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Abstract. It is well known that many local graph problems, like Vertex
Cover and Dominating Set, can be solved in 2O(tw)nO(1) time for graphs
with a given tree decomposition of width tw. However, for nonlocal prob-
lems, like the fundamental class of connectivity problems, for a long time
it was unknown how to do this faster than twO(tw)nO(1) until recently,
when Cygan et al. (FOCS 2011) introduced the Cut&Count technique
that gives randomized algorithms for a wide range of connectivity prob-
lems running in time ctwnO(1) for a small constant c.

In this paper, we show that we can improve upon the Cut&Count
technique in multiple ways, with two new techniques. The first tech-
nique (rank-based approach) gives deterministic algorithms with O(ctwn)
running time for connectivity problems (like Hamiltonian Cycle and
Stei-ner Tree) and for weighted variants of these; the second technique
(determinant approach) gives deterministic algorithms running in time
ctwnO(1) for counting versions, e.g., counting the number of Hamiltonian
cycles for graphs of treewidth tw.

The rank-based approach introduces a new technique to speed up dy-
namic programming algorithms which is likely to have more applications.
The determinant-based approach uses the Matrix Tree Theorem for de-
riving closed formulas for counting versions of connectivity problems; we
show how to evaluate those formulas via dynamic programming.

1 Introduction

It is known since the 1980s that many (NP -hard) problems allow algorithms
with a running time of the type f(tw)nc on graphs with n vertices and a tree
decomposition of width tw. It is a natural question how we can optimize on
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the dependency of the treewidth, i.e., we first aim at obtaining a small growing
(but, since we assume P �= NP , exponential) function f(tw) and second a small
exponent c. For problems with locally checkable certificates, that is, certificates
assigning a constant number of bits per node that can be checked by a cardinality
check and iteratively looking at all neighborhoods of the input graph1, it quickly
became clear that f(tw) only needs to be single exponential. See [14,20] for
sample applications to the Independent Set/Vertex Cover problems. From
the work of [13] and known Karp-reductions between problems it follows that
this dependence cannot be improved to subexponential algorithms unless the
Exponential Time Hypothesis (ETH) fails. In [17] it was shown that under the
Strong ETH (SETH) the current algorithms are optimal even with respect to
the bases of the exponential dependence on the treewidth, that is, problems with
current best running time ctwnO(1) cannot be solved in (c− ε)twnO(1) for positive
ε where, e.g., c = 2 for Independent Set and c = 3 for Dominating Set.

A natural class of problems that does not have locally checkable certificates are
connectivity problems such as Hamiltonian Cycle and Steiner Tree (see for
example [11, Section 5]), begging the question whether these can be solved within
single exponential dependence on tw as well. Early results on the special case ofH-
minor-free graphs were given in [9]. A positive answer to the question was found
by Cygan et al. [8] using a randomized approach termed “Cut & Count”: It
provided a transformation of the natural certificates to “cut-certificates” trans-
forming the connectivity requirement into a locally checkable requirement. The
transformation is only valid modulo 2, but by a standard technique introduc-
ing randomization [19], the decision variant can be reduced to the counting
modulo 2 variant. This result was considered surprising since in the folklore
2O(tw log tw)nO(1) dynamic programming routines for connectivity problems all
information stored seemed needed: Given two partial solutions inducing differ-
ent connectivity properties, one can be extendable to a solution while the other
one can not (this resembles the notion of Myhill-Nerode equivalence classes [12]).

The Cut & Count approach is one of the dynamic programming algorithms
using a modulo 2 based transformation [3,4,16,15,18,23]. These algorithms give
the smallest running times currently known, but have several disadvantages
compared to traditional dynamic programming algorithms: (a) They are ran-
domized. (b) The dependence on the inputs weights in weighted extensions is
pseudo-polynomial. (c) They do not extend to counting the number of witnesses.
(d) They do not give intuition for the optimal substructure / equivalence classes.
An additional disadvantage of the Cut & Count approach of [8], compared to tra-
ditional dynamic programming algorithms on tree decompositions, is that their
dependence in terms of the input graph is superlinear. Our work shows that
each of these disadvantages can be overcome, with two different approaches,
both giving deterministic algorithms for connectivity problems that are single
exponential in the treewidth.

