.62)

To take the finite-gap limit we consider a large numberKi of excitations, where the index
i denotes the possible types of massive excitations and it takes values i = 1, 2, 3, 1̄, 2̄, 3̄.
More precisely, we take the number of excitations to scale like the string tension Ki ∼ h,
and we define densities as

ρi(x) ≡ 2

h

Ki∑
k=1

x2

x2 − 1
δ(x− xi,k) . (5.63)

Momentum and energy (difference) for the collection of the excitations are then ex-
pressed as the integrals

Pi ≡
∫

dx
ρi(x)

x
, εi ≡

∫
dx

ρi(x)

x2
. (5.64)

The finite-gap limit of the Bethe-Yang equations is taken by considering each fac-
tor11 Spq and by computing −i logSpq in the large h limit, using the formulas above for
the expansion of x± and keeping the auxiliary roots finite. For the massive sector of

10Since we are considering massive excitations, we obtain the same result for left or right movers on the
worldsheet. One should instead distinguish between these two cases when considering massless excitations.

11Here Spq stands for any product of rational expressions of x± and dressing phases that appear in our
Bethe-Yang equations.
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AdS3×S3×T4 this yields the following equations12

2πn1 = −
∫

ρ2(y)

x− y
dy −

∫
ρ2̄(y)

x− 1/y

dy

y2
−1

2
(P2 + P2̄) ,

2πn2 = − x

x2 − 1
2πE −

∫
ρ1(y)

x− y
dy + 2 −

∫
ρ2(y)

x− y
dy −

∫
ρ3(y)

x− y
dy

+

∫
ρ1̄(y)

x− 1/y

dy

y2
+

∫
ρ3̄(y)

x− 1/y

dy

y2
+

1

x2 − 1
M+ (P2 + P2̄) ,

2πn3 = −
∫

ρ2(y)

x− y
dy −

∫
ρ2̄(y)

x− 1/y

dy

y2
−1

2
(P2 + P2̄) ,

2πn1̄ =

∫
ρ2(y)

x− 1/y

dy

y2
+

∫
ρ2̄(y)

x− y
dy+

1

2
(P2 + P2̄) ,

2πn2̄ = − x

x2 − 1
2πE −

∫
ρ1(y)

x− 1/y

dy

y2
−
∫

ρ3(y)

x− 1/y

dy

y2

+

∫
ρ1̄(y)

x− y
dy − 2 −

∫
ρ2̄(y)

x− y
dy +

∫
ρ3̄(y)

x− y
dy +

1

x2 − 1
M ,

2πn3̄ =

∫
ρ2(y)

x− 1/y

dy

y2
+

∫
ρ2̄(y)

x− y
dy+

1

2
(P2 + P2̄) .

(5.65)

The explicit factors containing P2 +P2̄ are frame-dependent, and would not be present if
we took the finite-gap limit of the Bethe-Yang equations written in the spin-chain frame.
The limit allows us also to read off the residue of the quasi-momentum E , that is the
same for the node 2 and 2̄.

E =
1

2π

(
2

h
L− ε1 + 2ε2 − ε3 + ε1̄ + ε3̄−

2

h

(
1

2
K1 −K2 +

1

2
K3 −

1

2
K1̄ −

1

2
K3̄

))
,

(5.66)
The factor 1/h is consistent with the fact that we have taken the length L and the excita-
tion numbers to be large, and only the ratios L/h,Ki/h remain finite. The quantityM
reads as

M = P1 + P3 − P1̄ + 2P2̄ − P3̄. (5.67)

The finite-gap equations that we have obtained here are equivalent to the ones con-
structed in [74] with the help of the Lax connection.

5.4 Concluding remarks

In this chapter we have focused on the massive sector of AdS3×S3×T4. First we showed
that it is possible to construct a dynamic spin-chain with psu(1, 1|2)L ⊕ psu(1, 1|2)R sym-
metry. We have then derived the S-matrix governing the scattering of the spin-chain
excitations, showing that it is related to the worldsheet S-matrix of the previous chapter
by a change of basis for the two-particle states.

12To avoid confusion we remind that when writing the finite-gap equations one uses a convention in notation
that is a bit different from the one of the Bethe-Yang equations. For finite-gap we use the letter x for the variable
that solves the given equation, while y is used for any variable on which we integrate. There is no distinction
anymore in the notation for momentum carrying nodes and auxiliary roots.
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We have also solved the crossing equations for the two “dressing factors” of the mas-
sive sector that are not fixed by compatibility of symmetries. Commenting on the an-
alytical properties of our factors, we have motivated the choice of the solutions of the
crossing equations.

We have also made contact with the “finite-gap equations”—that are obtained from
the Lax formulation of the classical integrable model—by taking a proper limit of the
Bethe-Yang equations derived in the previous chapter.

It would be very interesting to construct solutions to the crossing equations for the
dressing factors of the mixed and of the massless sectors, and to do that it would be
useful to have more insights about the analytical properties of these factors. When trying
to go beyond the decompactification limit, that was used here to define an S-matrix,
a first question to be answered will be how to reinstate the possibility of winding for
the coordinates of the torus. Let us emphasize that the final solution to the spectral
problem will be achieved only by writing down equations—using the technique of the
Thermodynamic Bethe Ansatz or the Quantum Spectral Curve, as done for AdS5×S5—
that take into account also the wrapping corrections.

Let us conclude the chapters devoted to AdS3/CFT2 by referring to the independent
perturbative tests of the all-loop results presented here.

Tree-level scattering elements involving excitations of the massive sector of the back-
ground AdS3×S3×T4 were computed in [135]. There the more general case in which a
B-field is present was actually considered. For the pure R-R case, the same tree-level
results had appeared in [136], where also certain one-loop processes in the “near-flat-
space” limit13 and interactions involving massless excitations were produced. Agree-
ment with these perturbative results was shown in [1].

The “Hernández-López order” of the dressing phases in the massive sector was first
computed in [139], by considering the leading quantum corrections to the finite-gap
equations. The mismatch between this result and the semiclassical expansion of the
all-loop dressing phases was highlighted in [2]. The resolution of this problem was ex-
plained in [140], where it was shown how to get agreement with the all-loop result by
reintroducing some dropped surface terms in the calculation of [139].

The S-matrix including the proposed all-loop dressing phases was shown to agree
with two-loop worldsheet calculations obtained with unitarity techniques in [141]. These
are actually able to probe just the log-dependence of the scattering processes. Different
unitarity techniques that are able to account also for the rational terms were performed
in [142], where it was shown that the full momentum-dependence of the scattering ele-
ments in the massive sector matches at one loop.

Certain one-loop processes obtained with standard near-BMN computations con-
firmed again agreement with the large-tension expansion of the all-loop scattering el-
ements [143].

13The near-flat-space limit is achieved by having a momentum that scales like p ∼ λ−1/4 [137] and at leading
order it can be seen as a further expansion on top of the near-BMN limit. It was used also to eliminate apparent
ultra-violet divergences arising in near-BMN worldsheet computations, that were finally resolved in [138].
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Chapter 6

Bosonic (AdS5×S5)η

This is the first of two chapters devoted to the investigation of another integrable σ-
model motivated by the AdS/CFT correspondence. It corresponds to a particular defor-
mation of the σ-model for strings on AdS5×S5.

Beisert and Koroteev were the first to construct an R-matrix invariant under a q-
deformation of the su(2|2)c.e. superalgebra [87]. After solving the crossing equation for
the factor that was not fixed by the symmetries, Hoare, Hollowood and Miramontes [90]
proposed an S-matrix that was conjectured to correspond to a quantum integrable model
realising the q-deformation of the model for the AdS5/CFT4 dual pair. Up to now, no
explicit realisation of a q-deformation of N = 4 Super Yang-Mills has been constructed.

A deformation of the string σ-model on AdS5×S5 was proposed by Delduc, Magro
and Vicedo in [94], building on previous results for bosonic cosets [96]. It preserves the
classical integrability of the original model, and replaces the original psu(2, 2|4) symme-
try with the quantum group Uq(psu(2, 2|4)) [95]. The parameter that is used to deform
the theory was called η, and the procedure is often referred to as “η-deformation”. We
adopt this terminology here. The deformation is of the type of the Yang-Baxter σ-model
constructed by Klimčı́k [97, 98], that generalises the work of Cherednik [144].

In this chapter we focus on the bosonic sector of the deformed model. For conve-
nience, we start by reviewing the undeformed case, then we study the effects of the
deformation and explain how to match with the large-tension limit of the proposed S-
matrix invariant under the q-deformed algebra.

6.1 Undeformed model

The AdS5×S5 space is the product of the five-dimensional Anti-de Sitter and the five-
dimensional sphere. Let us start with the compact space. We use six coordinates YA, A =
1, . . . , 6 to parameterise the Euclidean space R6. The five-dimensional sphere is identi-
fied by the constraint YAYBδAB = 1. A convenient parameterisation of these coordinates
is

Y1 + iY2 = r cos ξ eiφ1 , Y3 + iY4 = r sin ξ eiφ2 , Y5 + iY6 =
√

1− r2 eiφ3 , (6.1)
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where 0 < r < 1 is the radius of the three-sphere, and for the angles we have the ranges
0 < ξ < π/2, 0 < φi < 2π. From now on we rename φ3 = φ, as this will be the
angle that we will use to fix light-cone gauge, see Section 2.1 for a generic treatment and
Section 6.3.1 for the case at hand. The metric on R6 ds2

R6 = dYAdYBδ
AB then induces the

metric on the sphere

ds2
S5 =

(
1− r2

)
dφ2 +

dr2

(1− r2)
+ r2

(
dξ2 + cos2 ξ dφ2

1 + sin2 ξ dφ2
2

)
. (6.2)

Let us comment also on another convenient parameterisation, that will be useful in Sec-
tion 6.3 for implementing perturbation theory on the worldsheet. The above constraint
may be satisfied also by1

Y1 + iY2 =
y1 + iy2

1 + |y|2
4

, Y3 + iY4 =
y3 + iy4

1 + |y|2
4

, Y5 + iY6 =
1− |y|

2

4

1 + |y|2
4

eiφ , (6.3)

where we have defined |y|2 ≡ yiyi and we have −2 < yi < 2. The metric of the sphere in
these coordinates reads as

ds2
S5 =

(
1− |y|

2

4

1 + |y|2
4

)2

dφ2 +
dyidyi(

1 + |y|2
4

)2 . (6.4)

The discussion for five-dimensional Anti-de Sitter follows a similar route. We embed it
into R2,4 spanned byZA, A = 0, . . . , 5, and we identify it with the constraintZAZBηAB =
−1, where ηAB = diag(−1, 1, 1, 1, 1,−1). A parameterisation—reminiscent of the one for
the sphere—for which the AdS constraint is satisfied is

Z1 + iZ2 = ρ cos ζ eiψ1 , Z3 + iZ4 = ρ sin ζ eiψ2 , Z0 + iZ5 =
√

1 + ρ2 eit , (6.5)

where 0 < ρ < ∞, and for the angles we have the ranges 0 < ζ < π/2, 0 < ψi < 2π.
We take the universal cover of AdS5, where t is the non-compact time coordinate. Using
these local coordinates the metric for Anti-de Sitter is

ds2
AdS5

= −
(
1 + ρ2

)
dt2 +

dρ2

(1 + ρ2)
+ ρ2

(
dζ2 + cos2 ζ dψ2

1 + sin2 ζ dψ2
2

)
. (6.6)

Also in this case we mention an alternative parameterisation that will be useful for per-
turbation theory

Z1 + iZ2 =
z1 + iz2

1− |z|
2

4

, Z3 + iZ4 =
z3 + iz4

1− |z|
2

4

, Z5 + iZ6 =
1 + |z|2

4

1− |z|
2

4

eit , (6.7)

where |z|2 ≡ zizi and the space is covered by −2 < zi < 2. The metric in these coordi-
nates is

ds2
AdS5 = −

(
1 + |z|2

4

1− |z|
2

4

)2

dt2 +
dzidzi(

1− |z|
2

4

)2 . (6.8)

1For yi and also for the coordinates zi introduced later, we do not distinguish between upper or lower
indices yi = yi, z

i = zi.
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These two spaces are also realised as the following cosets

AdS5 :
SU(2, 2)

SO(4, 1)
, S5 :

SU(4)

SO(5)
. (6.9)

Then the action of the string may be written in the form of a non-linear σ-model, where
the base space is the worldsheet and the target space is AdS5×S5. We do that by con-
sidering coset elements ga and gs that depend on the local coordinates parameterising
Anti-de Sitter and the sphere. It is natural to represent these elements in terms of 4 × 4
matrices that satisfy a reality condition compatible with SU(2, 2) and SU(4). We refer to
Appendix C.1 for possible parameterisations. The two group elements may be consid-
ered at the same time by defining the 8× 8 matrix

gb =

(
ga 0
0 gs

)
. (6.10)

In Section 7.1 we will realise the su(2, 2|4) ⊃ su(2, 2)⊕ su(4) algebra in terms of 8×8 ma-
trices, making the above definition naturally motivated. After constructing the current
A ≡ −gb−1dgb that is an element of the algebra su(2, 2) ⊕ su(4), we have to decompose
it into A = A+ +A−, where A+ belongs to the denominator of the coset, while A− to its
complement2. In particular

Aa+ ∈ so(4, 1), Aa− ∈ su(2, 2) \ so(4, 1),

As+ ∈ so(5), As− ∈ su(4) \ so(5) .
(6.11)

Then the action for the bosonic string may be written as

Sb = −g
2

∫
dτdσ (γαβ − εαβ) Str

(
A−αA

−
β

)
, (6.12)

where we need to define a graded trace that we call supertrace3 Str ≡ tra− trs. It is easy
to check that the contribution with εαβ vanishes. Therefore, after choosing an explicit
coset representative and rewriting the action in the Polyakov form (2.2) of Section 2.1,
we find that the B-field is zero

Sb = −g
2

∫
dσdτ γαβ∂αX

M∂βX
NGMN . (6.13)

If we use coordinatesX0, . . . , X4 to parameterise AdS5 andX5, . . . , X9 for S5, the metric
GMN is in block form, with the upper-left block containing the AdS5 metric and the
lower-right block the S5 metric. If we use the coset representatives of Eq. (C.1) we find
the metrics in the form (6.2) and (6.6), while (C.6) yields the metrics (6.4) and (6.8).

6.2 Deformed model

The deformed model is obtained by inserting a linear operator acting on one of the two
currents in the action of the non-linear σ-model [96, 94]. For the deformation of the full

2The subspaces with labels + and − appearing in this chapter correspond to the subspaces of grading 0
and 2 respectively of Section 7.1

3The minus sign in front of the trace for the sphere contribution is motivated by the fact that we want the
correct signature for this space. It becomes natural when we think of the full psu(2, 2|4) algebra, see Section 7.1.
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supercoset σ-model we refer to Section 7.4.2. Here it will be enough to notice that when
restricted to the bosonic model, the deformed action may be written as

S̃b = − g̃
2

∫
dσdτ

(
γαβ − εαβ

)
Str
(
A−α · O−1

b (A−β )
)
, (6.14)

where O−1
b is the inverse of the linear operator

Ob = 1− 2η

1− η2
Rgb
◦ P (−) , (6.15)

mapping the algebra su(2, 2)⊕ su(4) to itself.
The deformation parameter is η ∈] − 1, 1[, where the range is chosen to have invert-

ibility for Ob. Setting η = 0 we recover the undeformed model. The definition of Ob

depends on the composition of the operators P (−) and Rgb
. The former is the projector

onto the component “−” of the algebra, while the latter is defined as

Rgb
= Adjgb

−1 ◦R ◦Adjgb
, (6.16)

meaning that its action on a matrix M is Rgb
(M) = gb

−1R(gbMgb
−1)gb. The linear

operator R satisfies the modified classical Yang-Baxter equation

[R(M), R(N)]−R([R(M), N ] + [M,R(N)]) = [M,N ] . (6.17)

According to the definition given in [96, 94], it multiplies by −i and +i generators asso-
ciated with positive and negative roots respectively, and by 0 Cartan generators. Strictly
speaking it is defined on the complexified algebra, and what we will use is its restriction
to su(2, 2)⊕ su(4). On elements of the algebra written as 8× 8 matrices, we may write its
action as

R(M)ij = −i εijMij , εij =

 1 if i < j
0 if i = j
−1 if i > j

. (6.18)

The action for the deformed model is multiplied by g̃ that plays the role of the effective
string tension, related to the one of the undeformed theory g by4

g̃ =
1 + η2

1− η2
g . (6.19)

To obtain better expressions we also introduce a new deformation parameter related to
η as

κ =
2η

1− η2
, 0 < κ <∞ , (6.20)

which as we will see is a convenient choice. In order to compute the action for the
deformed theory one has to first study the operator Ob and invert it. From its definition
it is clear that Ob acts as the identity operator on the 10 + 10 generators of so(4, 1) ⊕
so(5) ⊂ su(2, 2)⊕su(4). When acting on the 5+5 generators of the coset su(2, 2)⊕su(4)\

4Our η-dependent prefactor differs from the one in [94]. Our choice is necessary to match the perturbative
worldsheet scattering matrix with the q-deformed one.
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Figure 6.1: The left figure represents the hemisphere parameterised by the coordinates r ∈ [0, 1]
and φ ∈ [0, 2π]. On the right we draw the squashed hemisphere that we find when we turn on the
deformation. The figure was generated with deformation parameter κ = 1.

so(4, 1)⊕ so(5) we see that we never mix generators of Anti-de Sitter and of the sphere.
In Appendix C.1.2 we provide the explicit results for the inverse operator O−1

b .
When we put the action of the deformed model in the form presented in (2.2)

Sb = − g̃
2

∫
dσdτ

(
γαβ∂αX

M∂βX
N G̃MN − εαβ∂αXM∂βX

N B̃MN

)
, (6.21)

we find that the metric is deformed and that a B-field is generated. The result is partic-
ularly simple when expressed in terms of the coordinates (6.2) and (6.6), related to the
coset representative (C.1). In particular, we find that the metrics for the deformed AdS5

and the deformed S5 are [3]

ds2
(AdS5)η

=− 1 + ρ2

1− κ2ρ2
dt2 +

dρ2

(1 + ρ2) (1− κ2ρ2)

+
ρ2

1 + κ2ρ4 sin2 ζ

(
dζ2 + cos2 ζ dψ2

1

)
+ ρ2 sin2 ζ dψ2

2 ,

ds2
(S5)η

=
1− r2

1 + κ2r2
dφ2 +

dr2

(1− r2) (1 + κ2r2)

+
r2

1 + κ2r4 sin2 ξ

(
dξ2 + cos2 ξ dφ2

1

)
+ r2 sin2 ξ dφ2

2 .

(6.22)

Figure 6.1 and 6.2 represent the effect of the deformation on the sphere and on AdS. We
find the B-field B = 1

2BMN dXM ∧ dXN [3]

B̃(AdS5)η = +
κ
2

(
ρ4 sin(2ζ)

1 + κ2ρ4 sin2 ζ
dψ1 ∧ dζ +

2ρ

1− κ2ρ2
dt ∧ dρ

)
,

B̃(S5)η = −κ
2

(
r4 sin(2ξ)

1 + κ2r4 sin2 ξ
dφ1 ∧ dξ +

2r

1 + κ2r2
dφ ∧ dr

)
.

(6.23)

It is easy to see that the contributions of the components Btρ and Bφr to the Lagrangian
are total derivatives, meaning that they can be ignored.
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Figure 6.2: In the left figure we draw the space parameterised by the coordinates ρ ∈ [0,∞[—here
we stop the range of ρ at the value 1—and t ∈ [0, 2π]. On the right we draw its deformation,
generated with κ = 1. The right figure has actually been rescaled to fit the page: the circles at
ρ = 0 have the same radius in the two cases.

We refer to Appendix C.1.3 for the Lagrangian written in the coordinates (t, zi) and
(φ, yi). Let us note that in the undeformed case the action is invariant with respect to
two copies of SO(4), one of them corresponding to rotations of zi and the other copy
of yi. In the above action this symmetry is broken down to four copies of SO(2) ∼
U(1), corresponding to shifts of the angles ψi and φi. Thus, together with the two U(1)
isometries acting on t and φ, the deformed action is invariant under U(1)3 × U(1)3. We
also find that the range of ρ is reduced under the deformation 0 ≤ ρ ≤ 1/κ, to preserve
the time-like nature of t. The (string frame) metric of the deformed AdS is singular at
ρ = 1/κ. This is not just a coordinate singularity, as the Ricci scalar has a pole there.
Without knowing the dilaton it is unclear whether the Einstein-frame metric exhibits the
same singularity.

6.3 Perturbative bosonic worldsheet S-matrix

In this Section we want to compute the perturbative S-matrix governing worldsheet scat-
tering between two bosonic excitations. We will then compare it with the large-tension
limit of the q-deformed S-matrix proposed in [90] and find agreement.
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6.3.1 Quartic action in light-cone gauge

Since we are interested in the perturbative expansion in powers of fields around ρ =
0, r = 0, we first expand the full bosonic Lagrangian up to quartic order in ρ, r and
their derivatives. To simplify the result we also make the shifts of ρ and r as described
in Appendix C.1.3, c.f. (C.25). We then change the spherical coordinates to the Euclidean
coordinates (zi, yi)i=1,...,4 introduced in (6.3) and (6.7)—as they are the preferred ones
for perturbation theory—and we further expand the resulting action up to the quartic
order in z and y fields. In this way we find the Lagrangian up to quartic order L =
L G,a + L B,a + L G,s + L B,s, where we have separated the contributions of AdS5 from
the ones of S5, and the contributions of the metric GMN from the ones of the B-field

L G,a = − g̃
2
γαβ

[
−
(

1 + (1 + κ2)|z|2 +
1

2
(1 + κ2)2|z|4

)
∂αt∂βt

+

(
1 + (1− κ2)

|z|2

2

)
∂αzi∂βzi

]
,

L B,a = +2g̃ κ(z2
3 + z2

4)εαβ∂αz1∂βz2 ,

L G,s = − g̃
2
γαβ

[(
1− (1 + κ2)|y|2 +

1

2
(1 + κ2)2|y|4

)
∂αφ∂βφ

+

(
1− 1

2
(1− κ2)|y|2

)
∂αyi∂βyi

]
,

L B,s = −2g̃ κ(y2
3 + y2

4)εαβ∂αy1∂βy2 .

(6.24)

Here we use the notation |z| ≡ (zizi)
1/2, |y| ≡ (yiyi)

1/2. The “metric part” of this La-
grangian has a manifest SO(4) × SO(4) symmetry at quartic order, which is however
broken by the Wess-Zumino terms.

We first need to impose the uniform light-cone gauge, as explained more generally
in Section 2.1. We follow exactly the same notation and conventions. After that we
take the decompactification limit and perform the large-tension expansion presented in
Section 2.3 The gauge-fixed action is organised in the form

S =

∫
dτdσ

(
pµẋ

µ −H2 −
1

g
H4 − . . .

)
, (6.25)

where we find the quadratic Hamiltonian

H2 =
1

2
p2
µ +

1

2
(1 + κ2)(Xµ)2 +

1

2
(1 + κ2)(X ′µ)2. (6.26)
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The quartic Hamiltonian in a general a-gauge is

H4 =
1

4

(
(2κ2|z|2 − (1 + κ2)|y|2)|pz|2 − (2κ2|y|2 − (1 + κ2)|z|2)|py|2

+
(
1 + κ2

) ((
2|z|2 −

(
1 + κ2

)
|y|2
)
|z′|2 +

((
1 + κ2

)
|z|2 − 2|y|2

)
|y′|2

))
− 2κ

(
1 + κ2

) 1
2
((
z2

3 + z2
4

)
(pz1z

′
2 − pz2z′1)−

(
y2

3 + y2
4

)
(py1y

′
2 − py2y

′
1)
)

+
(2a− 1)

8

(
(|py|2 + |pz|2)2 − (1 + κ2)2(|y|2 + |z|2)2

+ 2(1 + κ2)(|py|2 + |pz|2)(|y′|2 + |z′|2) + (1 + κ2)2(|y′|2 + |z′|2)2 − 4(1 + κ2)(x′−)2

)
.

(6.27)
Here we use the notation |pz| ≡ (pzipzi)

1/2, |py| ≡ (pyipyi)
1/2.

To simplify the quartic piece, we can remove the terms of the form |pz|2|y|2 and
|py|2|z|2 by performing a canonical transformation generated by

V =
(1 + κ2)

4

∫
dσ
(
pyiyi|z|2 − pzizi|y|2

)
. (6.28)

After this is done, the quartic Hamiltonian reads as

H4 =
(1 + κ2)

2
(|z|2|z′|2 − |y|2|y′|2) +

(1 + κ2)2

2
(|z|2|y′|2 − |y|2|z′|2)

+
κ2

2
(|z|2|pz|2 − |y|2|py|2)

− 2κ(1 + κ2)
1
2

[(
z2

3 + z2
4

)
(pz1z

′
2 − pz2z′1)−

(
y2

3 + y2
4

)
(py1y

′
2 − py2

y′1)
]

+
(2a− 1)

8

(
(|py|2 + |pz|2)2 − (1 + κ2)2(|y|2 + |z|2)2

+ 2(1 + κ2)(|py|2 + |pz|2)(|y′|2 + |z′|2) + (1 + κ2)2(|y′|2 + |z′|2)2 − 4(1 + κ2)(x′−)2

)
.

(6.29)
We recall that in the undeformed case the full theory—containing both bosons and

fermions—is invariant with respect to the two copies of the centrally extended super-
algebra psu(2|2), each containing two su(2) subalgebras. To render invariance under
su(2) subalgebras manifest, one can introduce the two-index notation for the worldsheet
fields. It is convenient to adopt the same notation also for the deformed case5

Z34̇ = 1
2 (z3 − iz4), Z33̇ = 1

2 (z1 − iz2),

Z43̇ = − 1
2 (z3 + iz4), Z44̇ = 1

2 (z1 + iz2),
(6.30)

5This parameterisation is different from the one used in [106], as we exchange the definitions for Y 11̇ and
Y 22̇ and the definitions for Y 12̇ and Y 21̇. This does not matter in the undeformed case but is needed here in
order to correctly match the perturbative S-matrix with the q-deformed one computed from symmetries.
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Y 12̇ = − 1
2 (y3 + iy4), Y 11̇ = 1

2 (y1 + iy2),

Y 21̇ = 1
2 (y3 − iy4), Y 22̇ = 1

2 (y1 − iy2) .
(6.31)

In terms of two-index fields the quartic Hamiltonian becomes H4 = HG4 + HB4 , where
HG4 is the contribution coming from the spacetime metric andHB4 from the B-field

HG4 = 2(1 + κ2)
(
Zαα̇Z

αα̇Z′ββ̇Z
′ββ̇ − YaȧY aȧY ′bḃY

′bḃ
)

+ 2(1 + κ2)2
(
Zαα̇Z

αα̇Y ′bḃY
′bḃ − YaȧY aȧZ′ββ̇Z

′ββ̇
)

+
κ2

2

(
Zαα̇Z

αα̇Pββ̇P
ββ̇ − YaȧY aȧPbḃP

bḃ
)

(6.32)

+
(2a− 1)

8

(
1

4
(PaȧP

aȧ + Pαα̇P
αα̇)2 − 4(1 + κ2)2(YaȧY

aȧ + Zαα̇Z
αα̇)2

+ 2(1 + κ2)(PaȧP
aȧ + Pαα̇P

αα̇)(Y ′aȧY
′aȧ + Z′αα̇Z

′αα̇) + 4(1 + κ2)2(Y ′aȧY
′aȧ + Z′αα̇Z

′αα̇)2

− 4(1 + κ2)(PaȧY
′aȧ + Pαα̇Z

′αα̇)2

)
,

HB4 = 8iκ(1 + κ2)
1
2

(
Z34̇Z43̇(P33̇Z

′33̇ − P44̇Z
′44̇) + Y 12̇Y 21̇(P11̇Y

′11̇ − P22̇Y
′22̇)
)
.

Here indices are raised and lowered with the ε-tensors, where ε12 = −ε12 = ε34 =
−ε34 = +1, and similarly for dotted indices. Note that we have used the Virasoro con-
straint C1 = 0 given in (2.8) in order to express x′− in terms of the two index fields.
The gauge dependent terms multiplying (2a − 1) are invariant under SO(8) as in the
underformed case.

6.3.2 Tree-level bosonic S-matrix

The computation of the tree level bosonic S-matrix follows the route reviewed in Sec-
tion 2.3.1, see [106] for more details. We first quantise the theory by introducing creation
and annihilation operators as

Zαα̇(σ, τ) =
1√
2π

∫
dp

1

2
√
ωp

(
eipσaαα̇(p, τ) + e−ipσεαβεα̇β̇a†

ββ̇
(p, τ)

)
,

Y aȧ(σ, τ) =
1√
2π

∫
dp

1

2
√
ωp

(
eipσaaȧ(p, τ) + e−ipσεabεȧḃa†

bḃ
(p, τ)

)
,

Pαα̇(σ, τ) =
1√
2π

∫
dp i
√
ωp

(
e−ipσa†αα̇(p, τ)− eipσεαβεα̇β̇a

ββ̇(p, τ)
)
,

Paȧ(σ, τ) =
1√
2π

∫
dp i
√
ωp

(
e−ipσa†aȧ(p, τ)− eipσεabεȧḃa

bḃ(p, τ)
)
,

(6.33)

where the frequency ωp is related to the momentum p as

ωp = (1 + κ2)
1
2

√
1 + p2 =

√
1 + p2

1− ν2
, (6.34)

and we have introduced a new convenient parameterisation of the deformation as

ν =
κ

(1 + κ2)
1
2

=
2η

1 + η2
. (6.35)
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We compute the T-matrix defined by (2.58) using Equation (2.59). The free Hamilto-
nian governing the dynamics of in- and out-states is found by rewriting the quadratic
Hamiltonian (6.26) in terms of the oscillators a†, a. At leading order in the large-tension
expansion the potential V is essentially the quartic Hamiltonian (6.32) written for a†, a

V =
1

g
H4 +O(1/g2) . (6.36)

The additional power of 1/g comes from the expansion in powers of fields (2.38), as it is
seen also in (6.25).

