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Abstract

In a common approach for parallel processing applied to simulations of many-particle systems with short-ranged interactions
and uniform density, the cubic simulation box is partitioned into domains of equal shape and size, each of which is assigned
to one processor. We compare the commonly used simple-cubic (SC) domain shape to domain shapes chosen as the Voronoi
cells of BCC, FCC, and HCP sphere packings. The latter three are found to result in superior partitionings with respect to
communication overhead. Scaling of the domain shape is used to extend the range of applicability of these partitionings to a
large set of processor numbers. The higher efficiency with BCC and FCC partitionings is demonstrated in simulations of the
sillium model for amorphous silicon.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Realistic simulations of molecular dynamics and
other dynamic many-particle systems demand increas-
ingly larger models. Calculations on these large mod-
els can be distributed over several processors of a
parallel computer to improve performance. An excel-
lent review of the state-of-the-art of parallel atomistic
simulations has recently been published by Heffelfin-
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ger [1]. According to this work, and to the best of our
knowledge, spatial decomposition of a cubic simula-
tion box with periodic boundary conditions is done al-
most exclusively by partitioning into cubic domains
of equal size, each of which is assigned to a processor.
Exceptions to this rule are earlier work by Esselink and
Hilbers [2] and Chynoweth et al. [3], who use a 2D de-
composition motivated by the square mesh topology
of their parallel machine. In case of density fluctua-
tions, load imbalance between the processors might
occur; here, we limit ourselves to homogeneous sys-
tems with a uniform density, such as bulk materials
or liquids. Other methods are necessary for heteroge-
neous systems such as proteins in vacuum or stellar
systems. Koradi et al. [4] have developed a partition-
ing method for heterogeneous systems, with proces-
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sor domains defined as the Voronoi cell centered at the
center of mass of a particle cluster.

In homogeneous many-particle systems, the major
source of inefficiency inherent to the domain decom-
position approach lies in the fact that particles interact
over some distance, so that in particular particles near
the surface of these domains interact with particles in
neighboring domains. These particles near the surface
thus cause communication with neighboring proces-
sors, redundant calculations, or both. For brevity, we
call this entire extra work the communication over-
head. In the case that the interaction range is much
smaller than the lateral size of the domains, the com-
munication overhead will roughly scale with the sur-
face area of the domain. Hence, the optimal domain
shape for many-particle systems with a uniform den-
sity and a short-range potential is a space-filling shape
with minimal surface-to-volume(S/V ) ratio.

Our work exclusively concerns a cubic simulation
box with periodic boundary conditions, which is the
most commonly used simulation cell. Other types of
simulation cells have been proposed, such as the trun-
cated octahedron [5,6] and the rhombic dodecahe-
dron [7], see also a discussion by Allen and Tildes-
ley [8].

This paper is organized as follows. First, we ex-
plore different shapes for the processor domains that
are derived from simple-cubic (SC), body-centered-
cubic (BCC) and face-centered-cubic (FCC) lattices.
We determine their properties with respect to their use
in parallel processing and discuss several implemen-
tation details. In the explanation of the basic ideas,
we assume that a suitable number of processors is
available. After that, we extend the range of applica-
bility by showing how to use these domain shapes
for various numbers of processors. We discuss related
partitionings such as two-dimensional hexagonal and
hexagonal-close-packed (HCP) partitioning. We then
apply the SC, BCC, FCC domain shapes in a repre-
sentative many-particle simulation: thesillium model
of amorphous silicon, as proposed by Wooten, Winer,
and Weaire [9,10]. Finally, we present our conclu-
sions.

2. Possible shapes for the processor domain

In this section, several domain shapes are discussed
regarding their properties relevant for parallel process-

ing. All lengths and distances are measured in frac-
tions of the system to be simulated, which thus by def-
inition has unit length edges. The domains assigned to
each processor are equal in shape and size, and conse-
quently have a volume of 1/p wherep is the number
of processors. The interaction range, i.e. the distance
over which particles exert forces, equals the cut-off ra-
diusrc , whererc � 1. Relevant for our purpose is the
volume of thehalo, i.e. the region outside the domain
but within a distancerc . Particles in this halo interact
with those inside the domain, causing communication
overhead.

2.1. SC partitioning

The most straightforward three-dimensional divi-
sion of a cube into identical domains is a division into
p = k3 smaller cubes, withk a positive integer. The re-
sulting cubic domains have an edge length of 1/k. The
volume of the halo with radiusrc around each domain
equals

Vhalo,SC= 6rc

k2 + 3πr2
c

k
+ 4

3
πr3

c . (1)

The first term is equal torc times the surface area
of the domain. The second and third terms correspond
to the extra volume of the halo located near the edges
and corners of the domain, respectively. In simulations
with short-range interactions as discussed here, run
on parallel computers of reasonable size, we usually
have thatrck � 1, so that the first term dominates the
others.

In the limit of very short-range interaction our
problem reduces to the well-known Kelvin problem,
which is to find a partitioning of space with minimal
surface area. Kelvin [11] conjectured that the optimal
solution is the Voronoi cell of the BCC lattice, slightly
curved to satisfy Plateau’s rules [12], but Weaire
and Phelan [13] produced an even better partitioning
(with 0.3% less surface area), based on two different
cells, and related to theβ-tungsten structure. We limit
ourselves to proposing partitionings that can be shown
to be better than SC and that can be implemented in a
relatively simple way.