1 E.g., for the odd cycle transversal problem that asks to make the input graph bi-
partite by removing at most k vertices, a locally checkable certificate would be a
solution set combined with a proper two-coloring of the remaining graph.
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Table 1. Our results for some famous computational problems. The second column
gives running times when a path decomposition of width pw is given in the input; the
third column gives running times when a tree decomposition of width tw is given in the
input. Rows 1–4 use the rank-based approach; Rows 5–7 the determinant approach. ω
denotes the matrix multiplication exponent (currently it is known that ω < 2.3727 [24]).

1 Weighted Steiner Tree n(1 + 2ω)pwpwO(1) n(1 + 2ω+1)twtwO(1)

2 Traveling Salesman n(2 + 2ω/2)pwpwO(1) n(5 + 2(ω+2)/2)twtwO(1)

3 k-Path n(2 + 2ω/2)pw(k + pw)O(1) n(5 + 2(ω+2)/2)tw(k + tw)O(1)

4 Feedback Vertex Set n(1 + 2ω)pwpwO(1) n(1 + 2ω+1)twtwO(1)

5 # Hamiltonian Cycle Õ(6pwpwO(1)n2) Õ(15twtwO(1)n2)

6 # Steiner Tree Õ(5pwpwO(1)n3) Õ(10twtwO(1)n3)

7 Feedback Vertex Set Õ(5pwpwO(1)n3) Õ(10twtwO(1)n3)

Our Contribution. We present the “Rank based” and “Squared determinant”
approaches. For a number of key problems, we state the results obtained by
applying these approaches in Table 1.

The approaches can be used to quickly and deterministically solve weighted
and counting versions of problems solved by the Cut & Count approach. Addi-
tional advantages of the rank based approach are that it gives a more intuitive
insight in the optimal substructure / equivalence classes of a problem and that
is has only a linear dependence on the input graph in the running time. The
only disadvantage of both approaches when compared to the Cut & Count ap-
proach is that the dependence on the treewidth or pathwidth in the running
time is slightly worse. However, although we did not manage to overcome it,
this disadvantage might not be inherently due to the new methods. Due to the
generality of our key ideas, as one might expect, the approaches can be applied
to other connectivity problems, such as all problems mentioned in [8]. However,
our methods may inspire future work not involving tree decompositions as well.

Since one of the main strengths of the treewidth concept seems to be its
ubiquity, it is perhaps not surprising that our results improve, simplify, gen-
eralize or unify a number of seemingly unrelated results. E.g., we unify algo-
rithms for Feedback Vertex Set [6] and k-Path [2] and generalize algorithms
for restricted inputs such as H-minor-free (e.g. [9]) or bounded degree graphs
(e.g. [10]). A more detailed discussion is postponed to the full version.

For space reasons, many details (and material that might be considered ‘more
than details’) are omitted from this extended abstract. For all such material, we
refer to the full paper, available at arXiv.org [5].

2 Preliminaries

Partitions and the Partition Lattice. Given a base set U , we use Π(U) for
the set of all partitions of U . It is known that, together with the coarsening
relation �, Π(U) gives a lattice, with the minimum element being {U} and
the maximum element being the partition into singletons. We denote � for the
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meet operation and � for the join operation in this lattice; these operators are
associative and commutative. We use Π2(U) ⊂ Π(U) to denote the set of all
partitions of U in blocks of size 2, or equivalently, the set of perfect matchings
over U . Given p ∈ Π(U), we let #blocks(p) denote the number of blocks of p.
If X ⊆ U we let p↓X ∈ Π(X) be the partition obtained by removing all elements
not in X from it, and analogously we let for U ⊆ X denote p↑X ∈ Π(X) for
the partition obtained by adding singletons for every element in X \ U to p.
Also, for X ⊆ U , we let U [X ] be the partition of U where one block is {X} and
all other blocks are singletons. If a, b ∈ U we shorthand U [ab] = U [{a, b}]. The
empty set, vector and partition are all denoted by ∅.

