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Phase separation and self-assembly in a fluid of
Mickey Mouse particles

Guido Avvisati and Marjolein Dijkstra*

Recent developments in the synthesis of colloidal particles allow for control over shape and inter-particle

interaction. One example, among others, is the so-called ‘‘Mickey Mouse’’ (MM) particle for which the self-

assembly properties have been previously studied yielding a stable cluster phase together with elongated, tube-

like structures. Here, we investigate under which conditions a fluid of Mickey Mouse particles can yield phase

separation and how the self-assembly behaviour affects the gas–liquid coexistence. We vary the distance

between the repulsive and the attractive lobes (bond length), and the interaction range, and follow the evolution

of the gas–liquid (GL) coexistence curve. We find that upon increasing the bond length distance the binodal line

shifts to lower temperatures, and that the interaction range controls the transition between phase separation and

self-assembly of clusters. Upon further reduction of the interaction range and temperature, the clusters assume

an increasingly ordered tube-like shape, ultimately matching the one previously reported in literature. These

results are of interest when designing particle shape and particle–particle interaction for self-assembly processes.

1 Introduction

One of the fundamental questions in condensed matter physics is
to understand the relation between the microscopic and macro-
scopic properties of a system. The answer to this question is also
closely related to the possibility of creating new routes to fabricate
novel functional materials. A variety of fabrication protocols has
been devised over the past years, but more recently the focus has
been shifted towards encoding information for the self-assembly
into the basic colloidal building blocks.1–3 This paradigm is now
known as self-assembly or ‘‘colloidal LEGO’’. Beforehand, it is
unknown how the encoded information will manifest itself at the
end of the self-assembly process, and it is even unknown what
kind of encoded microscopic information will yield the desired
macroscopic structure. Answering these questions is the key to
using the self-assembly process of colloidal particles as a new
method to fabricate functional materials.

‘‘Hard’’ particle systems, which are purely entropic, give insights
into the role of the particle shape in the self-assembly process. It has
been shown that entropy alone can give rise to a large variety of
close-packed crystal structures, as well as liquid and plastic crystal
phases.4–12 On the other hand, having particles explicitly attract
each other along specific directions can be of advantage to target
particular open structures as, for instance, diamond crystals and
kagome lattices.13–15 This has brought a considerable amount of
interest to what are now called patchy colloids, particles that
interact with each other only via specific spots located at the

particle’s surface.16–20 Directional interactions can be given to
colloids for example via attaching complementary DNA strands
to the surface, as in ref. 19 and 21.

Another way of inducing directional interactions between
building blocks is to combine depletion forces and surface
roughness asymmetry.22–25 In fact, if a building block is made
up of rough and smooth lobes, the addition of depletants to the
solution will induce specific attractions between the smooth
lobes of different particles, while producing repulsions between
the rough-smooth lobes and the rough-rough lobes.24,25 This
approach has been used to self-assemble dumbbells26 and,
more recently, ‘‘Mickey Mouse’’ (MM) particles – trimers with
one big smooth lobe (also referred to as the ‘‘head’’ of the MM
particle) and two smaller rough lobes (the ‘‘ears’’).27 In particular,
it has been shown that the MM particles self-assemble, at
interaction strength of B9–10kBT into tube-like structures.27

Yet, with respect to isotropically attractive spheres like, for
example, Lennard-Jones particles or hard-sphere square-well (HSSW)
particles, that exhibit a gal–liquid (GL) phase separation, it is so far
unclear whether MM particles can also undergo an analogous gas–
liquid phase separation (colloidal poor-colloidal rich) and, if this
is the case, what is the interplay of the latter with the depicted
self-assembly scenario. The aim of this work is to address this
question with Monte Carlo (MC) simulations. To do so, we
follow the evolution of the GL binodal line for a series of models
connecting the isotropic HSSW spheres to the MM particles. The
path proceeds firstly by increasing the rough smooth (ear–head)
bond length until we reach the experimental particle geometry,
and secondly by decreasing the interaction range until the
experimental one is reached, as described in ref. 27.
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The paper is organised as follows: we introduce the model and
the path connecting HSSW spheres and MM particles in Section 2,
where we also discuss details about the different computational
techniques we have used. In Section 3, we present our results on the
phase separation of MM particles and the transition to self-assembly.
We also show how the particle geometry affects the structure of the
liquid. We summarise and discuss these results in Section 4, where
we also provide an outlook for future research directions.

