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Abstract  
 This paper analyzes the effects of network positions and individual risk attitudes on 
 individuals’ strategic decisions in an experiment where actions are strategic 
 substitutes. The game theoretic basis for our experiment is the model of Bramoullé 
 and Kranton (2007). In particular, we are interested in disentangling the influence 
 of global, local and individual factors. We study subjects’ strategic investment 
 decisions in four basic network structures. As predicted, we find that global factors, 
 such as the regularity of the network structure, influence behavior. However, we 
 also find evidence that individual play in networks is to some extent boundedly 
 rational, in the sense that coordination is influenced by local and individual factors, 
 such as the number of (direct) neighbors, local clustering and individuals’ risk 
 attitudes.  
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1 Introduction

Although the traditional economics model yields a number of powerful in-
sights about implications of rational decisions for resource allocation and
welfare, it seems not to be able to explain some tenacious empirical regu-
larities, like persistent inequalities, patterns of technology diffusion, or so-
ciological phenomena like segregation of neighborhoods. In the recent past
the traditional model of human activities, occurring within markets with
anonymous and centralized interaction, has been further developed to also
take into account the network in which the actors are embedded. In fact,
the economics of social networks has gained increasing attention in the past
decade, manifested in an explosion of game theoretical models on formation,
stability and efficiency of networks and the “wide variety of settings where
social networks play a role [still] leads to an almost endless set of interesting
avenues to investigate” (Jackson 2005, p.59). As predictions from models
proliferate, we need to confront these with rigorous empirical tests not only
to deduct a more general theory, but also to identify the conditions under
which factors on the individual, the local and the global level influence hu-
man activities. As interactions on networks easily become complex it is not
evident to what extent and under which conditions individual behavior is
in fact influenced by global graph theoretical properties of the network and
how their influence interact with factors on the local or on the individual
level. For economics of social networks “[e]xperiments provide an important
test bed for results which can be very difficult to pinpoint outside of the
controlled environment of a laboratory” (Jackson 2005, p.60).
We conduct the first of such a test for the model of Bramoullé and

Kranton (2007). Their network model pictures innovative activities and was
motivated by the empirical analysis of Foster and Rosenzweig (1995), who
study farmers’ experimentations with a new technology. They find evidence
of free riding as farmers tend to experiment less when their neighbors ex-
periment more. Bramoullé and Kranton (2007) present a model in which
individuals are part of a network and invest in the production of a local pub-
lic good, as e.g. the farmers invest into the production of know-how. The
underlying idea is that such innovative activities of individuals have posi-
tive externalities and that those externalities are strongest for those that
are “closest” to the innovator. In general being “close” can have different
meanings in different contexts: within organizations being “close” would
refer to those who collaborate in the same project, in markets that could
refer to all those that are part of an alliance, or to those who have access
to the innovator’s know-how due to, e.g., geographical or social proximity.
All those interpretations are possible when explicitly considering the (social)
network of the innovator.
Bramoullé and Kranton (2007) provide one of the first analysis of a game

played on a network when actions are strategic substitutes. The model is
characterized by two main features: agents are embedded in a fixed social
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network, and agents’ payoffs are directly affected by their partners’ actions.
Most papers sharing these two assumptions look at positive social interac-
tions and coordination games. In contrast, in their paper, Bramoullé and
Kranton (2007) study a game with features of an anti-coordination game.
Their analysis leads to several insights. First, they find that social net-
works can lead to specialization and that in any network there is an equi-
librium where some individuals invest into innovative activity while others
completely rely on the efforts of the innovators. Furthermore, “in many,
particularly asymmetric, networks this extreme form of free-riding is the
only equilibrium outcome. In all networks, such patterns are the only stable
outcomes. Hence, an agent’s position in a network can determine whether
or not he contributes to the public good.” (Bramoullé and Kranton (2007,
p.479).
We designed an experiment to explicitly address and identify the condi-

tions under which individual, local and global factors influence innovative
activities. We test hypotheses derived from the model of Bramoullé and
Kranton (2007) for the impact of global factors. First we test whether indi-
viduals indeed are able to coordinate on equilibria. Here we find that indi-
viduals do play equilibrium strategies but that the extent to which they are
able to do this is strongly influenced by the network structure. In a highly
centralized structure we find that 20.9 % of all decisions can be labeled as
reflecting local coordination, as opposed to only 5.4% in the full network.
Then we test whether play converges to the theoretically predicted stable
equilibria if they exist. Theory predicts for two of our experimental struc-
tures stable specialized equilibria. We find that overall stability is very low.
However, if play converges then it does so towards the predicted equilibria.
Furthermore we test whether equilibrium play is hampered by an in-

creasing number of neighbors in regular networks, and whether the extent of
specialization is related to centralization in irregular networks. Here we find
that, while density is significantly negatively related to local coordination in
regular structures, it seems more difficult to coordinate on an equilibrium if
transitivity is low: we find that individuals have huge coordination problems
when located in a circle. For irregular structures we did not find evidence
for the effect of centralization on the extent of specialization, although we
found significantly less free riding and more full investment in the star than
in a core-periphery network.
As influencing factors on the local level we consider an agent’s degree

(the number of direct neighbors) and node transitivity (local clustering),
the extent to which an agent’s neighbors are connected to each other. We
derive the hypothesis on the effect of the number of neighbors from Galeotti
et al. (2006) and from Chamberlin (1974). In line with those theoretical
considerations we expect an agent’s investment to decrease in the number
of neighbors. For the effects of transitivity (local clustering) theoretical
predictions are ambiguous and also previous experimental predictions are
less evident. We derive our hypothesis from discussions in Galeotti et al.
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(2006) and findings of the experiment of Cassar (2007). We find strong
evidence for a negative relation between an agent’s degree and investment
as well as between local clustering and investment.
A specific feature present in the model of Bramoullé and Kranton (2007)

is the fact that all network structures support multiple equilibria, with a
tendency that the denser and the more symmetric the structure the larger
the number of equilibria. This adds a significant amount of strategic uncer-
tainty to individual agents. We therefore hypothesize that, next to global
factors and to local features of a specific network position, personal risk at-
titudes also have an impact on strategic investment. Relating to the theory
of global games as one of the more recent theoretical refinement concepts,
we consider players’ subjective beliefs about other players’ actions and find
that individual investments increase in a player’s risk aversion.1 Hence, we
expect to find that risk aversion leads to overinvestment. This relation is
not supported in our experiment. We find specifically for regular structures
that relatively risk averse individuals invest less.
Altogether we find that global, local and individual effects coexist and

that decision making by individuals is strongly affected by the structure of
their local neighborhood. This suggests that individual play in networks is
boundedly rational, in the sense that coordination is significantly influenced
by local and individual factors. This result contributes to the understand-
ing of individual behavior in social contexts. Particularly, it suggests that
theory may focus on models with incomplete information about the global
structure. With the finding that the global network structure only partially
determines behavior, the paper also indicates that valuable predictions can
be derived from theoretical models that are confined to the analysis of very
simple, local structures as the basic building blocks for more complex net-
works.
The rest of the paper is structured as follows: In the next section we

briefly relate or work to the existing literature. Then we present the theo-
retical foundation and the hypotheses that we aim to test in the experiment.
In Section 4 we present the experimental design, in Section 5 the results,
and we conclude in Section 6.

2 Literature

While theoretical research on economic networks has received extensive in-
terest in the past 15 years, experimental work on networks in economics
has been neglected until recently.2 The existing experiments can broadly be
grouped according to their focus on the effect of network structures on equi-
librium selection, or on cooperation, or on link formation and the evolution

1On global games see Carlsson and van Damme (1993) and Morris and Shin (2000).
2See Kosfeld (2004) for an interesting survey on experimental contributions in that

field.
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of networks.
The first group of experiments is based on seminal work by Kandori,

Mailath, and Rob (1993) and Young (1993), who have triggered intense in-
terest in the question of equilibrium selection in coordination games. Bern-
inghaus et al. (1998, 2002) present the first experiments that consider the
role of the global structure of networks in coordination games. In their
experiment, agents are located on a circle, and on a two-dimensional lat-
tice, and while the size of an agent’s neighborhood remains constant across
treatments, the neighborhood structure differs. The authors find that play
is more likely to converge to the risk-dominant equilibrium when agents in-
teract on the lattice than on the circle. This result is rather striking since
subjects were not informed about the precise global structure of the popu-
lation in the two treatments. The authors conjecture that subjects observe
individual play to be more changing in the lattice treatment than in the
circle treatment and that therefore risk dominance as an individual motive
has more power in the lattice treatment than in the circle treatment. Boun
My et al. (2001) also analyze the effect of network structure on equilibrium
selection. Using a setting similar to Keser et al. (1998), they compare the
repeated play of a 2×2 coordination game under global and under local
interaction with varied degrees of risk dominance of the inefficient equilib-
rium. In their setting the interaction structure itself does not seem to play
a significant role in the convergence of play. In particular, contrary to the
studies described above, Boun My et al. do not find that agents who inter-
act locally on the circle coordinate more frequently on the risk-dominant
equilibrium. Ellison (1993) and Morris (2000) analyze theoretically the role
of local interaction networks in the spread of particular strategies in simple
coordination games, showing how play converges to the risk-dominant equi-
librium if players are located on a circle and interact with their two nearest
neighbors. Blume (1993) and Kosfeld (2002) prove empirically that under
certain conditions there is convergence to the risk-dominant equilibrium in
a population of players located on a d-dimensional lattice.
A second group of experiments focuses on cooperation in networks. Re-

cently Kirchkamp and Nagel (2007) investigated the effect of local inter-
action on learning and cooperation in repeated prisoners’ dilemmas. They
compare interaction neighborhoods of different size and structure, and ob-
serve choices under different information conditions. Interestingly their ex-
perimental findings contradict the theoretical predictions of naive imitation
models. Cassar (2007) studies coordination games and prisoners’ dilemmas
in local, random and small-world networks. She finds a tendency for coordi-
nation on the payoff-dominant equilibrium in all three networks. Her results
suggest that local interactions do cause faster coordination than random in-
teractions, but do so on the payoff-dominant equilibrium rather than on the
risk-dominant equilibrium.3 For the cooperation game, she finds insufficient