In the case of SC, the surface area equals

SSC = 6

k2 = 6

p2/3 , (2)
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Fig. 1. (a) The basic BCC lattice cell. Sphere centers are marked by ‘×’. (b) The BCC Voronoi cell, a truncated octahedron.

and because the volume of the cube assigned to a
processor equalsV = 1/p, the resultingS/V ratio is

(S/V )SC = 6 · p1/3. (3)

2.2. BCC partitioning

A sphere with volumeV = 1/p and radiusR has a
ratio

(S/V )sphere= 4πR2

4πR3/3
= (36πp)1/3 ≈ 4.836· p1/3,

(4)

which is the minimum ratio that can be achieved; it
is about 19.6% better than for SC. Although we can-
not fill space with spheres, we can try to use sphere
packings to obtain a domain shape with a lowS/V ra-
tio. In one well-known sphere packing, the spheres are
centered at the sites of a body-centered-cubic (BCC)
lattice, with spheres at the corners and the centers of
cubic cells. The BCC unit cell is displayed in Fig. 1(a).
Each unit cell adds two sphere centers to the lattice, as
only one corner point is part of the unit cell; the other
seven corner points are considered part of neighboring
cells. By repeating this unit cell the BCC lattice is gen-
erated. The lattice is then rescaled, such that the length
of the edges of a unit cell becomes 1/k.

The domain of a processor is formed by the Voronoi
cell of a lattice point, i.e. the space closest to that
point, measured by Euclidean distance. The model
cube can now be divided intop = 2k3 Voronoi cells,
as generated by the BCC lattice. It turns out that
each Voronoi cell is a truncated octahedron, as shown
in Fig. 1(b). All cells are translated copies of each

other. This is also the shape that Kelvin proposed as
a solution to the Kelvin problem.

The truncated octahedron generated by the BCC
lattice fits into a cube with edge length 1/k. Each of
its six square faces has a surface area of 1/(8k2) and
each of its eight hexagonal faces has a surface area of
3
√

3/(16k2). This results in a total surface area of

SBCC = 6
√

3+ 3

4k2
. (5)

Substitution ofk = (p/2)1/3 andV = 1/p gives

(S/V )BCC = (6
√

3+ 3)p1/3

24/3 ≈ 5.315· p1/3. (6)

This is about 11.4% better than for SC.

2.3. FCC partitioning

In one of the optimal dense sphere packings, the
spheres are placed at sites of a face-centered-cubic
(FCC) lattice, with spheres at the corners of cubic cells
and at the centers of the faces. The FCC unit cell is
shown in Fig. 2(a). The corresponding Voronoi cell is
a rhombic dodecahedron, as shown in Fig. 2(b). Each
cubic unit cell adds four points to the lattice, so with
this partitioningp = 4k3 processors can be used. After
the lattice is rescaled such that each unit cell has an
edge of length 1/k, the Voronoi cell can be considered
as being made up of a cube with edge length 1/(2k)

and six pyramids with height 1/(4k), each covering
one face of the small cube. The surface area of the
rhombic dodecahedron equals 24 times the surface
area of one of the triangular faces of the pyramid,
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Fig. 2. (a) The basic FCC lattice cell. Sphere centers are marked by ‘×’. (b) The FCC Voronoi cell, a rhombic dodecahedron, translated to the
center of the cube for reference.

which is 1/(8
√

2k2). The surface area of the domain
in the FCC partitioning therefore equals

SFCC = 3√
2k2

. (7)

Substitution ofk = (p/4)1/3 andV = 1/p gives

(S/V )FCC = 3 · 25/6p1/3 ≈ 5.345· p1/3, (8)

which is slightly more than for BCC, but still about
10.9% better than for SC.

3. Practical implementation issues

For a partitioning method to be of practical use, it
must be easy and inexpensive to determine the proces-
sor that owns a given particle and the processors that
have the particle in their halo. The latter are the proces-
sors that need to obtain particle data through commu-
nication. For modularity, it is best to express the deter-
mination of these processor numbers as generic func-
tions, which are called by the application program. No
partitioning-related computations should be done di-
rectly by the application program; instead, the generic
functions should be called. This way, it becomes easy
to replace the partitioning method. Furthermore, we
need a generic function that determines the partition-
ing method to be used for a given value ofp. This
function is called once, before the start of the simu-
lation. How to choose the partitioning method for an
arbitrary number of processors is the subject of Sec-

tion 4. Our generic functions will be made available
for general use.2

3.1. Assigning particles to processors

In implementations, one needs an efficient proce-
dure to determine the processor that owns a particle
with coordinates(x, y, z). This processor corresponds
to the nearest lattice site. Note that we can break ties
arbitrarily between processors, in case particles are lo-
cated exactly (or within the accuracy determined by
the machine precision) on the boundary of two do-
mains since this event is unlikely to occur often. With
SC partitioning forp = k3 processors, the processor
numbers can then be found by:

s = 	kx
 + k	ky
 + k2	kz
, (9)

where	x
 is the largest integer smaller than or equal
to x. (Similarly, we define�x� as the smallest integer
larger than or equal tox.)

