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Summary

Predictions of the future climate require long-time simulation of a chaotic dy-
namical system. This poses a challenge for numerical simulations, as these do
not necessarily capture the correct long-term behaviour of chaotic systems.
This problem is exacerbated by the wide range of length scales present in at-
mospheric and oceanic dynamics. The modeling choices for small scale pro-
cesses have a large impact on long term statistics of the scales of interest. This
thesis studies the dynamics of two different fluid models as a proxy for atmo-
spheric dynamics: a point vortex flow on the sphere and two-dimensional tur-
bulent flow on a torus. We apply gentle dynamical perturbations commonly
used in molecular dynamics to these fluid dynamics problems as a means for
improving the statistical veracity of low fidelity simulations.

For the point vortex system we study a system consisting of both strong
and weak vortices. The strong vortex dynamics are mildly influenced by the
weak vortices on a short time scale, but the presence of the weak vortices in-
troduces a variability in the strong vortex energy. We mimic this behaviour
in a model with only the strong vortices by gentle perturbations to the equa-
tions of motion. The perturbations have a stochastic forcing such that the
modified dynamics ergodically sample an invariant measure consistent with
observations from the strong vortex system in contact with the weak vortices.
We choose the invariant measure as the minimal entropy density consistent
with observations. The required Lagrange multipliers can be computed ei-
ther a priori using a sample set in some prior distribution, or they can be
computed on-the-fly using the simulation history as an ensemble. The latter
method allows the observations to be updated during runtime, providing the
opportunity for data-assimilation.

We construct a Poisson integration method for the aforementioned point
vortex dynamics by splitting the Hamiltonian into its constituent vortex pair
terms. The method provides exact solutions to a Poisson system with the
same bracket as the original dynamical system, but with a modified Hamil-
tonian function. Different orderings of the pairwise interactions are consid-
ered and are also used for the construction of higher order methods. The
energy and momentum conservation of the splitting schemes is demonstrated
for several test cases. For particular orderings of the pairwise interactions, the



schemes allow scalable parallelization. This results in a linear — as opposed to
quadratic — scaling of computation time with system size.

We also explore the direct modification of the pseudo-spectral trunca-
tion of two-dimensional, incompressible fluid dynamics on a torus to main-
tain a prescribed kinetic energy spectrum. The method provides a means
of simulating fluid states with defined spectral properties, for the purpose
of matching simulation statistics to given information, arising from obser-
vations, theoretical predictions or high fidelity simulations. In the scheme
outlined here, Nosé-Hoover thermostats — commonly used in molecular dy-
namics — are introduced as feedback controls applied to energy bands of the
Fourier-discretized Navier-Stokes equations. As we demonstrate in numeri-
cal experiments, the dynamical properties — quantified using autocorrelation
functions — are only modestly perturbed by our device, while ensemble dis-
persion is significantly enhanced in comparison with simulations of a corre-
sponding truncation using hyperviscosity.
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Samenvatting

Voorspellingen van het toekomstige klimaat vereisen lange simulaties van een
chaotisch dynamisch systeem. Dit vormt een uitdaging voor numerieke simu-
laties, omdat deze niet noodzakelijk het juiste langetermijngedrag weergeven
van chaotische systemen. Dit probleem wordt verergerd door het brede be-
reik van lengteschalen in globale lucht- en waterstromingen. De modelkeuzes
voor processen op kleine schaal hebben een grote invloed op de langetermijn-
statistieken van de lengteschalen van belang. Dit proefschrift bestudeert twee
verschillende vloeistofmodellen als surrogaat voor atmospherische dynamica:
een puntvortexmodel op een bol en twee-dimensionale turbulentie op een to-
rus. We voegen zachte dynamische verstoringen zoals gebruikt in moleculaire
dynamica toe aan deze vloeistofmodellen met als doel het verbeteren van de
statistische nauwkeurigheid van laagdimensionale simulaties.

Voor het puntvortexsysteem bestuderen we een systeem dat bestaat uit
sterke en zwakke vortices. De beweging van de sterke vortices wordt op
korte tijd slechts mild beinvloed door de zwakkere, maar de aanwezigheid
van de zwakke vortices geeft een schommeling in de energie van de sterke
vortices. Wij bootsen dit gedrag na in een model met alleen sterke vortices
door zachte verstoringen van de bewegingswetten. De verstoringen hebben
een stochastische drijfkracht opdat de aangepaste dynamica ergodisch is in
een invariante verdeling die consistent is met waarnemingen uit het systeem
waar de sterke vortices beinvloed worden door de zwakke vortices. Wij kie-
zen hiervoor die verdeling met minimale entropie doch consistent met de ge-
geven waarnemingen. De benodigde Lagrange-multiplicatoren kunnen dan
wel worden berekend met gebruik van een ensemble uit een bepaalde prior-
verdeling, dan wel kunnen ze a la minute worden berekend met de simula-
tiegeschiedenis als ensemble. Deze tweede methode staat toe dat de waar-
nemingen veranderen tijdens de simulatie, wat een mogelijkheid biedt voor
data-assimilatietoepassingen.

We construeren een Poisson integratietechniek voor het hierbovengenoemde
puntvortexsysteem door de Hamiltoniaan op te delen in zijn paargewijze ter-
men. De methode levert exacte oplossingen voor een Poisson systeem met de-
zelfde bracket als het oorspronkelijke probleem, maar een aangepaste Hamil-
toniaan. We beschouwen verschillende volgorden van de paargewijze interac-
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ties en construeren ook methodes van hogere orde. Het behoud van energie en
impuls wordt getoond voor verschillende testgevallen. Voor bepaalde volgor-
den van de paargewijze interacties staat het schema schaalbare parallelisatie
toe. Dit resulteert in een lineaire — in plaats van kwadratische — toename van
rekentijd met systeemgrootte.

We onderzoeken ook de aanpassing van pseudo-spectrale afkapping van
twee-dimensionale, onsamendrukbare vloeistofdynamica op een torus om een
voorgeschreven kinetisch energiespectrum te behouden. Deze methode biedt
een manier om vloeistoffen te simuleren met voorgeschreven spectrale eigen-
schappen, om simulatiestatistieken gelijk te stellen aan gegeven informatie,
uit waarnemingen, theoretische voorspellingen of nauwkeurigere simulaties.
In dit schema worden Nosé-Hoover thermostaten — veelvuldig gebruikt in mo-
leculaire dynamica — geintroduceerd als terugkoppelingsmechanismen toege-
past op energiebanden van de Fourier-gediscretiseerde Navier-Stokes verge-
lijkingen. Zoals we aantonen in numerieke simulaties, zijn de dynamische
eigenschappen — gekwantificeerd met autocorrelatiefuncties — slechts weinig
aangetast door ons mechanisme, terwijl de ensemblespreiding significant is
verbeterd ten opzichte van simulaties met een soortgelijke afkapping en hy-
perviscositeit.
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Introduction

Predictions of the future states of dynamical systems allow individuals, groups,
or society as a whole to anticipate what is to come and to act accordingly.
When the time span of such a prediction is short and the dynamics of the sys-
tem are well understood, it is possible to make accurate predictions of what
will happen when. Over a longer period, however, the behaviour of complex
systems will diverge from even the best possible simulations. In such cases
we have to relax our goal. Instead of focussing on prediction of exact events
on exact dates, we focus on statistical prediction: providing probabilities for
events and how these probabilities evolve in time.

An important field of study where such difficulties arise is the behaviour
of our climate. While the weather on a fortnightscale shows evidence of pre-
dictability, the climate can only be viewed in a probabilistic way. Rather than
requiring accurate predictions of events, this needs accurate estimation of the
likelihood of events. If events are over— or underestimated probabilistically,
the model is said to be biased. The most prominent source of modelling bias is
the inability to resolve relevant small-scale dynamics. Because the small scale
dynamics play an important role in dissipating kinetic energy from larger
scales, they cannot simply be ignored. The choice of model used to represent
the effect of the unresolved scales on the resolved scales has severe conse-
quences for the statistics of simulations of the resolved system.

In many other applications there is a similar necessity to correctly model
the effect of unresolved components on the dynamics of interest. For instance
in molecular dynamics, there is a clear distinction between fast and slow de-
grees of freedom. The fast degrees of freedom might not be of practical in-
terest, but their variability does play an important role in the dynamics of the
other degrees of freedom.

The work in this thesis is aimed at exactly this class of problems where
the time scale of interest is long compared to the time scale at which solu-
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tions chaotically diverge. At the same time, however, we still wish to simulate
dynamical trajectories. This is necessary as some predictions are in fact dy-
namical events, rather than instantaneous occurrences. Let us illustrate this
with an example. The KNMI defines a heat wave as a succession of five “sum-
mery days” (temperature over 25°C) of which at least three are “tropical days”
(over 30°C) [1]. To predict the likelihood of a heat wave therefore requires not
only knowledge of the different temperatures that might occur, but also how
the temperature changes from day to day. This means that we need both short
term dynamical accuracy and long term statistical veracity. The goal of this
work is to reconcile these conflicting long and short term interests in various
settings.

The following chapter provides some introductory information on the nu-
merical integration and sampling techniques used throughout Chapters 3-
5. In Chapter 3 we discuss the use of observational data in generating sim-
ulations of Hamiltonian systems with good long-term statistical properties.
Chapter 4 discusses the time integration of a point vortex system, which is
used as a model Hamiltonian problem in Chapter 3. The techniques for incor-
porating observational data into dynamical simulations are applied to two-
dimensional turbulence in Chapter 5.



Background

The sections in this chapter provide some introductory information on the
subjects of the articles presented here as Chapters 3—-5. Most of this explana-
tion can also be found in numerous monographs, but it is included here for
the convenience of the reader. Some of the topics are also discussed in more
detail in the extensive introduction to the PhD thesis of Bajars [8]. Those al-
ready familiar with topics can skip sections without loss of continuity.

2.1 Dynamical systems

In many applications in physics, biology, sociology, economics etc. it is useful
to describe the object of study in terms of a dynamical system. A dynamical
system consists of two things: the state space D is the collection of all possible
states of the system and the map ¢, maps the current state of the system to
its state 7 time units later. We denote this mapping as

¢r: D — D
y(t) =yt +7), (2.1)

where y(t) € D is the state of the system at time ¢. The state y can be
finite dimensional, in which case the state is given by a state vector y =
(y1,v2,---,yn)T € D C RY, or infinite dimensional, in which case no such
finite representation of the state is possible.

Naturally, to be able to perform computations, we need to be able to rep-
resent the system state in terms of a finite set of numbers. This means infinite
dimensional problems need to be discretized into a finite representation. The
opening sections of Chapter 4 of this thesis are about finding a finite dimen-
sional representation to an infinite dimensional problem. Most of this thesis,
however, relates to simulating a given finite dimensional system.



2. Background

Dynamical systems are often related to an initial value problem for a sys-
tem of differential equations. Such a problem is defined by a differential equa-
tion and an intial condition:

y=fly(t),t)
y(0) = yo. (2.2)

In this thesis all the problems are autonomous, meaning that f(y(¢),t) =
f(y(t)) does not depend explicitly on the time ¢. The solution to such an
initial value problem is given by

o) =30+ [ ) as
As long as such a solution exists, we may write this as
y(t) = ¢vy(0).
This provides the dynamical system associated to the differential equation
(2.2).
2.1.1 Hamiltonian and Poisson systems

An important class of conservative systems, i.e. systems that do not dissipate
energy, can be written in the form

y=J(y)VH(y), (2.3)

where y € RY and H(y) : RY — R. The structure matrix J(y) € RVN*N
satisfies the skew-symmetry propety J(y) = —J%(y), for all y € D and the
Jacobi identity:

N
3 ng(y) o+ &g’“(y) Toi + &g’”(y) Jyj =0,Yi,j,k=1,...,N.
- Y Ye Ye

Such a system is called a Poisson system. If the structure matrix does not
depend on y it is a Hamiltonian system (and the Jacobi identity is trivially
satisfied). In either case H(y) is called the Hamiltonian and it is invariant
under the motion y(t), i.e. H(y(t)) = H(y(0)), Vt, because

H=VH-y=VH-J(y)VH =0,

where the last equality follows from the skew-symmetry of J(y).
A Hamiltonian system with the state vector y = (g, p) consisting of posi-
tions g € R™ and momenta p € R™ with the structure matrix

0o I,
[0, ”



2.2. Numerical integration of dynamical systems

where I, is the n-dimensional identity matrix, is a canonical Hamiltonian sys-
tem. These arise when considering the motion of a particle according to New-
ton’s second law under the influence of conservative forces. Two-dimensional
point vortex systems on a planar geometry also form a canonical Hamiltonian
system.

Associated with the system (2.3) is the Poisson bracket defined by

{F,G}Y=VF-J(y)VG, F,G:RY SR.

The Poisson bracket is skew-symmetric, i.e. {F,G} = —{G, F'}, and satisfies
the Jacobi identity

(B, FY,G}+ {{G,E},F} + {{F,G} ,E} = 0.

The time rate of change for an observable F(y) : RN — R under the motion
y(t) is given by {F, H}. Invariants of the system! are now easily identified
as functions I : RV — R for which {I,H} = 0. There may or may not be
more invariants than the Hamiltonian H. Given invariants H, I;,..., I,,, any
A(y) = A(H(y), 1 (y), ..., In(y)) is also an invariant.

A particular type of invariant that may occur are Casimirs C, for which
{F,C} = 0,VF, note that the Casimirs follow from the form of Poisson bracket
alone, irrespective of the Hamiltonian.

These properties of Poisson systems play an important role in Chapters 3
and 4. The nonlinear interaction of two-dimensional turbulence as discussed
in Chapter 5 also possesses a well-known Poisson structure. [105, 131, 7]

2.2 Numerical integration of dynamical systems

The goal of numerical integration is to approximate the state of a system (2.2)
at different times t; < t2 < ..., given the state at some initial time ¢;. We
restrict this to the case of finding solutions at regular intervals, with the initial
condition given at ¢y = 0. In that case we have t,, = nT forn =0,1,2,....

Most numerical integrators, and certainly those discussed in this thesis,
consist of a fixed rule for obtaining the system state at a next time step given
the current state. Such integrators provide approximations to the flow map
¢- of (2.1). We denote the approximate map ¢, and use it to generate approx-
imations to the exact system state y(n7) denoted by y(nr)

Yyt + 1) =2, 9(1).

Starting from the exact initial condition g(0) = y(0) = y,, the solution after
n time steps of the numerical scheme reads

y(n1) = (®5)" Yy

Lor: first integrals of the system
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The following two sections discuss the accuracy of the numerical integration
in different ways.

2.2.1 Forward Error Analysis

The difference between the numerical and exact solutions at some fixed time
T provides a measure of accuracy for the numerical method. In particular one
is usually interested in how the error depends on the choice of time step 7 for
the numerical scheme. We write this error as

e (T) = || (@) yo — dryoll, (2.5)

assuming that 7" is an integer multiple of 7. The size of this error depends on
the right-hand-side of the original system and on the chosen initial condition
Y- In many cases, however, it is possible to make a general statement about
how the error is expected to vary with the time step. In particular the order of
an integration method is given by d in the following

e-(T) = Cy(T, yo)7 %,

where C¢(T,y,) depends on the system, the end time and the initial condi-
tions, but not on the chosen step size. Typically, higher order methods require
a larger computational effort per time step, but allow for a larger time step for
the same accuracy. Chapter 4 contains a comparison between methods of dif-
ferent orders. The optimal choice depends greatly on the required accuracy.

2.2.2 Backward Error Analysis

A large drawback to forward error analysis occurs when one is interested in
the behaviour of chaotic systems over long periods of time. Solution trajec-
tories of chaotic systems with the tiniest of perturbations to the initial con-
ditions inevitibly diverge after some time — even exact solutions. Numerical
methods therefore require an exponentially small time step for accurate simu-
lations over long time. This is unfeasable, and motivates viewing the accuracy
in a different way, that does not result in impractical demands on the numer-
ical method.

An alternative view to accuracy is given by studying the properties of the
approximate flow map ¢, compared to the exact map ¢,. Crucial to Backward
Error Analysis is the notion that numerical solutions to a particular problem
are in fact exact solutions to some modified problem. Finding the definition
of this modified problem — or at least obtaining some of its properties — allows
one to make confident statements on the behaviour of the numerical solutions.



2.2. Numerical integration of dynamical systems

Let us illustrate this with the example of a simple harmonic oscillator de-
fined by

g=p
]j = _W2Q7

with ¢,p € R and frequency w > 0. This is a canonical Hamiltonian system
2
with structure matrix as in (2.4) and Hamiltonian H(q,p) = 3p® + %-¢*. We
use four different numerical integrators to simulate trajectories of this system:
1. Explicit Euler

n

"t =q" T
pn—i-l _ pn _ w2an
2. Implicit Euler

qn+1 — qn +pn+17,
pn+1 _ pn _ w2qn+17_
3. Semi-Implicit Euler

qn+1 _ qn +pn7_
pn+1 — pn _ w2qn+17_

4. Stormer-Verlet

1
* _ .m n -
¢ =q +p 27'

n+1 :pn 7w2q*7_

p

anrl _ q* +pn+1%7_.

We also present the exact solution for a single step

1
" = ¢" cos(wT) + —p" sin(wT)
w
p" T = —wq™ sin(wr) + p" cos(wT).
The exact solution returns to its initial state after a period of 7' = 2Z.
We simulate an ensemble of four initial conditions from ¢ = Oup tot =T
using each of the four numerical integrators with time step 7 = %. Figure

2.1 shows the results every other time step and also shows the exact solution
at these times. The four ensemble members are connected by lines to form a
quadrilateral. The plots also show dotted contour lines of the Hamiltonian,
consistent with the initial values.

The results show that the exact solution returns exactly to the initial condi-
tions and that each of the ensemble members remains exactly on the contour
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Explicit Euler Tmplicit Euler

-2 0 2

q
Semi-implicit Euler

&0 o &0
-2 -2
-2 0 2 -2 0 2
q q

Figure 2.1: Simulations of a Harmonic Oscillator. Four numerical integrators
with different properties compared against the exact solution (in grey). Each
quadrilateral vertex represents the positions of an ensenble of four simulations.
Decreasing line width indicates increasing time.

lines of the Hamiltonian throughout. In fact, the square undergoes rigid body
rotation. The Explicit Euler scheme results in a divergence of the trajectories,
whereas the trajectories for the Implicit scheme collapse towards the origin.
The Semi-Implicit Euler scheme and the Stormer-Verlet scheme remain close
to the orbits of the exact solution.

The difference in the stability of these four different integration schemes
follows directly from studying the form of the operators ®.. For each of these
methods, we may write

gn+1 = (ngn = ATgna
with a 2 x 2 matrix A that depends on the integration scheme. The exact
system ¢, may also be written in such a linear manner.
The long-term behaviour of the system is characterized by the eigenvalues
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of these matrices. For the exact solution, this matrix has eigenvalues A =
coswT V1 — cos? wr . The magnitude of both these eigenvalues is exactly one
(regardless of step size 7), implying the the origin is a centre, and solutions
orbit this centre indefinitely, without growth or decay.

For the Explicit Euler scheme, both eigenvalues have magnitude greater
than one, leading to an unconditionally unstable system. The Implicit Euler
scheme has eigenvalues with magnitude less than one, leading to the origin
being an asymptotically stable point to which all solutions converge. The
Semi-Implicit Euler method and the Stormer-Verlet method each have eigen-
values with magnitude exactly unity, under the condition that 72w? < 4 for
the Semi-Implicit Euler and 72w? < 2 for Stormer-Verlet. This implies these
trajectories orbit a centre at the origin indefinitely.

We are interested in methods that can be used for long simulations. The
unstable growth of the Explicit Euler scheme, and the decay of the Implicit
Euler scheme make them both unsuitable for such applications. A smaller
time step would slow down the growth or decay, but it cannot prevent it in
the long run. Thefore let us focus on the Semi-Implicit Euler and the Stormer-
Verlet methods.

The Semi-Implicit Euler scheme advances the solution by first updating
the position to ¢"*! based on the current momentum p", and then uses this
updated position to find the new momentum p"*!. This effectively splits the
dynamical system in two parts and we write

o = gl o gl2l, (2.6)

where ¢[71] represents the step updating the position and (/5[72] that updating the

momentum. Note that these operators are evaluated left to right.

The components of this splitting are in fact solutions to two Hamiltonian
systems with the same structure matrix as in (2.4) and the two separate terms
of the Hamiltonian, i.e. HI!) = 1p? and H? = 1w?q. For such a composition,
the modified problem is in itself a Hamiltonian system, but with a modified
Hamiltonian [62], which we write as a power series expansion

H=H+7Hy+71*Hs+7°Hy +.... (2.7)

For the splitting (2.6) the correction terms follow from the Poisson bracket
between the two separated terms of the Hamiltonian [62] as

1 1
gl H[Q]} — 22
2 { ’ 9 P

Hy— L {{HDLHD]}’HD]} n %2 {{Hm’Hm} 7H[11}

Hy

12
7142 1 2 2
SRpY T T Rpwr

H, = % {{{Hm,H[z]} 7H[2]} ,Hm} _ 1712w4qp.
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In this particular example, there is some fortunate cancellation of terms. Ob-
serve that H3 = %wQH and that H, = %wzHg. With this we find that 72 Hs +
mH, = ¢7°w? (H 4+ 7H;). Similar cancellations in the higher order correc-
tions lead to the conclusion that the Semi-Implicit Euler scheme has the mod-

ified Hamiltonian
HSE — <H + ;TWQ(]]?) X <1 + %Tzoﬂ + .. ) . (2.8)
The Stormer-Verlet method is also a splitting scheme, now with the com-
position
P =l 0 ol 0 gl (2.9)

The components are solutions to the same Hamiltonian system as before, but
now evaluated in a symmetric order. This symmetry implies a cancelation of
the terms with odd powers of 7 in (2.7). Specifically the terms are given by
[62]

Hy=Hy=Hy =0

Hy— — 2 a2 m) m) T12 {{ut me) 52}

24
IR SPUCSNR S
Tl v
Substituting these terms into (2.7) we find the modified Hamiltonian
~ 1
oY = H + ﬂ72 (wp® + 2w'q?) + O(r). (2.10)

The modified Hamiltonians for the Harmonic Oscillator when using the
Semi-Implicit Euler or Stormer-Verlet scheme given in (2.8) and (2.10) may
not immediately show that solutions remain close to the exact solution in the
sense of (2.5), but it does tell us that the dynamics of the modified problem are
similar to those of the physical problem of interest. When studying the long
time behaviour of chaotic systems the accuracy is lost, this is a much stronger
measure of fidelity for a numerical scheme.