Tree Decompositions and Treewidth. A tree decomposition [22] of a graph G
is a tree T in which each node x has an assigned set of vertices Bx ⊆ V (called
a bag) such that

⋃
x∈T

Bx = V with the following properties: (i) for any uv ∈ E,
there exists an x ∈ T such that u, v ∈ Bx, (ii) if v ∈ Bx and v ∈ By, then v ∈ Bz

for all z on the (unique) path from x to y in T. In a nice tree decomposition, T
is rooted, and each bag is of one of the following types:

– Leaf Bag: a leaf x of T with Bx = ∅.
– Introduce Vertex Bag: an internal vertex x of T with one child vertex y

for which Bx = By ∪ {v} for some v /∈ By.
– Introduce Edge Bag: an internal vertex x of T labeled with an edge uv ∈ E

with one child bag y for which u, v ∈ Bx = By.
– Forget Bag: an internal vertex x of T with one child bag y for which

Bx = By \ {v} for some v ∈ By.
– Join Bag: an internal vertex x with two child vertices l and r with Bx =

Br = Bl.

We require that every edge in E is introduced exactly once. This variant of nice
tree decompositions was also used by Cygan et al. [8].

A nice tree decomposition is a nice path decomposition if it does not contain
join bags. The width tw(T) of a (nice) tree decomposition T is the size of the
largest bag of T minus one, and the treewidth (pathwidth) of a graph G can be
defined as the minimum treewidth over all nice tree decompositions (nice path
decompositions) of G.

In this paper, we will always assume that nice tree decompositions of the
appropriate width are given. To each bag x in a nice tree decomposition T, we
associate the graph Gx = (Vx, Ex) with Vx the union of all bags By with y a
descendant of x, and Ex the set of all edges introduced in an descendant of x.

Further Notation. For two integers a, b we use a ≡ b to indicate that a is
even if and only if b is even. We use N to denote the set of all non-negative
integers. We use Iverson’s bracket notation: if p is a predicate we let [p] be 1
if p is true and 0 otherwise. If ω : U → {1, . . . , N}, we shorthand ω(S) =∑

e∈S ω(e) for S ⊆ U . For a function/vector s by s[v → α] we denote the
function s \ {(v, s(v))} ∪ {(v, α)}. Note that this definition works regardless of
whether s(v) is already defined or not. We use either s|X or s|X to denote the
function obtained by restricting the domain to X .



200 H.L. Bodlaender et al.

3 The Rank Based Approach

3.1 Main Ideas of the Approach

Recall that a dynamic programming algorithm fixes a way to decompose cer-
tificates into ‘partial certificates’, and builds partial certificates in a bottom-
up manner while storing only their essential information. Given some language
L ⊆ {0, 1}∗, this is typically implemented by defining an equivalence ∼ on par-
tial certificates x, y ∈ {0, 1}k such that x ∼ y if xz ∈ L ↔ yz ∈ L, for every
extension z ∈ {0, 1}l. For connectivity problems on treewidth, the number of
non-equivalent certificates can be seen to be 2Θ(tw·lg tw). See for example [21] for
a lower bound in communication complexity.