It is convenient to rewrite the tree-level S-matrix as a sum of two terms T = TG+TB ,
coming fromHG4 andHB4 respectevely. The reason is that TG preserves the so(4)⊕ so(4)
symmetry, while TB breaks it. To write the results we consider states with momenta
p, p′—and corresponding frequencies ω, ω′—and we always assume that p > p′. To have
a nicer notation, we denote the states found by acting with the creation operators on the
vacuum by |Zαα̇〉 ≡ a†αα̇ |0〉 , |Yaȧ〉 ≡ a†aȧ |0〉. The action of TG on the two-particle states
is given by6

TG |YaċY ′bḋ〉 =

[
1− 2a

2
(pω′ − p′ω) +

1

2

(p− p′)2 + ν2(ω − ω′)2

pω′ − p′ω

]
|YaċY ′bḋ〉

+
pp′ + ν2ωω′

pω′ − p′ω
(
|YaḋY

′
bċ〉+ |YbċY ′aḋ〉

)
,

TG |Zαγ̇Z ′βδ̇〉 =

[
1− 2a

2
(pω′ − p′ω)− 1

2

(p− p′)2 + ν2(ω − ω′)2

pω′ − p′ω

]
|Zαγ̇Z ′βδ̇〉

− pp′ + ν2ωω′

pω′ − p′ω
(
|Zαδ̇Z

′
βγ̇〉+ |Zβγ̇Z ′αδ̇〉

)
,

TG |YaḃZ
′
αβ̇
〉 =

[
1− 2a

2
(pω′ − p′ω)− 1

2

ω2 − ω′2

pω′ − p′ω

]
|YaḃZ

′
αβ̇
〉 ,

TG |Zαβ̇Y
′
aḃ
〉 =

[
1− 2a

2
(pω′ − p′ω) +

1

2

ω2 − ω′2

pω′ − p′ω

]
|Zαβ̇Y

′
aḃ
〉 ,

(6.37)

and the action of TB on the two-particle states is

TB |YaċY ′bḋ〉 = iν
(
εab |YbċY ′aḋ〉+ εċḋ |YaḋY

′
bċ〉
)
,

TB |Zαγ̇Z ′βδ̇〉 = iν
(
εαβ |Zβγ̇Z ′αδ̇〉+ εγ̇δ̇ |Zαδ̇Z

′
βγ̇〉
)
,

(6.38)

where on the r.h.s. we obviously do not sum over the repeated indices.

In the undeformed case, the S-matrix S computed in perturbation theory is factorised
into the product of two S-matrices, each of them invariant under one copy of the centrally
extended superalgebra psu(2|2) [21, 34]

Spsu(2|2)2
c.e.

= Spsu(2|2)c.e. ⊗̂Spsu(2|2)c.e. . (6.39)

6Here a ′ on a state is used when the corresponding momentum is p′.
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Using (2.58) one finds the corresponding factorisation rule for the T-matrix

TPṖ,QQ̇
MṀ,NṄ

= (−1)εṀ (εN+εQ)T PQMNδ
Ṗ
Ṁ
δQ̇
Ṅ

+ (−1)εQ(εṀ+εṖ )δPMδ
Q
NT

Ṗ Q̇

ṀṄ
. (6.40)

Here M = (a, α) and Ṁ = (ȧ, α̇), and dotted and undotted indices are referred to two
copies of psu(2|2), respectively, while εM and εṀ describe statistics of the correspond-
ing indices, i.e. they are zero for bosonic (Latin) indices and equal to one for fermionic
(Greek) ones. For the bosonic model the factor T can be regarded as a 16× 16 matrix.

It is not difficult to see that the same type of factorisation persists in the deformed
case as well. Indeed, from (6.37) we extract the following elements for the T -matrix

T cdab = Aδcaδ
d
b +B δdaδ

c
b +W εabδ

d
aδ
c
b ,

T γδαβ = D δγαδ
δ
β + E δδαδ

γ
β +W εαβ δ

δ
αδ
γ
β ,

T cδaβ = Gδcaδ
δ
β , T γdαb = Lδγαδ

d
b ,

(6.41)

where the coefficients are given by

A(p, p′) =
1− 2a

4
(pω′ − p′ω) +

1

4

(p− p′)2 + ν2(ω − ω′)2

pω′ − p′ω
,

B(p, p′) = −E(p, p′) =
pp′ + ν2ωω′

pω′ − p′ω
,

D(p, p′) =
1− 2a

4
(pω′ − p′ω)− 1

4

(p− p′)2 + ν2(ω − ω′)2

pω′ − p′ω
,

G(p, p′) = −L(p′, p) =
1− 2a

4
(pω′ − p′ω)− 1

4

ω2 − ω′2

pω′ − p′ω
,

W (p, p′) = iν .

(6.42)

Here W corresponds to the contribution of the Wess-Zumino term and it does not actu-
ally depend on the particle momenta. All the four remaining coefficients T γδab , T cdαβ , T

γd
aβ , T

γd
αb

vanish in the bosonic case but will be switched on once fermions are taken into account.
The matrix T is recovered from its matrix elements as follows

T = T PQMN E
M
P ⊗ ENQ = T cdab Eac ⊗ Ebd + T γδαβ E

α
γ ⊗ E

β
δ + T cδaβ Eac ⊗ E

β
δ + T γdαb E

α
γ ⊗ Ebd ,

where ENM are the standard matrix unities. For the reader convenience we present T as
an explicit 16× 16 matrix7

7See Appendix 8.5 of [34] for the corresponding matrix in the undeformed case.
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T ≡



A1 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0
0 A2 0 0 | A4 0 0 0 | 0 0 0 0 | 0 0 0 0
0 0 A3 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0
0 0 0 A3 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0
− − − − − − − − − − − − − − − − − − −
0 A5 0 0 | A2 0 0 0 | 0 0 0 0 | 0 0 0 0
0 0 0 0 | 0 A1 0 0 | 0 0 0 0 | 0 0 0 0
0 0 0 0 | 0 0 A3 0 | 0 0 0 0 | 0 0 0 0
0 0 0 0 | 0 0 0 A3 | 0 0 0 0 | 0 0 0 0
− − − − − − − − − − − − − − − − − − −
0 0 0 0 | 0 0 0 0 | A8 0 0 0 | 0 0 0 0
0 0 0 0 | 0 0 0 0 | 0 A8 0 0 | 0 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 A6 0 | 0 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 A7 | 0 0 A9 0
− − − − − − − − − − − − − − − − − − −
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | A8 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 A8 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 A10 | 0 0 A7 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 A6



.

Here the non-trivial matrix elements of T are given by

A1 = A+B , A2 = A , A4 = B −W , A5 = B +W , A6 = D + E , (6.43)
A6 = D + E , A7 = D , A8 = L , A9 = E −W = −A5 , A10 = E +W = −A4 .

We conclude this section by pointing out that the matrix T that we have found satis-
fies the classical Yang-Baxter equation

[T12(p1, p2), T13(p1, p3) + T23(p2, p3)] + [T13(p1, p3), T23(p2, p3)] = 0 (6.44)

for any value of the deformation parameter ν.

6.3.3 Comparison with the q-deformed S-matrix

In this subsection we show that the perturbative bosonic worldsheet S-matrix coincides
with the first nontrivial term in the large-g expansion of the q-deformed AdS5 × S5 S-
matrix8.

Let us recall that—up to an overall factor—the q-deformed AdS5 × S5 S-matrix is
given by a tensor product of two copies of the psu(2|2)q-invariant S-matrix [87] which
we denote just by S, to avoid a heavy notation. The matrix may be found in (C.30) of
Appendix C.2. We also need to multiply it by the overall factor Ssu(2) [90]

Ssu(2)(p1, p2) S12 ⊗̂S12 ,

Ssu(2)(p1, p2) =
eia(p2E1−p1E2)

σ2
12

x+
1 + ξ

x−1 + ξ

x−2 + ξ

x+
2 + ξ

· x
−
1 − x

+
2

x+
1 − x

−
2

1− 1
x−1 x

+
2

1− 1
x+

1 x
−
2

.
(6.45)

Here ⊗̂ stands for the graded tensor product, a is the parameter of the light-cone gauge—
see Eq. (2.6)—σ is the dressing factor, and E is the q-deformed dispersion relation (C.36)
whose large g expansion starts with ω. The dressing factor can be found by solving the
corresponding crossing equation, and it is given by [90]

σ12 = eiθ12 , θ12 = χ(x+
1 , x

+
2 ) + χ(x−1 , x

−
2 )− χ(x+

1 , x
−
2 )− χ(x−1 , x

+
2 ), (6.46)

8The difference with the expansion performed in [88] is that we include the dressing factor in the definition
of the S-matrix.
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where

χ(x1, x2) = i

∮
dz

2πi

1

z − x1

∮
dz′

2πi

1

z′ − x2
log

Γq2(1 + ig
2 (u(z)− u(z′)))

Γq2(1− ig
2 (u(z)− u(z′)))

. (6.47)

Here Γq(x) is the q-deformed Gamma function which for complex q admits an integral
representation (C.38) [90].

To develop the large g expansion of the q-deformed AdS5 × S5 S-matrix, one has
to assume that q = e−υ/g where υ is a deformation parameter which is kept fixed in the
limit g →∞, and should be related to ν. Then, due to the factorisation of the perturbative
bosonic worldsheet S-matrix and of the q-deformed AdS5×S5 S-matrix, it is sufficient to
compare the T -matrix (6.41) with the T-matrix appearing in the expansion of one copy
S with the proper factor

(Ssu(2))
1/2 1g S = 1 +

i

g
T , (6.48)

where 1g is the graded identity which is introduced so that the expansion starts with 1.
To check whether T = T at leading order, the only term which is not straightforward
to expand is the Ssu(2) scalar factor because it contains the dressing phase θ12. It is clear
that it will contribute only to the part of the T-matrix proportional to the identity matrix.
If we study the expansion of just 1g S without the Ssu(2) factor, we find that it is indeed
related to the matrix T computed in perturbation theory by

1gS = 1 +
i

g
(T − A11) , (6.49)

provided we identify the parameters q and ν, or q and κ, as

q = e−ν/g = e−κ/g̃ , (6.50)

showing that q is real. What is left to check is then the overall normalisation, namely that
the 1/g term in the expansion of S1/2

su(2) is equal to A1. To this end one should find the
large g expansion of the dressing phase θ12. This is done by first expanding the ratio of
Γq2 -functions in (6.47) with u(z) and u(z′) being kept fixed, using Eq. (C.39). Next, one
combines it with the expansion of the 1

z−x±1
1

z′−x±2
terms which appear in the integrand

of (6.46). As a result one finds that the dressing phase is of order 1/g just as it was in the
undeformed case [23]. One may check numerically that the element A1 is indeed equal
to the 1/g term in the expansion of S1/2

su(2) . In fact it is not difficult to extract from A1

the leading term in the large g expansion of the dressing phase which appears to be very
simple

θ12 =
ν2 (ω1 − ω2) + p2

2 (ω1 − 1)− p2
1 (ω2 − 1)

2g (p1 + p2)
+O(1/g2) . (6.51)

It would be curious to derive this expression directly from the double integral represen-
tation. Note that, doing this double integral, one could also get the full AFS order of the
phase, which would be a deformation of the one in (5.44).
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6.4 Concluding remarks

In this chapter we have studied the bosonic sector of the string on η-deformed AdS5×S5.
We have derived the deformed metric and theB-field that is generated. After computing
the tree-level scattering processes involving bosonic excitations on the worldsheet, we
were able to succesfully match with the large-tension expansion of the all-loop S-matrix
found by imposing the psuq(2|2)c.e. symmetry.

The bosonic background that we have derived was further studied in a series of
papers. Giant magnons were studied in [145, 146, 147] and other classical solutions
in [148, 149, 150]. Minimal surfaces were considered in [151, 152] and three-point correla-
tion functions in [153, 154]. For deformations of classical integrable models correspond-
ing to subsectors of the bosonic theory we refer to [155, 156]. The pertubative S-matrix
that we have computed was studied at one and two loops using unitarity techniques
in [157].

In [158] truncations to lower dimensional models and special limits were considered.
In particular, one way was provided to prove that the limit of maximal deformation
is related by double T-duality to dS5×H5, namely the product of five-dimensional de
Sitter and five-dimensional hyperboloid. A similar and more physical (η → 1, κ →
∞) limit was studied in [159], where it was shown agreement with the background of
the mirror model—first introduced to develop the Thermodynamic Bethe Ansatz [36,
39, 160]—obtained by performing a double-Wick rotation on the light-cone gauge-fixed
string. The exact spectrum was actually considered in [145], where the notion of “mirror
duality” was introduced, after observing that original and mirror models are related by
small/large values of the deformation parameter.

A proposal on how to deform the σ-model on AdS5×S5 to obtain the q-deformation
in the case of q being root of unity is the λ-deformation of [101]. We refer also to [102,
103] for a relation between the η-deformation and the λ-deformation. Generalisations
of the deformation procedure were studied in [161, 162, 163] were Jordanian and other
deformations based on R-matrices satisfying the classical Yang-Baxter equation were
considered.

In [164] it was shown that in the two cases of (AdS2×S2)η and (AdS3×S3)η it is pos-
sible to add to the deformed metric the missing NS-NS scalar and R-R fields, to obtain
a background satisfying the supergravity equations of motion. Of these two cases, only
for (AdS2×S2)η it was conjectured that the solution9 corresponds to the η-deformation.
The explicit check of this is still missing. The case of (AdS5×S5)η is technically more
complicated and a supergravity solution has not been found. One of the main motiva-
tions of the next chapter is to compute the Lagrangian of the superstring in the deformed
model up to quadratic order in fermions. This will allow us to read off the couplings to
the unknown R-R fields.

9A one-parameter family of solutions was actually found, and the conjecture proposes one specific point to
correspond to the deformed model.



Chapter 7

(AdS5×S5)η at order θ2

In this chapter we push the computation of the Lagrangian for the deformed model up
to quadratic order in fermions. The motivation for doing that is to discover the couplings
to the unknown R-R fields and the dilaton, which should complete the deformed metric
and B-field to a full type IIB background.

We start in Section 7.1 by presenting a convenient realisation of psu(2, 2|4) and in 7.2
by computing the current for this algebra. Using the results collected in Section 7.3 re-
garding the inverse operator that is used to define the deformed action, we compute the
Lagrangian in Section 7.4 and we show how to recast it in the standard form of Green-
Schwarz. In 7.5 we compute the kappa-variations of the bosonic and fermionic fields,
and of the worldsheet metric, to confirm the results for the background fields obtained
in the previous section. Section 7.6 is devoted to a discussion on the results that we have
found. We show that the background fields that we have derived are not compatible
with the equations of motion of type IIB supergravity. We comment on possible resolu-
tions of this issue, and on particular limits of the σ-model action.

7.1 The psu(2, 2|4) algebra

The subject of this section is the psu(2, 2|4) algebra, which plays a central role in the
construction of the action for the superstring on AdS5×S5 and its deformation. We start
from the algebra sl(4|4), one particular element of which may be written as a 8×8 matrix

M =

(
m11 m12

m21 m22

)
, (7.1)

where eachmij above is a 4×4 block. The matrixM is required to have vanishing super-
trace, defined as StrM = trm11− trm22. The Z2 structure identifies the diagonal blocks
m11,m22 as even, while the off-diagonal blocks m12,m21 as odd. Later we will multiply
the former by Grassmann-even (bosonic) variables, while the latter by Grassmann-odd
(fermionic) ones.

We find the algebra su(2, 2|4) by imposing a proper reality condition

M†H +HM = 0 , (7.2)

97
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where we have defined the matrix H as

H =

(
Σ 0
0 14

)
, (7.3)

and the diagonal matrix Σ = diag(1, 1,−1,−1). We will present an explicit realisation
of this algebra in terms of 8 × 8 matrices. Since su(2, 2|4) is non-compact, the above
representation is non-unitary. The algebra psu(2, 2|4) is then found by projecting away
the generator proportional to the identity operator.

To construct our 8 × 8 matrices we will use 4 × 4 gamma-matrices [106]. In Ap-
pendix C.3 we write our preferred choice for the 4 × 4 gamma-matrices. They are all
Hermitian and satisfy the SO(5) Clifford algebra

{γm, γn} = 2δmn , m = 0, . . . , 4 . (7.4)

We need two copies of these matrices, one for Anti-de Sitter and one for the sphere. In
the first case we will denote them with a check γ̌m, in the second with a hat γ̂m

AdS5 : γ̌0 = iγ0, γ̌m = γm, m = 1, · · · , 4,
S5 : γ̂m+5 = −γm, m = 0, · · · , 4.

(7.5)

We have chosen to enumerate the gamma-matrices for AdS5 from 0 to 4 and the ones
for S5 from 5 to 9 to have a better notation when we want to write ten-dimensional
expressions. The i in the definition of γ̌0 is needed to reproduce the signature of the
metric. We will not use the notation of [106] for the generators. In the following we
provide explicitly our preferred basis.

Even generators We denote 10 (5 for AdS5 + 5 for S5) of the even generators by P and
the remaining 20 (10 for AdS5 + 10 for S5) by J. The generators P̌m for AdS5 and the
generators P̂m for S5 are defined as

P̌m =

(
− 1

2 γ̌m 04

04 04

)
, m = 0, . . . 4, P̂m =

(
04 04

04
i
2 γ̂m

)
, m = 5, . . . 9. (7.6)

After defining γ̌mn ≡ 1
2 [γ̌m, γ̌n] and γ̂mn ≡ 1

2 [γ̂m, γ̂n] we also write the generators J̌mn
and Ĵmn for AdS5 and for S5

J̌mn =

(
1
2 γ̌mn 04

04 04

)
, m, n = 0, . . . 4, Ĵmn =

(
04 04

04
1
2 γ̂mn

)
, m, n = 5, . . . 9.

(7.7)
All the generators satisfy Equation (7.2) and hence belong to su(2, 2|4).

Odd generators To span all the 32 odd generators of su(2, 2|4) we use a label I = 1, 2
and two spinor indices α, a = 1, 2, 3, 4. Greek spinor indices are used for AdS5, Latin
ones for S5. Our preferred basis for the odd generators is

QI α
a = e+iπ/4

 04 m
α
I a

K
(
m

α
I a

)†
K 04

 ,

(
m

α
1 a

)
j

k

= e+iπ/4+iφQ δ
α
j δ

k
a ,

(
m

α
2 a

)
j

k

= −e−iπ/4+iφQ δ
α
j δ

k
a .

(7.8)
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Here m α
I a are 4 × 4 matrices, and K is defined in (C.42). The phase φQ corresponds

to the U(1) automorphism of su(2, 2|4), and we set φQ = 0. These supermatrices are
constructed in such a way that they do not satisfy Eq. (7.2) but rather Q†i H̃ + H̃Q = 0
where we have defined

H̃ ≡
(
K 0
0 K

)
. (7.9)

The supermatrices Q can be seen as complex combinations of supermatrices Q satisfy-
ing (7.2)

Q = e+iπ/4

(
C 0
0 K

)
Q, Q = −e−iπ/4

(
C 0
0 K

)
Q. (7.10)

The matrix C is defined in Eq. (C.42). On the one hand, taking linear combinations of
Q’s with Grassmann variables and imposing that ϑ a

I αQ
I α
a belongs to su(2, 2|4) would

translate into the fact that the fermions ϑ a
I α are real. On the other hand, imposing that

θ
a
I αQ

I α
a belongs to su(2, 2, |4) (θ

a
I αQ

I α
a )† = −H(θ

a
I αQ

I α
a )H−1 gives

θ†
α

I a = −i θ b
I ν C

ναKba. (7.11)

Defining the barred version of a fermion we find the Majorana condition in the form

θ̄
α
I a ≡ θ

† ν
I a(γ̌0)ν

α
= −θ b

I ν K
ναKba. (7.12)

Later on we will decide to write the fermions θI αa with both spinor indices lowered and
θ̄
αa
I with both spinor indices raised, so the above equation reads as

θ̄
αa
I = +θI νb K

ναKba, (7.13)

matching with [27]. Let us comment on the fact that the matrix K is the charge conjuga-
tion matrix for the γ-matrices. We call it K to keep the same notation of [106]. We refer
to Appendix C.3 for our conventions with spinors. A more compact notation is achieved
by actually omitting the spinor indices. The above equation then reads as

θ̄I = θ†Iγ
0 = +θtI (K ⊗K) , (7.14)

where γ0 ≡ γ̌0⊗14, and Hermitian conjugation and transposition are implemented only
in the space spanned by the spinor indices, where the matrices γ0 and K ⊗K are acting.

Commutation relations It is convenient to rewrite the commutation relations when
considering the Grassmann enveloping algebra. In this way we may suppress the spinor
indices to obtain more compact expressions. We define QIθI ≡ QI αaθI αa and we intro-
duce the 16× 16 matrices

γm ≡ γ̌m ⊗ 14, m = 0, · · · , 4, γm ≡ 14 ⊗ iγ̂m, m = 5, · · · , 9,
γmn ≡ γ̌mn ⊗ 14, m, n = 0, · · · , 4, γmn ≡ 14 ⊗ γ̂mn, m, n = 5, · · · , 9.

(7.15)

The first space in the tensor product is spanned by the AdS spinor indices, the second
by the sphere spinor indices. To understand the 10-dimensional origin of these objects
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see appendix C.8. In the context of type IIB, one usually continues to refer to them as
gamma-matrices even though they do not satisfy Clifford algebra relations.

In our basis the commutation relations involving only bosonic elements read as

AdS5 : [P̌m, P̌n] = J̌mn, S5 : [P̂m, P̂n] = −Ĵmn,

[P̌m, J̌np] = ηmnP̌p − n↔p, [P̂m, Ĵnp] = ηmnP̂p − n↔p,

[J̌mn, J̌pq] = (ηnpJ̌mq−m↔n)−p↔q [Ĵmn, Ĵpq] = (ηnpĴmq−m↔n)−p↔q,
(7.16)

where ηmn = diag(−1, 1, 1, 1, 1, 1, 1, 1, 1, 1). Generators of the two different spaces com-
mute with each other. The generators J identify the bosonic subalgebra so(4, 1)⊕ so(5).

With the above definitions, the commutation relations of su(2, 2|4) involving odd
generators are1

[QIθI ,Pm] = − i
2
εIJQJγmθI , [QIθI ,Jmn] = −1

2
δIJQJγmnθI , (7.17)

[QIλI ,Q
JψJ ] = i δIJ λ̄Iγ

mψJ Pm −
1

2
εIJ λ̄I(γ

mnJ̌mn − γmnĴmn)ψJ −
i

2
δIJ λ̄IψJ18.

(7.18)
Here we have also used the Majorana condition to rewrite the result in terms of the
fermions λ̄I , and for completeness we indicate also the generator proportional to the
identity operator. We refer to Appendix C.3 for the commutation relations with explicit
spinor indices.

Supertraces In the computation for the Lagrangian we will need to take the supertrace
of products of two generators of the algebra. For the non-vanishing ones we find

Str[PmPn] = ηmn,

AdS5 : Str[J̌mnJ̌pq] = −(ηmpηnq − ηmqηnp),

S5 : Str[ĴmnĴpq] = +(ηmpηnq − ηmqηnp),
Str[QIλI QJψJ ] = −2εIJ λ̄IψJ = −2εJI ψ̄JλI .

(7.19)

Z4 decomposition The su(2, 2|4) algebra admits a Z4 decomposition, compatible with
the commutation relations. We call Ω the outer automorphism, that acts on elements of
the algebra as

Ω(M) = ikM , k = 0, . . . , 4 , (7.20)

identifying four different subspaces of su(2, 2|4) labelled by k. We define it as [106]

Ω(M) = −KMstK−1, (7.21)

with K = diag(K,K) and st denoting the supertranspose

Mst ≡
(
mt

11 −mt
21

mt
12 mt

22

)
. (7.22)

1For commutators of two odd elements we need to multiply by two different fermions λI , ψI , otherwise the
right hand side vanishes.
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If we consider bosonic generators, it is easy to see that J and P belong to the subspaces
of grading 0 and 2 respectively2

Ω(J) = +J , Ω(P) = −P . (7.23)

In our basis, the action on odd generators is also very simple

Ω(QI αa) = σII3 iQI αa , (7.24)

meaning that odd elements with I = 1 have grading 1, and with I = 2 have grading 3. It
is natural to introduce projectors P (k) on each subspace, whose action may be found by

P (k)(M) =
1

4

(
M + i3kΩ(M) + i2kΩ2(M) + ikΩ3(M)

)
. (7.25)

Then P (0) will project on generators J, P (2) on generators P, and P (1), P (3) on odd ele-
ments with labels I = 1, 2

P (1)(QI αa) =
1

2
(δIJ + σIJ3 )QJ αa, P (3)(QI αa) =

1

2
(δIJ − σIJ3 )QJ αa. (7.26)

The definition of the coset uses the Z4 grading, as the generators that are removed are
the J’s spanning the so(4, 1) ⊕ so(5) subalgebra, that conincides with the subspace of
grading 0.

7.2 The current

In this section we compute the current that enters the definition of the Lagrangian up to
quadratic order in fermions. We start by defining a coset element of PSU(2, 2|4)/SO(4, 1)×
SO(5), that we choose to write as

g = gb · gf. (7.27)

Here gb is a bosonic group element. We choose the same representative used in Chap-
ter 6, see Equation (C.1). The fermionic group element is denoted by gf and we define it
simply through the exponential map

gf = expχ , χ ≡ QI θI . (7.28)

One may prefer different choices, e.g. gf = χ+
√

1 + χ2 turns out to be more convenient
when we want to expand up to fourth order [106], since it generates no cubic term in the
expansion. At quadratic order the two parameterisations are equivalent.

Let us comment on the fact that other choices for g are also possible, e.g. we could put
the fermions to the left and use an element of the form gf · gb. In [165, 106] yet another
choice was made, namely Λ(t, φ) · gf · gX, where Λ(t, φ) is the group element for shifts of
t and φ, while gX contains the remaining bosonic isometries. We prefer to use (7.27) as
in [27] because its expansion in powers of fermions is simpler. This choice corresponds
to fermions that are not charged under global bosonic isometries.

2The subspaces of grading 0 and 2 of this chapter correspond to the subspaces with label + and − respec-
tively of Chapter 6.
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The current is defined as A = −g−1dg, and being an element of the algebra we de-
compose it in terms of linear combinations of the generators

A = LmPm +
1

2
LmnJmn + QI αaLI αa. (7.29)

It is useful to look at the purely bosonic and purely fermionic currents separately, that are
found after switching off the fermions and the bosons respectively. The purely bosonic
current is a combination of even generators only

Ab = −gb−1dgb = emPm +
1

2
ωmnJmn. (7.30)

The coefficients in front of the generators Pm are the components of the vielbein, while
the ones in front of the generators Jmn are the components of the spin-connection for
the ten-dimensional metric. To write them explicitly, let us choose to enumerate the ten
spacetime coordinates as

X0 = t, X1 = ψ2, X2 = ψ1, X3 = ζ, X4 = ρ,

X5 = φ, X6 = φ2, X7 = φ1, X8 = ξ, X9 = r.
(7.31)

We find that in our parameterisation the vielbein em = emMdXM is diagonal and given
by3

e0
t =

√
1 + ρ2, e1

ψ2
= −ρ sin ζ, e2

ψ1
= −ρ cos ζ, e3

ζ = −ρ, e4
ρ = − 1√

1 + ρ2
,

e5
φ =

√
1− r2, e6

φ2
= −r sin ξ, e7

φ1
= −r cos ξ, e8

ξ = −r, e9
r = − 1√

1− r2
.

(7.32)
The non-vanishing components of the spin connection ωmn = ωmnM dXM are

ω04
t = ρ, ω34

ζ = −
√

1 + ρ2,

ω13
ψ2

= − cos ζ, ω14
ψ2

= −
√

1 + ρ2 sin ζ, ω23
ψ1

= sin ζ, ω24
ψ1

= −
√

1 + ρ2 cos ζ,

ω59
φ = −r, ω89

ξ = −
√

1− r2,

ω68
φ2

= − cos ξ, ω69
φ2

= −
√

1− r2 sin ξ, ω78
φ1

= sin ξ, ω79
φ1

= −
√

1− r2 cos ξ,
(7.33)

and it can be checked that ωmnM satisfies the correct equation for the spin-connection (2.24).
The purely fermionic current is decomposed in terms of even and odd generators

Af = −gf−1dgf = ΩmPm +
1

2
ΩmnJmn + ΩI αaQ

I αa (7.34)

where we have defined the to-be-determined quantities Ωm,Ωmn,ΩI αa. After expand-

3To avoid confusion with tangent indices, we write curved indices with the explicit names of the spacetime
coordinates.
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ing gf in powers of θ, at quadratic order in the fermions we find

Af =− gf
−1dgf

=−QI dθI +
1

2
[QIθI ,Q

J dθJ ] +O(θ3)

=−QI dθI +
i

2
δIJ θ̄Iγ

mdθJ Pm −
1

4
εIJ θ̄Iγ

mndθJ J̌mn +
1

4
εIJ θ̄Iγ

mndθJ Ĵmn +O(θ3),

(7.35)
where we make use of the commutation relations (7.18) of psu(2, 2|4)—meaning that we
also project out the generator proportional to the identity operator.