The numerical methods detailed in Chapter 4 for studying point vortex
systems are splitting schemes just like (2.6) and (2.9). We study their error
similarly by computing the correction terms in the modified Hamiltonian.

2.3 Stochastic processes

In a stochastic process the system no longer has a deterministically prescribed
path, but all possible paths have a prescribed probability. A stochastic process
is thus a sequence of dependent stochastic variables, denoted

X ={X,:teT}

10



2.4. Stochastic differential equations

where T is a totally ordered set of times. For any ¢t € T, the process takes a
value in the phase space D of the process, i.e. X; € D. The entire process is an
element in the probability space (2, F, 1), where 2 is the space containing all
possible paths, F is a sigma-algebra of events and p is a measure over 2 such
that
P(XEA):/ dp VAeF.
A

In the case that the stochastic process is defined at a finite set of times 7" =
{t1,t2,...,tx}, the process X = {X; : t € T'} is an element of the space
Q) = DF, i.e. the product of k phase spaces D.

If the history of the process up to some time ¢ is known, the set of possible
events is reduced. This set of events is denotes as the filtration 7, C F. For
s < tit holds that 7, C F;.

A stochastic process is said to be Markovian (or a Markov process) if future
probabilities depend only on the present state of the system, and not on its
history. More precisely, the process X is Markovian if for any s,¢t € T with
s < t it holds that

P(X; € A|lFs) = P(X; € A|X,) VA€eGg,

where G is the sigma-algebra associated to D. Many stochastic processes are
constructed to be Markov processes. In modeling this choice is usually jus-
tified by the fact that the random components of the system are fast compo-
nents. When there is a dependence on the past states, a Markov process can be
recovered by extending the phase space to include previous time steps, sim-
ilar to the transformation of a system of n ODEs of k-th order to a system of
nk first-order ODEs.

2.3.1 The Wiener process

The Wiener process forms the basis for all stochastic processes discussed in
this thesis. It is a continuous-time stochastic process denoted by W; and char-
acterized by three properties [45]

1. Wo =0,

2. the function ¢ — W; is almost surely everywhere continuous,

3. W, has independent increments with W, — W, (0 < s < t) normally

distributed with mean zero and variance ¢ — s.

The independence of subsequent increments implies the Wiener process is
Markovian.

2.4 Stochastic differential equations

Stochastic differential equations (SDEs) are stochastic processes that are typ-
ically defined by a deterministic term in combination with a noise term. We

11



2. Background

write an SDE in its typical form
dX; = h(Xy, t)dt + o(Xy, t) AW, (2.11)

which is a shorthand notation of the integral equation

t+s t+2
Xpps — Xy = / h( Xy, u)du —|—/ 0( Xy, u) dW,. (2.12)
¢ t

Because the Wiener process is nowhere differentiable, ordinary calculus is in-
sufficient to work with equations (2.11) and (2.12). The study of such systems
therefore requires the extension of identities from ordinary calculus to the
stochastic realm. Two dominant competing stochastic calculuses exist, named
It6 calculus and Stratonovich calculus. In short, the difference is due to the
choice of a different type of Riemann sum in the stochastic integral in (2.12).
More details on their principles and the practical effect thereof can be found
in, for example, the book by @ksendal [115]. Throughout this thesis we will
use It6 calculus.

An example where one encounters the need for this extended calculus
is when considering the differential of a quantity that is a function of the
outcome of a stochastic process such as that in (2.11). Consider a function
f(t,r) : R? — R, twice differentiable in . To find the differential of f we
would ordinarily use the chain rule with respect to its two arguments. Let us
take a step back and proceed formally with the Taylor expansion of f

f of 12f o 0°f 10°f
d dt+ =—dez+ -—5dt dtdz + - == da?
F= o M ar T 2 T o Mt 52 4 T
We substitute the process X; of (2.11) for dz to find
2
df = fdt—i—a—f(hdt—l— th)+§%(hdt+ath) o (2.13)

The first two second-order terms (those with dt? and dt dz) have been omited
as they yield only negligible products of differentials. The dz? term, however,
gives rise to a term with dW2. Due to the definition of the Wiener process,
this term has expected value dt and should not be neglected. This is exactly
the difference between the “ordinary” chain rule and It6’s lemma:

of f 32]”

dt L (hdt+od 2 L5 de 2.14

which follows from the limit of (2.13) as dt — 0.

The terms h and o in the equations above are known as the drift and dif-
fusion coefficients, respectively. Equation (2.11) may be generalized to a sys-
tem of n coupled stochastic differential equations. Wiener increments dW,
are now taken from m < n independent Wiener processes and o(Xy,t) is an

df*

m X n matrix.

12



2.4. Stochastic differential equations

2.4.1 Solutions to stochastic differential equations

When studying numerical solutions of deterministic differential equations in
Section 2.2, we could safely assume there was a unique analytical solution for
given initial conditions that we desire our method to match. With SDEs as in
(2.11), the solution can no longer be characterized by a single value as it is a
stochastic value at each time. We consider three different ways of providing
solutions to an SDE:

1. Monte-Carlo simulation,

2. evolution of expectations of observables, and

3. evolution of the probability density.

Monte-Carlo simulation

In Monte-Carlo simulation the goal is to generate trajectories with a speci-
fied probability distribution. The expectation of functions of the stochastic
process is then estimated by the average of that function for many such tra-
jectories.

When the stochastic term in the stochastic process depends only on the
current system state, Monte-Carlo trajectories can be generated step-by-step
similarly to how one would ordinarily simulate a deterministic dynamical sys-
tem.

As an example let us consider the Ornstein-Uhlenbeck (OU) process, a
well-known process that we use in Chapter 3. The one-dimensional OU pro-
cess is defined by

dXt :’Y(/,L—Xt) dt+0’th,

where p is the mean of the invariant distribution, v defines the strength of the
mean-reverting property and o is the diffusion, as before.

A time step of a stochastic process requires an expression for X, given
X;. Variation of parameters leads to such an expression by considering the
function f(Xs,s) = X.e7® and applying It6’s Lemma (2.14) and finding

df(Xs,s) =" dXs + v X’ dt = P yudt + o dW.

We integrate this from ¢ to ¢t + 7 and find
t+7 t+7
Xt+Te'Y(t+T) = X"t 4+ / e yudt + / e odW,
t t
and consequently
t+71
Xipr =X "+ (1 — ef'”) +e T / eV o dWs.
¢
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The remaining integral is evaluated using the It isometry [115] to arrive at

1—e27

Xy =Xee "+ (1 - 6777—) +0o >

R, (2.15)
where R ~ N(0, 1) is a unit normal, chosen independently for each time step.
A Monte-Carlo simulation of the Ornstein-Uhlenbeck process consists of time
stepping wusing equation (2.15), wusing independent wunit normal
(pseudo-)random numbers for R at each time step.

Estimates of expected values follow from averaging over an ensemble of
Monte-Carlo samples. For a deterministic function ¢(X) of the stochastic pro-
cess an unbiased estimator using n sample trajectories is given by

n

i=1

where the superscript denotes the index of the ensemble member. The ob-
servables ¢ can be instantaneous observations depending only on the current
system state, i.e. ¢(t) = g(X}), or functions of the entire process, e.g. correla-
tion functions. Initial conditions are sampled from the initial distribution of
the simulation, which may be a Dirac delta distribution.

In the absence of an exact solution for trajectories of the SDE there are
different possible strategies. The simplest approach is the Euler-Maruyama
method [81], similar to the Explicit Euler scheme of Section 2.2.2. It defines a
time step of the SDE (2.11) as

Xl = X7 4 h(X",nT)T + U(X”,nT)AW",

where the AW™ are increments of the Wiener process AW™ = W, 1), — Wi,
The increments can be taken from a given Wiener process, or generated as
independent (pseudo-)random numbers with mean zero and variance 7.

The Euler-Maruyama method converges to the exact solution (with the
same Wiener process) with order % Milstein [103] provides an improvement
using a correction term that increases the order of convergence to 1.

Evolution of observables

Given an SDE (2.11) the generator L is given by [58, 118]
Lv=h-Vv+ %JJT : VVo,

where the colon denotes the Frobenius inner product. For some observable
¢(t) = E [g(X¢)] we consider the function

u(a,t) = E[g(Xy)|Xo = a].

14



2.5. Information and entropy

This defines the expectation of an observable as a function of time ¢ and the
initial state Xy = x. The evolution of this expectation is given by the backward
Kolmogorov equation

% = Lu, for (z,t) € D x (0,00)

u = g(x), for (x,t) € D x{0}.

For an SDE with n degrees of freedom, the backward Kolmogorov equation
is an n-dimensional PDE. The complexity of such a system can be prohibitive
for finding numerical solutions.

Evolution of the probability density
We define an evolving probability density p(y,t) indicating the likelihood of
finding the state Y; near y; more precisely
PYieA) = / p(t,y)dy VA C D,t.
A
The evolution of the probability density starting from an initial density pg
is given by the Fokker-Planck equation® [58, 118]

% = L"p for (z,t) € D x (0,00)

P = po, for ($7t) €D x {O}a

where L£* is the adjoint of the generator £. For the SDE (2.11) it is defined by
1
Lp=-=V-(ph)+ §V V- (poc™).

As with the backward Kolmogorov equation this is an n-dimensional PDE.
Numerical solutions representing the evolution of the measure in time are
therefore typically not feasible. But the equation is useful for finding invari-
ant measure of the process, as these are solutions to L*p = 0. In Section 2.6
the backward Kolmogorov equation is used to construct processes that have a
desired measure as their invariant.

2.5 Information and entropy

The Shannon information entropy, or just entropy, is used as a measure for
the amount of information in a system when the likelihood of states is given
by the density p(y).

Slp] = - /D p(y)Inp(y) dy

or: forward Kolmogorov equation

2
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2. Background

Orderly states are described using less information, whereas the description
of a disordered state requires more information. With the assumption that —
without other knowledge about the state — it is more likely to find a system
in a disorderly state, the most likely state is found as the maximizer of the
Shannon entropy. This maximizer is constrained to the normalization of the
probability density function

/D ply)dy —1=0. (2.16)

This constraint is enforced by introducing a Lagrange multiplier A\ in the
maximization

p = arg max (S[p]—/\o (/ pdy—l)). (2.17)
p D

The solution to this variational problem is In p+ Ao +1 = 0, with )¢ defined by
the normalization (2.16). For systems with compact phase space, this results
in
1
W) = oy

when D is unbounded, additional constraints are required.
If one has further knowledge on the state of the system, this is character-
ized by expectations ¢, of observables Cy(y) for k =1,2,..., K:

E[Cy] = /D Ci(w)p(y) dy = .

Such knowledge on the system state modifies the entropy maximization in
(2.17) to include a Lagrange multiplier for each of the observations

p = arg max <S[p] ~ o (/Dpdy 1> é)\k (/Dckpdyck)> .

The maximizer p that follows from this has the form

K
p(y) = exp (—Ao -3 Aka(y)> : (2.18)
k=1

The values for the Lagrange multipliers are typically no longer available in
closed form in this setting. Instead, they must be found via more involved
methods. One such approach is detailed in Section 3.2.

The well-known canonical distribution® specifies the likelihood of states for
a system with fixed number of particles, fixed volume and fixed temperature.
Its probability density function is given by

pc(q,p) = Z e PH(aP) (2.19)

3or: Gibbs distribution

16



2.6. Sampling

where Z is the canonical partition function that acts as a normalization. This
distribution was not originally proposed through the use of entropy maxi-
mization; however, it is in fact the maximal entropy measure for a system at a
prescribed mean energy.

In certain situations there is also prior knowledge on the likelihood of
states given in the form of a prior distribution 7 (y) over the phases space D.
In this case, rather than maximizing the Shannon information entropy, con-
strained by observations and normalization, it is natural to seek a distribution
that is in some sense “close” to the prior distribution. One way of assigning
a distance between two measures is provided by the Kullback-Leibler diver-
gence

P(y)
Sl = [ ol in 2% ay.
The definition sometimes includes a minus sign for similarity with the Shan-
non information entropy, but we do not include it such that the value is more
readily interpreted as a distance between two distribtions. It is not a true dis-
tance however, because S[p, 7] # S|, p|, but it does satisfy that S[p, ] = 0 if
and only if p = 7 and that it is positive otherwise.

The relative entropy is used in the same way as the Shannon information
entropy, except now the quantity is to be minimized given constraints due to
observations. With the same observables C}, used for (2.18), the density with
minimal distance to the prior is given by

K
p(y) = exp <—;\o -3 ;\ka(y)> m(y).
k=1

This result differs from that in (2.17) by the inclusion of the prior distribution
and the values of the Lagrange multipliers. We stress this by adding a tilde to
these Lagrange multipliers.

2.6 Sampling

In situations where the probability density of a system is known from some
source of observational or theoretical knowledge, it is useful to be able to
generate an ensemble of samples according to this distribution. This task
is simple for some distributions, such as uniform, Gaussian or exponential
distributions, where samples can be generated via transformation of a set of
(pseudo-)random numbers with uniform distribution. For more involved dis-
tributions, such as (2.19) with arbitrary potential, we require more elaborate
sampling techniques.

We discuss two different classes of methods: Markov-chain sampling and
sampling with a modified dynamical system. Both methods construct stochas-
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2. Background

tic processes that have the desired measure as an invariant. The former con-
structs a discrete-time process. The latter is a modification to a known dy-
namical model for the system. Before discussing these strategies in detail, we
introduce the concept of ergodicity, which plays an important role in sampling
techniques.

2.6.1 Ergodicity

Loosely speaking a dynamical system is ergodic if any trajectory visits all of
the phase space. To state this more precisely, let us first define the concept of
an ergodic set. Given a process X with the phase space D with sigma-algebra
G, an ergodic set A € G is a set for which it holds that if X, € Athen X; € A
forall ¢ > 0.

The union of two ergodic sets A;, Ay is also an ergodic set A3 = A; U As.
There may also be ergodic sets A5 = A4 U By that are the union of a smaller
ergodic set A4 with a transient set B4. The transient set By is such that if
Xy € By, then for s — oo, X; € Ay for any t > s with probability 1. In other
words, a transient set is a set that the process will almost surely leave and
never revisit. Let us call any ergodic set that cannot be decomposed in any
such manner a minimal ergodic set.

A process X is ergodic with respect to the measure v : G — Rif all minimal
ergodic sets C' € G have either v(C) = 0 or v(C') = 1. This implies initial
conditions drawn according to v will, with probability 1, start in the minimal
ergodic set with measure 1. The trajectories subsequently visit almost all of
the phase space®.

A consequence of a system being ergodic is that the time it spends in a
certain set A € G is proportional to the measure v(G), to be precise

N
. 1
ngnoo N Z:l 14(Xpr) = v(A), for almost any 7, X,

where 14 is the indicator function for A4,
1 ifzecA
La(z) .
0 ifxé¢ A

From this it follows that time averages of observables C' : D — R of the
stochastic process equal ensemble averages with respect to the measure v:

_ 1 &
C:= lim —ZC(XM):/DC(x)dV(x) = (C). (2.20)

N—oo N

This shows that a stochastic process that is ergodic with respect to a measure
v can be used to produce ensemble averages by computing time averages.

4All of the phase space with the exception of the minimal ergodic sets with measure 0.
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In the case of a continuous time process, the summation in (2.20) is re-
placed by an integral and we have

C:= lim C (Xy)dt = / C(z)dv(z) .= (C).

T—o0 0

2.6.2 Markov chain sampling

A Markov chain is a Markov process with discrete times, see Section 2.3. The
methods we use for constructing Markov chains are all applications of the
Metropolis-Hastings algorithm. This algorithm constructs a Markov chain
that has the desired target density as its invariant measure [127]. Each step
consists of generating a proposal for the next state and a decision to accept or
reject this proposal. For sampling a density p using a proposal P[y|z] = ¢(z, y),
this results in Algorithm 1.

Given the current state X,
Generate proposal Y ~ ¢(X,,,y).
Generate U ~ 1(0,1) and deliver

)

Y iU <a(X,Y)
Xn—i—l - .
X, otherwise

where

— min [ PWaly, @)
olz.9) = (phﬂq@ayyl>'

Algorithm 1: Metropolis-Hastings algorithm

Iteratively applying Algorithm 1 generates a sequence X;, Xs,... of de-
pendent random variables. Successful implementation of this approach hinges
entirely on the choice of a good proposal probability ¢(y, ).

A particular type of Metropolis-Hastings algorithm is given by a random
walk sampler. Here the proposal is given by

Y =X, + 7,

where Z is taken from a suitable symmetric distribution. In this case the
probability ¢(y,x) = ¢(x,y) and the accept-reject step depends only on the
ratio of probabilities of the system state, i.e.

o) = min (248.1).

We use a random walk sampler in Chapter 3 for sampling point vortex
system states on the sphere according to a given density. Here we generate
proposals by selecting a number of vortices and moving them over the sphere.
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2. Background

When generating the initial conditions for the point vortex simulations in
Chapter 3, we use a similar strategy, but with a modified accept-reject step to
approach a system state with prescribed energy and momentum.

2.6.3 Sampling with dynamics

It is common practice in molecular dynamics to perturb the canonical Hamil-
tonian system such that simulations of the resulting dynamical system or
stochastic process (depending on the perturbation) produce samples accord-
ing to a desired distribution. In molecular dynamics the goal of these per-
turbations is usually to maintain the temperature by sampling the canonical
distribution of (2.19). Because of this application, these perturbations are
dubbed thermostats. We choose to refer to them as thermostats throughout
this thesis for want of a better name, even if their function is no longer to
maintain a given temperature but to enforce some other desired distribution.

The Langevin thermostat

In molecular dynamics the systems of interest are typically canonical Hamil-
tonian systems. The Hamiltonian is separable into a kinetic term given by
K(p) = p"M~1'p, with M the mass matrix, and some potential V(g). A
Langevin thermostat adds a stochastic perturbation to the equation for the
momenta as follows

dg=M"1pdt
-1 2y
dp=-V(q)dt —yM "pdt + i dw,

where W is a vector of n independent Wiener processes. The result is a dy-
namical system that has the canonical distribution (2.19) as its unique invari-
ant measure.

Langevin thermostats are easy to implement and relatively robust in the
sense that their ergodicity is not subject to a careful choice of parameters.
However, the perturbation to the dynamics is substantial. Even in the limit
~ — 0, autocorrelation functions of the system are not recovered [54]. Furhter-
more, the perturbation may disrupt structural properties of the original sys-
tem that are ideally maintained by the dynamical sampler.

2.6.4 Gentle thermostats

An alternative approach first introduced by Nosé [113, 114] and later im-
proved by Hoover [70] involves adding a separate thermostat variable £. The
phase space D is then embedded in the larger D* = D x R and the canonical
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measure p. is augmented to

p(a,p.€) = pe(q,p)e™*". (2.21)

The thermostat variable thus has a unit normal distribution, independent of
the system state. Extended systems with this invariant measure will result in
the desired marginal distribution for the variables (g, p).

The Nosé-Hoover thermostat is constructed to have the augmented distri-
bution (2.21) as an invariant measure. The equations of motion read

dg=M"1pdt
dp=-V(q)dt — eipdt
dé =¢ (5pTM*1p - n) dt.

While this system has the extended measure p} as an invariant measure, this
is not a unique invariant measure. This lack of ergodicity is resolved by in-
cluding a stochastic perturbation in the equation of motion of the thermostat
variable £ [87]. This results in the Nosé-Hoover-Langevin thermostat

dg=M"1pdt
dp=-V(q)dt — e&pdt
d¢ = (Bp" M 'p—n) dt —ydt + /2y dW,

where W is a one-dimensional Wiener process. The “gentleness” of these ther-
mostats stems from the fact that the stochastic forcing required for ergodicity
is added to auxiliary variables only. As such, the dynamics of the system state
(g, p) remain close to the original dynamics [54].

This method is generalized to a wider class of systems by the Generalized
Bulgac-Kusnezov (GBK) method [44]. For an arbitrary system with divergence-
free f we write

dy = f(y)dt + £g(y) dt
dé =V - g(y) — g(y)VA(y) — v¢ + /2y dW.

This will sample the extended measure p* ~ ¢~A®)~2¢" for any A(y) that is a
first integral of f,i.e. VA- f = 0. Note that such functions can be constructed
by taking A(y) = A(H(y),11(y), I2(y), . ..), such that it is only a function of y
through known first integrals of f, as mentioned in Section 2.1.1. The system
may also be extended with multiple thermostats &,,,, for m € {1,..., M}, each
with its own perturbation field g,,. In this case, the thermostated system of
SDEs reads

M
dy = f(y)dt+ Y Emgm(y) dt

m=1

d&m =V gm(Y) — gm(Y)VA®Y) — Ymém + V/29m dWip,.
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Ergodicity of this sampling scheme depends on the choice for the pertur-
bation fields g,,,. We shall construct stochastic processes such that a given
measure is an invariant measure to the Fokker-Planck equation associated to
the thermostated system. If this measure is strictly positive everywhere, then
ergodicity is proven by hypoellipticity of the operator £* [63].

Hypoellipticity of the Fokker-Planck equation follows from Hormanders
theorem. For a GBK thermostat applied to a system with phase space R,
this theorem holds true under the following modified Hérmander condition
(87, 8]:

R? e span L(f,91,---,9m)-

Here L(go, ¢1,--.,9m) denotes the ideal of the vector fields g,, with m > 0
within the Lie-algebra generated by all of the g,,, reading

L(QOagla cee 7gJM) = {gmm [gmoagml] [gmm [gmlagmg]] 5. -}7

where mg takes valuesin {1, ..., M} and the other m;, take valuesin {0, ..., M}.
The bracket [, -] denotes the commutator between two vector fields.

A particularly interesting choice for g(y) is to use g(y) = J2(y)VH(y).
This choice ensures that Casimirs of the original system are not affected by
the thermostats perturbation. This “double-bracket thermostat” is used in
Chapter 3, where the Casimirs are crucial to the system of interest.

2.7 Fluid dynamics

Much of this thesis deals with the application of thermostats in fluid dynam-
ics settings. As the fluid models are used as is, we do not explain them further
here. Instead, we refer the interested reader to a number of monographs re-
garding specific aspects of fluid dynamics.

