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Over the years, supersymmetric quantum mechanics has evolved from a toy model of high-energy physics to
a field of its own. Although various examples of supersymmetric quantum mechanics have been found, systems
that have a natural realization are scarce. Here, we show that the extension of the conventional Cooper-pair box
by a 4π -periodic Majorana-Josephson coupling realizes supersymmetry for a certain characteristic ratio of the
conventional Josephson to the Majorana-Josephson coupling strength. The supersymmetry we find is a “hidden”
minimally bosonized supersymmetry that provides a nontrivial generalization of the supersymmetry of the free
particle and relies crucially on the presence of an anomalous Josephson junction in the system. We show that
the resulting degeneracy of the energy levels can be probed directly in a tunneling experiment and discuss the
various transport signatures. An observation of the predicted level degeneracy would provide clear evidence for
the presence of a Majorana-Josephson coupling of the characteristic strength.
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I. INTRODUCTION

Supersymmetric quantum mechanics in its conventional
form describes systems that consist of two sectors (dubbed
“fermionic” and “bosonic” sector) where, apart from the
ground state, each state has a partner state at equal energy
in the other sector [1,2]. Thus, the supersymmetry leads to a
degeneracy of the eigenstates that cannot be explained in the
conventional framework of continuous symmetries and their
respective higher-dimensional irreducible representations. In
the condensed matter context, the main focus has been on
a technical usage of supersymmetric quantum mechanics
allowing, for example, the algebraic construction of the
spectra of non-supersymmetric Hamiltonians [3] or partially
analytic approaches to (supersymmetric) lattice models such
as the ferromagnetic t-J model [4], the XXZ chain [5,6], or
quantum-critical systems [7]. The supersymmetries discussed
in these works do not necessarily involve a degeneracy of
the eigenstates on a physical level as the authors invoke
supersymmetry for providing an additional structure which
helps in understanding the (exact) solution of the problem.
Level degeneracies due to a supersymmetry have been in-
vestigated in the context of the hydrogen atom [8] and their
experimental signatures have been discussed for cold gases
implementing high-energy physics inspired models [9,10]. In
this paper, we show that adding a Majorana-Josephson junction
of the right coupling strength to a Cooper-pair box leads to a
degeneracy of all excited energy levels due to supersymmetry.
The supersymmetry we find is a “hidden” minimally bosonized
supersymmetry [11] and realizes a nontrivial generalization
of the supersymmetry of the free particle in one dimension
[12] to the presence of a potential. Moreover, we show that
the supersymmetry can be directly probed in a tunneling
experiment giving access to spectral properties of the system.

Majorana fermions have attracted a lot of attention in
the last years [13,14] due to their potential for quantum
computation [15]. At first sight, superconducting systems
hosting Majorana fermions appear to be prime candidates

FIG. 1. Setup corresponding to the model Hamiltonian Eq. (1),
describing a superconducting island with charge n, superconducting
phase φ1, and Majorana bound states γ1,A/B coupled to a ground
superconductor with charge n0, superconducting phase φ0, and
Majorana bound states γ0,A/B . The coupling is realized through a
Josephson junction (depicted by a boxed cross) with Josephson energy
EJ and a Majorana-Josephson junction (depicted as a half cross)
between bound states γ0,B and γ1,A with coupling strength EM . The
island is coupled via a capacitance Cg to a gate voltage Vg . The tunnel
Hamiltonian HT denotes the possibility to couple the bound state γ1,B

to a normal-conducting tunneling tip.

for the realization of supersymmetry since they involve both
bosonic (Cooper-pair condensate) and fermionic (Majorana
fermions) degrees of freedom. Indeed, a supersymmetry in
space-time has recently been shown to arise at an interface
of two topological superconductors in two dimensions [16]
as well as at the quantum phase transition between a trivial
and a topological superconductor in arbitrary dimensions
[17]. In contrast, here we want to focus on a realization of
supersymmetric quantum mechanics and its associated level
degeneracies with the help of Majorana fermions that does not
rely on their fermionic properties, but only on the simultaneous
presence of an anomalous 4π -periodic Josephson coupling and
a normal one.

In Sec. II, we introduce our system of interest, the
Majorana Cooper-pair box. In Sec. III, we give a short outline
of supersymmetric quantum mechanics and show that the
Majorana Cooper-pair box is supersymmetric for a certain
ratio of Josephson to Majorana-Josephson coupling strength.
In Sec. IV, we discuss a tunneling experiment for a direct
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probe of the level degeneracy predicted by the supersymmetry
before we conclude by summarizing our main findings and
discussing possible experimental realizations.

