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Abstract  
 This paper investigates whether technology spills over  across national borders and 
 technology regimes. We advocate a modeling strategy where changes in technical 
 efficiency capture technology spillovers as industries absorb and implement the 
 best-practice (frontier) technology. Recently developed dynamic panel-based 
 techniques are used to determine whether efficiency series move together in the 
 long run (cointegrate) and/or move closer together over time (converge). We 
 contribute to the literature by controlling for technological heterogeneity and for 
 cross-sectional dependence in the data. For a panel of manufacturing industries in 
 six EU countries, we find evidence of long-run relationships among industries'   
 efficiency levels in different countries and technology regimes.   
 Furthermore, we find convergence among manufacturing industries, both across 
 countries and across technology regimes. 
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1. Introduction

Technology is a major driving force of economic growth (Romer, 1990; Rivera-Batiz
and Romer, 1991; Grossman and Helpman, 1991). The non-rival characteristics of tech-
nology imply investments in technology do not only benefit the investors but also con-
tribute to the the knowledge base which is publicly available to them. These externalities
are called technology spillovers (Romer, 1990). Through technology spillovers, coun-
tries that operate below the production frontier can increase output by learning from
the best practice. Countries benefit from technology flows if they have the ‘appropriate’
technology (Abramovitz, 1986; Basu and Weil, 1998) and sufficient ‘absorptive capacity’
(Abramovitz, 1986; Cohen and Levinthal, 1989).

A large amount of empirical literature has examined the significance of purely do-
mestic spillovers (see Mohnen, 1996, for a survey), or domestic spillovers in conjunction
with foreign spillovers (Coe and Helpman, 1995). 1 Technology transmission, both do-
mestic and foreign, has been found to play a significant role in promoting productivity
and economic growth.

The purpose of this paper is to investigate whether technology flows across industries
in the EU manufacturing sector. In particular, we would like to investigate whether
industries located in homogenous and presumably integrated countries, benefit from
technology spillovers from industries in other countries or in different technology
regimes. We focus on industries in the manufacturing sector rather than countries in or-
der to account for aggregation bias due to heterogeneity in existing technologies
(Bernard and Jones, 1996a,b).

The present paper contributes to the existing literature in three distinct respects. A
first contribution of this paper, is that we measure technology spillovers in a simple and
rather ’pure’ manner. We propose a flexible modeling approach in exploring technol-
ogy spillovers by estimating a stochastic production frontier. The latter is the empirical
analog of the theoretical production possibility frontier and enables us to measure the
maximum frontier output. One important advantage of focusing on maximum (fron-
tier) output, rather than observable output, is that deviations from maximum output re-
flect sluggish absorption and implementation of the best practice (frontier) technology,
whereas improvements in efficiency represent productivity catch-up via technology dif-
fusion. Another advantage of our approach is that we can measure the extent to which
an industry increases its output for a given amount of inputs, contrary to most of the lit-
erature, which focuses on total factor productivity (TFP) as a measure of spillovers and
thereby conflates technical change, input changes, and (possibly) efficiency improve-
ments. 2

1 A number of subsequent studies has extended the seminal study of Coe and Helpman (1995) in various
ways. For instance, Lichtenberg and Potterie (1998), Keller (1998), Kao, Chiang, and Chen (1999), Frantzen
(2000), Lichtenberg and Potterie (2001), Luintel and Khan (2004) and Falvey, Foster, and Greenaway (2004)
investigate international technology spillovers at the country-level while Fagerberg and Verspagen (1999),
Frantzen (2000), Scarpetta and Tressel (2002), Keller (2002), Frantzen (2002), Griffith, Redding, and van Reenen
(2004), Park (2004) and Cameron, Proudman, and Redding (2005) among others, for international intra-
industry and inter-industry spillovers.
2 Empirical studies on technology spillovers usually test for convergence in total factor productivity (TFP) as
a proxy of the technology level. TFP is evaluated as a growth accounting (Solow-) residual under rather lim-
iting assumptions about the behavior of economic units (optimizing behavior with no room for inefficiency).
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Industries in the manufacturing sector, however, are characterized by different tech-
nologies. Recent theoretical and empirical contributions (Basu and Weil, 1998; Ace-
moglu and Zilibotti, 2001) have stressed the ‘appropriateness’ of technology as countries
(industries) choose the best technology available to them, given their input mix. Indus-
tries are members of the same technology regime (club) if their input/output combina-
tions can be described by the same production technology (Jones, 2005). Not accounting
for different technologies and estimating a single stochastic frontier function can result
in biased estimates of the ‘true’ underlying technology. Furthermore, omitted techno-
logical differences may be erroneously labeled as inefficiency (Orea and Kumbhakar,
2004).

Allowing for different production frontiers to account for heterogeneity in technolo-
gies in the manufacturing sector has been largely ignored by the studies that have per-
formed frontier analyses for studying technology spillovers and catch-up (see, for in-
stance, Semenick Alam and Sickles, 2000; Kneller and Stevens, 2006). To the best of our
knowledge, only Koop (2001) estimates different frontiers for different manufacturing
industries. Our second contribution, therefore, lies in the way we account for differ-
ences in technologies. We estimate separate production frontiers for each of the four
technology regimes (high tech, medium-high tech, medium-low tech and low tech) in
the manufacturing sector as classified by the OECD (2005) 3 As a result, we obtain effi-
ciency levels for industries in each of the technology regimes that reflect the distance to
their appropriate technology.

While a large strand in the literature explores technology spillovers across indus-
tries (countries), only a few studies pay attention to the time series properties of these
spillovers (see Coe, Helpman, and Hoffmaister, 2008, for a survey). A number of stud-
ies derive their spillovers estimates from (OLS) regressions, which, with non-stationary
data, result in super-consistent (Stock, 1987) but imprecise coefficient estimates with
standard errors ill-suited for statistical inference (Kao and Chiang, 2000). Ignoring, how-
ever, integration and cointegration properties of the data it is not clear whether one es-
timates a structural long-run relationship or a spurious one. 4 In this paper, we rely on
cointegration and convergence to determine whether efficiency levels move together
in the long-term (cointegrate), or, in fact, move closer together over time (converge).
For instance, increased integration and competition in the EU can lead to more efficient
use of resources among industries. Thus efficiency levels may track one another over
time as industries attempt to follow each other’s efficiency advances in order to remain

As a result, the observed output is assumed to be the maximum (frontier) output, in all TFP analyses. In real-
ity, however, economic units may well differ in the efficiency with which they use the best practice (frontier)
technology.
3 Manufacturing industries are classified into different technology regimes according to their technology
intensity. The OECD methodology uses two indicators of technology intensity reflecting, to different degrees,
‘technology-producer’ and ‘technology-user’ aspects: i) R&D expenditures divided by value added; ii) R&D
expenditures divided by production. The division of manufacturing industries into high-technology, medium-
high technology, medium-low technology and low technology groups is based on a ranking of the industries
according to their average R&D intensity over 1991-99 against aggregate OECD R&D intensities. Industries
classified to higher categories have a higher average intensity for both indicators than industries in lower
categories.
4 A few studies (see, for instance, Coe and Helpman, 1995; Keller, 2002) acknowledge that inference tests of
their results could be are unreliable and suggest that compelling evidence of panel cointegration is needed to
support their estimation strategy.
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competitive. Therefore, accepting the cointegration null for a set of industries would in-
dicate a long-run relationship in the technology transfer within the cointegrated set and
potential convergence; in contrast, lack of cointegration of an industry’s efficiency score
with those of its counterparts may reflect the industry’s inability to absorb the existing
technology.

To the best of our knowledge, there have been only two studies that investigate the
time series properties of technical efficiency in the context of technology spillovers and
convergence. Cornwell and Wächer (1999) examine whether a long-term relationship
exists between country-level technical efficiencies in a sample of 26 OECD countries
and whether these efficiencies do converge. Semenick Alam and Sickles (2000) present
a firm-level study on the role of market structure and the developments in efficiency
for the US airline industry. Their results support fairly strong evidence of cointegration
and convergence among EU countries (Cornwell and Wächer, 1999) and existence of a
long-run relationship of efficiency levels and, over time, convergence among US carriers
(Semenick Alam and Sickles, 2000).