When we repeat the computation for the full current we see that the computation is
similar to the one of the fermionic current, upon replacing d→ (d−Ab) [27]

A =− g−1dg = −gf−1(d−Ab)gf

=Ab −QIdθI − [QIθI , A
b]

+
1

2

[
QIθI ,

(
QJdθJ − [QJθJ , A

b]
)]

+O(θ3)

=

(
em +

i

2
θ̄Iγ

mDIJθJ

)
Pm −QI DIJθJ

+
1

2
ωmnJmn −

1

4
εIJ θ̄I

(
γmnJ̌mn − γmnĴmn

)
DJKθK +O(θ3)

(7.36)

where the operator DIJ on fermions θ is

DIJ = δIJ
(

d− 1

4
ωmnγmn

)
+
i

2
εIJemγm. (7.37)

Sometimes it is useful to write it as

DIJ = DIJ +
i

2
εIJemγm, DIJ ≡ δIJ

(
d− 1

4
ωmnγmn

)
, (7.38)

where DIJ is the covariant derivative on the fermions.
The contribution of the generators J to the current will be irrelevant for the compu-

tation of the Lagrangian, since they are projected out when defining the coset.
Imposing the flatness condition on the current

εαβ(∂αAβ −
1

2
[Aα, Aβ ]) = 0 (7.39)

and projecting on the bosonic generators we find the following equations for the vielbein
and the spin connection

εαβ(∂αe
m
β − ωmqα eqβ) = 0, (7.40)

εαβ(∂αω̌
mn
β − ω̌mpαω̌

pn
β − ě

m
α ě

n
β) = 0, εαβ(∂αω̂

mn
β − ω̂mpαω̂

pn
β + êmα ê

n
β) = 0. (7.41)
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7.3 Expansion in fermions of the inverse operatorO−1

In this section we collect the relevant ingredients to construct the Lagrangian of the de-
formed model, once we include also the fermionic degrees of freedom. Following [94]
we define linear combinations of the projectors introduced in Section 7.1

d = P (1) +
2

1− η2
P (2) − P (3), d̃ = −P (1) +

2

1− η2
P (2) + P (3), (7.42)

that are understood as being one the transpose of the other Str[Md(N)] = Str[d̃(M)N ].
Here η is the deformation parameter already introduced in Chapter 6. The above defini-
tions imply

d(Jmn) = d̃(Jmn) = 0,

d(Pm) = d̃(Pm) =
2

1− η2
Pm,

d(QI) = −d̃(QI) = (σ3)IJQJ .

(7.43)

We define the operator Rg

Rg = Adjg−1 ◦R ◦Adjg , (7.44)

that differ from (6.16) because now the group element g given in (7.27) contains also the
fermions. For the operator R we use again the definition

R(M)ij = −i εijMij , εij =

 1 if i < j
0 if i = j
−1 if i > j

, (7.45)

that now becomes relevant also on odd roots. Even when we consider the full psu(2, 2|4),
the operator R multiplies by−i and +i generators associated with positive and negative
roots respectively, and by 0 Cartan generators. The operator R still satisfies the modified
classical Yang-Baxter equation (6.17). The action ofRgb

defined through the bosonic coset
element was studied already in Chapter 6. In the basis of generators used in this chapter
we write its action as

Rgb
(Pm) = λm

nPn +
1

2
λnpm Jnp,

Rgb
(Jmn) = λpmnPp +

1

2
λpqmnJpq,

Rgb
(QI) = R(QI) = −εIJQJ ,

(7.46)

where the coefficients λmn, λnpm , λpmn, λ
pq
mn for our particular parameterisation are col-

lected in Appendix C.4, see (C.57)-(C.60). They satisfy the properties

λm
n = − ηmm′ηnn

′
λn′

m′ , λ̌npm = ηmm′η
nn′ηpp

′
λ̌m
′

n′p′ , λ̂npm = − ηmm′ηnn
′
ηpp
′
λ̂m
′

n′p′ ,
(7.47)

that are used to simplify some terms in the Lagrangian.
The operator used to deformed the model is defined as

O = 1− ηRg ◦ d , (7.48)
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and we find convenient to expand it in powers of the fermions θ as

O = O(0) +O(1) +O(2) + · · · , (7.49)

where O(k) is the contribution at order θk. When restricting the action of O(0) to bosonic
generators only, we recover the operator Ob defined in (6.15) and used to deform the
purely bosonic model in Chapter 6. The action of O(0) is defined also on odd elements.
The fermionic corrections that we will need read explicitly as

O(1)(M) = η[χ,Rgb
◦ d(M)]− ηRgb

([χ, d(M)]),

O(2)(M) = η[χ,Rgb
([χ, d(M)])]− 1

2
ηRgb

([χ, [χ, d(M)]])− 1

2
η([χ, [χ,Rgb

◦ d(M)]])

=
1

2
η ([χ, [χ,Rgb

◦ d(M)]]−Rgb
[χ, [χ, d(M)]])− [χ,O(1)(M)],

(7.50)
where we use again the notation χ ≡ QI θI .

It is actually the inverse operator O−1 that enters the definition of the deformed La-
grangian. Its action is trivial only on generators J of grading 0, on which it acts as the
the identity, at any order in fermions. To find its action also on the other generators, we
invert it perturbatively in powers of fermions. We write it as

O−1 = Oinv
(0) +Oinv

(1) +Oinv
(2) + · · · , (7.51)

where Oinv
(k) is the contribution at order θk. Demanding that O · O−1 = O−1 · O = 1 we

find
Oinv

(1) = −Oinv
(0) ◦ O(1) ◦ Oinv

(0),

Oinv
(2) = −Oinv

(0) ◦ O(2) ◦ Oinv
(0) −O

inv
(1) ◦ O(1) ◦ Oinv

(0).
(7.52)

We will not need higher order contributions.

Order θ0 When we switch off the fermions in O−1 we recover the results of Chapter 6.
In particular, using the results of Appendix C.1.2 rewritten for our basis of the generators
we find that on Pm it gives

Oinv
(0)(Pm) = km

nPn +
1

2
wnpm Jnp, (7.53)

where we have

k 0
0 = k 4

4 =
1

1− κ2ρ2
, k 1

1 = 1, k 2
2 = k 3

3 =
1

1 + κ2ρ4 sin2 ζ
,

k 5
5 = k 9

9 =
1

1 + κ2r2
, k 6

6 = 1, k 7
7 = k 8

8 =
1

1 + κ2r4 sin2 ξ
,

(7.54)

k 4
0 = +k 0

4 =
κρ

1− κ2ρ2
, k 3

2 = −k 2
3 = − κρ2 sin ζ

1 + κ2ρ4 sin2 ζ
,

k 9
5 = −k 5

9 =
κr

1 + κ2r2
, k 8

7 = −k 7
8 =

κr2 sin ξ

1 + κ2r4 sin2 ξ
.

(7.55)
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The coefficients wnpm do not contribute to the Lagrangian, because the generators J are
projected out by the operators d, d̃.

When acting on odd elements, the inverse operator rotates only the labels I, J with-
out modifying the spinor indices

Oinv
(0)(Q

I) =
1

2
(1 +

√
1 + κ2) QI − κ

2
σ1
IJ QJ . (7.56)

Order θ1 We use (7.50) and (7.52) to compute the action of O(1) and Oinv
(1) on Pm and

QI . First we find

O(1)(Pm) =
κ
2

QI

[
δIJ

(
iγm −

1

2
λnpm γnp

)
+ iεIJλm

nγn

]
θJ , (7.57)

and we use this result to get

Oinv
(1)(e

mPm) = −κ
4

QI emkm
n

[(
(1 +

√
1 + κ2)δIJ − κσIJ1

)(
iγn −

1

2
λpqn γpq

)

+ i
(

(1 +
√

1 + κ2)εIJ + κσIJ3

)
λn

pγp

]
θJ .

(7.58)

For later convenience we rewrite this as

Oinv
(1)(e

mPm) = −κ
4

QI emkm
n

[(
(1 +

√
1 + κ2)δIJ − κσIJ1

)
∆1
n

+
(

(1 +
√

1 + κ2)εIJ + κσIJ3

)
∆3
n

]
θJ ,

(7.59)

where ∆1
n ≡

(
iγn − 1

2λ
pq
n γpq

)
, ∆3

n ≡ iλn
pγp. On odd generators we find

O(1)(Q
IψI) =

1−
√

1 + κ2

κ
θ̄J

[
σJI1

(
iγp +

1

2
λmnp γmn

)
− i σJI3 λp

nγn

]
ψI η

pqPq + · · · ,

(7.60)
that helps to calculate

Oinv
(1)(Q

IψI) = −1

2
θ̄K

[
(−κσKI1 + (−1 +

√
1 + κ2)δKI)

(
iγp +

1

2
λmnp γmn

)

+ i (κσKI3 − (−1 +
√

1 + κ2)εKI)λp
nγn

]
ψI k

pq Pq + · · · .

(7.61)
In these formulae we have omitted the terms proportional to Jmn and replaced them by
dots, since they do not contribute to the computation of the Lagrangian. It is interesting
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to note that the last result can be rewritten as

Oinv
(1)(Q

IψI) = −1

2
θ̄K

[
(−κσKI1 + (−1 +

√
1 + κ2)δKI)∆̄1

p

+ (κσKI3 − (−1 +
√

1 + κ2)εKI)∆̄3
p

]
ψI k

pq Pq + · · ·
(7.62)

where one needs to use (7.47). The quantities ∆̄3
p′ , ∆̄

1
p′ are defined by (∆3

p′θK)†γ̌0 =

θ̄K∆̄3
p′ and (∆1

p′θK)†γ̌0 = θ̄K∆̄1
p′ .

Order θ2 We need to compute the action of O and O−1 at order θ2 just on genera-
tors Pm. Indeed the operators O(2) and Oinv

(2) acting on generators QI contribute only at
quartic order in the Lagrangian. First we find

O(2)(Pm) = −κ
2
θ̄K

[
δKI

(
−γq

(
γm +

i

4
λnpm γnp

)
+
i

4
λnpq γnpγm

)

− 1

2
εKI

(
γq λm

nγn − λq
pγpγm

) ]
θI η

qrPr + · · · ,
(7.63)

that gives

−Oinv
(0) ◦ O(2) ◦ Oinv

(0)(e
mPm) =− κ

2
θ̄K emkm

n

[
δKI

(
γu

(
γn +

i

4
λpqn γpq

)
− i

4
λpquγpqγn

)

+
1

2
εKI

(
γuλn

pγp − λu
pγpγn

) ]
θIk

uv Pv + · · · .

(7.64)
Also here the dots stand for contributions proportional to Jmn that we are omitting. The
last formula that we will need is

−Oinv
(1) ◦ O(1) ◦ Oinv

(0)(e
mPm) = −κ

4
θ̄K emkm

n×

×

[
(−1 +

√
1 + κ2)δKJ

((
γu −

i

2
λpqu γpq

)(
γn +

i

2
λrsn γrs

)
+ λu

pγpλn
rγr

)
+ (−1 +

√
1 + κ2)εKJ

(
− λupγp

(
γn +

i

2
λrsn γrs

)
+

(
γu −

i

2
λpqu γpq

)
λn

rγr

)
− κσKJ1

((
γu −

i

2
λpqu γpq

)(
γn +

i

2
λrsn γrs

)
− λupγpλn

rγr

)
+ κσKJ3

(
λu

pγp

(
γn +

i

2
λrsn γrs

)
+

(
γu −

i

2
λpqu γpq

)
λn

rγr

)]
θJk

uv Pv + · · · ,

(7.65)

where we have rewritten the result using (7.47)
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7.4 The Lagrangian

We first repeat the exercise of computing the Lagrangian in the undeformed case, as
done in [27], and then we derive the results for the η-deformed model.

7.4.1 Undeformed case

When we send η → 0 we recover the Lagrangian for the superstring on AdS5×S5

L = −g
2

(
γαβ Str[A(2)

α A
(2)
β ] + εαβ Str[A(1)

α A
(3)
β ]
)
, (7.66)

where A(k) = P (k)A. The purely bosonic Lagrangian is easily found by setting the
fermions to zero and one obtains

L{00} = −g
2
γαβemα e

n
β ηmn. (7.67)

We are using the notation {00} to remind that we are considering both currents Aα and
Aβ entering the definition of the Lagrangian at order 0 in the fermions. This Lagrangian
matches with the one presented in (6.13).

If we want to look at the Lagrangian that is quadratic in fermions, we have to com-
pute three terms, that according to our notation we call {02}, {20}, {11}. It is convenient
to consider the contributions {02}, {20} together. In fact—using the properties of the
supertrace—it is easy to show that their sum is symmetric in α, β, meaning that what we
get is multiplied just by γαβ

L{02} + L{20} = −g
2
γαβ iθ̄Ie

m
α γmD

IJ
β θJ . (7.68)

By similar means one also shows that the contribution {11} is antisymmetric in α, β and
thus yields the quadratic order of the Wess-Zumino term

L{11} = −g
2
εαβ θ̄Iσ

IJ
3 i emα γmD

JK
β θK + tot. der. (7.69)

For the details of the computation we refer to the discussion for the deformed case after
Eq. (C.63). The sum of the contributions at quadratic order in θ gives

L f2 = −g
2
i θ̄I

(
γαβδIJ + εαβσIJ3

)
emα γmD

JK
β θK , (7.70)

that matches with the correct Lagrangian expected for type IIB (2.21). In particular one
finds a five-form [27]

/F
(5)

= F (5)
m1m2m3m4m5

Γm1m2m3m4m5 = 4e−ϕ0(Γ01234 + Γ56789) , (7.71)

originated by the term multiplied by εIJ in the definition (7.37) of DIJ , and a constant
dilaton ϕ = ϕ0.
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7.4.2 Deformed case

In the deformed case the Lagrangian is defined as [94]

L = −g
4

(1 + η2)(γαβ − εαβ) Str[d̃(Aα)O−1(Aβ)]

= −g
2

√
1 + κ2

1 +
√

1 + κ2
(γαβ − εαβ) Str[d̃(Aα)O−1(Aβ)].

(7.72)

In the notation introduced in the previous section, the bosonic Lagrangian already ob-
tained in Section 6.2 is

L{000} = − g̃
2

(γαβ − εαβ) emα e
n
βkn

pηmp, g̃ ≡ g
√

1 + κ2. (7.73)

Here we need three numbers to label the contribution to the Lagrangian: we indicate
the order in powers of fermions for the current Aα, for the inverse operator O−1 and
for the current Aβ respectively. When we rewrite this result in the usual form (2.2) of
the Polyakov action we recover the deformed metric and the B-field of Section 6.2, see
Eq. (6.22) and (6.23). We may rewrite the deformed metric in terms of a vielbein G̃MN =
ẽmM ẽ

n
Nηmn, that we choose to be diagonal

ẽ0
t =

√
1 + ρ2√

1− κ2ρ2
, ẽ1

ψ2
= −ρ sin ζ, ẽ2

ψ1
= − ρ cos ζ√

1 + κ2ρ4 sin2 ζ
,

ẽ3
ζ = − ρ√

1 + κ2ρ4 sin2 ζ
, ẽ4

ρ = − 1√
1 + ρ2

√
1− κ2ρ2

,

ẽ5
φ =

√
1− r2

√
1 + κ2r2

, ẽ6
φ2

= −r sin ξ, ẽ7
φ1

= − r cos ξ√
1 + κ2r4 sin2 ξ

,

ẽ8
ξ = − r√

1 + κ2r4 sin2 ξ
, ẽ9

r = − 1√
1− r2

√
1 + κ2r2

.

(7.74)

The Lagrangian quadratic in fermions is now divided into six terms: three of them when
we choose O−1 at order 0 in fermions ({002}, {200}, {101}), two when it is at order 1
({011}, {110}) and one when it is at order 2 ({020}). We start by considering the follow-
ing two contributions

L{002} = − g̃
2

(γαβ − εαβ)
i

2
θ̄I(e

m
α k

n
mγn)DIJ

β θJ ,

L{200} = − g̃
2

(γαβ − εαβ)
i

2
θ̄I(e

m
β km

nγn)DIJ
α θJ .

(7.75)

where knm = kq
pηnqηmp. Now the sum of L{002} + L{200} gives a non-trivial contri-

bution also to the Wess-Zumino term, since the matrix kmn has a non-vanishing anti-
symmetric part.

Considering the case {101}, it is easy to see that the insertion ofOinv
(0) between two odd

currents does not change the fact that the expression is anti-symmetric in α, β. In Ap-
pendix C.5 we show the steps needed to rewrite the original result (C.63) in the standard
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form

L{101} = − g̃
2
εαβ θ̄L i e

m
α γm

(
σLK3 DKJ

β θJ −
κ

1 +
√

1 + κ2
εLKDKJβ θJ

)
= − g̃

2
εαβ θ̄I

(
σIJ3 −

κ
1 +
√

1 + κ2
εIJ
)
i emα γmDβθJ +

g̃

4
εαβ θ̄Iσ

IJ
1 emα γme

n
βγnθJ ,

(7.76)
up to a total derivative.

Let us now consider the inverse operator at first order in the θ expansion. The two
contributions {011}, {110} can be naturally considered together4

L{011}+{110} =− g̃

4
(γαβ − εαβ)θ̄K

[
− (κσKI1 − (−1 +

√
1 + κ2)δKI)

(
iγp +

1

2
γmnλ

mn
p

)

+ (κσKI3 − (−1 +
√

1 + κ2)εKI) iγnλp
n

]
(kpqe

q
αD

IJ
β + kq

peqβD
IJ
α )θJ .

(7.77)
To conclude, the last contribution to the Lagrangian that we should consider is the one
in which the inverse operator is at order θ2. We find

L{020} =− g̃

2
(γαβ − εαβ)

κ
4
evαe

m
β k

u
vkm

n θ̄K[
− 2δKI

(
γu

(
γn +

i

4
λpqn γpq

)
− i

4
γpqγnλ

pq
u

)
− εKI

(
γuλn

pγp − γpγnλu
p
)

− (−1 +
√

1 + κ2)δKI
((

γu −
i

2
γpqλ

pq
u

)(
γn +

i

2
λrsn γrs

)
+ γpλu

pλn
rγr

)
− (−1 +

√
1 + κ2)εKI

(
− γpλu

p

(
γn +

i

2
λrsn γrs

)
+

(
γu −

i

2
γpqλ

pq
u

)
λn

rγr

)
+ κσKI1

((
γu −

i

2
γpqλ

pq
u

)(
γn +

i

2
λrsn γrs

)
− γpλu

pλn
rγr

)
− κσKI3

(
γpλu

p

(
γn +

i

2
λrsn γrs

)
+

(
γu −

i

2
γpqλ

pq
u

)
λn

rγr

)]
θI .

(7.78)
Summing up all the above contributions we discover that the result is not written in the
standard form of the Green-Schwarz action for type IIB superstring (2.21). This issue is
addressed in the next section.

7.4.3 Canonical form

The Lagrangian for the deformed model that we obtain from the definition (7.72) is not
in the standard form of the Green-Schwarz action for type IIB superstring. It is clear that
a field redefinition of the bosonic and fermionic coordinates will in general modify the
form of the action. The strategy of this section is to find a field redefinition that recasts
the result that we have obtained in the desired form (2.21).

4The result can be put in this form thanks to the properties (7.47).
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Let us focus for the moment just on the contributions involving derivatives on fermions,
whose expression is not canonical. For convenience we collect these terms here. We write
separately the contributions contracted with γαβ and εαβ

L γ,∂ = − g̃
2
γαβ θ̄I

[
i

2
(
√

1 + κ2δIJ − κσIJ1 )γn −
1

4
(κσIJ1 − (−1 +

√
1 + κ2)δIJ)λpqn γpq

+
i

2
(κσIJ3 − (−1 +

√
1 + κ2)εIJ)λn

pγp

]
(knm + km

n)emα ∂βθJ ,

(7.79)

L ε,∂ = − g̃
2
εαβ θ̄I

[(
− i

2
(
√

1 + κ2δIJ − κσIJ1 )γn +
1

4
(κσIJ1 − (−1 +

√
1 + κ2)δIJ)λpqn γpq

− i

2
(κσIJ3 − (−1 +

√
1 + κ2)εIJ)λn

pγp

)
(knm − kmn)

+ i

(
σIJ3 −

−1 +
√

1 + κ2

κ
εIJ

)
γm

]
emα ∂βθJ .

(7.80)
To simplify the result we first redefine our fermions as

θI →
√

1 +
√

1 + κ2

√
2

(
δIJ +

κ
1 +
√

1 + κ2
σIJ1

)
θJ . (7.81)

The contributions to the Lagrangian that we are considering are then transformed as

L γ,∂ → L γ,∂ = L γ,∂
1 + L γ,∂

2 ,

L γ,∂
1 = − g̃

2
γαβ θ̄I

[
i

2
δIJγn +

i

2
κσIJ3 λn

pγp

]
(knm + km

n)emα ∂βθJ ,

L γ,∂
2 = − g̃

2
γαβ θ̄I

[
− 1

4
(κσIJ1 + (−1 +

√
1 + κ2)δIJ)λpqn γpq

− i

2
(−1 +

√
1 + κ2)εIJλn

pγp

]
(knm + km

n)emα ∂βθJ .

(7.82)
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L ε,∂ → L ε,∂ = L ε,∂
1 + L ε,∂

2 ,

L ε,∂
1 = − g̃

2
εαβ θ̄I

[
−

(
i

2
δIJγn +

i

2
κσIJ3 λn

pγp

)
(knm − kmn) + iσIJ3 γm

]
emα ∂βθJ ,

L ε,∂
2 = − g̃

2
εαβ θ̄I

[(
1

4
(κσIJ1 + (−1 +

√
1 + κ2)δIJ)λpqn γpq

+
i

2
(−1 +

√
1 + κ2)εIJλn

pγp

)
(knm − kmn)

− i−1 +
√

1 + κ2

κ
εIJγm

]
emα ∂βθJ .

(7.83)
The various terms have been divided into L ∂

1 and L ∂
2 according to the symmetry prop-

erties of the objects involved. In particular, given an expression of the form θIM
IJ∂θJ ,

we decide to organise the terms according to

θIM
IJ∂θJ = −∂θIM IJθJ =⇒ L ∂

1 ,

θIM
IJ∂θJ = +∂θIM

IJθJ =⇒ L ∂
2 .

(7.84)

The symmetry properties are dictated by purely algebraic manipulations—we are not in-
tegrating by parts—based on the symmetry properties of the gamma matrices contained
in M IJ , and on the symmetry properties of M IJ under the exchange of I, J . We also use
the “Majorana-flip”relations of Eq. (C.51).

We make this distinction because we can show that we can remove Lγ,∂2 by shifting
the bosonic coordinates with κ-dependent corrections that are quadratic in fermions. Let
us consider the redefinition

XM −→ XM + θ̄I f
M
IJ (X) θJ , (7.85)

where fMKI(X) is a function of the bosonic coordinates that for the moment is not fixed.
Requiring that the shift is non-vanishing–we use (C.52)—shows that the quantity fMIJ (X)
has the same symmetry properties of the terms that we collected in L ∂

2 . This shift pro-
duces contributions to the fermionic Lagrangian originating from the bosonic one (6.21).
We find that it is modified as L b → L b +δL b,γ

m +δL b,γ
2 +δL b,ε

m +δL b,ε
2 +O(θ4) where

δL b,γ
m = +g̃γαβ

(
−∂αXM θ̄I G̃MN

(
∂βf

N
IJ

)
θJ −

1

2
∂αX

M∂βX
N∂P G̃MN θ̄I f

P
IJθJ

)
,

δL b,γ
2 = +g̃γαβ

(
−2∂αX

M θ̄I G̃MNf
N
IJ ∂βθJ

)
,

δL b,ε
m = +g̃εαβ

(
+∂αX

M θ̄I B̃MN

(
∂βf

N
IJ

)
θJ +

1

2
∂αX

M∂βX
N∂P B̃MN θ̄I f

P
IJθJ

)
,

δL b,ε
2 = +g̃εαβ

(
2∂αX

M θ̄I B̃MNf
N
IJ ∂βθJ

)
.

(7.86)
Here we have used ∂θ̄I f

M
IJ (X) θJ = +θ̄I f

M
IJ (X) ∂θJ , consequence of the symmetry

properties of fMIJ (X), and we have stopped at quadratic order in fermions.
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It is now easy to see that if we define the function

fMIJ (X) = eMp

[
1

8

(
κσIJ1 − (1−

√
1 + κ2)δIJ

)
λmnp γmn −

i

4
(1−

√
1 + κ2)εIJλp

nγn

]
,

(7.87)
then we are able to remove completely the contribution L γ,∂

2 from the Lagrangian

L γ,∂
2 + δL b,γ

2 = 0. (7.88)

On the other hand this shift of the bosonic coordinates is not able to remove completely
Lε,∂2 : there is actually cancellation of the terms with5 δIJ , σIJ1 , but the ones with εIJ are
not removed. However, in the Wess-Zumino term we are allowed to perform partial in-
tegration6 to rewrite the result such that—up to a total derivative—the partial derivative
acts on the bosons and not on the fermions

L ε,∂
2 + δL b,ε

2 =
g̃

2
εαβ θ̄I

−1 +
√

1 + κ2

κ
εIJ

emα

(
iδqm −

i

2
κ(knm − km

n)λ q
n +

i

2
κB̃mn(kpn + knp)λ q

p

)
γq∂βθJ

=
g̃

2
εαβ θ̄I

−1 +
√

1 + κ2

κ
εIJemα iγm∂βθJ

=− g̃

4
εαβ θ̄I

−1 +
√

1 + κ2

κ
εIJ∂αX

M (∂βe
m
M ) iγmθJ + tot. der.

(7.89)

This method works thanks to the symmetry properties of fMIJ (X). We have also used the
identity

kpm − km
p − B̃mn(kpn + knp) = 0. (7.90)

After the shift of the bosonic coordinates, the only terms containing derivatives on fermions
are L γ,∂

1 and L ε,∂
1 . Let us stress again that the shift will also introduce new couplings

without derivatives on fermions, as showed in (7.86). We collect in Eq. (C.70) and (C.71)
the expression for the total Lagrangian at this point.

In order to put the remaining terms in canonical form we redefine the fermions as
θI → UIJθJ , where the matrix UIJ acts both on the 2 × 2 space spanned by the labels
I, J and on the space of spinor indices—that we are omitting here. We actually write the
matrix UIJ as factorised in the AdS and sphere spinor indices parts

θI → (Ua
IJ ⊗ Us

IJ)θJ ,

θIαa → (Ua
IJ) να (Us

IJ) ba θJνb .
(7.91)

5This statement is true if one includes also the components Btρ, Bφr of the B-field in the bosonic La-
grangian. Clearly these will contribute giving also new terms with no derivatives on fermions contained in
δL b,ε

m of (7.86). If these components are not included, cancellation of terms with δIJ , σIJ1 is not complete, but
what is left may be rewritten as a term with no derivatives on fermions, up to a total derivative. The two ways
of proceeding are equivalent.

6Performing partial integration in the Lagrangian with γαβ would generate derivatives of the worldsheet
metric and also of ∂αXM .
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This is not the most generic redefinition, but it will turn out to be enough. Each of the
matrices Ua

IJ and Us
IJ may be expanded in terms of the tensors spanning the 2× 2 space

Ua,s
IJ = δIJ U

a,s
δ + σ1 IJ U

a,s
σ1

+ εIJ U
a,s
ε + σ3 IJ U

a,s
σ3

. (7.92)

The objects Ua,s
µ with µ = δ, σ1, ε, σ3 are 4× 4 matrices that may be written in the conve-

nient basis of 4× 4 gamma matrices. From the Majorana condition (7.14) we find that in
order to preserve θ†Iγ

0 = +θtI (K ⊗K) under the field redefinition, we have to impose

γ0 ((Ua
µ)† ⊗ (Us

µ)†)γ0 = −(K ⊗K)((Ua
µ)t ⊗ (Us

µ)t)(K ⊗K) . (7.93)

We impose γ̌0 (Ua
µ)†γ̌0 = K(Ua

µ)tK and (Us
µ)† = −K(Us

µ)tK and we find that they are
solved by

Ua
µ ≡ faµ1 + ifpµ γ̌p +

1

2
fpqµ γ̌pq, Us

µ ≡ fsµ1− fpµ γ̂p −
1

2
fpqµ γ̂pq, (7.94)

where the coefficients f are real functions of the bosonic coordinates. In other words,
what we have fixed in the above equation are the factors of i in front of these coefficients,
using (C.47) and (C.48).

On the other hand the barred version of the fermions will be redefined as θ̄I → θ̄J ŪIJ
with a matrix ŪIJ = (Ūa

IJ ⊗ Ūs
IJ), that we expand again in the tensors of the 2× 2 space.

To preserve θ̄I = θtI(K ⊗K) we have to impose

(Ūa
µ ⊗ Ūs

µ) = (K ⊗K)((Ua
µ)t ⊗ (Us

µ)t)(K ⊗K), (7.95)

that allows us to define

Ūa
µ ≡ faµ1 + ifpµ γ̌p −

1

2
fpqµ γ̌pq, Ūs

µ ≡ fsµ1− fpµ γ̂p +
1

2
fpqµ γ̂pq. (7.96)

Here the coefficients f are the same entering the definition of Ua,s
µ .