3There is an interesting as well as promising link of research on coordination in social
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cooperation in all three networks, with average cooperation lower in small-
world networks than in random and local networks which seems to support
the prediction of Eshel et al. (1998) that local interactions offer a better
ground for cooperation than other networks.
A third line of experiments investigates individual incentives for network

formation. Goeree et al. (2008) analyze a pure network formation game and
find that equilibrium predictions fail completely with homogeneous agents,
while heterogeneity fosters the formation of an efficient structure over time.
Buskens et al. (2007) find some evidence that subjects will form networks
that lead to play of the efficient Nash equilibrium in a simple coordination
game, if they can choose their network partners themselves.
Results of the experiments so far have shown that network configurations

have important effects on economic outcomes, such as the convergence to-
wards equilibria, the support of Pareto superior states, or the distribution of
surplus among economic agents. We contribute to this research by focusing
on the effect of network configurations on individual investment decisions in
games with strategic substitutes.

3 Predictions for strategic investment in local pub-
lic goods

In this section we briefly summarize the model and findings of Bramoullé
and Kranton (2007) and translate them into testable hypothesis. Suppose
there is a set of agents N = {1, ..., n} and let ei ∈ R

+ denote agent i’s level
of effort spend on the production of a local public good.
Agents are arranged in a network which is represented by an undirected

network g, that is: gij ∈ {0, 1}, gij = gji, for all j ∈ N . If gij = 1, agent j
benefits directly from agent i’s production, and gij = 0 otherwise. Agent i
benefits from his own effort, thus gii = 1. Let Ni = {j ∈ N\{i} : gij = 1}
be the set of agents with whom agent i has a link in the network g, and let
ηi(g) = |Ni(g)| denote the cardinality of this set. We refer to ηi(g) as agent
i’s degree and to Ni as the neighbors of agent i that benefit directly from i’s
effort. A network is regular if every agent has the same number of links, i.e.,
ηi(g) = η(g)∀i ∈ N . We refer to η(g) as the density of the network (average
degree) and to η(gc) as the number of links that are maximally possible
in the set of agents N . Each agent receives a benefit ui(ei, ..., en; g) =
b(ei +

∑
j∈Ni

ej) with b(0) = 0 and b′ > 0 and b′′ < 0. Marginal costs of
effort are constant and equal to c and we assume b′(0) > c to avoid trivial
cases.
Given this set-up, Bramoullé and Kranton (2007) study which invest-

ment levels form equilibria given a network structure. Let e∗ denote the

networks to recent theoretical and experimental studies on strategic uncertainty, e.g., by
Heineman, Nagel and Ockenfels (2004a) and (2004b).
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effort level at which to an individual agent, marginal costs are equal to
marginal benefits. Bramoullé and Kranton (2007) model the investment
decisions on a given network as a non-cooperative game. All individuals
simultaneously decide how much to spend on the production of the local
public good. It is straightforward to show that a profile e is a Nash equi-
librium if and only if for each agent i either (1)

∑
j∈Ni

ej ≥ e
∗ and ei = 0,

or (2)
∑
j∈Ni

ej ≤ e∗ and ei = e∗−
∑
j∈Ni

ej . Obviously, levels of effort
are strategic substitutes; the more one agent invests the less invest his di-
rect neighbors. In general, the equilibrium distribution of effort will lie
in-between two extremes: either a profile e is such that for all agents i either
ei = 0 or ei = e

∗. This will be called a specialized profile, and furthermore
we will call an agent who invests e∗ a specialist and an agent investing e = 0
a free-rider. The other extreme is that all agents i invest some effort such
that 0 < ei < e

∗. This will be called a distributed profile. In order to gain
some intuition for this model we ask the reader to refer to section 4.1, where
a specific functional form for the benefit function is presented and equilib-
rium outcomes for four network structures (those used in the experiment)
are characterized.
The first set of hypotheses are formulated under the assumption that

agents behave perfectly rational in the sense that they are aware of the en-
tire network structure and that their behavior is influenced by the graph
structural properties at the group level. For our analysis the following gen-
eral result of Bramoullé and Kranton (2007, Theorem 1, and footnote 10,
p. 483) is of direct interest: For any structure g, there exists a profile e
that constitutes a Nash equilibrium, and for any structure g, there exists a
specialized profile e that constitutes a Nash equilibrium (Theorem 1, p. 483).
This result implies that we can characterize best-response functions as well
as equilibria for specific network structures. Since pure strategy equilibria
exist for all network structures, we can hypothesize that in each network
structure individuals are able to find, and thus with some probability coor-
dinate on, pure strategy equilibria.

(H1) In any network structure individuals are able to coordi-
nate on pure strategy equilibria.

Furthermore, using a simple notion of stability based on Nash tâton-
nement, Bramoullé and Kranton (2007, Theorem 2, p. 484) identify stable
structures: For any social structure g, an equilibrium is stable if and only if
it is specialized and every non specialist is connected to (at least) two spe-
cialists. This second result implies that if a network structure allows for an
equilibrium as specified in the theorem, play should converge towards this
equilibrium.

(H2) Equilibria in which every non-investing agent is connected
to at least two specialists are reached with higher probability and
are played for a higher number of rounds than other equilibria.
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Moreover, in an earlier version of the model, Bramoullé and Kranton
(2005) derive some results that concern specific structures. One result con-
cerns symmetric regular structures (overlapping neighborhoods graphs) in
which each agent has k neighbors on the left and k neighbors on the right:
In an overlapping neighborhood graph of size k, (a) a strategy profile e is a
distributed equilibrium if and only if there exists a common divisor of n and
2k + 1 - which we denote m - such that the sequence of the first m effort
levels (e1, ..., em) satisfies

∑m
i=1 ei =

m
2k+1e

∗ and the profile e is a repetition
of this sequence for every m agents. In particular, the profile where every
agent invests 1

2k+1e
∗ is an equilibrium (m = 1). (b) A strategy profile is

a specialized equilibrium if and only if the distance between two consecutive
specialists is at least k+1 and no more than 2k+1. (Bramoullé and Kranton
(2005), p. 14)
From this finding we can conclude that in symmetric regular networks

coordination becomes easier the lower the density, (note that there are just
two equilibria in a circle as opposed to infinitely many in the full network).
Hence, we should observe more coordination in regular networks with a lower
degree. We translate this into the following hypothesis:

(H3) In regular networks the probability to coordinate on an
equilibrium decreases with the (average) degree.

Another theoretical result refers to irregular structures: On any core-
periphery graph, there are two types of Nash equilibria: (a) No p-core agent
(a core agent that has one or more links to peripheral agents) exerts effort,
each peripheral agent exerts e∗, and the other core agents collectively exert
a total effort of e∗. (b) One p-core agent is a specialist and invests e∗, all
his neighbors (the rest of core and his links in the periphery) do not exert
effort, and the remaining peripheral agents each exert e∗. (Bramoullé and
Kranton (2005), p. 21)
This finding can be translated into predictions for specific structures: we

should not find distributed equilibria in a core-periphery graph with just one
p-core agent (star network), while in core-periphery graphs with core agents
without links to periphery agents, we should observe distributed equilibria.
We thus formulate the next hypothesis as follows:

(H4) The probability to play specialized (maximum effort or
perfect free-riding) is higher in star networks than in core-periphery
networks.

We consider connected graphs, i.e. networks in which each agent di-
rectly interacts with a selected group of population members, his neighbors,
and where all agents’ neighbors are overlapping such that no group of the
population can split off from the rest of the population. As a consequence,
each agent interacts directly with his neighbors and indirectly with the whole
population. Under the assumption of full rationality this would mean that

8



agents’ actions directly depend on the number of their direct neighbors,
the number of neighbors’ neighbors, etc. ... . Following Stahl and Wilson
(1995) and Costa-Gomes et al. (2001), we may alternatively assume that
some agents follow certain kinds of boundedly rational decision rules. In
our network setting this would imply that agents are able to internalize the
network structure up to a limited distance only, and formulate their optimal
response accordingly. For the following hypotheses we therefore take the
view that the direct influence from the local interaction with the neighbors
outweighs the indirect influence of the global interaction.
Given this view, we can formulate hypothesis on the influence of graph

structural properties at the local level (characteristics of the direct neighbor-
hood) on an agent’s behavior. On the local level an agent’s degree ηi(g) (or

degree centrality
ηi(g)
η(gc)) and transitivity (local clustering), i.e. the extent to

which an agent i’s neighbors are connected to each other, will have influence
on behavior. Following Jackson (2005) we measure an agent i’s transitivity
(local clustering) as:4

Ci(g) =
#{gjk ∈ g|k �= j, j ∈ Ni, k ∈ Ni}

#{gjk|k �= j, j ∈ Ni, k ∈ Ni}
.

