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Abstract. Two salient notions of sameness of theories are synonymy, aka def-

initional equivalence, and bi-interpretability. Of these two definitional equiv-

alence is the strictest notion. In which cases can we infer synonymy from
bi-interpretability? We study this question for the case of sequential the-

ories. Our result is as follows. Suppose that two sequential theories are

bi-interpretable and that the interpretations involved in the bi-interpretation
are one-dimensional and identity preserving. Then, the theories are synony-

mous. We provide an example to show that this result is optimal. There

are two finitely axiomatized sequential theories that are bi-interpretable but
not synonymous, where precisely one of the interpretations involved in the

bi-interpretation is not identity preserving.
The crucial ingredient of our proof is a version of the Schröder-Bernstein

theorem under very weak conditions. We think this result has some indepen-

dent interest.

1. Introduction

When are two theories the same? Are there reasonable ways of abstracting away
from the precise choice of the signature? The notions of synonymy (or: definitional
equivalence) and bi-interpretability provide two good answers to these questions.

The notion of synonymy was introduced by de Bouvere (see [dB65a] and [dB65b])
in 1965. It appears to be the strictest notion of sameness of theories except strict
identity of signature and set of theorems. Two theories U and V are synonymous iff
there is a theory W that is both a definitional extension of U and of V . Equivalently,
U and V are synonymous iff there are interpretations K : U → V and M : V → U ,
such that V proves that the composition K ◦M is the identity interpretation on V
and such that U proves that the composition M ◦K of is the identity interpretation
on U . (Thus, synonymy is isomorphism in an appropriate category INT0 of theories
and interpretations.) For example, Peano Arithmetic, PA, is synonymous with an
appropriate theory of strings.

The notion of bi-interpretability was introduced by Alhbrandt and Ziegler in 1986
(see [AZ86], see also [Hod93]). Two theories U and V are bi-interpretable iff there
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are interpretations K : U → V and M : V → U , such that there is a V -definable
function F , such that V proves that F is an isomorphism between K ◦ M and
the identity interpretation on V and such that there is a U -definable function G,
such that U proves that G is an isomorphism between M ◦ K and the identity
interpretation on U . (Thus, bi-interpretability is isomorphism in an appropriate
category INT1 of theories and interpretations.)

In terms of models the notion of bi-interpretability takes the following form. We
note that an interpretation K : U → V gives us a construction of an internal model
K̃(M) of U from a model M of V . We find that U and V are bi-interpretable iff,
there are interpretations K : U → V and M : V → U and formulas F and G, such
that, for all models M of V , the formula F defines an isomorphism between M
and M̃K̃(M), and, for all models N of U , the formula G defines an isomorphism
between N and K̃M̃(M).

Bi-interpretability has a lot of good properties. E.g., it preserves automorphism
groups, κ-categoricity, finite axiomatizability, etc. Still the stricter notion syn-
onymy preserves more. For example, synonymy preserves the action of the au-
tomorphism group on the domain of the model. Bi-interpretability (without pa-
rameters) does preserve the automorphism group modulo isomorphism but does
not necessarily preserve the action on the domain. (See Section 7 for an example
illustrating this difference.)

Surprisingly it is not easy to provide natural examples of pairs of theories that are
bi-interpretable but not synonymous. For example PA is prima facie bi-interpretable
with an appropriate theory of the hereditarily finite sets. However, on closer in-
spection, these theories are also synonymous. See Subsection 6.2. In Section 7,
we give a verified example of two finitely axiomatized sequential theories that are
bi-interpretable but not synonymous.

Our interest in this paper is in the relationship between synonymy and bi-inter-
pretability for a special class of theories, the sequential theories. These are theories
that have coding of sequences. Examples of sequential theories are Buss’s theory
S1

2, Elementary Arithmetic EA or EFA, IΣ1, ZF, ZFC. We explain in detail what
sequential theories are in Section 3.

We will show that, for identity-preserving interpretations between sequential
theories, synonymy and bi-interpretability coincide (Section 5). In fact the proof
works for a somewhat wider class: the conceptual theories.

A central ingredient of our proof is the Schröder-Bernstein Theorem that turns
out to hold under surprisingly weak conditions. We give the proof of the Schröder-
Bernstein Theorem under these weak conditions in Section 4.

2. Basic Notions

In this section, we formulate the basic notions employed in the paper. We keep
the definitions here at an informal level. More detailed definitions are given in
Appendix A.

2.1. Theories. The primary focus in this paper is on one-sorted theories of first or-
der predicate logic of relational signature. We take identity to be a logical constant.
Our official signatures are relational, however, via the term-unwinding algorithm,
we can also accommodate signatures with functions. Many-sorted theories appear
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as an auxiliary in the study of one-sorted theories. We will only consider theories
with a finite number of sorts.

The results of the paper that are stated for one-sorted theories can be lifted to
the many-sorted case in a fairly obvious way. We choose to restrict ourselves to the
one-sorted case to keep the presentation reasonably light.

In this paper, no restriction is needed on the complexity of the set of axioms of
a theory or on the size of the signature.

2.2. Interpretations. We describe the notion of an m-dimensional interpretation
for a one-sorted language. An interpretation K : U → V is given by the theories
U and V and a translation τ from the language of U to the language of V . The
translation is given by a domain formula δ(~x), where ~x is a sequence of m variables,
and a mapping from the predicates of U to formulas of V , where an n-ary predicate
P is mapped to a formula A(~x0, . . . , ~xn−1), where the ~xj are appropriately chosen
pairwise disjoint sequences of m variables. We lift the translation to the full lan-
guage in the obvious way making it commute with the propositional connectives
and quantifiers, where we relativize the translated quantifiers to the domain δ. We
demand that V proves all the translations of sentences of U .

We can compose interpretations in the obvious way. Note that the composition
of an n-dimensional interpretation with an m-dimensional interpretation is m× n-
dimensional.

An 1-dimensional interpretation is identity preserving if translates identity to
identity. A 1-dimensional interpretation is unrelativized if its domain consists of all
the objects of the interpreting theory. A 1-dimensional interpretation is direct if it
is unrelativized and preserves identity. Note that all these properties are preserved
by composition.