We will use however, that sometimes we can represent the joint essential
information for sets of partial certificates more efficiently than naively repre-
senting essential information for every partial certificate separately. The rank
based approach achieves this as follows: Given a dynamic programming algo-
rithm, consider the matrix A whose rows and columns are indexed by partial
certificates, with A[x, y] = 1 if and only if xy ∈ L. Then observe that if a set of
rows X ⊆ {0, 1}n is linearly dependent (modulo 2), any partial certificate x ∈ X
is redundant in the sense that if xz ∈ L, there will be y ∈ X, y �= x with yz ∈ L.
Hence, the essential information can be reduced to rk(A) partial certificates.

The second ingredient to our approach are proofs that for the considered
problems, the rank (working in GF(2)) of such a matrix A is single exponential
in the treewidth, and moreover, we can give explicit bases.

Now, the approach is as follows: take the ‘usual’ dynamic programming algo-
rithm for the problem at hand, but add the following step: after each compu-
tation of a table at a bag node, form the submatrix of A with for each entry
in the table a row and for each element of the basis a column; find a row-basis
of this matrix and continue with only the partial certificates in this basis, of
which there are not more than the rank of the certificate matrix. This is easily
extended to weighted problems using a minimum weighted row-basis. For getting
this approach to work for connectivity problems we require an upper bound on
the rank of the matrix M defined as follows: Fix a ground set U and let p and q
be partitions of U (p and q represent connectivity induced by partial solutions),
define M[p, q] to be 1 if and only if the meet of p and q is the trivial parti-
tion, that is, if the union of the partial solutions induce a connected solution.
Although this matrix has dimensions of order 2θ(|U| log |U|), we exploit a simple
factorization in GF(2) of matrices with inner dimension 2|U| using an idea of [8].
To avoid creating a series of ad hoc results for single problems, we introduce a
collection of operations on sets of weighted partitions, such that our results ap-
ply to any dynamic programming (DP) formulation that can be expressed using
these operators only (see Section 3.2). In this extended abstract, we only state
and illustrate the main building blocks of the approach.
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3.2 Operators on Sets of Weighted Partitions

Recall that Π(U) denotes the set of all partitions of some set U . A set of weighted
partitions is a set A ⊆ Π(U) × N, i.e., a family of pairs, each consisting of a
partition of U and a non-negative integer weight.

We now define a collection of operators on sets of weighted partitions. The
operators naturally apply to connectivity problems by allowing, e.g., gluing of
connected components (i.e., different sets in a partition), or joining of two partial
solutions by taking the meet operation � on the respective partitions.

An important reason of interest in these operators is the following: if the re-
currences in a dynamic programming algorithm on a tree decomposition only
use these operators, then the naive algorithm evaluating the recurrence can be
improved beyond the typical 2Ω(tw·log tw) that comes from the high number of dif-
ferent possible partial solutions; and we typically get a running time of O(ctwn).

For notational ease, we let rmc(A) denote the set obtained by removing non-
minimal weight copies, i.e., rmc(A) = {(p, w) ∈ A | �(p, w′) ∈ A ∧ w′ < w}.

Definition 1. Let U be a set and A ⊆ Π(U) × N.

– Union. For B ⊆ Π(U) × N, define A ∪↓ B = rmc(A ∪ B).
– Insert. For X ∩ U = ∅, define ins(X,A) = {(p↑U∪X , w) | (p, w) ∈ A}.
– Shift. For w′ ∈ N define shft(w′,A) = {(p, w + w′) | (p, w) ∈ A}.
– Glue. For u, v, let Û = U ∪ {u, v} and define glue(uv,A) ⊆ Π(Û) × N as

glue(uv,A) = rmc({(Û [uv] � p↑Û , w) | (p, w) ∈ A}). Also, if ω : Û×Û → N,

let glueω(uv,A) = shft(ω(u, v), glue(uv,A)).
– Project. For X ⊆ U let X = U \X, and define proj(X,A) ⊆ Π(X)×N as

proj(X,A) =
{

(p↓X , w)
∣
∣
∣ (p, w) ∈ A ∧ ∀e ∈ X : ∃e′ ∈ X : p � U [ee′]

}
.