A good introduction to aerodynamics in general is provided by Anderson
[5] and Chorin et al. [29]. Turbulence in both two and three dimensions is dis-
cussed by Frisch [56], who presents the seminal work of Kolmogorov from the
forties in a modern way, and also by Holmes et al. [69] and Davidson [34]. Tre-
fethen [138], Canuto et al. [23] and Boyd [17] detail the spectral discretization
of fluid flow. Wavelets present an alternative to spectral methods, that retain
local information too [101]. Geophysical fluid flows are discussed extensively
by Pedlosky [119] and Majda & Wang [95]. The Hamiltonian structure of
(two-dimensional) fluid flow is derived by Salmon [131] and Swaters [136].
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3. Least-biased correction of dynamical systems using observational data

3.1 Introduction

In many applications of modern computational science the physical laws (and
equations of motion) are well established yet the detailed behavior is unpre-
dictable on long time scales due to the presence of deterministic chaos. Exam-
ples of this arise in molecular dynamics modelling [4, 133] and in the study
of turbulent fluids in the atmosphere and ocean [69, 34]. For these prob-
lems, long simulations are routinely run, despite the lack of predictability, in
the hope that the resulting simulation will yield useful statistical knowledge
(e.g. the statistics of rare transitions between basins in molecular dynamics,
or slow relaxation processes in fluids). We refer to this approach as dynamical
sampling, where the name is suggestive of the typical requirement that simu-
lated paths are sufficiently accurate to allow the computation of measures of
dynamical mixing such as two-point temporal correlation functions [66].

In Hamiltonian systems such as molecular dynamics, it is common to run
canonically prepared ensembles of microcanonical (i.e. constant energy) sim-
ulations in order to minimize the perturbation of dynamical properties. For
such systems, backward error analysis [62, 86] suggests that the global behav-
ior can best be understood not as the approximation of particular trajectory
but rather as an accurate path for a perturbed continuum process described
by modified equations. In the case of dynamic sampling of complex systems,
the statistics of simulation data are therefore biased in that they sample an
invariant measure of the modified equations, i.e. bias arises as an artifact of
time discretization. Statistical bias may also arise due to spatial discretiza-
tion. For example, in the setting of geophysical fluid dynamics, a comparison
of discretizations of the quasi-geostrophic equations reveals that the long time
mean potential vorticity field and pointwise fluctuation statistics are heavily
dependent on discrete conservation laws such as energy, enstrophy, and ma-
terial conservation of vorticity [2, 42, 43]. It is usually impossible to construct
numerical discretizations that automatically preserve all conservation laws of
statistical relevance for a given problem, so the discretization necessarily per-
turbs the statistical distribution. The discretization bias may be reduced by
refining the discretization or by incorporating a Metropolis condition [100],
but such techniques also typically lead to an increase in computational over-
head, which may be unacceptable in large scale applications.

The combination of the need for computations to address both the sta-
tionary constraint (“nearness to the steady-state distribution”) and to provide
accuracy with respect to dynamical processes poses difficult challenges for
the simulator. In this paper we consider an approach to perturbing dynamics
to correct statistical bias in systems at statistical equilibrium. If the statis-
tical distribution is completely specified via a probability density function
(pdf) it can be sampled using a “thermostat.” Such thermostats, originating
in molecular dynamics, can be extended to handle both smooth [11] and non-
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smooth [10] densities and to treat noncanonical Hamiltonian systems. In [44],
a thermostat was used as a model reduction technique for a vortex model of
a fluid (suppressing the detailed interactions of a few strong vortices with
a weak vortex field). In another recent article [39], thermostats have been
suggested as a means of sampling incompletely specified systems (with noisy
gradients), with applications in learning theory. The standard framework of
thermostating used in these and other applications assumes a fixed, known
distribution such as the Gibbs-Boltzmann distribution. In this article, we as-
sume that, instead of the pdf, what is available is a partial set of expectations of
observables with respect to the unknown invariant measure, which may arise
from experiment or other types of modelling. In this setting, information the-
ory (in particular entropy maximization [73, 74]) offers tools for constructing
least-biased densities, close to some known prior distribution, which are con-
sistent with observations. The iterative method (based on [3, 64, 35]) involves
computation of Lagrange multipliers (one for each observable) that modify
the probability density. The Lagrange multipliers are computed using an it-
erative procedure in which each stage represents an ensemble average (with
respect to the previous estimate of the density). To make the method practical
in situations where the sampling is costly, we consider an adaptive procedure
which uses only short-time ensemble bursts to gradually tune the parameters
in simulation. At the same time, we are able to show in numerical experiments
that autocorrelation functions are only modestly perturbed meaning that we
would expect to be able to recover dynamical information such as diffusion
and other transport coefficients.

We emphasize that the framework of least-biased estimation is well known
but applied here in a novel way. A related technique is used by Majda and
Gershgorin [94] to develop a framework for validating computational mod-
els and choosing the optimal linear combination of an ensemble of model
outputs, so as to minimize the discrepancy between the ensemble distribu-
tion and the least-biased estimate, arguing that the latter is the best available
measure for comparison, when the true invariant measure is unknown. With
the approach we develop here, we enforce exact adherence to the least-biased
measure, which is constructed automatically in simulation, by perturbing the
dynamics to take full advantage of available information.

The remainder of this article is organized as follows. In the next section,
we discuss the maximum entropy framework for correcting the density to re-
flect thermodynamic constraints. We apply and evaluate the method in the
setting of a system of point vortices on the surface of a sphere, which rep-
resents a simple geophysical model with multiple statistically relevant first
integrals.
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3. Least-biased correction of dynamical systems using observational data

3.2 Bias correction method

Our interest is in extended dynamical systems with many degrees of free-
dom that evolve near statistical equilibrium. Further, we imagine that we are
given a simplified dynamical model for the evolution of some projection (i.e. a
“coarse graining”) of the phase variables (coarse grained variables y(t) € R%)
. Although the original system is complex and its details unknown, we as-
sume that we can obtain in some way (e.g. through measurement) a collec-
tion of “observations” of mean values of functions of the reduced variables.
That is there are functions Cj, : R — R, k = 1,2..., K and given values cy,
k=1,2,..., K, such that

o = (Ouly)), k=1,....K, (3.1)

where (Cj(y)) represents averaging with respect to the true, empirical invari-
ant measure of the dynamical system. Our goal is to find a perturbed dynami-
cal model for the reduced variables which (a) is compatible with the indicated
thermodynamic constraints (3.1), and (b) weakly perturbs the dynamics com-
pared to those of the native model.

Empirical information theory generalizes the principle of insufficient rea-
son, by proposing the least-biased probability density consistent with a set
of observations. See the classical work of Jaynes [73, 74], the monographs
[64, 38] and an extensive treatment in the geophysical fluid context in the
monograph by Majda and Wang [95]. The least-biased density is defined as
the probability density p(y) that maximizes the information entropy func-
tional

sz—émwmmwm

subject to a set of constraints given by observations. When D is a compact
set and there are no observations, the minimizer is the uniform density p =
|D|~!. The entropy S is the unique measure of uncertainty that is positive
valued, monotonically increasing as a function of uncertainty, and additive
for independent random variables. With observable functions {Cy(y)|k =
1,2,... K} let

quéﬂwmwy (3.2)

denote expectation in the (as yet undetermined) density p. Defining Lagrange
multipliers A\;, ¥ = 1,..., K, associated with the observables C%, the con-
strained minimization problem is

K
p = argmax lS[ﬁ] = > (BpCrly) — cx)
k=1
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3.2. Bias correction method

When it exists, the maximum entropy solution satisfies

py) = Aoexp (—MC1(y) — -+ = AxCk (y)),

where ) is chosen to satisfy [, pdy = 1, and Ay, is chosen such that E,Cy,(y) =
Ck.

In some cases, besides the observations, we may be given prior statistical
information on the process y(t). The Kullback-Leibler divergence, or relative
entropy,

Slp(y)] = /p(y) lnf;g; dy

which represents a (non-symmetric) distance between measures. It quantifies
the information lost in approximating p(y) by 7 (y).

Suppose y is a random variable with distribution (law) y ~ p, where p is
unknown. Suppose further, that we are given a prior distribution 7, presumed
to be close to p, and a set of K observations (3.13). Following Jaynes [73, 74],
the least-biased distribution p consistent with the observations c; and prior =
solves the constrained minimization problem

p = argmin [S - o <1 - /p(y) dy> - éAk (% - /Ck(y)p(y) dy)] ,

where the A, are Lagrange multipliers to enforce the condition that the expec-
tations (3.2) agree with the observations (3.13). The solution to the variational
problem is

p(y) = Xoexp (=MCi(y) — - — Ak Ck(y)) m(y), (3.3)

where the Lagrange multipliers \; are chosen consistently with the observa-
tions (3.13) and )¢ is a normalization constant so that p is a probability density
function.

Methods for determining the Lagrange multipliers are discussed in [3, 64,
35]. We use the following algorithm based on re-weighting. Assume we are
given a sequence of samples y”, n = 1,..., N, distributed according to a
known prior distribution 7 (y), i.e. y” ~ m. The expectation under 7(y) of
a function ®(y) has the consistent and unbiased estimator

N 1 &
¢ = — O(y™).
N; ")

Given the posterior distribution p(y) of the form (3.3), compute the expec-
tation E,® by re-weighting of the integral

E,® = /<I>(y)p(y) dy = AO/@(y)e‘ X MCWn(y) dy

= MEA{®(y)Aoe™ Tt XiCi(y) 1,
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3. Least-biased correction of dynamical systems using observational data

yielding an unbiased estimator for E,® given by

Ao S ny o — 38, MCiy™)
=N Z Dy")e” &i= .
n=1

We wish to ensure that the observations c;, satisfy

N
o A .
cw=Cf =5 D Culy"e Zm MWD =1 K.

n=1

We can use this fact to define a Newton-Raphson iteration to determine the
Lagrange multipliers A;. Define the residual r with components

N

with A = (Aq,..., k) and r = (r1(N),...,rk(N)). Note that Ao can be viewed
as a function of A1, Ao, ..., A\g chosen from the normalization condition, i.e.,

N —1
Ao = [Z T, Ajcj(y")] .
n=1

The Jacobian matrix J = (Jj;) of the vector function r is determined as

N

B .

Tij(A) = L'f = —]\(f’ y (e ZEA NG k=1, K.
] n=1

The iteration then proceeds as A>T <— \* — J=1(A¥)r(\®).

3.2.1 Adaptive determination of Lagrange multipliers

In many cases it will be difficult or costly to carry out a complete sampling of
the distribution at each iteration step of the Newton procedure. Moreover, the
standard framework excludes applications where (i) the statistical knowledge
is expected to improve as the simulation progresses, (ii) the average observ-
ables are known to vary slowly with time, or (iii) it is unfeasible to constuct
a large enough ensemble distributed in the prior. For these cases we consider
using the simulation data of a small ensemble (propagated in short bursts
of M timesteps) for updating the Lagrange multipliers for mean observation
data. This results in an adaptive algorithm for obtaining the Lagrange multi-
pliers “on-the-fly” during simulation.

Consider the following: an ensemble of P simulations (preferably with
initial conditions distributed close to 7(y)) is advected M At in time, where
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3.2. Bias correction method

M is chosen sufficiently large such that the ensemble members sample 7 well.
These ensemble members can be used in an estimator for Ey:C}, given by

P

K
Z e (YB)AG exp (—ZA}Q(%)), k=1,...,K,
i=1

where the superscript (1) indicates that it is an estimator for a distribution
with Lagrange multipliers A;. A Newton-Raphson iteration to find the first
set of Lagrange multipliers such that observations match data has the residual

P K
~ 1
= C’]il)—ck = FZCk(yg))\é exp (—ZA%CAyS)) —ck, k=1,...,K.
i=1

p=1

Using this updated value for A the simulations will sample the distribution
poxe” Y% Mei®) after some time MACL. (See below for some practical issues
associated to this.) Using these samples alongside the initial data, )\? is found.
Iteration of this process leads to the following equation

=G -
1 P m-—1 K
~ P 2:1 Z Ck(ng)/\g exXp (Z(/\i - /\;”)Cj(ny)> —cx, (3.4)
p=1 £=0 i=1

where we remind that, at each stage of iteration, )\6 is a function of the mul-
tiplier vector A (indices 1...K). In the calculation (3.4) A},...\% would
ideally be zero. There are cases where it is impossible to obtain an accurate
initial distribution according to the prior, in which case the initial Lagrange
multipliers can be chosen different from zero if initial conditions sampling
TG exp (— Y., A2Cy) are easier to find than those sampling just the prior .
Solutions of (3.4) are found using Newton-Raphson iteration. The gradient is
given by

gpm | Pom=l K
a)\]:n P Z Z Cr (Yo C5 (Uhh) A6 exp (Z()\i - )\Zn)ci(ny)> , (3.5)
j L p—— i=1

for all j,k = 1,..., K. In this way the Lagrange multipliers may be found
“on-the-fly.”

As a convergence result let us consider the case where both P and M may
be chose arbitrarily large. For P — oo the Lagrange multipliers computing
using only the initial data sampling the prior will be correct. Given suffi-
ciently large M the samples after evolving the thermsotated system Mdt in
time will accurately sample the distribution corresponding to these Lagrange
multipliers. The ensemble averages will then correspond to the observations,
and the Lagrange multipliers no longer need updating.

29



3. Least-biased correction of dynamical systems using observational data

Adaptive algorithm

There are two important practical modifications to the algorithm described
above that are included in the numerical implementation of this method:

* The first modification is limiting the rate of change of the Lagrange mul-
tipliers. If the Lagrange multipliers change rapidly, the thermostat may
require a long time to equilibriate. This requires a larger value for M, in-
creasing the simulation time required before including new samples. The
effect is especially noticable at the beginning of a simulation, due to two
factors: (i) the small sample size leads to inaccurate expectations for the
observables, and (ii) the Lagrange multipliers may be far from their cor-
rect value. By limiting the rate of change of the Lagrange multipliers, these
problems are circumvented.
The second modification regards the number of samples included when up-
dating the Lagrange multipliers. In equations (3.4) and (3.5) all previous
values ), are included. In a long simulation, this leads to a growing com-
putational demand. By taking only a fixed number (q) of recent steps the
computational demand can be reduced. In the case that the initial samples
cannot accurately be drawn from the prior, this has the further advantage
that these inaccuracies are eventually forgotten.

The algorithm, including these practical modifications, is summarized in
Algorithm 2.

Given initial conditions according to prior 7(y)
Set initial Lagrange multipliers to zero
for m <~ 1ton do

for j «+ 1to M do
advance simulation one time step using current value for the

Lagrange multipliers
end
store relevant simulation observables for time step mM.

while | (Ci(y)), — cx| > tolerance do
compute residual using re-weighted samples at times

M x mazx(m — q,0),...,mM
compute residual gradient using the same data
update Lagrange multiplier estimation
end
limit the change in Lagrange muliplier (if necessary)
end
Algorithm 2: Adaptive determination of Lagrange multipliers “on-the-fly”
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3.2. Bias correction method

3.2.2 Thermostat

We introduce the bias-correction methodology for a Hamiltonian dynamical
system

% = f(y)=B(y)VH(y),  y(t)eD, Bly)=-B(y)", H(y): DR,
(3.6)

possessing a divergence-free vector field! V - f = 0. Invariance of the Hamil-
tonian H along solutions of (3.6) follows from % H(y(t))) = VH - f%’ =VH -
BVH = 0, due to skew-symmetry of B(y). Additional first integrals are
often present: I;(y) : VI, - f = 0, £ = 1,...,L. In this paper we con-
sider only the case where all observables of the physical process )(t) corre-
spond to functions of the conserved quantities {H,I;,{ = 1,..., L}, that is,
Ci(y) = Cu(H(y), [i(y)s - I(y), k=1,... K.

Thermostats are used in molecular dynamics to model the trajectories of
molecules in a fluid at constant temperature. From statistical mechanics, it is
well known that the trajectories of a system of particles in thermal equilib-
rium with a reservoir at constant temperature sample the canonical or Gibbs
distribution, which has global support. The governing equations are Hamil-
tonian, however, implying that the trajectories are restricted to a level set of
Lebesgue measure zero. Hence, to model a system at constant temperature,
it is necessary to perturb the vector field to make trajectories ergodic with re-
spect to the Gibbs distribution. The most common way of achieving this is
by adding suitable stochastic and dissipative terms satisfying a fluctuation-
dissipation relation (Langevin dynamics). An advantage of Langevin dynam-
ics is provable ergodicity with respect to the Gibbs distribution [97]. How-
ever, DelSole [37] warns that direct stochastic forcing of trajectories leads to
inaccurate dynamical quantities since autocorrelation functions are strongly
perturbed. For smooth deterministic Hamiltonian dynamics, normalized ve-
locity autocorrelation functions are of the form 1 — ¢72, ¢ > 0 in the zero-lag
limit 7 — 0, whereas the autocorrelation of a variable that is directly forced
by white noise must take the form exp(—«7), £ > 0 in the same limit. This
implies that the direct stochastic perturbation leads to auto-correlation func-
tions that have nonzero slope and opposite curvature at zero lag.

An alternative approach, pioneered by Nosé [113, 114] and Hoover [70]
proceeds to augment the phase space by one dimension through coupling of
(3.6) to an additional thermostat variable £(¢). The dynamics of £ are con-
structed to ensure that the extended dynamics on R4+ preserves an equilib-
rium density whose marginal on R? is the target (e.g. Gibbs) density. The fully

IThe latter condition is automatic for systems (3.6) with constant B. Strictly speaking, the
approach described here is applicable to any system with divergence-free vector field V - f = 0
possessing one or more first integrals.
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3. Least-biased correction of dynamical systems using observational data

deterministic thermostats of Nosé and Hoover have no mechanism to guaran-
tee ergodicity with respect to the target density, and hence have been modified
by various authors who include stochastic forcing of the thermostat variable &,
leading to the so-called Nosé-Hoover-Langevin method [132, 87, 88]. A gener-
alization to generic Hamiltonian systems is the Generalized Bulgac-Kusnezov
(GBK) [85, 22] thermostat:

dy = f(y)dt + Eeg(y)dt
d¢ = eh(y)dt — v&dt + /27 dw,

where ¢ > 0 and v > 0 are parameters, w(t) is a scalar Wiener process, and
g and h are discussed below. Given a target density p(y) x exp(—A(y)), A :
D — R, denote the augmented product density by 5(y, &) = p(y) - n(€), with
/4 a univariate normal distribution with mean zero and standard deviation
one. It is easily checked that p is stationary under the Fokker-Planck operator
associated with (3.7) provided

(3.7)

h(y)=V-g—g-VA.

Furthermore it is argued in [10] that the target measure is ergodic provided
the vector fields f and ¢ satisfy a Hormander condition. In some cases it is
also desirable to use the freedom in choosing g to ensure preservation of some
first integrals of the vector field f. We will see an example of this later in this
paper.

The parameter ¢ can be used to control the relative strength of the ther-
mostat compared to that of the unperturbed vector field f. This will affect the
rate at which the invariant measure is sampled, but has no influence on the
measure itself. It has been proved in [88] and observed numerically in [9, 10]
that GBK/NHL thermostating leads to a weak perturbation of the original
trajectories in the sense that autocorrelation functions preserve the leading
terms, i.e. have the form 1 — ¢r2 + O(73), as 7 — 0. The GBK thermostat is
applicable when the vector field f is divergence free V - f = 0 and when the
target density p is a function of first integrals of f.

We therefore propose (1) constructing a least-biased information theo-
retic target density based on observations of functions of conserved quantities
(with or without prior distribution), followed by (2) thermostated perturba-
tion of dynamics to ensure sampling of the target distribution with a GBK
thermostat. The thermostating method is incorporated into Algorithm 1 to
provide the scheme for sampling the adapted, data-dependent distribution.

3.3 Application to reduced modelling of point vortices

In this section we apply the least-biased correction methodology to the sim-
ple model of point vortices on the sphere. We choose this model because it
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3.3. Application to reduced modelling of point vortices

has a Poisson structure and multiple conserved quantities, including total en-
ergy and angular momentum and a set of Casimirs, with various degrees of
statistical significance. Although one can construct a point vortex approxima-
tion of quasi-geostrophic potential vorticity dynamics, we ignore the effects of
topography and finite deformation radius for computational simplicity.

3.3.1 Point vortex system

A simple conceptual model of the atmosphere is given by the quasigeostrophic
potential vorticity equation on a rotating sphere:

%ZE%—Q—ngradq:Q divu =0, ¢q=curlu+ fo+ h, (3.8)
where ¢ denotes the potential vorticity, u is the velocity field in the tangent
plane, assumed divergence-free, fo = 2{2sin 6 is the local Coriolis force, and h
is the surface topography.

The vortex approximation of (3.8) is well known. For algorithms and anal-
ysis of the dynamics of point vortex systems, see the books [109, 93]. For ad-
vanced modelling and convergence analysis in the continuum limit, see [32].
For numerical computation with point vortices, it is advantageous to embed
the sphere in R3. In the sequel we will denote vectors in R? by bold type. For
simplicity we neglect topography, taking h = 0, under which assumption the
quasigeostrophic model is equivalent to the 2D Euler equations. We may then
also ignore rotation (i.e. fo = 0) as it gives rise to a trivial rigid body rotation of
the ensuing point vortex system [109]. Since the velocity field is divergence-
free in the tangent plane, it can be represented in terms of a stream function

1 as
u==kx V¢

where k is the unit normal vector on the surface of the sphere. The poten-
tial vorticity and stream function are related by Ay = ¢ — fo — h with A
the Laplace-Beltrami operator (from which it is apparent that topography, if
included, would lead to a nonhomogeneous background term in the stream
function).

A point vortex system is constructed by taking the vorticity field in (3.8)
to be a sum of Dirac distributions

M
q(l’,t) = ZI‘Zd(w - zi)a
=1

where I'; is the vortex strength or circulation of the ith point vortex. The point
vortices induce a stream function ¢ (x) = Y, 721 In (2 — 2@ - z;(¢)) as a sum
of Green’s functions of the Laplacian. The unit normal on the sphere is given
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3. Least-biased correction of dynamical systems using observational data

by k = x/|x|. Because vorticity is materially conserved in the velocity field,
the motion of point vortices is given by &; = u(x;), i.e.,

:clzazzwi(%) i:172a"'7M7

where a unit sphere will assumed. The equations of motion may also be writ-
ten as a Hamiltonian system with Lie-Poisson structure

Fl$1:a)1><vmlH Z:1,2,,M, (39)

where the Hamiltonian, defined by H = [, 3|u|*dz, is given by

M-l
ZZ A n ( Ty x])
=1 j=1
By introducing y = («{,z1,... ,wﬂ)T, equation (3.9) can be written in

the more compact form (3.6) with the block-diagonal structure matrix

Fflil
|
B(y) = . :

1~
F]w LM

where Z; denotes the 3 x 3 skew-matrix satisfying Z;a := x; X a, for all a € R3.
The Poisson bracket for the system is given equivalently by

M
(F.G) =Y 1 VaF (@i x VaiG) or {F.G) = VF) By)VG()

This Poisson structure is a generalization of the rigid body Poisson structure
and also occurs in ferromagnetic spin lattices [49, 53, 55] and elastic rods
(e.g. [78]).