Theorists and experimentalists have analyzed the effects of group size
on contributions to public goods in general (see Chamberlin (1974) and
for an overview of experiments Kagel and Roth (1995)) and the effect of
degree on coordination in networks (see, e.g., Berninghaus, Ehrhart and
Keser (2000) as well as Berninghaus and Schwalbe (1996)) in specific. In the
above characterized setting production of the local public good is an inclusive
and inferior collective good.5 From the analysis of Chamberlin (1974) follows
that individual investment should be decreasing with the group size (degree)
while total investment should be unaffected.
Exact predictions on how the effect of an agent’s degree on investment

depends on the local network structure can be derived from the model of
Galeotti et al. (2006) in which agents are assumed to have incomplete
information on the networks structure. Galeotti et al. (2006) show that,
under incomplete information, in every (symmetric) equilibrium, actions
are increasing (decreasing) in an agent’s degree if neighbors’ actions are
strategic complements (substitutes). Furthermore they show that degree-
monotonicity properties can be violated under complete information. If we
assume that agents’ investment decisions are in fact less affected by global
graph structural properties of the network and more by those at the local
level, these theoretical findings lead us to the following hypothesis:

4For agents with only one neighbor, implying that the denominator of Ci(g) is 0, we
follow Jackson (2005) and adopt the convention of setting Ci(g) = 1.

5Note that in Bramoullé and Kranton (2007) investing effort into know-how production
is inclusive as the individual reaction functions are independent of the number of neighbors.
It is an inferior good because the slope of the reaction functions is negative and ≥ −1.
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(H5) An individual’s investment decreases in his degree.

Note that this hypothesis is based on two considerations. The more
neighbors an agent has the more likely is miscoordination and thus the more
likely it is that some neighbors will invest a positive amount. The larger the
number of neighbors the more likely it is that their investment sums up to
the optimal level.
For the effects of local clustering theoretical predictions are ambiguous

and experimental predictions for related strategic situations do not exist.
Obviously, as explained by Galeotti et al. (2006), the incentives of an agent
depend on the expected probability that each of his neighbors provides the
public good. The source of complication lies in the aspect that an increase
in degree of a neighbor (on average) implies a decline in her investment
(on average), which in our setting of strategic substitutes suggests that the
best response of an agent should be to increase effort. But if ultimately the
probability of each agent choosing high effort rises, the incentives to choose
high effort for each agent are lower, which would generate an inconsistency.
Cassar (2007) finds in her (remotely related) experiment that local clus-

tering has a negative effect on coordinating on the payoff dominant action
in a coordination game while it has no significant effects on choosing the
cooperative action in the PD game. Contrary to this, global clustering has
a positive effect on the coordination on the dominant action. On the basis
of these findings we formulate the following hypothesis:

(H6) An individual’s investment decreases with local clustering
among agents.

Moreover, the model predicts multiple equilibria for all network struc-
tures. Hence agents will be confronted with strategic uncertainty, since they
cannot assign probabilities to any outcome by relying only on deductive rea-
soning. All outcomes are consistent with optimizing behavior and rational
expectations so that neoclassical theory cannot help to predict behavior.
Theoretical refinement concepts are based on assumptions on players’

beliefs about other players’ behavior. One such concept is the theory of
global games proposed by Carlsson and van Damme (1993).6 In what fol-
lows we use ideas from their approach and link individual investment in

6The theory of global games starts from an environment of incomplete information
about economic fundamentals.
In a global game setting, there is a unique equilibrium where each player chooses the

action that is a best response to a uniform belief over the proportion of his opponents
choosing each action. Thus, when faced with some information about the underlying
state of the world, each player hypothesizes that the proportion of other players who
will opt for a particular action is a random variable that is uniformly distributed over
the unit interval and chooses the best action under these circumstances. This approach,
further advanced by Morris and Shin (2002), generates predictions for games with strategic
complementarities (in which equilibria can be ranked), and Harrison (2003) developed it
further for games with strategic substitutabilities in which players can be ranked. Hellwig
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the above described network games to a player’s position in a network
and his degree of risk aversion. Suppose first that we can characterize a
player i′s utility from the investment by his degree of risk aversion ri, given
the realized investments of his neighbors

∑
j∈Ni

ej, such that U(ei, g, ri) =

b(ei +
∑
j∈Ni

ej, ri) − cei with ∂
2b(·, ri)/∂ei∂ri > 0 which implies together

with the assumptions on b(e) that
∂e∗i
∂ri

> 0 for given
∑
j∈Ni

ej . Suppose for
simplicity that each player has a binary decision to either invest as a spe-
cialist or to be a free rider, i.e., ei ∈ {0, 1},∀i ∈ N. Define a belief p that
a randomly selected neighbor j of player i in network g is investing as a
specialist (hence, ej = e∗). A player i with degree of risk aversion ri will
find it optimal to play 1, whenever he believes that no other player in his
neighborhood will play 0 with a probability at least as large as (1− p), and
he will prefer 0, whenever his belief that other player plays 0 falls below
(1− p). Player i is indifferent between investing and not investing if:

(1− p)Nib(e∗, ri) + (1− (1− p)
Ni)b(2e∗, ri)− ce

∗ = (1− (1− p)Ni)b(e∗, ri)

Define p(Ni, ri) as the solution to this equation. For given values of Ni
we find that p(Ni, ri) is increasing in ri; hence, the more risk averse a player
is the higher has to be his belief that the other players play 1, in order to
induce him to play risky, ei = 0.

7 And the higher his ex post expected return
to playing 0, the lower the threshold probability at which ei = 0 becomes
optimal. We translate this argument into our final hypothesis:

(H7) A risk averse agent should invest more than a risk seeking
agent.

4 Design of the Experiment

4.1 Experimental game

The aim of our experimental design is to test the hypotheses developed in
the previous section. In particular, we are interested in disentangling the
influence of factors from the global, the local and the individual level. To
reduce the number of treatments to a manageable number, we have chosen
to focus on a number of specific networks. Our main experimental treatment
variable consists of four network configurations in which agents interact.

(2002) finds that the global game solution for games with strategic complementarities can
be approached by uncertainty about other players’ risk aversion. There is to the best of our
knowledge no such theory that characterizes a global game solution for anti-coordination
games on networks as the one we are interested in.

7Comparative static properties can be checked by first verifying that
∂e∗

i

∂r
> 0 for given∑

j∈Ni
ej and then applying the envelope theorem.

11



In our experimental set-up we implemented a finitely repeated version
of the game proposed and analyzed by Bramoullé and Kranton (2007).8

Throughout the experiment we had groups of N = 4 individuals that formed
a connected network g. In the game individuals’ pure strategies at each
stage are investment levels ei. Payoffs at each stage are calculated using the
following benefit function from profile e in graph g:

ui(e, g) = a ln(1 + ei +
∑

j∈Ni

ej)− cei (1)

with a, c > 0 and c = 1
2a. This implies that e

∗ = 1 and that in equilibrium
ei = max{0, 1−

∑
j∈Ni

ej}.
9

As treatments we considered a sequence of four different network struc-
tures, of which two structures were regular and two irregular, as depicted in
the following figures:

1 2

34

1 2

34

Figure 1: Complete network (1) and circle (2)

4

1

23

4

1

23

Figure 2: Star network (3) and core-periphery network (4)

8Note that all static equilibria continue to be equilibria also in the finitely repeated
version. In symmetric regular structures players can alternatively play additional equi-
librium strategies, such as a trigger strategy, to achieve cooperation in the first stages.
This would imply that all players coordinate on a rewarding equilibrium (a distributed
profile) in the last stage(s), if all players cooperated or, if one player deviates, the others
punish by playing a less favorable equilibrium (they free-ride on the defector). Our em-
pirical analysis reveals that subjects were hardly able to coordinate their play on such a
sophisticated level.

9 In the experiment we set a = 72, 13 and c = 36, 07 (motivated by expositional reasons),
which lead to the payoff table in Appendix 2.
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For each of these network structures we can characterize the full set
of Nash equilibria: In the complete network (1) with N = 4 and e∗ = 1
any profile such that

∑
i∈N ei = 1 constitutes an equilibrium. In the circle

network (2) with N = 4 and e∗ = 1 the following strategy profiles constitute
Nash equilibria: (i) (1, 0, 1, 0), and (ii) (13 ,

1
3 ,
1
3 ,
1
3). In the star network (3)

with N = 4 and e∗ = 1 there are also only two types of Nash equilibria:
either the center is a specialist and the agents in the periphery do not invest,
or the agents in the periphery are specialists and the center does not invest.
Finally, in the core-periphery network (4) with N = 4 and e∗ = 1 there are
also only two types of Nash equilibria: either the agent in the periphery
invests e∗ = 1, the p-core agent linked to this agent does not invest and
the remaining core agents invest in total e∗ = 1, or only the p-core agent
linked to the periphery agent invest e∗ = 1 and all other agents do not invest
anything.

