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Abusing a hypergraph partitioner for unweighted graph
partitioning

B. O. Fagginger Auer and R. H. Bisseling

Abstract. We investigate using the Mondriaan matrix partitioner for un-
weighted graph partitioning in the communication volume and edge-cut met-
rics. By converting the unweighted graphs to appropriate matrices, we mea-
sure Mondriaan’s performance as a graph partitioner for the 10th DIMACS
challenge on graph partitioning and clustering. We find that Mondriaan can

effectively be used as a graph partitioner: w.r.t. the edge-cut metric, Mon-
driaan’s best results are on average within 13% of the best known results as
listed in Chris Walshaw’s partitioning archive, but it is an order of magnitude
slower than dedicated graph partitioners.

1. Introduction

In this paper, we use the Mondriaan matrix partitioner [22] to partition the
graphs from the 10th DIMACS challenge on graph partitioning and clustering [1].
In this way, we can compare Mondriaan’s performance as a graph partitioner with
the performance of the state-of-the-art partitioners participating in the challenge.

An undirected graph G is a pair (V,E), with vertices V , and edges E that are
of the form {u, v} for u, v ∈ V with possibly u = v. For vertices v ∈ V , we denote
the set of all of v’s neighbours by

Vv := {u ∈ V | {u, v} ∈ E}.
Note that vertex v is a neighbour of itself precisely when the self-edge {v, v} ∈ E.

Hypergraphs are a generalisation of undirected graphs, where edges can contain
an arbitrary number of vertices. A hypergraph G is a pair (V ,N ), with vertices V ,
and nets (or hyperedges) N ; nets are subsets of V that can contain any number of
vertices.

Let ε > 0, k ∈ N, and G = (V,E) be an undirected graph. Then a valid solution
to the graph partitioning problem for partitioning G into k parts with imbalance ε,
is a partitioning Π : V → {1, . . . , k} of the graph’s vertices into k parts, each part
Π−1({i}) containing at most

(1.1) |Π−1({i})| ≤ (1 + ε)

⌈
|V |
k

⌉
, (1 ≤ i ≤ k)

vertices.
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20 B. O. FAGGINGER AUER AND R. H. BISSELING

To measure the quality of a valid partitioning we use two different metrics. The
communication volume metric1 [1] is defined by

(1.2) CV(Π) := max
1≤i≤k

∑
v∈V

Π(v)=i

|Π(Vv) \ {Π(v)}|.

For each vertex v, we determine the number π(v) of different parts in which v has
neighbours, except its own part Π(v). Then, the communication volume is given
by the maximum over i, of the sum of all π(v) for vertices v belonging to part i.

The edge-cut metric [1], defined as

(1.3) EC(Π) := |{{u, v} ∈ E | Π(u) 
= Π(v)}|,
measures the number of edges between different parts of the partitioning Π.

Table 1. Overview of available software for partitioning graphs
(left) and hypergraphs (right), from [3, Table 12.1].

Name Ref. Sequential/
parallel

Chaco [13] sequential
METIS [14] sequential
Scotch [18] sequential
Jostle [23] parallel
ParMETIS [16] parallel
PT-Scotch [10] parallel

Name Ref. Sequential/
parallel

hMETIS [15] sequential
ML-Part [6] sequential
Mondriaan [22] sequential
PaToH [8] sequential
Parkway [21] parallel
Zoltan [12] parallel

There exist a lot of different (hyper)graph partitioners, which are summarised in
Table 1. All partitioners follow a multi-level strategy [5], where the (hyper)graph is
coarsened by generating a matching of the (hyper)graph’s vertices and contracting
matched vertices to a single vertex. Doing this recursively creates a hierarchy of
increasingly coarser approximations of the original (hyper)graph. After this has
been done, an initial partitioning is generated on the coarsest (hyper)graph in the
hierarchy, i.e. the one possessing the smallest number of vertices. This partitioning
is subsequently propagated to the finer (hyper)graphs in the hierarchy and refined
at each level (e.g. using the Kernighan–Lin algorithm [17]), until we reach the
original (hyper)graph and obtain the final partitioning.

2. Mondriaan

2.1. Mondriaan sparse matrix partitioner. The Mondriaan partitioner
has been designed to partition the matrix and the vectors for a parallel sparse
matrix–vector multiplication, where a sparse matrix A is multiplied by a dense
input vector v to give a dense output vector u = Av as the result. First, the
matrix partitioning algorithm is executed to minimise the total communication
volume LV(Π) of the partitioning, defined below, and then the vector partitioning
algorithm is executed with the aim of balancing the communication among the
processors. The matrix partitioning itself does not aim to achieve such balance,
but it is not biased in favour of any processor part either.