2 Model and methods

We begin with the geometry of the MM particle as shown in
Fig. 1. Each MM particle is represented by an aggregate of three
spheres, two small spheres (‘‘ears’’), of diameter se, which
represent rough lobes interacting with steric repulsions and a
third bigger sphere (‘‘head’’), of diameter sh, which corresponds
to the smooth lobe and plays the role of an attractive site. The
interaction ui, j between a pair of MM particles i and j depends on
the positional and orientational degrees of freedom ri, rj, Oi, Oj,
respectively, which we drop here to lighten the notation, and
consists of an attractive and a repulsive contribution,

uij = uatt
ij + urep

ij (1)

The attractive part uatt
ij acts between the larger beads of particle i

and j, and is given by a square-well (SW) interaction,

buattij ¼ buSW rhhij

� �
¼

be for sh � rhhij � lsh

0 for rhhij 4 lsh

8<
: (2)

where be = e/kBT, e o 0, represents the interaction strength
compared to the thermal energy, l is the interaction range, and
rhh

ij is the center to center distance from the head of MM particle
i to the head of MM particle j.

The repulsive part urep
ij , is determined by the hard-core

interactions between the heads (h) and the ears (e1, e2) of two
MM particles, and reads

burepij ¼
X

a;b¼h;e1;e2
buHS ri;a � rj;b

�� ��� �
(3)

with the hard-sphere (HS) interaction,

buHS ri;a � rj;b
�� ��� �

¼
1 if ri;a � rj;b

�� ��osa;b

0 otherwise

(
(4)

where sa,b = (sa + sb)/2 with a, b = h, e1, e2.
Finally, we set the ear–head size ratio to q = se/sh = 0.85 and

the angle between the directions of the ears to yee = 901, in order
to match the values of the experiments in ref. 27. However, the
center-to-center distance between the ears and the head,
denoted hereafter as the bond length l/sh, is allowed to change,
and it will be used as a parameter together with the interaction
range. This particle and interaction model will be referred to as
MMSW (Mickey Mouse square-well system). Note that in the
limit l/sh = 0 our particles correspond to HSSW particles.

We focus on the effect of varying the ear–head distance l/sh

of the particle and the interaction range l on the gas–liquid
(GL) binodal line, where we ignore the possibility of crystallisation.

We compute the GL binodal using the Successive Umbrella
Sampling (SUS) technique28 together with the histogram reweighting
method.29–32 Since the SUS method has been discussed elsewhere,28

here we limit ourselves to only recalling the working scheme. The
quantity of interest in the GL coexistence is P(N), the probability that
the system will be in a state with N particles at fixed volume V, fixed
temperature T, and fixed chemical potential m. This probability is
unimodal above the critical temperature and assumes a typical
bimodal shape, displaying gas and liquid peaks, for temperatures
below the critical one. Furthermore, it can be shown that the bulk
chemical potential at coexistence, at a given temperature, will be
such that the area of the gas peak and the area of the liquid peak are
equal. In fact, this is all we need to know to determine the coexisting
chemical potential via the histogram reweighting technique.29–32

The probability distribution function can be computed by
splitting the entire N range into overlapping windows of fixed
size and by performing Grand Canonical Monte Carlo (GCMC)
simulations in each window. During the simulation one keeps
track of how many times the system has a certain particle
number N. which lies in between the lower and the upper limit
of the window. The probability function can be reconstructed
via the ‘‘stitching’’ procedure, which reads:28

PðNÞ
Pð0Þ ¼

H0ð1Þ
H0ð0Þ

�H1ð2Þ
H1ð1Þ

� � � � � HkðNÞ
HkðN � 1Þ (5)

where we have implicitly assumed a window size of 1. From a
computational point of view, eqn (5) shows us that this scheme

Fig. 1 Model and parameters considered in this work. An experimental
MM particle is obtained by a SW sphere by first changing the distance l/sh

between the rough and the smooth beads (ear–head distance) and then by
decreasing the interaction range l. The red beads (rough protrusions) have
diameter se, while the blue bead (smooth protrusion) has diameter sh.
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is inherently parallel since all the ratios can be estimated from
independent simulations. This is very convenient from a computer
cluster perspective.