4.2 Risk assessment

We measure risk attitudes in two different ways. First, we register subjects’
decisions in a lottery setting, which we implement as a sequence of simple
decisions between pairs of alternatives. For each pair, one of the alternatives
is a safe payment, the other is a lottery. The sequence of decisions was
ordered according to an increasing safe payment while the expected payment
of the lottery remained constant. An agent’s degree of risk aversion should
determine at which decision he is indifferent between the two alternatives
and for any further decisions he should prefer the safe alternative.
As an alternative measurement, we combine the experiment with a ques-

tionnaire containing Zuckerman’s (1994) Sensation Seeking Scale V (SSSV).10

This measure is based on the notion that risk taking could be linked to fac-
tors that are trans-situational, such as personality traits. The fundamental
concept central to most trait theories is that traits are life-long and relatively
consistent (Allport (1961)). Risk propensity could thus be more a charac-
teristic of an individual than of the situation. In this area, sensation seeking
is found to be of particular importance. Since Zuckerman’s et al. (1964)
pioneering study, a stream of research has confirmed sensation seekingness
as a highly consistent predictor of various kinds of risk taking (Zuckerman
(1974), Zuckerman & Kuhlman (2000), Zaleskiewicz (2001)) with a high re-
ported internal reliability coefficient (Cronbach’s alpha ranges from .85 to
.90 for all scales).
The SSSV data is gathered via a questionnaire using 40 forced choice

items, assessing the respondents’ sensation seekingness on four sub-scales:
experience seeking (ES), thrill and adventure seeking (TAS), disinhibition

10We include this well validated questionnaire as an alternative measure, because the
predictive validity of expected utility-based assessments of risk attitudes has been ques-
tioned, especially when decisions concern low stakes as in experiments. See Harrison et
al. (2005) for a systematic review of instruments that measure risk propensity.
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(DIS), and boredom susceptibility (BS). The Sensation Seeking Scale V
(SSSV) currently is the most widely used form of the sensation seeking scale
with the largest volume of normative data supporting it (Zuckerman, 1994).
The four sub-scales each have a score range of 0-10 points, with 10 being
high. The total scale score is the sum of the sub-scales scores. The thrill and
adventure seeking sub-scale examines the respondents’ appeal to activities
of physical danger or risk taking. In the experience seeking sub-scale desires
for new experiences are assessed. Sub-scale items include the desire for
exotic travel or association with unusual friends. Items in the disinhibition
sub-scale examine respondents’ desire to exhibit uninhibited/unrestrained
behaviors. These include behaviors considered high risk, such as heavy
drinking, drug use, or having a variety of sexual partners. The final sub-
scale, boredom susceptibility, assesses an individual’s dislike of repetitive
experiences or predictable experiences.

4.3 Procedural details

In total eight sessions were run at the experimental laboratory ELSE at
Utrecht University in June 2007. Participating subjects came from the
subject pool that mainly recruits students of Utrecht University from all
faculties. The procedure during the eight sessions was kept the same and
all sessions were computerized, using a program written with z-tree (Fis-
chbacher, 1999). 148 subjects participated and were seated in a random
order at PCs. Instructions (see Appendix 1) were then read aloud and ques-
tions were answered in private. Subjects were randomly assigned to groups
of size N=4, but did not know who the other members of their group were.
Before starting the experiment, subjects had to answer a few questions con-
cerning their understanding of the rules. The experiment started, when all
subjects gave the correct answers to these questions. Throughout the ses-
sions students were not allowed to communicate and could not see others’
screens.
In the experiment, subjects played five treatments divided into two dif-

ferent parts. The first part contained a treatment with a block of nine lottery
choices. In each block subjects decide between two alternatives, A and B.
Alternative A gives a secure payoff that ranges from C=10 to C=90 in steps of
C=10. The payoff for a Choice B is either zero or C=100 in each situation. In
the lottery setup the payoff for B depends on the result of tossing a coin (at
the end of the experiment): if the result of the toss is heads the payoff is zero
and if the result is tails the payoff is C=100. The instructions in Appendix 1
show a sample screen of the lottery setup.
The second part contained four treatments, each with a sequence of

20 decision rounds. Each treatment is represented by a specific network
structure. After each sequence of 20 decisions, subjects were asked to look
at the next network structure. We decided for a partner design where the
same four subjects were positioned in four different network structures and
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had to make 80 decisions. The 20 periods per network structure were chosen
to allow for coordination of strategies and also to ensure a sufficient number
of independent observations on the network level. Although this design
is not a direct translation from the original static theoretical setting, we
favoured the aspect that it facilitates coordination in this rather complex
environment.11

In the beginning of each network treatment subjects were informed about
their position in the network and that all agents will keep the same network
position over all 20 periods played in a network structure.12 In each period
subjects decided on how much to invest, with investments being any positive
number with two decimals in the interval [0, 1]. Investment resulted in Ex-
perimental Currency Units (ECU) that ranged from 0 to 100 (see Appendix
2) with an exchange rate of 0.6 Eurocent per ECU. In the second part of
the experiment all investment decisions as well as all payoffs were revealed
after each decision to all subjects belonging to the same network and were
thus common knowledge.
Afterwards, each subject had to answer a questionnaire asking for per-

sonal data and the SSSV. The duration of the experiment was 90 to 120
minutes. Subjects that could not participate because they showed up too
late or the lab was full received a show-up fee of C=5. For the first treat-
ment, the lottery, one of the 9 alternatives of one of the participants in the
room was selected at random after the experiment and the chosen type of
payment was executed. Earning in the second part were calculated from the
ECUs subjects earned in that part. This led to minimum earnings of C=1.20
and maximum earnings of C=120.90, with an average payoff of C=16.87 per
subject.
The sequence of the treatments for the eight sessions has been motivated

by several considerations: We decided for an within-subjects design to relate
individual variables (risk attitude) to local and global variables. We run
the lottery first in order to avoid effects from experiences in the strategic
interaction on individuals’ decision. As the result of the lottery was revealed
at the end of the experiment we do not expect reverse effects from the lottery
to the other treatments. For the other four treatments we first reduced the
number of possible combinations (24) to the eight that satisfy the properties
that (a) each network structure is equally frequently at a specific position
of the sequence in a treatment (each network is twice at each position) and
(b) each of the 12 possible pairwise sequences of two different networks is
represented equally frequently (i.e. twice) in all sessions.13

11 In December 2005 we conducted a pilot experiment with networks of six subjects in
a random stranger design. With the exception of our result on risk, all results reported in
this paper replicate those of the pilot, which indicates that subjects did not play dynamic
strategies in the finitely repeated design.
12Within the group of four subjects we ensured that no subject was in a central position

for more than one treatment (star center, core center).
13See Appendix 3 for selected sequences and the underlying scheme.
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5 Empirical Analysis and Results

We conducted the experiment with 148 students and the subjects played 20
periods in each of the four networks, resulting in 11840 investment decisions
(observations). As we treat the first five periods as trial rounds, the actual
sample for analysis consists of 8880 observations. None of the results pre-
sented in this paper change qualitatively when we include the first five trial
periods in the analyses.

5.1 Sample description

Table 1 describes the most important variables of the sample and reports
their pairwise correlation. On average, the subjects contributed 0.39 units
(with a maximum contribution of 1.0) per period across all sessions and
network structures. 66% of the subjects were female, 20% did not have
the Dutch nationality, 32% had at least one friend in the same session, and
the average age was 22 years. To correct for these and other unobserved
individual characteristics we use the variables (4)-(7) as controls and include
random effects for all 148 subjects in our estimations.