Notwithstanding, both studies rely on cointegration techniques that do not allow
for potential cross-sectional dependence. Cross-sectional dependence, which only very
gained some attention in the literature, appears to be, however, the case in many macroe-
conomic applications (e.g. convergence hypothesis tests) where time series are contem-
poraneously correlated due to (spatial) spillover effects, common unobserved shocks,
or a combination of these factors (Pesaran, 2004). If there is cross-sectional dependence,
the traditional independence assumption is violated, and cointegration test statistics
are biased. Furthermore, none of the aforementioned studies proceeds with estimating
long-run cointegrating relationships and discussing the nature of potential long-term
linkages. Therefore, the third contribution of this paper lies in the use of panel-based
cointegration techniques allowing for cross-sectional dependence and shedding more
light on the long-run relationship by estimating the cointegrating relationship using ap-
propriate panel estimators that account for the integration and cointegration properties
of the data and allow for consistent and efficient estimates of the long-run relationship.

We apply the proposed methodology to a sample of 21 manufacturing industries for
six European countries, over the period 1980-1997. Each industry is allocated to one of
the four technology regimes, as classified by the OECD (2005). Hence, taking annual
averages for each technology regime in each country, we explore the properties of a
total of 24 series, with three sets of questions in mind: (i) are there technology spillovers
across countries?; (ii) are there technology spillovers across technology regimes? and
lastly (iii) is there any evidence of convergence?

Overall, our results reveal that there is fairly strong evidence that industries’ effi-
ciency levels have moved together in the long-term (cointegrate) both across countries
and technology regimes. It appears that competitive forces in the EU have led to more
efficient use of resources among industries as their efficiency levels have tracked one
another over time in an attempt to follow each other’s efficiency advances in order
to remain competitive. The estimation of the long-run relationships between efficiency
levels indicates that geographical proximity (for cross-border spillovers) and techno-
logical proximity (for cross-regime spillovers) are of the upmost importance. Finally,
industries’ efficiency levels have also moved closer together over time (converge) both
in cross-country and cross-regime analysis. However, the extent to which convergence
takes place across countries and across technology regimes, differs significantly.
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The remainder of the paper proceeds as follows. Section 2 considers a model of pro-
duction that allows for technical inefficiency and presents the econometric methodology
and specifications for estimation. Section 2.4 introduces the data. Empirical results are
presented in section 3. Section 4 summarizes the findings and concludes.

2. Methodology and Data

In this section, we first discuss the concept of technical efficiency and introduce a
model of production that enables us to allow for inefficiency. Next, we discuss recent de-
velopments in panel-based integration and cointegration analysis to examine whether
there is a long-run structural relationship among the efficiency series across countries
or across technology regimes. Lastly, we concern ourselves with convergence tests.

2.1. Technical Efficiency in A Stochastic Frontier Model of Production

An industry is technically efficient if an increase in its output requires an increase in
at least one input. A technically inefficient industry can produce the same output with
less of at least one input. Alternatively, it can use the same inputs to produce more of at
least one output (Koopmans, 1951). 5

Figure 1. Technical efficiency

Regime 1

Regime 2

(a)

(b)

(c)

(d)

Output

Input

We demonstrate the concepts of technical efficiency and production frontiers with a
simple one output, one input example in Figure 1. In the graph, we consider three cases.
An industry operating under the frontier of Regime 1 in (a) cannot increase output with-
out increasing its input, whereas an industry operating under the frontier of Regime 1

5 Industries may also be inefficient because they are unable to combine inputs and outputs in optimal pro-
portions for given prices. In the current paper, we do not consider this ’allocative efficiency’, not only because
price information is scarce, but also because the positive (negative) technology spillovers that we want to
measure should result in reductions (increases) of technical slack. Therefore, in this paper the term ’efficiency’
refers to technical efficiency only.
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in (b) can try to absorb the (superior) production skills of (a) and increase its technical
efficiency. Similarly, an industry operating under the frontier of Regime 2 in (d) can in-
crease its efficiency by absorbing the production skills of an industry operating under
the frontier of Regime 2 in (c). The latter industry, however, can not increase its output
without either increasing its input, or through positive technical change, i.e. an outward
shift of the regime’s frontier over time.

We model the performance of our industries by means of a stochastic frontier pro-
duction model, which accounts for the existence of inefficiency. 6 A frontier production
function defines the maximum output achievable, given the current production tech-
nology and available inputs.

If all industries produce on the boundary of a common production set that consists of
an input vector with two arguments, physical capital (K) and labor (L), output can be
described as:

Y∗ijt = f (Kijt, Lijt, t; β) exp{νijt} (1)

where Y∗ijt is the frontier (maximum) level of output in country i, in industry j, at time
t; production technology is characterized by function f and parameter vector β; t is a
time trend variable that captures neutral technological change (Solow, 1957); and νijt is
and i.i.d. error term distributed as N(0, σ2

ν ), which reflects the stochastic character of the
frontier.

Two points are noteworthy regarding equation (1). First, the frontier, as it is defined,
represents a set of maximum outputs for a range of input vectors. Therefore, at any mo-
ment in time, it is defined by the observations from a number of industries, and not
just from one - the leader industry, i.e., the industry with the highest level of productiv-
ity in the conventional growth empirics (Scarpetta and Tressel, 2002; Griffith, Redding,
and van Reenen, 2004; Cameron, Proudman, and Redding, 2005). An implicit, however
non-trivial, assumption in this literature is that the leading industry itself constitutes
the frontier and is the single benchmark for all other industries. Second, our modeling
approach treats the frontier as stochastic through the inclusion of the error term νijt,
which accommodates noise in the data, and therefore allows for statistical inference.
In this respect, it fundamentally differs from other (non-parametric) frontier analyses
(Färe, Grosskopf, Norris, and Zhang, 1994) that do not allow for random shocks in the
frontier. 7

However, some industries may lack the ability to employ existing technologies ef-
ficiently and therefore produce less than the frontier output. If the difference between
maximum and actual (observable) outputs is represented by an exponential factor,
exp{−uijt}, then the actual output, Yijt, produced in each country i in industry j at time t
can be expressed as a function of the stochastic frontier output, and Yijt = Y∗ijt exp{−uijt}.
Equivalently:

Yijt = f (Kijt, Lijt, t; β) exp{νijt} exp{−uijt} (2)

6 Stochastic frontier analysis (SFA) was introduced by Aigner, Lovell, and Schmidt (1977), Battese and Corra
(1977) and Meeusen and van den Broeck (1977).
7 Comprehensive reviews of different frontier methodologies can be found in Kumbhakar and Lovell (2000)
and Coelli, Rao, and Battese (2005).
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where υijt ≥ 0 is assumed to be i.i.d., with a normal distribution truncated at zero
|N(0, σ2

υ)|, and independent from the noise term, νijt. 8 Efficiency, E = exp{−uijt} can

now be measured as the ratio of actual over optimal output, Eijt =
Yijt
Y∗ijt

(0 ≤ Eijt ≤ 1

where Eijt = 1 implies full efficiency).
An industry is inefficient if it fails to absorb the best-practice technology. In this re-

spect, our approach is comparable to non-frontier studies (Bernard and Jones, 1996a,b;
Scarpetta and Tressel, 2002; Griffith, Redding, and van Reenen, 2004; Cameron, Proud-
man, and Redding, 2005) that measure impediments to this absorptive capacity using
TFP changes. However, in their framework the latter can be seen as a combination of
technical change and efficiency change (Kumbhakar and Lovell, 2000).

To measure efficiency, we estimate the following translog stochastic frontier produc-
tion specification: 9

ln Yijt = βij + β1 ln Kijt + β2 ln Lijt + 1
2 β11 ln K2

ijt

+ 1
2 β22 ln L2

ijt + β12 ln Kijt ln Lijt + γtDt+

+ δkt ln KijtDt + δlt ln LijtDt + νijt − uijt

(3)

where βij are country-industry specific fixed effects.
As Baltagi and Griffin (1988) have shown, Solow’s general index of technical change

relies on three restrictive assumptions: "constant returns to scale, neutral
technical change, and perfect competition in both output and factor input markets" (p.
23). We follow Baltagi and Griffin (1988) and include a set of time dummies Dt, which
- interacted with K and L -allow us to measure a general Tornqvist index of technical
change as proposed by Diewert (1976).