To assign processor numbers to domains with the
BCC shape, it is helpful to note that a BCC lattice
consists of two simple-cubic lattices, shifted with re-
spect to each other over a vector( 1

2k
, 1

2k
, 1

2k
). One

simply determines the nearest site in each of the two
sublattices, compares the two, and takes the near-
est. Here, one can take Manhattan distances, defined
by ‖(x, y, z)‖1 = |x| + |y| + |z|, because these are
cheaper to compute than Euclidean distances. Since

2 See http://www.math.uu.nl/people/bisseling/software.html.
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the sum of the Manhattan distances of an arbitrary
point to the two nearest sites equals 3/(2k), the near-
est one is located at a Manhattan distance of less than
3/(4k). The procedure to calculate the processor num-
ber for the BCC partitioning is outlined in the pseudo-
code below, where[x] = 	x +1/2
 denotes the integer
nearest tox and ‘mod’ denotes the modulo operator
(needed to wrap around the periodic boundaries):

D = |kx − [kx]| + |ky − [ky]| + |kz − [kz]|
if D < 3

4 then
s = ([kx] modk) + k([ky] modk)

+ k2([kz] modk)

else
s = k3 + 	kx
 + k	ky
 + k2	kz


end if

For the FCC lattice, it is helpful to note that it can
be obtained from a cubic superlattice by removing all
grid points for which the total of the coordinates is
odd. First, we determine the nearest grid point of this
cubic superlattice. If the sum of the coordinates of
that grid point is even, that point is the nearest FCC
lattice site. If the sum is odd, the closest lattice point
can be found by rounding one of the coordinates in
the ‘wrong’ direction, i.e. in the opposite direction
of the nearest integer coordinate; the coordinate that
should be rounded ‘wrongly’ is the one with the
largest rounding error (and hence the smallest error
in the opposite direction). Using the notation]x[
for rounding ‘wrongly’ (in contrast to[x] for usual
rounding), defined by the relation[x]+ ]x[= 	x
 +
�x�, this procedures thus becomes:

(Px,Py,Pz) = ([2kx], [2ky], [2kz])
if Px + Py + Pz is oddthen

if |2kx − Px | > |2ky − Py | and
|2kx − Px | > |2kz − Pz| then
Px =]2kx[

else if |2ky − Py | > |2kz − Pz| then
Py =]2ky[

else
Pz =]2kz[

end if
end if
(Px,Py,Pz) = (Px mod 2k,Py mod 2k,Pz mod 2k)

s = Px + 2kPy + 4k2	Pz/2


3.2. Assigning particles to processor halos

Our goal is to find out whether a particle�x =
(x, y, z) assigned to a particular processors belongs
to the halos of other processors. We present a method
for producing a list that contains all the halo processors
of a particle (and perhaps some other processors). We
assume thatrc is sufficiently small to guarantee that
the halo of a processor domain is contained in one
shell of neighboring processor domains.

Particles assigned to a processors can belong to
halos of processorssj with whom the processor shares
a face. Each facej lies in a plane characterized by�x ·
n̂j − mj = 0, wheren̂j is a unit vector perpendicular
to the plane. The distance of a particle�x to this plane
is easily obtained bydj = |�x · n̂j −mj |. If dj � rc , we
include processorsj in the list. Otherwise, the particle
is too far from the domain across the plane, so that it
cannot be in the halo.

Particles assigned to a processors can also belong
to halos of processorssj with whom the processor
only shares an edge. Here, the relevant distance is the
distance to the line characterized by�x = �aj + λb̂j

that contains the edge. Here,b̂j is a unit vector. The
distancedj from a particle�x to this line is given by
d2

j = ‖�x − �aj‖2 − ((�x − �aj ) · b̂j )2, where the norm is
the Euclidean norm. Ifdj � rc, we include processor
sj in the list.

Particles assigned to a processors can also belong
to halos of processorssj with whom the processor
only shares a vertex�vj . If dj � rc , wheredj = ‖�x −
�vj ‖, we include processorsj in the list.

In general, a table of the applicable perpendicular
vectors n̂j , offsets mj , directional vectorsb̂j , line
points �aj , and vertices�vj can be precomputed at
the beginning of the simulation, after which the
relevant distances can be computed easily during the
simulation whenever required.

For SC partitioning, the perpendicular vectors as
well as the directional vectors are unit vectors along
coordinate axes; this allows for even more simplified
tests. However, all three cases occur: processors

shares a face with the six processorss ± 1, s ± k, and
s ± k2; it shares an edge with the twelve processors
s ± 1 ± k, s ± 1 ± k2, ands ± k ± k2; and it shares a
vertex with the eight processorss ± 1 ± k ± k2. (We
assume for brevity that wraparound does not occur
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in the processor numbering.) For SC partitioning, the
output list contains exactly all the halo processors.

For BCC partitioning, two processors never share
only an edge or a vertex. Processors shares a square
face with the six processorss ± 1, s ± k, ands ± k2.
It shares a hexagonal face with the eight processors
s + k3 − α, whereα = α1 + α2k + α3k

2 with αi ∈
{0,1}, in the cases < k3, and with the eight processors
s −k3+α otherwise. For BCC partitioning, the output
list may contain additional processors, since here the
distance to a face can be larger than the distance to
the plane in which the face lies. Forrc � 1/k, the
number of particles with additional processors in their
list becomes negligible.