II. MAJORANA COOPER-PAIR BOX

The system of interest is depicted in Fig. 1. It is based
on the well-known Cooper-pair box, which consists of a
superconducting island (with phase φ1) that is coupled to a
ground superconductor (with phase φ0) via a gate voltage
Vg with capacitance Cg and a Josephson junction with
Josephson energy EJ . The Cooper-pair box is extended by
a 4π -periodic Josephson junction with coupling strength
EM which is characteristic for topological superconductors.
The 4π -periodic Josephson effect comes along with one
Majorana zero mode denoted by γ0,B and γ1,A on either
side of the junction. Exchange of single electrons leads to
the hybridization energy iEMγ0,Bγ1,A cos(φ/2) where φ =
φ1 − φ0 is the superconducting phase difference. Due to
topological constraints, there are always an even number of
Majorana zero modes on each superconducting island. Thus,
we have to take into account two additional Majorana bound
states γ0,A and γ1,B . We assume that the Majorana modes on
the same superconductor are sufficiently separated such that
we can neglect the exponentially small energy splitting. In
a specific realization of our proposed system, the Majorana
bound states could be hosted, for example, at the ends of
semiconductor nanowires placed on top of a conventional
s-wave superconductor [18,19]. However, our discussion is
independent of the specific way the Majorana bound states are
realized.

The total Hamiltonian of the system reads

Hγ = EC(n − ng)2 + EJ (1 − cos φ)

+ iEMγ0,Bγ1,A cos(φ/2); (1)

the last term is the Majorana Josephson coupling explained in
detail above. The first term is associated with the electrostatic
charging energy EC = e2/2Cg of having n electrons on the
superconducting island and ng = CgVg/e is the preferred
electron number (with e > 0 the elementary charge) on the
island set by the gate voltage. The second term proportional
to EJ = �Ic/2e arises due to the conventional Josephson
coupling exchanging Cooper-pairs with a critical current
Ic. In deriving the Hamiltonian, we have assumed a large
ground superconductor such that there is no charging energy
associated with it. As a result, the superconducting phase φ0 of
the ground superconductor has no dynamics and we can choose
a gauge with φ0 = 0. The number of electrons n ∈ Z and
the phase φ1 = φ of the superconducting island are conjugate
variables and obey the angular-momentum algebra

[n,e±iφ/2] = ±e±iφ/2, (2)

such that e±iφ/2 corresponds to addition/removal of a single
electron. The Majorana operators obey the Clifford algebra

{γk,γl} = γkγl + γlγk = 2δkl . (3)

Assuming that the temperature is below the superconduct-
ing gap and that apart from the Majorana modes there are
no additional Andreev states, an occupation of the (nonlocal)

fermionic mode spanned by the Majorana bound states
γ1,A,γ1,B must correspond to the presence of an odd number
of electrons on the superconducting island. Consequently, we
have the fermion parity constraint [20]

iγ1,Aγ1,B = (−1)n (4)

for the island and an analogous constraint for the ground super-
conductor. For each superconductor with a pair of Majorana
bound states, the fermion parity constraint reduces the Hilbert
space dimension by a factor of two, and consequently, the
Hilbert space of the system (1) is four times smaller than one
would naively expect. Since the Majorana degrees of freedom
are slaved to the number operator n, they can be explicitly
removed via a unitary transformation U ; see Appendix A for
details [21,22]. We obtain

H = EC(n − ng)2 + EJ (1 − cos φ) + EM cos(φ/2), (5)

where H is the projection of the transformed Hamiltonian
UHγ U † onto the constraint surface. As the Hamiltonian is 4π

periodic in φ, the charge offsets ng are only defined modulo
1. Thus, we restrict ourselves to ng ∈ [− 1

2 , 1
2 ] and adjust n

accordingly. For the important situation with ng = 0, n simply
counts the number of excess charges. We will show that at
this particular point the Hamiltonian (5) is supersymmetric
with a level degeneracy due to the symmetry provided that
EM = √

2EJ EC .

III. SUPERSYMMETRY

A supersymmetric Hamiltonian HQ decomposes into a
direct sum of two terms that share the same spectrum up
to a possibly missing ground state. The structure behind the
N = 1 supersymmetry in quantum mechanics is generated by
a Hermitian supercharge Q and Hermitian operator K squaring
to 1 which distinguishes the “bosonic” and “fermionic” sectors
[23]. In particular, these operators implement the algebra

{Q,Q} = 2HQ, {Q,K} = 0, (6)

which implies the conservation of K , [HQ,K] = 0. The
Hamiltonian decomposes into the eigenspaces of K according
to

HQ = P+HQP+ + P−HQP−,P± = 1
2 (1 ± K). (7)

Since the Hamiltonian is given by the square of a Hermitian
operator, the eigenenergies are positive En � 0. Given an
eigenstate |n,+〉 from the “bosonic” sector with eigenvalue
En > 0, the state |n,−〉 = Q|n,+〉/√En is an eigenvector of
the “fermionic” sector with the same eigenvalue En [24].