Once P(N) has been calculated for a fixed temperature
and (irrelevant) chemical potential, the coexistence chemical
potential can be obtained by reweighting the distribution
until the area under the gas peak equals the area under the
liquid peak. The reweighting is carried out via the following
equation:33,34

ln P(N|bm1) = ln P(N|bm0) + b(m1 � m0)N (6)

In such a way, one can construct the GL coexistence envelope
for particles with fixed geometry and fixed interaction range. In
the following, we study how the GL coexistence curve is affected
by the particle shape and particle–particle interaction range
and where and how the regime of phase separation changes to
self-assembly.

Once we obtain the GL coexistence curve, we attempt to
estimate the critical point via a least-squares fit to the equation:

r� � rc ¼ A T � Tcj j � 1

2
B T � Tcj jb (7)

which stems from the law of densities and the law of the
rectilinear diameter.33,35–37 Here, � stands for liquid/gas and
b = 0.325 is the exponent of the 3D Ising universality class. Such
a procedure yields only a rough estimation and we stress that
an appropriate determination of the GL critical point should
involve extensive use of the finite-size scaling technique.38–41

To explore under which conditions of particle geometry,
temperature and interaction range the interparticle attractions
are more important than the repulsions, we additionally compute
the second virial coefficient normalised to the one of a system of
hard spheres with diameter sh, B2* = B2/BHS

2 . If attractions
dominate, the value of the second virial coefficient will be
negative, while positive otherwise. The temperature at which
the second virial coefficient vanishes, so called Boyle temperature
kBTBoyle/e, marks the crossing from one behaviour to another.
The definition of the second virial coefficient involves the Mayer
function, which takes into account the interaction between two
MMSW particles42,43

fij = exp[�buij] � 1 (8)

The integral of the Mayer function over all possible positions
and orientations of the two MM particles yields the second
virial coefficient42,43

B2 kBT=eð Þ ¼ � 1

2V

ð
dq1dq2 f12 (9)

where dqi = dridOi represents integration over the particle’s
positional and orientational degrees of freedom. Eqn (9) can be
computed via Monte Carlo integration. We place the MMSW
‘‘1’’ with fixed orientation in the center of a box with volume
V = (5sh)3 at a given temperature kBT/e. We then generate a
number Nc B O(108) of random positions and orientations for
the MMSW ‘‘2’’ in the same volume, and for each configuration
k we compute the value of the Mayer function between particle

‘‘1’’ and ‘‘2’’, f k
12. Then, the second virial coefficient can be

estimated as44,45

B2 kBT=eð Þ ¼ �V
2

1

Nc

XNc

k¼0
f k12 ¼ �

V

2
f12h i (10)

where h f12i represents the average of Mayer function over all
the configurations. We repeat this computation for different
temperatures, particle shapes and interparticle range to locate
regions where attractions prevail with respect to repulsions.

3 Results

We have evaluated the GL coexistence curve for the MMSW
model by varying the ear–head bond length l/sh from 0.1 to
0.57, corresponding to the experimental MM particles,27 and
the particle–particle interaction range l from 1.5 to 1.02.
Following this path, we can connect the experimental MM
system, for which the self-assembly behaviour has been investigated
in ref. 27, all the way to the HSSW limit, for which the GL
coexistence has been intensively studied.35–37,46

3.1 Shift of the binodal line with the particle shape

With a fixed interaction range l = 1.5, we change the particle
shape by progressively increasing the bond length distance l/sh

between the ears and the head of the MMSW particle. The
highest value of bond length investigated in this work is set by
the geometry of the experimental MM particle we want to match
and reads l/sh = 0.57. We observe that the change in the MMSW
particle shape affects the position of the GL coexistence curves,
as seen in Fig. 2.

We quantify the change in the binodal curves, by computing
the critical parameters as function of the bond length l/sh by
means of a least square fit to eqn (7). Going from the HSSW to
the MMSW, the critical temperature kBTc/e shows a linear
decrease upon increasing the bond length l/sh, as can be seen
from Fig. 3. In Fig. 4, the critical density rc is also seen to
decrease monotonically with the bond length, while for the critical
packing fraction fc we observe a non-monotonic behaviour which
is caused by a decrease of the critical number density and a
simultaneous increase of the particle volume vp/sh

3 upon increasing
the bond length l (for more details see Appendix).