1We forgo custom edge and vertex weights and assume they are all equal to one, because
Mondriaan’s hypergraph partitioner does not support net weights.
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ABUSING A HYPERGRAPH PARTITIONER 21

Table 2. Available representations of an m×n matrix A = (ai j)
by a hypergraph G = (V ,N ) in Mondriaan.

Name Ref. V N
Column-net [7] {r1, . . . , rm} {{ri | 1 ≤ i ≤ m, ai j 
= 0} | 1 ≤ j ≤ n}
Row-net [7] {c1, . . . , cn} {{cj | 1 ≤ j ≤ n, ai j 
= 0} | 1 ≤ i ≤ m}
Fine-grain [9] {vi j | ai j 
= 0} {{vi j |1 ≤ i ≤ m, ai j 
= 0} | 1 ≤ j ≤ n}︸ ︷︷ ︸

column nets

∪{{vi j |1 ≤ j ≤ n, ai j 
= 0} | 1 ≤ i ≤ m}︸ ︷︷ ︸
row nets

Mondriaan uses recursive bipartitioning to split the matrix or its submatrices
repeatedly into two parts, choosing the best of the row or column direction in the
matrix. The current submatrix is translated into a hypergraph by the column-net
or row-net model, respectively (see Table 2). Another possibility is to split the
submatrix based on the fine-grain model, and if desired the best split of the three
methods can be chosen. The outcome of running Mondriaan is a two-dimensional
partitioning of the sparse matrix (i.e., a partitioning where both the matrix rows
and columns are split). The number of parts is not restricted to a power of two, as
Mondriaan can split parts according to a given ratio, such as 2:1. After each split,
Mondriaan adjusts the weight balancing goals of the new parts obtained, as the
new part that receives the largest fraction of the weight will need to be stricter in
allowing an imbalance during further splits than the part with the smaller fraction.

The total communication volume of the parallel sparse matrix–vector multi-
plication is minimised by Mondriaan in the following manner. Because the total
volume is simply the sum of the volumes incurred by every split into two by the
recursive bipartitioning [22, Theorem 2.2], the minimisation is completely achieved
by the bipartitioning. We will explain the procedure for splits in the column di-
rection (the row direction is similar). When using Mondriaan as a hypergraph
partitioner, as we do for the DIMACS challenge, see Section 2.2, only the column
direction is used.

First, in the bipartitioning, similar columns are merged by matching columns
that have a large overlap in their nonzero patterns. A pair of columns j, j′ with
similar pattern will then be merged and hence will be assigned to the same proces-
sor part in the subsequent initial partitioning, thus preventing the communication
that would occur if two nonzeros aij and aij′ from the same row were assigned to
different parts. Repeated rounds of merging during this coarsening phase result in
a final sparse matrix with far fewer columns, and a whole multilevel hierarchy of
intermediate matrices.

Second, the resulting smaller matrix is bipartitioned using the Kernighan–Lin
algorithm [17]. This local-search algorithm with so-called hill-climbing capabili-
ties starts with a random partitioning of the columns satisfying the load balance
constraints, and then tries to improve it by repeated moves of a column from its
current processor part to the other part. To enhance the success of the Kernighan–
Lin algorithm and to prevent getting stuck in local minima, we limit the number of
columns to at most 200 in this stage; the coarsening only stops when this number
has been reached. The Kernighan–Lin algorithm is run eight times and the best
solution is taken.
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22 B. O. FAGGINGER AUER AND R. H. BISSELING

Third, the partitioning of the smaller matrix is propagated back to a partition-
ing of the original matrix, at each level unmerging pairs of columns while trying
to refine the partitioning by one run of the Kernighan–Lin algorithm. This fur-
ther reduces the amount of communication, while still satisfying the load balance
constraints.

If the input and output vector can be partitioned independently, the vector
partitioning algorithm usually has enough freedom to achieve a reasonable commu-
nication balancing. Each component vi of the input vector can then be assigned
to any of the processors that hold nonzeros in the corresponding column, and each
component ui of the output vector to any of the processors that hold nonzeros in
the corresponding row. If the matrix is square, and both vectors must be parti-
tioned in the same way, then there is usually little freedom, as the only common
element of row i and column i is the diagonal matrix element aii, which may or
may not be zero. If it is zero, it has no owning processor, and the set of processors
owning row i and that owning column i may be disjoint. This means that the total
communication volume must be increased by one for vector components vi and ui.
If the matrix diagonal has only nonzero elements, however, the vector partitioning
can be achieved without incurring additional communication by assigning vector
components vi and ui to the same processor as the diagonal matrix element aii.
More details on the matrix and vector partitioning can be found in [22]; improved
methods for vector partitioning are given in [4], see also [2].