For FCC partitioning, processors shares a rhombic
face with twelve processorss ± 1, s ± 2k, s ± 1± 2k,
s ± 1 − 4k2, and s ± 2k − 4k2, in the case of even
s + 	s/(2k)
 (equivalent to evenPx + Py in the FCC
numbering); in the odd case, the term−4k2 should be
replaced by+4k2. The processor also shares a vertex
with the six processorss ± 2, s ± 4k, and s ± 4k2.
For FCC partitioning, the output list may contain
additional processors, namely some of the neighbors
that share a face. This is because the distance to a
face can be larger than the distance to the plane in
which the face lies. Neighbors that only share a vertex
cannot be among the additional processors. On the
other hand, we must then be sure that our method
includes such a neighbor in the list whenever the
particle is close enough to that neighbor. Fortunately,
this is guaranteed, because the angles between the
faces intersecting in the shared vertex are such that the
shared vertex is the nearest point of the neighboring
processor to the particle.

4. Using an arbitrary number of processors

In the previous sections, we have explained the dif-
ferent space partitioning methods assuming that we
have a suitable number of processors available. For
example, for SC partitioning we assume that we have
p = k3 processors available for the whole cubic simu-
lation box so that each domain assigned to a processor
is itself a cube. For the BCC and FCC partitionings we
assume that we havep = 2k3,4k3 processors avail-
able, respectively. This assumption, however, is not es-
sential for using the partitioning method. For example,

if we havep = k1k2k3 processors available, with each
ki � 1 an integer, we can generalize the SC partition-
ing by splitting the cubic simulation cell intop rectan-
gular blocks of size1

k1
× 1

k2
× 1

k3
. The resultingS/V

ratio is

(S/V )SC= 2
∑

i: ki>1

ki, (10)

where the indexi only runs over values withki > 1.
Termski = 1 do not contribute, for the following rea-
son. If k1 = 1 andk2, k3 > 1, then the first dimension
is not cut, and hence the two faces of size1

k2
× 1

k3
of

the block do not represent interprocessor boundaries
so that the area 2k1/p of these faces does not con-
tribute toS. Similarly, if k1 = k2 = 1 andk3 > 1, we
have a partitioning intoslices and only two faces con-
tribute toS. In that caseS = 2 = 2k3/p. If p is a cube,
theS/V ratio is minimal fork1 = k2 = k3 = p1/3.

We can apply BCC partitioning if we havep =
2k1k2k3 processors available. This can be done by first
rescaling the cubic simulation box by a factor ofki

in each dimensioni, giving a rectangular simulation
box of sizek1 × k2 × k3, which containsp/2 cubes
of size 1× 1 × 1. We can now partition each cube,
as explained in Section 2.2, assigning points in space
to the nearest corners and centers of cubes. This
defines a partitioning of the rescaled simulation box
for p processors. The partitioning of the original
simulation box is then obtained by scaling back. The
resulting processor domains are ‘deformed’ truncated
octahedra, since they have been scaled by a factor 1/ki

in each dimensioni. The domains are still translated
copies of each other, because BCC is a lattice. The
resultingS/V ratio is

(S/V )BCC = 1

2

∑
i: ki>1

ki + 3

(∑
i

k2
i

)1/2

. (11)

The same procedure can be applied in the FCC case,
wherep = 4k1k2k3, with a resulting ratio

(S/V )FCC = 2
∑
i<j

(
k2

i + k2
j

)1/2
. (12)

We now have extended the applicability of the
partitioning methods: the SC method can be used
for every number of processorsp, the BCC method
for every evenp, and the FCC method for every
multiple of four. For a particular partitioning method,
theS/V ratio is minimal if k1 = k2 = k3 = (p/c)1/3,
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wherec = 1,2,4 is the constant corresponding to the
method (SC, BCC, FCC, respectively). In that case,
theS/V ratios 6,5.315,5.345 timesp1/3 are attained.
If equality cannot be achieved, the factorski should be
chosen as close as possible to(p/c)1/3. For SC, BCC,
and FCC, we may assume without loss of generality
thatk1 � k2 � k3.

As an example, we take the casep = 8. We can
apply the SC method with the triples(k1, k2, k3) =

(1,1,8), (1,2,4), (2,2,2), giving S/V = 16,12,12,
respectively. We can apply the BCC method (with
constantc = 2) with the triples(k1, k2, k3) = (1,1,4),
(1,2,2), giving S/V = 14.728,11, respectively. We
can also apply the FCC method (with constantc = 4)
with the triple (k1, k2, k3) = (1,1,2), giving S/V =
11.773. The surprising conclusion for the casep = 8,
which at first sight seems to be tailored to the SC
method, is that both the BCC and FCC methods are

Table 1
Best triple and resultingS/V ratio for three 3D partitioning methods forp = 1–32. The lowest ratio
is given in boldface

p Best triple(k1, k2, k3) S/V ratio (in p1/3)