Our specification relies on two crucial points. First, we want efficiency to be freely
estimated (Jondrow, Lovell, Materov, and Schmidt, 1982), and as a result we do not
impose any additional constraints on the distribution of efficiency. 10 Second, we follow
Greene (2005) and estimate a ’true’ fixed effects model, in which the fixed effects are
allowed to be correlated with the other parameters, but they are truly independent of
the error term and inefficiency. 11

2.2. Panel Unit Root and Cointegration Analysis

We next turn to the econometric approach we follow. The main goal of the paper
is to identify and explain the long-run dynamics between efficiency levels of different

8 When estimating equation (2), we obtain the composite residual exp{εijt} = exp{νijt} exp{−uijt}. Its com-
ponents, exp{νijt} and exp{−uijt}, are identified by the λ (=σu/σν) for which the likelihood is maximized (for
an overview, see Coelli, Rao, and Battese, 2005).
9 We test whether a translog specification is indeed preferred to a Cobb-Douglas specification. Our tests (not
reported here) are in favor of a translog specification.
10 An alternative approach is the one that has been suggested by Battese and Coelli (1995), who impose a
common linear trend on νijt. In that approach, however, an efficiency series by construct follows a time trend.
Therefore, we consider this approach as less appropriate for a cointegration analysis.
11 To see why this is important, consider the case in which an industry is inefficient, but its inefficiency is con-
stant over time. In that case, if we estimate a fixed effect model in which our fixed effects behave like standard
dummy variables, this industry’s fixed effect will absorb the inefficiency, and the industry will appear to be
efficient.
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technology regimes of the EU manufacturing industries in our sample. Increased trade
and competition in the EU could lead to more efficient use of the resources among in-
dustries. Thus, efficiency levels should track one another over time as industries within
each regime attempt to follow each other’s efficiency advances in order to remain com-
petitive; otherwise lack of efficiency co-movement could indicate inability to capitalize
on technology other industries are employing.

To examine the long-run properties of technology spillovers, captured by the effi-
ciency series, we employ cointegration techniques. Cointegration examines the exis-
tence of stationary relationships between non-stationary variables and indicates that
variables posses a long run common feature. A series possesses a unit root, i.e. it has a
stochastic trend or is non-stationary if its statistical properties do not depend on time,
and it is said to be integrated of order d, I(d) if its d-difference does not posses a stochas-
tic trend. If two or more series are themselves non-stationary, but a linear combination
of them is, then the series are said to be cointegrated. Cointegrated variables share sim-
ilar stochastic patterns in the long-run and cannot move too far away from another.
In contrast, lack of cointegration suggests that there is no long-term link between each
other.

Panel-based cointegration techniques are particularly well-suited for the study of
technology spillovers for a number of reasons. First, the focus is on the long-run re-
lationships, which would be obscured if the equations are estimated in first differences
instead of in levels of the variables. Second, the increased power of the tests comes from
exploiting commonalities across industries (countries), given the limited time span. 12

Third, parameter estimates are super-consistent and therefore robust to omitted vari-
ables, simultaneity and endogeneity problems. Thus, one can avoid the difficult task
of finding valid instruments for some variables that would be necessary in the case of
estimating a short-run relationship.

The implementation of the cointegration procedure entails first confirmation that the
data are indeed non-stationary. Combining time-series information with that from cross-
section data, panel unit root tests can be more precise and powerful by reducing the
error-in-rejection probability (size distortion), especially when the time-series is not very
long. Consider the following AR(1) process for panel data:

yit = ρiyit−1 + δixit + εit (4)

where y represents the dependent variable, x is a vector of independent variables, ρ and
δ are coefficients and ε is the disturbance term.

Several tests have been developed to identify unit roots in panel data, depending on
assumptions regarding the homogeneity (heterogeneity) of correlations in the data. In
the present study, we consider a variety of them in order to increase the robustness of
our results. We start with Levin, Lin, and Chu (2002) (LLC hereafter), who assume that
there is a homogenous autoregressive root under the alternative hypothesis (based on
Levin and Lin, 1992, 1993). More specifically, the tests proposed by LLC assume that

12 The advantage of the panel data approach is that it enables us to determine the long-run relation among
variables avoiding well-known problems that occur in using traditional time series cointegration testing (i.e.,
lower power of statistics due to small sample sizes). By allowing data to be pooled in the cross-sectional
dimension, panel-based integration and cointegration techniques reduce small sample limitations. The use
of the time-series dimension captures the long-run information contained in the data, and at the same time
captures the heterogeneity in the short-run dynamics among different industries.

8



there is a common unit-root process between cross-sections so that ρi = ρ for all i. Next,
we consider Im, Pesaran, and Shin (1997, 2003), who propose panel unit root tests that
permit heterogeneity of the autoregressive root under the alternative so that ρi may
vary freely between cross-sections. They present two group-mean panel unit root tests
designed against the heterogenous alternatives. The two tests are executed with a t-test
based on ADF regressions (IPS hereafter) and a Lagrange multiplier (LM) test (IPSLM
hereafter). Then we follow Maddala and Wu (1999) (MW hereafter), who suggest the
same kinds of panel unit root tests based, however, on a Fisher statistic. Next in line is
Breitung (2000), who proposes the unbiased LL statistic (ULL hereafter), which is based
on an ordinary regression of transformed variables such that the test is robust against
contemporaneous correlation of the errors (see Breitung and Das, 2005). Finally, we test
according to Hadri and Larsson (2005) (HL hereafter), who propose a panel unit root test
under the null hypothesis of stationarity allowing for specific variances and correlation
patterns.

Having established the presence of a unit root in all series of interest, the next step
consists of testing for cointegration among efficiency levels. Like panel unit root tests,
panel cointegration tests have been motivated by the search for more powerful test than
those obtained by applying individual time series cointegration tests, which have lower
power, especially when the time dimension is rather small.

Most panel cointegration tests are built from the residuals previously obtained by the
panel regression model:

yit = x′itβ + z′itγ + εit (5)

where yit and xit are I(1). For zit = µi, several tests have been proposed, such as Dickey-
Fuller (DF) and Augmented Dickey Fuller (ADF)-type unit root tests for εit as a test for
the null of cointegration (or no cointegration).

We employ a number of conventional cointegration tests used in the past literature.
We start by implementing the asymptotic version of Pedroni’s (1999) test. 13 It consists
of testing for the stationarity of the residuals obtained from equation (5). Pedroni shows
that both standardized sums of individual statistics and statistics computed on the
pooled residuals of the equations (respectively group mean panel cointegration statis-
tics and panel cointegration statistics in Pedroni’s terminology) are asymptotically nor-
mal. Nevertheless, caution has to be exercised in the interpretation of the former group
of panel cointegration estimates because their statistical properties are derived under
the assumption of cross-sectional independence. 14

13 Pedroni (2000; 2004) averages test statistics across cross-sections. He shows that asymptotic properties of
these average test statistics are preserved if averaging is done separately for both numerator and denominator
of the test statistic.
14 Conventional cointegration tests rely on the restrictive assumption that time series are independent across
units (’cross-sectional independence’) which greatly simplifies the derivation of limiting distributions of the
panel test statistics. The plausibility of such an assumption, however, has been questioned, as time series are
found to be contemporaneously correlated (Pesaran, 2004). Cross-sectional dependence can arise, in general,
due to omitted observed common factors, (spatial) spillover effects, unobserved common factors, or general
residual interdependence that could remain even when all the observed and unobserved common factors are
taken into account. In the presence of cross-sectional dependence, as well as, when the cross sectional dimen-
sion is small with respect to the time dimension, these tests are shown to be biased. The panel unit root and
cointegration tests developed based on the assumption that the errors of individual series are cross sectionally
independent are refereed to as the ’first generation tests’. These tests provide the theoretical basis for more
recent developments, the so-called ’second generation tests’ that account for cross sectional dependence in
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Clearly, this is not necessarily a tenable assumption since countries (industries) have
been constantly hit by the same shocks such as the oil price shocks, technological rev-
olutions, exchange rate shocks, monetary shocks and so forth. Therefore for our six EU
countries it is very difficult to assume that technology developments are entirely in-
dependent. The consequence of violation of the independence assumption is that the
test statistics are biased, favoring the existence of cointegration, and that the coefficient
estimates may not be super consistent, as usually assumed in panel cointegration esti-
mates. A number of (’second generation’) tests have been proposed (Phillips and Sul,
2003; Groen and Kleinbergen, 2003) to allow for cross-sectional dependence.