Showing that our system (5) is supersymmetric amounts
to finding a supercharge Q and an involution K realizing the
algebra Eq. (6). The first hunch that a potential supersymmetry
might be related to the parity of the actual number of electrons
on the superconducting island does not work due to the
parity constraint (4); see Appendix B. However, the Majorana
Cooper-pair box has a “hidden” supersymmetry as we will
show in the following.

In order to show the supersymmetry of the Hamiltonian
H in the sense of Eq. (6), we have to define an operator
K characterizing the sectors which commutes with the
Hamiltonian. For the special case ng = 0, such an operator
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FIG. 2. Numerically calculated wave functions ψn,±(φ) of the Hamiltonian Eq. (5) for n = 0,1,2 at the supersymmetric point ng = 0,
EM = √

2EJ EC for different values of EJ /EC (and thus α = √
2EJ /EC). The wave functions are chosen real and are aligned at their

corresponding eigenenergies. States ψn,+(φ) in the even parity sector of the superconducting phase are plotted in dark gray while the states
ψn,−(φ) in the odd parity sector are plotted in light gray. The black line represents the underlying potential. Both the potential and the states
are 4π periodic. We note that due to the supersymmetry, all levels with n > 0 are doubly degenerate.

is given by the parity K : φ �→ −φ of the superconducting
phase difference. We define the supercharge [25]

Q =
√

EC[n − iα sin(φ/2)](−1)n

=
√

EC

{
n(−1)n + iα

2

[
(−1)n sin

(
1

2
φ

)

− sin

(
1

2
φ

)
(−1)n

]}
, (8)

where α is a free parameter and (−1)n is the fermion parity
on the superconducting island. It is straightforward to check
that [(−1)n,K] = 0 and {n − iα sin(φ/2),K} = 0 such that Q

anticommutes with K .
Using the trigonometric relation 2 sin2(φ/2) = 1 − cos φ,

one obtains the supersymmetric Hamiltonian

HQ = EC

{
n2 + α cos(φ/2) + 1

2α2[1 − cos(φ)]
}
, (9)

which for α = √
2EJ /EC is equal to the Hamiltonian (5) at

the point

EM =
√

2EJ EC, ng = 0. (10)

The supersymmetry leads to a degeneracy of the spectrum
(apart from the ground state) which holds even in the
nonperturbative regime of arbitrary EJ /EC . While the super-
symmetry presented here does not depend on the presence
of fermionic degrees of freedom in the system, it relies
crucially on the presence of an anomalous Josephson junction
in addition to a conventional Josephson junction. In this
sense it provides a clear signature of the Majorana-induced
4π -periodic Josephson relation.

The supersymmetric structure of the Hamiltonian allows
us to obtain the ground state(s) to the energy eigenvalue zero
by solving the first-order differential equation QP±ψ0(φ) = 0
in the two sectors. In the present case, there is no solution
to QP−ψ0(φ) = 0 since solutions to Qψ(φ) = 0 are always
even with respect to the parity K of the superconducting phase
difference. We obtain that the nondegenerate ground state at
the supersymmetric point Eq. (10) is given by the function

ψ0(φ) = [4πI0(2α)]−1/2 exp[−α cos(φ/2)] (11)

in the “bosonic” sector with the modified Bessel function
I0(x) = ∫ 2π

0 dt exp(x cos t)/2π . All the excited states are

doubly degenerate due to the supersymmetry. The algebraic
construction of the higher energy levels and states is unfor-
tunately not possible, since the potential is self-isospectral,
that is, identical in both sectors of the Hamiltonian, and the
algebraic construction works only for potentials that differ in
at least one parameter in the two sectors [26].

Despite the lack of a general analytic solution for the de-
generate excited states, we can still understand the degeneracy
in the perturbative regimes. In particular, in the limit α → 0
we recover the supersymmetry of the free particle in one
dimension as discussed in Ref. [12]. In this case the spectrum
is given by En = ECn2 with the excess number of electrons
n ∈ Z; the ground state corresponds to n = 0, and the level
degeneracies are due to the two states n and −n at the same
energy for n � 1 [27]. It is an instructive exercise to check that
the level degeneracies persist when performing perturbation
theory in α. What can be observed is that each term in
order N involving EJ cancels against a term in order 2N in
EM appearing with opposite sign. Thus, the level degeneracy
between n and −n persists to arbitrary order in α; see Fig. 2.
It is this particular cancellation of terms in the perturbation
theory for which supersymmetry as a nonperturbative structure
has been initially designed in the high-energy context [28].

