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Abstract

In this note we prove results of the following types. Let be given distinct complex numbers z j satisfying
the conditions |z j | = 1, z j ≠ 1 for j = 1, . . . , n and for every z j there exists an i such that zi = z j . Then

inf
k

n
j=1

zk
j ≤ −1.

If, moreover, none of the ratios zi /z j with i ≠ j is a root of unity, then

inf
k

n
j=1

zk
j ≤ −

1

π4
log n.

The constant −1 in the former result is the best possible. The above results are special cases of upper bounds
for infk

n
j=1 b j zk

j obtained in this paper.
c⃝ 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Our colleague Marc N. Spijker asked the following question in view of an application in
numerical analysis [6]:
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Problem 1. Is it true that for given real numbers b j ≥ 1 and distinct complex numbers z j
satisfying the conditions |z j | = 1, z j ≠ 1 for j = 1, . . . , n and

for every z j there exists an i such that zi = z j , bi = b j

we have lim infk→∞

n
j=1 b j zk

j ≤ −1?

Note that by the conjugacy conditions on bi , zi the sum
n

j=1 b j zk
j is real for all k.

In Section 2 we answer Spijker’s question in a slightly generalized and sharpened form
(see Theorem 1 and Corollary 1). The solution of Problem 1 has an application to numerical
analysis, more particularly Linear multistep methods (LMMs). They form a well-known class of
numerical step-by-step methods for solving initial-value problems for certain systems of ordinary
differential equations. In many applications of such methods it is essential that the LMM has
specific stability properties. An important property of this kind is named boundedness and has
recently been studied by Hundsdorfer, Mozartova and Spijker [3]. In that paper the stepsize-
coefficient γ is a crucial parameter in the study of boundedness. In [6] Spijker attempts to single
out all LMMs with a positive stepsize-coefficient γ for boundedness. By using Corollary 1 below
he is able to nicely narrow the class of such LMMs.

As a fine point we can remark that the bound −1 in Spijker’s problem is the optimal one.
Namely, take z j = ζ j where ζ = e2π i/(n+1) and b j = 1 for all j . Then the exponential sum
equals n if k is divisible by n + 1 and −1 if not.

If, moreover, none of z j/zi with i ≠ j is a root of unity, then the upper bound in Prob-
lem 1 can be improved to − log n/π4. We deal with this question in Theorem 3 and more
particularly Corollary 2. The obtained results can easily be transformed into estimates for
infk∈Z

m
j=1 b j cos(2πα j k) where b j , α j are real numbers and α1, . . . , αn are strictly between

0 and 1/2. Theorem 4 states that this infimum is equal to inft∈R
m

j=1 b j cos(2πα j t), provided
that the Q-span of α1, . . . , αn does not contain 1.

2. The general case

We provide an answer to Problem 1.

Theorem 1. Let n be a positive integer. Let b1, . . . , bn be nonzero complex numbers such that
bn+1−i = bi for all i = 1, 2, . . . , n. Let z1, . . . , zn be distinct complex numbers with absolute
value 1, not equal to 1, such that zn+1−i = zi for all i = 1, 2, . . . , n. Then

lim inf
k→∞

n
j=1

b j z
k
j ≤ −

n
j=1

|b j |
2

n
j=1

|b j |

.

Note that
n

j=1 b j zk
j is real because of the conjugacy conditions.

By applying the Cauchy–Schwarz inequality we immediately obtain the following conse-
quence.

Corollary 1. Let n, b j , z j be as in Theorem 1. Then

lim inf
k→∞

n
j=1

b j z
k
j ≤ −

1
n

n
j=1

|b j |.
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Obviously this answers Problem 1, since in that case b j ∈ R≥1 for all j .
In the special case when the b j are positive real numbers we can even drop the distinctness

condition on the z j .

Theorem 2. Let n, b j , z j be as in Theorem 1 with the additional condition b j ∈ R>0 for all j
and let the distinctness condition on the z j be dropped. Then the conclusions of Theorem 1 and
Corollary 1 still hold.

Furthermore, since
n

j=1 b j zk
j is almost periodic we can apply Dirichlet’s Theorem on

simultaneous Diophantine approximation, and find that the liminf coincides with the infimum
in the above theorems and corollary.

Proof of Theorem 1. Put sk = b1zk
1 + · · · + bnzk

n . Put c = − lim infk→∞ sk . Note that the zk
j

equal 0 on average for each j . Hence the same holds for the values sk and thus we see that c ≥ 0.
Let ε > 0. Choose N so large that sk > −(c + ε) for all k ≥ N . For any positive integer K
consider the sum

Σ1 :=

N+K−1
k=N

sk .

