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Phase diffusion in a Bose-Einstein condensate of light
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We study phase diffusion in a Bose–Einstein condensate of light in a dye-filled optical microcavity, i.e., the
spreading of the probability distribution for the condensate phase. To observe this phenomenon, we propose
an interference experiment between the condensed photons and an external laser. We determine the average
interference patterns, considering quantum and thermal fluctuations as well as dissipative effects due to the dye.
Moreover, we show that a representative outcome of individual measurements can be obtained from a stochastic
equation for the global phase of the condensate.
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I. INTRODUCTION

Phase transitions are everyday phenomena that have many
high-tech applications in daily life, one example being the
isotropic-nematic phase transition in liquid crystal display
(LCD) screens. Additionally, phase transitions are often
encountered in fundamental research, such as in the description
of superconductivity [1] and the electroweak and QCD phase
transition in cosmology [2–4]. As a result, throughout history
much effort has been put into understanding phase transitions.
A crucial step was the development of Landau theory in
1937 [5], which provided a general framework to describe
symmetry-breaking phase transitions.

Many phase transitions are associated with spontaneous
symmetry breaking [6,7]. In these transitions the state of
the system after the phase transition does not show the
same symmetry as the Hamiltonian. As an illustration of
spontaneous symmetry breaking, we consider the Heisenberg
model for ferromagnetism [8]. In this system the Hamiltonian
is invariant under rotations of the spins. After undergoing the
transition, the spins align in a particular direction, and the
state of the system breaks spin-rotation invariance. However,
the original symmetry still has consequences because a global
rotation of all spins leaves the energy invariant. Therefore,
the ordered phase is infinitely degenerate, and spontaneous
symmetry breaking by itself does not predict which particular
ground state the system will choose.

We can investigate this problem by looking at the proba-
bility distribution of the quantum-mechanical observable that
acquires a nonzero expectation value upon undergoing the
transition. In the context of atomic gases and Bose–Einstein
condensation [9,10], the Hamiltonian is invariant under global
U(1) transformations associated with the conservation of
the number of atoms. Therefore, the number of condensed
particles and the phase of the condensate are conjugate
variables. Heisenberg’s uncertainty principle implies that, for
a fixed number of condensed particles, the phase of the
condensate fluctuates. Thus, in finite-sized condensates the
phase is not fixed and the system is not in a state with a definite
phase. Rather, the phase of the condensate is characterized by
a probability distribution, which can have nontrivial dynamics
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of its own. In Bose–Einstein condensates this phenomenon is
known as phase diffusion [11,12].

Considerable theoretical work has been done on phase
diffusion in atomic condensates [13–18]. Experimentally,
there have also been some attempts to measure this phe-
nomenon [19,20], but up to now there is no experimental
evidence of phase diffusion. The only dynamical evolution
of the phase of a Bose–Einstein condensate was measured
in an optical lattice by quenching the system into the Mott-
insulator phase [21]. As a result, this phase dynamics is
not a consequence of spontaneous U(1) symmetry breaking
and having a finite number of condensed particles and is
fundamentally different from the phase diffusion discussed
in this article.

More recently, quasiparticle Bose–Einstein condensates,
such as condensates of magnons, exciton-polaritons, and
photons have been observed [22–25]. Since the phase of
light can be obtained from a relatively simple interference
experiment, the discovery of Bose–Einstein condensation of
photons, in particular, opens up a new avenue to investigate
phase diffusion in Bose–Einstein condensates.

In this article, we therefore study phase diffusion in a Bose–
Einstein condensate of photons. We propose an interference
experiment between the condensed photons and an external
laser to measure phase diffusion in the photonic condensate.
Since phase diffusion is governed by both quantum and thermal
fluctuations of the number of condensed particles, we calculate
average interference patterns for both cases separately. More-
over, for the present experimentally-most-relevant situation
where thermal fluctuations dominate, we show that represen-
tative results of individual measurements can be obtained from
a stochastic equation for the phase of the condensate.