Table 1: Descriptive statistics and pairwise correlations of subject variables

N mean s.d. min max (1) (2) (3) (4) (5) (6)

(1) contribution
$
8880 0.39 0.35 0 1 1

(2) lottery 148 40 14.38 10 70 0.15 1

(3) SSSV 148 4.92 1.42 1.5 9.25 0.14 0.18* 1

(4) female
1

148 0.66 0.47 0 1 -0.08 -0.15 -0.1 1

(5) foreign
1

148 0.2 0.4 0 1 0.01 0.06 -0.08 -0.01 1

(6) age 148 22.17 4.81 16 59 0.03 0.14 -0.1 -0.18* 0.31*** 1

(7) friendships
1

148 0.32 0.47 0 1 -0.13 0.1 0.04 -0.07 0.1 -0.04
1
 female=1, non-Dutch=1, at least one friend in same session=1

* p<0.05, ** p<0.01, *** p<0.001; 
$
 mean contribution per subject used in pairwise correlation 

As Table 1 also shows, the risk measurement from the lottery treat-
ment (‘risk attitude’) and the sensation seeking score from the questionnaire
(‘SSSV’) are positively correlated with each other (β = 18%) at a statisti-
cally significant level of < 5%. This corroborates our choice of these two
variables as related but nevertheless alternative measurements of behavior
towards risk.14

The subjects in our experiment are on average risk averse as their choice
to switch to fixed payments averages at C=40 (with a std. dev. of C=14.38),
while the risk-neutral, expected value of the lottery is C=50. This corre-
sponds with the sensation seeking measurement (SSSV), which also has a

14This confirms prior findings that there is indeed a relation between the psycholog-
ical measurement of risk with the SSSV and economic risk taking (Zuckerman (1974),
Zuckerman & Kuhlman (2000), Zaleskiewicz (2001)).
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relative low average value of 4.92 (with a std. dev. of 1.42) compared to
the normative sample from Zuckermann (1994) of 5.3. Table 2 reports for
every sensation seeking dimension how our sample scored in comparison with
the normative sample of Zuckermann (1994) (adjusted to the same ratio of
women and men).15

Table 2: Sensation seeking values (SSSV scores)

mean (normative) mean (sample) s.d. (sample)

SSSV-TAS 6.97 6.73 2.52

SSSV-ES 5.13 5.72 2

SSSV-BS 3.37 2.76 1.75

SSSV-DIS 5.74 4.49 2.51

SSSV (avg) 5.3 4.92 1.42

Table 3 reports structural measures and average contributions at net-
work and at node level. Across the four network structures we can identify
seven node types, which are distinctively different from each other, either
in their direct or indirect links. These types are star-center, star-periphery,
core-center, core-periphery, core-duo (which are the two core nodes without
periphery), full and circle. Table 3 characterizes the node types with their
degree as a fraction of their maximally possible degrees (Freeman’s actor
level degree centrality) and their number of directly linked neighbors as a
fraction of the maximally possible number (transitivity). At the network
level the standard deviation of all nodes’ degree centrality determines Free-
man’s network centrality, the average of all nodes’ degree centrality repre-
sents the network density, and the average of all nodes’ transitivity measures
the network clustering.
Graph A in Appendix 4 shows the average profits and contributions per

network over time, and Graph B shows the average profits and contributions
per node type over time (for all 20 rounds of the experiment). While average
investments in the four networks structures diverge over time, average profits
converge to roughly the same level. At the node level, differences in profits
are rather persistent. Moreover, investments by subjects in the periphery
become more and more specialized while we observe an increase in free riding
over time for all other node types. An inspection of the average levels of
subjects’ contributions in Table 3 reveals significant differences between the
four network structures: the star clearly has the highest average contribution
(0.5), followed by the core (0.39), the circle (0.36) and the full network (0.29).
The average contributions of all four networks are statistically different at
a significance level of p < 0.001.
At the node level we find that the star-periphery and core-periphery

players contribute the highest amounts (both 0.56 units), while the average

15The normative sample (age range of 17-23 years) for the SSSV consisted of 410 male
and 807 female undergraduate students from the University of Delaware.
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investments of the more central core and star players are significantly lower
(all around 0.34 with no statistical difference between each other). As Table 3
shows, circle players invest a small, but significantly higher amount than that
(0.36). Contributions in the full network stay the lowest of all, irrespective
whether they are compared to other networks structures or specific node
types.

Table 3: Structural measures and average contributions

network node degree network transitivity average
level level N centrality centrality contribution

full 2220 1.00 0.00 1.00 0.29a

circle 2220 0.67 0.00 0.00 0.36a

star 2220 0.50 0.29 0.00 0.50a

center 555 1.00 0.00 0.34b

periphery 1665 0.33 0.00 0.56b

core 2220 0.67 0.24 0.58 0.39a

core-center 555 1.00 0.33 0.33

core-duo 1110 0.67 1.00 0.34

periphery 555 0.33 0.00 0.56b

asignificantly different from all other networks with p < 0.001
bsignificantly different from all other node types within the network with p < 0.001

5.2 Testing of Hypotheses

Hypothesis 1:

In order to test Hypothesis 1 we compute the percentage of individual
investment decisions with which the players reached an equilibrium. An
inspection of the data shows that some subjects do not invest the exact
amount required for equilibrium behavior, for instance exactly 1 unit, but
something close, e.g. 0.95 or 0.99 units. For robustness we therefore also
identify ‘fuzzy’ equilibria, which allow for some deviations in individual con-
tributions x with 0.9 ≤ x ≤ 1 and 0 ≤ x ≤ 0.1. Further, for distributed
equilibria (e.g. investments of 1/3 in the circle) and cumulative equilibrium
investments (e.g. 1 unit in the full), we accept ‘fuzzy’ values within a band
of +/− 10% (i.e. individual contributions of 1/3 ∗ 0.9 ≤ x ≤ 1/3 ∗ 1.1 in the
circle and a total investment of 0.9 ≤ x ≤ 1.1 in the full).
In contrast to equilibria, which involve the whole network, coordination

may be reached more locally by only some subjects. As a further test of
Hypothesis 1 we therefore identify all directly linked subjects that jointly
contribute 1 unit. Within this neighborhood we code only those nodes that
play ‘exact’ local coordination to their direct neighbors’ investments. Analo-
gously, we also identify ‘fuzzy’ local coordination within neighborhoods that
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jointly contribute between 0.9 and 1.1 units. The only network where equi-
libria (at network level) and local coordination (at node level) are identical
is the full network, because all nodes are direct neighbors of each other.
Analogously to local coordination we also compute exact and fuzzy my-

opic best reply. Here we identify all situations where the sum of a subject’s
current investment and all direct neighbors’ investments in the previous pe-
riod is equal to 1 unit (exact) or between 0.9 and 1.1 units (fuzzy).

Table 4: Frequency of equilibria, local coordination and myopic best response

equilibria local coordination myopic best reply
(incl. equilibria)

network N exact fuzzy exact fuzzy exact fuzzy
(type) (decisions) (% of N) (% of N) (% of N) (% of N) (% of N) (% of N)

full 2220 5.4% 9.0% 5.4% 9.0% 6.9% 12.6%

circle 2220 0.4% 1.8% 6.9% 11.8% 9.5% 17.5%

core 2220 1.3% 2.0% 8.3% 13.0% 11.8% 18.5%

star 2220 4.7% 5.8% 20.9% 25.8% 24.9% 30.8%

Table 4 reports for all four network structures the percentage of individ-
ual investment decisions that lead to an equilibrium or to local coordination.
In support of Hypothesis 1, we find that subjects coordinate on equilibria
and also coordinate locally with their direct neighbors in all network types.
The percentage of equilibria, of local coordination and of myopic best re-
ply in the star are all higher than in the core-periphery, which again ranks
above the circle. Note that we expect to see a relation between the number
of potential equilibria and the number of equilibrium observations. On the
level of local coordination it seems to be easier to coordinate if there are
less equilibria. On the other hand, a higher number of potential equilibria
in the full network seems to increase the chance to be in an equilibrium by
pure coincidence. Although myopic best reply is played more often than
local coordination, the frequency distribution across network types is very
similar.16 In line with this, all other results in this paper on local coordina-
tion and myopic best response are qualitatively identical. In the following
we therefore only report results on local coordination.
The full network has the highest percentage of equilibrium decisions.

This can be partially explained with the high free-riding behavior that we
observe in the full network: 34% of all contributions are 0, compared to 21%,
24% and 18% for the circle, core-periphery and star, respectively. At the
same time 10% of contributions are 1. This leads to several equilibria with
specialists. In fact, out of 30 periods (with 120 individual decisions) where
exact equilibria are reached in the full network (5.4% of all 555 periods or

16Appendix 4 shows the frequencies of local coordination (Graph C) and of myopic
best reply (Graph D) per network and per node type over time (for all 20 rounds of the
experiment).
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2220 decisions), 19 periods involve specialists (0, 0, 0, 1), one a near-specialist
(0, 0, 0.1, 0.9) and ten periods show truly distributed contributions of two or
more players. As we will see below, these equilibria are extremely unstable
and seem to occur at random in a continuous trial-and-error process and
less as a result of a coordinated effort.
Also note that the full network has the lowest percentage of local coordi-

nation and myopic best reply. This is an artifact of the special situation that
all subjects are direct neighbors of each other in the full network. Hence, in
contrast to all other networks with indirect neighbors, local coordination is
identical to global coordination and therefore cannot add to the number of
equilibria.

Hypothesis 2:

To test Hypothesis 2 we compute the frequency of ‘converging equilibria’
in different network structures. In analogy to Callander and Plott (2005)
we define convergence as staying in the same equilibrium for at least three
consecutive periods, as opposed to the above definition of reaching an equi-
librium, i.e. playing it at least in one period.