Each interpretation K : U → V gives us an inner model construction that builds
a model K̃(M) of U out of a modelM of V . Note that (̃·) behaves contravariantly.

If we want to use interpretations to analyze sameness of theories, we will need,
as we will see, to be able to say when two interpretations are ‘equal’. Strict identity
of interpretations is too fine grained. It is too much dependent of arbitrary choices
like which bound variables to use. We specify a first notion of equality between
interpretations: two interpretations are equal when the target theory thinks they
are. Modulo this identification, the operations identity and composition give rise
to a category INT0, where the theories are objects and the interpretations arrows.1

Let MOD be the category with as objects classes of models and as morphisms all
functions between these classes. We define Mod(U) as the class of all models of
U . Suppose K : U → V . Then, Mod(K) is the function from Mod(V ) to Mod(U)
given by: M 7→ K̃(M). It is clear that Mod is a contravariant functor from INT0

to MOD.

2.3. Sameness of Interpretations. For each sufficiently good notion of sameness
of interpretations there is an associated category of theories and interpretations: the
category of interpretations modulo that notion of sameness. Any such a category
gives us a notion of isomorphism of theories which can function as a notion of
sameness.

1For many reasons, the choice for the reverse direction of the arrows would be more natural.
However, our present choice coheres with the extensive tradition in degrees of interpretability. So,

we opted to adhere to the usual choice.
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We present a basic list of salient notions of sameness. For all items in the list it
is easily seen that sameness is preserved by composition.

2.3.1. Equality. The interpretations K,K ′ : U → V are equal when V ‘thinks’ K
and K ′ are identical. By the Completeness Theorem, this is equivalent to saying
that, for all V -models M, K̃(M) = K̃ ′(M). This notion gives rise to the category
INT0. Isomorphism in INT0 is synonymy or definitional equivalence.

2.3.2. i-Isomorphism. An i-isomorphism between interpretations K,M : U → V is
given by a V -formula F . We demand that V verifies that “F is an isomorphism
between K and M”, or, equivalently, that, for each model M of V , the function
FM is an isomorphism between K̃(M) and M̃(M).

Two interpretationsK,K ′ : U → V , are i-isomorphic iff there is an i-isomorphism
between K and K ′. Wilfrid Hodges calls this notion: homotopy. See [Hod93], p222.

We can also define the notion of being i-isomorphic semantically. The interpre-
tations K,K ′ : U → V , are i-isomorphic iff there is V -formula F such that for all
V -models M, the relation FM is an isomorphism between K̃(M) and K̃ ′(M).

In case the signature of U is finite, being i-isomorphic has a third characteriza-
tion. The interpretations K,K ′ : U → V , are i-isomorphic iff, for every V -model
M, there is an M-definable isomorphism between K̃(M) and K̃ ′(M). (See Theo-
rem A.1.)

Clearly, if K,K ′ are equal in the sense of the previous subsection, they will be
i-isomorphic. The notion of i-isomorphism give rise to a category of interpretations
modulo i-isomorphism. We call this category INT1. Isomorphism in INT1 is bi-
interpretability.

2.3.3. Isomorphism. Our third notion of sameness of the basic list is that K and
K ′ are the same if, for all models M of V , the internal models K̃(M) and K̃ ′(M)
are isomorphic. We will simply say that K and K ′ are isomorphic. Clearly, i-
isomorphism implies isomorphism. We call the associated category INT2. Isomor-
phism in INT2 is iso-congruence.

2.3.4. Elementary Equivalence. The fourth notion is to say that two interpretations
are the same if, for eachM, the internal models K̃(M) and K̃ ′(M) are elementary
equivalent. We will say that K and K ′ are elementary equivalent. By the Com-
pleteness Theorem, we easily see that this notion can be alternatively defined by
saying that K is the same as K ′ iff, for all U -sentences A, we have V ` AK ↔ AK

′
.

It is easy to see that isomorphism implies elementary equivalence. We call the asso-
ciated category INT3. Isomorphism in INT3 is elementary congruence or sentential
congruence.

2.3.5. Identity of Source and Target. Finally, we have the option of abstracting
away from the specific identity of interpretations completely, simply counting any
two interpretations K,K ′ : U → V the same. The associated category is INT4. This
is simply the structure of degrees of one-dimensional interpretability. Isomorphism
in INT4 is mutual interpretability.
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2.4. The Many-sorted Case. Interpretability can be extended to interpretability
between many-sorted theories. However to do that properly, we would need to
develop the notion of piece-wise interpretation. Since this notion is not needed in the
present paper, we just describe interpretations of many-sorted theories in one-sorted
theories. These are precisely what one would expect: the interpretation K does
not specify just one domain, but, for each sort a, a domain δa. We allow a different
dimension for each sort. The translation of a quantifier ∀xa is ∀~x (δa(~x) → . . .).
We translate a predicate P of type a0, . . . , an−1 to a formula A(~x0, . . . ~xn−1), where
the target theory verifies, for i < n, the formula A(~x0, . . . ~xn−1)→ δai(~xi).

2

We will consider theories with a designated sort o of objects. An interpretation of
such a theory into a one-sorted theory is o-direct iff it is one-dimensional for sort
o, and has δo(x) := (x = x) and translates identity on o to identity simpliciter. In
other words, the interpretation is direct when we restrict our attention to the single
sort o.

2.5. Parameters. We can extend our notion of interpretation to interpretation
with parameters as follows. Say our interpretation is K : U → V . In the target
theory, we have a parameter domain α(~z), which is V -provably non-empty. The
definition of interpretation remains the same but for the fact that the parameters
~z. Our condition for K to be an interpretation becomes:

U ` A ⇒ V ` ∀~z (α(~z)→ AK,~z ).

We note that an interpretationK : U → V with parameters provides a parametrized
set of inner models of U inside a model of V .