Shifts of the critical temperature to lower values have been
reported in different contexts. In fact, it is well known that
attractive colloidal particles confined between two parallel
plates display a shift of the critical point to lower temperatures
because the confinement reduces the cohesive energy of the
system.47–51 More recently, the concept of ‘‘limited valence’’ has
been introduced in the context of patchy colloids.52–56 The idea
is that the valence of a particle (defined as the maximum
possible number of bonded nearest neighbours) affects the
location of a system’s critical point. Number of attractive
patches,52–54 patch surface coverage,55,56 patches with tunable
attractions,57,58 are all examples of controlling a particle’s valence.
Our model suggests that changing the distance between the
attractive and repulsive spheres is another way of achieving such
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a control. In other words, we can think of the bond length as a
‘‘knob’’ for limiting the valence of the MMSW particle. Interestingly,
similar trends for the critical temperature and critical density were
recently reported for a system of attractive dimers interpolating
between SW–SW and HS–SW in ref. 58.

The second virial coefficient at the critical point has been
suggested as possible measure of a particle’s valence in ref. 55
and 59. By using eqn (10), we calculate the second virial
coefficient B2 at the critical point kBTc/e for each value of the
bond length l/sh. Our results are shown in Fig. 5, where we have
normalised the values by the second virial coefficient of a hard
sphere of diameter sh. Upon increasing the bond length, the
value of B2 is seen to decrease (become more negative), which
suggests that the limited valence picture could also hold in the
system at hand. In this direction points also the difference in

mean energy per particle U/Ne of the coexisting liquid phases at
T = 0.90Tc for different bond length l/sh. In fact, U/Ne(l/sh = 0.1)
B �4.5, while U/Ne(l/sh = 0.57) B �3.5. Since the difference of
mean interaction energies equals half the excess number of
bonds that a particle can have, we find that a MMSW particle
with bond length l/sh = 0.57 forms 2 bonds less than a MMSW
particle with bond length l/sh = 0.1, supporting the limited
valence hypothesis.

It is interesting to investigate the structure of the MMSW
coexisting liquid phase as function of bond length, by keeping
the volume fraction fixed at f = 0.27. We do this by calculating
the radial distribution function for all the MM attractive beads
(heads) g hh(r), the results being shown in Fig. 6, for bond length
l/sh = 0.1 and l/sh = 0.57, respectively. We wish to remark here
that we ignore the anisotropy of the particle and average over all
possible particle orientations. Although both curves display

Fig. 3 Critical temperature kBTc/e (full red dots) as a function of bond length
l/sh. The green dashed line shows the linear fit to the data for the critical
temperature kBT fit

c /e = B + Al/sh, with B = 1.37 and A = �1.67, indicating a linear
relation between the bond length ‘‘knob’’ and the system’s critical temperature.

Fig. 2 Gas–liquid coexistence curves for MMSW particles. We provide both the temperature kBT/e – density rsh
3, and temperature kBT/e – packing

fraction f representation. The packing fraction is calculated as f = Nvp/V, with vp the particle volume as discussed in Appendix. The labels stand for
different increasing values of the bond length l. The full red dots indicate the location of the critical points by eqn (7).

Fig. 4 Critical density rc (full blue squares) and critical packing fraction fc

(full cyan diamonds) as a function of bond length l/sh. The solid curves are
guides to the eye.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

U
tr

ec
ht

 o
n 

03
/1

1/
20

15
 1

4:
19

:3
6.

 
View Article Online

http://dx.doi.org/10.1039/c5sm02076j


8436 | Soft Matter, 2015, 11, 8432--8440 This journal is©The Royal Society of Chemistry 2015

features of the HSSW radial distribution functions, such as the
presence of a hard-core diameter at r/sh = 1, and a discontinuity
at r/sh = l = 1.5, we see that the peak positions for the case
l/sh = 0.57 hardly resembles the ones for l/sh = 0.1. In fact,
especially the first peak of the radial distribution function
moves to higher values of r/sh, specifically from r/sh = 1 for
l/sh = 0.1 to r/sh = 1.5 in the case of l/sh = 0.57, and the same can
be seen for the second and third peak. Clearly, even in the case
of large interaction range l = 1.5, the presence of the ears of the
MM particle has an influence on the fluid structure, pushing
the heads further away from each other on average.