– Join. For B ⊆ Π(U ′)×N let Û = U ∪U ′ and define join(A,B) ⊆ Π(Û)×N

as join(A,B) = rmc(
{

(p↑Û � q↑Û , w1 + w2)
∣
∣
∣ (p, w1) ∈ A ∧ (q, w2) ∈ B

}
).

See the full version for a description of the operators in words. Using straight-
forward implementation each of the operations union, shift, insert, glue and
project can be performed in S|U |O(1) time where S is the size of the input of the
operation. Given A and B, join(A,B) can be computed in time |A| · |B| · |U |O(1).

3.3 Representing Collections of Partitions

The key idea for getting a faster dynamic programming algorithm is to follow the
naive DP, but to consider only small representative sets of weighted partitions
instead of all weighted partitions that would be considered by the naive DP.
Intuitively, a representative (sub)set of partial solutions should allow us to always
extend to an optimal solution provided that one of the complete set of partial
solutions extends to it. Let us define this formally.

Definition 2. Given a set of weighted partitions A ⊆ Π(U)×N and a partition
q ∈ Π(U), define opt(q,A) = min {w | (p, w) ∈ A ∧ p � q = {U}}. For another
set of weighted partitions A′ ⊆ Π(U)×N, we say that A′ represents A if for all
q ∈ Π(U) it holds that opt(q,A′) = opt(q,A).
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Note that the definition of representation is symmetric, i.e., if A′ represents A
then A also represents A′. However, we will only be interested in the special
case where A′ ⊆ A and where we have a size guarantee for finding a small such
subset A′.

Definition 3. A function f : 2Π(U)×N×Z → 2Π(U ′)×N is said to preserve repre-
sentation if for every A,A′ ⊆ Π(U)×N and z ∈ Z it holds that if A′ represents
A then f(A′, z) represents f(A, z). (Note that Z stands for any combination of
further inputs.)

The following lemma and theorem are our main building blocks and establish
that the operations needed for the DP preserve representation, and, crucially,
that we can always find a reasonably small representative set of weighted parti-
tions. The proofs are deferred to the full version.

Lemma 1. The union, insert, shift, glue, project, and join operations from Def-
inition 1 preserve representation.

Theorem 1. There is an algorithm reduce() that given set of weighted parti-
tions A ⊆ Π(U)×N takes time |A|2(ω−1)|U||U |O(1) and outputs a set of weighted
partitions A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U|, where ω denotes
the matrix multiplication exponent (it is known that ω < 2.3727 [24]).

With help of Lemma 1 and Theorem 1, we can now handle problems in the fol-
lowing way: we give recurrences for the different types of bags (leaf, introduce,
etc.) in a nice tree (or path) decompositions that use only union, insert, shift,
glue, project, and join operations. Correctness of an algorithm that interleaves
the computation of the recurrences with the (Gaussian elimination based) re-
duction step of Theorem 1 follows. Inspection of the resulting algorithms is still
needed for establishing the precise time bounds.

3.4 Application to Steiner Tree

We now sketch how to solve the Steiner Tree problem via a dynamic program-
ming formulation that requires only the operators introduced in Section 3.4.

Steiner Tree

Input: A graph G = (V,E) weight function ω : E → N \ {0}, a terminal set
K ⊆ V and a nice tree decomposition T of G of width tw.
Question: The minimum of ω(X) over all subsets X ⊆ E of G such that
G[X ] is connected and K ⊆ V (G[X ]).

We now describe the ‘folklore’ dynamic programming algorithm for Steiner

Tree on nice tree decompositions. For each bag x, we compute a table Ax.
Ax has an entry for each s ∈ {0, 1}Bx ; this entry is a set of pairs consisting of
a partition of s−1(1) and a weight value. The intuition is as follows: a ’partial
solution’ for the Steiner tree problem is a forest F in Gx that contains all vertices
in K and each tree in the forest has a nonempty intersection with Bx; now s
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denotes which vertices in Bx belong to F , i.e., v ∈ Bx belongs to F , iff s(v) = 1;
and the partition tells which vertices in s−1(1) belong to the same tree in F . The
weight value gives the total weight of all edges in F ; for given s and partition p,
we only store the minimum weight over all applicable forests.