3. Sequentiality and Conceptuality

We are interested in theories with coding. There are several ‘degrees’ of coding,
like pairing, sequences, etcetera. We want a notion that allows us to build arbitrary
sequences of all objects of our domain. The relevant notion is sequentiality. We also
define a wider notion conceptuality. This last notion is proof-generated: it gives us
the most natural class of theories for which our proof works. All sequential theories
are conceptual, but not vice versa.

We have a simple and elegant definition of sequentiality. A theory U is sequential
iff it directly interprets adjunctive set theory AS. Here AS is the following theory
in the language with only one binary relation symbol.
AS1. ` ∃x ∀y y 6∈ x,
AS2. ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).
So the basic idea is that we can define a predicate ∈? in U such that ∈? satisfies
a very weak set-theory involving all the objects of U . Given this weak set theory,
we can develop a theory of sequences for all the objects in U , which again gives
us partial truth-predicates, etc. In short, the notion of sequentiality explicates the
idea of a theory with coding.

Remark 3.1. To develop the notion of sequentiality in a proper way for many-
sorted theories we would need the idea of a piecewise interpretation. We do not
develop the idea of piecewise interpretation here. Fortunately one can forget the
framework and give the definition in a theory-free way. It looks like this. Let U

2Note that the sequence ~xi has as length the dimension associated to the sort ai.



6 HARVEY M. FRIEDMAN†,‡ AND ALBERT VISSER‡

be a theory with sorts S. The theory U is sequential when we can define, for each
a, b ∈ S, a binary predicate ∈ab of type ab such that:
a. U `

∨
a∈S ∃xa

∧
b∈S ∀yb yb 6∈ba xa,

b. U `
∧

a,b∈S ∀xa, yb
∨

c∈S ∃zc
∧

d∈S ∀ud (ud ∈dc zc ↔ (ud ∈da xa ∨ ud =da yb)).

Here ‘=da’ is not really in the language if d 6= a. In this case we read ud =da yb

simply as ⊥.

It’s a nice exercise to show that e.g. ACA0 and GB are sequential.

Closely related to AS is adjunctive class theory ac. We define this theory as follows.
The theory ac is two-sorted with sorts o (of objects) and c (of classes). We have
identity for every sort and one relation symbol ∈ between objects and classes, i.e.
of type oc. We let x, y, . . . range over objects and X,Y, . . . range over classes. We
have the following axioms
ac1. ` ∃X ∀x x 6∈ X,
ac2. ` ∀Y, y ∃X ∀x (x ∈ X ↔ (x ∈ Y ∨ x = y)),
ac3. ` X = Y ↔ ∀z (z ∈ X ↔ z ∈ Y ).
Note that extensionality is cheap since we could treat identity on classes as defined
by the relation of extensional sameness. The theory ac is much weaker than AS,
since it admits finite models. The following theorem is easy to see.

Theorem 3.2. A theory U is sequential iff there is an o-direct interpretation of ac
in U that is one-dimensional in the interpretation of classes.

A theory U is conceptual iff there is an o-direct interpretation of ac in U . We note
that there are conceptual theories that are not sequential. For example, sequential
theories always have infinite domain, but there are conceptual theories with finite
models. Note also that AS is sequential, but ac is not conceptual (not even in the
appropriate many-sorted formulation).

For more information on sequentiality and conceptuality, see Appendix B.

4. The Schröder-Bernstein Theorem

We start with a brief story of the genesis of the theorem. The first step was taken
by Harvey Friedman who saw that sequential theories should satisfy a version of
the Schröder-Bernstein Theorem.3 Albert Visser subsequently wrote down a proof,
discovering that one needs even less than sequentiality: the thing to use is adjunctive
class theory. Allan van Hulst verified Visser’s version of the proof in Mizar as part
of his master’s project under Freek Wiedijk in 2009. After hearing a presentation by
Allan van Hulst, Tonny Hurkens found a simplification of the proof. Hurkens proof
is shorter and conceptually simpler. In our presentation here we include Hurkens’
simplification. We thank Tonny for his gracious permission to do so.

We work in the theory SB which is ac extended with two unary predicates on
objects: A and B and four binary predicates on objects: EA, EB, F, G, plus axioms
expressing that EA is an equivalence relation on A, EB is an equivalence relation
on B, F is an injection from A/EA to B/EB, G is an injection from B/EB to A/EA.
We construct a formula H that SB-provably defines a bijection between A/EA and
B/EB.

3In this paper we use the version of the Schröder-Bernstein Theorem that is formulated in
terms of injections.
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We will employ the usual notations like: ∅, {x0, . . . , xn−1}, ⊆.

Our definition of what it means that F is a function includes: if xEAx
′Fy′EBy, then

xFy. Similarly for G. We will treat A as a virtual class and write x ∈ A, etc. We
use pairing of classes ‘(X,Y )’ in a virtual way. E.g. ‘(X,Y ) ⊆ (X ′, Y ′)’ is defined
as a quaternary relation. Here are some definitions.

• (X,Y ) ⊆ (X ′, Y ′) :↔ X ⊆ X ′ ∧ Y ⊆ Y ′,
• A pair of classes (X,Y ) is downwards closed if,

(1) (X,Y ) ⊆ (A,B),
(2) if uGv ∈ X, then there is a u′ with Y 3 u′Gv,
(3) if uFv ∈ Y , then there is a u′ with X 3 u′Fv.

• We say that (X,Y ) is an x-switch if (i) (X,Y ) is downwards closed; (ii) x
is a member of X; (iii) each member of X is in the range of G.
• xHy iff (there is no x-switch and xFy) or (there is an x-switch and yGx).

Lemma 4.1. H is a function from A/EA to B/EB.

Proof. We prove that H preserves equivalences. Suppose xEAx
′, yEBy

′ and xHy.
Suppose there is an x-switch (X,Y ). It is easy to see that (X ∪ {x′}, Y ) is an x′-
switch. It is now immediate that x′Hy′. Similarly, if we are given an x′-switch, we
may conclude that there is an x-switch. The remaining case where there is neither
an x-switch nor an x′-switch is again immediate.