The vortex positions are defined in Cartesian coordinates, but initial po-
sitions x;(0) are chosen on the sphere. Because each |x;| is a Casimir of the
Poisson bracket it is ensured that the vortices remain on the sphere. This
restricts the effective phase space of the system to the direct product of M
spheres S2. Furthermore, the rotational symmetry of the sphere gives rise
to three Noether momenta, which are expressed by the angular momentum
vector

M
J = Zrm_ (3.10)
i=1

When studying the statistics of point vortices on the disk, Biithler [21] did not
observe the (planar) angular momentum to be of great importance. On the
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3.3. Application to reduced modelling of point vortices

sphere, however, the angular momentum does play an important role in the
statistics.

The GBK thermostat (3.7) is only applicable to nondivergent systems V -
f = 0. Itis straightforward to check that this condition holds for the spherical
point vortex model.

3.3.2 Time integration

A numerical integrator can be constructed by splitting the differential equa-
tions into integrable subproblems (see related ideas in [144, 117]). We de-
velop a new integrator for the system in Chapter 4 which exactly preserves
all Casimir functions of the system. Furthermore, backward error analysis
for symplectic integrators can be extended to Poisson systems to explain ap-
proximate conservation of the Hamiltonian [62]. Due to the additive form of
the angular momentum vector (3.10), it may also be preserved exactly using
a pairwise splitting. By expanding the Hamiltonian into its pairwise terms in
the dynamics we find

Iy

j=By)VH(y) =Y By)VHi(xi,x;), Hij= o

i<j

1 (2—2%1' 'l’j)

Each pairwise interaction is represented by the dynamical system y = BV H;;
with the associated time-At flow map ¢%,. The time-At flow map of the dy-
namics BV H may be approximated by a symmetric composition of pair flows

Par = H ‘1521/2 H ¢At/2’

(i,5)€C (i,5)eC*

where C'is an ordered set of all possible pairs (4, j) with ¢ < j and C* denotes
the reverse ordering. This symmetric splitting yields a consistent numerical
method of second order accuracy. The details of the integration procedure
involving exact solution of the pairwise interaction is detailed in Chapter 4.

Because the flow map of each vortex pair is the exact solution of the local
Poisson system y = B(y)VH,; and also respects the Casimirs of the system,
the composition ®a; is a Poisson integrator [62, p. 247]. Expanding the an-
gular momentum vector as J = J;; + Zk#,j I'yx, we note that the time
integration of any pair (¢, j) preserves the local angular momentum J;; and
leaves the other vortices untouched. Hence the angular momentum is exactly
conserved by the splitting method. The Hamiltonian is not exactly conserved
under the motion of vortex pair, but the error can be studied by backward
error analysis; see e.g. [62]. Figure 3.1a shows the error in the energy for sim-
ulations over a range of time step sizes, confirming second order convergence.
The angular momentum should be conserved exactly by the Strang splitting.
The results displayed in Figure 3.1b confirm this as the errors are always well
within machine precision.
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3. Least-biased correction of dynamical systems using observational data

Figure 3.1: Error in the energy (left) and angular momentum (right) for differ-
ent time step sizes. Both from simulations with 16 vortices, of which 4 with
strength £5 and the rest with strength +1. The momentum error is due to
limited floating point accuracy. With decreasing time step the number of time
steps increases and the inaccuracies accumulate, but they remain well within
any reasonable demand for accuracy.

3.3.3 Thermostat perturbation vector

There is flexibility in the choice of the perturbation vector field ¢g(y) in (3.7).
Its selection is determined both by the need for ergodicity with respect to
the target measure and the need to preserve some invariants of the vector
field f(y). We distinguish between invariants of f whose values are known
precisely, due to problem geometry for instance, and those whose values are
uncertain and only known in expectation. For point vortices on the sphere,
the lengths of the vortex positions |x;| are Casimir invariants, arising from the
embedding of the sphere in R3, and are not subject to uncertainty. We choose
a perturbation vector g(y) that respects these structural invariants.
The double-bracket dissipation developed in [14] preserves Casimirs of

the original system and is a candidate for g(y):

_ _ Ly =z

gi(wi)—;wixwix Em (3.11)
The denominator in (3.11) causes stiffness when like-signed vortices approach
one another, restricting the step size of an explicit splitting method. To alle-
viate these matters we use a modified scheme defined by

.
J#i
The desirable properties of the thermostat are unaffected by this modification.

Chapter 4 contains a detailed description of the numerical integration of these
dynamics.
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The thermostat (3.7) is designed to sample a target density p(y) o e~4®)
on the phase space of y. The thermostat variable ¢ is normally distributed,
yielding the extended distribution p oc e=4®)~2¢* The perturbation vector
field g must additionally ensure that the thermostated system is ergodic in
the target density. Because the target measure is positive for all open sets
on the phase space, hypoellipticity of the Fokker-Planck equation associated
with (3.7) is sufficient to prove uniqueness of the invariant measure [10]. Hy-
poellipticity follows from Hormander’s controllability condition [122]. The
condition has been tailored to GBK thermostats in [10], but it is difficult to
check in practice. Here we instead check empirically that single trajectories
have statistics that agree with the target distribution.

3.3.4 Maximum entropy model

To apply the methodology proposed in Section 3.2 in the setting of a reduced
model for point vortices, we use point vortices distributed evenly over the
surface of the sphere as the prior 7. it remains to specify for which functions
of the conserved quantities H and J the expectations will be observed during
simulation of the full model.

In [44] a thermostat was used to model a set of point vortices on a disk in
the canonical ensemble. To accurately reproduce statistics from a full model
with a moderate number of point vortices, it was necessary to modify the
canonical density with a term quadratic in the Hamiltonian, that is, a density
of the form p(y)  exp(—BH (y) — vH(y)?). Motivated by the experience in
[44], we choose observations that include linear and quadratic functions of H
and J.

If the angular momentum of the full system is zero, then there is no di-
rectional preference for the angular momentum vector J. We consider the
following set of observables:

Cy=H, Cy=|J? C3=H? Cy=|J* Cs=H*JP? (3.13)

and denote the corresponding Lagrange multipliers by 8g, 8.5, Yu, V7, YH .-
The least-biased density consistent with observations of the EC}; is

p(H) = e BrH=B5|J 12 —yg H? ;| J|* ~yu s H|T|? (3.14)

3.4 Numerical comparison

To verify the methodology proposed in this article for correcting expectations,
we apply it to a reduced model of point vortices similar to the configuration
used in [20, 44]. We distinguish between three models. The full model con-
sists of a system (3.9) of Mg, = 288 point vortices, of which 8 strong vortices
of circulation I'; = 41 and 280 weak vortices of circulation I'; = +1. Both
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3. Least-biased correction of dynamical systems using observational data

strong and weak classes are comprised of equal numbers of positively and
negatively oriented point vortices. The reduced model consists of (3.9) with
just M = 8 strong vortices. Finally, the corrected model consists of a thermo-
stated system (3.7) with unperturbed vector field f given by (3.9) for M = 8
strong vortices, perturbation vector field g given by (3.12), and equilibrium
measure defined by the least-biased density (3.14). Additionally, we compare
with Metropolis-Hastings samples from the least-biased density (3.14) to help
distinguish between errors incurred due to the maximum-entropy model and
those due to the thermostat.

We run seven long simulations of the full model with angular momentum
vector Jgy; = 0 and total energies chosen from the set Hyy € {—2,—-1,0,1,2}.
For each run we determine the time averages of the observables (3.13) for the
subset of strong vortices. When computing the Hamiltonian H we include
only the internal coupling between strong vortices. The time averages are
tabulated in Table 3.1.

Table 3.1: Full model observations and (in parentheses) corrected values of
first integrals

(H) (%) (H?) (1% (H|J[*)
Hegp = —2 | -0.33(-0.38) | 4.59 (4.45) | 0.22(0.23) | -0.63 (-0.98) | 34.58 (31.45)
Hegp = —1 | -0.11 (-0.18) | 4.78 (4.68) | 0.10 (0.12) | 0.38(-0.01) | 37.55 (35.88)
Hpai =0 0.02 (-0.04) | 4.63 (4.56) | 0.08(0.08) | 0.90(0.60) | 35.26 (34.30)
Hpn =1 0.17 (0.15) | 4.74 (4.75) | 0.13(0.12) | 1.73 (1.61) | 37.76 (37.44)
Hpay = 2 0.31(0.28) | 4.87 (5.00) | 0.22(0.21) | 2.49 (2.46) | 39.26 (41.74)

Given the time averages, we compute the Lagrange multipliers using the
algorithm described in Section 3.2.1 with prior distribution 7 the uniform dis-
tribution on the sphere. The Lagrange multipliers are also recorded in Table
3.2. The magnitude of v{y ;) indicates that all observations are relevant
for all but the most negative energy levels.

Subsequently, we run simulations of the corrected model using the com-
puted parameters. Table 3.1 also records expectations from the thermostat-
corrected model.

By analogy with canonical statistical mechanics, we may think of the weak
vortices that are ignored in the reduced model as forming a reservoir with
which our reduced model exchanges energy and angular momentum. Experi-
ence with canonical statistical mechanics of point vortices in the plane [20, 44]
suggests that for small reservoir sizes the canonical Gibbs distribution must
be modified with higher order terms to agree with the full system statistics.
Table 3.3 contains a study of the Lagrange multipliers as a function of the full
system size Mgy, confirming that the Lagrange multipliers vy, 75 and g
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3.4. Numerical comparison

Table 3.2: Lagrange multipliers for each energy level.

B By | vH 0% YHJ
Hean = —2 598 | —0.20 | 0.69 | 0.41 x 1073 | —0.04
Hean = —1 2.89 | —0.03 | 2.67 | 9.77x 1073 | —0.33

Hen=0 | —0.76 | 020 | 3.38 | 9.97x 1073 | —0.37
Hpanl = —3.54 | 037|429 | 1531 x1073 | —0.54
Hegn = —6.42 0.53 | 4.45 | 14.05 x 1073 | —0.51

are more significant for smaller Mg,;.

Table 3.3: Lagrange multipliers as a function of My, all for Hey = 0.

Bu | B YH V7 YHJ
Mtqan =36 | —1.51 | 1.35 | 27.75 | 117.15 x 103 | —3.07
Mg =72 | —4.27 | 0.82 | 871 | 37.79x 1073 | —1.12
Mg =144 | =097 | 0.32 | 6.70 | 25.80 x 1073 | —0.82
Mg =288 | —0.76 | 0.20 | 3.38 9.97 x 1073 | —0.37
Mgan = 576 | —1.09 | 0.13 | 0.87 3.08 x 1073 | —0.10

The energy of the strong vortices may become arbitrarily large because of
the singularity in the Hamiltonian as two vortices approach each other. But
the same is true for the energy in the reservoir. If there are at least three
reservoir vortices and not all those vortices have the same sign, the reservoir
can supply or remove any amount of energy.

The condition on the angular momentum is more interesting. The system
of strong vortices, all with strength £I's;;one, has angular momentum satisfy-
ing |Jred.| < MTgtrong. For the reservoir it holds that |J yeak| < (N — M )T yeak-
It is necessary that the reservoir can supply sufficient angular momentum,
that is

Mu -M Fs ron
Mrstrong S (Mfull - M)Fweak g full Z L £ .
M I—‘weak

In the thermal bath simulations discussed in this section M = 8 and FF“;‘”“E =5,
this means Mg, should satisfy Mg, > 48. The smallest system considered

(Mg = 36) does not, explaining its eccentric parameter values in Table 3.3.
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3. Least-biased correction of dynamical systems using observational data

3.4.1 Equilibrium results

In this section we compare statistical properties of the corrected model with
those of the full and reduced models. In Figures 3.2-3.4 we show histograms
of a number of solution features for the 8 vortex model: the distributions
of H and |J|, as well as typical distances between like- and opposite-signed
vortices, a metric used by Buhler [20]. In each histogram, the statistics cor-
responding to the strong vortices in the full model, the reduced model, ther-
mostat-corrected reduced model, and Metropolis-Hastings samples are dis-
played. Figures 3.2-3.4 correspond to approximate total energies Hey ~ —2,
0 and 2, respectively.

The full and reduced model simulations are performed with a time step of
5x 1073 and run up to T' = 5 x 10, taking 10° samples spaced evenly in time.
For the Metropolis-Hastings method we use 10° samples. The same figures
also show results from the thermostated system (dash-dot lines), run with a
time step of 1073 up to T = 105, taking 10° samples. The parameters in (3.7)
were set to be ¢ = 10 and v = 0.1. These results confirm that the thermostated
system samples the least-biased density closely.

The reduced model is Hamiltonian and the Poisson integrator ensures that
the energy is conserved with a standard deviation of order 1073 and the an-
gular momentum constant to machine precision. Both cases correspond to
approximate delta-distributions in the upper histograms in Figures 3.2-3.4.
Note that due to the high skewness of the distribution for |J|, the observed
mean differs significantly from the median and mode, implying some ambi-
guity in choosing the angular momentum for an appropriate initial condition
for the reduced model.

A simple Hamiltonian reduced model is naturally incapable of sampling
the energy and angular momentum spectra, since these quantities are first in-
tegrals. In turn, the reduced model shows significant bias in statistics such
as vortex separation. The thermostat-corrected model faithfully samples the
least-biased probability density, as indicated by the good agreement in the his-
tograms of the corrected model and Metropolis-Hastings samples. The least-
biased density does a good job of approximating the strong-vortex statistics
in the negative to moderate total energy regime. At large positive total ener-
gies, the strong vortex energy and angular momentum distributions are still
well-represented by the least-biased PDF, but some bias in the vortex separa-
tions can be observed. The closeness of the thermostat results to those from
the Metropolis-Hastings sampling indicate the error lies in the choice of least-
biased density, not in the thermostat sampling.
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3.4. Numerical comparison

3.4.2 Dynamic consistency

The results in the previous section confirm that the thermostated simulations
lead to equilibrium distributions of observables H and |J| similar to those of
the full system. In this section we address the issue of the degree to which
our equilibrium correction mechanism disturbs dynamics, as encoded in au-
tocorrelation functions and diffusivity. Diffusivity was considered by [27] for
a system of identical point vortices and by [30] for a wide array of problems
with scale separation. We emphasize that the values of the thermostat pa-
rameters € and v have no impact on the equilibrium statistics presented in
the previous section, and only affect the rate at which the least-biased PDF is
sampled. Faster convergence to the equilibrium distribution correlates with a
larger deviation from the unperturbed dynamics and vice-versa.

Autocorrelation functions

Given a sequence of L equally spaced observation times ¢; € [0,7] for i €
[0, L], and the values of the relevant observable (in our case vortex position)
u; = u(t;) at those times, the discrete autocorrelation function is defined by

1
U __
Vi = o

L
5 > ult)ult-).

2
J=1

A normalized autocorrelation function 7* is given by dividing each v;* by v,
1 U u u
ie 0¥ =uvl/uy.
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Figure 3.2: Histograms for Hpy ~ —2. The upper left and right panels com-
pare strong vortex energy and angular momentum magnitude. The lower left
(resp. right) panel compares the distance between like (resp. opposite) signed
strong vortices. The parameters are specified in the text.
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Figure 3.3: Histograms for Hgy ~ 0. Same panel layout as Figure 3.2.
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3.4. Numerical comparison

We average the autocorrelation function over all 3M (strong) vortex coor-
dinates. Three symmetries in the problem justify this averaging: the vortex
numbering is arbitrary; the choice of reference frame is arbitrary and the sign
of the vortices appears in the dynamics as a reversal of time, to which the
autocorrelation is insensitive. Additionally, the observables H and |J| are
isotropic.

Furthermore we ensure that the phase space is well sampled by averaging
the autocorrelation functions over an ensemble of P solutions. The choice of
ensemble initial condition is detailed in the Section titled Dynamical results
below. We then find the average autocorrelation function

Y (83) Ui (ti—i) + 20, (85) 25, (5 —4)

and the normalized average autocorrelation function

) P M L
v = MP(L—3) Z Z Zmﬁl(tj) cap, (ti—i), (3.15)

where a superscript p represents the solution from ensemble member p. The
normalized autocorrelation function in (3.15) follows from the Casimirs C; =
x;(t) - x;(t) = 1V, t.

Diffusivity

For general multiscale dynamical systems with a separation of slow and fast
dynamics, it is often desirable to model fast forces by a diffusion process,
resulting in stochastic differential equation of the form [118, 71]

dX = f(X)dt + K(X)dW,

where f represents the slow dynamics, W is a Wiener process and K is the
diffusivity. The value of the diffusivity K can be estimated by sampling solu-
tions to the original, multiscale, problem and applying Kubo’s formula

(AXAX)

KT: 5
A AT

where AX represents displacement during the sampling interval A7. Choos-
ing the correct sampling interval is a notorious problem; for a comparison see
[118].
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3. Least-biased correction of dynamical systems using observational data

If we take the average diffusivity for each vortex coordinate we find

M
1

Ka, = CMAT mZ:1 (AT AZy + AYm Ay + Az Azpy,)
1 M

= SIAT > (A, - Azyy) .
m=1

We assume the observations are given at the same times ¢; as before and that
the sampling time is an integer multiple of the observation interval, i.e. AT =

L. With an ensemble of P simulations the diffusivity estimator would then
be

Kar = goooe 323 (@h(t) ~ ah(0) - @h(t) ~ 21 0)

1 P M
= GMPAr > > 2—2a0,(0) - @b, (1)
p=1m=1
1 P M

RN 3MPAT 2 Z 2 (0) - i (t:),

where again a superscript p denotes the solution from ensemble member p.
Averaging over all time series data yields the estimator:

i 1
KAT:?)AT 3MP(L —1) ATZZZ:B tj- i) ﬁL(tj)

p=1 j=i m=1

l_Vz'

3AT

This shift-averaged estimator is shown in [30] to improve the quality of the
estimator.

Dynamical results

In Figure 3.5 we compare auto-correlation functions for the strong vortices
in the full and reduced models as well as for the thermostat-corrected model
over a range of parameters ¢ and 7. The thick solid black line represents the
result for an (unthermostated) system in contact with 280 weak (I'g = i%)
vortices, with a total energy Hp, = 0. The results present the average over
an ensemble of 1000 runs. For each simulation the initial placement of each
strong vortex was taken uniformly over the sphere and the weak vortices were
placed such that the full system satisfied Hpn = 0 and Jg = 0. The thick
dashed black line represents the results for an ensemble of simulations of the
isolated system, with everything else unchanged. The other lines represent
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Figure 3.5: Comparison of autocorrelation of the vortex coordinates. The bold
lines are two reference cases: the full model (solid) and the reduced model
(dashed). The thin lines indicate autocorrelation functions of the thermostat-
corrected model for indicated values of parameters € and ~.

results for thermostated simulations using the parameters as given in Table
3.2 for the case of H = 0.

The corresponding diffusivity constants are presented in Figure 3.6. The
results are taken from the same simulations as described in the paragraph
above. Because this figure is visually more striking, we shall limit our discus-
sion to the diffusion constant.

For ¢ small, the thermostat perturbation is weak, and both autocorrelation
functions and diffusivity approach those of the reduced model with constant
H, J. Also, the autocorrelations are insensitive to the parameter « in this
regime. For even smaller ¢ the autocorrelations and diffusivities become in-
distinguishable from those of the reduced model. Hence even though the
dynamics samples the least-biased density on long time scales, its short time
dynamics is similar to an unperturbed model. For moderate ¢, dependence on
~ becomes more pronounced, and a diffusivity closer to that of the full model
can be achieved. For even larger values of ¢, the diffusivity becomes much
more sensitive to the value of v, as indicated in Figure 3.6(c).

Figure 3.6(a) has been included to illustrate two important properties.
Firstly, as the sampling interval goes to zero, the estimator of the diffusiv-
ity constant shows linear behavior. This is in agreement with known results
for the GBK thermostat[54] and is an improvement on Langevin thermostats,
which would erroneously tend to a constant value as the sampling interval
is decreased. Secondly, for large sampling interval the estimator shows an
inverse linear tendency. This corresponds simply to the decorrelation of the
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3. Least-biased correction of dynamical systems using observational data

vortex dynamics.

3.4.3 Adaptive determination of multipliers

Consider the same reduced point vortex model of 8 vortices with I' = +1
and assume observations on the energy and momentum are known from a
simulation of the full system including the thermal bath. We start such a
simulation with an ensemble of P = 100 initial conditions drawn from the
uniform prior. The time step is chosen as 1 x 10~2 and the method described in
Section 3.2.1 for updating the Lagrange multipliers is applied every time unit,
i.e. M = 100. Between subsequent updates of the multipliers, the maximum
difference is limited by |[AX;| < 0.1. When using equilibrium statistics, this
limit only affects the beginning of the simulation, when the small sample size
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Figure 3.6: Comparison of average diffusivity constant as a function of sam-
pling intervals. In all figures, the bold lines indicate two reference cases: the
full model (solid) and the reduced model (dashed). Subfigures (a), (b) and (c)
show thermostated simulation results for ¢ equal to 10°, 10°® and 10' respec-
tively. The value of v is represented by dash-dot (10™"), solid (10°) or dashed
(10') lines. A combined log-log plot of all parameter values is given in subfig-
ure (d).
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used leads to a large variance in the estimators.

The target observation values are taken from a simulation of strong vor-
tices interacting with a thermal bath of weak vortices. Three different aver-
ages are used.

1. In Figure 3.7 the long time mean is taken and used throughout.

2. In Figure 3.8 the running mean is used. This reflects the situation where
we have no a priori knowledge of the observations, and are continuously
feeding new real-time data into the simulation.

3. In Figure 3.9 a time-localized average of the observable is used. The
averaging has a time-scale of a 100 time units. This also corresponds to
feeding the simulation new data, but now the assumption of equilibrium
is relaxed.

When using either a long time mean observation or a running mean obser-
vation, the simulation results tends towards the correct long-time averages.
When using time-local averages the simulation averages appear to tend to-
wards a similar value. In all three cases the instantaneous ensemble mean
remains close to the (moving) target for both energy and momentum. This is
especially notable for the third case, where the target varies over time, but the
simulation ensemble mean follows closely, with only a little lag.