Formally, we define, for a bag x, and s ∈ {0, 1}Bx

Ax(s) =

{(

p, min
X∈Ex(p,s)

ω(X)

) ∣
∣
∣
∣ p ∈ Π(s−1(1)) ∧ Ex(p, s) �= ∅

}

with Ex(p, s) = {X ⊆ Ex| ∀v ∈ Bx : v ∈ V (G[X ]) ∨ v ∈ K → s(v) =
1 ∧∀v1, v2 ∈ s−1(1) : v1v2 are in same block in p ↔ v1, v2 connected in G[X ]
∧#blocks(p) = cc(G[X ])}.

The table Ax can be computed from the tables Ay of all the children of y,
using only the union, insert, shift, glue, project, and join operations. For each
of the different types of bags (leaf, forget, etc.), we can give such a recurrence.
We only state here the recurrence for the Introduce edge bag; for the other
recurrences, we refer to the full version.

Consider a bag x with child y introducing edge e = uv. One can show the
following recurrence, which is, by the results above, representation preserving.

Ax(s) =

{
Ay(s) if s(u) = 0 ∨ s(v) = 0,

Ay(s) ∪↓ glueω(uv,Ay(s)), otherwise.

Theorem 2. There exist algorithms that solve Steiner Tree in time n(1 +
2ω)pwpwO(1) time if a path decomposition of width pw of G is given, and in time
n(1 + 2ω+1)twtwO(1) time if a tree decomposition of width tw of G is given.

Proof. The algorithm is the following: use the above dynamic programming for-
mulation as discussed to compute Ar (where r is the child of the root, as dis-
cussed), but after evaluation of any entry Ax, use Theorem 1 to obtain and store
A′

x = reduce(Ax) rather than Ax. Since Ax = reduce(A) represents A and the
recurrence uses only the operators defined in Definition 1 which all preserve rep-
resentation by Lemma 1, we have as invariant that for every x ∈ T the entry A′

x

stored for Ax represents Ax by Lemma 1. In particular, the stored value A′
r(s)

represents Ar(s) and hence we can safely read off the answer to the problem
from this stored value as done from Ar(s) in the folklore dynamic programming
algorithm. The time analysis can be found in the full version. ��

3.5 Further Results

A large number of other problems can be handled with the rank based approach.
In Table 1 we give a number of key results. Details are in the full version. The
results on Hamiltonian Cycle and Traveling Salesman are obtained by
combining our approach with the following result.

Theorem 3 ([7]). Let H be the submatrix of M restricted to all matchings.
Then H can be factorized into two matrices whose entries can be computed in
time |U |O(1), where the inner dimension of the factorization is 2|U|/2−1.



204 H.L. Bodlaender et al.

An interesting corollary of our work is the following.

Theorem 4. There is an algorithm solving Traveling Salesman on cubic
graphs in 1.2186nnO(1) time.

4 Determinant Approach

In this section we will present the determinant approach that can be used to
solve counting versions of connectivity problems on graphs of small treewidth.
Throughout this section, we will assume a graph G along with a path/tree de-
composition T of G of width pw or tw is given.