Suppose xHy and xHy′. If there is an x-switch, we have yGx and y′Gx. So we
are done by the injectivity of G. If there is no x-switch, we have xFy and xFy′. So
we are done by the functionality of F.

We prove that H is total. If there is no x-switch, we are done. If there is an
x-switch then x is in the range of G, and we are again done. 2

Lemma 4.2. H is injective from A/EA to B/EB.

Proof. Suppose xHy and x′Hy. If in both cases the same clauses in the definition
of H are active, we are easily done.

Suppose there is no x-switch and there is an x′-switch, say (X ′, Y ′). By the
definition of H, we have xFyGx′. It follows that xEAx

′′, for some x′′ in X ′. Hence,
(X ′ ∪ {x}, Y ′) is an x-switch. A contradiction. 2

Lemma 4.3. H is surjective.

Proof. Consider any y ∈ B. First suppose y is not in the range of F. Let yGx. Then
({x}, {y}) is an x-switch, and we have xHy.

Next suppose xFy and there is no x-switch. In this case xHy.
Suppose xFy and there is an x-switch (X,Y ). Let yGx1. Then (X∪{x1}, Y ∪{y})

is an x1-switch. Hence, x1Hy.
Thus, in all cases y is in the image of H. 2

We have proved the following theorem.

Theorem 4.4. In SB we can construct a function H that is a bijection between
A/EA and B/EB.

Example 4.5. Consider a model of SB. We write A for the interpretation of A, etc.
We note that the function H constructed by the proof of the theorem depends on
our choice of classes. Suppose, e.g., that our objects are the integers, A is the set
of even integers, B is the set of odd integers, our equivalence relations are identity
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on the given virtual class, F is the successor function domain-restricted to A, and
G is the successor function domain-restricted to B. In the case that our classes are
all possible classes of numbers, the pair of the class of all even numbers and all odd
numbers is an a-switch, for each even a. So H = G−1, i.e. the predecessor function
domain-restricted to A. In the case that our classes are the finite classes, there is
no a-switch for any even a. So, H = F .

For us the following obvious corollary is relevant.

Corollary 4.6. Let T be a conceptual theory. Suppose we have formulas Ax, By,
EA, EB, F , G, where T proves that EA is an equivalence relation on {x | Ax}, that
EB is an equivalence relation on {y | By}, that F is an injection from {x | Ax}/EA
to {y | By}/EB, and that G is an injection from {y | By}/EB to {x | Ax}/EA.
Then we can find a formula H that T -provably defines a bijection between the virtual
classes {x | Ax}/EA and {y | By}/EB.

Our corollary can be rephrased as follows. Suppose that T is conceptual and we
have one-dimensional interpretations K,M : EQ → T , where EQ is the theory of
equality. Suppose further that F : K → M and G : M → K are injections. Then
we can find a bijection H : K →M , and, thus, K and M are i-isomorphic.

We note that if T is sequential, we can drop the demand that K and M are
one-dimensional, since every interpretation in a sequential theory is i-isomorphic
with a one-dimensional interpretation.

5. From Bi-interpretability to Synonymy

In this section we prove our main result. If two theories are bi-interpretable via
identity-preserving interpretations, then they are synonymous.

Theorem 5.1. Let U and V be any theories and suppose K : U → V and M :
V → U . Suppose that, for any model M of V , we have M̃K̃(M) = M (in other
words, K ◦M = idV in INT0). Suppose further that, for any model N of U , the
model K̃M̃(N ) is elementary equivalent to N (in other words, M ◦ K = idU in
INT3). Then U and V are synonymous.

Here is a different formulation: if K,M witness that V is an INT0-retract of U
and that U is an INT3-retract of V , then U and V are synonymous.

Proof. Consider any model N of U . We have K̃M̃K̃M̃(N ) = K̃M̃(N ). Let P :=
K̃M̃(N ). So, we have K̃M̃(P) = P. We note that the identity of K̃M̃(P) and P
is witnessed by such statements as ∀x δM◦K(x) and ∀~x (PM◦K~x↔ P~x). Since P is
elementary equivalent to N , we have K̃M̃(N ) = N . So M ◦K = idU in INT0. 2

There is, of course, also a model-free proof of the result.

Theorem 5.2. Suppose that K,M witness that V is an INT1-retract of U , and
U is an INT3-retract of V . Suppose further that M is direct. Then U and V are
synonynous.

Proof. Since M is direct, it follows that, in V , we have δK◦M = δK . We replace
K by a definably isomorphic direct interpretation K ′. Suppose F is the promised
isomorphism between K ◦M and idV . We take, for P of arity n, in the signature
of U :

• PK′(v0, . . . , vn−1) :↔ ∃~u0∈δK , . . . ,∃~un−1∈δK
(
∧
i<n ~uiFvi ∧ PK(~u0, . . . , ~un−1)).
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K |= U

K ◦M |= V

id |= V

F

Figure 1. Illustration of the Proof of Theorem 5.2

Clearly, we have an isomorphism F ′ : K → K ′, based on the same underlying
formula as F . Hence K ′,M witness that U is an INT3-retract of V .

We note that K ′ ◦M is direct. Suppose R is an m-ary predicate of V . We have:

V ` RK′◦M (x0, . . . , xm−1) ↔ (RM (x0, . . . , xm−1))K
′

↔ ∃~y0∈δK , . . . ,∃~ym−1∈δK
(

∧
j<m

~yjFxj ∧ (RM (~y0, . . . , ~ym−1))K)

↔ ∃~y0∈δK , . . . ,∃~ym−1∈δK
(

∧
j<m

~yjFxj ∧RK◦M (~y0, . . . , ~ym−1))

↔ R(x0, . . . , xm−1)

Thus, we find: K ′ ◦ M = idV in INT0, in other words, V is an INT0-retract of
U . We apply Theorem 5.1 to K ′,M to obtain the desired result: U and V are
synonymous. 2

We are mainly interested in the following corollary.

Corollary 5.3. Suppose that K : U → V and M : V → U form a bi-interpretation
and that M is direct. Then U and V are synonynous.

We now prove our main theorem.