In order to get a canonical expression for the terms containing derivatives on fermions

L γ,∂
1 →− g̃

2
γαβ i θ̄I δ

IJ ẽmα γm∂βθJ ,

L ε,∂
1 →− g̃

2
εαβ i θ̄I σ

IJ
3 ẽmα γm∂βθJ ,

(7.97)

where ẽmα is the deformed vielbein given in (7.74), we set all coefficients f for the field
redefinition to 0, except for the redefinition Ua

µ of the AdS factor

faδ =
1

2

√√√√(1 +
√

1− κ2ρ2
)(

1 +
√

1 + κ2ρ4 sin2 ζ
)

√
1− κ2ρ2

√
1 + κ2ρ4 sin2 ζ

,

f1
δ = −κ2ρ3 sin ζ

faden
,

f04
σ3

=
κρ
(

1 +
√

1 + κ2ρ4 sin2 ζ
)

faden
,

f23
σ3

=
κρ2 sin ζ

(
1 +

√
1− κ2ρ2

)
faden

,

faden ≡ 2(1− κ2ρ2)
1
4 (1 + κ2ρ4 sin2 ζ)

1
4

√
1 +

√
1− κ2ρ2

√
1 +

√
1 + κ2ρ4 sin2 ζ,

(7.98)
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and for the redefinition Us
µ of the sphere factor

fsδ =
1

2

√√√√(1 +
√

1 + κ2r2
) (

1 +
√

1 + κ2r4 sin2 ξ
)

√
1 + κ2r2

√
1 + κ2r4 sin2 ξ

,

f6
δ =

κ2r3 sin ξ

fsden
,

f59
σ3

=
κr
(

1 +
√

1 + κ2r4 sin2 ξ
)

fsden
,

f78
σ3

=
κr2 sin ξ

(
1 +
√

1 + κ2r2
)

fsden
,

fsden ≡ 2(1 + κ2r2)
1
4 (1 + κ2r4 sin2 ξ)

1
4

√
1 +

√
1 + κ2r2

√
1 +

√
1 + κ2r4 sin2 ξ.

(7.99)

Since the particular redefinition that we have chosen is diagonal in the labels I, J—it
involves just the tensors δ and σ3—it is interesting to look at the transformation rules for
the two sets of Majorana-Weyl fermions separately. We define

U(1) ≡ Uδ + Uσ3
, U(2) ≡ Uδ − Uσ3

, =⇒ θI → U(I)θI I = 1, 2. (7.100)

These matrices satisfy

Ū(I)U(I) = 14, Ū(I)γmU(I) = (Λ(I))
n
mγn,

U(I)Ū(I) = 14, Ū(I)γmnU(I) = (Λ(I))
p
m(Λ(I))

q
n γpq,

(7.101)

where we do not sum over I . The matrices Λ(I) look very simple

(Λ(I))
0

0 = (Λ(I))
4

4 =
1√

1− κ2ρ2
, (Λ(I))

5
5 = (Λ(I))

9
9 =

1√
1 + κ2r2

,

(Λ(I))
1

1 = 1, (Λ(I))
6

6 = 1,

(Λ(I))
2

2 = (Λ(I))
3

3 =
1√

1 + κ2ρ4 sin2 ζ
, (Λ(I))

7
7 = (Λ(I))

8
8 =

1√
1 + κ2r4 sin2 ξ

,

(7.102)

(Λ(I))
4

0 = +(Λ(I))
0

4 = − σ3II κρ√
1− κ2ρ2

, (Λ(I))
9

5 = −(Λ(I))
5

9 = − σ3II κr√
1 + κ2r2

,

(Λ(I))
3

2 = −(Λ(I))
2

3 =
σ3II κρ2 sin ζ√
1 + κ2ρ4 sin2 ζ

, (Λ(I))
8

7 = −(Λ(I))
7

8 = − σ3II κr2 sin ξ√
1 + κ2r4 sin2 ξ

,

(7.103)
and they satisfy the remarkable property of being ten-dimensional Lorentz transforma-
tions

(Λ(I))
p
m (Λ(I))

q
n ηpq = ηmn , I = 1, 2 . (7.104)

We refer to Appendix C.6 for some comments on how to efficiently implement this field
redefinition of the fermions in the Lagrangian.
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7.4.4 The quadratic Lagrangian

In this section we show that the field redefinition that was found to put the terms with
derivatives acting on fermions into canonical form is actually able to put the whole action
in the standard form of Green-Schwarz for type IIB superstring (2.21).

In order to identify the bakground fields that are coupled to the fermions, we can do
the computation separately for the part contracted with γαβ and the one with εαβ , and
then check that they yield the same results. It is convenient to consider separately the
terms that are diagonal and the ones that are off-diagonal in the labels I, J . The correct
identification of the fields is achieved by looking at the tensor structure after the rotation
of the fermions (7.91) is implemented. In the contribution contracted with γαβ , the terms
without derivatives on fermions that are multiplied by δIJ will then correspond to the
coupling to the spin connection. The terms multiplied by σIJ3 contain the coupling to
the field strength of the B-field. The RR-fields are identified by looking at the contri-
butions to the Lagrangian off-diagonal in IJ , and by selecting the appropriate Gamma-
matrix structure. Taking into account just the anti-symmetry in the indices, the number
of different components for the form F (r) is given by

∑9
n1=0

∑9
n2=n1+1 · · ·

∑9
nr=nr−1+1,

meaning
F (1) : 10, F (3) : 120, F (5) : 252. (7.105)

If we consider also self-duality for F (5) this gives a total number of 10+120+252/2 = 256
different components. It is then possible to identify uniquely the R-R fields, since the
matrices γ of rank 1, 3, 5 are all linearly independent and a 16 × 16-matrix has indeed
256 entries. To impose automatically the self-duality condition for the 5-form, we will
rewrite—when necessary—the components in terms of the components F (5)

0qrst (there are
126 of them), using

Fm1m2m3m4m5
= − 1

5!
εm1...m10

Fm6m7m8m9m10 , (7.106)

where ε0...9 = 1 and ε0...9 = −1. One should remember that for the Wess-Zumino contri-
bution with εαβ there is an additional σIJ3 as in (2.21).

We find that the Lagrangian quadratic in fermions7 is written in the standard form

L f2 = − g̃
2
i Θ̄I (γαβδIJ + εαβσIJ3 )ẽmα Γm D̃

JK
β ΘK , (7.107)

where the 32 × 32 ten-dimensional Γ-matrices are constructed in (C.113) and the 32-
dimensional fermions Θ in (C.117). The operator D̃IJ

α acting on the fermions has the
desired form

D̃IJ
α =δIJ

(
∂α −

1

4
ω̃mnβ Γmn

)
+

1

8
σIJ3 ẽmα H̃mnpΓ

np

− 1

8
eϕ
(
εIJΓpF̃ (1)

p +
1

3!
σIJ1 ΓpqrF̃ (3)

pqr +
1

2 · 5!
εIJΓpqrstF̃

(5)
pqrst

)
ẽmα Γm.

(7.108)

7In (2.3) of [118] the relative sign between the contributions with γαβ and εαβ to the Lagrangian quadratic
in fermions does not agree with what is in (3.27) of the second version of [119]. Although the sign in front of the
WZ contribution to the Lagrangian is conventional—as it can be modified by choosing a different convention
for εαβ—it becomes important once a sign is fixed for the bosonic action and one says that H = dB, c.f. (2.2)
of [118] and (3.27) of [119]. We match with [119].
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We use the tilde on all quantities to remind that we are discussing the deformed model.
The deformed spin connection satisfies the expected equation

ω̃mnM = −ẽN [m
(
∂M ẽ

n]
N − ∂N ẽ

n]
M + ẽn]P ẽpM∂P ẽNp

)
, (7.109)

where tangent indices m,n are raised and lowered with ηmn, while curved indices M,N

with the deformed metric G̃MN . From the computation of the deformed Lagrangian we
find a field H̃(3) with the following non-vanishing components

H̃234 = −4κρ
√

1 + ρ2
√

1− κ2ρ2 sin ζ

1 + κ2ρ4 sin2 ζ
, H̃789 = +4κr

√
1− r2

√
1 + κ2r2 sin ξ

1 + κ2r4 sin2 ξ
,

(7.110)
where we have specified tangent indices. Translating this into curved indices we find
agreement with the expected result

H̃ψ1ζρ =
2κρ3 sin(2ζ)(

1 + κ2ρ4 sin2 ζ
)2 = ∂ρBψ1ζ , H̃φ1ξr = − 2κr3 sin(2ξ)(

1 + κ2r4 sin2 ξ
)2 = ∂rBφ1ξ.

(7.111)
The new results that can be obtained from the Lagrangian quadratic in fermions are the
components of the RR-fields. When we specify tangent indices we get

eϕF̃1 = −4κ2 c−1
F ρ3 sin ζ, eϕF̃6 = +4κ2 c−1

F r3 sin ξ, (7.112)

eϕF̃014 = +4κ c−1
F ρ2 sin ζ, eϕF̃123 = −4κ c−1

F ρ,

eϕF̃569 = +4κ c−1
F r2 sin ξ, eϕF̃678 = −4κ c−1

F r,

eϕF̃046 = +4κ3 c−1
F ρr3 sin ξ, eϕF̃236 = −4κ3 c−1

F ρ2r3 sin ζ sin ξ,

eϕF̃159 = −4κ3 c−1
F ρ3r sin ζ, eϕF̃178 = −4κ3 c−1

F ρ3r2 sin ζ sin ξ,

(7.113)

eϕF̃01234 = +4 c−1
F , eϕF̃02346 = −4κ4 c−1

F ρ3r3 sin ζ sin ξ,

eϕF̃01459 = +4κ2 c−1
F ρ2r sin ζ, eϕF̃01478 = +4κ2 c−1

F ρ2r2 sin ζ sin ξ,

eϕF̃04569 = +4κ2 c−1
F ρr2 sin ξ, eϕF̃04678 = −4κ2 c−1

F ρr.

(7.114)

For simplicity we have defined the common coefficient

cF =
1√

1 + κ2

√
1− κ2ρ2

√
1 + κ2ρ4 sin2 ζ

√
1 + κ2r2

√
1 + κ2r4 sin2 ξ. (7.115)

The same results written in curved indices are

eϕF̃ψ2 = 4κ2 c−1
F ρ4 sin2 ζ, eϕF̃φ2 = −4κ2 c−1

F r4 sin2 ξ, (7.116)
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eϕF̃tψ2ρ = +4κ c−1
F

ρ3 sin2 ζ

1− κ2ρ2
, eϕF̃ψ2ψ1ζ = +4κ c−1

F

ρ4 sin ζ cos ζ

1 + κ2ρ4 sin2 ζ
,

eϕF̃φφ2r = +4κ c−1
F

r3 sin2 ξ

1 + κ2r2
, eϕF̃φ2φ1ξ = +4κ c−1

F

r4 sin ξ cos ξ

1 + κ2r4 sin2 ξ
,

eϕF̃tρφ2
= +4κ3 c−1

F

ρr4 sin2 ξ

1− κ2ρ2
, eϕF̃ψ1ζφ2

= +4κ3 c−1
F

ρ4r4 sin ζ cos ζ sin2 ξ

1 + κ2ρ4 sin2 ζ
,

eϕF̃ψ2φr = −4κ3 c−1
F

ρ4r sin2 ζ

1 + κ2r2
, eϕF̃ψ2φ1ξ = +4κ3 c−1

F

ρ4r4 sin2 ζ sin ξ cos ξ

1 + κ2r4 sin2 ξ
,

(7.117)

eϕF̃tψ2ψ1ζρ =
4 c−1

F ρ3 sin ζ cos ζ

(1− κ2ρ2)
(
1 + κ2ρ4 sin2 ζ

) , eϕF̃tψ1ζρφ2
= −

4κ4 c−1
F ρ5r4 sin ζ cos ζ sin2 ξ

(1− κ2ρ2)
(
1 + κ2ρ4 sin2 ζ

) ,
eϕF̃tψ2ρφr = −

4κ2 c−1
F ρ3r sin2 ζ

(1− κ2ρ2) (1 + κ2r2)
, eϕF̃tψ2ρφ1ξ = +

4κ2 c−1
F ρ3r4 sin2 ζ sin ξ cos ξ

(1− κ2ρ2)
(
1 + κ2r4 sin2 ξ

) ,
eϕF̃tρφφ2r = −

4κ2 c−1
F ρr3 sin2 ξ

(1− κ2ρ2) (1 + κ2r2)
, eϕF̃tρφ2φ1ξ = −

4κ2 c−1
F ρr4 sin ξ cos ξ

(1− κ2ρ2)
(
1 + κ2r4 sin2 ξ

) .
(7.118)

Let us present another method that can be used to derive the same results for the back-
ground R-R fields, without the need of computing the Lagrangian at quadratic order in
fermions.

7.5 Kappa-symmetry

The Lagrangian of the deformed model is invariant under kappa-symmetry, as proved
in [94, 95]. Let us first briefly describe what happens when we switch off the deforma-
tion. Local transformations are implemented on the coset by multiplication of the group
elements from the right. A kappa-transformation is a local fermionic transformation. We
then implement it with exp[ε(σ, τ)], where ε is a local fermionic parameter that takes
values in the algebra psu(2, 2|4). Multiplication of a coset representative g gives

g · exp(ε) = g′ · h , (7.119)

where g′ is a new element of the coset, and h is a compensating element of SO(4, 1) ×
SO(5) needed to remain in the coset. A generic ε will not leave the action invariant.
However, taking [106]

ε =
1

2
(γαβδIJ − εαβσIJ3 )

(
QIκJαA

(2)
β +A

(2)
β QIκJα

)
, (7.120)

it is possible to show that indeed the action does not change under this transformation.
The parameters κ1α and κ2α—whose spinor indices we are omitting—introduced to de-
fine ε are independent local quantities, parameterising odd elements of degree 1 and 3
respectively.

In the deformed case one can still prove the existence of a local fermionic symmetry
of the form (7.119), meaning that the parameter ε is related to the infinitesimal variation
of the coset representative as

δκg = g · ε . (7.121)
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However, the definition (7.120) of the parameter ε has to be deformed in order to get
invariance of the action, in particular it will no longer lie just in the odd part of the
algebra, but it will have a non-trivial projection also on bosonic generators. It is written
in terms of an odd element % as [94]

ε = O%, % = %(1) + %(3). (7.122)

where O is the operator defined in (7.48) and the two projections %(k) are8

%(1) =
1

2
(γαβ − εαβ)

(
Q1κ1α

(
O−1Aβ

)(2)
+
(
O−1Aβ

)(2)
Q1κ1α

)
,

%(3) =
1

2
(γαβ + εαβ)

(
Q2κ2α

(
Õ−1Aβ

)(2)

+
(
Õ−1Aβ

)(2)

Q2κ2α

)
,

(7.123)

where we defined
Õ = 1 + ηRg ◦ d̃ . (7.124)

In Appendix C.7 we compute explicitly the form of the variations on bosonic and fermionic
fields given the above definitions, and we show that they do not have the standard form.
However, after implementing the field redefinitions of Section 7.4.3—needed to put the
Lagrangian in the standard Green-Schwarz form—we find that also the kappa-variations
become indeed standard

δκX
M = − i

2
Θ̄Iδ

IJ ẽMmΓmδκΘJ +O(Θ3),

δκΘI = −1

4
(δIJγαβ − σIJ3 εαβ)ẽmβ ΓmK̃αJ +O(Θ2),

(7.125)

where

K̃ ≡
(

0
1

)
⊗ κ̃, (7.126)

and κ̃ is related to κ as in (C.97). It is interesting to look also at the kappa-variation for
the worldsheet metric, as this provides an independent method to derive the couplings
of the fermions to the background fields, already identified from the Lagrangian. The
variation is given by [94]

δκγ
αβ =

1− η2

2
Str
(

Υ
[
Q1κα1+, P

(1) ◦ Õ−1(Aβ+)
]

+ Υ
[
Q2κα2−, P

(3) ◦ O−1(Aβ−)
])

,

(7.127)
where Υ = diag(14,−14) and the projections of a vector Vα are defined as

V α± =
γαβ ± εαβ

2
Vβ . (7.128)

As we show in Appendix C.7, after taking into account the field redefinitions performed
to get a standard action, we find a standard kappa-variation also for the worldsheet
metric

δκγ
αβ = 2i

[
¯̃
Kα

1+D̃
β1J
+ ΘJ +

¯̃
Kα

2−D̃
β2J
− ΘJ

]
+O(Θ3)

= 2i ΠIJ αα′ΠJK ββ′ ¯̃
KIα′D̃

KL
β′ ΘL +O(Θ3),

(7.129)

8Comparing to [94] we have dropped the factor of i because we use “anti-hermitian” generators.
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where we have defined

ΠIJ αα′ ≡ δIJγαα
′
+ σIJ3 εαα

′

2
. (7.130)

The operator D̃ is the one already identified from the computation of the Lagrangian. It
is given in Eq. (7.108), and in particular we find the same R-R fields as in the previous
section.

7.6 Discussion

From the Lagrangian at quadratic order in fermions and the kappa-symmetry variation
of the worldsheet metric, we have read off couplings to tensors that we want to interpret
as the field strengths of the R-R fields. In this section we show that the results that we
have obtained are not compatible with the Bianchi identities and the equations of motion
of supergravity.

Let us start by looking at the Bianchi identity for F̃ (1)

∂M F̃N − (M↔N) = 0 , =⇒ ∂M

(
eϕF̃N

)
− ∂MϕeϕF̃N − (M↔N) = 0. (7.131)

We prefer to rewrite it in the second form, because we only know the combination eϕF̃M .
In particular we obtain

∂M

(
eϕF̃ψ2

)
− ∂MϕeϕF̃ψ2

− (M↔ψ2) = 0 , ∂M

(
eϕF̃φ2

)
− ∂MϕeϕF̃φ2

− (M↔φ2) = 0 ,

(7.132)
because from (7.116) we know that the only non-vanishing components are F̃ψ2

, F̃φ2
.

Moreover, using the fact that the combinations eϕF̃ψ2
, eϕF̃φ2

depend just on ζ, ρ, ξ, r we
immediately find that the derivatives of the dilaton ϕ should satisfy the following equa-
tions

∂tϕ = 0 , ∂ψ1
ϕ = 0 , ∂φϕ = 0 , ∂φ1

ϕ = 0 ,

eϕF̃φ2
∂ψ2

ϕ = eϕF̃ψ2
∂φ2

ϕ ,

∂Mϕ =
1

eϕF̃ψ2

∂M

(
eϕF̃ψ2

)
=

1

eϕF̃φ2

∂M

(
eϕF̃φ2

)
M = ζ, ρ, ξ, r .

(7.133)

The last equation comes from the compatibility of the two equations that we obtain
from (7.132) for M = ζ, ρ, ξ, r. A consequence of this compatibility is the equation

∂M log
(
ρ4 sin2 ζ

)
= −∂M log

(
r4 sin2 ξ

)
, M = ζ, ρ, ξ, r , (7.134)

which is clearly not satisfied. We then conclude that the results are not compatible with
the Bianchi identity for F̃ (1).

Failure to satisfy the equations of motion of type IIB supergravity is easily seen by
considering the equation

∂P

(√
−G̃ e−2ϕH̃MNP

)
−
√
−G̃ F̃MNP F̃P −

1

6

√
−G̃ F̃MNPQRF̃PQR = 0 , (7.135)
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that is obtained by combining the equation of motion for the NS-NS two form (A.8) and
the R-R two-form (A.10). If we select e.g. the indices (M,N) = (t, ρ), the first term—
containing H̃ and the unknown factor with the dilaton—drops out. We get then just an
algebraic equation that we can evaluate using the information at our disposal. To avoid
writing curved indices, we write it explicitly in terms of tangent indices9

F̃ 041F̃1 + F̃ 046F̃6

+F̃ 04123F̃123 + F̃ 04236F̃236 + F̃ 04159F̃159 + F̃ 04178F̃178 + F̃ 04569F̃569 + F̃ 04678F̃678 = 0
(7.136)

Multiplying by e2ϕ and using (7.112), (7.113) and (7.114) we obtain that the left-hand-side
of the above equation is

16(1 + κ2)κρ
1− κ2ρ

6= 0 . (7.137)

We conclude that the equations of motion of type IIB supergravity are not satisfied. It
is natural to wonder whether there exist field redefinitions at the level of the σ-model
action that can cure this problem. We now proceed by first discussing this possibility,
and then by studying two special limits of the η-deformed model.

7.6.1 On field redefinitions

In Section 7.4.3 we were able to transform the original Lagrangian into the canonical
form and, as we have just observed, the R-R couplings that we have derived do not sat-
isfy the supergravity equations of motion. However, the NS-NS couplings are properly
reproduced in the quadratic fermionic action, as they are compatible with the results
of the bosonic Lagrangian. We are motivated to ask whether further field redefinitions
could be performed which exclusively change the R-R content of the theory. It appears
to be rather difficult to answer this question in full generality. We will argue however
that no such field redefinition exists which is continuous in the deformation parameter.

We work in the formulation with 32-dimensional fermions ΘI obeying the Majorana
and Weyl conditions, see appendix C.8. We start by considering a generic rotation of
fermions10

ΘI → UIJΘJ , Θ̄I → Θ̄J ŪIJ , ŪIJ = −Γ0U
†
IJΓ0 , (7.138)

where UIJ are rotation matrices which can depend on bosonic fields. We write UIJ as an
expansion over a complete basis in the space of 2× 2-matrices

UIJ ≡ δIJUδ + σIJ1 Uσ1
+ εIJUε + σIJ3 Uσ3

=
3∑
a=0

sIJa Ua ,

ŪIJ = δIJ Ūδ + σIJ1 Ūσ1 + εIJ Ūε + σIJ3 Ūσ3 =

3∑
a=0

sIJa Ūa ,

(7.139)

9To transform the curved indices M,N into tangent indices it it enough to multiply the equation by the
proper vielbein components (7.74). Summed indices can be translated from curved to tangent without affecting
the result.

10One could imagine more complicated redefinitions like ΘI → UIJΘJ + V αIJ∂αΘJ , etc. They were not
needed to bring the original Lagrangian to the canonical form and we do not consider them here. These redef-
initions will generate higher derivative terms in the action, whose cancellation would imply further stringent
constraints on their possible form.
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where we have introduced

sIJ0 = δIJ , sIJ1 = σIJ1 , sIJ2 = εIJ , sIJ3 = σIJ3 .

The objects Ua and Ūa are 32× 32-matrices and they can be expanded over the complete
basis generated by Γ(r) and identity, see appendix C.8 for the definition and properties
of Γ(r). Further, we require that the transformation UIJ preserves chirality and the Ma-
jorana condition. Conservation of chirality implies that the Γ-matrices appearing in the
expansion of UIJ must commute with Γ11, i.e. the expansion involves Γ(r) of even rank
only

Ua = fa I32 +
1

2
fmna Γmn +

1

24
fklmna Γklmn ,

Ūa = f̄a I32 +
1

2
f̄mna Γmn +

1

24
f̄klmna Γklmn .

(7.140)

In this expansion matrices of rank six, eight and ten are missing, because by virtue of
duality relations they can be re-expressed via matrices of lower rank. The Majorana
condition imposes the requirement

Γ0U
†
IJΓ0 = CU tIJC , (7.141)

which implies that the coefficients f are real. Coefficients of Ūa are then given by

f̄a = fa , f̄mna = −fmna , f̄klmna = fklmna . (7.142)

Let us note that combining equations (7.138) and (7.141), we get

CŪ tIJC = −UIJ , and CU tIJC = −ŪIJ . (7.143)

The total number of degrees of freedom in the rotation matrix is

4 ·
(

1 +
10 · 9

2
+

10 · 9 · 8 · 7
4!

)
= 210 = (16 + 16)2 ,

which is precisely the dimension of GL(32,R). This correctly reflects the freedom to
perform general linear transformations on 32 real fermions of type IIB.

Under these rotations the part of the Lagrangian containing derivatives on fermions
transforms as

(γαβδIJ + εαβσIJ3 )Θ̄I ẽ
m
α Γm∂βΘI →

→ (γαβδIJ + εαβσIJ3 )
(

Θ̄K ŪIK ẽ
m
α ΓmUJL ∂βΘL + Θ̄K ŪIK ẽ

m
α Γm(∂βUJL)ΘL

)
.

The requirement that under rotations the part with ∂Θ remains unchanged can be for-
mulated as the following conditions on UIJ :

ΘKδ
IJ ŪIK ΓmUJL∂ΘL = ΘKδKLΓm∂ΘL + removable terms ,

ΘKσ
IJ
3 ŪIK ΓmUJL∂ΘL = ΘKσ

KL
3 Γm∂ΘL + removable terms ,

(7.144)

where “removable terms” means terms which can be removed by shifting bosons in the
bosonic action by fermion bilinears, similarly to what was done in (7.85). In the following
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it is enough to analyse the first equation in (7.144). Let us collect all terms on its right
hand side that are removable by shifting bosons into a tensor MKL,m, where the indices
K,L should be multiplied by proper fermions and m is an index in the tangent space.
This tensor has the following symmetry property11

C (MKL,m)
t C = −MLK,m , (7.145)

that we need to impose if we want the shift of bosons to be non-vanishing. Note that the
tensor in the canonical kinetic term has exactly the opposite symmetry property

C(δKLΓtm)C = δLKΓm . (7.146)

Putting this information together, let us consider the first equation in (7.144) written as

ŪIKΓmUIL = δKLΓm +MKL,m . (7.147)

We take transposition and we multiply by C from the left and from the right

C
(
ŪIKΓmUIL

)t C = δKLC (Γm)
t C + C (MKL,m)

t C, (7.148)

and further manipulate as

C (UIL)
t C · C (Γm)

t C · C
(
ŪIK

)t C = δKLC (Γm)
t C + C (MKL,m)

t C . (7.149)

With the help of eqs.(7.143) , (7.145) and (7.146) and relabelling the indices K and L, we
get

ŪIKΓmUIL = δKLΓm −MKL,m , (7.150)

which shows that MKL,m = 0, that is this structure cannot appear because it is incom-
patible with the symmetry properties of the rotated kinetic term. It is clear that the same
considerations are also applied to the second equation in (7.144), where σIJ3 replaces δIJ .
Thus, the rotation matrix UIJ must satisfy a more stringent system of equations. To write
these equations without having to deal with indices of the 2× 2 space, we can introduce
64× 64 matrices

U ≡
3∑
a=0

sa ⊗ Ua , Ū ≡
3∑
a=0

sta ⊗ Ūa = −
3∑
a=0

sta ⊗ CU taC , (7.151)

which allow us to write the constraints as

Π−

(
Ū (12 ⊗ Γm)U − 12 ⊗ Γm

)
Π+ = 0 ,

Π−

(
Ū (σ3 ⊗ Γm)U − σ3 ⊗ Γm

)
Π+ = 0 .

(7.152)

Here we are multiplying by the two projectors Π± = 12⊗ 1
2 (132±Γ11) to account for the

chirality of the fermions. We assume that U is a smooth function of η, and that for small
values of the deformation parameter it can be expanded as

U = 164 + ηru+ o(ηr) . (7.153)
11Notice that to exhibit this symmetry property, one has to transpose also the indices K,L, on top of trans-

position in the 32× 32 space.
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Here ηr is the first non-trivial order of the contribution, and o(ηr) denotes subleading
terms. At order ηr we get a system of linear equations for u

Π−

(
ū (12 ⊗ Γm) + (12 ⊗ Γm)u

)
Π+ = 0 ,

Π−

(
ū (σ3 ⊗ Γm) + (σ3 ⊗ Γm)u

)
Π+ = 0 .

(7.154)

This system appears to have no solution which acts non-trivially on chiral fermions.
Thus, non-trivial field redefinitions of the type we considered here do not exist. Whether
equation (7.152) has solutions which do not depend on η is unclear to us. Finally, let us
mention that similar considerations on field redefinitions can be done by considering the
kappa-symmetry transformations of the bosonic and fermionic coordinates, and of the
worldsheet metric. Doing so we get to the same conclusion found here.

7.6.2 Mirror model and Maldacena-Russo background

In this section we want to take special limits of our results, to make contact with other
findings appeared in the literature. We first study a particular κ →∞ limit of (AdS5×S5)η ,
as used in [159]. There it was shown that this limit implemented on the spacetime metric
for the deformed model yields the metric for the mirror model of AdS5×S5. It was then
shown that it is possible to complete this metric to a IIB supergravity background, by
supplementing it with a dilaton and a five-form flux. We have to first rescale the bosonic
coordinates as [159]

t→ t

κ
, ρ→ ρ

κ
, φ→ φ

κ
, r → r

κ
, (7.155)

and then send κ → ∞. The vielbein components emα are of order O(1/κ) in this limit.
We get the following components for emM

e0
t = +

1√
1− ρ2

, e1
ψ2

= −ρ sin ζ, e2
ψ1

= −ρ cos ζ, e3
ζ = −ρ, e4

ρ = − 1√
1− ρ2

,

e5
φ = +

1√
1 + r2

, e6
φ2

= −r sin ξ, e7
φ1

= −r cos ξ, e8
ξ = −r, e9

r = − 1√
1 + r2

,

(7.156)
where we omit powers of κ. This is compatible with the metric of the mirror back-
ground [159]. The B-field vanishes in this limit.

For the R-R fields we have to keep those components—when we specify tangent
indices—that are of orderO(κ) in this limit. This is to compensate the power 1/κ coming
from the vielbein that multiplies them in the definition (7.108) of D̃IJ

α . The components
that survive are

eϕ F123 = − 4ρ√
1− ρ2

√
1 + r2

, eϕ F678 = − 4r√
1− ρ2

√
1 + r2

,

eϕ F01234 = +
4√

1− ρ2
√

1 + r2
, eϕ F04678 = − 4ρr√

1− ρ2
√

1 + r2
.

(7.157)

Here we are omitting powers of κ. For F (5) one has to take into account also the com-
ponents that are dual to the ones written above, using (A.6). This result does not match
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with [159], where the proposed background has vanishing F (3) and an F (5) along dif-
ferent directions. Checking (7.135), we find that the R-R fields obtained in this limit are
again not compatible with the equations of motion of supergravity.