SC BCC FCC SC BCC FCC

1 (1,1,1) 0.000

2 (1,1,2) (1,1,1) 3.175 4.124

3 (1,1,3) 4.160

4 (1,2,2) (1,1,2) (1,1,1) 5.040 5.259 5.345

5 (1,1,5) 5.848

6 (1,2,3) (1,1,3) 5.503 6.301

7 (1,1,7) 7.319

8 (2,2,2) (1,2,2) (1,1,2) 6.000 5.500 5.886

9 (1,3,3) 5.769

10 (1,2,5) (1,1,5) 6.498 8.396

11 (1,1,11) 9.892

12 (2,2,3) (1,2,3) (1,1,3) 6.115 5.995 6.760

13 (1,1,13) 11.058

14 (1,2,7) (1,1,7) 7.468 10.341

15 (1,3,5) 6.488

16 (2,2,4) (2,2,2) (1,2,2) 6.350 5.315 5.794

17 (1,1,17) 13.223

18 (2,3,3) (1,3,3) 6.105 6.134

19 (1,1,19) 14.241

20 (2,2,5) (1,2,5) (1,1,5) 6.631 7.343 8.556

21 (1,3,7) 7.249

22 (1,2,11) (1,1,11) 9.279 13.837

23 (1,1,23) 16.175

24 (2,3,4) (2,2,3) (1,2,3) 6.240 5.502 6.243

25 (1,5,5) 6.840

26 (1,2,13) (1,1,13) 10.127 15.436

27 (3,3,3) 6.000

28 (2,2,7) (1,2,7) (1,1,7) 7.245 8.742 10.246

29 (1,1,29) 18.878

30 (2,3,5) (1,3,5) 6.437 6.999

31 (1,1,31) 19.737

32 (2,4,4) (2,2,4) (2,2,2) 6.300 5.889 5.345
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better than SC. The gain of BCC with(k1, k2, k3) =
(1,2,2) compared to the best SC method is about
8.3%.

Table 1 presents a summary of the best possible
partitionings for each of the three methods SC,BCC,
FCC in the rangep = 1–32. The table gives a triple
for which the lowestS/V ratio is achieved, and
the corresponding ratio. For convenience, we express
the S/V ratio in terms ofp1/3. This allows us to
compare ratios for different values ofp, and it also
makes it easy to see whether we are close to the
best BCC value of 5.315· p1/3. The table illustrates
the efficiency benefits of having several different
partitioning methods in our toolbox. The SC method
is superior when the numberp does not have many
prime factors. It is the only applicable method if
p is odd. The BCC method, on the other hand, is
better than SC whenp is highly composite and has
prime factors such that the simulation box can be
cut into p/2 almost cubic blocks. This happens for
p = 8,12,16,24,32. The BCC method is superior to
FCC in the range studied, except forp = 32. This is
mainly due to the fact that the BCC method requires
only one factor of 2, instead of two such factors as
FCC does, and to a lesser extent it is due to the
0.6% lowerS/V ratio in the ideal case. The largest
gain in the rangep = 1–32 is found forp = 16,
where the savings are 16.3%. The FCC method is best
for p = 32, where it has an ideal split in all three
dimensions.

The practical implementation for an arbitrary num-
ber of processors is slightly more complicated than in
the special casek1 = k2 = k3 treated in Section 3. The
methods presented for assigning particles to domains
and halos should be generalized to take the rescal-
ing into account. We omit the details for the sake of
brevity.

5. Related partitioning methods

We have presented a basic partitioning toolbox
containing three partitioning methods that can handle
most processor numbers in an efficient way. Still, we
cannot claim optimality and in fact sometimes it would
be better to use a different method. We will briefly
discuss a few related methods in this section.

We can modify the FCC method by taking only
the face centers of the FCC unit cell as centers of
Voronoi cells, giving three domains per unit cell. The
resulting domain shape forp = 3k3 processors is an
octahedron consisting of two pyramids with height
1/(2k) and base edges of length 1/k. We call the
resulting method theoctahedral method. Now, the
centers of the Voronoi cells do not form a lattice and
the domains are not translated copies of each other.
Nonuniform scaling yields processor domains that
differ from each other because they have a different
surface area; their volume is the same. The domain
with the largest surface area determines theS/V ratio
of the method. This makes the octahedral method
much less attractive than other methods in the case of
nonuniform scaling.

The S/V ratio of the octahedral method forp =
3k1k2k3 processors withk1, k2 � k3 is

(S/V )Oct = 3
((

k2
1 + k2

3

)1/2 + (
k2

2 + k2
3

)1/2)
. (13)

Note that this formula is not symmetric ink1, k2, k3,
so that it only holds ifk3 is the largest parameter. In
the ideal casek1 = k2 = k3 = k, the ratio equals

(S/V )Oct = 6
√

2k = 23/2 · 32/3p1/3 ≈ 5.883· p1/3.

(14)

This is slightly better than the ideal SC ratio, but much
worse than BCC and FCC. We found that forp = 81,
the octahedral method is best, since BCC and FCC
cannot be applied, and SC with the triple(3,3,9)

has a higher ratio of 6.934· p1/3. In the same way,
the octahedral method is best for allp = 3k3 with k

odd. In the rangep � 1024, this method is the best
for p = 81,375,525,735. In practice, the octahedral
method will be useful only on rare occasions.

For small numbers of processors, it may be useful
to partition only two dimensions. For the SC method,
this leads to the choicek3 = 1. In two dimensions,
hexagonal lattice packing is an optimal sphere pack-
ing and its Voronoi cells, regular hexagons, have a
minimal S/V ratio. We can use this lattice to obtain
an alternative method for partitioning a square simu-
lation box. Forp = 2k2, we can partition the box into
k2 squares with edges of length 1/k. Each square can
then be divided into a central (nonregular) hexagon
and four quarter hexagons as depicted in Fig. 3, and
these domains can be assigned to processors. Forp =
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Fig. 3. The basic two-dimensional hexagonal unit cell with edge
length 6. The boundaries between processor domains are shown in
boldface.