Theorem 5.4. Suppose V is conceptual. Suppose that K,M witness that U is an
INT3-retract of V and V is an INT1-retract of U . Suppose finally that K and M
are both identity-preserving. Then, U and V are synonymous.

Proof. We note that in V , δK is a (virtual) subclass of the full domain. Hence we
have an definable injection from δK to the full domain.

Again δK◦M = δKM ∩ δK is a (virtual) subclass of δK . Moreover, we have a
definable bijection F between the full domain and δK◦M . Hence, we have a definable
injection from the full domain into δK .
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F emb

K ◦M |= V

K |= U

id |= V

Figure 2. Illustration of the Proof of Theorem 5.4

We apply the Schröder-Bernstein Theorem to the full domain and δK providing
us with a bijection G between the full domain and δK . We define a new interpre-
tation K ′ : U → V , by setting:

• PK′(v0, . . . , vn−1) :↔ ∃w0∈δK , . . . , wn−1∈δK
(
∧
i<n viGwi ∧ PK(w0, . . . , wn−1)).

Clearly K ′ is direct and isomorphic to K. We apply Theorem 5.2 and conclude
that U and V are synonymous. 2

We note that in the circumstances of Theorem 5.4, it follows that U is also concep-
tual. Here is the salient corollary.

Corollary 5.5. Suppose V is conceptual. Suppose K : U → V and M : V →
U form a bi-interpretation and are both identity-preserving. Then, U and V are
synonymous. A fortiori, we have the same theorem, when V is sequential.

In Section 7, we provide an example to illustrate that one cannot drop the demand
of identity preservation for any of the two interpretation. We provide two finitely
axiomatized sequential theories that are bi-interpretable, but not synonymous. One
of the two witnesses of the bi-interpretation is identity preserving.

6. Applications

In this section we provide a number of applications of Corollary 5.5.

6.1. Natural Numbers and Rational Numbers. Julia Robinson, in her seminal
paper [Rob49], shows that the natural numbers are definable in Q, the field of the
rationals. This gives us an identity preserving interpretation of Th(N) in Th(Q).
Conversely, we can find an identity preserving interpretation of Th(Q) in Th(N)
by using the Cantor pairing and by just considering pairs 〈m,n〉 where m and
n have no common divisor except 1. Addition and multiplication are defined in
the usual way. We can easily define internal isomorphisms witnessing that these
interpretations form a bi-interpretation. Hence, Th(N) in Th(Q) are synonymous.
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6.2. Finite Sets and Numbers. We consider the theory ZF+
fin := (ZF − INF) +

¬INF + TC. This is ZF in the usual formulation minus the axiom of infinity, plus
the negation of the axiom of infinity and the axiom TC that tells us that every set
has a transitive closure. Kaye and Wong in their paper [KW07] provide a careful
verification that ZF+

fin and PA. are synonymous. By Corollary 5.5, it is sufficient
to show that the Ackermann interpretation of ZF+

fin in PA and the von Neumann
interpretation of PA in ZF+

fin form a bi-interpretation. For further information about
the related theory ZFfin = (ZF− INF) + ¬INF, see [ESV10].

6.3. Sets with or without Urelements. Benedikt Löwe shows that a certain ver-
sion of ZF with a countable set of urelements is synonymous with ZF. See [Löw06].
Again this result is easily obtained using Corollary 5.5.

6.4. Well-founded Sets versus Non-well-founded Sets. Let ZFCAFA be ZFC
minus Foundation plus the anti-foundation axiom AFA. See [Acz88] for an extensive
treatment of ZFCAFA.

We may interpret ZFCAFA in ZFC, say via K, in the following way. The objects
of the interpretation are rooted directed graphs (of set size) modulo bisimulation.
The graph G is an ‘element’ of the graph H if there is an arrow from the root of
H to a graph G′ that is bisimular to G.

We can eliminate the equivalence relation from the interpretation using Scott’s
trick: we assign to an equivalence class the set of its elements of minimal rank. This
does not give us canonical representatives, but just an injection of the equivalence
classes to sets.4

We also have a backwards interpretation, say M , of ZFC in ZFCAFA: we just rela-
tivize to the well-founded sets. The interpretation M is clearly identity preserving.

It is easy to see that the two interpretations form a bi-interpretation. Using
Corollary 5.5, we see that ZFCAFA and ZFC are synonymous.

The situation is even more interesting if we drop the axiom of choice. Let B be
the axiom every set is equinumerous to a well-founded set. The two interpretations
described above, transposed to the new context, form a bi-interpretation between
ZFAFA + B and ZF. Thus, we find that ZFAFA + B is synonymous with ZF.

Thomas Forster shows, in his paper [For03], that the extra axiom B is indepen-
dent of ZFAFA. This means that ZF and ZFAFA are not bi-interpretable via the given
pair of interpretations. It is unknown whether ZF and ZFAFA are bi-interpretable
via another pair of interpretations. In an unpublished note Ali Enayat shows that
ZF and ZF− Foundation are not bi-interpretable.

7. Frege meets Cantor: an Example

In this section, we provide an example of two finitely axiomatized, sequential
theories that are bi-interpretable but not synonymous. One of the two interpre-
tations witnessing bi-interpretability is identity preserving. The example given is
meaningful: it is the comparison of a Frege-style weak set theory and a Cantor
style weak set theory. We show that these theories are not the same in the strictest
sense, to wit synonymy, but that they are the same in a slightly weaker sense, to
wit bi-interpretability.

4There are two normal forms for graphs, to wit bisimulation-minimal graphs and canonical
unravelings. However, these normal forms are only determined up to isomorphism.
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The theory ACF[ is the one-sorted version of adjunctive class theory with Frege
function.5 Our theory has unary predicates ob and cl, and binary predicates ∈
and F. Here F is the Frege relation. We will write x : ob for ob(x), ∀x:ob . . . for
∀x (ob(x) → . . .), ∃x:ob . . . for ∃x (ob(x) ∧ . . .). Similarly for cl. We have the
following axioms.