2.2. Mondriaan hypergraph partitioner. Here, we will use Mondriaan as
a hypergraph partitioner, which can be done by choosing the column direction
in all splits, so that columns are vertices and rows are nets. This means that
we use Mondriaan in one-dimensional mode, as only rows will be split. Figure
1 illustrates this splitting procedure. Mondriaan has the option to use its own,
native hypergraph bipartitioner, or link to the external partitioner PaToH [8]. In
the present work, we use the native partitioner.

For the graph partitioning challenge posed by DIMACS, we try to fit the exist-
ing software to the aims of the challenge. One could say that this entails abusing
the software, as it was designed for a different purpose, namely matrix and hyper-
graph partitioning. Using a hypergraph partitioner to partition graphs will be at
the cost of some additional, unnecessary overhead. Still, it will be interesting to
see how the Mondriaan software performs in this unforeseen mode, and to compare
the quality of the generated partitionings to the quality of partitionings generated
by other software, in particular by graph partitioning packages.

In the situation of the challenge, we can only use the matrix partitioning of
Mondriaan and not the vector partitioning, as the vertex partitioning of the graph
is already completely determined by the column partitioning of the matrix. The
balance of the communication will then solely depend on the balance achieved by
the matrix partitioning.

Internally, Mondriaan’s hypergraph partitioner solves the following problem.
For a hypergraph G = (V ,N ) with vertex weights ζ : V → N, an imbalance
factor ε > 0, and a number of parts k ∈ N, Mondriaan’s partitioner produces a
partitioning Π : V → {1, . . . , k} such that

(2.1) ζ(Π−1({i})) ≤ (1 + ε)

⌈
ζ(V)

k

⌉
, (1 ≤ i ≤ k),
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ABUSING A HYPERGRAPH PARTITIONER 23

(a) k = 1 (b) k = 2

(c) k = 4 (d) k = 1024

Figure 1. Mondriaan 1D column partitioning of the graph
fe tooth, modelled as a sparse matrix (cf. Theorem 2.1), into
k = 1, 2, 4, and 1024 parts with imbalance ε = 0.03. The rows
and columns of the matrices have been permuted for k > 1 to
Separated Block Diagonal form, see [24].

where the partitioner tries to minimise the (λ− 1)-volume

(2.2) LV(Π) :=
∑
n∈N

(|Π(n)| − 1).

We will now translate the DIMACS partitioning problems from Section 1 to the
hypergraph partitioning problem that Mondriaan is designed to solve, by creating
a suitable hypergraph G, encoded as a sparse matrix A in the row-net model.
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24 B. O. FAGGINGER AUER AND R. H. BISSELING

2.3. Minimising communication volume. Let G = (V,E) be a given graph,
k ∈ N, and ε > 0. Our aim will be to construct a matrix A from G such that min-
imising (2.2) subject to (2.1) enforces minimisation of (1.2) subject to (1.1).

To satisfy (1.1), we need to create one column in A for each vertex in V , such
that the hypergraph represented by A in the row-net model will have V = V . This is
also necessary to have a direct correspondence between partitionings of the vertices
V of the graph and the vertices V of the hypergraph. Setting the weights ζ of all
vertices/matrix columns to 1 will then ensure that (1.1) is satisfied if and only if
(2.1) is satisfied.

It is a little more tricky to match (1.2) to (2.2). Note that because of the
maximum in (1.2), we are not able to create an equivalent formulation. However,
as

(2.3) CV(Π) ≤
k∑

i=1

∑
v∈V

Π(v)=i

|Π(Vv) \ {Π(v)}| =
∑
v∈V

|Π(Vv) \ {Π(v)}|,

we can provide an upper bound, which we can use to limit CV(Π). We need to
choose the rows of A, corresponding to nets in the row-net hypergraph G = (V ,N ),
such that (2.3) and (2.2) are in agreement.

For a net n ∈ N , we have that n ⊆ V = V is simply a collection of vertices
of G, so |Π(n)| in (2.2) equals the number of different parts in which the vertices
of n are contained. In (2.3) we count, for a vertex v ∈ V , all parts in which v
has a neighbour, except Π(v). Note that this number equals |Π(Vv) \ {Π(v)}| =
|Π(Vv ∪ {v})| − 1.

Hence, we should pick N := {Vv ∪ {v} | v ∈ V } as the set of nets, for (2.3)
and (2.2) to agree. In the row-net matrix model, this corresponds to letting A be a
matrix with a row for every vertex v ∈ V , filled with nonzeros av v and au v for all
u ∈ Vv \ {v}. Then, for this hypergraph G, we have by (2.3) that CV(Π) ≤ LV(Π).
Note that since the communication volume is defined as a maximum, we also have
that kCV(Π) ≥ LV(Π).