In the semiclassical regime with α → ∞, the states are
well localized close to the minima at φ ∈ 2πZ where the
potential V = EM cos(φ/2) + EJ (1 − cos φ) can be expanded
in quadratic order; see Fig. 2(c). Close to φ = 2π , we have
V2π ≈ −EM + 1

2EJ (φ − 2π )2 with the spectrum E2π,n =
−EM + √

8ECEJ (n + 1
2 ). In the second minimum, at φ

close to zero, we have V0 ≈ EM + 1
2EJ φ2 which leads to

the approximate spectrum E0,n = EM + √
8ECEJ (n + 1

2 ). At
the supersymmetric point (10), we observe the degeneracy
E2π,n+1 = E0,n valid for n � 0. So the structure is again a
single ground state E2π,0 with degenerate levels above it. It is a
highly nontrivial fact that the degeneracy found in the analysis
above valid for α → ∞ remains intact for finite α where next
order terms in the expansion of V as well as tunneling events
described by instantons have to been taken into account.

In the following, we will show that the degeneracies of the
whole spectrum (except for the ground state) arising in the
model (5) at the supersymmetric point can be directly probed
by a tunneling experiment.
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IV. TUNNELING CURRENT

To model the tunneling experiment depicted in Fig. 1, we
assume that the system is coupled via the Hamiltonian

HT =
∑

p

w∗c†pe−iφ/2γ1,B + H.c. (12)

to an effective noninteracting lead of spinless electrons
described by the Hamiltonian HL = ∑

p εpc
†
pcp with the

fermionic annihilation operators cp [29]; here, w is the
tunneling matrix element and the presence of the operators
e±iφ/2 account for the transfer of charge to the superconductor.
For this setup, we derive in Appendix C the exact expression

I = e	

h

∫
dε

( − Im GR
ε

)
(2fε−eV − 1) (13)

for the tunneling current; see also Ref. [30]. Here, fε =
[1 + exp(ε/kBT )]−1 is the Fermi distribution with respect
to the chemical potential of the superconducting island and,
consequently, fε−eV is the distribution of the electrons in
the lead. The tunnel coupling 	 = 2π |w|2ρ0 is given in the
wide-band limit where the electrons in the lead have the
constant density of state ρ0. The Majorana Green’s function in
the presence of the leads is defined as

GR
ε = −i

∫ ∞

0
dt eiεt 〈{γ̃ (t), γ̃ †}〉, (14)

with γ̃ = γ1,Be−iφ/2 evolving with respect to the full Hamil-
tonian Htot = Hγ + HL + HT . From Eq. (13), the differential
conductance G(V ) = dI/dV is obtained in the limit of low
temperatures (T → 0) where we can approximate dfε/dε ≈
−δ(ε) as

G(V ) = dI

dV
= −2e2	

h
Im GR

eV . (15)

Our goal is to evaluate the differential conductances in the
tunneling limit EJ ,EC � 	. To this end, we need to relate the
Majorana Green’s function GR

ε in the presence of the leads to
the Majorana Green’s function GR

0,ε without the leads (w = 0)
which can be evaluated by exact diagonalization.

In the noninteracting case (EC = 0), the retarded Majorana
Green’s function obeys a Dyson equation in Nambu space [31],
which can be written as

ǦR
ε = ǦR

0,ε + ǦR
0,ε�̌

R
ε ǦR

ε , (16)

and where Ǧε is given by

ǦR
ε = −i

∫ ∞

0
dt eiεt

〈( {γ̃ (t),γ̃ †} {γ̃ (t),γ̃ }
{γ̃ †(t),γ̃ †} {γ̃ †(t),γ̃ }

)〉
, (17)

and

�̌R
ε = |w|2

∑
p

(
(ε − εp + i0+)−1 0

0 (ε + εp + i0+)−1

)

= − i	

2

(
1 0
0 1

)
(18)

is the self energy due to the lead. In the noninteracting limit
(EC = 0), the superconducting phase φ is constant, φ(t) =
φ(0), and thus all the four entries of the Green’s function ǦR

ε

are equal. As a consequence, the Dyson equation becomes the
scalar equation

GR
ε = GR

0,ε + GR
0,ε�

R
ε GR

ε , (19)

with the self-energy �R
ε given by the sum of two processes

corresponding to transitions of electron and holes to the lead,

�R
ε = tr

(
�̌R

ε

) = −i	. (20)

In the following, we assume that the scalar Dyson equation
(19) remains applicable also in the interacting case. This
corresponds to a decoupling at the sequential tunneling
level and an inclusion of the leads through the self-energy
(20). We thus neglect a potential difference in the dynamics
between electrons and holes when tunneling to the lead [32].
As explained in Appendix D, the Green’s function GR

0,ε

at w = 0 can be expressed in the Lehmann representation
as

GR
0,ε =

∑
k,σ

aσ
k

ε − σEk0 + i0+ (21)

with the transition probabilities aσ
k = |〈k|eiσφ/2|0〉|2 to the

exact eigenstate |k〉 of the Hamiltonian H by adding (σ =
+) or removing (σ = −) a single electron, where Ekl =
Ek − El are differences of the corresponding eigenener-
gies. The full retarded Green’s function GR

ε is obtained
via the Dyson equation (19). The effect of the leads in-
corporated via the Dyson equation (19) is to provide a
state-dependent broadening of the levels of the isolated
system.