The inaccuracies incurred during the first approximately 100 time units
indicate that the prior does not match the observed state well. This results
in the (negative) growth of 8y being limited briefly at the beginning of each
simulation. Subsequently, both Lagrange multipliers appear to oscillate irreg-
ularly about some mean value for the first two cases. In the case of a shifting
target, the Lagrange multipliers vary in time more erratically, as is to be ex-
pected. This results in the limiter being active for a few brief periods of the
simulation.

3.5 Conclusion

In this article we propose a method for perturbing trajectories of numerical
simulations to correct for equilibrium observations. We treat the restricted
case of a Hamiltonian ODE with observations on the set of first integrals of
the system. The approach entails perturbing the solutions using a stochastic
thermostat such that they become ergodic in a prescribed invariant measure:
the least-biased density corresponding to a maximum entropy treatment of
the observations.

We apply the approach to the case of model reduction in a heterogeneous
system of weak and strong point vortices on a sphere, in which observations
of the energy H and angular momentum magnitude |J| are made on a sub-
system consisting of the strong vortices. A reduced model is constructed by
neglecting the weak vortices, and the expectations of the reduced model are
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Figure 3.7: Results when using long-time mean observations as a target while
adaptively determing the Lagrange multipliers. Target observations for Hamil-
tonian (a) and momentum magnitude (b) are overlaid with the instantaneous
ensemble mean (black dotted) and the running ensemble mean (red solid) from
simulation. (c): Lagrange multipliers, the red dots indicate time steps at which
their rate of change was limited.

3000

target mean

““““ mean

target mean
““““ instantaneous ensemble mean
= = =running mean

O
/

2 -8
600 1200 1800 2400 3000 600 1200 1800 2400 3000 600 1200 1800 2400
t t t

Figure 3.8: Results when using running mean observations as a target while
adaptively determing the Lagrange multipliers. Target observations for Hamil-
tonian (a) and momentum magnitude (b) are overlaid with the instantaneous
ensemble mean (black dotted) and the running ensemble mean (red solid) from
simulation. (c): Lagrange multipliers, the red dots indicate time steps at which
their rate of change was limited.
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Figure 3.9: Results when using time-local averaged observations as a target
while adaptively determing the Lagrange multipliers. Target observations for
Hamiltonian (a) and momentum magnitude (b) are overlaid with the instan-
taneous ensemble mean (black dotted) and the running ensemble mean (red
solid) from simulation. (c): Lagrange multipliers, the red dots indicate time
steps at which their rate of change was limited.
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3.5. Conclusion

corrected using the proposed methodology.

Numerical experiments confirm that the distributions of the observed quan-
tities H and |J| can be well represented using the thermostat technique. Other
equilibrium metrics such as the distribution of distances between like- and
opposite-signed vortices are also in agreement across a range of total energy
values of the full system, although some discrepancies occur at large positive
energies.

We also investigated the degree to which correction of trajectories for ex-
pectations may affect dynamical information in the form of autocorrelation
functions and diffusivity. By decreasing the perturbation parameter ¢ of the
thermostat, the autocorrelation functions of the unperturbed, reduced system
may be precisely recovered. As ¢ is increased, one may increase the diffusivity
to values that agree with the full system. This is consistent with results re-
ported in [54] in the context of molecular dynamics where it was shown that
the GBK thermostat used here approaches Langevin dynamics in the limit of
large stochastic forcing.
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4. An explicit, parallel and symplectic integrator for point vortex systems

4.1 Motivation

A point vortex represents a singular measure solution to the vorticity equation
for two-dimensional, incompressible fluid flow. A point vortex model consists
of multiple point vortices mutually interacting. The motion of each point
vortex is dictated by the flow field induced by the other vortices and by ex-
ternal forcing, e.g. topography. Point vortices were introduced by Helmholtz
[67] and have since been the subject of much study; see for example Lamb
[84], Saffman [129], Newton [109].

Dynamical studies of point vortex systems provide insight into the (qual-
itative) behaviour of fluid dynamics. The series of papers by Newton et al.
[109, 72, 111, 112] discuss relative equilibria and the conditions for integra-
bility of the dynamics. Vortex dynamics were studied extensively by Aref who
compiled an extensive review on their history [6]. Newton [110] discusses the
future of point vortex research in the “post-Aref era”.

In statistical fluid mechanics, the behaviour of point vortex systems has
been studied as a model for two-dimensional turbulence in the limit of an
infinite number of vortices. This was first done by Onsager [116], who pro-
vided an explanation for the formation of clusters of like-signed vortices in a
bounded domain. This research has since been continued by, amongst others,
Joyce and Montgommery [77, 76], Pointin & Lundgren [120], Eyink & Spohn
[48], and Lions & Majda [91]. Such results are of interest in the fields of geo-
physical fluid dynamics [61] and stellar dynamics [28]. Some of Onsager’s
statements were tested numerically by Biihler [20].

Point vortices and their three-dimensional generalization, vortex filament
methods, are also used as a discretization of practical fluid flows in engineer-
ing applications [31]. By using a large number of point vortices a continuous
velocity field is approximated. Such techniques find practical application in
the works of Chatelain et al. [25, 26], Rossinelli et al. [126]. Winckelmans
et al. [141] and Rossinelli & Koumoutsakos [125] present the fast multipole,
vortex-in-cell and hybrid methods that are used for computing these large
systems. Regularized approximations to the delta distributions provide more
accurate representations of continuous vorticity fields, but their solutions are
no longer exact, as the kernel itself ought to deform due to shearing [18, 140].

It is important to develop efficient time integrators for point vortex meth-
ods for two reasons. First, the use of very large numbers of point vortices, as
required for accurate approximation of continuous fluids, is hampered by the
quadratic complexity of the pairwise coupling between vortices, i.e. evalua-
tions of the vector field with N vortices requires N? operations. Second, the
concept of numerical stability of a system of point vortices on planar geome-
try is not without ambiguity. Equilibria only exist for certain configurations,
and are never asymptotically stable since the dynamics are Hamiltonian. The
simplest nontrivial system is a pair of like-signed vortices, whose solution is
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4.1. Motivation

periodic. If a contracting method such as backward Euler is employed, the
vortices will eventually approach one another, and the derivatives grow un-
bounded. If an expanding method such as forward Euler is employed, the
vortices will drift apart and the trajectories will grow without bound. Hence,
even for this simple configuration some degree of energy conservation is nec-
essary to maintain a bounded solution with bounded derivative.

Recently, Vankerschaver & Leok [140] have developed a Poisson integrator
for point vortex systems via the construction of a higher dimensional linear
Lagrangian. The associated dynamics project down onto solutions of the point
vortex equations on the sphere. The resulting integrator exactly conserves
the Casimirs and momentum of the point vortex dynamics and also has good
conservation of energy. The implicit definition, however, requires the use of
an iterative solver.

We give an interpretation of the point vortex method in light of the ap-
proach first communicated by McLachlan [98] for discretizing Hamiltonian
PDEs; namely as a scheme that discretizes the Poisson structure and Hamil-
tonian separately. With a vorticity field given as a sum of point vortices, the
quadrature of the Hamiltonian functional is evaluated exactly as a sum of
pointwise values. We do not consider regularizations of the vortices, but they
could be accommodated in the quadrature scheme for the Hamiltonian. The
Poisson bracket is discretized exactly for a particular class of functionals.

A numerical integrator for these dynamics follows from splitting the Hamil-
tonian into its constituent pairwise terms. The scheme developed is Poisson,
explicit and allows scalable parallelization. It may also be applied to regular-
ized point vortices, provided the kernel is rotation- and translation-invariant.
The method requires an explicit expression for the pairwise flow map for the
two-vortex system. Any regularization that maintains a pairwise Hamiltonian
form will have three Poisson-commuting first integrals and is thus integrable.
Both rotation of the sphere and topography introduce only decoupled, split-
table terms in the Hamiltonian.

The remainder of this paper is organized as follows. Section 4.2 describes
two-dimensional incompressible fluid flow in Hamiltonian form. Section 4.3
discusses the discretization according the ideas of McLachlan [98]. A Poisson
integrator for the resulting point vortex description for fluids is developed
in Section 4.4. The parallelization of this method is discussed in Section 4.5.
Numerical results and comparisons of computation times are presented in
Sections 4.4 and 4.5, respectively. Finally, in Section 4.6 we state conclusions
and discuss the extension of the method to practical applications.
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4.2 Continuous Hamiltonian description

The barotropic quasi-geostrophic equations on the unit sphere provide a sim-
ple model for studying geophysical fluid dynamics [95]. Point vortex repre-
sentations capture much of the system’s dynamics, for instance the formation
of coherent vortical structures over long time [116]. This is a consequence
of the existence of negative temperature states, that are possible due to the
bounded domain. On a disk or on an annulus, the same behaviour can be ob-
served, but these geometries require the inclusion of ghost vortices to main-
tain the boundary conditions. The boundedness of the domain also implies
that solutions remain bounded for almost any initial condition when consid-
ering heterogeneous systems, i.e. systems with both positive and negative cir-
culation vortices.

We express the barotropic quasi-geostrophic equations on the sphere [95]
in terms of the stream function ¢ and potential vorticity ¢

a+J(,q) =0 (4.1)
q=Ag+2Qz+h,

where Q) is the angular velocity of the sphere about the z-axis and h represents
topography. The Laplace-Beltrami operator on the sphere Ag is defined (in
spherical coordinates) as

Astp = — [1w¢¢+§9<cos0we>],

cosf | cosb

where ¢ is the longitude and 6 the latitude. The Jacobian J(f, g) is defined as

J(f,9)

On the sphere the Hamiltonian is given by:

= cos 0 (fqbge - gqbfe) . (4.3)

1 1
Hz—f/ wAswdszf/ Vit Vi ds,
2 S2 2 52

where the second equality follows from the divergence theorem. Using the
rightmost expression we find the first variation of H

H = | Vb -VsopdS
s2
= —/ YAgopdS
SQ
=— | ¥0(q—2Qz—h)dS,
S2

and consequently
OH

A
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4.3. Discrete Hamiltonian representation

The Poisson bracket is given by

Fovu=- [ (a5]) as

where the Jacobian J is given by (4.3).

Point vortex systems represent singular measure solutions to equations
(4.1)—(4.2). They assume a potential vorticity field that can be expressed as
the sum of Dirac-delta distributions, i.e.

q(x) = Zfié(:p —x;(t)).

The vortex centres are represented as vectors x; embedded in R3. The geomet-
ric structure of the equations of motion preserves |z;|. Numerical integrators
must maintain this property, either by construction or by introducing a pro-
jection step.

We introduce two new streamfunctions ¢ and )y, such that 2Qz = Agc
and h = Agt,. With these we rewrite (4.2) as

Ast)=w=q—20—h=q— Agthc — Ast)y.
We solve this for ¢
Y= A5 - ve — tn, (4.4)

where Ag'q = Efil I';G(x — x;(t)) represents the sum of Green’s functions
for the Laplace equation on the sphere, given by

G(x —z;(t)) = iln (Je — i (t)]?) - (4.5)

4.3 Discrete Hamiltonian representation

In this section we review the point vortex description on the sphere by inter-
preting it as a Hamiltonian discretization in the sense of McLachlan [98]. By
discretizing the Hamiltonian and Poisson bracket individually, and ensuring
that the latter defines a finite dimensional Poisson bracket, it is guaranteed
that the finite dimensional approximation is again Poisson, and Poisson inte-
grators may be employed. For point vortices in planar geometry, the bracket
is canonical and hence symplectic Runge-Kutta methods are applicable. On
the sphere, the Poisson bracket is nontrivial and splitting methods offer the
most generic approach.

With the assumption that the vorticity field is a sum of Dirac delta distri-
butions, the integration of # reduces to a sum over the values of the integrand
at the vortex centres

1 1
M=y /S vads =5 3 Tavta)
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4. An explicit, parallel and symplectic integrator for point vortex systems

Substituting the inverse Laplacian of (4.4) with Green’s function (4.5), we find

Zr Yelx;) + U (x;) 22@4 n (o —a]?) | = H. (4.6)

7<i

The Hamiltonian can thus be expressed discretely in terms of only the posi-
tions of the vortex centres x;. This discrete representation of the dynamics
is exact if the point vortices are singular, and hence the discrete H can be
defined equal to the functional H. It is assumed that the stream functions
associated with the Coriolis and topography terms are known explicitly. For
regularized systems, the Green’s function may still be known, but the quadra-
ture of H can no longer be performed exactly and the discretized Hamiltonian
will no longer be exact.

The Poisson bracket is discretized separately. First of all, it is useful to
rewrite (4.3), because we have defined the point vortex positions as vectors
in R3 rather than in spherical coordinates. For any & € R? : |z| = 1, (4.3) is
equivalent to

J(f,9,®) = (® x Vf)-V

The Poisson bracket then follows as

_[OF 5G
{F,G} = EVq-m X (V&]) ds

B e 0G
——/qV-(aq xvé)dS
f/qV <5f) : <a: X Vag) ds, (4.7)
dq oq

using first the divergence theorem and then the fact that the divergence of the
curl equals zero. The discrete form of the functional F = [ f(x)dS is given

by
N N
F= Z flx;) = /f(:c) (Z 6z — a:l-)) ds.

We assume there exists a field A, for the vorticity field ¢ with the properties:

(i) = F;lv
V(@) o=z, =0,
Agtevr — A
lim Z4eY 74—,
e—0 £

With this we write

N
- [ fen@) (Z iée - w») as = [ f@@ae) ds.
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4.3. Discrete Hamiltonian representation

from which the variational derivative follows

Substitution of this form for the functional F and G in (4.7) leads to the dis-
crete form of the Poisson bracket
OoF 0G

{RG}:—/qV(s—q-a:de—qu

_ / GV(fAg) - T % V(g)y) dS

z—/q/\2Vf-a}><ngS

N
== T7'Vf(x)- @ x Vg(m:).
i=1

This is a generalization of the well-known Poisson bracket for rigid body rota-
tion [68], also used in models for ferromagnetism [92]. The bracket is in fact
equivalent to the bracket for a Heisenberg spin chain [49].

We introduce the vector y € R3" as the concatenation of the ; € R?, i =
1,2,...,N. The dynamics are then

y = B(y)VH(y), (4.8)
with the block-diagonal structure matrix
2, 0
F;lig
B(y) = . :
0 I'y'zy

where Z is the 3x 3 skew-symmetric matrix such that Zu = xxu Vu € R3. The
vortex position radii C; = |x;| are Casimirs of the Poisson bracket associated
with structure matrix B(y). That is, for any function F(y) and any C;, one
has {F, C;} = 0. This property is important as it implies that if the vortex po-
sitions initially satisfy |x;| = 1, this is maintained throughout the simulation,
ensuring the point vortices remain on the sphere. The numerical integration
scheme developed below respects this property inherently, without the need
of a projection step.

Due to the rotational symmetries of the sphere, the dynamics exhibit three
Noether momenta given in vector form as J = [, ¢ dS. In the point vortex
discretization, these momenta persist as

N
J:J:/ quS:ZI‘imi.
s i=1
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4. An explicit, parallel and symplectic integrator for point vortex systems

We summarize the discrete Hamiltonian representation in Table 4.1.

4.4 Poisson integrator

For Poisson systems such as the point vortex system it is essential to employ
a numerical time integrator that maintains the structure of the underlying or-
dinary differential equations. Standard numerical integrators do not conserve
Casimirs. Hence Runge-Kutta or multistep methods will result in point vor-
tices drifting from the sphere. This can be corrected with projections, but as
is known from the rigid body equation, doing so can introduce artificial stable
equilibria.

Integrators that conserve the geometric structure are of special importance
when one is interested in the statistics of long simulations. In geophysical
fluid dynamics the long time mean vorticity field and streamfunction, as well
as the pointwise statistics, depend heavily on the geometric properties of the
numerical integrator 2, 42, 43].

Patrick [117] suggests applying a Poisson splitting method to point vor-
tex dynamics, but does not detail the method. A Poisson integrator pre-
serves Casimirs by definition. We will see that the splitting also preserves the
Noether momenta exactly, and the Hamiltonian approximately in the sense of
backward error analysis, as detailed in Section 4.4.2.

We expand system (4.8) with Hamiltonian (4.6) as

N
y=Y B(yVH;+ > B(y)VH,

i=1 j<i

where
Hy = T (i) + n(a), and

H,;j = i In <|.’BJ — ZC7|2) = ﬁ In (2 — 2.’131 . .’Bj) .
We treat the dynamics for each of these terms separately. The time-7 flow
map associated with each of the H; terms will be denoted by ¢-. The dynam-
ics associated with ¢ = B(y)VH,; is just that of a two vortex system with
time-7 flow map denoted by ¢%. This flow is known explicitly as detailed in
Section 4.4.1. A splitting method is a composition of the flow maps of all the
individual terms in the dynamics.

We initially restrict ourselves to Lie-Trotter splittings and Strang splittings
[62], respectively of the form

N N
ot = [ oYo[]e¢t and @¥= J[ ¢7po[¢ic [I ¢V
i=1

(i,5)ECN (1,5)€CN i=1 (i,5)€Cy

58



4.4. Poisson integrator

TN 53 F Tﬁ&,& n Am n:w& {r D}
('2)6A x 'z (@)A1 WK~ = (o) sv (Faxe)-(55)ap) - =61}
d@®f =@ Sp (Wfr—z) g |z [ = (1)
Wz g K= Or Sp(xbx [ = (1)L

(0 — ) a2 Xe
()i + (') ) 1K E = ()H Spab [ = (1)K

Sp(@)b(z)x(x)f [ =
(W) [T =W SP (W= —=x) e "L (2)f [ =)L

uonjejuasardar 93o10SIp uorjejuasaidal snonuruod

*SaNTIUIPT SNONUTIU0D 0} paredWOd SATITIUIPT 312I0SIP JOo Arewrwung 1§ d[qe,

59



4. An explicit, parallel and symplectic integrator for point vortex systems

(4.9)

For both cases Cy represents an ordering of all the possible pairs (i, j), i # j.
The Strang splitting also uses the reverse ordering, labelled C5;, to create a
symmetric method. The symmetry results in a cancellation of first order er-
ror terms, yielding a method that is second order accurate. The Strang split-
ting can subsequently be used in the construction of higher order methods
[143, 99]. In the remainder we will ignore the effects of the Coriolis force
and topography. The corresponding flows ¢’ are perfectly parallelizable and
their evaluation represents an ever smaller fraction of the total workload as
the number of vortices increases.

Because each of the pairwise interactions in the splittings in (4.9) is the
exact solution to a Poisson dynamical system, each ¢% is a Poisson map with
respect to the bracket {F, G} = V,FT B(y)V,G. As the composition of Pois-
son maps is again Poisson, the splitting schemes are also Poisson maps with
respect to the same bracket [62].

4.4.1 Integration of the two vortex system

The dynamics y = B(y)V H,; (with flow map ¢¥) affects only vortices i and j
and can thus be expressed as

—Fj T; X XT;

Y —_ 71 . . P [ ——
SC,L—FZ QS,LXVZHU— A 1*{1}'%1]“’
? J

. _ I o xx;
Z; :Fj le X VjHij = "y .
47 1—:1;i-acj

This two-vortex system has Noether momenta expressed by the vector
J,L'j = FL:EZ + Fj.’I}j.

Using the Noether momenta we find

-1 Jii

zbi:—ijxwi =.:a X x;, (410)
471'17581’%;‘

ij:—ijxmj =.a Xx;. (411)

Conservation of the Hamiltonian H;; implies the denominators in (4.10)-
(4.11) are constant. This implies the vector a is invariant under the two-vortex
dynamics.

Using Rodrigues’ formula [86], the solution to equation (4.10) is given by

. R 1— R
s art G (O) + cosart a2$i(0)

x;(7) = exp(ar)z;(0) = z;(0) + >

=x;(0) +sinar a x ;(0) + (1 — cosar) (a(a - x;(0)) — x;(0)),
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4.4. Poisson integrator

where a is the matrix such that az = a Xz, a = |a| and @ = a/a. The solution
to (4.11) follows by substituting «; for x;.

This flow map presents an explicit formulation of the exact solution to the
two-vortex system of vortices i and j. This pairwise solution is therefore a
Poisson system with the same bracket as the N-vortex problem that also pre-
serves the pairwise Hamiltonian and momenta exactly. A splitting composed
of Poisson flows with identical brackets respects the Casimirs of that bracket.
The Noether momenta of the N-vortex system may be written as

N
J = Zl“lwz =Tx; + Fj:cj + Z Tz, = Jij + Z Tpxy.

i=1 k#i,j k#i,j
This implies that the total momenta J are conserved, because the pairwise
flows preserve the pairwise momenta J;; and do not modify the other vor-
tices. The Hamiltonian is not conserved exactly, as the evaluation of pair (3, )
perturbs the values of the Hamiltonian terms H;, and Hjj, for k # 4, j. This is
considered in more detail in the following section.

4.4.2 Modified Hamiltonian

For splitting schemes consisting of exactly integrated Poisson flows with the
same bracket, the combined map approximates, to an exponentially high or-
der, a Poisson system with the same bracket, but a modified Hamiltonian.
Before considering a point-vortex system, let us recall the simpler problem
where the dynamics is given by

§=Bly) (H @) + B () . (4.12)
For the symmetric Strang splitting

®, = ¢}, 000 gl'),
the modified dynamics read

§ = B() (H () + HE §) + T Ho(5) + 7 Hs (3) + ... ) -

Throughout the present work we will only consider the first correction term,
Hj(%), corresponding to an O(72) modification to the Hamiltonian. For the
Strang splitting of (4.12) this term is given by [62, p. 299]

- _i {me, a0} g} . % {{ut, me) e (4.13)

When the splitting contains more than two different flow maps, the mod-
ified Hamiltonian is constructed by applying (4.13) repeatedly “from the in-
side out”, as illustrated by the following three-vortex example.
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4. An explicit, parallel and symplectic integrator for point vortex systems

Consider a system consisting of three vortices that are integrated accord-
ing to the Strang splitting ®° of (4.9). We consider an ordering of pairwise
interactions such that the splitting reads

o7 = 52 © ‘757/2 ogllo ¢7/2 ° ¢r/2

Note that the innermost map ¢! is a composition of two successive maps in
the definition of (4. ) We first construct the modified Hamiltonian for the
inner map ¢i""¢ = 7/2 o ¢ 0 922 7o using (4.13), resulting in

Hinner _ H02 + H01 4 7_2]{zi))nr1er NI ,

with

Himer — {{H017H02} H02}+ {{H027H01} Hoi}.
The modiﬁed Hamiltonian of the full step is found by applying (4.13) to
P53 = 7_/2 o @inner o @12 79, which results in

H'S! = Hyy + Hoy + Hoy + 72 HIMeT 4 72 g0 (4.14)
with
HQuter — {{Hm + Hyy, Hyo}, H12}+ {{Hma Hoy + Hoz}, Hor + Ho}+. .