4.1 Main Ideas of the Approach

The determinant approach gives a generic transformation of counting connected
objects to a more local transformation. In [8] the existence of such a transfor-
mation in GF(2) was already given. For extending this to counting problems, we
will need three key insights. The first insight is that (a variant of) Kirchhoff’s
Matrix Tree Theorem gives a reduction from counting connected objects to com-
puting a sum of determinants. However, we cannot fully control the contribution
of a connected object (it will appear to be either 1 or -1). To overcome this we
ensure that every connected object contributed exactly once, we compute a sum
of squares of determinants. The last obstacle is that the computation of a de-
terminant is not entirely local (in the sense that we can verify a contribution by
iteratively considering its intersection with all bags) since we have to account
for the number of inversions of a permutation in every summand of the deter-
minant. To overcome this obstacle, we show that this computation becomes a
local computation once we have fixed the order of the vertices in a proper way.

Formally, let A be an incidence matrix of an orientation of G, that is A = (ai,j)
is a matrix with n rows and m columns. Each row of A is indexed with a vertex
and each column of A is indexed with an edge. The entry av,e is defined to be 0
if v �∈ e; −1 if e = uv and u < v; or 1 if e = uv and u > v. We assume, that all
the vertices are ordered with respect to the post-ordering of their forget nodes
in the given tree decomposition, that is vertices forgotten in a left subtree are
smaller than vertices forgotten in the right subtree, and a vertex forgotten in
a bag x is smaller than a vertex forgotten in a bag which is an ancestor of x.
Similarly we order edges according to the post-ordering of the introduce edge
nodes in the tree decomposition.

Let v1 be an arbitrary fixed vertex and let F be the matrix A with the row
corresponding to v1 removed. For a subset S ⊆ E let FS be the matrix with
n − 1 rows and |S| columns, whose columns are those of F with indices in S.
The following folklore lemma is used in the proof of the Matrix Tree Theorem
(see for example [1, Page 203] where our matrix is denoted by N).

Lemma 2. Let S ⊆ E be a subset of size n − 1. If (V, S) is a tree, then
| det(FS)| = 1 and det(FS) = 0 otherwise.
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We are up to compute the number of connected edgesets X such that X ∈ F
where F is some implicitly defined set family. Our main idea is to use Lemma 2
to reduce this task to computing the quantity

∑
X∈F det(FX)2 instead, and to

ensure that if X ∈ F is connected, then it is a tree.
For two (not necessarily disjoint) subsets V1, V2 of an ordered set let us define

inv(V1, V2) = |{(u, v) : u ∈ V1, v ∈ V2, u > v}|. If X,Y are ordered sets, recall

that for a permutation f : X
1−1→ Y we have that the sign equals sgn(f) =

(−1)|{(e1,e2):e1,e2∈S∧e1<e2∧f(e1)>f(e2)}|. The following proposition will be useful:

Proposition 1. Let Xl, Xr ⊆ V and Yl, Yr ⊆ E such that Xl ∩ Xr = ∅ and
Yl ∩ Yr = ∅, and for every e1 ∈ Yl and e2 ∈ Yr we have that e1 < e2. Suppose

fl : Yl
1−1→ Xl and fr : Yr

1−1→ Xr. Denote f = fl ∪ fr, that is, f(v) = fl(v) if
v ∈ Yl and f(v) = fr(v) if v ∈ Yr. Then it holds that sgn(f) = sgn(f1)sgn(f2) ·
(−1)inv(Xl,Xr).

To see that the proposition is true, note that from the definition of sgn, the
pairs e1, e2 with e1, e2 ∈ Y1 or e1, e2 ∈ Y2 are already accounted for in the part
sgn(f1)sgn(f2) so it remains to show that |{(e1, e2) : e1 ∈ Y1, e2 ∈ Y2 ∧ e1 <
e2 ∧ f(e1) > f(e2)}| indeed equals inv(Xl, Xr), which follows easily from the
assumption that e1 < e2.

4.2 Counting Hamiltonian Cycles

For our first application to counting Hamiltonian cycles, we derive the following
formula which expresses the number of Hamiltonian cycles of a graph. (We use
that a 2-regular graph has n subtrees on n − 1 edges if it is connected and 0
otherwise, and Lemma 2.)