Theorem 2.1. Let G = (V,E) be a given graph, k ∈ N, and ε > 0. Let A be
the |V | × |V | matrix with entries

au v :=

{
1 if {u, v} ∈ E or u = v,
0 otherwise,

for u, v ∈ V , and let G = (V ,N ) be the hypergraph corresponding to A in the row-net
model with vertex weights ζ(v) = 1 for all v ∈ V.

Then, for every partitioning Π : V → {1, . . . , k}, we have that Π satisfies (1.1)
if and only if Π satisfies (2.1), and

(2.4)
1

k
LV(Π) ≤ CV(Π) ≤ LV(Π).

2.4. Minimising edge cut. We will now follow the same procedure as in
Section 2.3 to construct a matrix A such that minimising (2.2) subject to (2.1) is
equivalent to minimising (1.3) subject to (1.1).

As in Section 2.3, the columns of A should correspond to the vertices V of G
to ensure that (2.1) is equivalent to (1.1).

Equation (1.3) simply counts all of G’s edges that contain vertices belonging
to two parts of the partitioning Π. Since every edge contains vertices belonging to
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ABUSING A HYPERGRAPH PARTITIONER 25

at least one part, and at most two parts, this yields

EC(Π) =
∑
e∈E

(|Π(e)| − 1).

Choosing N := E will therefore give us a direct correspondence between (2.2) and
(1.3).

Theorem 2.2. Let G = (V,E) be a given graph, k ∈ N, and ε > 0. Let A be
the |E| × |V | matrix with entries

ae v :=

{
1 if v ∈ e,
0 otherwise,

for e ∈ E, v ∈ V , and let G = (V ,N ) be the hypergraph corresponding to A in the
row-net model with vertex weights ζ(v) = 1 for all v ∈ V.

Then, for every partitioning Π : V → {1, . . . , k}, we have that Π satisfies (1.1)
if and only if Π satisfies (2.1), and

(2.5) EC(Π) = LV(Π).

With Theorem 2.1 and Theorem 2.2, we know how to translate a given graph G
to a hypergraph that Mondriaan can partition to obtain solutions to the DIMACS
partitioning challenges.

3. Results

We measure Mondriaan’s performance as a graph partitioner by partitioning
graphs from the walshaw/ [20] category, as well as a subset of the specified par-
titioning instances of the DIMACS challenge test bed [1], see Tables 3 and 4.
This is done by converting the graphs to matrices, as described by Theorem 2.1
and Theorem 2.2, and partitioning these matrices with Mondriaan 3.11, using the
onedimcol splitting strategy (since the matrices represent row-net hypergraphs)
with the lambda1 metric (cf. (2.2)). The imbalance is set to ε = 0.03, the number
of parts k is chosen from {2, 4, . . . , 1024}, and we measure the communication vol-
umes and edge cuts over 16 runs of the Mondriaan partitioner (as Mondriaan uses
random tie-breaking). All results were recorded on a dual quad-core AMD Opteron
2378 system with 32GiB of main memory and they can be found in Tables 5–8 and
Figures 2 and 3. None of the graphs from Table 3 or 4 contain self-edges, edge
weights, or vertex weights. Therefore, the values recorded in Tables 5–8 satisfy ei-
ther (1.2) or (1.3) (which both assume unit weights), and can directly be compared
to the results of other DIMACS challenge participants.

Tables 5 and 6 contain the lowest communication volumes and edge cuts ob-
tained by Mondriaan in 16 runs for the graphs from Table 3. The strange dip in the
communication volume for finan512 in Table 5 for k = 32 parts can be explained
by the fact that the graph finan512 consists exactly of 32 densely connected parts
with few connections between them, see the visualisation of this graph in [11], such
that there is a natural partitioning with very low communication volume in this
case.

To determine how well Mondriaan performs as a graph partitioner, we have also
partitioned the graphs from Tables 3 and 4 using METIS 5.0.2 [14] and Scotch 5.1.12
[18]. For METIS we used the high-quality PartGraphKway option, while Scotch
was invoked using graphPart with the QUALITY and SAFETY strategies enabled.
We furthermore compare the results from Table 6 to the lowest known edge cuts
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26 B. O. FAGGINGER AUER AND R. H. BISSELING

Table 3. Graphs G = (V,E) from the walshaw/ [1,20] category.