Terms arising from the Poisson bracket of Hlnner with H;, are of order 7* and
are subsequently neglected. Combining both second order corrections we find

inner outer
Hy = HI™ 4 3

% ({{Ho1,Ho2} , Hoo} + {{Ho1, Hi2} , Hi2} + {{Hoz2, Hi2} , H12})
+ % ({{Ho2, Ho1} , Hor } + {{H12, Ho1} , Hor } + {{H12, Ho2} , Ho2 })

+%({{H12,H01},H02}+{{H12,H02},H01})- (4.15)
The first two lines of (4.15) consist of Poisson brackets that are all of the form
T = {{Hre, Him} , Hie} = — {{Hpm, He} s Hie} - (4.16)

The last line consists of brackets of the form

T = {{Hwe, Hemy s Homy = — {{Hm, Hee} , Hom } = =T, (4.17)
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Figure 4.1: Error convergence for the Hamiltonian of a three vortex system in
red. In blue is the convergence of the error for the modified Hamiltonian given
by (4.14). For reference two dashed lines with slopes 72 and 7* are given.

With these definitions equation (4.15) is expressed more compactly as

-1
Hs = — (_T()Izl - T1[20 - Tzllo)
24
1
+ D) (*Tojm — Tfoe — Too1 + Tigo + TQI{O)

We illustrate the accuracy of this correction to the Hamiltonian by simulating
a three-vortex system using different time steps. Figure 4.1 compares the L,
norm of errors in the Hamiltonian and the modified Hamiltonian. We simu-
late 10 time units starting from arbitrary initial conditions. The second-order
convergence of the original Hamiltonian is visible for sufficiently small time
steps. The modified Hamiltonian is preserved to fourth order as expected.

In the general N-vortex case, the modified Hamiltonian follows from com-
puting the modified Hamiltonian of the innermost composition and repeat-
edly working outwards. The ordering Cy consists of R = N(N — 1) pairs;
we label these C’J[:;], with r € {1,...,R}. Let H"l denote the Hamiltonian
corresponding to the pair C][\T,]. Following the same procedure as for the three-
vortex system, only now for a more general number of steps, we find the
second-order correction to the Hamiltonian to be

ISl O AN =1 gl gyl
m-3 3 (Gl e 55 ({an ), av)].

r=1 s=r+1
(4.18)

Many of these terms will be trivial in a large system, as most vortex pairs are
disjoint. The other terms in the sum are all distinct, because ¢t > r < s. This
makes it impossible to construct orderings where terms cancel.

When the terms in (4.18) involve only three distinct vortices, they are of a
form as in (4.16) or (4.17). Nontrivial terms that involve four distinct vortices
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4. An explicit, parallel and symplectic integrator for point vortex systems

follow either of the following two patterns

Tklzlyin = {{Hkakm}aHkn} = - {{Hkm;HkZ}aHkn} (419)
Titmn = {{Hre, Him} . Hen} = — {{Hpm> Hie} , Hon } - (4.20)

Without presenting the derivations, we state that (4.16)—(4.17) and (4.19)-
(4.20) are computed as

i, = Apem B2 Bim ¥
[—T¢BimClm + (Lot x g + Do X @) - (T X @0)]
T = Apem Bit Brom Bim %
[(C¢Bim — TimBre) Cho + (L + Lowe) X g - (T X 0)]
Tt = Akt Brot Biom BinI'n %
[BrtCoimCoriin + BimCoiemComkn + (Tm X @¢) - (g X 1]
T drn = Antm Bt Brm BenL'n %

[Bkﬁclkmckln + ($k X xm) . (CIZ[ X wn)] ’

where
V% V)
Aperm = W
1
By = ————
1—xp -y

Crom = Th - Tp X Top,.

From this it follows that the error in the Hamiltonian is dominated by close
approaches between vortices, as there the denominator in By, approaches
zero. The magnitudes of both Age,, and Ciep, are obviously bounded.

Long time conservation of the Hamiltonian by symplectic methods can be
rigorously shown in the case of analytic Hamiltonian H, but is often observed
in practice for more general Hamiltonians. For point vortices, the Hamilto-
nian has singularities when two vortices coincide. The motion of a single pair
could inadvertently place one vortex in close proximity to another, effectively
a “numerical collision”. In practice we have not encountered this. This is only
problematic if that vortex pair is evaluated before either of the coincident vor-
tices are moved by a different vortex pair interaction.

4.4.3 Numerical results

Our primary purpose for developing the explicit and symplectic integrator
outlined in the present work is to allow performing numerical experiments on
moderate to large vortex systems to verify hypothesized statistical behaviour.
These simulations must be run over a long time period to yield meaningful
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statistics. In this section we demonstrate the approximate energy conserva-
tion and exact momentum conservation of the splitting schemes in differ-
ent settings. We compare the results of the Strang splitting to results for a
symplectic, implicit method developed by Vankerschaver & Leok [140] and
to a fourth order explicit Runge-Kutta scheme. Both implementations can
be found at https://github.com/jvkersch/hopf_vortices along with two
other implicit schemes.

We investigate the conservation of energy and momentum in a number of
different configurations. For each case we compare energy and momentum
errors given by ey (t) = |H(t) — H(0)| and ¢;(¢t) = ||J(t) — J(0)||. We have
repeated the experiments of Vankerschaver & Leok [140], but observe that in
most of these configurations symmetries play an important role. This sym-
metry is broken by the splitting methods, resulting in a poorer performance
than methods that maintain the symmetry. We also compare results for an ar-
bitrary initial condition at a given energy level in Section 4.4.3. This is a more
practical test case for engineering applications and statistical mechanics; it is
in fact the setting in which we use this integrator in other work [106].

Collapsing vortices

For certain initial conditions three or more vortices will collapse onto a single
point in finite time, while the energy remains bounded. Such initial condi-
tions with three vortices have been studied by Kidambi & Newton [80] and
with four vortices by Sakajo [130]. We simulate the same three vortex system
as Vankerschaver & Leok [140].

The vortex circulations are I'y = I’y = 1l and I's = —%. The vortices start
at the vertices of a triangle with lengths l;» = $v/2), Iy = 3v2 and l13 =
1. These initial conditions result in a collapse of the three vortices onto a
single point at 7~ = 47(v/23 — /17 a 8.4537. At this time the equations of
motion become undefined. The numerical methods will not collapse exactly,
due to the numerical error — and in the case of the methods in [140], due
to regularization of the dynamics. Instead there will be a moment that the
vortices approach each other closely. This event is repeated periodically.

We perform this simulation with time steps 7 = 1071,1072,1072,107* to
illustrate how the behaviour changes. Conservation of the Hamiltonian over a
short time — enough to show the first collapse event - is illustrated in the left-
hand panel of Figure 4.2. As the time step is reduced, the magnitude of the
maximum energy error during this part of the simulation does not change, but
the length of time over which there is a significant error is greatly reduced by
using a smaller time step. In this pathological configuration, the lack of ana-
lyticity of the Hamiltonian negates backward error analysis and its prediction
of second-order convergence.

The moment of the closest approach is indicated by the largest error in
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4. An explicit, parallel and symplectic integrator for point vortex systems

the Hamiltonian. With smaller time steps this instant approaches the correct
time of the true collapse event.

The right-hand panel of Figure 4.2 demonstrates how the energy changes
over longer time, including four more near-collapse events. Between the near-
collapses, the energy consistently returns close to its initial value. Note also
that the results presented by Vankerschaver & Leok [140] include some regu-
larization. This in fact slows down the dynamics around the near-collapses so
much that the fifth event does not occur before the end of the simulation at
T = 500. We should note that the behaviour of this system with a repetition

5X10 10°
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=107 il ( \ T=10" ‘
. 3 T=10" il L0 =10 /t ,,,\/&
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Figure 4.2: Energy error for a system of N = 3 collapsing vortices for various
time step sizes. Initial conditions that lead to a collapse of the three vortices
onto a single point (in finite time) are given by Kidambi & Newton [80]. The
exact time of this collapse is indicated by a black dotted line.

of near-collapses does not occur despite numerical error, but because of it.
The exact solution becomes undefined at the (first) collapse. When the error
is reduced by using a higher order method (results not shown), the dynamics
leading up to the first event are more accurate, resulting in a much closer ap-
proach between the vortices. This causes a larger energy error after the event
than in the Strang splitting.

Stable vortex ring

A ring of N equidistantly placed vortices of equal strength rotates stably
around its centre provided N < 7 and provided that the latitude of the ring
(assumed parallel to the equator) is above a certain critical value [121].

We simulate a stable configuration with N = 6, I = 3 and latitude 37 — .4
for 1000 time units. Figure 4.3 compares the energy and momentum errors
against those for the Hopf and Runge-Kutta integration methods. All simula-
tions use a time step of 0.05.

The splitting method only approximately conserves energy, but the error is
bounded. The momentum is conserved to machine precision throughout the

66



4.4. Poisson integrator

simulation. Due to the rotational symmetry of this configuration, a method
that respects this symmetry will easily exhibit energy conservation. The split-
ting method does not respect the symmetry due to the influence of the or-
dering of pairs. Consequently its energy conserving quality in this rather
specialized test case is inferior to that of the Hopf integrator. We have also
performed the experiment with McLachlan’s 6th order composition [99] of
the Strang splitting. This shows energy conservation to the same degree as
the Hopf method.

-5

5 10
10 Sane S Strang splitting
10 Ellféachlan 6th order 51071 McLachlan 6th order
g10 Yw\{\f\/\m\/\’\{\vl‘vvvyvuvvv:vA g
4 g
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Figure 4.3: Energy (left) and momentum (right) error for the stable vortex ring
of Polvani & Dritschel [121] with N = 6 vortices. The energy oscillates about
a fixed mean, with bounded error. The momentum is conserved to machine
precision.

Von Karman vortex streets

Another relative equilibrium is that of the Von Karman vortex streets pre-
sented by Chamoun et al. [24]. This configuration consists of two staggered
rings of N, vortices placed at latitudes § = +6, plus one vortex at each pole.

We take N, = 5 vortices per ring, each with I' = +1, placed at § = +Z,
respectively. The polar vortices satisfy Iy = —I'y = 1. This configuration
rotates about the z-axis with a period of T' = 10.85. We simulate this system
with a time step of 7 = .5 for 10000 time units.

The splitting scheme and Hopf method both conserve the momenta ex-
actly by construction, and this is reflected in the simulation results. The error
in the energy remains bounded throughout the simulation at an accuracy that
is somewhat better than that of the Hopf integrator.

This configuration is believed to be inherently unstable [140], making the
symmetry of vital importance. The splitting scheme breaks this symmetry,
yet the error remains bounded.
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Figure 4.4: Energy (left) and momentum (right) error for the Von Karman vor-
tex street with two rings of 5 vortices and a vortex at either pole, giving N = 12
vortices in total. The energy oscillates rapidly about a slowly varying mean.
The momentum is initially conserved to machine precision, but accumulation
of arithmetic errors eventually leads to a small drift.

Generic initial conditions

In this final test case we consider a system with 48 vortices, eight with circu-
lation I' = £1 and 40 with I" = :i:% with equal numbers positive and negative.
The initial configuration is drawn randomly from the set of all states with
a given energy level and zero angular momentum. We use the same initial
condition for the different methods. We consider both large negative energy
(H = —2), resulting in a strong clustering of like-signed vortices [116, 21],
and large positive energy (H = 2), leading to a well-mixed configuration with
close approaches between opposite signed-vortices. These configurations are
extreme in the sense that the specified energy levels lie close to the tails in
the distribution of all attainable energy states for this number of vortices with
these circulations.

Figure 4.5 compares the energy error over a short time for the Strang
splitting method against the Hopf method [140], a fourth order Runge-Kutta
scheme and an implicit midpoint method [62], all with time step 7 = 0.0001.
There is a remarkable difference in the performance of the integrators at posi-
tive and negative energies. At negative energies, the Runge-Kutta scheme con-
serves energy accurately while it exhibits rapid error growth in the positive
energy simulation. The Hopf integrator performs poorly at negative energy,
and fails to converge at positive energy, even for this modest time step size.
In the negative energy simulation, the Strang splitting and implicit midpoint
method have roughly the same accuracy. For positive energy, the implicit
midpoint is more accurate.

We also compare the results over a longer time period with an increased
time step of 7 = 0.1. All three implicit methods considered by Vankerschaver
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Figure 4.5: Energy error in simulations with negative (left) and positive (right)
energies. The Strang splitting is compared against a fourth order Runge-Kutta
(RK4) scheme. The Hopf fibration method fails to converge in the positive
energy case.

& Leok [140] fail to converge with this time step. Therefore Figure 4.6 shows
only the results for the Strang splitting and the fourth order Runge-Kutta
scheme. In both cases the Strang splitting shows a smaller energy error. The
momentum error (not shown) is within machine precision for the Strang split-
ting and of order one for the Runge-Kutta approach.

We attribute the higher accuracy of the splitting scheme in the positive
energy case to the formation of long lived coherent structures of like-signed
vortices. With exact conservation of the Hamiltonian, like-signed vortices can
only have a close approach if there is a simultaneous close approach between
vortices of opposite sign. The coherent structures make the close approach of
opposite-signed vortex pairs less likely.
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Figure 4.6: Energy error in simulations with negative (left) and positive (right)
energies. The Strang splitting is compared against a fourth order Runge-Kutta
(RK4) scheme.
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Table 4.2: Round-robin scheme for ordering vortex pairs in a four-vortex sys-
tem.

round 0 1 2
pair | 0—-3 | 1-3|2-3
1-2|2-0|0-1

4.5 Parallelization

In this section we will discuss several different parallelization algorithms for
point vortex dynamics. All of them are based on rearranging the pairwise flow
maps of (4.9) and grouping together subsets of the composition. By choosing
groups that consist of disjoint pairs, the order of evaluation does not affect the
result and the pairs may be evaluated in parallel, without loss of accuracy.

As an illustration, let us consider a system with just 4 vortices, labelled!
i =0,1,2,3. The ordering C' must contain all 6 possible vortex pairings once.
This is similar to round robin tournament scheduling, where all competitors
play each other once. Such a scheme is presented in Table 4.2, each round
is performed from top to bottom before moving onto the next round. The
ordering is constructed by fixing the last vortex, number 3, in position, while
the other vortices rotate over the remaining positions. Note that during each
“round” each vortex occurs only once, this will be important later on when
discussing parallelizations .

The Strang splitting for this ordering is written as

S 03 12 13 20 23 01 01 23 20 13 12 03
®2T :(b‘r od)‘r O¢T O¢T O¢T O¢‘r O¢T o¢‘r O(b‘r o(b‘r o(b‘r od)r .

For notational convenience we use a time step of 27. Because this ordering is
symmetrical and each of the ¢ is self-adjoint, the resulting method <I>§T isa
second order accurate method.

The more general ordering of N interacting vortices can be arranged in
the same way. We write the s-th pair of round r in the ordering Cy as C¥ =
(Asr, Bsr). Following the same pattern as for the four-vortex system results in
the expressions

Agr =mod(s+7, N —1)

B. — N-1 fors =0
ST mod(N —1—-s+r,N—1) fors#0.

A ten-vortex system exemplifies this ordering in Table 4.3.

IFor convenience in the ensuing modular arithmetic, we switch to indexing from zero.
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Table 4.3: Round-robin scheme for ordering vortex pairs in a ten-vortex sys-

tem.

round 0 1 2 3 4 5 6 7 8
0-911-91(12-9(3-9[4-9|5-9|6—-9|7—-9|8-9
1-8|2-0|3-1|4-2|5-3|6—-4|7-5]8—-6|0-7

pair | 2—-73-8|4-0|5-1|6-2|7-3|8-4[0-5]1-6
3—-6|4—-7|5—-8]6—-0|7—-1|8-2]|0-3|1—-4]|2-5
4-5|5-6|6-7|7-8|8-0|0—-1|1-2]2-3|3—-4

4.5.1 Complete parallelization

The arrangement of pairwise vortex interactions into “rounds” in Table 4.2 is
not just convenient for notation. Let us denote the composition for each round
by ¢+ = ¢l o ¢k, for i, §, k, £ all different. In this notation the first round of
Table 4.2 is the composition 12312 = ¢93 o ¢12. But as the evolution of vortex
pair (0,3) is independent of that of pair (1,2), the order of the operations
is irrelevant, i.e. ¢9% and ¢!? commute. This means that while evolving the
system, these two vortex pairs can be evaluated simultaneously, in parallel.
Let us stress this fact by using the notation x¥*! to denote the time-7 flow
map of the evolution of vortex pairs (¢,j) and (k,[) in either order. The Lie-
Trotter splitting method where both pairs for each round are evaluated in
parallel is then written as

LT 03,12 _ 13,20 _ . 23,01
O = P12 0 x 320 0 2301,
and the Strang splitting
S| 03,12 13,20 , 23,01 23,01 _ 13,20 _ . 03,12
®2T:XT’ OXT’ OXT’ OXT’ OXT’ OXT’ N

Because each of the " compositions is self-adjoint, this method is again
second-order accurate. Note that the order of the underlying pairwise inter-
actions is now no longer necessarily symmetric.

When integrating a system with four vortex, each round of the round-
robin scheme contains two pairwise interactions that can be performed in
parallel. More generally, this scheme allows P processors to evaluate a sys-
tem with 2P vortices. But each processor only evaluates a single vortex pair
interaction per round, meaning there is a lot of communication relative to the
amount of work done each round.

4.5.2 Reducing communication

It is not necessary for each round to be finished completely before starting
evaluating the next. For the s-th vortex pair of round r, (A, Bs:), to be eval-
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Table 4.4: Reduced communication round-robin scheme for ordering vortex
pairs in a ten-vortex system.

round 0 1 2 3 4 5 6 7 8
0-9({4-9{8-9(|3-9|7-9(2-9[6-9]1-9|5-9
1-8|0-8|0-7|8-7]8-6|7—6|7—-5|6-—5|6-—4

pair | 2—-7 |1-7]1-6 | 0—-6|0—-5|8-5|8—-4|7—4|7-3
3—-6|12-6|2-5|1—-5|1—-4|0—-4][0-3|8-3|8-2
4-513-5(3-4]12-4]12-3|1-3|1-2[0-2]0-1

uated, it is only necessary to wait for these two vortices to have been evaluated
in the previous round r — 1. The evaluation of the remaining vortex pairs com-
mutes with the evaluation of (A, B ).

If thread s in round r has to wait only for vortices A, and Bg, to be done
in round r — 1, it is beneficial to choose the ordering such that one of the two
vortices is evaluated on the same thread as in the previous round. This means
that each thread has to wait for only one other vortex pair of the previous
round. We construct such an ordering based on the construction used in the
previous section. Again the vortex 2P — 1 is kept fixed in place, but now the
other vortices rotate through P — 1 positions. In the ten-vortex example, this
can be seen as jumping straight to round 4 in Table 4.3 after the first round.
In doing so, all vortices on the right under the fixed vortex move to the left,
but in reversed order. By subsequently reversing the order of these pairs in all
odd rounds, each thread needs to wait only for one other vortex during each

round. The resulting ordering 0 ¥ = ([lsr, E’ST> is given by

(AS'Fa B T
(Asra Bsr> = (A7, Bsr)  forrodd,s=0
(Bs#, Asi)  forrodd,s #0,

s7) forreven

where 7 = mod (r(P —1), N —1) and § = P — s. An example ordering with 10
vortices is presented in table 4.4.

4.5.3 Hierarchical parallelization

An efficient parallelization finds a balance between reducing the work load
per processor and reducing the time required for communication between
threads. Without parallelization there is no communication time, but the
workload per thread is largest. The parallelization scheme in Section 4.5.1
represents the other extreme — where communication time dominates the to-
tal computation time. In this section we develop a scheme that has adjustable
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parallelization. Both the “complete parallelization” and the non-parallel com-
putation are special cases of this scheme.

The method we develop here is constructed as a hierarchy of methods that
act on a hierarchical system of leagues of vortices. Given a number of parallel

threads P and a number of vortices N to be evaluated, we place L = %
vortices in each lowest-level league in the hierarchy. If the fraction 7% is not

integer, we introduce a number of dummy vortices with zero circulation to
increase NV such that it is a multiple of 2P.

We also define a factorization P = p; X py X ... X p,. We will use the
prime factorization, but depending on system architecture a different factor-
ization may be desirable. Given this factorization, we construct a hierarchy of
leagues as follows: there are 2p; level-one leagues, each consisting of p, level-
two leagues, each consisting of ps level-three leagues and so on. The level-n
leagues are the lowest level and consist of L vortices each.

We denote a level-m league in this tree by £F, where the vector k =
(k1,ka,...,km) € R™ denotes the ancestry of the league. In other words,
ky, denotes the current child of parent league k,,,_; of grandparent k,,_5 and
so forth.

The hierarchical splitting uses the fact that each vortex pair is either an in-
teraction between two leagues, with one vortex from each of the two leagues,
or within a league, with both vortices from that same league. Looking at the
top level first, we see that this means that we have interactions between the
2p; groups, and interactions within each of these groups. One way to do this
would be by first evaluating all p2(2p2 — 1) possible combinations of level-
one leagues according to an ordering as in Section 4.5.2 and then evaluating
the interactions within each level-one league separately. This can, however,
have the unfortunate effect of wasted computation time if one of the factors
of the factorization is odd. Instead we evaluate the interaction between level-
one leagues according to the ordering of Section 4.5.2, but we omit the final
round. The interactions between these omitted leagues are combined with
their interior interactions. For the top level, this forms a system of N/p; vor-
tices that has to be evaluated completely.

Let Aq[(k, £)] denote the interaction between all vortices in level-one league
L% and those in £{ and let the composition ®;[(k, ¢)] denote the evaluation of
all interactions within or between level-one leagues £¥ and L{. The Lie-Trotter
splitting is then given by (we drop the subscript indicating the time step for
notational convenience)

2p1—3 p1—1 p1—1

o' = [[ ] AulCsplo [ @052, (4.21)
r=0 s=0 s=0

This composition is represented graphically as the top level of the tree dia-
gram in Figure 4.7. The compositions A;[(k,¢)] and ®,[(k, ¢)] both follow a
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Table 4.5: Vortex interaction pairs between vortices {0, ...,3} and {4,...,7}.

round 0 1 2
0—-4]0-5|0-6
pair | 1-5|1-6|1-7

w

I
[SRCIINNEEN

3—-713-41|3-5

recursive definition detailed below.