We test for the null hypothesis of no cointegration by following a methodology pro-
posed in the recent work of Fachin (2007). Fachin introduces block-bootstrapped ver-
sions of the well known panel cointegration test of Pedroni (1999). Fachin proposes two
bootstrapped tests (FDB1, FDB2) that both rely on the fast bootstrapping procedures
suggested by Davidson and MacKinnon (2000). Both procedures incorporate the stan-
dard assumptions for efficient maximum likelihood estimators, but generate statistics
that have limit properties that are less affected by sample size than standard bootstrap-
ping procedures. FDB1 differs from FDB2 in that the former has, in theory, slightly bet-
ter limit properties, whereas the latter is somewhat less computationally demanding. As
Davidson and MacKinnon (2000, p. 7) point out, "it is almost costless to compute FDB2
if FDB1 is already being computed, it may be useful to do so as a check on the accuracy
of the latter." In the original paper, Fachin (2007) shows the validity of the bootstrapped
versions of the cointegration tests via Monte-Carlo simulations, but recently Smeekes,
Palm, and Urbain (2008) demonstrate theoretically that the bootstrap approach behaves
adequately in such a framework. The bootstrapped versions of the group-t and median-
t statistic for the null hypothesis of no cointegration are then robust to cross-sectional
dependence and small sample bias.

The final step involves the estimation of the long-run cointegrated relationship. Chen,
McCoskey, and Kao (1999) have proven that the ordinary-least-squares (OLS) estimator
is biased in a cointegrated panel framework and thus may lead to spurious regression.
We therefore use a more promising estimator for cointegrated panel regressions pro-
posed by Pedroni (2000). Fully-Modified OLS (FMOLS) addresses potential endogene-
ity of the regressors and serial corre- lation, in order to obtain asymptotically unbiased
estimates of the long run parameters. More specifically, FMOLS is a non-parametric
approach that controls for possible correlation between the error term and the first dif-
ferences of the regressors and removes nuisance parameters (Dreger and Reimers, 2005;
Pedroni, 2001). 15 Consider the following time series model:

yit = αi + βixit + uit (6)

where xit = xit−1 + εit, and ωit = (uit, εit)′. In order to remove the autocorrelation in xit
and the correct for the covariance between the error term and the first differences of the
regressors, FMOLS estimates the following parameter for the i-th panel member:

panels. See Gutierrez (2003) and Breitung and Pesaran (2005) for recent surveys.
15 An alternative estimator suggested by Kao and Chiang (2000) is the Dynamic OLS (DOLS) estimator, which
also corrects for potential endogeneity of the regressors and serial correlation. Banerjee, Marcellino, and Osbat
(2000) have shown that both estimators are asymptotically equivalent. Implementation of DOLS leaves our
FMOLS estimates practically unaltered. Results are available upon request.
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β̂∗i = (X
′
i Xi)−1(X′i y

∗
i − Tδ) (7)

where the asymptotic distribution of the OLS estimator is conditioned to the long run
covariance matrix of the joint residual process, y∗i is the transformed endogeneous vari-
able and δ a parameter for autocorrelation adjustment. 16

We employ the FMOLS estimator for dynamic heterogeous panels to estimate long-
run equations for cross-border and cross-regime spillovers. For cross-border spillovers
normalizing on a certain country, we estimate the following equation:

TEcrt = αr +
5

∑
i=1
i 6=c

TE
′
irtβi + εirt (8)

where i is the country subscript (i = 1, ..., 5), c is the country on which the equa-
tion is normalized, t is the time subscript (t =, 1..., 18), r is the regime subscript (r =
H, MH, ML, L), and regime-specific fixed effects αr are included.

Equation (8) is estimated normalizing on each of the six countries, respectively. Simi-
larly, for cross-regime spillovers normalizing on the low technology regime, we estimate
the following equation:

TEigt = αi +
3

∑
r=1
r 6=g

TE
′
irtβr + εirt (9)

where g is the technology regime on which the equation is normalized, i is the country
subscript (i = 1, ..., 6), country-specific fixed effects αi are included and other subscripts
are the same as for equation (8). Equation (9) is also estimated normalizing on each of
the technology regimes, respectively.

2.3. Convergence

The presence of cointegration indicates a long-run relationship between the efficiency
series. However, this does not necessarily simply convergence of efficiency levels. Tests
of convergence in the economic growth literature (Baumol, 1986) determine whether
there is a closing of the gap between inefficient and efficient industries over time.

To investigate the convergence hypothesis, we run simple cross-sectional regressions
of time-averaged efficiency growth rates on the initial level of efficiency:

∆Eij = β0 + β1Eij,1980 + εij (10)

where ∆Eij denotes the average growth rate of the efficiency level in industry j between
1980 and 1997, Eij,1980 is the initial level of efficiency in year 1980 and εij an error term.

We test for convergence across technology regimes, by estimating equation (10) for all
industries in a country, controlling for technology regime-specific fixed effects. Conver-
gence across technology regimes in all countries is tested in the same manner, but with
country-technology regime-specific fixed effects. We also test for convergence within
technology regimes, by estimating equation (10) for all industries in a technology regime.

16 Submatrices of the joint long run covariance matrix provides correction factors.
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Again, we perform this test both for each country and for all countries jointly, and in-
clude country-specific fixed effects in the latter case.

In the tradition of Baumol (1986) and Barro (1991, 1997), a negative and statistically
significant coefficient on the initial level of efficiency can be interpreted as indication of
convergence of efficiency levels. The higher the initial level of efficiency is, the slower
that level should grow. This phenomenon is the result of the public nature of technology
that spills over from leaders to followers, as the latter group learns from the former and
tries to catch-up.

2.4. Data

Our analysis covers 21 two-, three- and four-digit industries in manufacturing for six
European countries (Finland, France, Germany, Italy, Netherlands and Spain) over the
period 1980-1997. Annual raw data are retrieved from various sources. Data on indus-
try output (value-added) and investment (for constructing capital stock) are retrieved
from the OECD Structural Analysis Database (STAN) while data on labor are extracted
from the Groningen Growth and Development Centre (GGDC) 60-Industry Database.
The same International System of Industries Classification code (ISIC, ver. 3) was used
in all data sources. Definitions of the variables and data sources as well as the manufac-
turing industries considered in our analysis and their ISIC codes are presented in the
Appendix, Table A.1.

3. Results

3.1. Frontier results

We estimate equation (3) for each technology regime. Table 1 contains the most impor-
tant frontier results. 17 A casual comparison of the log-likelihood values suggests that
the stochastic production frontier has the best fit for the medium-high and low technol-
ogy regimes. However, both σ (the composite standard deviation) and λ (the ratio of
the standard deviation of efficiency over the standard deviation of the noise term) are
highly significant for all technology regimes. For high-tech industries, λ is 1.954, and
significant at the 1% level, indicating that inefficiency is about twice the size of noise
in this technology regime. Much the same holds for medium-high, medium-low and
low-tech industries, where λ is 1.947, 2.251 and 2.891, respectively, and also always sig-
nificant at the 1% level.

For industries in each technology regime, we also calculated the marginal rate of tech-
nical substitution (MRTS), as the negative of the ratio of the marginal product of labor
capital. The MRTS measures the rate at which labor can be substituted for capital, keep-
ing output constant. As expected, the MRTS gradually increases as we move from the
high technology regime to the low technology regime and thereby increase capital in-
tensity.

17 Detailed results are available upon request.

12



Table 1
Frontier results

High Medium-high Medium-low Low
LL (Obs.) -467.428 (540) 111.082 (432) -415.489 (756) 139.398 (540)
σ (t-value) 1.344 (23.773) 0.458 (31.299) 1.032 (33.918) 0.477 (38.410)
λ (t-value) 1.954 (6.658) 1.947 (5.853) 2.251 (6.572) 2.891 (8.434)
MRTS (SD) -3.820 (5.194) -2.245 (2.154) -1.585 (3.599) -1.332 (0.675)
Efficiency (SD) 0.484 (0.061) 0.779 (0.035) 0.580 (0.051) 0.784 (0.050)
Notes: LL is log-likelihood; σ = (σ2

u + σ2
v )1/2; λ = σu/σv; MRTS = marginal rate of

technical substitution (marginal product of labor/marginal product of capital).