2k1k2, we can rescale in the same way as before, and
obtain a ratio

(S/V )2D Hex= 4
3

((
k2

1 + 9k2
2

)1/2 + k1 − δ1,k1

)
. (15)

(The termk1 drops fork1 = 1.) For k1 ≈ √
3k2, we

approach regular hexagons and obtain a ratio of

(S/V )2D Hex≈ 4
√

3k2 = 23/231/4p1/2 ≈ 3.722· p1/2.

(16)

This is better than the ideal two-dimensional SC ratio
of 4p1/2. Of course, we can only approach the exact
ratiok1/k2 = √

3, but never achieve it, sincek1 andk2
must be integers. We can use the hexagonal method
to partition a cubic simulation box by partitioning
space based on the first two coordinates; Eq. (15) also
gives theS/V ratio for the 3D case. This method
is best for p = 4,6,12,20,28, giving S/V ratios
(in p1/3) of 4.708, 5.314, 5.654, 6.292, and 7.122
respectively, cf. Table 1. Forp > 28, it can be shown
that three-dimensional SC partitioning is better than
two-dimensional hexagonal partitioning.

FCC is only one member of an infinite family of re-
lated optimal sphere packings, see [14]; another one is
hexagonal-close-packed (HCP). We can construct an
HCP packing by starting with a layer of spheres cen-
tered at the pointsλ(1,0,0)+µ(1

2, 1
2

√
3,0), with λ,µ

integers, thus forming a two-dimensional hexagonal
lattice in thez = 0 plane. Then we add a new hexago-
nal layer on top of the first one, identical but translated
by (1

2, 1
6

√
3, 1

3

√
6), and a third layer in the same posi-

tion as the first one, but translated by(0,0, 2
3

√
6). We

continue adding layers in this way, also in the negative
z-direction.

The Voronoi cells of HCP, twisted rhombic dodec-
ahedrons, have the same volume and surface area as
those of FCC. HCP packing has the disadvantage that
its sphere centers do not form a lattice, which means
that Voronoi cells are not necessarily translated copies
of each other. Still, all the Voronoi cells in the even
layers are translated copies of each other, and the same
holds for the cells in the odd layers. The two cell types
are related, for instance by a reflection: one cell can
be obtained from the other by reflection in they = 0
plane.

We can derive an HCP partitioning method for
p = 4k1k2k3 processors, by rescaling similar to the
two-dimensional hexagonal case. TheS/V ratio of the
resulting processor domains is

(S/V )HCP

= (
k2

1 + 9k2
2

)1/2 + k1 − δ1,k1

+ (
k2

1 + k2
2 + 64

9 k2
3

)1/2 + (
k2

2 + 16
9 k2

3

)1/2
. (17)

Because we scale along the coordinate axes, all the
domains have an identicalS/V ratio. (This is in
contrast to the previous nonlattice case, octahedral
partitioning.) Fork1 ≈ √

3k2 and k1 ≈ 2
3

√
6k3, we

approach the ideal HCP ratio of about 5.345· p1/3,
but we cannot achieve it exactly. Implementing HCP is
more difficult than implementing FCC, because HCP
is not derived from a cubic grid and because of the
alternating layers with two different domains.

The number of processors of a parallel computer is
often a power of two. We writep = 23q+r , with q � 0
andr = 0,1,2. We can takek1, k2, k3 equal or as near
as possible to equal, and then substitute these values
into Eqs. (10)–(12), for the partitioning methods SC,
BCC, and FCC. For HCP, we can find the best triple
using Eq. (17). Table 2 summarizes the results for four
partitioning methods for the important case wherep

is a power of two. Note that the table is not valid for
small values ofp, since then terms are dropped from
the sums in theS/V formulae. Because of symmetry,
the given triple(k1, k2, k3) can be permuted for SC,
BCC, and FCC; this cannot be done for HCP. Note
that the three methodsBCC, FCC, and HCP nicely
supplement each other, and that they all outperform
SC.
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Table 2
Best triple and resultingS/V ratio for four 3D partitioning methods forp = 23q+r . The table
is valid for FCC withp � 4, SC and HCP withp � 8, and BCC withp � 16. The lowest
ratio is given in boldface

r Best triple(
k1
2q ,

k2
2q ,

k3
2q ) S/V ratio (inp1/3)

SC BCC FCC HCP SC BCC FCC HCP

0 (1,1,1) ( 1
2 ,1,1) ( 1

2 , 1
2 ,1) (1, 1

2 , 1
2) 6.000 5.750 5.886 5.376

1 (1,1,2) (1,1,1) ( 1
2 ,1,1) (1, 1

2 ,1) 6.350 5.315 5.794 5.650

2 (1,2,2) (1,1,2) (1,1,1) (1,1,1) 6.300 5.889 5.345 5.574

6. Application: amorphous silicon

We have applied SC, BCC, and FCC partitioning
to the construction of models of amorphous silicon,
following the sillium model proposed by Wooten,
Winer, and Weaire [9,10], with recent algorithmic
improvements [15]. This has produced the best models
of amorphous silicon that are available to date.

Within the sillium approach, an atomic configura-
tion consists of the coordinates of allN atoms, to-
gether with a list of the 2N bonds between them. The
energy of a configuration is obtained from the Keating
potential [16]:

E = 3

16

α

d2

∑
〈ij〉

(
rij · rij − d2)2

+ 3

8

β

d2

∑
〈jik〉

(
rij · rik + 1

3d2)2
. (18)

Here, α and β are the bond-stretching and bond-
bending force constants, respectively;d = 2.35 Å is
the equilibrium Si–Si bond length in the diamond
structure. Usual values areα = 2.965 eV/Å2 andβ =
0.285α.