ACF[1. ` ∀x (x : ob ∨ x : cl),
ACF[2. ` ∀x¬ (x : ob ∧ x : cl),
ACF[3. ` ∀x, y (x ∈ y → (x : ob ∧ y : cl)),
ACF[4. ` ∀x, y (x F y → (x : ob ∧ y : cl)),
ACF[5. ` ∃x:cl ∀y:ob y 6∈ x,
ACF[6. ` ∀x:cl ∀y:ob ∃z:cl ∀w:ob (w ∈ z ↔ (w ∈ x ∨ w = y)).
ACF[7. ` ∀x, y:cl (∀z:ob (z ∈ x↔ z ∈ y)→ x = y).
ACF[8. ` ∀x:ob ∃y:cl x F y,
ACF[9. ` ∀x:ob ∀y, y′:cl ((x F y ∧ x F y′)→ y = y′),

ACF[10. ` ∀x:cl ∃y:ob y F x.

We provide 1-dimensional interpretations witnessing that AS and ACF[ are bi-
interpretable. Note that by Theorem B.1, it follows that ACF[ is sequential.

In the context of AS, we write:

• pair(x, y, z) :↔ ∃u, v ∀w ((w ∈ u↔ w = x) ∧
(w ∈ v ↔ (w = x ∨ w = y)) ∧ (w ∈ z ↔ (w = u ∨ w = v))),

• Pair(x) :↔ ∃y, z pair(y, z, x),
• π0(z, x) :↔ ∃y pair(x, y, z), π1(z, y) :↔ ∃x pair(x, y, z),
• empty(x) :↔ ∀y y 6∈ x, inhab(x) :↔ ¬ empty(x).
• x ≈ y :↔ ∀z (z ∈ x↔ z ∈ y).

We can verify the usual properties of pairing. The πi are functional on Pair. We will
write them using functional notation. We should remember that they are undefined
outside Pair. We first define an interpretation L : ACF[ → AS. We can

• δL(x) :↔ Pair(x),
• obL(x) :↔ Pair(x) ∧ empty(π0(x)),
• clL(x) :↔ Pair(x) ∧ inhab(π0(x)),
• x =L y :↔ (x, y : obL ∧ π1(x) = π1(y)) ∨ (x, y : clL ∧ π1(x) ≈ π1(y)).
• x ∈L y :↔ x : obL ∧ y : clL ∧ π1(x) ∈ π1(y),
• x FL y :↔ x : obL ∧ y : clL ∧ π1(x) ≈ π1(y).

It is easy to see that the specified translation does carry an interpretation of ACF[
in AS, as promised. Next, we define an interpretation ACF[. K : AS→ ACF[.

• δK(x) :↔ x : ob,
• x =K y ↔ x, y : ob ∧ x = y,
• x ∈K y ↔ x, y : ob ∧ ∃z:cl (x ∈ z ∧ y F z).

We note that K is identity preserving. The verification that our interpretations do
indeed specify a bi-interpretation is entirely routine. For completeness’ sake, we
provide the computations involved in Appendix C.

5It would be more natural to give the example for the two-sorted theory ACF and to use the

notion of piecewise interpretation. The definitions of the interpretations and the verification that

they form a bi-interpretation would be simpler. In fact, we would avoid the use of coding in our
definitions. However, we would need to develop more of the theory of many-sorted interpretations

to handle the superior approach smoothly. This is beyond the scope of our present paper.
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We show that AS and ACF[ are not synonymous —not even when we allow param-
eters. We build the following model M of AS. The domain is inductively specified
as the smallest set M such that if X is a finite subset of M , then 〈0, X〉 and 〈1, X〉
are in M . Let m,n, . . . range over M . We define: m ∈? n iff n = 〈i,X〉 and m ∈ X.
It is easily seen that M is indeed a model of AS. Clearly, for any finite subset X0

of M we can find find an automorphism σ of M of order 2 that fixes X0 and fixes
only finitely many elements of M .

Suppose AS and ACF[ were synonymous. Let N be the internal model of ACF[
in M given by the synonymy. Say the interpretation is P , involving a finite set of
parameters X0. Let σ be an automorphism of order 2 that fixes X0 and that fixes
at most finitely many objects. Consider the classes {p, σp}N , where p is in obN .
(Note that σ must send N -objects to N -objects.) Clearly there is an infinity of
such classes. By extensionality these classes are fixed by σ. This contradicts the
fact that σ has only finitely many fixed points.

It is well known that if two models are bi-interpretable (without parameters) then
their automorphism groups are isomorphic. Our example shows that the action of
these automorphism groups on the elements can be substantially different.
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Appendix A. Definitions

In this appendix, we provide detailed definitions of translations, interpretations
and morphisms between interpretations.

A.1. Translations. Translations are the heart of our interpretations. In fact, they
are often confused with interpretations, but we will not do that officially. In practice
it is often convenient to conflate an interpretation and its underlying translation.

We think of formulas modulo α-conversion. An n-ary proto-formula A is some-
thing like a formula with (at most) n free variables where we abstract away from
the identity of the variables. Officially, an n-ary proto-formula A is a function from
sequences of n variables to formulas, so that, for any substitution σ of variables
with as domain the the variables in ~x, we have A(σ(~x)) = σ(A(~x)).

We define more-dimensional, one-sorted, one-piece relative translations without
parameters. Let Σ and Θ be one-sorted signatures. A translation τ : Σ → Θ is
given by a triple 〈m, δ, F 〉. Here δ will be a m-ary proto-formula of signature Θ.
The mapping F associates to each relation symbol R of Σ with arity n an m×n-ary
proto-formula of signature Θ.
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We demand that predicate logic proves F (R)(~x0, . . . , ~xn−1)→ (δ(~x0)∧. . . δ(~xn−1)).
Of course, given any candidate proto-formula F (R) not satisfying the restriction,
we can obviously modify it to satisfy the restriction.

We translate Σ-formulas to Θ-formulas as follows.

• (R(x0, . . . , xn−1))τ := F (R)(~x0, . . . , ~xn−1).
We use sloppy notation here. The single variable xi of the source language needs to

have no obvious connection with the sequence of variables ~xi of the target language that

represents it. We need some conventions to properly handle the association xi 7→ ~xi.