II. QUANTUM FLUCTUATIONS

Experimentally, information on the phase of the condensate
can be inferred from interfering the electric field of the
photon condensate with an external laser and measuring the
intensity of the combined signal. We assume that the laser is
frequency locked to the homogeneous noninteracting energy
of a condensed photon, and without loss of generality we
assume that the distance from the laser and the condensed
photons to the detector is the same. A schematic picture of the
experimental setup is shown in Fig. 1.
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FIG. 1. Proposal for an experimental setup to measure the phase
diffusion of the Bose–Einstein condensate of photons in a dye-filled
microcavity. The mode filter selects the condensate mode of the light
that leaks through the mirror. These condensed photons interfere with
an external laser and, by measuring the intensity of the combined
signal, we obtain information about the phase diffusion of the Bose–
Einstein condensate of photons.

Since, for a finite-size condensate of photons, the phase
is not well defined, we introduce a density operator ρ̂ that
takes into account that the photons can be in a superposition
of different coherent states with different phases. Following
Ref. [26], we write the following for the intensity of the
combined signal of the laser and the condensate at the detector:
Ī (r,t) = Tr[ρ̂Ê−(r,t)Ê+(r,t)], where the bar denotes the
average and with Ê−(r,t) and Ê+(r,t) being, respectively,
the negative- and positive-frequency part of the sum of the
electric field of the laser and the Bose–Einstein condensate.

For our system the relevant basis states are the coherent
states |θ〉|θL〉, where |θL〉 is a coherent state of the laser with
phase θL and |θ〉 is a coherent state of the Bose–Einstein
condensate with a certain phase θ . In the following, we assume
without loss of generality that θL = 0. By using properties of
these coherent states (see e.g., Ref. [27]), we obtain for the
interference contribution of the intensity

ĪI(r,t) := Ī (r,t) − IL(r,t) − IC(r,t)

= 2AI(r,t)
∫ 2π

0
dθP (θ,t) cos(θ ), (1)

where IL(r,t) and IC(r,t) are the intensity of the laser and
the condensed photons, respectively. Furthermore, AI(r,t) is a
prefactor that is the product of the amplitude of the electric field
of the condensed photons and of the external laser. Moreover,
P (θ,t) is the probability for the Bose–Einstein condensate to
have phase θ . Since the intensity of the photons coming from
the condensate is independent of the phase, this interference
part of the intensity is the only relevant contribution for
observing phase diffusion.

For an explicit expression of the intensity as a function of
time, we need to determine the probability P (θ,t). In analogy
with Ref. [28], we obtain this probability by quantizing a field
theory that describes the dynamics of the phase of a Bose–
Einstein condensate of photons. These photons are equivalent
to a two-dimensional harmonically trapped gas of bosons with
effective mass m [25]. Furthermore, they have an effective
contact interaction with strength T 2B and a constant zero-
momentum energy mc2, with c being the speed of light in the
medium. Note that we have assumed the laser to be frequency

locked to mc2. Therefore, in imaginary time the relevant action
is given by

S[ψ∗,ψ] =
∫

�β

0
dτ

∫
dxψ∗(x,τ )

(
�

∂

∂τ
− �

2∇2

2m

−μ + 1

2
m	2|x|2 + T 2B

2
|ψ(x,τ )|2

)
ψ(x,τ ), (2)

where β = 1/(kBT ) with T being the temperature, μ is
the chemical potential of the photons with respect to the
energy mc2, and 	 is the harmonic trapping frequency. In
the following we use numerical values for 	, T 2B , and m as
given in Ref. [25].