The construction of a well-relaxed configuration
starts from a configuration in which atoms with ran-
dom coordinates are four-fold connected. This net-
work is then relaxed through a sequence of many pro-
posed bond transpositions, accepted with the Metropo-
lis acceptance probability [17] given by

P = min

[
1,exp

(
Eb − Ef

kbT

)]
, (19)

wherekb is the Boltzmann constant,T the tempera-
ture, andEb andEf are the totalquenched energies of
the system before and after the proposed bond transpo-
sition.

With the approach given above, and described in
more detail in Refs. [9,10], Wooten, Winer, and Weaire
obtained 216-atom models ofa–Si with a bond angle
deviation as low as 10.9 degrees. A decade later, using
the same approach but more computing power, Djord-
jević, Thorpe, and Wooten [18] produced larger (4096-
atom) models of even better quality, with a bond angle
deviation of 11.02 degrees for configurations without
four-membered rings and 10.51 degrees when these
rings were allowed [18]. With some additional algo-
rithmic improvements, Barkema and Mousseau gener-
ated 1000-atom models with a bond angle deviation
of 9.2 degrees [15], and one 4096-atom model with
a bond angle deviation of 9.89 degrees. Exploiting
parallel processing, we have generated a 10,000-atom
model with a bond-angle deviation as low as 9.88 de-
grees and a 20,000-atom model, used primarily for our
benchmarking. The structural and electronic proper-
ties of these models are discussed in [19]; here we fo-
cus on computational aspects, using the 20,000-atom
model in all our experiments.

In our parallel program, the simulation box con-
taining 20,000 atoms was divided by three partition-
ing methods: SC,BCC, and FCC. For each method,
we used the best triple(k1, k2, k3) given by Table 1. In
addition, we used SC withk1 = k2 = 1 andk3 = p as
a separate ‘slices’ method, to show the effects of one-
dimensional partitioning. Due to the three-body term
in the Keating potential, each processor needs two ex-
tra layers of atoms near the surface of its domain.
Therefore, in our application, the halo of a processor
consists of all the atoms outside the processor that are
at most two bonds away from an atom in the proces-
sor. As a consequence, the communication of the halo
atoms is determined by the connectivity information in
the model. It turns out that the halo size can be well ap-
proximated by a cut-off distance of 1.3 times the aver-
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age bond length of 2.35 Å. For the 20,000-atom model,
with a simulation box size of about 70.4 Å, this gives
a value ofrc ≈ 0.043 (in units where the box size is
one). Note that this is a rough approximation, and that
the true interaction cut-off is determined by the con-
nectivity and not by the distance between two atoms.

The parallel program, which is based on the BSPlib
communications library [20], was tested for different
values ofp on a Cray T3E parallel computer. As a
simple performance metric, we take the efficiencyEp ,
defined as

Ep = T1

pTp

, (20)

whereTp is the execution time of one iteration of the
global relaxation procedure onp processors andT1
is the time for one processor without communication
overhead.

The results of the efficiency measurements are
shown in Fig. 4. It is clear that in general the efficiency
decreases asp increases, although with fluctuations.
It can be seen for instance that the betterS/V ratio
of FCC as given in Table 1 forp = 32 indeed
leads to higher efficiency. In fact, for all values of
p studied, the measured relative performance of the
three methods SC,BCC, and FCC agrees with the
theoretical predictions of the table; our data show
that this holds even in the case where efficiencies
nearly coincide in the plot. Note in particular the
high efficiency that can be obtained for powers of
two, such asp = 16 and p = 32. It is clear that
using slices should be avoided, because in that case

efficiency decreases rapidly. Forp = 4, slices and SC
with the triple (1,2,2) given in Table 1 are different
partitionings, but theirS/V ratio is equal. Here, slices
perform better, because the halo volume for slices does
not have lower order terms, such as those given in
Eq. (1) for a cube.

The differences in efficiency we measured are less
pronounced than Table 1 might suggest. This is be-
cause the efficiency metric takes the whole compu-
tation into account, whereas the improvement of the
FCC method over the other methods is only in the
halo-related part. Table 3 gives additional timing in-
formation on parts of a relaxation iteration forp = 32.
The pure communication part is about 19% faster for
FCC than for SC. The total halo part, which includes
communication of halo atoms but also all computa-
tions and data structure manipulations related to the
halo, shows a considerable time savings of about 15%
for FCC, which is close to the value predicted by the
S/V ratio. Note that for brevity we called the halo-
related operations ‘communication overhead’, but that
in fact this involves much more than the communica-
tion itself.