Compared to their own frontier, industries in the low technology regime are on aver-
age the most efficient (78.4%). The least efficient, on average, are industries in the high
technology regime (48.4%). The spread of efficiency, however, is the highest for this
regime. Figure 2 shows the efficiency distributions for each technology regime. Com-
pared to their own frontier, industries in the medium-high and low technology regime
are on average the most efficient. Also, the spread of efficiency levels is relatively low in
these regimes. Medium-low technology industries are, compared to their own frontier,
on average less efficient. But the spread of efficiency levels in this regime is much higher
than the spread in the medium-high technology regime.
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Table 2
Mean technical efficiency and growth of technical efficiency

Finland France Germany Italy Netherlands Spain all countries
technology industry mean growth mean growth mean growth mean growth mean growth mean growth mean growth

High

AIR 0.486 0.008 0.485 0.020 0.485 -0.003 0.486 -0.001 0.485 0.018 0.487 0.005 0.486 0.011
MED 0.474 0.108 0.488 -0.003 0.488 -0.010 0.486 0.016 0.488 -0.003 0.484 0.011 0.485 0.020
OFF 0.452 0.355 0.487 0.008 0.481 -0.005 0.487 0.005 0.485 0.016 0.487 0.007 0.480 0.028
PHA 0.484 0.022 0.489 0.002 0.488 0.001 0.486 0.020 0.487 0.009 0.487 -0.004 0.487 0.005
RAD 0.446 0.138 0.488 0.003 0.488 0.002 0.487 0.008 0.488 0.002 0.486 0.015 0.480 0.012

Medium-high

CHE 0.778 -0.002 0.782 0.000 0.782 -0.001 0.774 0.013 0.780 0.004 0.782 0.000 0.780 0.002
ELE 0.751 -0.005 0.781 0.002 0.781 0.001 0.781 0.001 0.775 0.001 0.781 0.001 0.775 0.007
MAC 0.776 0.002 0.783 -0.001 0.782 0.000 0.782 0.002 0.782 -0.002 0.781 0.002 0.781 0.000
MOT 0.779 0.001 0.780 -0.004 0.783 0.002 0.774 0.004 0.774 0.008 0.779 0.005 0.778 0.006

Medium-low

COK 0.582 0.007 0.579 0.008 0.580 0.011 0.580 0.009 0.558 0.085 0.583 0.000 0.577 0.021
FAB 0.581 0.003 0.585 0.000 0.583 0.001 0.585 0.003 0.586 0.000 0.582 0.000 0.584 0.000
IAS 0.571 0.033 0.571 0.015 0.580 0.004 0.575 0.011 0.581 0.011 0.584 0.006 0.577 0.011
NFM 0.557 0.042 0.585 -0.002 0.585 0.004 0.583 0.006 0.583 0.007 0.583 -0.001 0.579 -0.001
ONM 0.582 0.006 0.578 0.024 0.585 -0.001 0.585 0.000 0.585 0.002 0.585 0.001 0.583 0.003
RUB 0.574 0.018 0.583 0.013 0.585 0.002 0.585 0.008 0.576 0.014 0.585 0.000 0.581 0.007
SHI 0.581 0.002 0.580 0.005 0.570 0.008 0.582 0.009 0.581 0.006 0.583 0.005 0.580 0.009

Low

FOD 0.776 0.003 0.787 0.004 0.795 0.000 0.792 0.002 0.767 0.021 0.794 -0.002 0.785 0.005
MAN 0.779 0.007 0.794 0.003 0.789 -0.001 0.792 0.006 0.791 0.000 0.776 0.007 0.787 0.006
PAP 0.784 0.007 0.765 0.019 0.794 0.002 0.792 0.001 0.794 0.002 0.775 0.009 0.784 0.003
TEX 0.759 0.006 0.785 -0.004 0.787 0.005 0.790 -0.003 0.787 -0.001 0.794 0.001 0.784 0.001
WOD 0.750 0.017 0.785 0.015 0.792 0.001 0.766 -0.003 0.789 0.003 0.788 0.003 0.778 0.006

Note: Growth in technical efficiency, E, is given by (Eij,t − Eij,t−1)/Eij,t.
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Apparently, both the mean level and the spread of efficiency are affected by the diver-
sity of industries in a technology regime. The latter, is particular apparent for industries
in the high technology regime, which includes for example the aerospace (AER) and
the medical industry (MED), and for industries in the medium-low technology regime,
which includes for example the shipbuilding industry (SHI) and the other non-metallic
mineral products industry (ONM). As a result, the high and medium-low regimes may
have the most potential for convergence (an issue to which we return in Section 3.3).

Figure 2. Technical efficiency
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Kernel density plots for efficiency scores per technology group.

Table 2 contains average efficiency levels as well as average growth rates of efficiency
over the sample period for each industry in each technology regime in each country. On
the whole, Table 2 reveals few straightforward patterns. The fast growing industries in
the medium-high, medium-low and low technology regimes are located in the Nether-
lands (Motor vehicles (MOT), petroleum products (COK) and food products (FOD),
respectively). Overall, the industries in the high technology regime are the fastest grow-
ers.

3.2. Panel unit root and panel cointegration results

In this subsection, we examine the co-movement of technical efficiency levels across
countries and across regimes, respectively. We take annual averages of each technology
regime in each country, and study the properties of the resulting 24 series following
a three step procedure. The first step consists of examining whether each of the series
(country- or regime-specific) are non-stationary by testing for unit roots. In this step, we
apply a gamma of the most recent panel unit root tests. Evidence of panel unit roots
(i.e., technical efficiency levels ’move’) allows us to proceed to the second step, and
test whether the series are cointegrated (i.e., whether the technical efficiency levels in
different groups ’co-move’). In this step, we test for panel cointegration, both with tests
that do not allow for cross-sectional dependence, and with tests that do. Cointegration
of the series under investigation enables us to proceed to the third and final step, and
examine the long-run linkages between the co-integrated series. In this step, we employ
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a number of panel estimators to increase our insight in the strength and direction of
spillovers.

Are there spillovers across national borders?

We start by examining spillovers across the countries included in our sample. First,
we test for panel unit roots in the efficiency series. Panel unit root tests for technical ef-
ficiency levels for each country of our sample are reported in Table B.1 in the Appendix.
All panel-unit root tests, LLC, IPS, IPSLM, MW, ULL and HL support strong unit root
evidence as the null hypothesis cannot be rejected while the alternative of stationary can
be rejected at 5% (the opposite holds for the HL test, as the null hypothesis is different
from that of the rest of the tests). The only exception is the HL test for Germany, where
we find weak evidence of stationarity. Overall, we conclude that the efficiency series
for the four technology regimes in each country are non-stationary and therefore all of
them are included in the cointegration analysis, which is our next step.

Table 3

Panel Cointegration across Countries

Group t-statistic Pedroni basic bootstrap FDB1 FDB2

Mean -1.83 3.34 9.20 7.50 7.40

Median -3.24 9.00 6.70 6.60

Note: FDB1 and FDB2 indicate the two fast bootstrapped tests proposed by Fachin (2007).

In Table 3, we report two classes of panel cointegration tests. The first class contains
group t-statistics, Pedroni’s test and basic bootstrap tests. This class of conventional
tests does not control for cross-sectional dependence. The second class consists of the
two fast bootstrap methods proposed by Fachin (2007), which control for cross-sectional
dependence. All test statistics reject the null hypothesis of no cointegration at 10% and
the hypothesis of one cointegrating vector is accepted. Therefore, we conclude that the
efficiency levels in the sample countries included here move together in the long run.

A natural question that follows is whether we can infer anything about the nature of
long-run linkages among efficiency levels across countries. These linkages can be posi-
tive or negative, depending on the mechanisms at work. For instance, competition can
force industries to increase their competitive capacity by reforming management styles
and updating production technology, therefore enhancing the adoption of existing ad-
vanced technology. It can also hamper the absorption of technology, in case industries
draw inputs from limited resource spaces and produce output to satisfy demand that
typically is not completely inelastic. In the latter case, an industry may absorb technol-
ogy at the expense of another industry (Aitken, Hanson, and Harrison, 1997; Aitken and
Harrison, 1999; Girma, 2005). As a result, either market-stealing (on the output side) or
skill-stealing (on the input side) results in a negative long-run linkage among efficiency
developments. Geographical proximity and intensity of trade also have a dual effect
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Table 4
Panel Estimation across Countries

Country βFI βFR βDE β IT βNL βES

Finland - -1.314 -1.960 -0.145 1.608 4.483
(6.242) (2.232) (0.522) (17.627) (21.956)

France -0.214 - 0.064 -0.400 0.355 0.237
(9.331) (10.902) (10.386) (11.635) (5.691)

Germany -0.061 0.267 - -0.154 0.746 -0.934
(3.062) (2.221) (1.101) (5.282) (1.040)

Italy 0.425 -0.547 -0.234 - -0.159 -1.614
(12.523) (7.720) (2.507) (5.311) (9.736)

Netherlands 0.545 0.931 0.746 0.244 - -1.348
(11.203) (3.262) (3.724) (3.356) (10.677)

Spain 0.202 0.731 1.784 0.551 -0.665 -
(11.003) (1.673) (2.506) (5.546) (9.448)

In all estimations, technical regime-specific fixed effects are introduced but not reported for sake of space.
They are available from the authors upon request.

on spillovers (Audretsch and Feldman, 2004). Industries in countries that trade more
than others and/or share a common border, ceteris paribus, could experience stronger
positive or negative long-run linkages in their technology absorption, either via higher
technology flows, or via skill-stealing, assuming that labor is sufficiently mobile.