To get a feeling for the formulas, we first consider the simple
situation where due to a large level separation only a single
level |k〉 is close to resonance eV ≈ Ek0 > 0. In this case, we
can approximate GR

0,ε ≈ a+
k /(ε − Ek0 + i0+). Resolving the

Dyson equation and plugging the resulting expression for GR
ε

into (15) yields

G(V ) ≈ 2e2

h

(a+
k 	)2

(eV − Ek0)2 + (a+
k 	)2

, (22)

which describes a Lorentzian peak around the resonance
energy Ek0 with level-dependent broadening a+

k 	 proportional
to the probability of injecting an electron from the lead.

As a peak in the conductance is associated with the
resonance condition eV = Ek0, we expect that the level
degeneracy due to the supersymmetry is visible as a merging
of two peaks when approaching the supersymmetric point.
To test this hypothesis, we have numerically calculated the
conductance by determining GR

0,ε via exact diagonalization
of H and subsequently resolving the Dyson equation (19).
The resulting differential conductance Eq. (15) is displayed
in Fig. 3 as a function of bias voltage and offset charge
ng . As was to be expected from the approximate expression
Eq. (22), the conductance peaks with a value equal to the
conductance quantum 2e2/h when the bias voltage is tuned
such that the chemical potential of the lead is in resonance
with the eigenstates of the isolated system and resonant
Andreev reflection occurs. The conductance plots exhibit the
symmetry G(V,ng) = G(−V, − ng) which is exact to our
level of approximation. For the Hamiltonian H , a sign flip
of the offset charge ng is equivalent to a sign flip of the
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FIG. 3. The differential tunneling conductance G Eq. (15) at zero temperature at the special point EM = √
2EJ EC where the Hamiltonian

of the system is supersymmetric for ng = 0. The conductances are plotted as a function of bias voltage V and offset charge ng for different
ratios EJ /EC of Josephson energy energy to the charging energy. It is calculated from the exact bare Green’s function GR

0,ε of the system
computed by exact diagonalization and incorporating the leads via the Dyson equation (19) with a tunnel coupling 	 = 0.2EC . The upper
panel displays the conductance G(V ) discriminating between electron and hole processes. The strong bias asymmetry at low EJ /EC reflects
the transition from the charge basis to the phase basis as elaborated in the main text. The lower panel shows the symmetrized conductance
1
2 [G(V ) + G(−V )] which is easier to interpret. In the symmetrized conductance, the crossing of all the levels at ng = 0 is clearly visible. The
white horizontal line in the upper panel (b) between eV/EC = 1.2 and eV/EC = 3.5 at ng = −0.3 indicates the position of the line cut shown
in Fig. 4.

superconducting phase under action of the parity operator
K : φ �→ −φ. It is easily checked from the Lehmann rep-
resentation Eq. (21) that GR

0,ε �→ −GA
0,−ε under the operation

of K which due to the structure of the Dyson equation (19)
translates into G(V ) �→ G(−V ). An intuitive reason for the
symmetry G(V,ng) = G(−V, − ng) is that the sign of ng

favors an excess or defect number of electrons whereas the sign
of V corresponds to the lead preferably adding or removing
electrons. As we have shown in Sec. III, the supersymmetry
at small EJ /EC corresponds to a different sign of excess
electrons. Thus the two levels that cross appear in the tunneling
conductance at opposite bias. In order to remedy the problem
that the crossing is not directly visible in the conductance
as it appears at different bias, we plot the symmetrized
conductance 1

2 [G(V ) + G(−V )] in the lower panel of Fig. 3
where the crossing of the levels at ng = 0 is visible for all
ratios of EJ to EC . Due to the symmetry mentioned above, the
plots of the symmetrized conductances are symmetric under
ng ↔ −ng .

A striking feature which is especially visible in the
unsymmetrized conductance plots is the coincidence of peaks
in the conductances with regions of suppressed conductance.
In Fig. 4, we have shown a line cut of the conductance as
a function bias voltage V at the point EJ /EC = 1, EM =√

2EJ EC , and ng = −0.3 for 	 = 0.2EC . It shows a sequence
of two conductance peaks with their associated minima to the
left of them. Each of the conductance maxima-minima pair

has been fitted to a Fano resonances of the form

GFano(V ) = 2e2

h

(βγ/2 + ε − ε0)2

(1 + β2)[(ε − ε0)2 + γ 2/4]
, (23)

indicated by the dashed lines; here, β ∈ R is the asymmetry
parameter, γ is the linewidth of the resonance, and ε0 the
position of the resonance. In the limit |β| → ∞, the Fano
resonance approaches the usual Breit-Wigner resonance. It is
clear from Fig. 4 that the Fano-resonance behavior captures
the behavior of the conductance close to the maximum.
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FIG. 4. Solid line: Line cut through the tunneling conductance
G(V ) shown in Fig. 3 for EJ /EC = 1, EM = √