BT
A(1],3 Ai'Z Ai'S Af‘“ <I>?3 <I>(1)’1
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Figure 4.7: Tree representation of the hierarchical parallelization with L = 2
and P = 4, using prime factorization: p1 = p2 = 2. Only a few branches are
expanded for clarity.

Interactions between leagues

The flow map A,[(k,£)] represents all possible interactions with one vortex
in league E{; and one in league Cg. Using the hierarchical ordering of the
vortices, we evaluate all such pairings by evaluating all possible combina-
tion between leagues one level down. This is represented graphically by the
branches on the left in Figure 4.7.

The ordering Dyp contains all possible pairs (¢, j) with ¢ € {0,...,P — 1}
and j € {P,...,2P —1}.

D3y = (s,P+mod(s+r,P)), s,ref{0,...,P—1}.

An example with P = 4 is presented in Table 4.5.
With this, we define the recursive definition for the interaction between
leagues

Pq—1 pg—1

Agal(k, 0] = TT ] Aallise(Dsp)), (4.22)

r=0 s=0
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where the mapping

Iy (k) = (k. £) for k< py (4.23)
’ (I,k—pg) fork>p,

associates each of the vortices from an ordering with 2p, vortices with chil-
dren in the groups £¥ | and Eg_l. The lowest level interaction between
leagues is given by

L—-1 L-1

ARe =TT T o™ P50 (4.24)

r=0 s=0

Note that we also use the ancestry to enumerate the vortices, rather than linear
indexing.

Interactions within leagues

The definition of ®;[(k, ¢)] is given recursively, so it follows the same pattern
as ®,_1[(k,£)] with k, £ € R?™1, that is

2pg—3 pg—1 pqg—1

®g-1((k, 0] = [T TI Adliiz(@sp )0 T @llie(Csye?)],  (4.25)
r=0 s=0 s=0

for ¢ = 1,2,...,n. The mapping Iﬁ; is the same as in (4.23). Note that the
definition of ®}T in (4.21) is in fact equivalent to (4.25) for ¢ = 1.

At the lowest level, the league £¥ no longer consists of leagues, but of L
point vortices. So when considering the interaction of all vortices within two

lowest-level leagues £* and £¥, this constitutes evaluating a 2L point vortex
system.
2L—2 L—1 ‘
o, [(k,0)) = [[ I o™ 0. (4.26)
r=0 s=0

By (recursively) substituting equations (4.22)—(4.26) into (4.21) we find a
Lie-Trotter splitting for the system with N = 2L P vortices.

Symmetric splitting

To construct a symmetric splitting we need to compose the splitting CI%‘T of
(4.21) with its adjoint <I>0LT’* as

oy = ofT o oL,

The adjoint of the Lie-Trotter splitting follows from a reversal of the order of
the operators — insofar as this is necessary — and taking the adjoint of each of
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the interior operators.

p1—1 0 p1—1

LT * K’ [ 98, *
H @3 C2p21p1 2]70 H H A C2p1
r=2p1—3 s=0
The adjoint of ®,_1[(k,£)] for ¢ € {2,...,n} of (4.25) is taken in a similar
fashion to be

pq—1 0 pg—1

wali o) = [T o ne T1 1T (s,

r=2ps—3 s=0

For the interactions between leagues given by A,[(k, £)] in (4.22) we need only
reverse the order of the outer product and take the adjoint of the A,y; inside.
The adjoint of the lowest level operators in (4.24) and (4.26) is achieved by
reversing the order of the outside product over 7.

The complete parallelization of Section 4.5.1 follows from the choice L =
1, N = 2P = 2p;, whereas the non-parallel scheme follows from P = 1,
N =2L.

4.5.4 Implementation details

All simulations were performed on a desktop Macintosh MacPro running OS
X 10.9.5. The system has two Intel Xeon 2.93 GHz processors with six cores
each. The system has 32 GB shared memory, 12 MB L3 cache (per proces-
sor) and 256 KB L2 cache (per core). The programming code was written in
C, compiled into stand-alone applications using Matlab’s mex with llvm-gcc-
4.2. The motivation for this compiling strategy is to allow for easier transfer of
data to Matlab, which was used for all post-processing and data-analysis pur-
poses. All source files are available at
https://github.com/KeithWM/poissonpv.

4.5.5 Timing experiments

To investigate the practical use for the different splitting schemes and vor-
tex orderings we perform several experiment measuring the required time for
different simulations. In all cases the configuration consists of eight strong
vortices, four positive (I' = 1) and four negative (I' = —1), with the remaining
vortices weaker with circulation 41 in equal numbers. The initial conditions
are chosen such that the total energy and momentum are zero. All timing ex-
periments are performed five times independently, to confirm that the results
are not influenced by external factors.

The efficiency of the parallelized splitting method is best represented by
studying the scaling of the method to large number of vortices while linearly
increasing the number of threads. This implies each thread always operates
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on the same number of vortices and consequently the time taken for each
round does not change. The number of rounds does change when the number
of vortices is increased, but this is only a linear increase.

For these simulations we use a Strang splitting with a time step of 7 =
0.001 and simulate up to only 7' = 0.01. This short time makes the timing
results for small systems somewhat noisy, but it means that simulating a large
system remains feasible, even when using only a few threads. We present
results for the splitting as detailed in Section 4.5.3 as well as results for the
same principle with a small modification to reduce communication.

In Figure 4.8 we display the time required to simulate a systems with
64 (left) and 1024 (right) vortices per thread, when varying the number of
threads from 1 to 12. There is indeed only a linear increase in the workload.
In the case with 64 vortices per thread, the benefits of parallelization outweigh
the costs roughly from a system size of 192 onwards. With 1024 vortices per
thread there is an immediate benefit to parallelization.

The different orderings appear of little to no effect on the speed of compu-
tation. We attribute this to the fact that the intended improvement by rear-
ranging the ordering would arise only in situations where there is a significant
difference in the time required to evaluate the different pairwise interactions.
This is certainly not the case when each thread is evaluating many pairwise
interactions each round.

1
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Figure 4.8: Wall clock time required plotted against number of vortices N,
keeping the number of vortices per thread fixed (64 on left, 1024 on right). A
solid black line represents the time needed to perform the simulations on a
single core and dashed black lines represent O(N) and O(N?) scaling.

The same set-up is used to compare the speeds using different combina-
tions of system size and thread counts (/N and P respectively). The number
of vortices per group is then chosen to be L = [25], leading to the possible
introduction of dummy vortices. This will however have minimal effect on
computation time in large systems.

Simulation times for system sizes ranging from N = 24 to N = 24000 and
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thread counts from one to twelve are compared in Figure 4.9. The times are
normalized by N? representing an estimation of the simulation time per vor-
tex interaction. For increasing system size this quantity approaches a fixed
constant for a fixed number of threads. This is clearly visible for the smaller
thread counts. A general trend that larger systems are evaluated fastest us-
ing more threads is apparent, but there are some notable exceptions. Most
standing out is the speed of the 12 thread computation of a system with 180
vortices. This is probably a result of the efficiency of evaluating 8 vortices per
group due to memory management.
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Figure 4.9: Wall clock time plotted against number of vortices N, using dif-
ferent numbers of threads. The times are normalized by N?, thus estimating
the workload per vortex pair. All simulations are performed using a Strang
splitting.

We investigate the error convergence for the different orderings in a large
system with 360 vortices — 8 strong and 352 weak as before. We run a short
simulation up to 7' = 0.1 time units. The time step used is varied from 7 =
1072 down to 7 = 107°. We consider the energy error ey (t) = |H(t) — H(0)
and take the mean &g = % 2(1)21 e (iT) over the simulation interval.

The mean energy error is plotted in Figure 4.10; it is compared against
the time step in the left-hand panel, and against the simulation time on the
right. As expected the Lie-Trotter splittings show first order convergence and
the Strang splittings second order. The heuristic modification made to the
separated ordering has little effect on accuracy or speed.

Over the range of time steps considered, Strang splitting outperforms Lie-
Trotter splitting not only in terms of accuracy for a given time step, but also
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Figure 4.10: Comparison between different orderings in the Lie-Trotter (LT)
and Strang (S) splitting schemes for a system with 360 vortices. On the left
the error in energy is compared against different time steps, on the right it is
compared against simulation time required. All simulations use eight parallel
threads. Black dashed lines represent first and second order convergence.

in terms of accuracy against computational cost. This suggests higher or-
der methods could be even more efficient. This is investigated by comparing
fourth and sixth order methods against the first order Lie-Trotter and second
order Strang splittings for the same problem. The higher order methods fol-
low from a composition of a number of Strang steps of different sizes [62].
For both fourth and sixth order we consider the methods with the minimal
number of stages presented by Yoshida [143], as well as the methods of same
order but with smaller error coefficients found by McLachlan [99].

The results are shown in Figure 4.11, again with energy error versus time
step on the left and energy error versus computational time on the right. All
methods exhibit the expected error convergence, albeit for a limited range of
time steps. The methods due to McLachlan [99] have considerably smaller er-
ror for the same time step. When considering the benefit for the same compu-
tational load the difference is much reduced, but still in favour of McLachlan’s
schemes.

4.6 Conclusion and outlook

Solutions to ideal fluid flow with a singular measure vorticity field result in
a Poisson system describing the motion of the vortex centres. By splitting
the Hamiltonian of such a point vortex system into the interactions of indi-
vidual vortex pairs we construct a splitting method. By composing the basic
Lie-Trotter splitting with its adjoint (the same method with reversed order-
ing) a symmetric Strang splitting with second order accuracy is constructed.
Solution trajectories from these schemes provide exact solutions to modified
Poisson problems with the original bracket, thereby respecting the Casimirs
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Figure 4.11: Comparison between different splitting schemes for a system with
360 vortices. On the left the error in energy is compared against different time
steps, on the right it is compared against simulation time required. All simu-
lations are performed on eight parallel threads.

of the original dynamics. The modified Hamiltonian is studied with the use
of backward error analysis, showing that inaccuracies in the Hamiltonian oc-
cur with close vortex interactions. The conservation properties are studied in
a number of test cases, including those considered by Vankerschaver & Leok
[140].

The splitting method can also be rearranged into the interactions between
groups of vortices, allowing parallelization of the workload. This reduces the
natural quadratic scaling of computation time with system size to linear scal-
ing when the number of processors is increased accordingly. The ordering of
the pairwise evaluations can be modified to reduce communication overhead.
The method therefore extends well to distributed memory implementations
for large systems, allowing the method to be used for engineering applications
or for studying statistical mechanics of point vortex dynamics.

The Strang splitting is also used as a basis for constructing higher order
methods following Yoshida [143] and McLachlan [99]. When higher accuracy
is desired, these methods are more efficient in terms of computational power
than Lie-Trotter or Strang splitting.

In the statistical mechanics study of point vortex systems it is usually
assumed that the vortex strength decreases as the number of vortices is in-
creased. This follows immediately if it is desired that the enstrophy Z =
Ji»w?dS = 3 | T2 matches the enstrophy of some real fluid. The same can
be expected of point vortex models used as predictive models. This means
that when the number of vortices is increased, the time step need not be de-
creased, thus preserving the linear increase in computational load.
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5. Direct control of the small-scale energy balance in two-dimensional fluids

5.1 Introduction

In fluid dynamics applications such as ensemble weather prediction and cli-
mate simulation, when the time scales of interest are long compared to the
Lyapunov time, the goal of simulations is to accurately sample an evolving
probability density function of the solution. In general both the intermediate
and steady-state distributions are unknown, being the consequence of forcing
and dissipation introduced at various scales.

Recent improvements in the understanding of numerical methods, specif-
ically the development of backward error analysis [62, 86], allow interpreta-
tion of the numerical solution as the exact solution of a modified system of
equations. The modified equations typically admit their own (modified) in-
variant measure, and numerical truncation errors therefore bias the statistics
obtained in simulation according to this altered statistical distribution. Thus
numerical methods imply structural bias due to numerical truncation, even
when the continuum model is complete.

As a precursor to accurately sampling an evolving measure, it would seem
essential that the numerical method accurately sample the stationary invariant
measure in the absence of forcing and dissipation, to allow correct response of
the system to perturbations from equilibrium; however, even this requirement
is typically not fulfilled, as has been observed in numerical investigations of
simple two-dimensional ideal fluids models. In [42] it was shown that the
equilibrium statistical mechanics of finite difference discretizations of quasi-
geostrophic vorticity flow over topography are sensitive to the preservation
of kinetic energy and (quadratic) enstrophy. Even in the idealized setting of
unforced, inviscid 2D flow, a correct sampling of non-Gaussian statistics in
the Miller-Robert-Sommeria ensemble requires specialized techniques [2, 43],
and much less is known about the accuracy of sampling the nonequilibrium
steady states treated in this paper.

In the fluid dynamics setting, several equilibrium models are known. For
unforced, ideal fluids in two dimensions, the Miller-Robert-Sommeria mea-
sure [102, 123, 124], which encodes the area distribution of the vorticity field,
is well established [16]. In fluctuating hydrodynamics, the Landau-Lifshitz-
Navier-Stokes equations are provably ergodic with respect to the Boltzmann-
Gibbs distribution of kinetic energy under a fluctuation-dissipation relation
and stochastic forcing [46, 47, 41, 36]. For the geophysically relevant regime
of fixed-wavelength stationary forcing and viscous dissipation, fluids in the
atmosphere and ocean are believed to sample a nonequilibrium steady state
in which the kinetic energy spectrum satisfies a power law over a range of
length scales, as posited by Kolmogorov [89, 12, 83, 56, 139]. In this case no
equilibrium measure is explicitly known, but in the probabilistic setting a sta-
tionary expectation—namely the power-law spectrum for kinetic energy—can
be observed from measurements in the atmosphere [108].
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5.2. Two-dimensional turbulence

Power-law kinetic energy spectra can be simulated using forced Navier-
Stokes discretizations at operational resolutions, but this typically requires
the introduction of a viscosity coefficient that far exceeds that encountered in
atmosphere/ocean science applications in nature. In practice, higher order
hyperviscosity is used because it has a more localized effect on the spectrum.
Excessive numerical viscosity is believed to adversely affect the simulated
growth of small-scale physical instabilities as well as inhibiting spread in en-
semble simulations [79, 137]. Our simulation experiments bear this out, as
we observe a strong influence of numerical viscosity on autocorrelation func-
tions and the information content of ensembles. Turbulent backscatter meth-
ods have been introduced in [40, 134, 13] to re-inject kinetic energy at vis-
cous length scales. Alternatively, “superparameterization” methods [142, 60]
have been proposed as an intermediate alternative to large eddy simulations.
In these, eddy dynamics are modelled by either a simplified dynamics or a
stochastic closure model. In this paper we adopt an extreme statistical sim-
plification of the fine-scale model, coupling it via thermostatic controls to di-
rectly impose a background power law kinetic energy spectrum at the small-
est resolved scales. Our approach allows us to maintain the given target with-
out employing artificially increased viscosity. The energy spectrum we impose
can be taken from observational data, theory or higher resolution simulations.
In the case of atmospheric turbulence the experiments by Nastrom & Gage
[107] provide such data. In two-dimensional forced-dissipated Navier-Stokes
it may also be taken from theoretical predictions [89, 12, 83].

The remainder of this paper is organized as follows: In the following sec-
tion the incompressible 2D Navier-Stokes equations, with forcing and dissipa-
tion, are recalled in their vorticity form. Section 5.3 discusses the dynamical
perturbations used in molecular dynamics to simulate a molecular gas at con-
stant temperature. The interpretation of such perturbation methods in the
context of turbulence is discussed in Section 5.4. A feedback control is then
applied to 2D turbulence simulations in Sections 5.5 and 5.6; the former is
a simulation with large scale random forcing and forward enstrophy cascade
and the latter is a simulation augmented with additional, small scale forcing
that is unresolved due to spectral truncation. Both of these sections include
statistic and dynamic results of the new approach. A short discussion of sim-
ilar methods and possible practical applications in Section 5.7 concludes the

paper.
5.2 Two-dimensional turbulence
We focus on driven two-dimensional incompressible flow. Ignoring rotation

and topographical effects, we work with the Navier-Stokes equations on a dou-
bly periodic domain « € T?. The 2D Navier-Stokes equations with forcing
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5. Direct control of the small-scale energy balance in two-dimensional fluids

f(=x,t) and generalized viscosity model are:
wi+J(,w) = f+r AT o — v (—-A)Pw, Ay =w, (5.1)

where 1 (x,t) is the stream function and w(x,t) is the vorticity component
normal to the plane, A is the Laplace operator and A~! denotes scale-selective
damping (see below). In this paper we use either physical viscosity p = 1 or
fourth order hyperviscosity p = 4. The nonlinearity J(¢,w) is defined by

J(pw) = 200w 000w (5.2)

Equation (5.1) is discretized using a pseudo-spectral method [23], express-
ing the vorticity field in terms of its Fourier components

1 —ik-x
= /jT (@)= dz, |kl < K, (5.3)
where k = (ki, k2), is an index vector, and we denote |k| = (k? + k3)'/? and
|k|oo = max{|ki],|k2|}. In terms of its Fourier components, equation (5.1) is
written

wg + Jk(w) = fr + V_lﬁlzlwk — I/pAiwk,

where Ay, = —|k|? and the scale-selective damping is defined by
Aot [ R k<3
k 0, otherwise.

The nonlinear term Ji(w) represents the pseudo-spectral evaluation of (5.2)
on a uniform 2K x 2K grid, implementing a standard 3/2 filter to avoid alias-
ing due to quadratic terms [23].

Our computational set-up is similar to that of Gotoh [59]. Scale-selective
viscosity is restricted to those modes with |k| < 3 to curtail the inverse cas-
cade of energy. The forcing is Gaussian white noise in time and applied
in a band of energy shells with 3.5 < |k| < 6.5. For the simulations of
Section 5.6, small scale random forcing is additionally applied in the range
202.5 < |k| < 206.5. The magnitude of the forcing is scaled such that the
expected power input matches a given value P as follows. With the energy
given by E(t) = —1 3", A, 'wkw;, the expected power input due to forcing is
equal to the expected change in energy (using It6’s formula)

oFE oE 2

1 9E
E[dE] =E | 22 at O e+ Lo OF qu | 5.4
[dE] ot 't 2 Wi g Gk gz Ak (5-4)

For forcing with uniform magnitude across a band k € Ky of wave numbers,

we substitute dwy, = fdZg, where dZy, = dA; + idBy is a complex Wiener
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5.2. Two-dimensional turbulence

Physical Reference  Truncated Hyperviscosity Nosé-Hoover
P 0.1 0.1 0.1 0.1

v_q 2 2 2

P 1 1 4 1

vy 1.0x 107 1.0x107* 4.3 x 10715 1.0 x 10~*
Numerical

At x 10° 1 1 1 1

K 256 85 85 85

A - - - {51,71%,81}

€0 - - - {10-1,10~1/2,11}
Results (case denoted )
n 4.92 4.92 4.92 4.92

o 1.15 0.645 1.33 1.14

d 0.789 0.305 0.900 0.779

Table 5.1: Parameters and results for the simulation of two-dimensional tur-
bulence

increment, into (5.4) to find

E[dE]=—f* Y A.'dt=Pdt,
kGKf

whence we compute that the magnitude of the forcing in the forced modes

should equal f = ﬁ . Consequently a time-At forcing increment
kEKf
is computed via the formula

PAt
Zker k|2

where Ry, Sk are unit normal pseudorandom numbers.

The values of the parameters used in the simulations are summarized in
table 5.1.

The viscous terms in (5.2) have typical length scales defined by the wave
number magnitudes for which the coefficients 1,A}, have magnitude unity. By
using Ag, = —|k|* we find k; = \/W’l for j = 1and kj, = \/v—1 for j = —1.
Assume that these two scales are sufficiently well separated, ks > kp, and
that forcing acts primarily at some intermediate length scale. In this setting
it is expected that the hypothesis of Kraichnan [82] holds and that there is a
steady flux of energy from the forcing wave numbers to larger scales (i.e. the
inverse energy cascade), as well as a steady enstrophy flux to smaller scales
(i.e. the direct enstrophy cascade). These cascades terminate when the dis-
sipative scales kj, and kq are reached, but with sufficient separation between

wr(t + At) = wi(t) + (Ry + iSk),
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5. Direct control of the small-scale energy balance in two-dimensional fluids

forcing and dissipation scales there persist a range of wave numbers of sta-
tistically stationary energy and enstrophy transport. Because the dynamics in
these ranges are almost unaffected by damping and forcing, they are dubbed
inertial ranges. The steady fluxes of energy (resp. enstrophy) in both regimes
yield power law energy spectra.

This means the energy in wavenumbers near k, given by

Ep(w)=—= Z AL wgwy, (5.5)
k—3<|k|<k+i

satisfies on average an approximate power law (time average denoted by over-
bar)

By ~ C2PE=5%3 for k < kg,
in the inverse energy cascade, and
Ey, ~ Cn?Pk=3 for k> ky,

in the direct enstrophy cascade. The parameters ¢ and 7 =~ k7e denote the
energy and enstrophy injection rates [15]. Using analysis of structure func-
tions, [90] concludes that a k=2 inertial spectrum is plausible under two-
dimensional turbulence assumptions, but that a £~/% range cannot be so ex-
plained. In numerical simulations, various other power laws are observed
(see references below). The methodology we propose makes no assumptions
on the functional form of the kinetic energy spectrum and is therefore appli-
cable to any observed spectrum. We demonstrate this by using the method in
a forced-dissipated turbulence cascade in Section 5.5 and in a case with both
large and small-scale stochastic forcing in Section 5.6. The versatility of the
method also promises straightforward generalization to three-dimensional
turbulence.