G |V | |E|
add20 2,395 7,462
data 2,851 15,093
3elt 4,720 13,722
uk 4,824 6,837
add32 4,960 9,462
bcsstk33 8,738 291,583
whitaker3 9,800 28,989
crack 10,240 30,380
wing nodal 10,937 75,488
fe 4elt2 11,143 32,818
vibrobox 12,328 165,250
bcsstk29 13,992 302,748
4elt 15,606 45,878
fe sphere 16,386 49,152
cti 16,840 48,232
memplus 17,758 54,196
cs4 22,499 43,858

G |V | |E|
bcsstk30 28,924 1,007,284
bcsstk31 35,588 572,914
fe pwt 36,519 144,794
bcsstk32 44,609 985,046
fe body 45,087 163,734
t60k 60,005 89,440
wing 62,032 121,544
brack2 62,631 366,559
finan512 74,752 261,120
fe tooth 78,136 452,591
fe rotor 99,617 662,431
598a 110,971 741,934
fe ocean 143,437 409,593
144 144,649 1,074,393
wave 156,317 1,059,331
m14b 214,765 1,679,018
auto 448,695 3,314,611

Table 4. Graphs G = (V,E) from the 10th DIMACS challenge
[1] partitioning instances.

G |V | |E|
1 delaunay n15 32,768 98,274
2 kron g500-simple-logn17 131,072 5,113,985
3 coAuthorsCiteseer 227,320 814,134
4 rgg n 2 18 s0 262,144 1,547,283
5 auto 448,695 3,314,611
6 G3 circuit 1,585,478 3,037,674
7 kkt power 2,063,494 6,482,320
8 M6 3,501,776 10,501,936
9 AS365 3,799,275 11,368,076

10 NLR 4,163,763 12,487,976
11 hugetric-00000 5,824,554 8,733,523
12 great-britain.osm 7,733,822 8,156,517
13 asia.osm 11,950,757 12,711,603
14 hugebubbles-00010 19,458,087 29,179,764

with 3% imbalance for graphs from the walshaw/ category, available from http://

staffweb.cms.gre.ac.uk/~wc06/partition/ [20]. These data were retrieved on
May 8, 2012 and include results from the KaFFPa partitioner, contributed by
Sanders and Schulz [19], who also participated in the DIMACS challenge. Results
for graphs from the DIMACS challenge, Tables 7 and 8, are given for the number
of parts k specified in the challenge partitioning instances, for a single run of the
Mondriaan, METIS, and Scotch partitioners.
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ABUSING A HYPERGRAPH PARTITIONER 27

Table 5. Minimum communication volume, (1.2), over 16 Mon-
driaan runs, for graphs from the walshaw/ category, Table 3, di-
vided into k = 2, 4, . . . , 64 parts with imbalance ε = 0.03. A ‘-’
indicates that Mondriaan was unable to generate a partitioning
satisfying the balancing requirement, (1.1).

G 2 4 8 16 32 64

add20 74 101 118 141 159 -
data 63 84 80 78 65 -
3elt 45 65 59 65 53 49
uk 19 27 36 33 31 24
add32 9 21 29 24 20 22
bcsstk33 454 667 719 630 547 449
whitaker3 64 130 104 98 77 60
crack 95 97 123 100 78 64
wing nodal 453 593 523 423 362 256
fe 4elt2 66 94 97 85 69 60
vibrobox 996 1,080 966 887 663 482
bcsstk29 180 366 360 336 252 220
4elt 70 90 86 89 88 71
fe sphere 193 213 178 139 107 83
cti 268 526 496 379 295 200
memplus 2,519 1,689 1,069 720 572 514
cs4 319 492 409 311 228 161
bcsstk30 283 637 611 689 601 559
bcsstk31 358 492 498 490 451 400
fe pwt 120 122 133 145 148 132
bcsstk32 491 573 733 671 561 442
fe body 109 143 173 171 145 133
t60k 71 141 154 139 129 96
wing 705 854 759 594 451 324
brack2 231 650 761 635 562 458
finan512 75 76 137 141 84 165
fe tooth 1,238 1,269 1,282 1,066 844 703
fe rotor 549 1,437 1,258 1,138 944 749
598a 647 1,400 1,415 1,432 1,064 871
fe ocean 269 797 1,002 1,000 867 647
144 1,660 2,499 2,047 1,613 1,346 1,184
wave 2,366 2,986 2,755 2,138 1,640 1,222
m14b 921 2,111 2,086 2,016 1,524 1,171
auto 2,526 4,518 4,456 3,982 3,028 2,388
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28 B. O. FAGGINGER AUER AND R. H. BISSELING

Table 6. Minimum edge cut, (1.3), over 16 Mondriaan runs, for
graphs from the walshaw/ category, Table 3, divided into k =
2, 4, . . . , 64 parts with imbalance ε = 0.03. A ‘-’ indicates that
Mondriaan was unable to generate a partitioning satisfying the
balancing requirement, (1.1).