We do not treat these details here. We demand that the ~xi are fully disjoint when the

xi are different.

• (·)τ commutes with the propositional connectives;
• (∀xA)τ := ∀~x (δ(~x)→ Aτ );
• (∃xA)τ := ∃~x (δ(~x) ∧Aτ ).

Here are some convenient conventions and notations.

• We write δτ for ‘the δ of τ ’ and Fτ for ‘the F of τ ’.
• We write Rτ for Fτ (R).
• We write ~x ∈ δ for: δ(~x).

There are some natural operations on translations. The identity translation id :=
idΘ is one-dimensional and it is defined by:

• δid(x) := (x = x),
• Rid(~x) := R~x.

We can compose relative translations as follows. Suppose τ is an m-dimensional
translation from Σ to Θ, and ν is a k-dimensional translation from Θ to Ξ. We
define:

• We suppose that with the variable x we associate under τ the sequence
x0, . . . , xm−1 and under ν we send xi to ~xi.
δτν(~x0, . . . , ~xm−1) := (δν(~x0) ∧ . . . ∧ δν(~xm−1) ∧ (δτ (x))ν),

• Let R be n-ary. Suppose that under τ we associate with xi the sequence
xi,0, . . . , xi,m−1 and that under ν we associate with xi,j the sequence ~xi,j .
We take:
Rτν(~x0,0, . . . ~xn−1,m−1) = δτ (~x0,0)∧. . .∧δτ (~xn−1,m−1) ∧(Rτ (x0, . . . , xn−1))ν .

A one-dimensional translation τ preserves identity if (x =τ y) = (x = y). A one-
dimensional translation τ is unrelativized if δτ (x) = (x = x). An one-dimensional
translation τ is direct if it is unrelativized and preserves identity. Note that all
these properties are preserved by composition.

Consider a modelM with domain M of signature Σ and k-dimensional translation
τ : Σ → Θ. Suppose that N := {~m∈Mk | M |= δτ ~m}. Then τ specifies an
internal model N of M with domain N and with N |= R(~m0, . . . , ~mn−1) iff M |=
Rτ (~m0, . . . , ~mn−1). We will write τ̃(M) for the internal model of M given by τ .
Treating the mapping τ,M 7→ τ̃M as a partial function that is defined precisely if
δMτ is non-empty. Let Mod or (̃·) be the function that maps τ to τ̃ . We have:

Mod(τ ◦ ρ)(M) = (Mod(ρ) ◦Mod(τ))(M).

So, Mod behaves contravariantly.
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A.2. Relative Interpretations. A translation τ supports a relative interpretation
of a theory U in a theory V , if, for all U -sentences A, U ` A ⇒ V ` Aτ . Note
that this automatically takes care of the theory of identity and assures us that δτ
is inhabited. We will write K = 〈U, τ, V 〉 for the interpretation supported by τ .
We write K : U → V for: K is an interpretation of the form 〈U, τ, V 〉. If M is an
interpretation, τM will be its second component, so M = 〈U, τM , V 〉, for some U
and V .

Par abus de langage, we write ‘δK ’ for: δτK
; ‘RK ’ for: RτK

; ‘AK ’ for: AτK , etc.
Here are the definitions of three central operations on interpretations.

• Suppose T has signature Σ. We define:
idT : T → T is 〈T, idΣ, T 〉.
• Suppose K : U → V and M : V →W . We define:
M ◦K : U →W is 〈U, τM ◦ τK ,W 〉.

It is easy to see that we indeed correctly defined interpretations between the theories
specified.

A.3. Equality of Interpretations. Two interpretations are equal when the target
theory thinks they are. Specifically, we count two interpretations K,K ′ : U → V as
equal if they have the same dimension, say m, and:

• V ` ∀~x (δK(~x)↔ δK′(~x)),
• V ` ∀~x0, . . . , ~xn−1∈δK (RK(~x0, . . . , ~xn−1)↔ RK′(~x0, . . . , ~xn−1)).

Modulo this identification, the operations identity and composition give rise to a
category INT0, where the theories are objects and the interpretations arrows.6

Let MOD be the category with as objects classes of models and as morphisms all
functions between these classes. We define Mod(U) as the class of all models of U .
Suppose K : U → V . Then, Mod(K) is the function from Mod(V ) to Mod(U) given
by: M 7→ K̃(M) := τ̃K(M). It is clear that Mod is a contravariant functor from
INT0 to MOD.

A.4. Maps between Interpretations. Consider K,M : U → V . Suppose K is
m-dimensional and M is k-dimensional. A V -definable, V -provable morphism from
K to M is a triple 〈K,F,M〉, where F is a m + k-ary proto-formula.7 We write
~x F ~y for F (~x, ~y). We demand that F has the following properties.

• V ` ~x F ~y → (~x ∈ δK ∧ ~y ∈ δM ).
• V ` ~x =K ~u F ~v =M ~y → ~x F ~y.
• V ` ∀~x∈δK ∃~y∈δM x F y.
• V ` (~x F ~y ∧ ~x F ~z)→ ~y =M ~z.
• V ` (~x0F~y0 ∧ . . . ~xn−1F~yn−1 ∧RK(~x0, . . . , ~xn−1))→ RM (~y0, . . . , ~yn−1).

We will call the arrows between interpretations: i-maps or i-morphisms. We write
F : K → M for: 〈K,F,M〉 is a V -provable, V -definable morphism from K to
M . Remember that the theories U and V are part of the data for K and M . We
consider F,G : K ⇒M as equal when they are V -provably the same.

6For many reasons, the choice for the reverse direction of the arrows would be more natural.

However, our present choice coheres with the extensive tradition in degrees of interpretability. So,
we opted to adhere to the present choice.

7Since, in this stage, we are looking at definitions without parameters we could, perhaps, better
speak of V -0-definable. Parameters may be added but in the context where we consider theories

rather than models some extra details are needed to make everything work smoothly.
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An isomorphism of interpretations is easily seen to be a morphism with the
following extra properties.