In order to assess the long-term linkages among efficiency levels in these countries,
we estimate the long-run cointegrating equation (8) using the group mean fully mod-
ified ordinary least square (FMOLS) with unit specific correction factors proposed by
Pedroni (2000), the Least Square Dummy Variable estimator, FMOLS with averaged
correction factors (Kao, Chiang, and Chen, 1999), group mean FMOLS with averaged
correction factors (Kao, Chiang, and Chen, 1999), FMOLS with unit specific correction
factors (Pedroni, 2000) and FMOLS with unit specific correction factors for heterogenous
panels (Kao, Chiang, and Chen, 1999). In Table 4, we report the group mean FMOLS es-
timator proposed by Pedroni (2000). 18

We find strong evidence of a positive long-run linkage among a number of countries,
in particular France and Germany (0.064, 0.267), France and the Netherlands (0.931,
0.355), and Germany and the Netherlands (0.746, 0.746). Geographical proximity and
competition may explain the association of the efficiency levels of industries in these
countries. Interestingly, the positive long-run linkage is strongest between pairs of un-
equal size (France and the Netherlands, Germany and the Netherlands), as smaller
countries may follow in the footsteps of their larger neighbor.

On the other side, we also find strong evidence of a negative long-run linkages among
a number of countries, most notably France and Italy (-0.547, -0.400), Germany and Italy
(-0.234, -0.154) and the Netherlands and Spain (-0.665, -1.348). This negative association
may be explained by a variety of reasons that this study cannot identify, including the
effects of market-stealing (for example between France and Italy) or skill-stealing.

18 Since we use series for each of the four technology regimes in each country, we include regime-specific
fixed effects (not reported here). Results from the other estimators are qualitatively similar and available
upon request.
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To exemplify the economic significance of these results, consider the following ques-
tion: ceteris paribus, how much is the average change in output for industries in France
that results from the sample period change in technical efficiency in, say, Finland? From
Table 4, we observe that for France, βFI is -0.214. Using the period average efficiency
scores, we can calculate the elasticity, which is -0.21. Given that Finnish industries on
average increase their efficiency by 41.76% over the sample period, French industries
are expected to decrease their average efficiency by -8.77% (-0.21×41.76), purely as a re-
sult of the negative spillovers from Finland. From the average output level in 1980, we
can calculate the average reduction in 1980 output that would result from these negative
spillovers, which turns out to be 2178.94 million euros, or 22.58% of the average 1980
output of French industries.

Lastly, for a number of pairs of countries we observe opposite signs for the long-run
linkages. For example, whereas the coefficient for Germany in the panel estimation for
Spain is 1.784, the coefficient for Spain in the panel estimation for Germany is -0.934.
Likewise, the coefficient for Italy in the panel estimation for Spain is 0.551, whereas the
coefficient for Spain in the panel estimation for Italy is -1.614. Since the estimator in
these cases behaves differently, depending on the normalization, we refrain from giving
further economic meaning to these results.

Are there spillovers across technology regimes?

Next, we turn to testing whether technology spills over across technology regimes.
First, we again test for panel unit roots in the efficiency series. Panel unit root tests
for technical efficiency levels for each technology regime in our sample are reported in
Table B.2 in the Appendix. We find strong support for unit roots for all tests included,
and for all regimes. Therefore, in each technology regime the efficiency series in the six
countries are non-stationary.

Table 5

Panel Cointegration across Regimes

Group t-statistic Pedroni basic bootstrap FDB1 FDB2

Mean -2.68 0.37 11.20 12.20 12.10

Median -3.36 13.10 13.50 13.90

Note: FDB1 and FDB2 indicate the two fast bootstrapped tests proposed by Fachin (2007).

Hence, we include all regimes in the panel cointegration tests reported in Table 5.
Again, we report both tests that do not control for cross-sectional dependence and tests
that do. All test statistics are slightly above 10% indicating that test statistics is close to
the nominal size. We thus take the decision to consider that the null hypothesis is re-
jected and thus to conclude in favor of the hypothesis of one cointegrating relationship.
This result is confirmed by the Pedroni (2000) statistics.

So far, we have established that there is co-movement of the efficiency of industries
with different technologies in the EU manufacturing sector. In order to investigate the
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type of long-run linkages implied between the different technology regimes, we pro-
ceed by estimating long-run cointegrating equation (9), using the same set of estimators
described previously for our country analysis. As before, in Table 6 we report the group
mean FMOLS estimator proposed by Pedroni (2000). 19

Table 6
Panel Estimation across Regimes

Regime βH βMH βML βL

High - 0.972 -0.227 -2.406
(14.777) (8.142) (9.586)

Medium-high 0.417 - -0.073 -0.136
(8.534) (0.075) (1.668)

Medium-low -0.232 0.843 - 0.013
(1.739) (7.228) (7.195)

Low -2.876 -1.100 5.258 -
(5.795) (1.227) (32.910)

In all estimations, country-specific fixed effect are introduced but not re-
ported for sake of space. They are available from the authors upon request.

From Table 6 we can infer that technology spills over to neighboring technology
regimes. We observe strong positive long-run linkages between industries in the high
and medium high regimes (0.417, 0.972). The presence of some dominant technologies
in the high and medium-high technology regime industries could be responsible for the
evidence of positive linkages between efficiency levels in these two groups of industries.
Industries in the medium-low and low regimes also operate with positive long-run link-
ages (5.258, 0.013). Finally, industries in the medium-low regime benefit from a positive
long-run linkage with the medium-high regime (although the opposite is not the case).
In these types of regimes, medium-low and low, technology tends to be rather stable
which appears to have facilitated technology spillovers.

Positive linkages suggest that it is indeed easiest to appropriate technology that is
closely related to your own. Negative long-run linkages exist for the other combinations
in Table 6, perhaps reflecting the skill-stealing we described earlier.

We can illustrate the economic significance of these results in the same manner as
for the cross-border spillovers. For technology regime spillovers, consider the following
question: ceteris paribus, how much is the average change in output for industries in
the medium-high technology regime that results from the period change in technical
efficiency in the high technology regime? From Table 6, we observe that for medium-
high technology industries, βH is 0.417. Using the period average efficiency scores, we
can calculate the elasticity, which is 0.26. As high technology industries on average have
increased their efficiency by 28.83% over the sample period, medium-high technology
industries are expected to increase their average efficiency by 7.50% (0.26×28.83) as a
result of the positive spillovers from the high-technology industries. From the average
output level in 1980, we can again calculate the average reduction in 1980 output that
would result from these negative spillovers, which turns out to be 361.61 million euros,
or 3.82% of the average 1980 output of medium-high technology industries.

19 Since we use series for each of the counties in our sample, we include country-specific fixed effects (not
reported here). Results from the other estimators are qualitatively similar and available upon request.
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3.3. Convergence results

We now turn to the analysis of convergence. We start by examining whether there is
convergence in the manufacturing sector as a whole within each country and across all
countries of our sample. We then go one step further, and test the convergence hypoth-
esis within each technology regime.

Is there convergence across national borders?

We start by estimating equation (10) for the manufacturing sector in each country
and across countries. Table 7 reports the convergence coefficient, β1, for each country
and all countries. The results also provide evidence of convergence within each of the
countries. However, the evidence appears to be the strongest for Finland and Germany.
The Netherlands and Spain follow at a modest distance, and convergence is the lowest
in France and Spain.

Table 7
Convergence across technology regimes in the manufacturing sector

area β0 β1 elasticity R2
adj

all countries 0.124 *** -0.190 *** -0.114 0.800
Finland 0.156 *** -0.248 *** -0.125 0.702
France 0.076 *** -0.118 *** -0.077 0.801
Germany 0.112 *** -0.166 *** -0.111 0.942
Italy 0.076 *** -0.116 *** -0.070 0.885
Netherlands 0.101 *** -0.155 *** -0.089 0.892
Spain 0.096 *** -0.146 *** -0.089 0.789

All regressions with robust standard errors; regressions for each country
with technology regime-specific fixed effects; regressions for the EU area
with country-technology regime-specific fixed effects; significance at the
10/5/1 % level (*/**/***), semi-elasticities in the form of δ(y)/δ(lnx).