2EJ EC , 	 = 0.2EC ,
and ng = −0.3 as a function of bias voltage V . Dashed lines: Fits of
Fano peaks of the form Eq. (23) with parameters β = 7.5, γ /EC ≈
0.04, ε0/EC ≈ 1.91 for the resonance on the left and β = 6, γ /EC ≈
0.11, ω0/EC ≈ 2.81 for the resonance on the right.
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In order to understand the microscopic origin of the Fano-
like resonances, we study a simplified model with EM = 0 in
the regime EC � EJ � 	. In this case, we can evaluate the
Hamiltonian Eq. (5) in the charge basis and truncate to charge
states |n = 0〉,|n = ±1〉 which yields the effective three-level
Hamiltonian

H ≈ EJ +
⎛
⎝EC(1 + ng)2 0 −EJ /2

0 ECn2
g 0

−EJ /2 0 EC(1 − ng)2

⎞
⎠ (24)

with ground state |0〉 = |n = 0〉 at eigenenergy E0 = EJ +
ECn2

g (which is exact for all EJ /EC and ng due to the
fact that we have set EM = 0) and excited states |1,2〉 with
eigenenergies E1,2.

Due to the algebra Eq. (2), we find aσ
0 = |〈0|eσiφ/2|0〉|2 =

0. The completeness relation leads to aσ
1 + aσ

2 = 1. At the
particle-hole symmetric point ng = 0, we have that aσ

1 =
aσ

2 = 1
2 . For ng 
= 0, the particle-hole symmetry is broken and

thus aσ
1 
= aσ

2 . The bare Green’s function GR
0,ε of the effective

three-level system follows from the Lehmann representation
Eq. (21). We consider the case of V > 0 such that the main
contribution arises from the terms with σ = +. Solving the
Dyson equation for GR

ω , we obtain the expression

G(V ) ≈ 2e2

h

(x − a+
1 )2

(x − a+
1 )2 + E2

21x
2(1 − x)2/	2

(25)

for the conductance, where we have replaced the voltage by the
dimensionless variable x = (eV − E10)/E21 that is centered
around the resonance at eV = E10 [33]. Note that in the limit
of large level separation x → 0, we recover the single-level
conductance Eq. (22).

The new feature brought by the inclusion of the second
level is a zero in the conductance for ε between E10 and
E20 at the position x = a+

1 [34]. The zero in the conductance
arises due to the competition of the processes of tunneling an
electron into level |1〉 and level |2〉 leading to an interference.
The interference can be traced back to the fact that the
process happens at an energy eV > E10 which is above the
resonance at E10 and thus is approximately phase shifted
by π with respect to the second level where eV < E20. To
see that the expression (25) of the differential conductance
is of the Fano form close to the resonance at x = 0, we
expand x to second order in the denominator and obtain
GFano(V ) for the conductance around the resonance E10, where
−β = E21/	 � 1, γ ≈ 2a+

1 	, and ω0 ≈ Ek0. Note that the
asymmetry parameter β is negative in accord with the fact
that the root in the conductance occurs to the right of the
resonance position E10 and that γ and ω0 fit the single-level
result (22). Since β � 1 in the tunneling regime, the zero is
at a position where the conductance is already polynomially
suppressed, but the dip in the conductance still clearly shows
up in a logarithmic scale; cf. Fig. 4. For EC � EJ , we have
a+

2 → 0 and we find a very sharp resonance at E20 with dip in
the conductance in close vicinity to E20 (as compared to the
peak separation E21) whereas the resonance at E10 assumes its
usual Breit-Wigner form; see Fig. 5. It is interesting to note that
similar interference effects are known from transport through
molecules when multiple transport channels are available
[35,36].

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

x = (eV − E10)/E21

10−5

10−4

10−3

10−2

10−1

100

G
/
(2

e2
/
h
)

a+
1 = 0.05

a+
1 = 0.50

FIG. 5. Differential tunneling conductance Eq. (25) into the
effective three-level system Eq. (24) for E21/	 = 10 and different
values of the transition probability a+

1 into the state |1〉. Dotted
lines in the vicinity to the actual curves show the approximate
Fano-resonance form Eq. (23) valid for x = (ε − E10)/E21 � 1 that
is parametrized by β = −E21/	, ε0 = E10 + a+

1 E21/(1 + β2), and
γ = 2a+

1 	β2/(1 + β2).

V. CONCLUSIONS

We have shown that the extension of the usual Cooper-pair
box by a Majorana-Josephson junction features a degeneracy
in its spectrum for ng = 0 and EM = √

2EJ EC that is due
to a “hidden” bosonic supersymmetry generalizing the super-
symmetry of the free particle. The supersymmetry crucially
relies on the presence of the anomalous Josephson junction and
an observation of the predicted level crossings of all excited
states at the supersymmetric point provides a clear indication
of the presence of a Majorana-induced anomalous Josephson
junction.