Studying a particular κ → 0 limit of the results that we have obtained, we can
show that we reproduce the Maldacena-Russo (MR) background [166]. This background
was constructed with the motivation of studying the large-N limit of non-commutative
gauge theories. We will show agreement with our results both at the level of the NS-NS
and the R-R sector.

We first rescale the coordinates parameterising the deformed AdS space as

t→
√
κ t , ψ2 →

√
κ

sin ζ0
ψ2 , ψ1 →

√
κ

cos ζ0
ψ1 , ζ → ζ0 +

√
κ ζ , ρ→ ρ√

κ
, (7.158)

and then send κ → 0. Because we have not rescaled the coordinates on the deformed
S5, the corresponding part of the metric just reduces to the usual metric on S5, and the
components of theB-field in those directions will vanish. On the other hand, for the part
originating from the deformed AdS5 we get a result different from the undeformed case.
In this limit the complete metric and B-field are

ds2
(MR) = ρ2

(
−dt2 + dψ2

2

)
+

ρ2

1 + ρ4 sin2 ζ0

(
dψ2

1 + dζ2
)

+
dρ2

ρ2
+ ds2

S5 ,

B(MR) = +
ρ4 sin ζ0

1 + ρ4 sin2 ζ0
dψ1 ∧ dζ.

(7.159)

These equations should be compared with (2.7) of [166], using the following identifica-
tion of the coordinates and the parameters on the two sides

Here t ψ2 ψ1 ζ ρ sin ζ0
There x̃0 x̃1 x̃2 x̃3 u a2

When we repeat the same limiting procedure on the components of the R-R fields found
for the η-deformation of AdS5×S5—see (7.112), (7.113) and (7.114)—we find that the
axion vanishes, and only one component of F (3) and one of F (5) (plus its dual) survive.
These components—when we specify tangent indices—multiplied by the exponential of
the dilaton are

eϕF014 =
4ρ2 sin ζ0√

1 + ρ4 sin2 ζ0
, eϕF01234 =

4√
1 + ρ4 sin2 ζ0

. (7.160)

If we take the dilaton to be equal to

ϕ = ϕ0 −
1

2
log(1 + ρ4 sin2 ζ0) , (7.161)

where ϕ0 is a constant, we then find that the non-vanishing components for the R-R
fields—in tangent and curved indices—are

F014 = e−ϕ0 4ρ2 sin ζ0 , F01234 = e−ϕ0 4 ,

Ftψ2ρ = e−ϕ0 4ρ3 sin ζ0 , Ftψ2ψ1ζρ = e−ϕ0
4ρ3

1 + ρ4 sin2 ζ0
.

(7.162)
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Also the results that we obtain for the dilaton and the R-R fields are in perfect agree-
ment with (2.7) of [166]. It is very interesting that despite the incompatibility with type
IIB supergravity for generic values of the deformation parameter, there exists a certain
limit—different from the undeformed AdS5×S5—where this compatibility is restored.

Concluding remarks The fact that our result is not compatible with the Bianchi iden-
tities and the equations of motion of type IIB supergravity is a puzzle. One possible
scenario is that the η-deformation of AdS5×S5 is just not a type IIB superstring, despite
the presence of a kappa-symmetry. On the other hand, it might still be possible that
compatibility with IIB is restored after implementing further field redefinitions in the
σ-model action. In fact, in Section 7.4.3 we have used a field redefinition of the bosonic
and fermionic coordinates to recast the action in the standard form of Green-Schwarz for
type IIB superstring [117, 119]. A question to answer is whether there exist some residual
field redefinitions that we can still perform on our coordinates, such that the form of the
action remains invariant, while the actual couplings of the fermions to the background
fields change. In other words, the idea is that after performing these residual field redef-
initions we will read off from the Lagrangian different components for the background
fields, and with a different dependence on the bosonic coordinates.

Notice that the couplings to the NS-NS background fields that we have obtained are
already the correct ones. In fact, from the Lagrangian and the kappa-symmetry variation
of the worldsheet metric we found components ω̃mnM that correctly satisfy the equation
for the spin-connection (2.24) relating it to the deformed vielbein (7.74). Also the com-
ponents of H̃MNP that we read off are compatible with the requirement of H being the
field strength of the B-field (6.23), which appears in the bosonic action (6.21). There-
fore, if these residual field redefinitions exist, they should also satisfy the property of not
modifying the couplings to the background NS-NS fields. Only the couplings to the R-R
fields should change.

In Section 7.6.1 we have investigated this possibility, and we have shown that we can
exclude all redefinitions which are continuous in the deformation parameter. We cannot
exclude that the field redefinition which we are after is indeed independent of η. If that
is the case, it must be a symmetry of the σ-model action of the undeformed model. Let
us also mention that a non-local redefinition of the fields might be necessary.

In [6] the action that we have derived here was used to compute the tree-level scat-
tering elements for excitations on the worldsheet. In addition to the results collected in
Section 6.3—where only interactions among bosons were considered— it was then pos-
sible to derive also the scattering elements that involve two fermions in the asymptotic
states of 2→ 2 processes12. The derivation of [6] shows that the T-matrix obtained using
the methods reviewed in Section 2.3 cannot be factorised into two copies as in (6.40),
see Section 6.3 for the discussion in the bosonic sector. However, there exists a unitary
transformation of the basis of two-particle states thanks to which the T-matrix can be
factorised into two copies, as desired. This change of basis is of a particular type, as it is
not one-particle factorisable. Each of the two copies that compose the T-matrix matches
with the large tension expansion of the all-loop S-matrix invariant under psuq(2|2), and
it naturally satisfies the classical Yang-Baxter equation.

12The terms Fermion+Fermion→Fermion+Fermion are missing in the computation, since their derivation
requires the Lagrangian quartic in fermions.
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The fact that we can prove compatibility with the q-deformed S-matrix is a nice fur-
ther check of our results. On the other hand, it is not clear why this compatibility is not
immediate, as a change of the two-particle basis is needed. One possible explanation
may lie in the choice of the R-operator that is used to define the deformation. Our cur-
rent choice (7.45) corresponds to the standard Dynkin diagram of psu(2, 2|4). However, it
is believed that only the “all-loop” Dynkin diagram can be used to write the Bethe-Yang
equations for the undeformed model. It might be that defining the deformation through
an R-operator which is related to the “all-loop” Dynkin diagram would give automat-
ically the T-matrix in the factorised form, with no need of changing the basis of two-
particle states. It is also worth investigating whether applying this redefinition—which
is in fact η-independent and it is a symmetry of the undeformed model—necessary to
get a factorised T-matrix could also cure the problem of compatibility with type IIB. This
transformation is non-local, and it would first be important to check that it does not
produce non-local terms in the action.

We intend to clarify the puzzles posed by the η-deformed AdS5×S5 in the near future.
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Appendix A

Equations of motion of type IIB
supergravity

In this appendix we collect the action and the equations of motion of type IIB supergrav-
ity, as taken from [167]. We use these conventions in particular for Section 2.2 and 7.6.

In type IIB supergravity we have Neveu-Schwarz–Neveu-Schwarz (NS-NS) and
Ramond-Ramond (R-R) fields. In particular

NS-NS: these are the metric GMN , the dilaton ϕ, and the anti-symmetric two-form
BMN with field strength HMNP ;

R-R: these are the axion χ, the anti-symmetric two-formCMN , and the anti-symmetric
four-form CMNPQ.

The R-R field strengths are defined as

FM = ∂Mχ , (A.1)
FMNP = 3∂[MCNP ] − χHMNP , (A.2)
FMNPQR = 5∂[MCNPQR] + 15(B[MN∂PCQR] − C[MN∂PBQR]) . (A.3)

Square brackets [, ] are used to denote the anti-symmetrizer, e.g.

HMNP = 3∂[MBNP ] =
3

3!

∑
π

(−1)π∂π(M)Bπ(N)π(P ) = ∂MBNP + ∂NBPM + ∂PBMN ,

(A.4)
where we have to sum over all permutations π of indices M , N and P , and the sign
(−1)π is +1 for even and −1 for odd permutations. The equations of motion of type IIB
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supergravity in the string frame may be found by first varying the action [168, 169]

S =
1

2κ2

∫
d10X

[
√
−G

(
e−2ϕ

(
R+ 4∂Mϕ∂

Mϕ− 1

12
HMNPH

MNP
)
−

− 1

2
∂Mχ∂

Mχ− 1

12
FMNPF

MNP − 1

4 · 5!
FMNPQRF

MNPQR

)
+

+
1

8 · 4!
εM1...M10CM1M2M3M4

∂M5
BM6M7

∂M8
CM9M10

]
,

(A.5)
and after that by imposing the self-duality condition for the five-form

FM1M2M3M4M5 = − 1

5!

√
−GεM1...M10

FM6M7M8M9M10 . (A.6)

Here G is the determinant of the metric, R the Ricci scalar, and for the anti-symmetric
tensor ε we choose the convention ε0...9 = 1 and ε0...9 = −1. Let us write the equations
of motion for all the fields.

Equation for the dilaton ϕ

4∂Mϕ∂Mϕ− 4∂M∂Mϕ− 4∂MG
MN∂Nϕ− 2∂MGPQG

PQ∂Mϕ = R− 1

12
HMNPH

MNP .

(A.7)
Note that ∂MGPQGPQ = 2∂M log

√
−G.

Equation for the two-form BMN

2∂M

(√
−G(e−2ϕHMNP − χFMNP )

)
−
√
−GFNPQRS∂QCRS = 0 (A.8)

This equation has been rewritten using (A.11).
Equation for the axion χ

∂M

(√
−G∂Mχ

)
= −1

6

√
−GFMNPH

MNP . (A.9)

Equation for the two-form CMN

∂M (
√
−GFMNP ) +

1

6

√
−GFNPQRSHQRS = 0 (A.10)

Equation for the four-form CMNPQ

∂N

(√
−GFNM1M2M3M4

)
= − 1

36
εM1...M4M5...M10HM5M6M7

FM8M9M10
. (A.11)

Einstein equations

RMN −
1

2
GMNR = TMN , (A.12)
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where the stress tensor is

TMN =GMN

[
2∂P (∂Pϕ)− 2GPQΓRPQ∂Rϕ− 2∂Pϕ∂

Pϕ

− 1

24
HPQRH

PQR − 1

4
e2ϕFPF

P − 1

24
e2ϕFPQRF

PQR

]
− 2∂M∂Nϕ+ 2ΓPMN∂Pϕ

+
1

4
HMPQH

PQ
N +

1

2
e2ϕFMFN +

1

4
e2ϕFMPQF

PQ
N +

1

4 · 4!
e2ϕFMPQRSF

PQRS
N ,

(A.13)
and the Christoffel symbol is

ΓPMN =
1

2
GPQ(∂MGNQ + ∂NGMQ − ∂QGMN ) . (A.14)
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Appendix B

AdS3×S3×T4

B.1 Gauge-fixed action for AdS3×S3×T4 at order θ2

In this section we explain how to obtain the action at quadratic order in fermions for the
superstring on the pure R-R AdS3×S3×T4 background. The bosonic action is given by
Eq. (2.2), where in our coordinates the spacetime metric for AdS3×S3×T4 reads as

ds2 = −

(
1 +

z2
1+z2

2

4

1− z2
1+z2

2

4

)2

dt2 +
1(

1− z2
1+z2

2

4

)2 (dz2
1 + dz2

2)

+

(
1− y2

3+y2
4

4

1 +
y2

3+y2
4

4

)2

dφ2 +
1(

1 +
y2

3+y2
4

4

)2 (dy2
3 + dy2

4)

+ dxidxi .

(B.1)

We consider the case of vanishing B-field. Coordinates t, z1, z2 parameterise AdS3, and
t is the time coordinate. Coordinates φ, y3, y4 parameterise S3, and φ is an angle that
we will use, together with t to create light-cone coordinates. Coordintates x6, x7, x8, x9

parameterise the torus. We prefer to enumerate the coordinates as

X0 = t, X1 = z1, X
2 = z2, X

3 = y3, X
4 = y4, X

5 = φ, Xi = xi for i = 6, . . . , 9 , (B.2)

and to use a diagonal vielbein

e0
t =

1 +
z2
1+z2

2

4

1− z2
1+z2

2

4

, e1
z1 = e2

z2 =
1

1− z2
1+z2

2

4

,

e5
φ =

1− y2
3+y2

4

4

1 +
y2

3+y2
4

4

, e3
y3

= e4
y4

=
1

1 +
y2

3+y2
4

4

,

eixi = 1 i = 6, . . . , 9.

(B.3)

In order to avoid confusion, we use letters to denote explicitly curved indices on viel-
bein components, etc. We will never distinguish between upper or lower indices for the
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coordinates zi ≡ zi, yi ≡ yi, xi ≡ xi. To write down the fermionic action we first define
the ten-dimensional Gamma-matrices1

Γ0 = −iσ1 ⊗ σ3 ⊗ σ2 ⊗ σ3 ⊗ 1 , Γ1 = +σ1 ⊗ σ1 ⊗ σ2 ⊗ 1 ⊗ 1 ,

Γ2 = +σ1 ⊗ σ2 ⊗ σ2 ⊗ σ3 ⊗ 1 , Γ3 = +σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ 1 ,

Γ4 = −σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1 , Γ5 = −σ1 ⊗ 1 ⊗ σ1 ⊗ σ3 ⊗ 1 ,

Γ6 = +σ1 ⊗ 1 ⊗ σ3 ⊗ 1 ⊗ σ1, Γ7 = +σ1 ⊗ 1 ⊗ σ3 ⊗ 1 ⊗ σ2,

Γ8 = +σ1 ⊗ 1 ⊗ σ3 ⊗ 1 ⊗ σ3, Γ9 = −σ2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 .

(B.4)

For all Gamma-matrices we define the antisymmetric product by

Γm1m2···mn =
1

n!

∑
π∈Sn

(−1)πΓmπ(1)Γmπ(2) · · ·Γmπ(n) , (B.5)

where the sum runs over all permutations of the indices and (−1)π denotes the signature
of the permutation. For convenience, let us write down explicitly some higher-rank
Gamma-matrices that may be obtained by the above definitions

Γ1234 = + 1 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ6789 = +σ3 ⊗ 1 ⊗ σ3 ⊗ 1 ⊗ 1 ,

Γ = Γ0123456789 = +σ3 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 .

(B.6)

The Gamma-matrices satisfy

(Γm)t = −CΓmC−1, (Γm)† = −Γ0Γm(Γ0)−1, (Γm)∗ = +BΓmB−1, (B.7)

where
C = −iσ2 ⊗ σ3 ⊗ σ2 ⊗ σ1 ⊗ σ2, B = −Γ0 C. (B.8)

It is useful to note the relations

(Γ0)†Γ0 = C†C = B†B = 1, Bt = C(Γ0)†,

C† = −C = +Ct, (Γ0)† = −Γ0 = +(Γ0)t, B† = +B = +Bt,
C = −Γ01479, B = +σ3 ⊗ 1⊗ σ1 ⊗ σ2 ⊗ σ2 = −Γ1479,

BΓB† = Γ∗.

(B.9)

The two sets of 32-component Majorana-Weyl spinors labelled by I = 1, 2 satisfy the
conditions

ΓΘI = +ΘI , Θ∗I = BΘI , Θ̄I = Θt
IC, (B.10)

to give a total of 32 real fermions. The action at quadratic order in fermions is given
by (2.21), where the operator DIJ

α in this case is

DIJ
α = δIJ

(
∂α −

1

4
ωmnβ Γmn

)
+

1

4
σIJ1 (Γ012 + Γ345) emα Γm. (B.11)

1This basis is obtained by permuting the third and fourth spaces in the tensor products defining the
Gamma-matrices that we find after implementing the change of basis explained in (2.55) of [5].
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B.1.1 Linerarly realised supersymmetries

The background possesses a total of 16 real supersymmetries. It is more convenient to
redefine the fermions introduced above, such that these supersymmetries are realised
as linear shifts of fermionic components. For a background realised by a supercoset,
the original form of the action would correspond to the choice g = gbos · gfer for the
coset element. The redefinition we perform here would allow us to obtain to the choice
g = gfer · gbos for the coset element. For convenience we first redefine the fermions as

Θ1 = ϑ1 + ϑ2, Θ2 = ϑ1 − ϑ2, (B.12)

and then introduce fermions ϑ±I as

ϑ1 =
1

2
(1 + Γ012345)M̂ϑ+

1 +
1

2
(1− Γ012345)M̂ϑ−1 ,

ϑ2 =
1

2
(1 + Γ012345)M̌ϑ+

2 +
1

2
(1− Γ012345)M̌ϑ−2 .

(B.13)

The projectors 1
2 (1±Γ012345) make sure that we are again using a total of 32 real fermions.

Here M̂ and M̌ are 32× 32 matrices

M̂ = M0Mt, M̌ = M−1
0 M−1

t , (B.14)

where

M0 =
1√(

1− z2
1+z2

2

4

)(
1 +

y2
3+y2

4

4

)(1− 1

2
(z1Γ1 + z2Γ2)Γ012

)(
1− 1

2
(y3Γ3 + y4Γ4)Γ345

)
,

M−1
0 =

1√(
1− z2

1+z2
2

4

)(
1 +

y2
3+y2

4

4

)(1 +
1

2
(z1Γ1 + z2Γ2)Γ012

)(
1 +

1

2
(y3Γ3 + y4Γ4)Γ345

)
,

(B.15)
and

Mt = e−
1
2 (tΓ12+φΓ34), M−1

t = e+ 1
2 (tΓ12+φΓ34). (B.16)

It is useful to see how these fermionic redefinitions are implemented on the Gamma-
matrices

M̂−1 Γm M̂ emM = Γm M̂m
ne
n
M , M̌−1 Γm M̌ emM = Γm M̌m

ne
n
M , (B.17)

where M̂n
m and M̌n

m are components of orthogonal matrices. They rotate non-trivially
only the indices m = 0, . . . , 5 of AdS3×S3, and they act as the identity for directions
tangent to the torus. In particular, they can be reabsorbed in the definition of the vielbein,
to produce2

êmM = M̂m
n e

n
M , ěmM = M̌m

ne
n
M . (B.18)

Explicitly, the 10× 10 matrices ê, ě whose components are êmM , ě
m
M are

ê = êAdS3
⊕ êS3 ⊕ 14 , ě = ěAdS3

⊕ ěS3 ⊕ 14 , (B.19)

2The conventions for the symbols “check” or “hat” should not be confused with the ones used in the chap-
ters discussing the η-deformation of AdS5×S5, where they refer to AdS5 and S5. Here they refer to the matrices
M̌, M̂ defined before.
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where we have defined

êAdS3
=

1 0 0
0 + cos t + sin t
0 − sin t + cos t

 ·


+1 +z2 −z1

+ z2

1+
z21+z22

4

1− z2
1−z

2
2

4 − z1z22

− z1

1+
z21+z22

4

− z1z22 1 +
z2
1−z

2
2

4

 ,

ěAdS3
=

1 0 0
0 + cos t − sin t
0 + sin t + cos t

 ·


+1 −z2 +z1

− z2

1+
z21+z22

4

1− z2
1−z

2
2

4 − z1z22

+ z1

1+
z21+z22

4

− z1z22 1 +
z2
1−z

2
2

4

 ,

(B.20)

and

êS3 =

+ cosφ + sinφ 0
− sinφ + cosφ 0

0 0 1

 ·


1 +
y2

3−y
2
4

4 +y3y4

2 − y4

1− y
2
3+y2

4
4

+y3y4

2 1− y2
3−y

2
4

4 + y3

1− y
2
3+y2

4
4

+y4 −y3 1

 ,

ěS3 =

+ cosφ − sinφ 0
+ sinφ + cosφ 0

0 0 1

 ·


1 +
y2

3−y
2
4

4 +y3y4

2 + y4

1− y
2
3+y2

4
4

+y3y4

2 1− y2
3−y

2
4

4 − y3

1− y
2
3+y2

4
4

−y4 +y3 1

 .

(B.21)

It is then possible to check that the sum of the bosonic and fermionic Lagrangians are
invariant under the following supersymmetry transformations

δϑ−I = εI , δϑ+
I = 0 ,

δêmα = δěmα = −iε̄IΓm∂αϑ−I m = 0, . . . , 5 , δêmα = δěmα = 0 m = 6, . . . , 9 ,
(B.22)

at first order in ϑ±I .

B.1.2 Gauge-fixed action

In the previous subsection we showed which is the most convenient choice for the
fermions in order to achieve a simple form of the supersymmetry variations. In this
subsection we perform a different fermionc field redefinition. This is necessary to get
fermions that are not charged under the two isometries corresponding to shifts of the
coordinates t, φ. This is needed to fix light-cone kappa-gauge later. For a background
realised as a supercoset, this would correspond to the choice g = Λ(t, φ) ·gfer ·g′bos for the
coset representative, where Λ(t, φ) is a group element parameterised by t, φ only, while
g′bos by the transverse bosonic coordinates.

Starting from the fermions appearing in (B.12), we define fermions ηI , χI

ϑ1 =
1

2
(1 + Γ012345)M0χ1 +

1

2
(1− Γ012345)M0η1

ϑ2 =
1

2
(1 + Γ012345)M−1

0 χ2 +
1

2
(1− Γ012345)M−1

0 η2,

(B.23)
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where the matrices M0,M
−1
0 may be read in (B.15). As previously, the correct number of

fermions is ensured by the presence of the projectors. After introducing bosonic light-
cone coordinates as in Section 2.1 we impose kappa-gauge like in Section 2.2

Γ+ηI = 0, Γ+χI = 0, Γ± =
1

2

(
Γ5 ± Γ0

)
, (B.24)

to keep only a total of 16 real fermions. The redefinition (B.23) and the condition imposed
by the kappa-gauge allows us to require that the fermions satisfy

Γ1234χI = +χI , Γ6789χI = +χI , Γ1234ηI = −ηI , Γ6789ηI = −ηI . (B.25)

It is then natural to write them as

χI =

(
1
0

)
⊗
(

1
0

)
⊗
(

1
0

)
⊗ (χI)

ab ,

ηI =

(
1
0

)
⊗
(

0
1

)
⊗
(

0
1

)
⊗ (ηI)

ȧḃ .

(B.26)

As explained in Section 2.2, from the light-cone gauge-fixed action we can read the
Hamiltonian of the gauge-fixed model. The Hamiltonian at quadratic order in the fields
is written in (3.10). To obtain that expression we have actually rewritten our bosonic
and fermionic coordinates as follows. We first introduce complex coordinates to param-
eterise the transverse directions of AdS3 and S3

Z = −z2 +i z1 , Z̄ = −z2−i z1 , Y = −y3−i y4 , Ȳ = −y3 +i y4 , (B.27)

together with the corresponding conjugate momenta

PZ =
1

2
Ż, PZ̄ =

1

2
˙̄Z , PY =

1

2
Ẏ, PȲ =

1

2
˙̄Y . (B.28)

Similarly, for the four directions in the torus we define the complex combinations

X12 = x8− i x9 , X21 = −x8− i x9 , X11 = −x6 + i x7 , X22 = −x6− i x7 , (B.29)

and the conjugate momenta

Pȧa =
1

2
εȧḃεabẊ

ḃb. (B.30)

Upon quantisation, these fields satisfy the canonical commutation relations

[Z(τ, σ1), PZ̄(τ, σ2)] = [Z̄(τ, σ1), PZ(τ, σ2)] = i δ(σ1 − σ2) ,

[Y (τ, σ1), PȲ (τ, σ2)] = [Ȳ (τ, σ1), PY (τ, σ2)] = i δ(σ1 − σ2) ,

[X ȧa(τ, σ1), Pḃb(τ, σ2)] = i δȧ
ḃ
δab δ(σ1 − σ2) .

(B.31)

For the massive fermions we define the various components as

(
η1

)ȧȧ
=

(
−e+iπ/4 η̄L2 −e+iπ/4 η̄L1

e−iπ/4 η 1
L −e−iπ/4 η 2

L

)
,

(
η2

)ȧȧ
=

(
e−iπ/4 ηR2 e−iπ/4 ηR1

−e+iπ/4 η̄ 1
R e+iπ/4 η̄R

2

)
,

(B.32)
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where the signs and the factors of e±iπ/4 are introduced for later convenience. Similarly,
for the massless fermions we write

(
χ1

)aa
=

(
−e+iπ/4χ̄+2 e+iπ/4χ̄+1

−e−iπ/4χ 1
+ −e−iπ/4χ 2

+

)
,

(
χ2

)aa
=

(
e−iπ/4χ 1

− e−iπ/4χ 2
−

−e+iπ/4χ̄−2 e+iπ/4χ̄−1

)
.

(B.33)
The canonical anti-commutation relations are

{η̄Lȧ(σ1), η ḃL (σ2)} = {η̄ ḃR (σ1), ηRȧ(σ2)} = δ ḃȧ δ(σ1 − σ2),

{χ̄+a(σ1), χb+(σ2)} = {χ̄−a(σ1), χb−(σ2)} = δ ba δ(σ1 − σ2),
(B.34)

It is possible to derive the (super)currents associated to the isometries of the model. In
general the conserved charges are divided into kinematical and dynamical. The former
do not depend on the light-cone coordinate x−, while the latter do. Given their defi-
nition, kinematical charges commute with the total light-cone momentum P− of (2.18).
Another way to look at the conserved charges is to see if they also do or do not depend
on x+ = τ . Because dQ/dτ = ∂Q/∂τ +{H,Q} = 0, it is clear that only the charges with-
out an explicit time-dependence commute with the Hamiltonian. These are actually the
charges we are interested in. In particular, of the sixteen real conserved supercharges,
only eight of them commute with the Hamiltonian. They turn out to be dynamical.
For AdS3×S3×T4 they have been presented at first order in fermions and third order in
bosons in [5]. In (3.12) we write them at first order in fermions and first order in bosons.

B.2 Oscillator representation

Here we introduce creation and annihilation operators. We will use them to rewrite the
conserve charges of Chapter 3.1 forming the algebra A. We first define the following
wave-function parameters

ω(p,m) =
√
m2 + p2, f(p,m) =

√
ω(p,m) + |m|

2
, g(p,m) = − p

2f(p,m)
, (B.35)

that satisfy

ω(p,m) = f(p,m)2 + g(p,m)2, |m| = f(p,m)2 − g(p,m)2, (B.36)

and the short-hand notation

ωp = ω(p,±1) fp = f(p,±1), gp = g(p,±1),

ω̃p = ω(p, 0), f̃p = f(p, 0), g̃p = g(p, 0).
(B.37)
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For the massive bosons we take

aLz(p) =
1√
2π

∫
dσ

2
√
ωp

(
ωpZ̄ + 2iPZ̄

)
e−ipσ,

aRz(p) =
1√
2π

∫
dσ

2
√
ωp

(ωpZ + 2iPZ) e−ipσ,

aLy(p) =
1√
2π

∫
dσ

2
√
ωp

(
ωpȲ + 2iPȲ

)
e−ipσ,

aRy(p) =
1√
2π

∫
dσ

2
√
ωp

(ωpY + 2iPY ) e−ipσ,

(B.38)

and for the massless bosons

aȧa(p) =
1√
2π

∫
dσ

2
√
ω̃p

(ω̃pXȧa + 2iPȧa) e−ipσ. (B.39)

The corresponding creation operators are found by taking the complex conjugate of the
above expressions and are indicated by a dagger. For massless bosons we have in par-
ticular (aȧa)∗ = aȧa†.

[aL z(p1), a†L z(p2)] = [aR z(p1), a†R z(p2)] = δ(p1 − p2) ,

[aL y(p1), a†L y(p2)] = [aR y(p1), a†R y(p2)] = δ(p1 − p2) ,

[aȧa(p1), a†
ḃb

(p2)] = δȧ
ḃ
δab δ(p1 − p2) .

(B.40)

The ladder operators for massive fermions are defined as

dLȧ(p) = +
e+iπ/4

√
2π

∫
dσ
√
ωp

εȧḃ

(
fp η

ḃ
L + igp η̄

ḃ
R

)
e−ipσ,

d ȧR (p) = −e
+iπ/4

√
2π

∫
dσ
√
ωp

εȧḃ
(
fp ηRḃ + igp η̄Lḃ

)
e−ipσ.

(B.41)

while for massless fermions we take

d̃a(p) =
e−iπ/4√

2π

∫
dσ√
ω̃p

(
f̃pχ̄+a − ig̃p εabχ b

−

)
e−ipσ,

da(p) =
e+iπ/4

√
2π

∫
dσ√
ω̃p

(
f̃p εabχ

b
+ − ig̃p χ̄−a

)
e−ipσ.

(B.42)

Also in this case the creation operators are found by taking (da)∗ = da†. The anti-
commutation relations are

{d ȧ †L (p1), d
Lḃ(p2)} = {d †

Rḃ
(p1), d ȧR (p2)} = δ ȧ

ḃ
δ(p1 − p2) ,

{d̃a †(p1), d̃b(p2)} = {d a †(p1), db(p2)} = δ ab δ(p1 − p2) .
(B.43)

Using these definitions we can rewrite the conserved charges in terms of creation and
annihilation operators, to obtain (3.19) and (3.20).
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B.3 Explicit S-matrix elements

Here we write the action of the psu(1|1)4
c.e.-invariant S-matrix on two-particle states.