3.2 Interaction range-driven transition to self-assembly

After having analysed how the particle shape affects the GL
phase separation, we now ask ourselves how this behaviour

ultimately transforms into self-assembly, which is the behaviour
experimentally observed for the MM particles. In fact, the
interaction range of the experimental MM particles system,
i.e. l B 1.02, is much smaller than the one so far considered
(l B 1.50). To this end, we perform a more extensive study of
the second virial coefficient, where we map B2 for several values
of the interaction range, down to the experimentally relevant
range, in the whole temperature kBT/e and bond length plane
l/sh. This gives us an overview of the conditions under which
the attractions overcome the repulsions, and guides us in the
choice of regions of the parameter space which are interesting
to simulate.

Fig. 7 shows our results for the calculation of B2 through the
entire temperature kBT/e bond length l/sh plane for different
values of the interaction range l = 1.50, 1.40, 1.30, 1.20, 1.10,
1.02. The results in Fig. 7 concern the sign of the second virial
coefficient B2, red areas show a negative B2, where attractions
overcome repulsions, and blue areas refer to a positive B2,
where the repulsions are more important than the attractions.
We remind the reader that the Boyle temperature kBTBoyle/e is
defined as the temperature where the second virial coefficient
B2 vanishes. We also note that the case of MM geometry, which
matches the experimental geometry in ref. 27, is found at the
right-most end of each diagram, where l/sh = 0.57.

For l/sh = 0.57, the region where B2 o 0 is seen to dramatically
shrink as the interaction range is decreased. This also means that
the Boyle temperature is considerably dropping, going from
kBTBoyle/e(l = 1.50) B 0.9 to kBTBoyle/e(l = 1.02) B 0.15. It is also
known that temperatures below 0.1 can get the system stuck in
kinetic traps and our calculations show that upon decreasing the
interaction range l up to l = 1.02 the Boyle temperature gets closer
to this limit. In such conditions, the temperature window where
GL phase separation can be found is very small, if present at all.
A confirmation of our calculation is given in ref. 27, where it is
mentioned that the temperature window between clustering
and kinetic trapping is very narrow.

Based on the second virial coefficient analysis, the largest
temperature window where it is in principle still possible to
locate a GL phase separation is l = 1.40, besides the already
investigated case of l = 1.50. We have therefore calculated P(N)
for a temperature range of kBT/e A [0.31,0.35], the resulting
distributions being shown in Fig. 8.

For all investigated temperatures, the distributions appear
to develop a shoulder at higher particle number N than the first
peak corresponding to the gas phase. Upon increasing the
system volume, this second peak is shown to remain at the
same location, as seen in the inset of Fig. 8, and is therefore
associated with clusters developing in the system. This suggests
that a self-assembly process preempts the macroscopic GL
phase separation, either by shifting the transition to much
lower temperatures than the investigated ones, or by destabilising
the liquid with respect to the micellar fluid, as pointed out in
previous works.58,60–62 Thus, even for the best case scenario of
l = 1.40, we have not found evidence of a GL phase separation,
but instead we find indication of spontaneously formed aggregates
in the system. Additional simulations for l = 1.48 suggest that the

Fig. 6 Bulk head–head radial distribution functions ghh(r)of the coexisting
MMSW liquid at packing fraction f = 0.27 for bond length l/sh = 0.1
(magenta curve) and l/sh = 0.57 (green curve), as function of the distance r.
The repulsive beads increase on average the spacing between the attractive
beads.

Fig. 5 The reduced second virial coefficient at the GL critical point as a
function of the ear–head bond length l/sh. The red line is a guide to the eye.
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GL coexistence curve moves to lower temperatures. Due to limited
computer resources and slow equilibration at low temperatures it
could not be ascertained whether or not the critical point remains
present at finite temperatures in the limit l - 0.

The snapshots of the system for particle numbers within the
micellar peak of P(N) (N = 15, N = 20), shown in Fig. 9, reveal the
disordered microscopic configurations of the clusters associated
with the relatively high interaction range l = 1.40.