Table 5: Frequency of converging equilibria

network N convergence exact equilibria convergence fuzzy equilibria
(type) (periods) (no. eq.) (no. per) (% of N) (no. eq.) (no. per) (% of N)

full 555 0 0 0% 0 0 0%

circle 555 0 0 0% 1 10 1.8%

core 555 0 0 0% 0 0 0%

star 555 4 19 3.4% 4 21 3.8%

Table 5 shows the frequency of convergence to equilibrium play (no.
eq.) as well as the number of periods played in converged equilibria (no.
per.). With regard to exact equilibria we only find convergence on the
star network, played over a total of 19 periods or 3.4% of all 555 periods:
one group of subjects converged twice (over 3 periods each), and another
two groups converged over six and over seven periods, respectively. When
including fuzzy equilibria, we also find convergence on the circle. Here one
group plays the same equilibrium for 10 periods in a row. In the star, one
group stays two periods longer in the fuzzy equilibrium, increasing the total
number of periods and decisions taken, but not the occurrence as such.
We find that convergence exclusively involves specialized equilibria. For

the star this is obvious as only specialist equilibria exist. Here, the data show
that all four converged equilibria are periphery-sponsored with a free-riding
center. More importantly, in the circle, where a non-specialist equilibrium
could be played, the one observed convergence involves a specialist equi-
librium, i.e. an alternating sequence of specialists and free-riders. These
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findings provide support for Hypothesis 2, which predicts that only those
specialist equilibria are stable.
Also note that in the full and in the core network none of the equilibria

reported in Table 4 is stable enough to satisfy our definition of convergence.
This is all the more striking as the full network has the highest number of
equilibria. Most of these equilibria, however, have a lifetime of only one
period and none of them survives more than two periods in a row.

Hypothesis 3:

A look back at Table 4 provides univariate support for Hypothesis 3,
which predicts a negative relation between local coordination play and den-
sity (average node degree centrality) in symmetric regular networks: as ex-
pected, the circle has a higher frequency of local coordination than the full
network, which has a higher density.
To test Hypothesis 3 in a multiple variable setting we run a panel probit

with the sub-sample of regular networks, i.e. full and circle. As shown in
Table 6, the dependent variables are four dummies that take the value 1
for exact and fuzzy local coordination as defined above (Model 1 and 2)
and for equilibrium coordination (Model 3 and 4). Next to the variable
of interest, network density (average node degree), we include the period
as trend control and session fixed effects. In Model 1 and 2 the unit of
observation is a subject’s individual (local) decision. Hence, we include
subjects’ individual characteristics and random effects at the subject level.
Further, to capture unobserved characteristics at the group level, we include
37 (minus one) fixed effects, one for each group of four subjects within the
partner design. In Model 3 and 4 the unit of observation is the (global)
coordination of a group of four subjects. We therefore drop all effects at the
individual level and include random effects at the group level instead.17

17For robustness, we also estimated Model 3 and 4 with the econometric specification
used in Model 1 and 2. The qualitative results remain unchanged.
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Table 6: Network density and local/global coordination in regular networks

model 1# 2# 3$ 4$

dependent local coord. 
(exact)

local coord. 
(fuzzy)

equilibrium 
(exact)

equilibrium 
(fuzzy)

density [avg degr] -0.466** -0.538*** 3.417*** 3.027***
                [-2.466] [-3.400] [4.227] [5.413]

period 0.031*** 0.022*** 0.031 0.021
                [4.210] [3.519] [1.508] [1.280]
female          0.007 0.021
                [0.089] [0.328]

foreign         -0.112 -0.057
                [-1.146] [-0.698]
age             0.011 0.007

                [1.350] [0.938]
friends         0.066 0.022
                [1.423] [0.539]

constant -1.572*** -1.378*** -4.859*** -3.993***
                [-5.120] [-4.890] [-6.042] [-6.809]
session FE y y y* y**
group FE y* y**

N               4440 4440 1110 1110
chi2            132.316 156.067 28.062 39.682
prob > chi2 0 0 0.001 0
# panel probit estimation with random effects for 148 individual subjects
$
 panel probit estimation with random effects for 37 groups (4 subjects each)

* p<0.1, ** p<0.05, *** p<0.01; t-values in brackets

As Table 6 reports, Model 1 and 2 support Hypothesis 3 in a multiple
variable setting. Density is significantly negatively related to local coordi-
nation. However, if we run the same estimations with equilibrium play, we
find the opposite. Here, density is positively related to equilibrium play.
Table 4 also supports this in the univariate setting, where the circle has the
lowest percentage of equilibria, compared to the highest percentage of the
full network. As equilibrium play is coordination on the whole network, the
findings are ambiguous. Hypothesis 3 seems to be only supported when we
allow for ‘local’ coordination, where some players invest optimally within
their direct neighborhood, while others in the network do not.

Hypothesis 4:

Table 7 reports the frequency of free-riding behavior (contribution of 0),
maximum effort (contribution of 1) and specialized play (contribution of 1
or 0) in the star and in the core network. While a greater number of players
choose the maximum contribution in the star, the core-periphery network
has a higher proportion of free-riders. Although these two effects nearly
compensate each other when added up, we nevertheless find that specialized
play is more common in the star network. The result indicates some support
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for Hypothesis 4, which predicts a higher probability to play specialized in
the star. However, as Table 7 shows, the difference in the proportion of
specialized play between the two networks is only 2.5% (38.8%-36.3%). This
raises concerns about the robustness of the difference in a multiple variable
setting.

Table 7: Frequency of specialization in irregular networks

contribution N core network star network
(type) (decisions) (no. con) (% of N) (no. con) (% of N)

con = 0 2220 538 24.2% 407 18.3%

con = 1 2220 269 12.1% 455 20.5%

con = 0 or con = 1 2220 807 36.3% 862 38.8%

To test the univariate results and Hypothesis 4 in a more robust, multiple
variable setting we compute different dummies that take the value 1 for
free-riding behavior, for maximum effort contribution, and for specialized
behavior. In all three cases the dummies capture exact (0, 1) and fuzzy
(≤ 0.1, ≥ 0.9) contributions separately. For each of the six dummies (as
dependent variables) we then estimate a panel probit model using the sample
of star and core observations only. The explanatory variable of interest
is a dummy indicating decisions in the star network, which we expect to
be positively related to the dummy for specialized play. The rest of the
econometric specification is identical to Model 1 and 2 in Table 6.
As the results in Table 8 show, the star is negatively related to the proba-

bility of free-riding (Model 1 and 2) and positively associated with maximum
effort (Model 3 and 4). Although this is in line with the respective univari-
ate findings, the most important test for Hypothesis 4 fails: the star dummy
shows no significant association with specialized play (Model 5 and 6). In
other words, the univariate difference in specialized play is not related to
network structure, but to other factors. Note that the fixed effects, random
effects (unreported) and some control variables are statistically significant:
specialized play (primarily free-riding) is more likely to occur in later pe-
riods.18 Further, females and subjects with at last one friend in the same
session choose maximum effort less often. As both the star and the core
are irregular structures, the position of specific players and their individual
characteristics matter. Here, they seem to explain the univariate difference
in specialized play better than network structure. Hypothesis 4 can therefore
not be confirmed.

18 Increased free-riding over time is rather common in public good experiments where
investments are complements. It has been attributed either to learning (the absence) of
social motives (e.g. by Andreoni (1988)) or to diminishing confusion (e.g. by Houser and
Kurzban (2002)) suggesting that individuals gradually come to understand the underlying
incentives. Kirchkamp and Nagel (2007) as well as Cassar (2007) find the same decline of
cooperation in PD games on networks.
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Table 8: Panel probit estimation of specialization in irregular networks

model 1 2 3 4 5 6

dependent

con=0 con<=0.1 con=1 con>=0.9

con=0

or

con=1

con<=0.1

or

con>=0.9

star            -0.264*** -0.347*** 0.438*** 0.425*** 0.067 -0.016

                [-5.620] [-7.977] [8.007] [8.406] [1.570] [-0.385]

period      0.007 0.010** 0.006 0.005 0.011** 0.014***

                [1.395] [2.047] [1.036] [0.891] [2.239] [2.848]

female          -0.125 -0.071 -0.384*** -0.300** -0.399*** -0.301***

                [-0.980] [-0.563] [-2.616] [-2.100] [-3.803] [-2.806]

foreign         -0.23 -0.191 0.12 0.074 -0.079 -0.071

                [-1.395] [-1.187] [0.631] [0.402] [-0.598] [-0.530]

age             0.008 0.012 -0.001 0 -0.001 0.003

                [0.512] [0.792] [-0.093] [0.016] [-0.103] [0.264]

friends         0.062 0.088 -0.182* -0.159* -0.07 -0.031

                [0.755] [1.082] [-1.933] [-1.744] [-1.055] [-0.459]

constant -1.293*** -1.016** -2.677*** -2.190*** -1.002** -0.696*

                [-2.688] [-2.155] [-3.946] [-3.826] [-2.520] [-1.760]

session FE y y y*** y** y** y**

group FE y y y*** y** y** y**

N               4440 4440 4440 4440 4440 4440

chi2            80.776 99.444 178.714 167.991 222.184 171.674
prob > chi2 0 0 0 0 0 0

Probit panel estimation with random effects for 148 individual subjects. 