Since none of the zi is 1, we have

Σ1 =

n
j=1

N+K−1
k=N

b j z
k
j =

n
j=1

b j
zN

j − zN+K
j

1 − z j
.

Thus there exists C1, independent of N and K , such that

|Σ1| ≤

n
j=1

2|b j |

|1 − z j |
= C1.

Define Σ+

1 to be the subsum of Σ1 of all nonnegative sk and Σ−

1 to be minus the subsum of Σ1
of all negative sk . Let P be the number of nonnegative sk for k = N , . . . , N + K − 1. Then

Σ+

1 ≤ Σ−

1 + C1 ≤ (K − P)(c + ε) + C1

and

Σ−

1 ≤ Σ+

1 + C1 ≤ P
n

i=1

|bi | + C1.

Consider the sum Σ2 :=
N+K−1

k=N s2
k . Then, using sk = sk ,

Σ2 =

N+K−1
k=N

|sk |
2

=


i, j

N+K−1
k=N

bi b j z
k
i z j

k

= K
n

i=1

|bi |
2
+


i≠ j

bi b j
(zi/z j )

N
− (zi/z j )

N+K

1 − zi/z j
.

Hence there exists C2, independent of N and K , such thatΣ2 − K
n

i=1

|bi |
2

 ≤


i≠ j

|bi b j |
2

|1 − zi/z j |
= C2.
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The terms s2
k in Σ2 can be estimated above by (

n
i=1 |bi |)Σ+

1 when sk ≥ 0 and by (c + ε)Σ−

1
when sk < 0. So we get the upper bound

Σ2 ≤


n

i=1

|bi |


Σ+

1 + (c + ε)Σ−

1 .

Now use the upper bounds for Σ±

1 we found above to get

Σ2 ≤ (c + ε)(K − P)


n

i=1

|bi |


+ (c + ε)P


n

i=1

|bi |


+ C3,

where C3 = C1(c+ε+
n

i=1 |bi |). Combine this with the lower bound Σ2 ≥ −C2+K
n

i=1 |bi |
2

to get

−C2 + K
n

i=1

|bi |
2

≤ (c + ε)K
n

i=1

|bi | + C3.

Dividing on both sides by K and letting K → ∞ yields
n

i=1

|bi |
2

≤ (c + ε)

n
i=1

|bi |.

Since ε can be chosen arbitrarily small, the assertion follows. �

Proof of Theorem 2. Take the distinct elements from {z1, . . . , zn} and write them as w1, . . . ,

wm . Denote for any r the sum of the b j over all j such that z j = wr by Br . Then sk =
m

r=1
Brw

k
r for every k. We can apply Theorem 1 to this sum to obtain

lim inf
k→∞

sk ≤ −

m
r=1

B2
r

m
r=1

Br

.

Since the b j are positive reals, we get that
m

r=1 Br =
n

j=1 b j and
m

r=1 B2
r ≥

n
j=1 b2

j . Our
theorem now follows. �

3. The non-degenerate case

In the next theorem we make an additional assumption on the zi , which allows us to improve
on the upper bound in Theorem 1 considerably.

Theorem 3. Let b j ∈ C and let z j ∈ C be as in Theorem 1. Assume in addition that zi ≠ −1 for
all i and that none of the ratios z j/zi with i ≠ j is a root of unity. Then

inf
k

n
j=1

b j z
k
j < −

1

π4 (min
j

|b j |) log n.

If the zi satisfy the conditions of Theorem 3 we say that we are in the non-degenerate case.
Notice in particular that zi/zn+1−i = z2

i and hence none of the zi are roots of unity in the non-
degenerate case. For the proof of Theorem 3 we use the following result.
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Lemma 1. Let b1, . . . , bn ∈ C. Let q1, . . . , qn be distinct integers. Set f (t) =
n

j=1 b j eiq j t .

Then  π

−π

| f (t)|dt ≥
4

π3 (min
j

|b j |) log n.

Proof. See Stegeman, [7]. �

Lemma 1 is a refinement of a result independently obtained by McGehee, Pigno, Smith [5]
and Konyagin [4] who thereby established a conjecture of Littlewood [1]. Already Littlewood
noticed that the constant in Lemma 1 cannot be better than 4/π2, cf. [7] p. 51. Stegeman expects
that the optimal constant in Lemma 1 is 4/π2 indeed. As a fine point we mention that the choice
of 4/π3 by Stegeman is for esthetical reasons only, the best possible value with his method
happens to lie close to this value. See also [8].

The following lemma connects Littlewood’s conjecture with minima of sums of exponentials.