B.3.1 The massive sector

In the massive sector, when we scatter two Left excitations we get

SLL⊗̌SLL |Y L
pY

L
q 〉 =ALL

pqA
LL
pq |Y L

q Y
L
p 〉 ,

SLL⊗̌SLL |Y L
p η

L ȧ
q 〉 =ALL

pqB
LL
pq |ηL ȧ

q Y L
p 〉+ALL

pqC
LL
pq |Y L

q η
L ȧ
p 〉 ,

SLL⊗̌SLL |Y L
pZ

L
q〉 =BLL

pqB
LL
pq |ZL

qY
L
p 〉+ CLL

pqC
LL
pq |Y L

q Z
L
p〉+ εȧḃBLL

pqC
LL
pq |ηL ȧ

q ηL ḃ
p 〉 ,

SLL⊗̌SLL |ηL ȧ
p Y L

q 〉 =ALL
pqD

LL
pq |Y L

q η
L ȧ
p 〉+ALL

pqE
LL
pq |ηL ȧ

q Y L
p 〉 ,

SLL⊗̌SLL |ηL ȧ
p ηL ḃ

q 〉 =δȧḃALL
pqF

LL
pq |ηL ȧ

q ηL ȧ
p 〉 − εȧḃBLL

pqD
LL
pq |ηL ḃ

q η
L ȧ
p 〉+ εȧḃCLL

pqE
LL
pq |ηL ȧ

q ηL ḃ
p 〉

+ εȧḃCLL
pqD

LL
pq |Y L

q Z
L
p〉+ εȧḃBLL

pqE
LL
pq |ZL

qY
L
p 〉 ,

SLL⊗̌SLL |ηL ȧ
p ZL

q〉 =−BLL
pqF

LL
pq |ZL

qη
L ȧ
p 〉+ CLL

pqF
LL
pq |ηL ȧ

q ZL
p〉 ,

SLL⊗̌SLL |ZL
pY

L
q 〉 =DLL

pqD
LL
pq |Y L

q Z
L
p〉+ ELL

pqE
LL
pq |ZL

qY
L
p 〉+ εȧḃDLL

pqE
LL
pq |ηL ȧ

q ηL ḃ
p 〉 ,

SLL⊗̌SLL |ZL
pη

L ȧ
q 〉 =−DLL

pqF
LL
pq |ηL ȧ

q ZL
p〉+ ELL

pqF
LL
pq |ZL

qη
L ȧ
p 〉 ,

SLL⊗̌SLL |ZL
pZ

L
q〉 =F LL

pqF
LL
pq |ZL

qZ
L
p〉 ,

(B.44)
Scattering a Left and a Right excitation yields3

SLR⊗̌SLR |Y L
pY

R
q 〉 =ALR

pqA
LR
pq |Y R

q Y
L
p 〉 −BLR

pqB
LR
pq |ZR

qZ
L
p〉+ εȧḃALR

pqB
LR
pq |ηR ȧ

q ηL ḃ
p 〉 ,

SLR⊗̌SLR |Y L
p η

R ȧ
q 〉 =ALR

pqC
LR
pq |ηR ȧ

q Y L
p 〉 −BLR

pqC
LR
pq |ZR

qη
L ȧ
p 〉 ,

SLR⊗̌SLR |Y L
pZ

R
q〉 =CLR

pqC
LR
pq |ZR

qY
L
p 〉 ,

SLR⊗̌SLR |ηL ȧ
p Y R

q 〉 =ALR
pqD

LR
pq |Y R

q η
L ȧ
p 〉 −BLR

pqD
LR
pq |ηR ȧ

q ZL
p〉 ,

SLR⊗̌SLR |ηL ȧ
p ηR ḃ

q 〉 =− δȧḃCLR
pqD

LR
pq |ηR ḃ

q η
L ȧ
p 〉+ εȧḃALR

pqE
LR
pq |ηR ḃ

q η
L ȧ
p 〉 − εȧḃBLR

pqF
LR
pq |ηR ȧ

q ηL ḃ
p 〉

− εȧḃALR
pqF

LR
pq |Y R

q Y
L
p 〉+ εȧḃBLR

pqE
LR
pq |ZR

qZ
L
p〉 ,

SLR⊗̌SLR |ηL ȧ
p ZR

q〉 =− ELR
pqC

LR
pq |ZR

qη
L ȧ
p 〉+ CLR

pqF
LR
pq |ηR ȧ

q Y L
p 〉 ,

SLR⊗̌SLR |ZL
pY

R
q 〉 =DLR

pqD
LR
pq |Y R

q Z
L
p〉 ,

SLR⊗̌SLR |ZL
pη

R ȧ
q 〉 =−DLR

pqE
LR
pq |ηR ȧ

q ZL
p〉+DLR

pqF
LR
pq |Y R

q η
L ȧ
p 〉 ,

SLR⊗̌SLR |ZL
pZ

R
q〉 =ELR

pqE
LR
pq |ZR

qZ
L
p〉 − F LR

pqF
LR
pq |Y R

q Y
L
p 〉 − εȧḃELR

pqF
LR
pq |ηR ȧ

q ηL ḃ
p 〉 ,

(B.45)
3To have a better notation, we prefer to raise the su(2) index of Right fermions with εȧḃ.
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B.3.2 The mixed-mass sector

In the case of left massive excitations that scatter with massless excitations transforming
in the %L ⊗ %̃L representation of psu(1|1)4

c.e. we find

SLL⊗̌S L̃L |ZL
pT

ȧa
q 〉 =− F LL

pqD
LL
pq |T ȧaq ZL

p〉 − F LL
pqE

LL
pq |χ̃aqηLȧ

p 〉 ,

SLL⊗̌S L̃L |Y L
pT

ȧa
q 〉 = +ALL

pqB
LL
pq |T ȧaq Y L

p 〉 −ALL
pqC

LL
pq |χaqηLȧ

p 〉 ,

SLL⊗̌S L̃L |ηLȧ
p χ̃

a
q 〉 = + F LL

pqB
LL
pq |χ̃aqηLȧ

p 〉+ F LL
pqC

LL
pq |T ȧaq ZL

p〉 ,

SLL⊗̌S L̃L |ηLȧ
p χ

a
q 〉 =−ALL

pqD
LL
pq |χaqηLȧ

p 〉+ALL
pqE

LL
pq |T ȧaq Y L

p 〉 ,

SLL⊗̌S L̃L |ZL
pχ̃

a
q 〉 = + F LL

pqF
LL
pq |χ̃aqZL

p〉 ,

SLL⊗̌S L̃L |Y L
pχ

a
q 〉 = +ALL

pqA
LL
pq |χaqY L

p 〉 ,

SLL⊗̌S L̃L |ZL
pχ

a
q 〉 = +DLL

pqD
LL
pq |χaqZL

p〉+ ELL
pqE

LL
pq |χ̃aqY L

p 〉+DLL
pqE

LL
pq εȧḃ |T

ȧa
q ηLḃ

p 〉 ,

SLL⊗̌S L̃L |Y L
p χ̃

a
q 〉 = +BLL

pqB
LL
pq |χ̃aqY L

p 〉+ CLL
pqC

LL
pq |χaqZL

p〉+BLL
pqC

LL
pq εȧḃ |T

ȧa
q ηLḃ

p 〉 ,

SLL⊗̌S L̃L |ηLȧ
p T

ḃa
q 〉 = +DLL

pqB
LL
pq |T ȧaq ηLḃ

p 〉 − ELL
pqC

LL
pq |T ḃaq ηLȧ

p 〉

+DLL
pqC

LL
pq ε

ȧḃ |χaqZL
p〉+ ELL

pqB
LL
pq ε

ȧḃ |χ̃aqY L
p 〉 .

(B.46)

When we scatter a right excitation with a massless one we can write the S-matrix ele-
ments as

SRL⊗̌SRL̃ |ZR
pT

ȧa
q 〉 =−DLR

pqE
LR
pq |T ȧaq ZR

p〉+DLR
pqF

LR
pq |χaqηRȧ

p 〉 ,

SRL⊗̌SRL̃ |Y R
p T

ȧa
q 〉 = +ALR

pqC
LR
pq |T ȧaq Y R

p 〉 −BLR
pqC

LR
pq |χ̃aqηRȧ

p 〉 ,

SRL⊗̌SRL̃ |ηRȧ
p χ

a
q 〉 =−DLR

pqA
LR
pq |χaqηRȧ

p 〉+DLR
pqB

LR
pq |T ȧaq ZR

p〉 ,

SRL⊗̌SRL̃ |ηRȧ
p χ̃

a
q 〉 = + ELR

pqC
LR
pq |χ̃aqηRȧ

p 〉 − F LR
pqC

LR
pq |T ȧaq Y R

p 〉 ,

SRL⊗̌SRL̃ |ZR
pχ

a
q 〉 = +DLR

pqD
LR
pq |χaqZR

p〉 ,

SRL⊗̌SRL̃ |Y R
p χ̃

a
q 〉 = + CLR

pqC
LR
pq |χ̃aqY R

p 〉 ,

SRL⊗̌SRL̃ |ZR
pχ̃

a
q 〉 = + ELR

pqE
LR
pq |χ̃aqZR

p〉 − F LR
pqF

LR
pq |χaqY R

p 〉+ F LR
pqE

LR
pq εȧḃ |T

ȧa
q ηRḃ

p 〉 ,

SRL⊗̌SRL̃ |Y R
p χ

a
q 〉 = +ALR

pqA
LR
pq |χaqY R

p 〉 −BLR
pqB

LR
pq |χ̃aqZR

p〉 −BLR
pqA

LR
pq εȧḃ |T

ȧa
q ηRḃ

p 〉 ,

SRL⊗̌SRL̃ |ηRȧ
p T

ḃa
q 〉 = +BLR

pqF
LR
pq |T ȧaq ηRḃ

p 〉 −ALR
pqE

LR
pq |T ḃaq ηRȧ

p 〉

−BLR
pqE

LR
pq ε

ȧḃ |χ̃aqZR
p〉+ALR

pqF
LR
pq ε

ȧḃ |χaqY R
p 〉 .

(B.47)

After taking into account a proper normalisation like in Section 4.2.2, the S-matrix el-
ements for left-massless and right-massless scattering can be related by LR symmetry.
In order to do so, one needs to implement it on massive and massless excitations as in
equations (3.35) and (3.39).
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B.3.3 The massless sector

We write the non-vanishing entries of the two-particle S matrix in the massless sector.
First we focus on the structure fixed by the psu(1|1)4 invariance. For this reason we omit
the indices corresponding to su(2)◦.

SLL⊗̌S L̃̃L |T ȧp T ḃq 〉 =− CLL
pqE

LL
pq |T ȧq T ḃp 〉+BLL

pqD
LL
pq |T ḃq T ȧp 〉

+ εȧḃ
(
CLL
pqD

LL
pq |χqχ̃p〉+BLL

pqE
LL
pq |χ̃qχp〉

)
,

SLL⊗̌S L̃̃L |T ȧp χ̃q〉 =−BLL
pqF

LL
pq |χ̃qT ȧp 〉 − CLL

pqF
LL
pq |T ȧq χ̃p〉 ,

SLL⊗̌S L̃̃L |χ̃pT ȧq 〉 =− F LL
pqD

LL
pq |T ȧq χ̃p〉 − F LL

pqE
LL
pq |χ̃qT ȧp 〉 ,

SLL⊗̌S L̃̃L |T ȧp χq〉 =−BLL
pqF

LL
pq |χqT ȧp 〉 − CLL

pqF
LL
pq |T ȧq χp〉 ,

SLL⊗̌S L̃̃L |χpT ȧq 〉 =− F LL
pqD

LL
pq |T ȧq χp〉 − F LL

pqE
LL
pq |χqT ȧp 〉 ,

SLL⊗̌S L̃̃L |χ̃pχ̃q〉 =−ALL
pqA

LL
pq |χ̃qχ̃p〉 ,

SLL⊗̌S L̃̃L |χpχq〉 =−ALL
pqA

LL
pq |χqχp〉 ,

SLL⊗̌S L̃̃L |χ̃pχq〉 =−DLL
pqD

LL
pq |χqχ̃p〉 − ELL

pqE
LL
pq |χ̃qχp〉 − ELL

pqD
LL
pqεȧḃ |T

ȧ
q T

ḃ
p 〉 ,

SLL⊗̌S L̃̃L |χpχ̃q〉 =−DLL
pqD

LL
pq |χ̃qχp〉 − ELL

pqE
LL
pq |χqχ̃p〉+ ELL

pqD
LL
pqεȧḃ |T

ȧ
q T

ḃ
p 〉 .

(B.48)

The structure fixed by the su(2)◦ symmetry is as follows

Ssu(2) |X ap Ybq 〉 =
1

1 + ςpq

(
ςpq |Y ′

b
qX ′

a
p〉+ |Y ′aqX ′

b
p〉
)
, (B.49)

where we use X ,Y,X ′,Y ′ to denote any of the excitations that appear above. The an-
tisymmetric function ςpq is further constrained in section 4.2.3. The full S-matrix in the
massless sector is then found by combining the structures fixed by psu(1|1)4

c.e. and su(2)◦.
The preferred normalisation is found by multiplying each element by the scalar factor
as in Section 4.2.2. This S-matrix automatically satisfies the LR-symmetry, where this is
implemented on massless excitations as in (3.39).

B.4 On the solutions to the crossing equations

In this appendix we collect some useful formulae concerning the solutions to the crossing
equations of the massive sector of AdS3×S3×T4. We start by proving that the expression
for the difference of the phases proposed in Section 5.2 indeed solves the corresponding
crossing equation.



B.4. On the solutions to the crossing equations 143

B.4.1 The solution for θ−

We start by defining the integral

Φ−(x, y) =

∫
	

dw

8π

sign((w − 1/w)/i)

x− w
log `−(y, w) − x↔ y

=

( ∫
x −

∫

x

)
dw

8π

1

x− w
log `−(y, w) − x↔ y,

`−(y, w) ≡ (y − w)

(
1− 1

yw

) (B.50)

The reader may check that the expressions above match with the ones appearing in the
solution for χ− presented in (5.49). The statement is that χ−(x, y) coincides with Φ−(x, y)
in the region |x| > 1, |y| > 1. Outside this region we have to define χ− through a
proper analytic continuation, and the two functions stop to coincide. In particular, the
first important property that distinguishes them, and that is of crucial important for the
proof is that

Φ−(x, y)− Φ−(1/x, y) = 0. (B.51)

To prove it we rewrite Φ−(x, y) as

Φ−(x, y) = F (x, y)− F (y, x) ,

F (x, y) = Fx(x, y)− F

x

(x, y) =

∫
x f(w, x, y)dw −

∫

xf(w, x, y)dw ,

f(w, x, y) =
1

8π

1

x− w
log `−(y, w) .

(B.52)

Because of the anti-symmetrisation of x and y, we first focus on the second entry of the
function F (y, x). Using f(w, y, x)− f(w, y, 1/x) = 0, we can also show

Fx(y, x)− Fx(y, 1/x) = 0 , and F

x

(y, x)− F

x

(y, 1/x) = 0 , (B.53)

that yields F (y, x)− F (y, 1/x) = 0. Looking now at the first entry of F (x, y)

F

x

(1/x, y) =

∫

xdw
8π

1

1/x− w
log `−(y, w)

=

∫
x

du

8π u2

1

1/x− 1/u
log `−(y, u) (B.54)

= −
∫
x

du

8π

1

x− u
log `−(y, u)−

∫
x

du

8π

1

u
log `−(y, u)

= −Fx(x, y)− φ−(y) ,

where we used the change of variable u = 1/w and we assumed that |x| 6= 1. Sending
x → 1/x in the above equation we get also Fx(1/x, y) = −F x

(x, y) − φ−(y). With all
this information we can then show that also for the first entry F (x, y) − F (1/x, y) = 0,
and conclude that (B.51) is proved.

The function Φ−(x, y) has another important property, it has a jump discontinuity
when we cross values of |x| = 1. To prove it and calculate the amount of the discon-
tinuity, we consider separately the functions F

x

(x, y), Fx(x, y) that were introduced
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in (B.52) as a convenient rewriting. If we start with F

x

(x, y), on the one hand it is clear
that no discontinuity is encountered when we cross the unit cirlce |x| = 1 from above
the real line Im(x) > 0. On the other hand, crossing from below the real line Im(x) < 0
we get, using the residue theorem

F

x

(eiϕ+ε, y) = F

x

(eiϕ−ε, y) +
i

4
log `−(y, eiϕ) +O(ε), ε > 0, −π < ϕ < 0 . (B.55)

Studying the discontinuity of F

x

in the second entry, we find a jump both when we
cross the lower half or the upper half circles4

F

x

(y, eiϕ+ε) = F

x

(y, eiϕ−ε)− i

4
log
(
y − eiϕ

)
+ φ↑(y) ,+O(ε), − π < ϕ < 0 ,

F

x

(y, eiϕ+ε) = F

x

(y, eiϕ−ε) +
i

4
log

(
1

yeiϕ
− 1

)
+ φ↓(y) +O(ε), 0 < ϕ < π ,

(B.56)
where ε > 0, and φ↑(y), φ↓(y) are functions of y, that will not be important for our pur-
poses. The discountinuities of Fx are found in the same way, and are equivalent to
changing the upper and the lower half circles in the above results.

Thanks to these results, we can compute the values of the discontinuities for Φ−(x, y)
when we cross the unit circle from below or above the real line5

Φ−(eiϕ+ε, y) = Φ−(eiϕ−ε, y)− i

2
log `−(y, eiϕ) +O(ε), − π < ϕ < 0 ,

Φ−(eiϕ+ε, y) = Φ−(eiϕ−ε, y) +
i

2
log `−(y, eiϕ) +O(ε), 0 < ϕ < π .

(B.57)

All this information is what we need to construct a solution of the crossing equation
for the difference of the phases. We define crossing as an analytic continuation from the
physical region |x| > 1, |y| > 1 to the crossed region |x| < 1, |y| > 1, where the path
crosses the unit circle below the real line Im(x) < 0. Then we construct χ− in such a
way that it coincides with Φ− in the physical region, but is continuos when we perform
a crossing transformation and we go to the crossed region

χ−(x, y) ≡ Φ−(x, y) |x| > 1, |y| > 1 ,

χ−(x, y) ≡ Φ−(x, y)− i

2
log `−(y, x) |x| < 1, |y| > 1 .

(B.58)

According to these definitions and using (B.51) we have

χ−(x, y)−χ−(1/x, y) =
i

2
log `−(y, 1/x) =

i

2
log `−(y, x) , |x| > 1, |y| > 1 . (B.59)

Remembering that σ−(x±, y±) = exp(iθ−(x±, y±)) and the relation between θ− and χ−

in (5.37) we find

σ−(x, y)
2

σ−(x̄, y)
2 = exp

[
−
(
log `−(x+, y+) + log `−(x−, y−)− log `−(x+, y−)− log `−(x−, y+)

)]
(B.60)

which proves that we have constructed a solution to (5.48).
4These results may be found by first studying the discountinuity of ∂xF

x

(y, x), and then find the corre-
sponding primitive.

5We have omitted functions that depend on y only. They are not important for us, since they do not con-
tribute to the crossing equations.
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B.4.2 Singularities of the dressing phases

We discuss possible singularities of the dressing phases θ••(x, y) and θ̃••(x, y), defined in
terms of χ••(x, y), χ̃••(x, y) as in (5.50). We use results concerning the analytic properties
of the BES phase, that is known to be regular in the physical region [132, 170]. We then
focus on the deviations from it, and we look for logarithmic singularities that might arise
for special relative values of x and y in the functions

Ψ±(x, y) =
1

2

(
− ΦHL(x, y)± Φ−(x, y)

)
, (B.61)

that contribute to define the two phases as in (5.50). Here ΦHL(x, y) is the integral defin-
ing the HL phase in the physical region,

ΦHL(x, y) =

( ∫
x −

∫

x

)
dw

4π

1

x− w
log

(
y − w
y − 1/w

)
, (B.62)

and Φ−(x, y) is defined in (B.50). Because of the above expressions, singularities might
arise at y = x or y = 1/x, but an explicit evaluation yields

Ψ±(x, y)
∣∣
y=x

= 0 , Ψ±(x, y)
∣∣
y=1/x

=
1

4π

(
4 Li2(x)− Li2(x2)

)
, (B.63)

with |y| > 1. This is enough to comclude that the phases have no singularity at x = y,
where both variables are in the physical region.

When y = 1/x and |y| > 1, x lies inside the unit circle, and we have to perform
a proper analyitic continuation of the above functions to find the contribution to the
phases in the crossed region. We continue the phases through the lower half-circle as in
Appendix B.4.1. The result for Φ− may be found in (B.57), while for ΦHL(x, y) we get

ΦHL(eiϕ+ε, y) = ΦHL(eiϕ−ε, y)− i

2
log

[
y − eiϕ

y − e−iϕ

]
+O(ε), ε > 0, −π < ϕ < 0 .

(B.64)
Putting together this information, we find that there is no singularity in χ̃••(x, y) for
y = 1/x and |y| > 1. On the other hand χ••(x, y) has a logarithmic singularity such that

e2iχ••(x,y) ∼
(
y − 1

x

)
, for y ∼ 1/x . (B.65)
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Appendix C

(AdS5×S5)η

C.1 Appendix for Bosonic (AdS5×S5)η

In this appendix we collect some useful results needed in Chapter 6 and Chapter 7.

C.1.1 Coset elements for the bosonic model

A very convenient parametrisation for a bosonic coset element is given by

gb =

(
ga 0
0 gs

)
, ga = Λ(ψk) Ξ(ζ)ǧρ(ρ) , gs = Λ(φk) Ξ(ξ)ǧr(r) . (C.1)

Here the matrix functions Λ, Ξ and ǧ are defined as

Λ(ϕk) = exp(

3∑
k=1

i

2
ϕkhk) , Ξ(ϕ) =


cos ϕ2 sin ϕ

2 0 0
− sin ϕ

2 cos ϕ2 0 0
0 0 cos ϕ2 − sin ϕ

2
0 0 sin ϕ

2 cos ϕ2

 , (C.2)

ǧρ(ρ) =


ρ+ 0 0 ρ−
0 ρ+ −ρ− 0
0 −ρ− ρ+ 0
ρ− 0 0 ρ+

 , ρ± =

√√
ρ2 + 1± 1
√

2
, (C.3)

ǧr(r) =


r+ 0 0 i r−
0 r+ −i r− 0
0 −i r− r+ 0
i r− 0 0 r+

 , r± =

√
1±
√

1− r2

√
2

, (C.4)

where the diagonal matrices hi are given by

h1 = diag(−1, 1,−1, 1) , h2 = diag(−1, 1, 1,−1) , h3 = diag(1, 1,−1,−1) . (C.5)

The coordinates t ≡ ψ3 , ψ1 , ψ2 , ζ , ρ and φ ≡ φ3 , φ1 , φ2 , ξ , r are the ones introduced
in (6.5) and (6.1) to parameterise AdS5 and S5. An alternative choice for the bosonic coset
element is the one used in [106]. The bosonic coset element would be defined as

gb
′ = Λ(t, φ) · g(X) , (C.6)
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where
Λ(t, φ) =

(
Λ(t) 0

0 Λ(φ)

)
, (C.7)

defined in (C.2) and

g(X) =


1√

1− z2
4

(
14 − 1

2
ziγi

)
0

0 1√
1+ y2

4

(
14 − i

2
yiγi

)
 . (C.8)

The gamma matrices γi are given in (C.41). The coordinates t, zi and φ, yi are the ones
introduced in (6.7) and (6.3) to parameterise AdS5 and S5.

The difference from [106] is that we have changed the sign in front of zi, yi. In this
way the two coset elements are related by a local transformation

gb
′ = gb · h h ∈ so(4, 1)⊕ so(5) , (C.9)

proving that the Lagrangian is the same and the two descriptions are equivalent. Alter-
natively, one could shift the angles ψi → ψ + π, φi → φ+ π when relating the two set of
coordinates. We remind that with respect to [106] we have also exchanged what we call
γ1, γ4.

C.1.2 The operatorO at bosonic order and its inverse

An important property of the coset representative (C.1) is that the Rgb
operator defined

in (6.16) is independent of the angles ψk and φk:

Rgb(M) = Rǧ(M) , ǧ =

(
ǧa 0
0 ǧs

)
, ǧa = Ξ(ζ)ǧρ(ρ) , ǧs = Ξ(ξ)ǧr(r) . (C.10)

We collect the formulas for the action of 1/(1 − ηRgb
◦ d)—where d is given in (7.42)—

on the projections M (2) and Modd = M (1) + M (3) of an elment M of su(2, 2|4). The
projections induced by the Z4 grading are defined in (7.25).

The action on odd elements appears to be ǧ-independent

1

1− ηRǧ ◦ d
(Modd) =

1 + ηR ◦ d
1− η2

(Modd) . (C.11)

This action onM (2) factorizes into a sum of actions onMa andMs whereMa is the upper
left 4× 4 block of M (2), and Ms is the lower right 4× 4 block of M (2). One can check that
the inverse operator is given by

1

1− ηRǧ ◦ d
(Ma) =

(
1 +

η3fa31 + η4fa42 + η5ha53

(1− caη2)(1− daη2)
+
ηRǧ ◦ d+ η2Rǧ ◦ d ◦Rǧ ◦ d

1− caη2

)(
Ma

)
,

(C.12)
1

1− ηRǧ ◦ d
(Ms) =

(
1 +

η3fs31 + η4fs42 + η5hs53

(1− csη2)(1− dsη2)
+
ηRǧ ◦ d+ η2Rǧ ◦ d ◦Rǧ ◦ d

1− csη2

)(
Ms

)
.

(C.13)
Here

ca =
4ρ2

(1− η2)
2 , da = −4ρ4 sin2 ζ

(1− η2)
2 , cs = − 4r2

(1− η2)
2 , ds = −4r4 sin2 ξ

(1− η2)
2 , (C.14)
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fak,k−2(Ma) =
((
Rǧ ◦ d

)k − ca(Rǧ ◦ d
)k−2

)
(Ma) , (C.15)

fsk,k−2(Ms) =
((
Rǧ ◦ d

)k − cs(Rǧ ◦ d
)k−2

)
(Ms) , (C.16)

da and ds appear in the identities

fak+2,k = daf
a
k,k−2 , fsk+2,k = dsf

s
k,k−2 , k = 4, 5, . . . , (C.17)

and ha53 and hs53 appear in

ha53 = fa53 − dafa31 , hs53 = fs53 − dsfs31 . (C.18)

C.1.3 On the bosonic Lagrangian

In Section 6.2 we have computed the bosonic Lagrangian using the bosonic coset ele-
ment (C.1). It is also possible to compute the deformed Lagrangian by choosing the
coset representative (C.6). Accordingly, for the metric pieces we obtain

L G
a = −g

2
(1 + κ2)

1
2 γαβ

[
−Gtt∂αt∂βt+Gzz∂αzi∂βzi +G

(1)
a zi∂αzizj∂βzj +

+G
(2)
a (z3∂αz4 − z4∂αz3)(z3∂βz4 − z4∂βz3)

]
, (C.19)

L G
s = −g

2
(1 + κ2)

1
2 γαβ

[
Gφφ∂αφ∂βφ+Gyy∂αyi∂βyi +G

(1)
s yi∂αyiyj∂βyj +

+G
(2)
s (y3∂αy4 − y4∂αy3)(y3∂βy4 − y4∂βy3)

]
. (C.20)

Here the coordinates zi, i = 1, . . . , 4, and t parametrize the deformed AdS space, while
the coordinates yi, i = 1, . . . , 4, and the angle φ parametrize the deformed five-sphere.
The components of the deformed AdS metric in (C.19) are1

Gtt =
(1 + z2/4)2

(1− z2/4)2 − κ2z2
, Gzz =

(1− z2/4)2

(1− z2/4)4 + κ2z2(z2
3 + z2

4)
,

G
(1)
a = κ2GttGzz

z2
3 + z2

4 + (1− z2/4)2

(1− z2/4)2(1 + z2/4)2
, G

(2)
a = κ2Gzz

z2

(1− z2/4)4
.

(C.21)

For the sphere part the corresponding expressions read

Gφφ =
(1− y2/4)2

(1 + y2/4)2 + κ2y2
, Gyy =

(1 + y2/4)2

(1 + y2/4)4 + κ2y2(y2
3 + y2

4)
,

G
(1)
s = κ2GφφGyy

y2
3 + y2

4 − (1 + y2/4)2

(1− y2/4)2(1 + y2/4)2
, G

(2)
s = κ2Gyy

y2

(1 + y2/4)4
.

(C.22)

Obviously, in the limit κ → 0 the components G(i)
a and G(i)

s vanish, and one obtains the
metric of the AdS5×S5, c.f. fomulae (1.145) and (1.146) in [106]. Finally, for the Wess-
Zumino terms the results (up to total derivative terms which do not contribute to the

1Note that the coordinates yi and zi are different from the ones appearing in the quartic Lagrangian (6.24)
because the nondiagonal components of the deformed metric do not vanish.
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action) are

L B
a = 2gκ(1 + κ2)

1
2 εαβ

(z2
3 + z2

4)∂αz1∂βz2

(1− z2/4)4 + κ2z2(z2
3 + z2

4)

L B
s = −2gκ(1 + κ2)

1
2 εαβ

(y2
3 + y2

4)∂αy1∂βy2

(1 + y2/4)4 + κ2y2(y2
3 + y2

4)
.

(C.23)

To find the quartic Lagrangian used for computing the bosonic part of the four-
particle world-sheet scattering matrix, we first expand the Lagrangian (6.21) up to quar-
tic order in ρ, r and their derivatives

La = −g
2

(1 + κ2)
1
2

(
γαβ

[
− ∂αt∂βt(1 + (1 + κ2)ρ2(1 + κ2ρ2)) + ∂αρ∂βρ(1 + (κ2 − 1)ρ2)

+ ∂αψ1∂βψ1ρ
2 cos2 ζ + ∂αψ2∂βψ2ρ

2 sin2 ζ + ∂αζ∂βζρ
2
]
− κεαβρ4 sin 2ζ∂αψ1∂βζ

)
,

Ls = −g
2

(1 + κ2)
1
2

(
γαβ

[
∂αφ∂βφ(1− (1 + κ2)r2(1− κ2r2)) + ∂αr∂βr(1 + (1− κ2)r2)

+ ∂αφ1∂βφ1r
2 cos2 ξ + ∂αφ2∂βφ2r

2 sin2 ξ + ∂αξ∂βξr
2
]

+ κεαβr4 sin 2ξ∂αφ1∂βξ
)
.