The effect of spectral truncation on the kinetic energy spectrum is most
pronounced in the inertial enstrophy regime. To save computational effort,
we design our simulation with small separation between the scales of forcing
and large-scale damping. Such a parameter set is given in the column la-
beled “Reference” of table 5.1. This simulation yields an inertial range power
spectrum as depicted in figure 5.1. The figure shows both the instantaneous
spectrum and the time-averaged spectrum after 50 time units, correspond-
ing to over 250 eddy turnovers. The computed energy spectrum is steeper
than the hypothesized k3 slope. This is common in numerical simulations
and is usually attributed to insufficiently large Reynolds number due to lim-
ited resolution [15, 59, 19]. Saffman [128] proposes a k=% spectrum due to
vortex filamentation and small amplitude front formation. Farazmand et al.
[50] suggest that numerical simulations differ from the hypothesized spectra
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5.2. Two-dimensional turbulence

time—averaged energy spectrum

----- instantaneous energy spectrum

- power law fit (offset by a factor of 10)
T

° 10' 10
J4

Figure 5.1: Two-dimensional turbulence kinetic energy spectrum and power
law fit. Simulation parameters are given in the “reference” column of table
5.1.

not due to insufficient resolution, but due to the choice of forcing. They in-
vestigate forcing functions that yield the hypothesized k~°/3 and k=3 power
law regimes. This is in line with the findings of Danilov & Gurarie [33], who
demonstrate that power law spectra can only be observed for a special set of
external parameters. Farge et al. [51] use wavelet methods to analyse turbu-
lent velocity fields and define a local energy spectrum. They discover that
the k3 energy spectrum only holds outside of regions of strong vorticity and
shear layers. Inside those regions the energy spectrum scales as k% and k4
respectively. Sukoriansky et al. [135] find that the forward enstrophy cascade
spectral slope depends directly on the chosen large scale drag.

We fit a power law to the observed (steeper) spectrum in the form sug-
gested by Gotoh [59]

B, ~ C’n2/3k"3’d,

using a least-squares approach. The newly introduced parameter d indicates a
deviation from the theoretical slope. Even though the power law that develops
for a given parameter set in (5.1) is different from the theoretical spectrum,
it is still independent of the chosen initial conditions. This is evidence that
the dynamics are ergodic and motivates consideration of the invariant mea-
sure of the dynamical system, analogous to such considerations in molecular
dynamics. The following section briefly consider the tools used in molecular
dynamics, before their application to 2D turbulence is detailed in Section 5.4.

87



5. Direct control of the small-scale energy balance in two-dimensional fluids

5.3 Canonical sampling and temperature control

In this section we briefly recall the problem of constant temperature simu-
lations in molecular dynamics, which is the inspiration for the control we
propose for kinetic energy in the Navier-Stokes equations. The dynamics of a
classical molecular gas are governed by a Hamiltonian system

i) = _qu(q)v

where g € R" represents the vector of particle positions, p € R" the vector
of particle momenta, and unit mass is assumed. The Hamiltonian H(g,p) =
1lpll? 4+ V (q) represents the total energy as a sum of kinetic energy x(p) =
|lp[|? and potential energy V(q). Given an initial condition with total energy
Hy, a solution is restricted to the constant energy surface H(q(t), p(t)) = Ho.
If the phase flow is ergodic on the constant energy surface, then for almost
any initial condition, the time average of an observable function a(g, p) of the
solution,

T
aa.p) = Jim 7 [ ala(t).p(0)at

T—o0

is equal to the ensemble average with respect to the microcanonical measure

T,

(a) = / a(@,p) T (dg, dp) = / a(q,p) §(H(g,p) — Ho) dg dp.,

where Hj is the total energy defined by the initial condition.
For a molecular gas in thermal equilibrium with a reservoir of temperature
7, the total energy is no longer conserved. Instead the time averaged kinetic
energy satisfies
_ nkpT n
k= =

2 283’

where kg is the Boltzmann constant and /3 is the inverse temperature. In this
case, trajectories of the system sample the canonical (Gibbs) measure

7.(dq, dp) = p(q,p) dg dp, p.(q,p) x e PH(@P)

and when the flow is ergodic in this measure the temperature is related to the
canonical mean
— () = [ rlp)m(dg. dp).

nkpt
2

To carry out numerical simulations of molecular dynamics at constant en-
ergy, there exist numerical methods that (exactly or approximately) preserve
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5.4. Invariant measures and expectations for two-dimensional turbulence

the Hamiltonian. Preservation of a quantity like % is more subtle, since it is
only conserved ‘on average’. Methods for constant temperature molecular dy-
namics introduce perturbations to the dynamical equations (5.6)—(5.7) called
thermostats. The Nosé-Hoover thermostat [113, 114, 70] augments the dy-
namics with an extra variable £ that controls the kinetic energy in the system
as follows

q=p (5.8)
p= _qu(Q) —&ep
{ =¢e(2Bk(p) —n), (5.9)

where ¢ is a coupling parameter. The Nosé-Hoover method can be interpreted
in two ways. First, it is straightforward to verify that the Liouville equation
associated to the augmented system (5.8)—(5.9) admits the steady state

_1lg2
p(q.p,€) = pe(q.ple 2%,

for which the marginal density with respect to g and p is the Gibbs dis-
tribution. Hence the Nosé-Hoover method enforces the canonical invariant
measure. On the other hand, it is also apparent that the variable £ acts as
a damping coefficient for kinetic energy when £ > 0 and excites kinetic en-
ergy for £ < 0. Furthermore, (5.9) shows that £ will increase (decrease) when
2k(p)/n exceeds (falls short of) the target temperature 3! = kz7. Hence, the
Nosé-Hoover method can also be interpreted as a negative feedback control on
temperature. This second interpretation is crucial to our application of the
thermostat to fluids, as we explain below.

5.4 Invariant measures and expectations for
two-dimensional turbulence

The tendency of forced-dissipated turbulence to develop a power law spec-
trum independent of initial conditions provides evidence that the dynamics
may sample a unique invariant measure. Ergodicity of finite truncations of
the forced-dissipated two-dimensional Navier-Stokes equations is proven by
E & Mattingly [46] for the case of stochastic forcing of only two long wave
modes, k1 = (1,1) and either k2 = (1,0) or k2 = (0, 1). Continuing this analy-
sis, it is readily proven that this result extends to the case of forcing arbitrary
wave numbers k; and ks as well as k; + (1,0) and k2 + (0,1). This is the case
in our proposed forcing of selected bands in Fourier space.

Our interest lies in the practical case where computational costs prohibit
resolving a sufficient number of modes to capture small-scale dissipation.
This is the case in many large scale atmosphere and ocean applications. The
computational load is determined by restricting the Fourier expansion in (5.3)
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5. Direct control of the small-scale energy balance in two-dimensional fluids

to those modes with |k| < K. Denote the truncated vector of vorticity coef-
ficients by wg, and the full Fourier transform by w.. If the resolution K is
insufficiently large to capture the diffusion of enstrophy at the scale kg4, the
dynamics of the truncated system will differ greatly from those in a system
that is well-resolved.

Stochastic approaches to model the effect of the unresolved degrees of
freedom focus on the dynamical interaction between resolved and unresolved
modes (see for instance Mori [104], Zwanzig [145], Hasselmann [65], Majda
et al. [96] and Fatkullin & Vanden-Eijnden [52]). Here, we instead focus on
correcting the statistics of the truncated system, as embodied in its invariant
distribution and expectations.

Ideally, for correct sampling we would require that the invariant den-
sity px sampled by the truncated dynamics (i.e., wx ~ pk) be equal to the
marginal distribution of those same modes in the resolved case. Let us in-
troduce a partition w., = (@, &) where @ consists of resolved modes with
|k| < K and @ for the unresolved modes. For equivalence between the in-
variant measures of the two systems, we would require px to be equal to the
marginal density

p= /poo(d:,cb)dd:.

However, steady solutions to the Fokker-Planck equation for general forced-
dissipated turbulence are not explicitly available, due to the inherent com-
plexity of the nonlinear wave interactions. This means we cannot define a
perturbation for the truncated system such that the invariant measure is cor-
rect.

Instead we focus attention on expectations in the unknown measures. If the
invariant measures p and px did match, so would the expectations of arbitrary
observables (a(@)). Ergodicity of the systems would then also imply equiva-
lent time averages. We take the energy spectrum as a set of observables. Given
a truncation K > kg4, the modes wy, with ky < |k| < kg revert to a power law
spectrum due to the forward enstrophy cascade. In a system truncated well
below the viscous scale K < kg4, the downscale cascade of enstrophy is termi-
nated abruptly, resulting in an artificial build-up of enstrophy at the smallest
resolved scales known as spectral blocking. An inaccurate energy spectrum in
the highest wave numbers eventually leads to deviation from the power law
spectrum in the energy range, i.e. in the large scales [135].

In this paper, we propose employing the Nosé-Hoover thermostat (5.8)-
(5.9) to enforce a power law spectrum on the kinetic energy in the absence
of a mean flow. A crucial difference in the application to fluids, compared to
constant temperature molecular dynamics, is that in the current context the
invariant measure of the extended variable is unknown. In canonical sam-
pling, the distribution for the thermostat variable ¢ is known to be normally
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distributed with mean zero, independent of the original dynamics. This al-
lows augmentation of the thermostat variable dynamics (5.9) by an Ornstein-
Uhlenbeck process without disrupting the invariant measure [132]. The ad-
dition of stochastic forcing in the auxiliary variable makes the thermostat er-
godic [87]. However, in the current context of forced turbulence, we do not
know the distribution of the thermostat variable. Moreover, it is expected that
&(t) will have nonzero mean, because it must remove excess energy on aver-
age, yet add energy in the form of backscatter on occasion. For this reason
it is crucial to exclude the stochastic process in the thermostated wave num-
bers. Similar arguments were used in a forced molecular model in Jones &
Leimkuhler [75].

5.5 Feedback control of the forward enstrophy cascade

The kinetic energy spectrum consists of the kinetic energy distributed over
energy shells in wavenumber space, see (5.5). A Nosé-Hoover thermostat
could be applied to each shell to drive its energy to the observed average.
However, it is undesirable to artificially perturb the largest scale modes in
the system, which are well-resolved and least uncertain. For this reason, only
energy shells with wave number ¢ > ¢* above a threshold are equipped with
a Nosé-Hoover thermostat. To this end, denote by ¢(k) the energy shell con-
taining wave number k.
We choose perturbation parameters ¢, to satisfy

E)%eq, 0>t
Ep =
0, 0< 0*.

The discrete equations of motion for two-dimensional Euler flow, extended
with the thermostats, reads

wE + Jk(w) = frx + V_lﬁ,:lwk + 1 Apwi — @wﬁkEg(w), {= f(k),Vk
(5.10)

éezw (E[(QJ)—E[), gz‘g*v'~~7€max~

The viscosity term v; Agwy, in (5.10) ensures that the resolved scale modes not
directly driven by the thermostats possess a dynamics that is consistent with
that of the reference solution.

For each thermostated mode, the energy is driven towards a target value.
We emphasize that this value may be taken from physical observations, the-
oretical predictions or, as here for the purpose of method evaluation, from a
high fidelity solution that resolves the physical viscosity. As such the method
may be seen as a data assimilation approach that uses statistical data to correct
mean statistics of a dynamical simulation.
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Figure 5.2: The kinetic energy spectrum after 100 time units for the reference
simulation (solid), a truncated simulation (dashed), a simulation with hyper-
viscosity (dotted) and a simulation using the proposed control on the energy
spectrum (dashed, red). Parameters are given in table 5.1, where the { indicates
the parameters used here for the Nosé-Hoover control.

It should be noted that while the control will certainly drive the system to-
wards correct averages for the energy levels in the thermostated energy shells,
the invariant measure sampled by the trajectories remains unknown. An im-
portant consequence of this is that the marginal distribution of the thermostat
variables is not known a priori. This complicates choosing initial values for
the thermostat variables, as initialising them far from their equilibrium will
result in a slow relaxation. We perform a pilot simulation in which the ther-
mostated system is allowed to fully equilibrate in order to select initial data
for the &,.

5.5.1 Energy spectrum

The energy spectrum for a simulation using a thermostat is compared to a
resolved model and an underresolved model with hyperviscosity (v4 = 4.3 x
10715) in figure 5.2. The kinetic energy per energy shell is multiplied by a
correction factor that accounts for (i) the nonuniformity that arises by parti-
tioning of the discrete Fourier space into annular shells and (ii) the incomplete
resolution of the highest wave number bands (i.e. those in the corners of the
Fourier space). The factor is &, where W, = -5, | 1+ AL and
essentialll; results in smooth slpv?(:tra in figure 5.2 (2v1252—i1—\2/1<s%;1+ré S.Ilc). The
artifical (hyper)viscosity model grossly underestimates the kinetic energy in
the large wave numbers compared to the well-resolved model. The kinetic
energy spectrum in the thermostated model is visually indiscernible from the
reference model.
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Figure 5.3: A representation of the average energy in each Fourier mode us-
ing (left) the model with hyperviscosity, (centre) the reference simulation, and
(right) the Nosé-Hoover control, see table 5.1 for details. The value plotted
is given by C = 2nwrwy/(C'n*2k~37971), where the parameters C’ and d
are fit to the reference solution (cf. 5.2). When this value is close to unity, it
indicates close local (in Fourier space) agreement to the power law spectrum.

To investigate the energy spectrum more closely, the mean energy per
mode is represented in figure 5.3 for the reference, hyperviscosity, and ther-
mostated simulations. The mean energy per mode is multiplied by the cube
of the wavenumber magnitude. This will result in areas of equal colour for
modes where the energy spectrum scales as k=% and where isotropy can be as-
sumed. Anisotropy would appear as a break of the radial symmetry. This does
not occur in the reference simulation and for most of the controlled simula-
tion. However, in figure 5.3 we do observe that, for the thermostated model,
kinetic energy appears to be more uniformly distributed across the Fourier
modes within a given energy shell than is the case for the reference model.
This is most likely due to the heavily reduced dimensionality of the phase
space (852 versus 2562) leading to a much faster spread of the stochastic noise
from the forcing through the available degrees of freedom.

5.5.2 Vorticity field

In figure 5.4 the computed vorticity fields att = 1 and ¢ = 10 are shown for the
reference model, the model with hyperviscosity, and model using the Nosé-
Hoover control. At ¢t = 1, the vorticity structures produced by the thermostat
are similar to those of the reference and hyperviscosity models, indicating that
the thermostat only weakly perturbs the large scale vorticity. After 10 time
units, the solutions have diverged due to the chaotic nature of the dynamics,
but the vorticity fields remain qualitatively similar.
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hyperviscosity reference
-

Figure 5.4: Vorticity fields in a classical double cascade, obtained at t = 1 (top)
and ¢ = 10 (bottom) using (left) the model with artificial viscosity added, (cen-
tre) the reference simulation, and (right) the Nosé-Hoover method as indicated
with { in table 5.1.

5.5.3 Autocorrelation functions

Autocorrelation functions provide dynamical information on the temporal
variance at different scales. The autocorrelation function R, (s; ) of the vor-
ticity w at a point z is given by

T
Rou(s;x) = %/ wt+ s, z)w(t,z) dt
0

when observed over time 7". We study the autocorrelation function of the vor-
ticity at a grid point in the vorticity field. To save computational effort we will
focus on the vorticity field corresponding to Fourier modes with |k|. < 16.
As the vorticity at each grid point is identically distributed assuming homo-
geneous forcing, we average the autocorrelation functions over space to speed
up convergence.

We compare the autocorrelation functions for the thermostated simula-
tions to the fully resolved simulation, a truncated simulation, and a hyper-
viscosity model. In the left panel of figure 5.5 the autocorrelation function is
shown for different perturbation parameters 9. The right panel focuses on
the short-time behaviour. The agreement is relatively insensitive to perturba-
tion parameter for the range of values shown (an order of magnitude). For
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Figure 5.5: Autocorrelation functions R, when simulating a classical double
cascade. The Nosé-Hoover thermostat using various choices of the perturba-
tion parameter €g is compared to the reference solution (solid black), a trun-
cated simulation (dashed black) and a hyperviscous model (dotted black). The
figure on the right shows 1 — R, on a double logarithmic plot, to focus on
short time scale behaviour.

larger values of €, the thermostat acts more strongly, approaching Langevin
dynamics in the limit of large ¢y [54]. For smaller values of ¢ the thermostat
becomes very weak, meaning the relaxation of the spectrum requires averag-
ing on long times. The choice of thermostat threshold £* has an even smaller
effect on the autocorrelation functions and is therefore not shown.

5.5.4 Ensemble dispersion

A 50-member ensemble is created from a single deterministic initial condition
by randomizing the phase of all modes with |k| > 50; in this way each ensem-
ble member has an identical initial kinetic energy spectrum. In figure 5.6
we compare ensembles, simulated up to ¢ = 10, for the reference simulation
(centre), hyperviscosity (left) and Nosé-Hoover control (right) by studying the
phase angle of the (0,1)-mode. Both the hyperviscosity model and the Nosé-
Hoover control are less dispersive than the reference solution. Nevertheless,
the thermostated ensemble exhibits observably more variance than the hyper-
viscosity model, and does manage to reflect some of the outlying trajectories
of the reference solution.

5.6 Feedback control of a system with subgrid scale forcing

In the previous section the Nosé-Hoover method corrected the energy spec-
trum in the forward enstrophy region for a truncated system. In this section
we deviate from the classical setting of an intermediate forcing that results
in two inertial ranges. Here we include a small-scale forcing term. This flat-
tens the energy spectrum in the region between the two forcing scales when
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Figure 5.6: Ensemble dispersion in a classical double cascade. Plotted is the
phase angle of the (0,1)-mode using (left) the model with artificial viscosity,
(centre) the reference simulation, and (right) the Nosé-Hoover method as indi-
cated with T in table 5.1.

compared to the previous case. The form of the forcing is the same as before
(Gaussian white noise in the Fourier components), only now the wave num-
bers with 202.5 < |k| < 206.5 are additionally forced. The total power input
in these modes is equal to that of the low wave number forcing.

A Nosé-Hoover control with remaining parameters as described in table
5.1 is applied to a truncated simulation with K = 85, i.e. the small-scale forc-
ing is not resolved. Instead, the control target spectrum is observed from the
fully resolved simulation after 100 time units. This simulates a scenario in
which the fluid is forced at unresolved small scales, and we must attempt
to incorporate this forcing given observations at resolved scales. Figure 5.7
shows the mean kinetic energy spectrum after a 100 units for each of the four
different simulations of table 5.1. Both the underresolved and hyperviscos-
ity models have no means of sensing the small-scale forcing and will conse-
quently underestimate the energy in the smallest resolved scales. Clearly this
is an unfair comparison, but we include results from these models to illustrate
the difference. The Nosé-Hoover control acts only on mode bands ¢* and be-
yond (¢* = 71 in the figure), yet the energy spectrum is accurate over all wave
numbers.

5.6.1 Vorticity field

The inclusion of small-scale forcing leads to a noisier vorticity field for the
reference solution as seen in the centre panels of figure 5.8. Using the Nosé-
Hoover control produces similar vorticity fields. At ¢ = 1, the large scale
structures of all three models are similar, again illustrating that the Nosé-
Hoover control only weakly effects the dynamics at small wave numbers. The
chaotic nature of the flow leads to decorrelation of solutions over long time,
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Figure 5.7: The kinetic energy spectrum after 100 time units for the reference
simulation (solid), a truncated simulation (dashed), a simulation with hyper-
viscosity (dotted) and a simulation using the proposed control on the energy
spectrum (dashed, red). Parameters are given in table 5.1, where the  indicates
the parameters used here for the Nosé-Hoover control. An additional forcing
is applied to the wavenumber with 203.5 < |k| < 206.5, with a power injection
equal to that of the large scale forcing.

yet at ¢ = 10 the controlled vorticity field is qualitatively still very similar to
the reference.

5.6.2 Autocorrelation functions

As in the case with solely large scale forcing, we use autocorrelation func-
tions for comparing dynamical properties. In figure 5.9 we compare the Nosé-
Hoover control with different perturbation parameters (o € {1,107'/2,107'})
against a reference simulation, a truncated simulation and a hyperviscosity
model. The results for the truncated and hyperviscous models show excessive
correlation in time. The autocorrelation function for the controlled dynam-
ics depends strongly on the perturbation parameter ¢ in this case with small
scale forcing. For smaller ¢y the autocorrelation functions approach those
of the truncated dynamics. The largest ¢y considered does decorrelate simi-
larly to the reference solution. The results are insensitive to the wavenumber
threshold ¢* for the control.

5.6.3 Ensemble dispersion

Again we compare the evolution of the phase angle of the (0,1)-mode in a
50-member ensemble simulation for each of the three models. The ensem-
ble was again prepared by randomizing the phases of modes with |k| > 50.
Subsequently, all ensemble members observed identical Wiener increments
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Figure 5.8: Vorticity fields with small scale forcing, obtained at ¢ = 1 (top) and
t = 10 (bottom) using (left) the overly diffusive hyperviscosity model, (centre)
the reference simulation, and (right) the Nosé-Hoover controlled method as
indicated with f in table 5.1.
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Figure 5.9: Autocorrelation functions R, with small scale forcing. The Nosé-
Hoover thermostat using various choices of the perturbation parameter &
is compared to the reference solution (solid black), a truncated simulation
(dashed black) and a hyperviscous model (dotted black). The figure on the
right shows 1 — R, on a double logarithmic plot, to focus on short time scale
behaviour.
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Figure 5.10: Ensemble dispersion in a simulation with small scale forcing.
Plotted is the phase angle of the (0,1)-mode using (left) the model with arti-
ficial viscosity, (centre) the reference simulation, and (right) the Nosé-Hoover
as indicated with { in table 5.1.

for the large scale forcing. Figure 5.10 compares the reference (center) to
the hyperviscous (left) and Nosé-Hoover control (right) methods. The refer-
ence and Nosé-Hoover controlled ensembles show significant decorrelation at
about time ¢t = 5, whereas for the model with hyperviscosity, the decorrelation
is delayed until time ¢t = 7 or t = 8. In the reference there is a notable split
of the ensembles around ¢ = 5 into two main branches. This split can also be
observed in the Nosé-Hoover approach, but not in the hyperviscosity model.
At the final time ¢ = 10, both reduced models are slightly underdispersive.

5.7 Discussion

We have shown that the Nosé-Hoover method can be used to enforce a target
background kinetic energy spectrum in 2D turbulence models with stochastic
forcing, even when truncated well below the viscous scale. The parameteriza-
tion comes at the mild cost of one additional dynamic variable for each energy
shell controlled.

In the experiments reported in the previous section, the target spectrum
was inferred from a high resolution simulation, but it is important to empha-
size that the target spectrum could also be taken from experiments or theory.
In particular, the method described here could be developed to enforce a k=3
spectrum in low resolution models, if so desired. The approach makes no ex-
plicit use of two-dimensional structure and hence is potentially extensible to
3D turbulence.

Frohlich & Schneider [57] simulate two-dimensional turbulent dynamics
using a wavelet basis. In this setting applying our control method might be
even more effective, as the action can be restricted to the homogenous regions
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away from coherent structures.

Sukoriansky et al. [135] observe that the large scale dissipation influences
the spectral slope in the forward enstrophy cascade. This means that it might
be useful to apply a control on this end of the spectrum to perform simula-
tions that display the hypothesized k=3 spectrum in the high wavenumbers.
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