To extract the dynamics of the global phase, we substitute
ψ(x,τ ) = √

ρ(x,τ )eiθ(τ ). Moreover, we consider the Thomas–
Fermi limit relevant for experiments and therefore can neglect
the gradient of the density profile ρ(x,τ ). By integrating out the
density field ρ(x,τ ) and performing a Wick rotation τ → it ,
we find an effective action for the global phase. Quantizing
this theory, we find that the wave function 
(θ,t) obeys

i�
∂
(θ,t)

∂t
= −D

(
∂

∂θ
+ iN0

)2


(θ,t), (3)

where N0 = ∫
dxρ̄(x) is the average number of condensed

photons, and the diffusion constant is defined as D =
T 2B/(2πR2

TF) with RTF being the Thomas–Fermi radius of
the photon condensate. The general solution to this equation
reads


(θ,t) =
∑
n∈Z

cn exp

{
− iD(n + N0)2t

�
+ inθ

}
, (4)

where the coefficients cn are determined by the initial condition
for the wave function.

In order to demonstrate the phase diffusion and to calculate
a typical interference pattern, we consider the example that the
initial wave function is a superposition of Gaussians centered
around θ (mod 2π ) = 0,


(θ,0) = 1

(πσ 2)1/4

∑
n∈Z

exp

{
− (θ + 2πn)2

2σ 2

}
. (5)

Taking this superposition ensures that the wave function is
periodic, i.e., 
(θ,0) = 
(θ + 2π,0). In principle we have a
slightly different normalization factor, but for the small values
of σ < 1 considered here, this is a very good approximation.
In experiments one would measure the phase of the condensate
and then look at its dynamics. Hence, we start from a wave
function that is strongly peaked and therefore we can use in
good approximation that σ < 1.

For this initial wave function, we can determine cn exactly
and obtain an analytic expression for the probability P (θ,t) =
|
(θ,t)|2. Typical plots of this probability are shown in Fig. 2.
At t = 0 we have a sharp peak and therefore the phase of the
condensate is well defined. However, if time evolves the peak
smears out and moves its position linearly with time. As time
evolves even further, the probability again regains its original
shape. This phenomenon is known as collapse and revival of
the wave function and is a consequence of the invariance of
the wave function for t → t + 2πk�/D for every integer k, as
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FIG. 2. (Color online) The probability P (θ,t) for the Bose–
Einstein condensate of photons at different times for N0 = 5 × 104

and σ = 10−1. The dashed, dotted, and solid curve are the probability
at t = 0, t = tcol, and t = 3tcol. We clearly see the diffusion of the
phase of the condensate if time evolves.

can be deduced from Eq. (4). Hereafter, cycles of collapse and
revival of the wave function occur.

Moreover, we use our expressions for the probability to
obtain the average interference pattern as defined in Eq. (1).
Again for small σ < 1, we find

ĪI(r,t) = 2σAI(r,t)√
π

cos

(
5(1 + 2N0)σ t

2tcol

)

×
∑
n∈Z

exp{−n(n + 1)σ 2} cos

(
5nσ t

tcol

)
, (6)

with tcol = 5�σ/(2D). This time gives a measure of the time
needed for this pattern to vanish for the first time. Furthermore,
this expression contains two other important timescales.
The first scale is the oscillation time of the interference
pattern, which for a relatively large number of condensed
photons N0 � 1 is given by tosc = �/(2DN0). Physically this
corresponds to �/μ, with μ being the chemical potential
of the condensate. Note that this calculation gives a factor
of two difference because of the quadratic expansion of the
grand canonical energy. The second timescale, given by trev =
2π�/D, is the revival time for which the interference pattern
returns to its original shape. Note that this timescale is larger
than tosc by a factor 4πN0. Furthermore, in the thermodynamic
limit N0 → ∞, we find that D ∝ 1/

√
N0 → 0 and both

tcol → ∞ and trev → ∞. Hence, in the thermodynamic limit
the condensate can be described as a symmetry-broken phase.