We have shown that the supersymmetry can be probed
directly in a tunneling experiment by varying the bias voltage
V and the offset charge ng . In the tunneling regime, when
the bias voltage is tuned such that the Fermi level of the
lead coincides with the eigenenergies of the isolated system,
resonant Andreev reflection with a peak conductance equal to
the conductance quantum 2e2/h occurs for the whole range of
EJ /EC values. The crossing of all excited eigenstates of the
system as the supersymmetric point is approached can thus
clearly be observed in conductance maps obtained by varying
the offset charge ng and gate voltage V . The conductance
features suppressed conductance close to the resonances that
are due to interference. We have explained that the interference
is due the presence of several channels for single-electron
tunneling which exist since the island charge is not a sharp
observable by considering a simple analytic model in the
regime EJ /EC � 1.

Interestingly, the supersymmetry presented here could also
be found in Josephson Rhombi chains allowing tunneling
of pairs of Cooper pairs [37] in addition to conventional
Cooper-pair tunneling that are constructed in conventional
Josephson junction arrays and have recently been realized
experimentally [38]. However, in this case the Hilbert space
only involves the superconducting condensate and the states
and potential degeneracies of the system cannot be simply
probed by tunneling spectroscopy as proposed in this paper. It
is an interesting question for future work, whether there is a
simple experimental signature of supersymmetry in this setup.

075408-6



SUPERSYMMETRY IN THE MAJORANA COOPER-PAIR BOX PHYSICAL REVIEW B 90, 075408 (2014)

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with C.-Y. Hou and
A. M. Tsvelik. J.U. and F.H. are grateful for support from
the Alexander von Humboldt foundation and from the RWTH
Aachen University Seed Funds. D.S. acknowledges support
of the D-ITP consortium, a program of the Netherlands
Organisation for Scientific Research (NWO) that is funded by
the Dutch Ministry of Education, Culture, and Science (OCW).
I.A. acknowledges support by funds of the Erdal İnönü chair,
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APPENDIX A: BOSONIZATION OF THE HAMILTONIAN

Bosonizing the Majorana operators of the Hamiltonian
Eq. (1) via a Jordan-Wigner transformation as

γk,A =
(∏

l<k

σ z
l

)
σx

k , γk,B = −
(∏

l<k

σ z
l

)
σ

y

k , (A1)

where σ
x,y,z

k are independent sets of Pauli matrices for each
index k, brings the Majorana tunneling term to the form

EMσx
0 σx

1 cos(φ/2) = EM cos
[(

φ + πσx
0 − πσx

1

)/
2
]
. (A2)

Performing a unitary transformation U = ∏
k=0,1 Uk with

Uk = e−iπσ x
k nk/2 = cos(πnk/2) − iσ x

k sin(πnk/2), (A3)

which links the transfer of one electron to a flip of the fermion
parity and where we use the notation n1 = n, the transformed
Hamiltonian assumes the form

UHγ U † = {EC(n − ng)2 + EJ (1 − cos φ) + EM cos(φ/2)}I,
(A4)

while the fermion parity constraint Eq. (4) is transformed into

cos(πnk)σ z
k − sin(πnk)σy

k = (−1)nk . (A5)

In Eq. (A4), we have made explicit the trivial remaining spin
structure of the Hamiltonian. On the other hand, the trans-
formed constraint fixes integer charges nk ∈ Z and enforces
spin-up eigenstates of σ z

k . The fermion-parity constraint is
thus resolved in the transformed Hamiltonian Eq. (A4) by
considering just one spin component and demanding a 4π

periodicity of the eigenstates, leading to the Hamiltonian
Eq. (5) given in the main text.

APPENDIX B: SUPERSYMMETRY WITHOUT
THE FERMION PARITY CONSTRAINT

In a theory not bound by the fermion parity constraint
Eq. (4), the fermion parity K ′ = iγ0,Bγ1,A across the Majorana
junction is easily seen to be conserved in the original
Hamiltonian Hγ from Eq. (1). The natural choice for the
supercharge Q′ is then given by

Q′ =
√

EC[(n − ng) γ0,B − α′ sin(φ/2)γ1,A], (B1)

where α′ is a free parameter. The charge Q′ anticommutes
with the fermion parity K ′ across the junction. One verifies
that Q′2 = Hγ for the parameters Eq. (10) given in the main
text and α′ = α = √

2EJ /EC . The supersymmetry described
above corresponds to a supersymmetry between bosonic and

fermionic sectors, which cannot be realized in our system
since the Majoranas are no longer an independent degree of
freedom due to the fermion parity constraint Eq. (4) and only
the bosonized “hidden” supersymmetry given in the main text
remains.