(C.24)
Further, we make a shift

ρ→ ρ− κ2

4
ρ3 , r → r +

κ2

4
r3 (C.25)

so that the quartic action acquires the form

La = −g
2

(1 + κ2)
1
2 γαβ × (C.26)[

− ∂αt∂βt
(

1 + (1 + κ2)ρ2 + 1
2κ

2(1 + κ2)ρ4
)

+ ∂αρ∂βρ
(

1− ρ2 − κ2

2 ρ
4
)

+

+
(
ρ2 − κ2

2 ρ
4
)(
∂αψ1∂βψ1 cos2 ζ + ∂αψ2∂βψ2 sin2 ζ + ∂αζ∂βζ

)]
+
g

2
κ(1 + κ2)

1
2 εαβρ4 sin 2ζ∂αψ1∂βζ ,

Ls = −g
2

(1 + κ2)
1
2 γαβ × (C.27)[

∂αφ∂βφ
(

1− (1 + κ2)r2 + 1
2κ

2(1 + κ2)r4
)

+ ∂αr∂βr
(

1 + r2 + κ2

2 r
4
)

+

+
(
r2 + κ2

2 r
4
)(
∂αφ1∂βφ1 cos2 ξ + ∂αφ2∂βφ2 sin2 ξ + ∂αξ∂βξ

)]
−g

2
κ(1 + κ2)

1
2 εαβr4 sin 2ξ∂αφ1∂βξ .

Changing the spherical coordinates to (zi, yi) and expanding the resulting action up to
the quartic order in z and y fields we get the quartic Lagrangian (6.24). Notice that
the shifts of ρ and r in (C.25) were chosen so that the deformed metric expanded up to
quadratic order in the fields would be diagonal.
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C.2 The psu(2|2)q-invariant S-matrix

The S-matrix compatible with psu(2|2)q symmetry [87] has been studied in detail in [90,
92, 93, 91]. In this Appendix we recall its explicit form following the same notation as
in [92].

Let Eij ≡ Eji stand for the standard matrix unities, i, j = 1, . . . , 4. We introduce the
following definition

Ekilj = (−1)ε(l)ε(k)Eki ⊗ Elj , (C.28)

where ε(i) denotes the parity of the index, equal to 0 for i = 1, 2 (bosons) and to 1 for
i = 3, 4 (fermions). The matrices Ekilj are convenient to write down invariants with
respect to the action of copies of suq(2) ⊂ psuq(2|2). If we introduce

Λ1 = E1111 +
q

2
E1122 +

1

2
(2− q2)E1221 +

1

2
E2112 +

q

2
E2211 + E2222 ,

Λ2 =
1

2
E1122 −

q

2
E1221 −

1

2q
E2112 +

1

2
E2211 ,

Λ3 = E3333 +
q

2
E3344 +

1

2
(2− q2)E3443 +

1

2
E4334 +

q

2
E4433 + E4444 ,

Λ4 =
1

2
E3344 −

q

2
E3443 −

1

2q
E4334 +

1

2
E4433 ,

Λ5 = E1133 + E1144 + E2233 + E2244 , (C.29)
Λ6 = E3311 + E3322 + E4411 + E4422 ,

Λ7 = E1324 − qE1423 −
1

q
E2314 + E2413 ,

Λ8 = E3142 − qE3214 −
1

q
E4132 + E4231 ,

Λ9 = E1331 + E1441 + E2332 + E2442 ,

Λ10 = E3113 + E3223 + E4114 + E4224 ,

the S-matrix of the q-deformed model is given by

S12(p1, p2) =

10∑
k=1

ak(p1, p2)Λk , (C.30)
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where the coefficients are

a1 = 1 ,

a2 = −q +
2

q

x−1 (1− x−2 x
+
1 )(x+

1 − x
+
2 )

x+
1 (1− x−1 x

−
2 )(x−1 − x

+
2 )

a3 =
U2V2

U1V1

x+
1 − x

−
2

x−1 − x
+
2

a4 = −qU2V2

U1V1

x+
1 − x

−
2

x−1 − x
+
2

+
2

q

U2V2

U1V1

x−2 (x+
1 − x

+
2 )(1− x−1 x

+
2 )

x+
2 (x−1 − x

+
2 )(1− x−1 x

−
2 )

a5 =
x+

1 − x
+
2√

q U1V1(x−1 − x
+
2 )

a6 =

√
q U2V2(x−1 − x

−
2 )

x−1 − x
+
2

(C.31)

a7 =
ig

2

(x+
1 − x

−
1 )(x+

1 − x
+
2 )(x+

2 − x
−
2 )

√
q U1V1(x−1 − x

+
2 )(1− x−1 x

−
2 )γ1γ2

a8 =
2i

g

U2V2 x
−
1 x
−
2 (x+

1 − x
+
2 )γ1γ2

q
3
2x+

1 x
+
2 (x−1 − x

+
2 )(x−1 x

−
2 − 1)

a9 =
(x−1 − x

+
1 )γ2

(x−1 − x
+
2 )γ1

a10 =
U2V2(x−2 − x

+
2 )γ1

U1V1(x−1 − x
+
2 )γ2

.

Here the basic variables x± parametrizing a fundamental representation of the centrally
extended superalgebra psuq(2|2) satisfy the following constraint [87]

1

q

(
x+ +

1

x+

)
− q

(
x− +

1

x−

)
=

(
q − 1

q

)(
ξ +

1

ξ

)
, (C.32)

where the parameter ξ is related the coupling constant g as

ξ = − i
2

g(q − q−1)√
1− g2

4 (q − q−1)2

. (C.33)

The (squares of) central charges are given by

U2
i =

1

q

x+
i + ξ

x−i + ξ
= eipi , V 2

i = q
x+
i

x−i

x−i + ξ

x+
i + ξ

, (C.34)

and the parameters γi are

γi = q
1
4

√
ig

2
(x−i − x

+
i )UiVi . (C.35)

The q-deformed dispersion relation E takes the form(
1− g2

4
(q − q−1)2

)(
qE/2 − q−E/2

q − 1/q

)2

− g2 sin2 p

2
=

(
q1/2 − q−1/2

q − 1/q

)2

. (C.36)
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Finally, we point out that in the q-deformed dressing phase the variable u appears which
is given by

u(x) =
1

υ
log

[
−
x+ 1

x + ξ + 1
ξ

ξ − 1
ξ

]
. (C.37)

The log of the q-deformed Gamma function admits an integral representation valid
in the strip −1 < Re(x) < k (with k > 1) [90]

log Γq2(1 + x) =
iπx(x− 1)

2k

+

∫ ∞
0

dt

t

e−tx − e(x−k+1)t − x(e−t − 1)(1 + e(2−k)t) + e(1−k)t − 1

(et − 1)(1− e−kt)
,

(C.38)
where q = eiπ/k. Seding k →∞ one recovers the integral representation for the conven-
tional Gamma function.

Writing k = −iπg/ν, keeping ν and x fixed and sending g → ∞, we find that at
leading order

log
Γq2(1 + gx)

Γq2(1− gx)
≈ g

(
− 2x+ 2x log(g) + x

(
log(−x) + log(x)

))
(C.39)

+ g
2π

iν

(
ψ(−2)(1− iνx

π
)− ψ(−2)(1 +

iνx

π
)
)
,

where ψ(−2) (z) is given by

ψ(−2) (z) =

∫ z

0

dt logΓ (t) . (C.40)

A derivation of this formula may be found in Appendix C of [3]

C.3 Clifford algebra and psu(2, 2|4)

Our preferred basis of 4× 4 gamma-matrices is2

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

γ1 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 , γ2 =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 ,

γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ4 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 .

(C.41)
2Here it was useful to exchange the definition of γ1, γ4 from the one of [106].
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Matrices for AdS5 and S5 in terms of the above gamma-matrices have been defined
in (7.5). When we need to write explicitly the matrix indices we use underlined Greek
letters for AdS5 (γ̌m)α

ν , and underlined Latin letters for S5 (γ̂m)a
b. It is useful to consider

the matrices

Σ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , K =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , C =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,

(C.42)
that are defined with upper indices Σab,Kab, Cab. Their inverse matrices are then de-
fined with lower indices. They transform the gamma matrices in the following way

γtm = KγmK
−1, (C.43)

γtm = −CγmC−1, m = 1, ..., 4, γt0 = Cγ0C
−1,

γ†m = −ΣγmΣ−1, m = 1, ..., 4, γ†0 = Σγ0Σ−1.
(C.44)

The matrix K—and not C—is the charge conjugation matrix for our Clifford algebra.
We choose to follow the same notation of [106]. From the last equation one then has
γ̌†m = −Σγ̌mΣ−1, m = 0, ..., 4. For raising and lowering spinor indices we follow the
conventions of [171]

λα = Kαβλβ , λα = λβKβα, (C.45)

whereKαβ are the components of the matrixK, that plays the role of charge conjugation
matrix for the Clifford algebra. We also have

KαβKγβ = δαγ , KβαK
βγ = δγα, χαλα = −χαλα. (C.46)

The five-dimensional gamma matrices satisfy the symmetry properties

(Kγ(r))t = −tγr Kγ(r) ,

K(γ(r))tK = −tγr γ(r) , tγ0 = tγ1 = +1, tγ2 = tγ3 = −1 .
(C.47)

Here γ(r) denotes the antisymmetrised product of r gamma matrices and the coefficients
tγr are the same for AdS and the sphere—we label them with γ to distinguish them from
the coefficients of ten-dimensional Gamma matrices. For the rules concerning Hermitian
conjugation we find

γ̌†m = +γ̌0γ̌mγ̌
0 , γ̂†m = +γ̂m ,

γ̌†mn = +γ̌0γ̌mnγ̌
0 , γ̂†mn = −γ̂mn ,

(C.48)

With these ruels we find useful formulas to take the bar of some expressions

((γ̌m ⊗ 14)θI)
†(γ̌0 ⊗ 14) = −θ̄I(γ̌m ⊗ 14),

((14 ⊗ γ̂m)θI)
†(γ̌0 ⊗ 14) = +θ̄I(14 ⊗ γ̂m),

(C.49)

((γ̌mn ⊗ 14)θI)
†(γ̌0 ⊗ 14) = −θ̄I(γ̌mn ⊗ 14),

((14 ⊗ γ̂mn)θI)
†(γ̌0 ⊗ 14) = −θ̄I(14 ⊗ γ̂mn),

(C.50)
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Thanks to (C.47) one can also show that given two Grassmann bi-spinors ψαa, χαa the
“Majorana-flip” relations are

χ̄
(
γ̌(r) ⊗ γ̂(s)

)
ψ = −tγr tγs ψ̄

(
γ̌(r) ⊗ γ̂(s)

)
χ. (C.51)

Knowing this, it is easy to prove

sIJ θ̄I

(
γ̌(r) ⊗ γ̂(s)

)
θJ = 0 if

{
sIJ = +sJI and tγr t

γ
s = +1

sIJ = −sJI and tγr t
γ
s = −1

. (C.52)

To conclude we also have

ψ̄Dλ = λ̄Dψ, ψ̄ID
IJλJ = λ̄JD

JIψI . (C.53)

up to a total derivative.

Before multiplying the generators by the fermions θ, the commutators between odd
and even elements with explicit spinor indices read as

[QI αa, P̌m] = − i
2
εIJ QJ νa (γ̌m)ν

α
, [QI αa, P̂m] =

1

2
εIJ QJ αb (γ̂m)b

a
,

[QI αa, J̌mn] = −1

2
δIJ QJ νa (γ̌mn)ν

α
, [QI αa, Ĵmn] = −1

2
δIJ QJ αb (γ̂mn)b

a
,

(C.54)
The anti-commutator of two supercharges gives

{QI αa,QJ νb} =δIJ
(
iKαλKab (γ̌m)λ

ν
P̌m − Kαν Kac(γ̂m)c

b
P̂m −

i

2
KανKab18

)
−1

2
εIJ
(
KαλKab (γ̌mn)λ

ν
J̌mn − Kαν Kac(γ̂mn)c

b
Ĵmn

)
,

(C.55)
where the indicesm,n are raised with the metric ηmn. For completeness we have written
also the term proportional to the identity, since the supermatrices are a realisation of
su(2, 2|4). To obtain psu(2, 2|4) one just needs to drop the term proportional to i18 in
the r.h.s. of the anti-commutator. Similarly, the supertrace of the product of two odd
elements read as

Str[QI αaQJ νb] = −2εIJKανKab (C.56)

Remembering that the spinor indices are raised and lowered with the matrix K, the last
equation can be written also as Str[QI αaQ

J
νb] = −2εIJδ

α
ν δ

a
b .
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C.4 Action ofRgb
on bosonic elements

The coefficients λ introduced in Eq. (7.46)—corresponding to the action of the operator
Rgb

on bosonic generators—are explicitly

λ 4
0 = λ 0

4 = ρ, λ 3
2 = −λ 2

3 = −ρ2 sin ζ, λ 9
5 = −λ 5

9 = r, λ 8
7 = −λ 7

8 = r2 sin ξ,
(C.57)

λ01
1 = λ02

2 = λ03
3 = λ04

4 =
√

1 + ρ2, λ56
6 = λ57

7 = λ58
8 = λ59

9 = −
√

1− r2,

λ12
1 = −λ23

3 = −ρ cos ζ, λ67
6 = −λ78

8 = r cos ξ,

λ34
2 = −λ24

3 = −ρ
√

1 + ρ2 sin ζ, λ89
7 = −λ79

8 = r
√

1− r2 sin ξ,

(C.58)

λ1
01 = λ2

02 = λ3
03 = λ4

04 = −
√

1 + ρ2, λ6
56 = λ7

57 = λ8
58 = λ9

59 =
√

1− r2,

λ1
12 = −λ3

23 = −ρ cos ζ, λ6
67 = −λ8

78 = −r cos ξ,

λ3
24 = −λ2

34 = ρ
√

1 + ρ2 sin ζ, λ8
79 = −λ7

89 = r
√

1− r2 sin ξ,

(C.59)

λ14
01 = λ24

02 = λ34
03 = λ01

14 = λ02
24 = λ03

34 = −ρ, λ13
12 = −λ12

13 = sin ζ,

λ14
12 = −λ12

14 = −λ34
23 = λ23

34 = −
√

1 + ρ2 cos ζ, λ34
24 = −λ24

34 = (1 + ρ2) sin ζ
(C.60)

λ69
56 = λ79

57 = λ89
58 = −λ56

69 = −λ57
79 = −λ58

89 = −r, λ68
67 = −λ67

68 = sin ξ,

λ69
67 = −λ67

69 = −λ89
78 = λ78

89 = −
√

1− r2 cos ξ, λ89
79 = −λ79

89 = (1− r2) sin ξ
(C.61)

They satisfy the properties

λm
n = − ηmm′ηnn

′
λn′

m′ , λ̌npm = ηmm′η
nn′ηpp

′
λ̌m
′

n′p′ , λ̂npm = − ηmm′ηnn
′
ηpp
′
λ̂m
′

n′p′ ,
(C.62)

that are used to simplify some terms in the Lagrangian.

C.5 The contribution {101} to the fermionic Lagrangian

In this Appendix we show how to write L{101} in the form presented in (7.76). It is easy
to see that the insertion of Oinv

(0) between two odd currents does not change the fact that
the expression is anti-symmetric in α, β and we have

L{101} = − g̃
2
εαβ

(
−σIK1 +

κ
1 +
√

1 + κ2
δIK

)
(DIJ

α θJ)†γ0DKL
β θL. (C.63)

The above contribution contains terms quadratic in ∂θ, a feature that does no match
with the generic type IIB action (2.21). These terms remain even when sending the
deformation parameter to 0. This is not a problem since these terms are of the form
εαβsIK∂αθ̄I∂βθK , where sIK is a generic tensor symmetric in the two indices. Although
not vanishing, they can be rewritten and traded for a total derivative εαβsIK∂αθ̄I∂βθK =
∂α(εαβsIK θ̄I∂βθK), using εαβ∂α∂β = 0. The unwanted terms then do not contribute to
the action. First we note that

(DIJ
α θJ)†γ0 = δIJ

(
∂αθ̄J +

1

4
θ̄Jω

mn
α γmn

)
+
i

2
εIJ θ̄Je

m
α γm, (C.64)
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and using this we show that the contribution to the Lagrangian is

L{101} = − g̃
2
εαβ

(
σIK1 − κ

1 +
√

1 + κ2
δIK

)
θ̄JD

JI
α DKL

β θL

+ ∂α

(
g̃

2
εαβ

(
σIK1 − κ

1 +
√

1 + κ2
δIK

)
θ̄JD

KL
β θL

)
.

(C.65)

The last term is the total derivative that we discard. The result is only naı̈vely quadratic
in DIJ . To show it we divide the computation into three terms

εαβsIK θ̄LD
LK
α DIJ

β θJ = WZ1 + WZ2 + WZ3 (C.66)

where the object sIK is introduced to keep the computation as general as possible. We
will only assume that it is symmetric in the indices IK. For each of the terms we then
get

WZ1 ≡ εαβsIK θ̄LDLKα DIJβ θJ

= −1

4
εαβsJLθ̄Le

m
α e

n
βγmγnθJ ,

WZ2 ≡
i

2
εαβsIK θ̄L

(
εIJDLKα (enβγnθJ) + εLKemα γmDIJβ θJ

)
= +iεαβsIKεJI θ̄Je

m
α γmDKLβ θL,

WZ3 ≡ −
1

4
εαβsIKεLKεIJemα e

n
β θ̄LγmγnθJ ,

(C.67)

where we used (7.40),(7.41) and the fact that the covariant derivative D on the vielbein
is zero

εαβDIJα (emβ γmθ) = εαβemβ γmDIJα θ. (C.68)

The final result for the deformed case is

L{101} = − g̃
2
εαβ θ̄L i e

m
α γm

(
σLK3 DKJ

β θJ −
κ

1 +
√

1 + κ2
εLKDKJβ θJ

)
= − g̃

2
εαβ θ̄I

(
σIJ3 −

κ
1 +
√

1 + κ2
εIJ
)
i emα γmDβθJ +

g̃

4
εαβ θ̄Iσ

IJ
1 emα γme

n
βγnθJ .

(C.69)
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C.6 Total Lagrangian and field redefinitions

For convenience, in this appendix we write down explicitly the Lagrangian that is ob-
tained after the field redefinitions (7.81) and (7.85) have been done. The bosonic-dependent
rotation of the fermions (7.91) has not been implemented yet. The total Lagrangian can
be written as the sum of the contribution with the worldsheet metric γαβ and the contri-
bution with εαβ : Lγ + Lε. The first of these results is

Lγ =
g̃

2
γαβ θ̄I

[
− i

2
δIJγn −

i

2
κσIJ3 λn

pγp

]
(knm + km

n)emα ∂βθJ

− g̃γαβ
(
−∂αXM θ̄I G̃MN

(
∂βf

N
IJ

)
θJ −

1

2
∂αX

M∂βX
N∂P G̃MN θ̄I f

P
IJθJ

)
+
g̃

4
γαβ(kpq + kq

p)eqα θ̄I

[
i

4
δIJγpω

rs
β γrs

+
1

8

(
−κσIJ1 − (−1 +

√
1 + κ2)δIJ

)
λmnp γmn ω

rs
β γrs

− 1

2

(
(−1− 2κ2 +

√
1 + κ2)δIJ − κ(−1 + 2

√
1 + κ2)σIJ1

)
λp
nγne

r
βγr

+
i

4
(κσIJ3 − (−1 +

√
1 + κ2)εIJ) λp

nγn
(
ωrsβ γrs

)
+

1

2
(κσIJ3 +

√
1 + κ2εIJ)γpe

r
βγr

− i

4

(
κσIJ3 + (−1 +

√
1 + κ2)εIJ

)
λmnp γmne

r
βγr

]
θJ

+
g̃

8
γαβκevαemβ kuvkm

n θ̄I[
2(
√

1 + κ2δIJ + κσIJ1 )

(
γu

(
γn +

i

4
λpqn γpq

)
− i

4
λpqu γpqγn

)
+ εIJ

(
γuλn

pγp − λu
pγpγn

)
+
(
−(−1 +

√
1 + κ2)δIJ − κσKI1

)(
γu −

i

2
γpqλ

pq
u

)(
γn +

i

2
λrsn γrs

)
+
(

(1 + 2κ2 −
√

1 + κ2)δIJ − κ(1− 2
√

1 + κ2)σIJ1

)
λu

pγpλn
rγr

)
+
(
κσIJ3 − (−1 +

√
1 + κ2)εIJ

)
λu

pγp

(
γn +

i

2
λrsn γrs

)
+
(
κσIJ3 + (−1 +

√
1 + κ2)εIJ

)(
γu −

i

2
γpqλ

pq
u

)
λn

rγr

]
θJ .

(C.70)
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The WZ contribution reads as

Lε =− g̃

2
εαβ θ̄Iσ

IJ
3 i emα γm∂βθJ

− g̃

2
εαβ θ̄I

[
− i

2
δIJγn −

i

2
κσIJ3 λn

pγp

]
(knm − kmn)emα ∂βθJ

− g̃εαβ
(

+∂αX
M θ̄I B̃MN

(
∂βf

N
IJ

)
θJ +

1

2
∂αX

M∂βX
N∂P B̃MN θ̄I f

P
IJθJ

)
− g̃

4
εαβ θ̄I

−1 +
√

1 + κ2

κ
εIJ∂αX

M (∂βe
m
M ) iγmθJ

− g̃

8
εαβ θ̄I

(
−σIJ3 +

κ
1 +
√

1 + κ2
εIJ
)
i emα γmω

np
β γnpθJ

+
g̃

4
εαβ θ̄I

(
κδIJ +

√
1 + κ2σIJ1

)
emα γme

n
βγnθJ

− g̃

4
εαβ(kpq − kq

p)eqα θ̄I

[
i

4
δIJγpω

rs
β γrs

+
1

8

(
−κσIJ1 − (−1 +

√
1 + κ2)δIJ

)
λmnp γmn ω

rs
β γrs

− 1

2

(
(−1− 2κ2 +

√
1 + κ2)δIJ − κ(−1 + 2

√
1 + κ2)σIJ1

)
λp
nγne

r
βγr

+
i

4
(κσIJ3 − (−1 +

√
1 + κ2)εIJ) λp

nγn
(
ωrsβ γrs

)
+

1

2
(κσIJ3 +

√
1 + κ2εIJ)γpe

r
βγr

− i

4

(
κσIJ3 + (−1 +

√
1 + κ2)εIJ

)
λmnp γmne

r
βγr

]
θJ

− g̃

8
εαβκevαemβ kuvkm

n θ̄I[
2(
√

1 + κ2δIJ + κσIJ1 )

(
γu

(
γn +

i

4
λpqn γpq

)
− i

4
λpqu γpqγn

)
+ εIJ

(
γuλn

pγp − λu
pγpγn

)
+
(
−(−1 +

√
1 + κ2)δIJ − κσKI1

)(
γu −

i

2
γpqλ

pq
u

)(
γn +

i

2
λrsn γrs

)
+
(

(1 + 2κ2 −
√

1 + κ2)δIJ − κ(1− 2
√

1 + κ2)σIJ1

)
λu

pγpλn
rγr

)
+
(
κσIJ3 − (−1 +

√
1 + κ2)εIJ

)
λu

pγp

(
γn +

i

2
λrsn γrs

)
+
(
κσIJ3 + (−1 +

√
1 + κ2)εIJ

)(
γu −

i

2
γpqλ

pq
u

)
λn

rγr

]
θJ

(C.71)

The function fMIJ (X) is defined in (7.87).
To implement the bosonic-dependent redefinition on the fermions (7.91), we find
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more efficient to use (7.101) and write its action on the gamma matrices γ. We have
for example the rule

θ̄Kb
mγmθI → θ̄KŪ(K)b

mγmU(I)θI = θ̄Kb
m(Λ(K))

n
mγnŪ(K)U(I)θI , (C.72)

where we have inserted for convenience the identity U(K)Ū(K) = 1. To give a couple of
examples, it means

θ̄1b
mγmθ1 → θ̄1b

m(Λ1)m
n
γnθ1

θ̄2b
mγmθ1 → θ̄2b

m(Λ2)m
n
γnŪ(2)U(1)θ1

(C.73)

The terms with derivatives on fermions become (here I is kept fixed)

θ̄Ib
mγm∂βθI → θ̄Ib

m(Λ(I))m
n
γn∂βθI + θ̄Ib

m(Λ(I))m
n
γn(Ū(I)∂βU(I))θI . (C.74)

The second of these terms will contribute to the coupling to the spin connection and the
B-field.

To compute these quantities it is useful to know the action of the derivative on the
matrix U(I)

Ūa
(I)dU

a
(I) = σ3II

κ
2

(
ρ(2 sin ζdρ+ ρdζ cos ζ)

1 + κ2ρ4 sin2 ζ
γ̌23 +

dρ

1− κ2ρ2
γ̌04

)
,

Ūs
(I)dU

s
(I) = σ3II

κ
2

(
−r(2 sin ξdr + rdξ cos ξ)

1 + κ2r4 sin2 ξ
γ̂78 −

dr

1 + κ2r2
γ̂59

)
,

(C.75)

and also the results for the multiplication of matrices U(I)

Ūa
(I)U

a
(J) = δIJ14 +

σ1IJ(14 − iκ2ρ3 sin ζ γ̌1)− εIJκ(ρ2 sin ζ γ̌23 + ρ γ̌04)√
1− κ2ρ2

√
1 + κ2ρ4 sin2 ζ

,

Ūs
(I)U

s
(J) = δIJ14 +

σ1IJ(14 − κ2r3 sin ξ γ̂6) + εIJκ(r2 sin ξ γ̂78 + r γ̂59)
√

1 + κ2r2
√

1 + κ2r4 sin2 ξ
.

(C.76)

As a comment, sometimes it is useful to use redefined coordinates ρ′, ζ ′, r′, ξ′ given by

ρ = κ−1 sin ρ′, sin ζ = κ
sinh ζ ′

sin2 ρ′
, r = κ−1 sinh r′, sin ξ = κ

sinh ξ′

sinh2 r′
, (C.77)

that help to simplify some expressions.

C.7 Standard kappa-symmetry

In this Appendix we compute explicitly the variation for bosonic and fermionic fields
in the deformed model. We show that using (7.122) their variation is not the standard
one (2.26). However, after implementing the field redefinitions of Section 7.4.3—needed
to set the terms with derivatives on fermions in the canonical form—they do become
standard. We actually prefer to impose the equation

O−1(g−1δκg) = % , (C.78)
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coming from (7.122), where we also used ε ≡ g−1δκg. The reason is that the computation
is then formally the same as the one done in Section 7.3 to derive the results needed to
compute the deformed Lagrangian. We just need to do the substitution ∂α → −δκ. Let
us express the result as a linear combination of generators Pm and QI

O−1(g−1δκg) = jmδκPm + QIjδκ,I + jmnδκ Jmn . (C.79)

The contributions of the generators Jmn will not be important for the discussion. The
coefficients jmδκ , jδκ,I are the quantities that we need to compute explicitly to discover the
form of the action of the kappa-symmetry variation on the fields. Because %—standing
in the right hand side of (C.78)—belongs to the odd part of the algebra % = QIψI , it
means that we get the equations

jmδκ = 0, jδκ,I = ψI . (C.80)

We may expand the above equations in powers of θ. We actually stop at leading order
in the expansion, meaning that we will compute

jmδκ ∼
[
# +O(θ2)

]
δκX +

[
#θ +O(θ3)

]
δκθ,

jδκ,I ∼
[
# +O(θ2)

]
δκθ, ψ ∼

[
# +O(θ2)

]
κ,

(C.81)

where # stands for functions of the bosons, in such a way that upon solving the equa-
tions we get δκX ∼ #θκ and δκθ ∼ #κ.

Let us start computing jmδκ . Because of the deformation, the term inside parenthesis
proportional to QI contributes

jmδκPm = −P (2) ◦ 1

1− ηRg ◦ d

[(
δκX

MemM +
i

2
θ̄Iγ

mδκθI + · · ·
)

Pm −QIδκθI + · · ·
]

= −δκXMemMkm
q Pq

− 1

2
θ̄I

[
δIJ iγp + (−κσIJ1 + (−1 +

√
1 + κ2)δIJ)

(
iγp +

1

2
λmnp γmn

)

+ i (κσIJ3 − (−1 +
√

1 + κ2)εIJ)λp
nγn

]
δκθJ k

pq Pq + · · ·

(C.82)
Imposing the equation jmδκ = 0 and solving for δκXM at leading order we get

δκX
M = −1

2
θ̄Ie

Mp

[
δIJ iγp + (−κσIJ1 + (−1 +

√
1 + κ2)δIJ)

(
iγp +

1

2
λmnp γmn

)

+ i (κσIJ3 − (−1 +
√

1 + κ2)εIJ)λp
nγn

]
δκθJ + · · · .

(C.83)
The computation for jδκ,I gives simply

QIjδκ,I = (P (1) + P (3)) ◦ 1

1− ηRg ◦ d
[
QIδκθI + · · ·

]
=

1

2

(
(1 +

√
1 + κ2) δIJ − κσIJ1

)
QJδκθI + · · · .