• V ` ∀~y∈δM ∃~x∈δK x F y,
• V ` (~x F ~y ∧ ~z F ~y)→ ~x =K ~z,
• V ` (~x0F~y0 ∧ . . . ~xn−1F~yn−1 ∧RM (~x0, . . . , ~xn−1))→ RK(~y0, . . . , ~yn−1).

We call such isomorphisms: i-isomorphisms. By a simple compactness argument
one may prove:

Theorem A.1. Suppose the signature of U is finite. Consider K,M : U → V .
Suppose that, for every model N of V , there is an N -definable isomorphism between
K̃(N ) and M̃(N ). Then, K and M are i-isomorphic.

A.5. Adding Parameters. We can add parameters in the obvious way. An inter-
pretation K : U → V with parameters will have a k-dimensional parameter domain
α (officially a proto-formula), where V ` ∃~x α~x. We allow the extra variables ~x
to occur in the translations of the U formulas. We have to take the appropriate
measures to avoid variable-clashes. The condition for K to be an interpretations
changes into: ` ∀~x (α~x→ AK,~x), where A is an axiom of U .

We note that, in the presence of parameters, the function K̃ associates a class of
models of U to a model of V .

Similar adaptations are needed to define i-isomorphisms with parameters.

Appendix B. Background for Sequentiality and Conceptuality

The notion of sequential theory was introduced by Pavel Pudlák in his pa-
per [Pud83]. Pudlák uses his notion for the study of the degrees of local multi-
dimensional parametric interpretability. He proves that sequential theories are
prime in this degree structure. In [Pud85], sequential theories provide the right
level of generality for theorems about consistency statements.

The notion of sequential theory was independently invented by Friedman who
called it adequate theory. See Smoryński’s survey [Smo85]. Friedman uses the
notion to provide the Friedman characterization of interpretability among finitely
axiomatized sequential theories. (See also [Vis90] and [Vis92].) Moreover, he shows
that ordinary interpretability and faithful interpretability among finitely axioma-
tized sequential theories coincide. (See also [Vis93] and [Vis05].)

The story of the weak set theory AS can be traced in a sequence of papers the
following papers: [ST52], [CH70], [Pud85], [Nel86], [MM94], [MPS90] (appendix
III), [Vis08], [Vis09]. The connection between AS and sequentiality is made in
[Pud85] and [MPS90].

For further work concerning sequential theories, see, e.g., [HP93], [Vis93], [Vis98],
[JV00], [Vis05].

A theorem that is relevant in this paper is Theorem 10.7 of [Vis06]:

Theorem B.1. Sequentiality is preserved to INT1-retracts for one-dimensional in-
terpretations. In other words: if V is sequential and if U is a one-dimensional
retract in INT1 of V , then U is sequential.

Proof. Suppose K : U → V and M : V → U are one-dimensional and M ◦ K is
i-isomorphic to idU via F . Let ∈? be the V -formula witnessing the sequentiality of
V . We define the U -formula ∈∗ witnessing the sequentiality of U by: x ∈∗ y iff y
is in δM and, for some z with zFx, we have (z ∈? y)M . 2
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This result holds only for one-dimensional interpretability. There are examples of
non-sequential theories that are bi-interpretable with a sequential theory. Since
bi-interpretablity is such a good notion of sameness of theories, one could argue
that the failure of closure of sequential theories under bi-interpretability is a defect
and that we need a slightly more general notion to fully reflect the intuitions that
sequentiality is intended to capture. For an elaboration of this point, see [Vis13].

We can easily adapt Theorem B.1, to obtain:

Theorem B.2. Conceptuality is preserved to INT1-retracts.

Appendix C. Verification of Bi-interpretability

We verify that the interpretations K and L of Section 7 do indeed form a bi-
interpretation. We first compute M := (L ◦K) : AS→ AS. We find:

• δM (x)↔ (δL(x) ∧ (x ∈ δK)L)↔ (x : Pair ∧ empty(π0(x))),
• We have (using the contextual information that x and y are in δM ):

x =M y ↔ (x =K y)L

↔ π1(x) = π1(y)

• We have (using the contextual information that x and y are in δM ):

x ∈M y ↔ (∃z:cl (x ∈ z ∧ y F z))L

↔ ∃z:pair (inhab(π0(z)) ∧ π1(x) ∈ π1(z) ∧ π1(y) ≈ π1(z))
↔ π1(x) ∈ π1(y)

Clearly π1 is the desired isomorphism from L to idAS.

In the other direction, let N := (K ◦L) : ACF[ → ACF[. We first note a simple fact
about K. Since F is functional on classes we will use functional notation for it. We
have, for u, v : ob,

u ≈K v ↔ ∀w (w ∈K u↔ w ∈K v)
↔ ∀w (w ∈ F(u)↔ w ∈ F(v))
↔ F(u) = F(v).

We have:

• δN (x)↔ (x ∈ δK(x) ∧ (δL(x))K)↔ (x : ob ∧ PairK(x)),
• obN (x)↔ (empty(π0(x)))K ,
• clN (x)↔ (inhab(π0(x)))K ,
• x =N y ↔ ((obN (x) ∧ obN (y) ∧ πK1 (x) = πK1 (y)) ∨

(clN (x) ∧ clN (y) ∧ F(πK1 (x)) = F(πK1 (y)))),
• x ∈N y ↔ (obN (x) ∧ clN (y) ∧ πK1 (x) ∈K πK1 (y)).
• x FN y :↔ (obN (x) ∧ clN (y) ∧ F(πK1 (x)) = F(πK1 (y))).

We define G : N → idACF[
as follows:

• x G y :↔ (obN (x) ∧ ob(y) ∧ πK1 (x) = y) ∨ (clN (x) ∧ cl(y) ∧ F(πK1 (x)) = y).
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We note that K is identity preserving. Thus, e.g., we find that pairK is a true
pairing on ob. It is easy to see that, in ACF[, the virtual classes obN and clN for a
partition of δN . It is now trivial to check that G is indeed an isomorphism.
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