For lower values of the interaction range l, we select few
state points, as indicated in Fig. 7, and investigate the system
via MC simulations in the NVT ensemble, due to computational
reasons. The final configurations of the NVT simulations for
l = 1.40, 1.30, 1.20, 1.10 are reported in Fig. 10. The panel for a
long ranged interaction l = 1.40 (top left) displays a micellar
fluid with clusters of size comparable to the peak in the
computed P(N). On the other hand, the remaining panels for
shorter-ranged interactions show self-assembled, tube-like
structures. Once the self-assembly regime has been reached,
starting at l = 1.40, the shape of the resulting structures can be
tuned by decreasing the interaction range. The backbone of the
tubes becomes more close packed upon decreasing the inter-
action range, and the branching is suppressed for l r 1.05.
Thus, structures as the Bernal spirals, which were reported in
ref. 27, are eventually recovered upon shrinking the interaction
range to values lower than l = 1.05. Performing simulations
with N = 256, N = 512 and N = 1024 particles, we found these
results to be robust against finite size effects.

The above findings highlight the role of the range in the
self-assembly of MM particles: shrinking the interaction range
first destabilises the GL phase separation with respect to

Fig. 8 Probability of finding N particles in the system for bond length
l/sh = 0.57, interaction range l = 1.40 and temperature as labelled. All the
distributions are reweighted as to highlight the peaked region present
for particle number N A [10,40]. Inset: finite size study performed at
temperature kBT/e = 0.31 confirming that the second peak is always
located in the same window of particle number N.

Fig. 7 The sign of the reduced second virial coefficient B2* plotted in the reduced temperature kBT/e versus bond length l/sh representation, for various
interaction ranges l = 1.50, 1.40, 1.30, 1.20, 1.10, 1.02 as labelled. The orange triangle represent the state point where we have combined SUS and MC-NVT
simulations as shown in Fig. 8 and 10, the cyan triangles represent the state points we have investigated only via MC-NVT simulations, see Fig. 10.
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self-assembly, and then favours the formation of increasingly
ordered structures, eventually recovering those found in ref. 27.

In a very recent work, the fluid phase behaviour of trimers
with one soft, attractive bead and two soft, repulsive beads has
been investigated.63 There are substantial differences with our
investigation, which we summarise in the following. Firstly, the
particle model employed here uses hard-core particles, whereas
the model in ref. 63 makes use of soft-core particles. Secondly,
the shape of their trimer is slightly different from our MM
particle, since we keep the angle between the repulsive beads
fixed. Thirdly, their methodology is fundamentally different,
although it aims to compute the same quantity P(N). Lastly, due
to the form of the SW potential, we can explicitly control the
interaction range between two particles, and track down the
evolution of the self-assembly with it. Notwithstanding these

differences, it is interesting to compare our results to ref. 63.
Concerning the shift of the binodal line with the bond length
distance, both works have found a linear scaling. The slopes of
the scaling are comparable, our estimate being a = �1.67, see
the fit in Fig. 3, against the reported a = �1.40. However, the
actual values of the critical points for specific bond lengths do
not match with each other, the discrepancy being ascribed to
the differences in the particle geometry and particle–particle
interaction. Furthermore, by very different analyses, both works
agree on the region where the tube-like structures are expected
to occur for the experiments reported in ref. 27 – roughly for
temperatures kBT/e o 0.15.

The results from our work show interesting similarities with
those in ref. 58. In that work, a system of colloidal dumbbells
where both beads are attractive is transformed into ‘‘Janus’’
dumbbells, via progressively decreasing the interaction para-
meter of one of the beads with respect to the other. As a result,
the GL coexistence curve is seen to move to lower and lower
values of temperatures, and the critical temperature is found
to scale with the interaction parameter. This is somewhat
reminiscent of the critical temperature scaling we have encountered
in our work, but there is a fundamental difference in the parameters
which drive the scaling: in ref. 58, this is due to the interaction
strength, whereas in our work the driving parameter is the bond
length, a geometrical quantity. Nevertheless, we believe both works
present nice examples of achieving limited valence with different
‘‘control knobs’’.

4 Conclusions

In this work we have investigated, via Monte Carlo simulations,
how the combined actions of particle geometry and particle–
particle interaction range affect the gas liquid phase separation.
We have also addressed the role of the interaction range onto
the self-assembly process.