It is interesting to relate these findings with the past literature. Our results run counter
to the lack of (or very little) evidence of convergence documented in the literature for
the manufacturing sector (Hansson and Henrekson, 1997; Bernard and Jones, 1996a,b).
This is mainly due to the fact the majority of the past studies test for convergence in
total factor productivity (TFP) as a proxy of the technology level. TFP is measured as a
growth accounting (Solow-) residual under rather limiting assumptions about the exist-
ing technology (represented by a Cobb-Douglas production function and Hicks neutral
technology change) and the behavior of economic units (optimizing behavior with no
room for inefficiency). To benefit from spillovers, industries have to incur (costly) input
changes. In contrast, we are line with Arcelus and Arocena (2000), who also perform
a frontier analysis and focus on efficiency to measure technology spillovers. Efficiency
changes do not require input changes therefore they can be considered a more ’pure’
measure of technology adoption. Indeed, Arcelus and Arocena (2000) find a high de-
gree of catching-up among 14 OECD countries over 1970-1990 in the manufacturing
sector.
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Is there convergence across technology regimes?

Although convergence in the manufacturing comes out particularly strong in each
and every country and across countries in our sample, a justified concern is that ag-
gregate (manufacturing sector) analysis of technology spillovers and productivity can
mask important variations in convergence patterns due to different technology across
industries (Garcia Pascual and Westermann, 2002; Scarpetta and Tressel, 2002; Bousse-
mart, Briec, Cadoret, and Tavera, 2006).
Table 8
Convergence within each technology regime in the manufacturing sector

technology area β0 β1 elasticity R2
adj

High

Finland 0.177 *** -0.458 *** -0.098 0.969
France 0.002 *** -0.015 *** -0.008 0.005
Germany 0.093 *** -0.178 *** -0.088 0.985
Italy 0.075 *** -0.154 *** -0.067 0.805
Netherlands 0.111 *** -0.240 *** -0.089 0.968
Spain 0.107 *** -0.229 *** -0.085 0.648
all countries 0.136 *** -0.284 *** -0.114 0.766

Medium-high

Finland 0.092 *** -0.118 *** -0.083 0.942
France 0.081 *** -0.103 *** -0.082 0.809
Germany 0.014 *** -0.019 *** -0.016 0.156
Italy 0.075 *** -0.094 *** -0.071 0.997
Netherlands 0.058 *** -0.073 *** -0.057 0.398
Spain 0.089 *** -0.113 *** -0.086 0.950
all countries 0.078 *** -0.099 *** -0.076 0.854

Medium-low

Finland 0.102 *** -0.175 *** -0.081 0.929
France 0.081 *** -0.136 *** -0.076 0.936
Germany 0.102 *** -0.168 *** -0.102 0.965
Italy 0.079 *** -0.132 *** -0.074 0.943
Netherlands 0.100 *** -0.172 *** -0.084 0.980
Spain 0.118 *** -0.201 *** -0.114 0.906
all countries 0.094 *** -0.158 *** -0.085 0.937

Low

Finland 0.088 *** -0.109 *** -0.075 0.980
France 0.079 *** -0.104 *** -0.083 0.886
Germany 0.063 *** -0.077 *** -0.063 0.600
Italy 0.080 *** -0.100 *** -0.073 0.871
Netherlands 0.089 *** -0.112 *** -0.081 0.993
Spain 0.100 *** -0.128 *** -0.098 0.865
all countries 0.087 *** -0.110 *** -0.083 0.909

All regressions with robust standard errors; regressions for the EU area with country-specific fixed
effects; significance at the 10/5/1 % level (*/**/***), semi-elasticities in the form of δ(y)/δ(lnx).

This concern, that heterogeneity in existing technologies might be an issue in effi-
ciency performance and in studying the convergence hypothesis in the manufacturing,
has been validated in previous sections of our paper. In Section 3.1, we described the
mean and growth of efficiency in four technology regimes (groups) across countries in
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our sample. From Figure 2, we observed that the average efficiency was relatively low
for industries in high and medium-low technology regimes. In addition, the spread of
efficiency was relatively high for these technology regimes. Table 2 then showed that
almost all industries in all technology regimes and countries exhibited positive growth
of efficiency. In sum, our frontier results suggest that there is ample room for (differ-
ences in) convergence, in particular among industries located in high and medium-low
technology regimes.

Our next step, therefore, involves investigation of convergence across industries with
similar technology. Table 8 contains the results from estimating equation (10), per tech-
nology regime in each of the countries and across countries. Negative and significant
values for β1 indicate that there is convergence in all technology regimes. Indeed, the
high technology regime experiences the strongest convergence, both within each coun-
try (with the exception of France) and across countries. In the medium-low technology
regime, convergence is also strong, as in the low technology regime, while the medium-
high technology regime, on average, experiences the lowest level of convergence.

In the lower technology regimes (low and medium-low), the fact that the existing
technology tends to be rather stable appears to have facilitated technology spillovers
and convergence. This finding is in line with the literature (Scarpetta and Tressel, 2002).
In contrast, our finding of strong convergence in the high technology regime appears at
first to be surprising, since patent laws, product and market differentiation can reduce
the scope for technology spillovers. Our results suggest the presence of some dominant
technologies in the high technology regime industries could be responsible for the evi-
dence of convergence. However, within the high technology regime, there appears to be
significant heterogeneity across countries with elasticities ranging from -0.008 (France)
to -0.098 (Finland). Likewise, in the medium-high technology regime (with elasticities
ranging from -0.016 for Germany to -0.086 for Spain). Perhaps, persisting institutional
differences, in particular related to product and labor market regulations, affect tech-
nology adaptation, particularly for the most technologically advanced and innovative
industries. 20 This may explain the relatively large country variations in convergence
patterns in our high and medium-high technology regimes.

Overall, our findings yield (i) strong evidence of convergence across countries is doc-
umented when technical efficiency is used to study the convergence hypothesis in the
manufacturing sector; and (ii) even stronger evidence of convergence across technol-
ogy regimes, when we disaggregate the manufacturing sector into different sub-sectors
and control for differences in technology. However, the strength the convergence varies,
depending on the regime.

20 Differences in the stringency of regulatory settings across countries could have an impact on technol-
ogy adaptation and convergence. Product and labor market regulations, for instance, can reduce incentives
to invent and adopt better technology and catch up with the technological leader. Specifically, strict (anti-
competitive) product market regulation is found to hinder the adoption of existing technologies, possibly
because it reduces competitive pressures or technology spillovers (Nicoletti, Bassanini, Ernst, Jean, Santiago,
and Swaim, 2001; Bassanini and Ernst, 2002). There is also evidence that strict employment protection legis-
lation results in high hiring and firing costs that impede productivity improvements, especially when wages
and/or internal training do not offset these higher costs, thereby resulting in sub-optimal adjustments of the
workforce to technology changes and less incentives to innovate (Scarpetta and Tressel, 2002).
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4. Conclusion

This paper investigates whether technology spills over across national borders and
technology regimes. We advocate a modeling strategy where changes in technical ef-
ficiency capture technology spillovers as industries absorb and implement the best-
practice (frontier) technology. By estimating a frontier model of production, we are able
to measure the technical efficiency with which industries employ their production tech-
nology.

We contribute to the literature by controlling for technological heterogeneity and
for cross-sectional dependence in the data. More specifically, we take into account the
appropriateness of the technology that industries use, and benchmark each industry
against other industries within the same technology regime. Hence, in our analysis, a
(positive) technology spillover (i.e., an increase in efficiency) is indeed an improvement
in the use of the existing technology, rather than a change in the latter. Also, we con-
trol for the fact countries and technology regimes are not necessarily cross-sectionally
independent and use recently developed dynamic panel-based techniques to determine
whether efficiency series move together in the long run (cointegrate) and/or move
closer together over time (converge).

We use a panel of 21 manufacturing industries in four technology regimes and six
EU countries over the period 1980-1997, and - after taking country- and regime-specific
annual averages - study the properties of the resulting 24 technical efficiency series. We,
first, ask whether technology spills over across borders, and find that technical efficiency
series are cointegrated with each other across all countries. A further analysis of the
long-run linkages reveals the importance of geographical proximity for cross-country
technology spillovers. Next, we ask whether technology spills over across regimes, and
find that technical efficiency series are cointegrated with each other across all technology
regimes. Here, technological proximity appears to be very important, as positive long-
run linkages exclusive exist between closer technology regimes.

We also find fairly strong evidence of convergence, both across countries and tech-
nology regimes. Over time, the technical efficiency of industries in the manufacturing
sector have moved closer together. However, the extent to which this has happened
differs. In the northern countries (Finland, Germany), convergence is the strongest. In
particular, industries in the high technology regime emerge as the drivers behind the
convergence of efficiency.