In the previous calculations we ignored that the photons are
in a dye-filled optical microcavity, and that there is dissipation
through the interaction with these dye molecules. As is shown
in Ref. [29] by fitting to experimental results, for low energies
these interaction effects can in very good approximation be
represented by one single dimensionless damping parameter
α. To incorporate this damping into our calculation, we note
that damping results in finite lifetimes for states with a nonzero
energy. Therefore, to include dissipation, we change Eq. (4) to


(θ,t) =
∑
n∈Z

cn

∫
dEρ(E,n) exp

{
− iEt

�
+ inθ

}
, (7)

where the spectral function ρ(E,n) is given by

ρ(E,n) = 1

π

αE

[E − D(n + N0)2]2 + α2E2
. (8)

A consequence of approximating the dissipation effects with
its low-energy limit is a violation of the sum rule, since the
integral of the spectral function over all energies gives 1/(1 +
α2). However, the experimental value of α is rather small and
therefore this approximation only leads to a small deviation.

For a relatively small number of condensed photons, the
interference pattern with dissipation reads

Ī (r,t ; α) � e−t/tdis ĪI(r,t), (9)

where tdis = �/(4αDN2
0 ) and ĪI(r,t) is given by Eq. (6). Thus

with dissipation there is another timescale tdis, which indicates
the decay time of the interference pattern. Furthermore, for
relatively small times t we can simplify Eq. (6) and obtain

Ī (r,t ; α) � 2AI(r,t)e−t/tdis−(5t/2tcol)2
cos(μt/�), (10)

which shows the different qualitative behavior of decay
due to dye and quantum effects, respectively. For very
large condensates N0 � 1, the low-energy approximation of
the dissipation is no longer valid and we have to incorporate the
complete energy dependence of the photon decay rate 
(E) =
−2Im[�(E)], where �(E) is the self-energy as calculated in
Ref. [29]. In a good approximation the dissipation timescale
is then found by replacing αDN2

0 by �
(DN2
0 )/2.

III. THERMAL FLUCTUATIONS

Analogously with Ref. [30], we describe the thermal
fluctuations with a Langevin field equation. As mentioned
before, we incorporate the interaction with the molecules by
one dimensionless parameter α. Furthermore, we neglect the
effects of the noncondensed photons. Following Ref. [31], we
separate the dynamics of the number of photons N (t) and their
global phase θ (t) and find

(1 + α2)�θ̇(t) = −μ +
√

(1 + α2)/N(t)ν(t),
(11)

(1 + α2)�Ṅ(t) = −2αμN (t) + 2�

√
N (t)(1 + α2)η(t),

where the stochastic generalized forces η(t) and ν(t) are
Gaussian and obey

〈ν(t)〉 = 〈η(t)〉 = 〈η(t)ν(t ′)〉 = 0,
(12)

〈ν(t)ν(t ′)〉 = �
2〈η(t)η(t ′)〉 � α�δ(t − t ′)/β.

Since we are dealing with Bose–Einstein condensation, we
used the fluctuation-dissipation theorem for large occupation
numbers. Because the photons are at room temperature, we
expect this to be a very good approximation.

Furthermore, we note that the strength of the noise for the
number N (t) and phase θ (t) of the condensed photons scales
differently with the number of condensed photons. For larger
number of photons the fluctuations in the particle number
increase, but the fluctuations in the global phase decrease.
Moreover, in the thermodynamic limit the noise for the global
phase vanishes, and we obtain again a condensate with a well-
defined phase.
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As the description of the thermal fluctuations is different
from the quantum fluctuations, we need to modify our
expression for the interference pattern. In the previous section
we found an expression by taking the average over an ensemble
consisting of various quantum states, each with a certain
probability. A single experimental measurement, however,
typically yields

II(r,t) = 2AI(r,t) cos[θ (t)], (13)

where θ (t) is the solution of Eqs. (11) for one realization of
the noise. As mentioned before, the fluctuations of the phase
of the condensate are only present in this interference part of
the intensity, and therefore we are primarily interested in this
part of the intensity. Moreover, to highlight the fluctuations
of the phase we would like to minimize the fluctuations
in the intensity of the external laser and the light coming
from the condensate. Since the intensity of the condensate
is proportional to the number of condensed photons, we are
interested in the regime with small number fluctuations. As
can be deduced from the experimental results in Ref. [32]
and Eqs. (11), the number fluctuations decrease for increasing
condensate fractions. Therefore, we consider large condensate
fractions such that the fluctuations in the interference pattern
are dominated by phase fluctuations, and we take N (t) =
〈N (t)〉 := N0.