(C.84)
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When we compute the two projections of % as defined in (7.123) at leading order we can
set θ = 0. Then we just have

P (2) ◦ O−1Aβ = P (2) ◦ O−1
(
emβ Pm + · · ·

)
= eβmk

mnPn,

P (2) ◦ Õ−1Aβ = P (2) ◦ Õ−1
(
emβ Pm + · · ·

)
= eβmk

nmPn,
(C.85)

where the second result can be obtained from the first one sending κ → −κ. Explicitly

%(1) =
1

2
(γαβ − εαβ)eβmk

mn
(
Q1Pn + PnQ1

)
κα1,

%(3) =
1

2
(γαβ + εαβ)eβmk

nm
(
Q2Pn + PnQ2

)
κα2,

(C.86)

A direct computation shows that

QIP̌m + P̌mQI = −1

2
QI γ̌m, QIP̂m + P̂mQI = +

1

2
QI γ̂m. (C.87)

We get

%(1) = Q1ψ1, ψ1 =
1

4
(γαβ − εαβ) (−eβmkmnγ̌n + eβmk

mnγ̂n)κα1,

%(3) = Q2ψ2, ψ2 =
1

4
(γαβ + εαβ) (−eβmknmγ̌n + eβmk

nmγ̂n)κα2,

(C.88)

and to conclude we can solve the equation jδκ,I = ψI setting

δκθI =
1

1 +
√

1 + κ2

(
(1 +

√
1 + κ2)δIJ + κσIJ1

)
ψJ . (C.89)

Setting κ = 0 the formulas are simplified to

δκX
M = − i

2
θ̄Iδ

IJeMpγpδκθJ + · · · ,

δκθI = ψI ,

ψ1 =
1

4
(γαβ − εαβ)

(
−emβ γ̌m + emβ γ̂m

)
κα1,

ψ2 =
1

4
(γαβ + εαβ)

(
−emβ γ̌m + emβ γ̂m

)
κα2,

(C.90)

showing that the kappa-symmetry variation is then the standard one that we expect. The
results for the kappa-variations have to be modified according to the field redefinitions
needed to put the lagrangian in canonical form. When we rotate the fermions we get
that their variation is modified as

θI → UIJθJ =⇒ δκθI → UIJδκθJ + δκUIJθJ , (C.91)

and since we are considering δκθ at leading order, in the following we will drop the term
containing δκUIJ . We first redefine our fermions as

θI →
√

1 +
√

1 + κ2

√
2

(
δIJ +

κ
1 +
√

1 + κ2
σIJ1

)
θJ . (C.92)
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and we get

δκX
M = −1

2
θ̄Ie

Mp

[
δIJ iγp − (κσIJ1 + (−1 +

√
1 + κ2)δIJ)

1

2
λmnp γmn

+ i (κσIJ3 − (−1 +
√

1 + κ2)εIJ)λp
nγn

]
δκθJ + · · · ,

δκθI =

√
2

1 +
√

1 + κ2
ψI

(C.93)

When we shift the bosons asXM → XM+θ̄If
M
IJ θJ their variation is modified to δκXM →

δκX
M + 2θ̄If

M
IJ δκθJ + θ̄Iδκf

M
IJ θJ . Once again, since we are considering the variation at

leading order we drop the term with δκf
M
IJ . We use the definition of the function fMIJ

given in (7.87) and we conclude that, after the shift of the bosons, their variation is

δκX
M = −2θ̄If

M
IJ δκθJ −

1

2
θ̄Ie

Mp

[
δIJ iγp − (κσIJ1 + (−1 +

√
1 + κ2)δIJ)

1

2
λmnp γmn

+ i (κσIJ3 − (−1 +
√

1 + κ2)εIJ)λp
nγn

]
δκθJ + · · ·

= − i
2
θ̄Ie

Mm
(
δIJγm + κσIJ3 λm

nγn
)
δκθJ + · · · .

(C.94)
The shift does not affect δκθI at leading order. The final result is obtained by implement-
ing the bosonic-dependent rotation of the fermions (7.91)

δκX
M = − i

2
θ̄I Ū(I) e

Mm
(
δIJγm + κσIJ3 λm

nγn
)
U(I)δκθJ + · · ·

= − i
2
θ̄Iδ

IJ ẽMmγmδκθJ + · · · ,

δκθ1 =

√
2

1 +
√

1 + κ2

(
1

4
(γαβ − εαβ)Ū(1) (−ěβmkmnγ̌n + êβmk

mnγ̂n)κα1

)

δκθ2 =

√
2

1 +
√

1 + κ2

(
1

4
(γαβ + εαβ)Ū(2) (−ěβmknmγ̌n + êβmk

nmγ̂n)κα2

)
(C.95)

The variation of the bosons already appears to be related to the one of the fermions in
the standard way. It has actually the same form as in the undeformed case, where one
just puts a tilde to get the deformed quantities. We can achieve the same also for the
variation of the fermions if we use the fact that for both expressions√

2

1 +
√

1 + κ2
Ū(1) (−ěβmkmnγ̌n + êβmk

mnγ̂n)κα1 =
(
−ẽmβ γ̌m + ẽmβ γ̂m

)
κ̃α1√

2

1 +
√

1 + κ2
Ū(2) (−ěβmknmγ̌n + êβmk

nmγ̂n)κα2 =
(
−ẽmβ γ̌m + ẽmβ γ̂m

)
κ̃α2

(C.96)
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where we have inserted the identity 1 = U(I)Ū(I) and defined

κ̃αI ≡

√
2

1 +
√

1 + κ2
Ū(I)καI . (C.97)

To summarise we have

δκX
M = − i

2
θ̄Iδ

IJ ẽMmγmδκθJ + · · · ,

δκθI = ψ̃I ,

ψ̃1 =
1

4
(γαβ − εαβ)

(
−ẽmβ γ̌m + ẽmβ γ̂m

)
κ̃α1,

ψ̃2 =
1

4
(γαβ + εαβ)

(
−ẽmβ γ̌m + ẽmβ γ̂m

)
κ̃α2.

(C.98)

Also in the deformed case the kappa-symmetry variations can be written in the stan-
dard way. We can rewrite the kappa-symmetry variations in terms of 32-dimensional
fermions Θ. To do it we need to introduce 32-dimensional spinors K̃ that have the op-
posite chirality of Θ

K̃ ≡
(

0
1

)
⊗ κ̃. (C.99)

The variations written above are then written as

δκX
M = − i

2
Θ̄Iδ

IJ ẽMmΓmδκΘJ + · · · ,

δκΘI = −1

4
(δIJγαβ − σIJ3 εαβ)ẽmβ ΓmK̃αJ .

(C.100)

Ten-dimensional Gamma-matrices are defined in Appendix C.8. Let us now look at
the kappa-variation of the worldsheet metric, whose expression is given in (7.127). The
kappa-variation starts at first order in power of fermions. Then we have to compute

P (1) ◦ Õ−1(Aβ+) = P (1) ◦ Õinv
(0)(−QI DβIJ

+ θJ) + P (1) ◦ Õinv
(1)(e

mβ
+ Pm) +O(θ3) ,

P (3) ◦ O−1(Aβ−) = P (3) ◦ Oinv
(0)(−QI DβIJ

− θJ) + P (3) ◦ Oinv
(1)(e

mβ
− Pm) +O(θ3) .

(C.101)

Let us start from the last line. We have

P (3) ◦ Oinv
(0)(−QI DβIJ

− θJ) = −
(

1

2
(1 +

√
1 + κ2) δI2 − κ

2
σ1
I2

)
Q2DβIJ

− θJ

P (3) ◦ Oinv
(1)(e

mβ
− Pm) = −κ

4
Q2 emβ− km

n

[(
(1 +

√
1 + κ2)δ2J − κσ2J

1

)(
iγn −

1

2
λpqn γpq

)

+ i
(

(1 +
√

1 + κ2)ε2J + κσ2J
3

)
λn

pγp

]
θJ .

(C.102)
For the first line we can use that Õinv

(0) and Oinv
(0) coincide on odd elements, while on even

elements their action is equivalent to sending κ → −κ, and we can write

Õinv
(0)(Q

I) = Oinv
(0)(Q

I) , Õinv
(0)(Pm) = knmPn + #J , (C.103)
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where knm = ηnn
′
ηmm′k

m′

n′ . On the other hand, the action of Õ(1) on even elements is
minus the one of O(1)

Õ(1)(Pm) = −O(1)(Pm) . (C.104)

These considerations need to be taken into account when computing the action of Õinv
(1)

on Pm. Then we find

P (1) ◦ Õinv
(0)(−QI DβIJ

+ θJ) = −
(

1

2
(1 +

√
1 + κ2) δI1 − κ

2
σ1
I1

)
Q1DβIJ

+ θJ

P (1) ◦ Õinv
(1)(e

mβ
+ Pm) = +

κ
4

Q1 emβ+ knm
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√
1 + κ2)δ1J − κσ1J

1

)(
iγn −

1

2
λpqn γpq

)

+ i
(

(1 +
√

1 + κ2)ε1J + κσ1J
3

)
λn

pγp

]
θJ .

(C.105)
When computing the commutators in (7.127), we should care only about the contribution
proportional to the identity operator, as the others yield a vanishing contribution after
we multiply by Υ and take the supertrace.

We write the result for the variation of the worldsheet metric, after the redefini-
tion (7.81) has been done

δκγ
αβ =

2i
√

2√
1 +
√

1 + κ2

[
κ̄α1+

(
δ1J∂β+ −

1

4
δ1Jωβmn+ γmn +

i

2
(
√

1 + κ2ε1J + κσ1J
3 )emβ+ γm

− κ
2
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(
δ1J

(
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1

2
λpqn γpq

)
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(√

1 + κ2ε1J + κσ1J
3
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λn

pγp
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+ κ̄α2−

(
δ2J∂β− −

1

4
δ2Jωβmn− γmn +
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2
(
√

1 + κ2ε2J + κσ2J
3 )emβ− γm

+
κ
2
emβ− km

n

(
δ2J

(
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1

2
λpqn γpq

)
+ i
(√

1 + κ2ε2J + κσ2J
3

)
λn

pγp

))]
θJ .

(C.106)
Here we have written the result in terms of κ̄ = κ†γ0. We do not need to take into account
the shift of the bosonic fields (7.85), since it matters at higher orders in fermions. To take
into account the last fermionic field redefinition and write the final form of the variation
of the worldsheet metric, we divide the result into “diagonal”and “off-diagonal”, where
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this is meant in the labels I, J for the fermions

δκγ
αβ |diag = 2i

[
¯̃κα1+
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δκγ
αβ |off-diag = −

√
1 + κ2

[
¯̃κα1+Ū(1)U(2)e

mβ
+

(
(Λ(2))
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m γm′ − κknm λn
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p γp′
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(C.108)
Looking at the diagonal contribution, we find that the expressions containing rank-1
gamma matrices actually vanish, as they should. The rest yields exactly the couplings
that we expect to spin-connection and H(3)

δκγ
αβ |diag = 2i

[
¯̃κα1+

(
∂β+ −

1

4
ω̃βmn+ γmn +

1

8
emβ+ H̃mnpγ
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∂β− −

1

4
ω̃βmn− γmn −

1

8
emβ− H̃mnpγ
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)
θ2

]
.

(C.109)

When we consider the off-diagonal contribution we find that it gives the correct cou-
plings to the R-R fields

δκγ
αβ |off-diag = 2i

(
−1

8
eϕ
)[

¯̃κα1+

(
γnF̃ (1)

n +
1

3!
γnpqF̃ (3)

npq +
1

2 · 5!
γnpqrsF̃ (5)

npqrs

)
emβ+ γm θ2

+ ¯̃κα2−

(
−γnF̃ (1)

n +
1

3!
γnpqF̃ (3)

npq −
1

2 · 5!
γnpqrsF̃ (5)

npqrs

)
emβ− γm θ1

]
,
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where the components of the R-R fields are given in (7.112)-(7.113)-(7.114). Putting to-
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gether these results we find a standard kappa-variation also for the worldsheet metric

δκγ
αβ = 2i

[
¯̃κα1+D̃

β1J
+ θJ + ¯̃κα2−D̃

β2J
− θJ

]
= 2i ΠIJ αα′ΠJK ββ′ ¯̃κIα′D̃

KL
β′ θL.

(C.111)

where we defined

ΠIJ αα′ ≡ δIJγαα
′
+ σIJ3 εαα

′

2
. (C.112)

The rewriting in terms of 32-dimensional spinors is straightforward.

C.8 Ten-dimensional Γ-matrices

We use the 4× 4 gamma matrices γ̌, γ̂ to define the 32× 32 gamma matrices

Γm = σ1 ⊗ γ̌m ⊗ 14, m = 0, · · · , 4, Γm = σ2 ⊗ 14 ⊗ γ̂m, m = 5, · · · , 9, (C.113)

that satisfy {Γm,Γn} = 2ηmn and also gives Γ11 ≡ Γ0 · · ·Γ9 = σ3 ⊗ 14 ⊗ 14. Anti-
symmetrised products of gamma-matrices are defined as Γm1···mr = 1

r!Γ[m1
· · ·Γmr]. The

charge conjugation matrix is defined as C ≡ i σ2 ⊗K ⊗K, and C2 = −132. In the chosen
representation, the Gamma matrices satisfy the symmetry properties

(CΓ(r))t = −tΓr CΓ(r),

C(Γ(r))tC = −tΓr Γ(r), tΓ0 = tΓ3 = +1, tΓ1 = tΓ2 = −1.
(C.114)

Under Hermitian conjugation we find

Γ0(Γ(r))†Γ0 =

{
+Γ(r), r = 1, 2 mod 4,
−Γ(r), r = 0, 3 mod 4.

(C.115)

The 2 × 2 space that sits at the beginning is the space of positive/negative chirality.
Given two 4-component spinors ψ̌, ψ̂ with AdS and sphere spinor indices respectively, a
32-component spinor is constructed as

Ψ+ =

(
1
0

)
⊗ ψ̌ ⊗ ψ̂, Ψ− =

(
0
1

)
⊗ ψ̌ ⊗ ψ̂, (C.116)

for the case of positive and negative chirality respectively. In the main text we use 16-
components fermions with two spinor indices θαa, and we construct a 32-component
Majorana fermion with positive chirality as

Θ =

(
1
0

)
⊗ θ, Θ̄ = ΘtC = ( 0 , 1 )⊗ θ̄. (C.117)

It is also useful to define 16× 16-matrices γm (that we continue to call gamma-matrices,
even if they don’t satisfy a Clifford algebra) as in (7.15) that satisfy

Θ̄1ΓmΘ2 ≡ θ̄1γmθ2 =⇒
{
γm = γ̌m ⊗ 14, m = 0, · · · 4,
γm = 14 ⊗ iγ̂m, m = 5, · · · 9, (C.118)
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The above formulae explain the reason for the factor of i in the definition of γm for the
sphere. In the same way we can explain why there is a + sign and not− in the definition
of γmn for the sphere, computing3

Θ̄1ΓpΓmnΘ2 ≡ θ̄1γpγmnθ2 =⇒

 γmn = γ̌mn ⊗ 14, m, n = 0, · · · 4,
γmn = 14 ⊗ γ̂mn, m, n = 5, · · · 9,
γmn = −γ̌m ⊗ iγ̂n, m = 0, · · · 4, n = 5, · · · 9.

(C.119)
Similarly, for rank-3 Gamma matrices we would obtain

Θ̄1ΓmnpΘ2 ≡ θ̄1γmnpθ2 =⇒


γmnp = γ̌mnp ⊗ 14, m, n, p = 0, · · · 4,
γmnp = 14 ⊗ iγ̂mnp, m, n, p = 5, · · · 9,
γmnp = 1

3 γ̌mn ⊗ iγ̂p, m, n = 0, · · · 4, p = 5, · · · 9,
γmnp = 1

3 γ̌p ⊗ γ̂mn, p = 0, · · · 4, m, n = 5, · · · 9.
(C.120)

3When we consider even rank Γ-matrices, we need to insert also an odd rank Γ-matrix in order not to get 0
when Θ1,2 have the same chirality.



Summary

In this thesis we discuss certain models that arise in string theory, motivated by the
AdS/CFT correspondence. For these models there exists a notion of “quantum Integra-
bility”. Although this term is very broad, for us it will be used in the sense of factorisation
of scattering for models in 1+1 dimensions. In particular, a process involvingN incoming
particles will always produce N outgoing particles—particle production and annihila-
tion are not allowed—and the set of momenta will be just reshuffled after scattering.
Moreover, an N → N process will be factorised and rewritten as a sequence of simpler
2→ 2 processes. The consistency condition for this factorisation is called the Yang-Baxter
equation.

In the first part of the thesis we study strings on the background AdS3×S3×T4,
whose dual conformal field theory is two-dimensional, in the presence of pure Ramond-
Ramond fluxes. We first write down the action of the string on this background, and fix
“light-cone gauge”. We show that upon fixing this gauge the Lie superalgebra psu(1, 1|2)2

of isometries is broken down to a centrally extended superalgebra that we call A, of
which we provide the (anti-)commutation relations.

The central charges C,C ∈ A vanish on physical states, and they play a major role
in our derivation of the worldsheet scattering elements. We show how to compute the
exact dependence of the eigenvalues of of C,C on the worldsheet momentum. This
knowledge, together with arguments from representation theory, enables us to deter-
mine also the exact eigenvalue of the light-cone Hamiltonian H. We write the action of
the (super)charges for small values of the worldsheet momentum, and then generalise
this result to all loops by requiring that the central charges previously determined are
correctly reproduced.

The action of the (super)charges on two-particle states is also constructed, and we
show that for odd generators we have to use a non-local co-product. By imposing com-
patibility with such (super)charges we constrain the form of the two-body S-matrix,
which governs the scattering of two excitations on the worldsheet. We show that our
model contains both massive and massless excitations, and we include all of them in
our description of the worldsheet scattering. Compatibility with symmetries, unitarity
and a discrete Left-Right symmetry allows us to fix the S-matrix completely up to four
independent scalar factors—each of them multiplying a different block of the S-matrix.
These factors are functions of the momenta and of the string tension, and they are further
constrained by crossing symmetry.

Our S-matrix satisfies the Yang-Baxter equation, which makes it compatible with
quantum Integrability in the sense of factorised scattering. The S-matrix is used to derive
the Bethe-Yang equations, by demanding periodicity of the wave-function. This set of
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equations can in principle be solved to compute the energy of a string on the background
AdS3×S3×T4, where the wrapping corrections—exponentially small in the length of the
string—are discarded.

We also concentrate on the massive sector of the theory. We show that the same
S-matrix can be derived also from a spin-chain invariant under psu(1, 1|2)2, which we
construct. The massive sector contains two of the scalar factors of the S-matrix that are
not fixed by symmetries, and we propose a solution for them by solving the correspond-
ing crossing equations. We also consider a particular limit of the Bethe-Yang equations to
obtain the finite-gap equations, which encode the spectrum at the semiclassical level. We
also refer to perturbative tests of other authors that confirm the validity of our S-matrix.

In the second part of the thesis we study a particular deformation of the string on
AdS5×S5, which is usually referred to as η-deformation. This realises a q-deformation
of the symmetry algebra psu(2, 2|4) of the undeformed model. We start by considering
the bosonic model by setting fermions to zero, and we discover that the deformation
procedure leads to a deformed background metric and a B-field. We impose light-cone
gauge and truncate the light-cone Hamiltonian at quartic order in the bosonic fields. We
use this object to compute the tree-level scattering processes between two bosonic excita-
tions of the deformed model on the worldsheet. These scattering elements are collected
in the so-called T-matrix, which we compare with the large-tension expansion of the all-
loop S-matrix that is invariant under the q-deformed symmetries. This calculation gives
a positive match, and we relate the deformation parameter η—which enters the action of
the deformed σ-model—to the deformation parameter q—which enters the q-deformed
commutation relations.

To address the question of whether the background metric and B-field of the de-
formed model can be completed to a full supergravity background, we compute the
action of the η-deformed AdS5×S5 at quadratic order in fermions. This calculation re-
quires the inversion of a linear operator acting on psu(2, 2|4) that is used to define the
η-deformation, and we develop the technical steps to obtain this result. We show that
the Lagrangian that one obtains is not of the standard form of Green-Schwarz. How-
ever, we are able to cast it in the standard form by implementing field redefinitions of
the bosonic and fermionic fields. From this result we extract the components of the odd-
rank tensors that should be interpreted as field strengths of the Ramond-Ramond fields.
We also compute the kappa-symmetry variations of bosons and fermions, which indeed
become standard after implementing the above field redefinitions. The computation of
the kappa-symmetry variation of the worldsheet metric is an independent way to derive
the couplings to the background fields, and we check that the result obtained from the
Lagrangian is also confirmed by this method.

The background fields that we have derived are not compatible with the Bianchi iden-
tities and the equations of motion of type IIB supergravity. At this point two scenarios
are possible: the first one is that the η-deformed model is just not a type IIB super-
string theory; the second one is that there exist further redefinitions of the bosonic and
fermionic fields, such that the form of the action as well as the couplings to metric and
B-field remain invariant, while the couplings to the Ramond-Ramond fields are modi-
fied in such a way that the new answer is compatible with the equations of motion of IIB
supergravity. We elaborate on this possibility, and we note that our result reproduces a
genuine type IIB background—known as Maldacena-Russo—when a special limit of the
deformed action is taken.
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Samenvatting

In dit proefschrift behandelen we bepaalde modellen die voortkomen uit snaartheorie,
gemotiveerd door de AdS/CFT correspondentie. Voor deze modellen is er een notie van
“kwantum integreerbaarheid”. Alhoewel deze term zeer breed is gebruiken wij het in
de zin van het factoriseren van verstrooiing (“factorisation of scattering”) voor modellen in
1 + 1 dimensie. In het bijzonder zijn er in de modellen die we bekijken bij botsingspro-
cessen met N inkomende deeltjes altijd ook N uitgaande deeltjes—de productie of an-
nihilatie van deeltjes is niet toegestaan—en wordt de verzameling van impulsen slechts
herschikt tijdens de verstrooiing. Bovendien wordt zo’n N → N proces gefactoriseerd
tot een reeks van eenvoudigere 2→ 2 processen. De voorwaarde die de consistentie van
deze factorisatie garandeert is de Yang-Baxter vergelijking voor de verstrooingsmatrix (S-
matrix).

In het eerste deel van dit proefschrift bestuderen we snaren die bewegen in de achter-
grond AdS3×S3×T4, waarvan de duale conforme veldentheorie tweedimensionaal is, in
de aanwezigheid van pure Ramond-Ramond fluxen. Eerst geven we de actie van de
snaar op deze achtergrond, en leggen we de lichtkegel-ijk op. We laten zien dat dit laat-
ste de superalgebra psu(1, 1|2)2 van isometrieën breekt tot een centraal uitgebreide Lie
superalgebra, die we A noemen, en waarvan we de (anti)commutatierelaties geven.

De centrale ladingen C,C ∈ A zijn gelijk aan nul wanneer ze worden toegepast op
fysische toestanden, en spelen een belangrijke rol in onze afleiding van de elementen van
de verstrooiingsmatrix voor het wereldvlak. We laten zien hoe men exact kan berekenen
op welke manier de eigenwaarden van C en C afhangen van de wereldvlak-impuls. In
combinatie met voorstellingstheorie stelt dit ons in staat de exacte eigenwaarde van de
lichtkegel-Hamiltoniaan H te bepalen. We geven de werking van de (super)ladingen
voor kleine waarden van de wereldvlak-impuls, en veralgemeniseren dit resultaat ver-
volgens tot alle lussen in storingsrekening door te eisen dat de eerder vastgestelde cen-
trale ladingen correct worden gereproduceerd.

De werking van de (super)ladingen op toestanden bestaande uit twee deeltjes wordt
ook geconstrueerd, en we laten zien dat voor oneven voortbrengers een niet-locaal co-
product moet worden gebruikt. Door compatibiliteit met zulke (super)ladingen op te
leggen beperken we de mogelijke vorm van de twee-deeltjes S-matrix, die de verstrooi-
ing beheerst van twee aangeslagen toestanden op het wereldvlak. We laten zien dat er
in ons model zowel massieve als massaloze aangeslagen toestanden zijn, en we nemen
al deze toestanden mee in onze beschrijving van de botsingsprocessen in het wereld-
vlak. Compatibiliteit met symmetrieën, unitariteit en een discrete “Links-Rechts” sym-
metrie stellen ons in staat de S-matrix volledig te bepalen op vier onafhankelijke scalaire
factoren na, die elk een ander blok van de S-matrix vermenigvuldigen. Deze factoren
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zijn functies van de impulsen en van de snaarspanning, en worden beperkt door kruis-
ingsymmetrie.

Onze S-matrix voldoet aan de Yang-Baxter vergelijking, wat deze compatibel maakt
met kwantum-integreerbaarheid in de zin van gefactoriseerde verstrooiing. De S-matrix
wordt gebruikt om de Bethe-Yang vergelijkingen af te leiden middels de eis dat de golf-
functie periodiek is. Deze vergelijkingen kunnen in principe opgelost worden om zo de
energie te vinden van een snaar in de achtergrond AdS3×S3×T4, waarbij de wikkelings-
correcties—die exponentieel afnemen met toenemende snaarlengte—worden weggelaten.

We beschouwen ook de massieve sector van de theorie nader. We laten zien dat
dezelfde S-matrix ook kan worden afgeleid van een spinketen die invariant is onder
psu(1, 1|2)2, en construeren deze spinketen. De massieve sector bevat twee van de scalaire
factoren van de S-matrix die niet door de symmetrieën zijn vastgelegd, en we doen een
voorstel voor hun oplossing door de bijbehorende kruisingsvergelijkingen op te lossen.
Daarnaast bekijken we een bepaalde limiet van de Bethe-Yang vergelijkingen om de
eindige-kloof (“finite gap”) vergelijkingen te verkrijgen, die de informatie bevatten van
het spectrum op het semi-klassieke niveau. We verwijzen ook naar andere auteurs die
onze S-matrix hebben bevestigd met behulp van storingsrekening.

In het tweede deel van dit proefschrift bestuderen we een bepaalde vervorming (“de-
formation”) van de snaar op AdS5×S5, die meestal de η-vervorming wordt genoemd.
Dit geeft een q-vervorming van de symmetrie-algebra psu(2, 2|4) die bij het onvervor-
mde model hoort. Om te beginnen bestuderen we het bosonische model door de fermio-
nen gelijk te stellen aan nul, en we ontdekken dat het vervormingsproces leidt tot een
een vervormde achtergrondsmetriek en een B-veld. We leggen de lichtkegel-ijk op en
bepalen de lichtkegel-Hamiltoniaan tot op vierde graad in de bosonische velden. We
gebruiken dit object om verstrooiingsprocessen van bosonische aangeslagen toestanden
van het vervormde model op het wereldvlak te bepalen tot op boom-niveau. Deze ho-
eveelheden zijn bevat in de zogeheten T-matrix, die we vergelijken met de ontwikkeling
voor grote snaarspanning van de alle-lus S-matrix die invariant is onder de q-vervormde
symmetrieën. Deze berekening bevestigt onze resultaten, en we vinden het verband
tussen de vervormingsparameter η—die voorkomt in de actie van het vervomde σ-
model—en de vervormingsparameter q—die voorkomt in de q-vervormde commutatie-
relaties.

Om de vraag te beantwoorden of de achtergrondmetriek en B-veld van het vervor-
mde model kan worden aangevuld tot een volledige achtergrond in superzwaartekracht,
berekenen we de actie van de η-vervormde AdS5×S5 tot op tweede graad in de fermio-
nen. Deze berekening vereist het inverteren van een lineaire operator op psu(2, 2|4) die
wordt gebruikt om de η-vervorming te definiëren, en we ontwikkelen de technieken die
hiervoor nodig zijn.

We laten zien dat de Lagrangiaan die men zo verkrijgt niet van de gebruikelijke
Green-Schwarz vorm is. Desalniettemin kunnen we deze Lagrangiaan in de standaard-
vorm brengen door de bosonische en fermionische velden te herdefiniëren. Uit dit re-
sultaat kunnen we de componenten vinden van de tensoren van oneven rang, welke
zouden moeten worden geı̈nterpreteerd als de veldsterktes van de Ramond-Ramond
velden. We berekenen ook wat de kappa-symmetrievariaties zijn van de bosonische
en fermionische velden, die inderdaad de normale variaties worden na de hiervoorge-
noemde herdefinities van de velden. Deze berekening van de kappa-symmetrievariatie
van de wereldvlakmetriek is een onafhankelijke manier om de koppelingen met de
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achtergrondvelden af te leiden, en we controleren dat dit de resultaten bevestigt die
we hebben verkregen met behulp van de Lagrangiaan.

De achtergrondvelden die we hebben afgeleid zijn niet compatibel met de Bianchi-
identiteiten en de bewegingsvergelijkingen van type-IIB superzwaartekracht. Nu zijn
er twee scenario’s mogelijk: ofwel het η-vervormde model is eenvoudigweg geen type-
IIB supersnaartheorie, ofwel er zijn verdere herdefinities mogelijk van de bosonische en
fermionische velden zodanig dat de vorm van de actie en de koppeling met de Ramond-
Ramond velden op zo’n manier veranderd worden dat het nieuwe resultaat wèl com-
patibel is met de bewegingsvergelijkingen van IIB superzwaartekracht.

We gaan verder in op de tweede mogelijkheid, en merken op dat ons resultaat een
echte type-IIB achtergrond—die bekend staat als Maldacena-Russo—voortbrengt in een
speciale limiet van de vervormde actie.
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in Università degli Studi di Padova (UniPD), graduating cum laude in both occasions. I
have worked on my Master thesis at Ludwig-Maximilians Universität (LMU) in Munich in
the context of the Erasmus program, under the joint supervision of dr. Michael Haack
(LMU) and prof. Kurt Lechner (UniPD).

From September 2011 till September 2015 I have been a PhD student in Universiteit
Utrecht under the supervision of prof. dr. Gleb Arutyunov. This thesis contains some of
the results of my research in this period.

179



180



Bibliography

[1] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, “The all-loop
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