G 2 4 8 16 32 64

add20 680 1,197 1,776 2,247 2,561 -
data 195 408 676 1,233 2,006 -
3elt 87 206 368 639 1,078 1,966
uk 20 43 98 177 299 529
add32 21 86 167 247 441 700
bcsstk33 10,068 21,993 37,054 58,188 82,102 114,483
whitaker3 126 385 692 1,172 1,825 2,769
crack 186 372 716 1,169 1,851 2,788
wing nodal 1,703 3,694 5,845 8,963 12,870 17,458
fe 4elt2 130 350 616 1,091 1,770 2,760
vibrobox 10,310 19,401 28,690 37,038 45,877 53,560
bcsstk29 2,846 8,508 16,714 25,954 39,508 59,873
4elt 137 335 543 1,040 1,724 2,896
fe sphere 404 822 1,258 1,972 2,857 4,082
cti 318 934 1,786 2,887 4,302 6,027
memplus 5,507 9,666 12,147 14,077 15,737 17,698
cs4 389 1,042 1,654 2,411 3,407 4,639
bcsstk30 6,324 16,698 35,046 77,589 123,766 186,084
bcsstk31 2,677 7,731 14,299 25,212 40,641 65,893
fe pwt 347 720 1,435 2,855 5,888 9,146
bcsstk32 4,779 9,146 23,040 41,214 66,606 102,977
fe body 271 668 1,153 2,011 3,450 5,614
t60k 77 227 506 952 1,592 2,483
wing 845 1,832 2,843 4,451 6,558 8,929
brack2 690 2,905 7,314 12,181 19,100 28,509
finan512 162 324 891 1,539 2,592 10,593
fe tooth 3,991 7,434 12,736 19,709 27,670 38,477
fe rotor 1,970 7,716 13,643 22,304 34,515 50,540
598a 2,434 8,170 16,736 27,895 43,192 63,056
fe ocean 317 1,772 4,316 8,457 13,936 21,522
144 6,628 16,822 27,629 41,947 62,157 86,647
wave 8,883 18,949 32,025 47,835 69,236 94,099
m14b 3,862 13,464 26,962 46,430 73,177 107,293
auto 9,973 27,297 49,087 83,505 132,998 191,429
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ABUSING A HYPERGRAPH PARTITIONER 29

Table 7. Communication volume, (1.2), for graphs from Table
4, divided into k parts with imbalance ε = 0.03 for one run of
Mondriaan, METIS, and Scotch. The numbering of the graphs is
given by Table 4.

G k Mon. MET. Sco.

1 8 228 238 250
16 180 169 202
32 154 134 137
64 110 112 94

128 94 72 88
2 2 38,565 46,225 49,273

4 38,188 61,833 56,503
8 73,739 62,418 60,600

16 82,356 47,988 61,469
32 88,273 43,990 74,956

3 4 11,063 10,790 20,018
8 9,652 9,951 14,004

16 7,216 6,507 9,928
32 4,732 4,480 6,684
64 3,298 3,111 4,273

4 8 749 710 837
16 522 640 665
32 524 437 455
64 342 359 348

128 285 238 326
5 64 2,423 2,407 2,569

128 1,774 1,634 1,766
256 1,111 1,120 1,248
512 786 717 824

1024 552 519 540
6 2 1,219 1,267 1,308

4 1,887 1,630 2,144
32 1,304 1,285 1,291
64 1,190 1,111 1,228

256 668 566 702
7 16 6,752 9,303 36,875

32 7,057 9,123 20,232
64 7,255 9,244 10,669

256 4,379 4,198 4,842
512 3,280 2,589 3,265

G k Mon. MET. Sco.

8 2 1,392 1,420 1,416
8 2,999 2,242 2,434

32 1,852 1,497 1,611
128 1,029 783 814
256 737 553 606

9 64 1,375 1,099 1,266
128 1,037 814 837
256 761 555 639
512 552 419 481

1024 374 299 330
10 8 2,508 2,707 3,104

32 1,659 1,620 1,763
128 1,056 820 895
256 728 624 713
512 596 464 478

11 2 1,222 1,328 1,408
4 2,536 2,668 2,693

32 1,175 1,224 1,168
64 1,022 985 893

256 594 467 510
12 32 235 214 191

64 228 133 149
128 194 130 138
256 135 95 115

1024 102 78 83
13 64 139 53 84

128 139 58 73
256 145 65 104
512 157 110 90

1024 127 124 109
14 4 3,359 3,283 3,620

32 2,452 2,139 2,462
64 1,864 1,592 1,797

256 1,143 847 1,040
512 737 621 704
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Table 8. Edge cut, (1.3), for graphs from Table 4, divided into k
parts with imbalance ε = 0.03 for one run of Mondriaan, METIS,
and Scotch. The numbering of the graphs is given by Table 4.