In Fig. 3 we show the result for cos (θ (t)), where θ (t) is a
solution to the stochastic Eqs. (11) for a condensate fraction of
roughly 35%. The solid curve gives the interference pattern for
a certain realization of the stochastic forces. Every realization
of the noise results in a different interference pattern, and
therefore every individual measurement will give a different
result. However, once we average over more and more noise
realizations 〈cos (θ (t))〉 converges, and we do observe the
decay associated with the dissipation.

In order to get more information about this decay of the
intensity II(r,t), we have to take the average of Eq. (13) over
all noise configurations. By using the Fokker–Planck equation

0
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FIG. 3. (Color online) The result of cos (θ (t)) as a function of
t/tosc with tosc = �/μ � 5 × 10−10s. Here θ (t) is a solution to
the Langevin equation describing the dynamics of the phase of
the condensate for N (t) = 〈N〉 = 4 × 104, α = 10−1, and �β �
2.5 × 10−14s. The solid curve is the result for an arbitrary noise
configuration and the dashed curve represents the average over 500
different configurations of the noise.

as derived in Ref. [31], we find

(1 + α2)�
∂

∂t
〈cos(θ )〉 = μ〈sin(θ )〉 − α

2βN0
〈cos(θ )〉,

(14)

(1 + α2)�
∂

∂t
〈sin(θ )〉 = −μ〈cos(θ )〉 − α

2βN0
〈sin(θ )〉.

These equations admit analytic solutions and, by neglecting
contributions of order α2, we find for the average of the
interference part of the intensity

〈II(r,t)〉 = 2AI(r,t)e−αt/(2�βN0) cos(μt/�), (15)

which coincides with the result in Fig. 3 where we averaged
over 500 noise realizations.

IV. DISCUSSION AND CONCLUSION

In the previous sections, we gave a discussion on phase
diffusion governed by quantum and thermal fluctuations. Since
thermal fluctuations are dominant for the current experiment,
there are two important timescales tosc = �/μ and tdis =
2�βN0/α. For typical values for the trap frequencies 	, we
obtain that tosc is on the order of picoseconds. Since this is
rather small, we expect that it is challenging to measure these
oscillations experimentally. However, for large condensate
numbers N0 � 1 and α ranging from 10−1 to 10−2 the decay
time tdis is in the nanoseconds regime, which is within the
precision of current devices.

In conclusion, we have calculated the phase diffusion
of a Bose–Einstein condensate of photons. We propose an
interference experiment of the condensed photons with an
external laser to observe this phase diffusion experimentally.
Furthermore, we have shown that the typical outcome of
individual experiments can be obtained from a stochastic
equation for the phase of the condensate. Finally, we have
demonstrated that thermal fluctuations dominate, and we
obtained that the decay time of the average interference pattern
is in the nanosecond regime, which is a accessible timescale
in experiments.

Although the calculations in this work are specific to
a Bose–Einstein condensate of photons, the concepts and
ideas presented in this paper are also applicable to Bose–
Einstein condensation of exciton polaritons. Namely, also in
these Bose–Einstein condensates we can get experimental
information about the global phase of the condensate. For
example, in Refs. [33,34] the relative global phase of two
coupled exciton-polariton condensates is measured in order to
investigate Josephson oscillations. Therefore, it is worthwhile
to apply the present theory to Bose–Einstein condensation of
exciton polaritons.
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