* p<0.1, ** p<0.05, *** p<0.01; t-values in brackets

Free-riding Maximum effort Specialized

Hypothesis 5 & 6:

Up to this point all hypotheses focused on the effects that the network
structure as a whole has on individual players’ investment decision. This
assumes that every player fully comprehends and anticipates all other play-
ers’ actions in the network, irrespective whether they are direct neighbors or
only indirectly connected. We now take a view that individuals are to some
extent boundedly rational and analyze whether the observed investments
can be better explained by local factors at the node level.
In the following hypotheses we analyze how the direct neighborhood af-

fects players’ investment decisions, while controlling for the general network
structure. Hypotheses 5 and 6 predict a negative relation between individ-
ual investment and a player’s (node) degree centrality and/or transitivity.
To test these hypotheses we run panel estimations with random effects for
each subject with individual contributions as the dependent. As the exper-
imental design only allows contributions between 0 and 1 (although they
could theoretically also be higher or lower than that) we use a Tobit panel
model. Next to the explanatory variables of interest, node degree centrality
and transitivity, we include (four minus one) network dummies to control for
the fixed effects of the whole network structure. The rest of the econometric
specification is identical to previous models.
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Table 9: Node degree and transitivity on contribution and local coordination

model 1
#

2
#

3
#

4
$

5
$

6
$

dependent

degr. centr [node] -0.534*** -0.517*** -1.805*** -1.813***

                [-16.986] [-16.420] [-13.354] [-12.465]

transitivity [node] -0.171*** -0.127*** -0.331*** 0.016

                [-6.527] [-4.890] [-3.287] [0.158]
period -0.007*** -0.007*** -0.007*** 0.025*** 0.024*** 0.025***

                [-5.908] [-5.863] [-5.911] [5.300] [5.287] [5.299]

female          -0.072* -0.063 -0.072* -0.032 0.008 -0.032

                [-1.891] [-1.636] [-1.915] [-0.522] [0.106] [-0.519]

foreign         0.013 0.035 0.01 0.013 0.099 0.013

                [0.275] [0.717] [0.211] [0.172] [1.130] [0.177]

age             -0.004 -0.003 -0.003 0.01 0.014* 0.01

                [-0.818] [-0.609] [-0.757] [1.624] [1.814] [1.617]

friends         -0.043* -0.047* -0.042* -0.046 -0.052 -0.046

                [-1.756] [-1.896] [-1.735] [-1.180] [-1.147] [-1.183]

full            -0.043** -0.143*** 0.076** 0.181* -0.505*** 0.17

                [-2.026] [-4.781] [2.348] [1.840] [-4.374] [1.415]

core            -0.065*** -0.055*** 0.007 -0.296*** -0.442*** -0.303***
                [-4.330] [-2.637] [0.323] [-5.051] [-6.049] [-4.162]

circle          -0.098*** -0.191*** -0.101*** -0.283*** -0.701*** -0.281***

                [-6.536] [-13.481] [-6.736] [-4.396] [-13.199] [-4.249]

constant 1.048*** 0.510*** 1.035*** -0.425* -0.693*** -0.421*

                [7.489] [3.701] [7.435] [-1.853] [-2.938] [-1.825]

session FE y y y y y*** y

group FE y y y y** y*** y**

N               8880 8880 8880 8880 8880 8880

chi2            852.352 601.824 878.636 671.987 456.821 671.38
prob > chi2 0 0 0 0 0 0
#
 Tobit panel estimation with random effects for 148 individual subjects.
$
 Probit panel estimation with random effects for 148 individual subjects. 

* p<0.1, ** p<0.05, *** p<0.01; t-values in brackets

local coordination (exact)contribution

Table 9 shows the results of the panel Tobits on players’ individual in-
vestments (Models 1-3).19 Further, for explorative purposes, Table 9 also
reports the results of panel probits on dummies for (exact) local coordina-
tion (Models 4-6). The econometric specification of Models 4-6 is identical
to Models 1-3.
As expected we find strong and highly significant negative relations be-

tween individual investments and node degree centrality and transitivity,
irrespective whether the latter are included jointly or separately. Most of
the network dummies are also significant, indicating that the general net-
work structure still plays a role. Overall, Hypotheses 5 and 6 are strongly
supported.
The relation of node degree centrality and transitivity with the more

boundedly rational, local coordination shows a very similar picture (Models

19For robustness we also estimated (i) ordinary least squares regressions with the same
specification as Models 1-3 and (ii) multilevel mixed-effects linear regression models with
random effects both at the individual level and at the group level. The qualitative results
remain unchanged.
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4-6). Not only individual investment, but also successful coordination de-
creases with the size of the neighborhood (degree centrality) and/or local
clustering (transitivity).

Hypothesis 7:

In principle it could be possible that the local structural position of a
specific subject leaves little room for effects related to individual risk attitude
or sensation seekingness, and vice versa. Further, if both effects play a role,
Hypothesis 7 predicts that, on a given position, risk and sensation seeking
subjects invest significantly lower amounts.
To test this we run panel Tobit regressions with random effects for each

subject with individual contributions as the dependent and several risk and
sensation seeking measures as independent variable. To control for all struc-
tural effects associated with a subject’s network position we include fixed
effects for the seven idiosyncratic node types defined in Table 3. The rest of
the econometric specification is identical to previous models.

Table 10: Lottery risk and sensation seeking (SSSV) on contribution

model 1 2 3 5 6 7

dependent contribution contribution contribution contribution contribution contribution

abs. risk 0.002

                [1.464]
rel. risk (network) 0.001

                [1.464]

rel. risk (neighbor) 0.002***

                [2.770]

abs. SSSV 0.022*

                [1.699]
rel. SSSV (network) 0.016*

                [1.699]

rel. SSSV (neighbor) 0.038***

                [5.901]

period -0.007*** -0.007*** -0.007*** -0.007*** -0.007*** -0.007***

                [-5.912] [-5.912] [-5.918] [-5.913] [-5.913] [-5.924]

female          -0.069* -0.069* -0.067* -0.058 -0.058 -0.037
                [-1.829] [-1.829] [-1.795] [-1.513] [-1.513] [-0.976]

foreign         0.006 0.006 0.006 0.017 0.017 0.023

                [0.131] [0.131] [0.126] [0.351] [0.351] [0.488]

age             -0.003 -0.003 -0.003 -0.003 -0.003 -0.002

                [-0.781] [-0.781] [-0.817] [-0.675] [-0.675] [-0.522]

friends         -0.045* -0.045* -0.045* -0.043* -0.043* -0.042*
                [-1.881] [-1.881] [-1.871] [-1.815] [-1.815] [-1.713]

constant 0.684*** 0.264** 0.707*** 0.378** 0.824*** 0.209

                [4.394] [1.963] [5.159] [2.345] [5.922] [1.531]

node FE y*** y*** y*** y*** y*** y***

session FE y y y y y y*

group FE y y y y y y
N               8880 8880 8880 8880 8880 8880

chi2            887.459 887.459 892.684 888.473 888.473 919.124
prob > chi2 0 0 0 0 0 0

Tobit panel estimation with random effects for 148 individual subjects

* p<0.1, ** p<0.05, *** p<0.01; t-values in brackets
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The results in Table 10 show that the absolute risk attitude from the
lottery treatment (Model 1) has no association with individual investment
levels. The same applies to relative risk levels, where the average absolute
risk attitude of all other players in the network is deducted from the absolute
risk attitude of the observed player (Model 2). However, a more local relative
risk measure that deducts the average risk attitude of the direct neighbors
from the risk value of the observed player (Model 3) clearly contradicts
Hypothesis 7. This result is also confirmed with the sensation seeking value
(SSSV) in Models 4-6. Here, even the absolute SSSV (Model 4) and SSSV
in relation to the average of the network (Model 5) are slightly significant,
but the statistically and economically strongest influence is, again, detected
for the SSSV in relation to the local neighborhood. All results in Table 10
are qualitatively robust with respect to (i) ordinary least squares regressions
and (ii) multilevel mixed-effects regressions with random effects for subjects
and groups.20 This finding suggests some subjects aim at cooperation in a
repeated interaction. We can argue in line with Boone et al. (1999, p. 352)
that the agent “who tries to induce the other party to cooperate, runs the
risk to end up as the sucker”. This would imply that relatively more risk
loving subjects are more likely to try to play cooperatively.21

In an attempt to summarize these results we can claim support for a more
‘boundedly rational version’ of Hypothesis 7, while sensation seekingness also
confirms the hypothesis more generally.