G k Mon. MET. Sco.

1 8 1,367 1,358 1,386
16 2,164 2,170 2,121
32 3,217 3,267 3,283
64 4,840 4,943 4,726

128 7,134 6,979 7,000
2 2 208,227 1,972,153 773,367

4 835,098 2,402,130 2,614,571
8 1,789,048 2,988,293 3,417,254

16 2,791,475 3,393,061 3,886,568
32 3,587,053 3,936,154 4,319,148

3 4 37,975 37,151 67,513
8 54,573 53,502 81,556

16 67,308 66,040 92,992
32 77,443 75,448 104,050
64 85,610 84,111 111,090

4 8 4,327 4,381 4,682
16 7,718 7,107 7,879
32 13,207 10,386 11,304
64 20,546 16,160 16,630

128 32,039 24,644 25,749
5 64 192,783 188,424 196,385

128 266,541 257,800 265,941
256 359,123 346,655 366,258
512 475,284 455,321 479,379

1024 621,339 591,928 629,085
6 2 1,370 1,371 1,339

4 3,174 3,163 3,398
32 14,326 14,054 14,040
64 24,095 22,913 25,434

256 58,164 57,255 60,411
7 16 136,555 132,431 279,808

32 204,688 219,370 370,494
64 339,620 351,913 462,030

256 653,613 662,569 694,692
512 774,477 755,994 814,142

G k Mon. MET. Sco.

8 2 2,949 2,869 2,827
8 15,052 14,206 14,622

32 39,756 35,906 36,795
128 81,934 78,824 80,157
256 117,197 114,413 114,800

9 64 56,009 53,557 54,835
128 81,768 78,055 79,193
256 119,394 113,171 114,758
512 167,820 163,673 165,078

1024 239,947 234,301 234,439
10 8 16,881 16,992 17,172

32 42,523 40,130 40,967
128 90,105 86,332 86,760
256 129,635 124,737 126,233
512 186,016 178,324 179,779

11 2 1,345 1,328 1,408
4 4,197 3,143 3,693

32 16,659 13,981 14,434
64 24,031 20,525 21,597

256 50,605 44,082 44,634
12 32 2,213 1,622 1,770

64 3,274 2,461 2,891
128 5,309 3,948 4,439
256 8,719 6,001 6,710

1024 19,922 14,692 15,577
13 64 1,875 623 1,028

128 3,246 1,106 1,637
256 5,381 2,175 2,938
512 9,439 4,157 5,133

1024 15,842 7,987 9,196
14 4 6,290 5,631 6,340

32 29,137 25,049 27,693
64 43,795 38,596 41,442

256 90,849 82,566 86,554
512 131,481 118,974 124,694
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Table 9. Comparison of the minimum communication volume,
(1.2), and edge cut, (1.3), for graphs from Table 3 (walshaw/ col-
lection) and Table 4 (DIMACS challenge collection). We compare
the Mondriaan, METIS, and Scotch partitioners using (3.1) with
X consisting of the graphs from either Table 3 or 4 and using either
the communication volume or the edge cut metric.

Communication volume Edge cut

Mon. MET. Sco. Mon. MET. Sco.
Walshaw Mon. - 0.98 0.95 Mon. - 1.02 1.01

MET. 1.02 - 0.98 MET. 0.98 - 1.00
Sco. 1.05 1.02 - Sco. 0.99 1.00 -

Mon. MET. Sco. Mon. MET. Sco.
DIMACS Mon. - 1.15 0.99 Mon. - 1.08 0.98

MET. 0.87 - 0.86 MET. 0.93 - 0.91
Sco. 1.01 1.16 - Sco. 1.02 1.10 -

Table 9 gives a summary of each partitioner’s relative performance with re-
spect to the others. To illustrate how we compare the quality of the partitionings
generated by Mondriaan, METIS, and Scotch, consider the following example. Let
X be a collection of graphs (e.g. the graphs from Table 3) on which we would like
to compare the quality of the Mondriaan and METIS partitioners in the communi-
cation volume metric. Let ΠMon

G and ΠMET
G denote the partitionings found for the

graph G ∈ X by Mondriaan and METIS, respectively. Then, we determine how
much better Mondriaan performs than METIS by looking at the average logarithm
of the ratios of the communication volumes for all partitionings of graphs in X ,

(3.1) κMon,MET(X ) := exp

(
1

|X |
∑
G∈X

log
CV(ΠMon

G )

CV(ΠMET
G )

)
,

which is equal to 0.98 in Table 9 for X = {graphs from Table 3}. If the value from
(3.1) is smaller than 1, Mondriaan outperforms METIS, while METIS outperforms
Mondriaan if it is larger than 1. We use this quality measure instead of simply
calculating the average of all CV(ΠMon

G )/CV(ΠMET
G ) ratios, because it gives us a

symmetric comparison of all partitioners, in the following sense:

κMon,MET(X ) = 1/κMET,Mon(X ).