∑

X⊆E;∀v∈V degX(v)=2

[X is a Hamiltonian cycle]

=
1

n
·

∑

X⊆E;∀v∈V degX (v)=2

∑

S⊆X,|S|=n−1

[(V, S) is a tree]

=
1

n
·

∑

X⊆E;∀v∈V degX (v)=2

∑

S⊆X,|S|=n−1

det(FS)2.

By plugging in the permutation definition of a determinant, we obtain the fol-
lowing expression for the number of Hamiltonian cycles of a graph:

1

n

∑

X⊆E;∀v∈V degX(v)=2

∑

S⊆X;|S|=n−1

(
∑

f :S
1−1→ V \{v1}

sgn(f)
∏

e∈S

af(e),e)
2

=
1

n

∑

X⊆E
∀v∈V degX (v)=2

∑

S⊆X

∑

f1,f2:S
1−1→ V \{v1}

sgn(f1)sgn(f2)
∏

e∈S

af1(e),eaf2(e),e.
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Note that in the last equality we dropped the assumption |S| = n − 1, as it
follows from the fact that f1 (and f2) is a bijection.

Our goal is to compute the formula by dynamic programming over some nice
tree decomposition T. To this end, let us define a notion of “partial sum” of
the above formula, that we will store in our dynamic programming table entries.
For every bag x ∈ T, sdeg ∈ {0, 1, 2}Bx, s1 ∈ {0, 1}Bx and s2 ∈ {0, 1}Bx define
Ax(sdeg, s1, s2) =

∑

X⊆Ex

∀v∈(Vx\Bx) degX(v)=2

∀v∈Bx degX(v)=sdeg(v)

∑

S⊆X

∑

f1:S
1−1→ (Vx\{v1})\s−1

1 (0)

f2:S
1−1→ (Vx\{v1})\s−1

2 (0)

sgn(f1)sgn(f2)
∏

e∈S

af1(e),eaf2(e),e.

Intuitively in sdeg we store the degrees of vertices of Bx in G[X ], whereas s1 (and
s2) specify whether a vertex of Bx was already used as a value of the bijection
f1 (and f2).

Showing that the terms Ax(sdeg, s1, s2) can be computed in the claimed time
for the different types of nodes in a nice tree decompositions requires an intricate
proof, for which we refer to the full version.

Theorem 5. There exist algorithms that given a graph G solve # Hamiltonian

Cycle in Õ(6pwpwO(1)n2) time if a path decomposition of width pw is given, and
in time Õ(15twtwO(1)n2) time if a tree decomposition of width tw is given.

For other results that can be obtained with this approach, see the full paper.

5 Conclusions

In this paper, we have given deterministic algorithms for connectivity problems
on graphs of small treewidth, with the running time only single exponential in
the treewidth. We have given two different techniques. Each technique solves the
standard versions, but for the counting and weighted variants, only one of the
techniques appears to be usable. The rank-based approach gives a new twist to
the dynamic programming approach, in the sense that we consider the “algebraic
structure” of the partial certificates in a quite novel way. This suggests a study of
this algebraic structure for dynamic programming algorithms for other problems.

In related work [7], an approach similar to the rank-based one, but focused on
perfect matchings instead of partitions, is used to obtain a faster randomized al-
gorithm for Hamiltonicity parameterized by pathwidth; the algorithm is showed
to be tight under SETH, but does not apply to counting or the weighted case.
The present results, while slower for the special case of Hamiltonicity, give de-
terministic algorithms that apply also to problems where connectivity of partial
solutions does not appear to allow encoding via perfect matchings (e.g., Steiner
Tree and Feedback Vertex Set), and to counting and weighted versions.

Acknowledgements. We thank Piotr Sankowski for pointing us to relevant
literature on matrix-multiplication algorithms and Marcin Pilipczuk and �Lukasz
Kowalik for helpful discussions at an early stage of the paper.
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