Future research should explain the mechanisms behind the positive and negative
long-run linkages as no formal efforts have been made to explain these mechanisms
in the present study. Also, being able to control for cross-sectional dependence when
investigating the long-run cointegrating relationships would greatly enhance the un-
derstanding of technology spillovers.
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Appendix A. Variables and sources

Value-Added (Y): gross value-added expressed in 1995 constant prices (euros). Gross
value-added was deflated by implicit value-added deflators to yield deflated gross value-
added expressed in 1995 constant prices (euros). We follow the OECD (2002) practice
for the construction of the implicit value-added deflators. Data on gross value-added are
retrieved from the OECD (2002) STAN Structural Analysis Database.

Physical capital (K): gross capital stock expressed in 1995 constant prices (euros).
Following common practice in the literature (e.g. Hall and Jones, 1999), we employ the
perpetual inventory method to construct a proxy for capital stock, using data on gross
fixed capital formation (GFCF). The initial value for the 1980 capital stock is specified
as K1980 = GFCF1980/(g + δ), where g is the average geometric growth rate of the
gross fixed capital formation (constant prices) series from 1970 to 1980 and δ is the de-
preciation rate. Instead of assuming a constant depreciation rate, we use the average
service life (ASL) of capital per industry (OECD, 1993). Each industry’s capital stock
is constructed as capital stock minus depreciated capital stock plus gross fixed capi-
tal formation (Kt = (1− δ) ∗ Kt−1 + GFCFt). Data on gross fixed capital formation are
retrieved from the OECD (2002) STAN Structural Analysis Database.

Labor (L): annual total hours worked in an industry (in thousands). Data are re-
trieved from the Groningen Growth and Development Centre (GGDC, 2006) 60-Industry
Database.

Table A.1
Manufacturing Industries

Industry Abbreviation ISIC code (Rev. 3)
Coke, refined petroleum products and nuclear fuel COK 23
Textiles, textiles products, leather and footwear TEX 17-19
Building and repairing ships and boats SHI 351
Food products, beverages and tobacco FOD 15-16
Non-ferrous Metals NFM 272+2732
Other non-metallic mineral products ONM 26
Wood, and products of wood and cork WOD 20
Iron and steel IAS 27+2731
Machinery and equipment, n.e.c. MAC 36+37
Chemicals (excl. pharmaceuticals) CHE 24 less 2423
Pulp, paper, paper products, printing and publishing PAP 21-22
Manufacturing n.e.c.; recycling MAN 29
Motor vehicles, trailers and semi-trailers MOT 34
Fabricated Metal products (excl. mach. and equip.) FAB 28
Aircraft + spacecraft AIR 353
Rubber and plastics products RUB 25
Pharmaceuticals PHA 2423
Electrical machinery and apparatus ELE 31
Medical, precision and optical instruments MED 33
Radio, television and communication equipment RAD 32
Office, accounting and computing machinery OFF 30
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Appendix B. Panel unit root tests

Table B.1
Panel Unit Root Tests across Countries

Finland test p-val root
Levin-Lin-Chu (LLC) 8.262 1.000 I(1)
Im-Pesaran-Shin (IPS) -0.474 0.318 I(1)
Im-Pesaran-Shin, LM (IPSLM) -0.090 0.536 I(1)
Maddala-Wu (MW) 8.078 0.426 I(1)
Unbiased LL (ULL) 0.115 0.546 I(1)
Hadri-Larsson (HL) 2.444 0.007 I(1)
France test p-val root
Levin-Lin-Chu (LLC) 1.369 0.915 I(1)
Im-Pesaran-Shin (IPS) 0.435 0.668 I(1)
Im-Pesaran-Shin, LM (IPSLM) 0.734 0.232 I(1)
Maddala-Wu (MW) 5.419 0.712 I(1)
Unbiased LL (ULL) 0.217 0.586 I(1)
Hadri-Larsson (HL) 2.878 0.002 I(1)
Germany test p-val root
Levin-Lin-Chu (LLC) -0.257 0.399 I(1)
Im-Pesaran-Shin (IPS) -0.405 0.343 I(1)
Im-Pesaran-Shin, LM (IPSLM) -0.874 0.809 I(1)
Maddala-Wu (MW) 7.365 0.498 I(1)
Unbiased LL (ULL) -0.950 0.170 I(1)
Hadri-Larsson (HL) 1.626 0.052 I(0)
Italy test p-val root
Levin-Lin-Chu (LLC) 0.283 0.611 I(1)
Im-Pesaran-Shin (IPS) 0.917 0.821 I(1)
Im-Pesaran-Shin, LM (IPSLM) 2.084 0.019 I(0)
Maddala-Wu (MW) 2.952 0.937 I(1)
Unbiased LL (ULL) 0.596 0.724 I(1)
Hadri-Larsson (HL) 3.210 0.001 I(1)
Netherlands test p-val root
Levin-Lin-Chu (LLC) 3.597 1.000 I(1)
Im-Pesaran-Shin (IPS) -0.734 0.231 I(1)
Im-Pesaran-Shin, LM (IPSLM) 1.146 0.126 I(1)
Maddala-Wu (MW) 13.830 0.086 I(1)
Unbiased LL (ULL) -0.697 0.243 I(1)
Hadri-Larsson (HL) 3.087 0.001 I(1)
Spain test p-val root
Levin-Lin-Chu (LLC) 5.284 1.000 I(1)
Im-Pesaran-Shin (IPS) 0.692 0.756 I(1)
Im-Pesaran-Shin, LM (IPSLM) 0.841 0.200 I(1)
Maddala-Wu (MW) 2.748 0.949 I(1)
Unbiased LL (ULL) -0.277 0.390 I(1)
Hadri-Larsson (HL) 2.816 0.002 I(1)
All panel unit root tests include an intercept and a trend. The number of lags
is two. For LLC, IPS, IPSLM, MW and ULL the null hypothesis is that all
time series are I(1), while for HL the null is that all time series are stationary
and the length of the kernel window is 3.000. Tests for LLC, IPS and ULL
are left-sided and tests for IPSLM, MW and HL are right-sided. We reject
the null hypothesis of no unit root if p-value < 0.05.
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Table B.2
Panel Unit Root Tests across Regimes

High test p-val root
Levin-Lin-Chu (LLC) 2.341 0.990 I(1)
Im-Pesaran-Shin (IPS) 0.489 0.687 I(1)
Im-Pesaran-Shin, LM (IPSLM) 0.985 0.162 I(1)
Maddala-Wu (MW) 6.071 0.913 I(1)
Unbiased LL (ULL) -0.503 0.308 I(1)
Hadri-Larsson (HL) 3.384 0.000 I(1)
Medium-high test p-val root
Levin-Lin-Chu (LLC) -1.219 0.111 I(1)
Im-Pesaran-Shin (IPS) -0.257 0.399 I(1)
Im-Pesaran-Shin, LM (IPSLM) 0.819 0.206 I(1)
Maddala-Wu (MW) 9.536 0.657 I(1)
Unbiased LL (ULL) -0.439 0.330 I(1)
Hadri-Larsson (HL) 1.928 0.027 I(1)
Medium-low test p-val root
Levin-Lin-Chu (LLC) 0.946 0.828 I(1)
Im-Pesaran-Shin (IPS) 0.039 0.516 I(1)
Im-Pesaran-Shin, LM (IPSLM) 0.145 0.442 I(1)
Maddala-Wu (MW) 14.127 0.293 I(1)
Unbiased LL (ULL) 0.069 0.527 I(1)
Hadri-Larsson (HL) 3.246 0.001 I(1)
Low test p-val root
Levin-Lin-Chu (LLC) 6.789 1.000 I(1)
Im-Pesaran-Shin (IPS) 0.081 0.532 I(1)
Im-Pesaran-Shin, LM (IPSLM) 1.186 0.118 I(1)
Maddala-Wu (MW) 10.657 0.559 I(1)
Unbiased LL (ULL) 0.328 0.628 I(1)
Hadri-Larsson (HL) 4.555 0.000 I(1)
All panel unit root tests include an intercept and a trend. The
number of lags is two. For LLC, IPS, IPSLM, MW and ULL the
null hypothesis is that all time series are I(1), while for HL the
null is that all time series are stationary and the length of the
kernel window is 3.000. Tests for LLC, IPS and ULL are left-sided
and tests for IPSLM, MW and HL are right-sided. We reject the
null hypothesis of no unit root if the p-value < 0.05.
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