Scotch is unable to optimise for the communication volume metric directly and
therefore it is not surprising that Scotch is outperformed by both Mondriaan and
METIS in this metric. Surprisingly, Mondriaan outperforms Scotch in terms of
edge cut for the graphs from Table 4. The more extreme results for the graphs
from Table 4 could be caused by the fact that they have been recorded for a single
run of the partitioners, while the results for graphs from Table 3 are the best in
16 runs. METIS yields lower average communication volumes and edge cuts than
both Mondriaan and Scotch in almost all DIMACS cases.

If we compare the edge cuts for graphs from Table 3 to the best-known results
from [20], we find that Mondriaan’s, METIS’, and Scotch’s best edge cuts obtained
in 16 runs are on average 13%, 10%, and 10% larger, respectively, than those from
[20].
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Figure 2. The average partitioning time required by the Mondri-
aan, METIS, and Scotch partitioners to generate the partitionings
from Table 5–8 (for 64 and 512 parts).

In Figure 2, we plot the time required by Mondriaan, METIS, and Scotch to
create a partitioning for both communication volume and edge cut. Note that the
partitioning times are almost the same for both communication volume and edge
cut minimisation. METIS is on average 29× faster than Mondriaan for 64 parts
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Figure 3. The communication volume imbalance given by (3.2),
plotted for several graphs.

and Scotch is 12× faster. Note that only six (large) matrices are partitioned into
512 parts.

In the absence of self-edges, the number of nonzeros in the matrices from The-
orem 2.1 and Theorem 2.2 equals 2 |E|+ |V | and 2 |E|, respectively. However, the
matrix sizes are equal to |V | × |V | and |E| × |V |, respectively. Therefore, the num-
ber of nonzeros in matrices from Theorem 2.2 is smaller, but the larger number
of nets (typically |E| > |V |, e.g. rgg n 2 18 s0) will lead to increased memory
requirements for the edge-cut matrices.

We have also investigated Mondriaan’s communication volume imbalance, de-
fined for a partitioning Π of G into k parts as

(3.2)
CV(Π)

LV(Π)/k
− 1.

This equation measures the imbalance in communication volume and can be com-
pared to the factor ε for vertex imbalance in (1.1). We plot (3.2) for a selec-
tion of graphs in Figure 3, where we see that the deviation of the communica-
tion volume CV(Π) from perfect balance, i.e. from LV(Π)/k, is very small com-
pared to the theoretical upper bound of k − 1 (via (2.4)), for all graphs except
kron g500-simple-logn17. This means that for most graphs, at most a factor of
2–3 in communication volume per processor can still be gained by improving the
communication balance. Therefore, as the number of parts increases, the different
parts of the partitionings generated by Mondriaan are not only balanced in terms
of vertices, cf. (1.1), but also in terms of communication volume.

4. Conclusion

We have shown that it is possible to use the Mondriaan matrix partitioner as
a graph partitioner by constructing appropriate matrices of a given graph for ei-
ther the communication volume or edge-cut metric. Mondriaan’s performance was
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34 B. O. FAGGINGER AUER AND R. H. BISSELING

measured by partitioning graphs from the 10th DIMACS challenge on graph parti-
tioning and clustering with Mondriaan, METIS, and Scotch, as well as comparing
obtained edge cuts with the best known results from [20]: here Mondriaan’s best
edge cut in 16 runs was, on average, 13% higher than the best known. Mondriaan
is competitive in terms of partitioning quality (METIS’ and Scotch’s best edge cuts
are, on average, 10% higher than the best known), but it is an order of magnitude
slower (Figure 2). METIS is the overall winner, both in quality and performance.
In conclusion, it is possible to perform graph partitioning with a hypergraph par-
titioner, but graph partitioners are much faster.

To our surprise, the partitionings generated by Mondriaan are reasonably bal-
anced in terms of communication volume, as shown in Figure 3, even though Mon-
driaan does not perform explicit communication volume balancing during matrix
partitioning. We attribute the observed balancing to the fact that the Mondriaan
algorithm performs random tie-breaking, without any preference for a specific part
of the partitioning.

Fortunately, for the given test set of the DIMACS challenge, we did not need
to consider edge weights. However, for Mondriaan to be useful as graph partitioner
also for weighted graphs, we have to extend Mondriaan to take hypergraph net
weights into account for the (λ− 1)-metric, (2.2). We intend to add this feature in
a next version of Mondriaan.
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