Starting from the well-known HSSW model, we have mapped
out the different binodal curves for a family of Mickey Mouse
particles with increasing steric repulsion. We have found that
there is a linear relation between the critical temperature kBTc/e
of the binodal curves and the bond length l/sh, which controls
the influence of the repulsive spheres on the overall interaction.
We interpreted this phenomenon in the ‘‘limited valence’’
paradigm and documented it by calculating the value of the
second virial coefficient at the critical temperature B2*(kBTc/e)
as function of bond length l/sh. This is a possible measure of
the effective valence of the system and indeed we have proven
that this value decreases as the valence is reduced, which is
controlled in this case via the bond length. We have also seen
an increase of the internal energy of the coexisting liquid
phases upon increasing the bond length, which is yet another
indication that less bonds are being formed in the system.

The transition from macroscopic GL phase separation and
self-assembly is driven by the interaction range, which has also
an important effect on the Boyle temperature TBoyle of the
system. In fact, as the interaction range is reduced, both the

Fig. 10 Snapshots from MC NVT simulations at fixed packing fraction
f = Nvp/V = 0.006 and bond length l/sh = 0.57 for different interaction
ranges l and temperatures kBT/e as described by the colored triangles in Fig. 7.
Top left: amorphous clusters for l = 1.40 and kBT/e = 0.310, in agreement with
the P(N) calculated at the same temperature in Fig. 8; Top right: branched
tube-like structures appearing at l = 1.30 and kBT/e = 0.200; Bottom left: self-
assembled tubes at l = 1.20 and kBT/e = 0.200; Bottom right: branched tubes
at l = 1.10 and kBT/e = 0.143. For all the panels, N = 256 and V = 35sh

3.

Fig. 9 Disordered clusters of MMSW particles for bond length l/sh = 0.57,
interaction range l = 1.40 and temperature kBT/e = 0.31. (Left) N = 15,
f = 0.011, (right) N = 20, f = 0.015.
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Boyle temperature decreases and the phase separation process is
preempted by a self-assembly process. Microscopic configurations
from the SUS simulations, complemented with snapshots from
NVT simulations, have shown that the structure of the self
assembled clusters changes from disordered to more ordered,
branched tube-like structures. Upon further decrease in the range,
these structures are seen to transform into the very ordered ones
as reported in ref. 27.

Our results highlight the role of particle geometry and
interparticle interaction range in the competition between phase
separation and self-assembly for Mickey Mouse particles and, in
general, trimers with one attractive sphere and two repulsive
spheres. This is of direct interest for experiments where trimers
are used as basic building blocks, where – as we have documented –
both the trimer exact shape and the trimer–trimer interaction range
are expected to play a significant role. At a more general level, we
have shown how tuning a particle’s valence can be achieved by
controlling the bond length. This conclusion is expected to hold
also in other particle geometries as long as the particles are
composed of different beads, e.g. colloidal dimers with one rough
(repulsive) and one smooth (attractive) beads.

Appendix: MM particle volume
calculation

The volume of a MM particle vp can be calculated exactly via MC
integration, and in an approximated fashion considering the
amount of overlap volume between the two ears and the head.
In fact, from geometrical considerations, it holds that

vp = Vh + 2Ve � 2Vh,e � Ve,e (11)

where Vh is the volume of the attractive sphere, Ve the volume of
the repulsive sphere, Vh,e is the head–ear overlap volume, and
Ve,e is the ear–ear overlap volume. Since, as first approximation,
the two ears in a MM particle do not overlap with each other in
the region outside the head, their overlap volume Ve,e is small
compared to the head–ear one Vh,e so the latter is the only
quantity we need to calculate, which is given by

Vh;e � V Rh;Re; lð Þ ¼ p Rh þ Re � lð Þ2

12l

� l2 þ 2lRe � 3Re
2 þ 2lRh þ 6ReRh � 3Rh

2
� � (12)

where Ra = 0.5sa, a = h, e1, e2 are the radii of the attractive and
the repulsive spheres and l is the center to center distance of
the spheres.

The Monte Carlo integration is similar to a MC calculation of p,
and we discuss it in the following. We place a MM particle in a box
with fixed volume V, big enough to enclose the particle. We then
generate a random position in the box and check whether it
overlaps with the MM particle. If the number of generated random
positions is Ntrial B O(108) and the number of hits on the MM
particles is Nhit, then the MM particle volume is given by

vp ’ V
Nhit

Ntrial
(13)

The results of the calculations for the volume of a MMSW particle
are shown in Fig. 11, for the ratio studied in this paper q = 0.85, as
a function of bond length l/sh. The MC integration and the
theoretical calculation are almost indistinguishable.
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