APPENDIX C: DERIVATION OF THE CURRENT

Let us define a generic tunneling Hamiltonian

HT =
∑
ilp

w∗
lpic

†
lpe−iφi/2γk + wlpiγie

iφi/2clp, (C1)

describing the tunneling with tunneling matrix elements
wlpi between electrons of momentum p in lead l with
creation/annihilation operators c

†
lp,clp into Majorana bound

states γi with associated superconducting phases φi (φi = φj

for Majoranas on the same superconductor). The leads are free
with Hamiltonian

HL =
∑

l

∑
p

εlpc
†
lpclp. (C2)

Defining operators γ̃i = e−iφi/2γi , the tunneling Hamiltonian
has the appearance of a standard fermionic tunneling Hamil-
tonian. It is well known [39] that the expression for the
steady-state current Il through lead l, given a system with a
tunneling Hamiltonian of the form Eq. (12) and noninteracting
leads, can always be cast in the form

Il = e

�

∫
dε

2π
tr

[
(iG>

ε )	l
εf

l
ε − (−iG<

ε )	l
ε

(
1 − f l

ε

)]
, (C3)

where only the noninteraction of the leads has been exploited
and

(G<
ε )ij = i

∫
dt eiεt 〈γ̃ †

j γ̃i(t)〉, (C4)

(G>
ε )ij = −i

∫
dt eiεt 〈γ̃i(t)γ̃

†
j 〉 (C5)

are the lesser/greater Majorana Green’s functions in the
presence of the leads in the steady-state limit, f l

ε is
the equilibrium Fermi distribution of lead l, and (	l

ε)ij =
2π

∑
p wlpiw

∗
lpj δ(ε − εlp) is the lead coupling matrix. The cur-

rent expression Eq. (C3) has a straightforward interpretation:
the contribution to the current through lead l at energy ε is
given by the rate 	l

εf
l
ε of electron tunneling into the system

through lead l at energy ε times the number iG>
ε of available

states at this energy minus the rate 	l
ε(1 − f l

ε ) of electrons
tunneling out of the system into lead l times the number −iG<

ε

of occupied states [39]. With the Keldysh Green’s function
GK = G> + G< and the relation GR − GA = G> − G<, one
can rewrite the expression Eq. (C3) in the form

Il = e

�

∫
dε

2π
tr

{[
i
(
GR

ε − GA
ε

) + iGK
ε

]
	l

εf
l
ε

− [
i
(
GR

ε − GA
ε

) − iGK
ε

]
	l

ε

(
1 − f l

ε

)}
(C6)

= e

�

∫
dε

2π
tr

{
i
(
GR

ε − GA
ε

)
	l

ε

(
2f l

ε − 1
) + i

2
GK

ε 	l
ε

}
.

(C7)
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The key observation from Ref. [30] is that the GK
ε expression

vanishes when working with a wide band, 	l
ε = 	l , and assum-

ing coupling to just one Majorana γk , (	l)ij = (	l)kkδikδjk;
i.e.,

0 =
∫

dε

2π
tr

[
GK

ε 	l
ε

] = (	l)kkG
K (t = 0)kk (C8)

since GK (t = 0)kk = −i〈[γ̃k,γ̃
†
k ]〉 = 0. Thus, in the wide-band

limit with coupling to just one Majorana γk , one obtains the
expression

Il = e

�

∫
dε

2π

(− Im GR
ε

)
kk

(	l)kk

(
2f l

ε − 1
)
, (C9)

valid both in noninteracting and interacting setups. The very
cumbersome feature brought by the Majoranas is that even in
the interacting case the current expression remains completely
independent of the occupation state of the system and depends
only on spectral properties. This can be seen as yet another
reflection of the fact that a single Majorana mode does not
have a well-defined occupation number.

APPENDIX D: EVALUATION OF TRANSITION
PROBABILITIES

The eigenstates |kγ 〉 of the Hamiltonian Hγ from Eq. (1)
are related to the eigenstates |k〉 of the bosonized Hamiltonian
H from Eq. (5) via the unitary transformation Eq. (A3)
as |n〉 = U |nγ 〉. The Majorana γ1,B is in the bosonized
form expressed as γ1,B = −σ z

0 σ
y

1 . Using Uσ
y

k U † = (−1)nkσ
y

k ,
Uσz

k U † = (−1)nkσ z
k , and Ue±iφk/2U † = ∓iσ x

k e±iσ x
k /2, where

we again identify n1 = n, one finds

Uγ1,Be±iφ/2U † = ∓σ z
0 σ z

1 e±iφ/2(−1)n0+n. (D1)

Since n0 + n and σ z
k are conserved quantities of the Hamil-

tonian Eq. (A4), one obtains for the transition probabilities
|〈kγ |γ1,Be±iφ/2|lγ 〉|2 the result

|〈kγ |γ1,Be±iφ/2|lγ 〉|2 = |〈k|e±iφ/2|l〉|2 (D2)

employed in the main text.
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