Table 3
Time (in ms) of parts of one relaxation iteration for three 3D
partitioning methods forp = 32

SC BCC FCC

Halo communication 0.502 0.484 0.407
Halo total 2.841 2.714 2.423
Iteration total (= Tp) 8.580 8.427 8.086

Fig. 4. Measured efficiency as a function of the number of processorsp.
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Table 4
The maximum and average number of atoms in the interior of the processor domains and in the halos. Also listed is the ratio between the
average number of halo atoms and interior atoms and this ratio divided by the theoreticalS/V ratio

p Partitioning Interior Halo Ratio Ratio/(S/V )

max avg max avg halo/interior

1 SC 20000 20000 0 0 0.000

2 SC 10012 10000 1832 1830 0.183 0.0458

BCC 10009 10000 2382 2377 0.238 0.0457

4 SC 5055 5000 1961 1934 0.387 0.0484

BCC 5014 5000 2020 1995 0.399 0.0478

FCC 5019 5000 2156 2139 0.428 0.0504

8 SC 2551 2500 1546 1517 0.607 0.0506

BCC 2534 2500 1457 1393 0.557 0.0507

FCC 2535 2500 1534 1517 0.607 0.0515

12 SC 1708 1667 1244 1206 0.723 0.0517

BCC 1694 1667 1190 1159 0.695 0.0507

FCC 1720 1667 1361 1332 0.799 0.0516

16 SC 1284 1250 1054 1033 0.826 0.0517

BCC 1277 1250 904 874 0.699 0.0522

FCC 1278 1250 991 961 0.769 0.0527

24 SC 857 833 817 790 0.948 0.0527

BCC 854 833 737 704 0.845 0.0533

FCC 861 833 834 805 0.966 0.0537

32 SC 649 625 689 661 1.058 0.0529

BCC 647 625 665 626 1.002 0.0536

FCC 653 625 614 581 0.930 0.0547

To investigate the communication properties fur-
ther, we counted the atoms in the inner regions and
the halos. Both the maximum and the average over
the p processors are listed in Table 4; the maximum
number of interior atoms determines the computation
time, whereas the maximum number of halo atoms de-
termines the communication time. Also displayed is
the ratio of the average number of halo atoms to the
average number of interior atoms. (The ratio of the
averages is the best measure of the effects studied,
since it is less noisy than the ratio of the maxima.)
The last column of the table gives the experimental
halo/interior ratio divided by the theoreticalS/V ra-
tio. This value should be more or less constant, and it
is a test of our assumption that theS/V ratio is a good
measure of relative halo size. The value for SC with
p = 2 should be equal to the cut-off radiusrc , since
the halo has volume 2rc in that case. The value 0.0458
agrees reasonably well with the previously determined

valuerc ≈ 0.043. For larger numbers of processors the
value increases slowly, mainly due to terms inr2

c /k,
cf. Eq. (1) for the SC case withp = k3. Similar ef-
fects occur for BCC and FCC. The table shows for in-
stance that forp = 32 FCC indeed has fewer particles
in its halo than SC and BCC, explaining the results of
Fig. 4.

7. Conclusion and future work

We have proposed three new space partitionings,
based on Voronoi cells of theBCC, FCC, and HCP
sphere packings, for use in parallel particle simula-
tions with uniform density, short-range interactions,
and a cubic simulation box. The advantage of these
new partitionings is that they yield domains with a
lowerS/V ratio than the commonly used SC partition-
ing and thus reduce the communication overhead of a
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parallel computation. The ratio, expressed in terms of
p1/3, is about 11% lower in the idealBCC, FCC, and
HCP case compared to the ideal SC case. The gain
for a particular number of processorsp, however, may
even be larger.

The new partitioning methods are particularly ad-
vantageous for numbers of processors that are a
power of two, a case that commonly occurs. Forp =
16,128,1024, . . . , BCC partitioning achieves the ratio
of 5.315·p1/3, which is the lowest ratio known to date
for a single allowed domain shape. Over a century ago,
Kelvin conjectured that this is optimal; for a single al-
lowed domain shape the conjecture remains an open
problem. Forp = 32,256,2096, . . ., FCC partitioning
is close to optimal, achieving a ratio of 5.345· p1/3.
For p = 8,64,512, . . . , HCP partitioning achieves a
ratio of 5.376 · p1/3. The savings thus obtained by
BCC, FCC, and HCP, are 16.3, 15.2, 10.4%, respec-
tively, compared to SC. This means that the communi-
cation overhead can be reduced considerably by using
the partitioning method with the lowestS/V ratio for
the number of processors available.

The main advantage of the new methods is a
reduction in communication volume. The number of
messages sent/received per processor is 26 for SC,
14 for BCC, and 18 for FCC. This number can
be important for message-passing parallel computers
that have a high start-up cost for sending messages.
The number of messages can be reduced to six for
SC by sending data on halo particles via another
neighbor [21]. The same can be done for FCC,
reducing the number to 12. Thus SC has an advantage
in this respect, which however is only important for
relatively small halo sizes.

We have shown that the new methods are indeed
of practical use, because they are not much more
difficult to implement than the SC method and because
they are applicable for a wide range of processor
numbers: BCC is applicable for all evenp, and
FCC and HCP for all multiples of four. For SC,
BCC, and FCC, we discussed in detail how to assign
efficiently particles to processors and to halos of
other processors. In applications, such assignments
can be done through generic functions, which we
will make available for the main partitioning methods.
We have demonstrated our methods in the parallel
construction of a model of amorphous silicon, using
SC, BCC, and FCC partitioning, and we have obtained

significant savings in communication time in this
application.

There is still potential for improvement of theS/V

ratio for particular numbers of processors. We have
discussed the hexagonal partitioning method, which
is a two-dimensional method that may be worthwhile
for small p (it beats all other methods forp =
4,6,12,20,28), and the octahedral method, which
may be useful ifp is a multiple of three. For numbers
of processors that are prime (a less common case),
we have partitioning methods that are better than SC
partitioning intop slices. This is outside the scope
of the present study, and will be the subject of future
work.
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