6 Conclusion

The aim of this paper is to better understand how individuals’ contribu-
tions to a local public good depend on the global and the local structure
of the neighborhood they are positioned in and to what extend individual
factors, like risk attitudes, also have an affect. In the experiment we concen-
trated on very simple regular as well as irregular network structures, being
characterized by different levels of degree centrality and/or transitivity.
We find that individual behavior is significantly affected by the network

characteristics both on the global and on the local level. Individuals find
it difficult to coordinate on equilibria in regular networks, while in an ex-
tremely irregular structure they succeed more frequently. If play converges
to an equilibrium (which happens only in 5% of all cases) it converges to
the theoretically predicted equilibria. On the local level we find that a

20 In unreported estimations, we find no interaction effect of risk or SSSV with dummies
for regular (vs. irregular) networks. Furthermore, lottery risk shows no interaction effect
with period, while relative SSSV (neighbor) has a weak negative interaction effect with
period on contribution (β = −0.001; t = −1.71; p < 0.1).
21As pointed out before this is the only result that is in contrast to our findings from

the pilot experiment, in which subjects were in a random stranger design and thus closer
to the one-shot situation. There we found a significant negative relation between risk
attitude and investment.
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larger neighborhood (higher degree) leads to more free riding, which is in
line with findings of experiments on cooperative behavior that neglect the
neighborhood structure. The same negative effect on investment we find for
an increasing transitivity (local clustering) of an individual’s neighborhood.
Finally, we find that also individual risk attitudes have an effect. Risk averse
individuals tend to invest less, although this effect is only present when con-
sidering risk aversion relative to direct neighbors. Hence, global, local and
individual effects coexist so that decision making by individuals is also af-
fected by the local structure of their neighborhood (as particularly shown
in Hypotheses 5, 6 and 7).
In general, these findings suggest that individual play in networks is

boundely rational in the sense that coordination is strongly influenced by
local and individual factors. Although all subjects had complete information
about the whole network structure and although these structures were quite
simple, the subjects behave as if they were only partially informed about the
global picture. This finding suggests that in order to understand behavior
on networks, theory should focus on models with incomplete information
about the global structure, such as, e.g., Galeotti et al. (2006). The finding
also suggests that valuable predictions can be derived from theoretical mod-
els that are confined to the analysis of very simple structures as the basic
building blocks for more complex networks.
There are several interesting avenues for future research in this area. A

first extension of this research could be to analyze the dynamics of individual
decision making in our framework. As coordination seems to be so difficult in
this setting, how can we describe learning processes that lead to coordinated
behavior in networks and how do they relate to specific structural features?
A second extension could be to experimentally explicitly focus on the effect
of incomplete information in the local public good framework, as a test of
Galeotti et al. (2006) and a follow-up on Berninghaus’ et al. (1998, 2002)
finding that structure has an effect even if individuals are not informed
about it. Finally, also in the framework of local public goods, a dynamic
analysis that includes strategic linking between agents could investigate the
coevolution of behavior and network structure.
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Appendix 1

Instructions

Thank you for participating in this research project. Your earning depends
on your decisions and the decisions of the other participants. From now
on until the end of the experiment you are not allowed to communicate
with each other. If you have some question, raise your hand and one of the
instructors will answer the question in private. Please, do not ask aloud.
Thank you very much.

The rules are equal for all the participants.

The project consists of 3 phases. In the first phase you will have to decide
between different risky or riskless options. The second phase consists of 4
situations. Each situation is independent of the other. In each situation you
have to make a sequence of 20 decisions. Your payment at the end depends
on these decisions. In the third phase we ask you to fill out a questionnaire.

The Experiment

Phase I

In the first phase you will have to decide between 9 pairs of alternatives. As
you see below, for each pair, one of the alternatives is a safe payment (A),
the other is a lottery (B). After the experiment, one of the 9 alternatives
of one of the participants in the room will be selected at random and the
chosen type of payment will be executed.
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Thus, for EACH of the 9 alternatives (rows) shown, please decide between
a safe payment (choice A: "safe") and flipping a coin for C=100,- (choice B:
"lottery"). If you start with choice B ("lottery"), please look carefully at
which row you are switching to choice A ("safe").

After this first phase we will announce the beginning of the following second
phase:

Phase II

In the second phase you will be in four different “situations” for 20 periods
each. Each situation is represented by a specific network structure that
will be shown to you. After 20 periods you will be asked to look at the
next network structure. Altogether, you will be in four different network
structures and you will have to make 80 decisions.
During this second phase you will be playing with three other randomly

chosen participants. In the beginning of each situation you will be informed
about your position in the network and you will keep the same network
position over all 20 periods played in a network structure. All other members
will also not change their identity and positions in the network. Although
the network structure and the network positions of the individual players
change after each sequence of 20 periods, the persons within your network
remain the same over all 80 periods.

The procedure for all 80 periods and all situations/networks is the following:

1. On the computer screen you will be asked to look at a network struc-
ture with a specific number, which you will find in the handout. You
will also see on the computer screen which player (node number = po-
sition) you are in that network. Look carefully at the entire network
structure!

2. Each player can produce know-how that will earn him or her Exper-
imental Currency Units (ECUs). You have to decide how much to
contribute to the production of know-how. For this you have to type
in your “contribution” as any number between 0 and 1, e.g. 0,1 or
0,25 or 0,3 or 0,33 or 0,5 or 0,75, or 0,8. . . etc. up to 1.

3. IMPORTANT: Your know-how is available to your direct neighbors,
and the know-how of your direct neighbors will be available to you.
Your direct neighbors are players with a direct connection to you. On
the basis of this total know-how (yours and your direct neighbors’)
your and your neighbors’ ECUs are calculated.

4. Thus, the number of ECUs that you can receive from “know-how”
production in each period depends not only on your own contribution
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but also on the contribution of your direct neighbors. Please have a
look at Table 1 to see how the ECUs you can earn change with the
contribution of yourself and your direct neighbors.

Payment:

At the end of the experiment, your ECUs earned in the experiment will be
converted into Eurocents with an exchange rate of 0,6. Hence, 100 ECUs
will be 60 Eurocents. All information which leads to the calculation of your
payment will be made transparent.

Phase III (Questionnaire)

In the third phase we ask you to fill in a questionnaire. All data will be
treated confidential and are only used for research. To prove our spending
in case of financial investigation, we must ask you for your name and address.
These data will be stored separately from the others.
Once you completed the questionnaire, we pay you the amount that you
earned in the experiment.

To make sure that everybody understands the rules of the game, we ask you
some questions about the game.

Quiz
Before the experiment started, subjects had to answer a few questions on
the experimental setup and rules.

Appendix 2

Payoff matrix in the hand-out for the experiment:

0.00 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 1.00

0.00 0.00 3.27 5.94 7.08 8.11 9.84 11.21 12.26 13.03 13.32 13.55 13.84 13.93

0.10 6.88 9.54 11.71 12.63 13.45 14.82 15.87 16.64 17.15 17.33 17.45 17.54 17.45

0.20 13.15 15.32 17.06 17.79 18.43 19.48 20.24 20.76 21.05 21.12 21.15 21.06 20.81

0.25 16.10 18.04 19.59 20.23 20.79 21.70 22.33 22.74 22.93 22.95 22.93 22.76 22.43

0.30 18.93 20.66 22.03 22.60 23.08 23.85 24.37 24.66 24.75 24.73 24.67 24.41 24.01

0.40 24.27 25.64 26.69 27.11 27.46 27.97 28.27 28.36 28.27 28.17 28.02 27.62 27.08

0.50 29.25 30.30 31.06 31.35 31.58 31.87 31.97 31.88 31.63 31.45 31.23 30.69 30.03

0.60 33.90 34.67 35.19 35.36 35.48 35.57 35.49 35.23 34.83 34.58 34.30 33.64 32.86

0.70 38.28 38.79 39.09 39.16 39.18 39.09 38.84 38.44 37.90 37.59 37.24 36.46 35.58

0.75 40.37 40.77 40.96 40.98 40.96 40.79 40.46 39.99 39.39 39.05 38.67 37.84 36.90

0.80 42.40 42.69 42.79 42.76 42.70 42.45 42.05 41.51 40.85 40.47 40.07 39.19 38.20

0.90 46.30 46.39 46.31 46.20 46.05 45.65 45.12 44.46 43.68 43.25 42.79 41.81 40.73

1.00 50.00 49.91 49.66 49.48 49.26 48.72 48.06 47.28 46.40 45.92 45.42 44.34 43.18

1.50 66.10 65.32 64.43 63.95 63.45 62.38 61.21 59.97 58.66 57.97 57.27 55.82 54.30

2.00 79.25 78.01 76.69 76.00 75.30 73.85 72.33 70.76 69.13 68.29 67.45 65.71 63.93

2.50 90.37 88.79 87.16 86.33 85.48 83.75 81.97 80.14 78.27 77.32 76.36 74.41 72.43

3.00 100.00 98.17 96.31 95.36 94.40 92.45 90.46 88.44 86.39 85.35 84.30 82.18 80.03

Sum of your 

neighbours' 

contribution 

(neighbours = 
players with a 
direct link to 
you)

Your own contribution
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Appendix 3

Sequence of treatments per session:

• Session 1: circle - full - star - core

• Session 2: core- star - full - circle

• Session 3: full - core - circle - star

• Session 4: star - circle - core - full

• Session 5: core - circle - star - full

• Session 6: full - star - circle - core

• Session 7: circle - full - core - star

• Session 8: star - core - full - circle

This scheme implies that each network is equally frequently at the first,
the second, the third and the fourth position in a treatment and that each
sequence of two different networks is equally frequent (with circle=1, full=2,
star=3, core=4):

session 1st pair 2nd pair 3rd pair

1 12 23 34

2 43 32 21

3 24 41 13

4 31 14 42

5 41 13 32

6 23 31 14

7 12 24 43

8 34 42 21
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Appendix 4

Graph A: Average profit and contribution per network over time:
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Graph B: Average profit and contribution per node type over time:
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Graph C: Percentage of (exact) local coordination per network / node type
over time:
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Graph D: Percentage of (exact) myopic best reply per network / node type
over time:
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