Lemma 2. Let b1, . . . , bn ∈ C. Let q1, . . . , qn be distinct nonzero integers. Suppose that
f (t) =

n
j=1 b j eiq j t is real-valued for all real t . Then

min
t∈R

f (t) < −
1

π4 (min
j

|b j |) log n.

Proof. Denote the minimum of f (t) by −c. Define f +(t) = max( f (t), 0) and f −(t) =

− min( f (t), 0). Then f = f +
− f −. Since the exponents q j are nonzero, we have that π

−π
f (t)dt = 0, hence that

 π

−π
f +(t)dt =

 π

−π
f −(t)dt and π

−π

| f (t)|dt =

 π

−π

f +(t)dt +

 π

−π

f −(t)dt = 2
 π

−π

f −(t)dt < 4πc.

Now combine this upper bound with the lower bound from Lemma 1 to find the assertion of our
lemma. �

Proof of Theorem 3. Consider the subgroup G of C \ {0} generated by z1, . . . , zn . By the
fundamental theorem of finitely generated abelian groups, G is isomorphic to T ×Zd for some d
and some finite group T consisting of roots of unity. More concretely this means that there exist
w1, . . . , wd ∈ G and µ ∈ T such that w1, . . . , wd are multiplicatively independent and every z j
can be written in the form

z j = µr j w
a j1
1 · · · w

a jd
d , r j , a j i ∈ Z, 0 ≤ r j < |T |.

It follows from the condition in Theorem 1 that an+ j−1,h = −a j,h for all j = 1, . . . , n and
h = 1, . . . , d. Our exponential sum can be rewritten as

sk :=

n
j=1

b jµ
kr j w

ka j1
1 · · · w

ka jd
d .

By Kronecker’s approximation theorem, the closure of the set of points (wk
1, . . . , w

k
d) for

k ∈ Z≥0 equals the set (S1)d consisting of points (ω1, . . . , ωd) with |ω j | = 1 for j = 1, . . . , d .
The same holds true if we restrict ourselves to values of k that are divisible by |T |. Hence

inf sk ≤ min
|ω1|=···=|ωd |=1

n
j=1

b jω
a j1
1 · · · ω

a jd
d .
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Because there are no roots of unity among the z j , for every j at least one coefficient a j i is non-
zero. Since the ratios zi/z j are not a root of unity for every i ≠ j , the vectors (a j1, . . . , a jd) are
pairwise distinct. Hence we can choose p1, . . . , pd ∈ Z such that the numbers q j = a j1 p1 +

· · · + a jd pd , j = 1, . . . , n are distinct and nonzero. Let us now restrict to the points with ωl =

ei pl t , t ∈ R, l = 1, . . . , d . Then we get

inf sk ≤ min
t∈R

n
j=1

b j e
iq j t ,

where the sum on the right-hand side is real for all t in view of bn+1− j = b j , qn+1− j = −q j for
j = 1, . . . , n. By Lemma 2 the right-hand side is bounded above by −

1
π4 (min j |b j |) log n. �

In the special case b j = 1 for all j we have the following corollary.

Corollary 2. Let z1, . . . , zn be as in Theorem 1. Suppose in addition that none of the ratios zi/z j
with i ≠ j is a root of unity. Then

inf
k∈Z

n
j=1

zk
j < −

1

π4 log n.

Proof. Note that we have not excluded the possibility that zi = −1 for some i . When zi ≠ −1 for
all i we are in the non-degenerate case and can apply Theorem 3 immediately. When zi = −1
for some i we can take zn = −1. We now consider the subsequence of sums for odd k. Put
k = 2κ + 1. Note that

inf
k∈Z

n
j=1

zk
j ≤ −1 + inf

κ

n−1
j=1

z2κ+1
j .

Apply Theorem 3 to the numbers b j = z j for j = 1, . . . , n − 1 and z2
j instead of z j for

j = 1, . . . , n − 1. Then we find

inf
k∈Z

n
j=1

zk
j ≤ −1 −

1

π4 log(n − 1) < −
1

π4 log n. �

4. The continuous case

The conditions on b j , z j in Theorem 1 can be seen as an invitation to write the power sum as
a cosine sum. We consider the easier case when b j ∈ R for all j . Then we have

n
j=1

b j z
k
j = Re


n

j=1

b j z
k
j


=

n
j=1

b j cos(2πα j k),

where we have written z j = exp(2π iα j ) for all j . To make things simpler assume that z j ≠ −1
for all j . Then n is even and the arguments α j come in pairs which are opposite modulo Z.
Letting m = n/2 we rewrite our sum as

2
m

j=1

b j cos(2πα j k),

where we can assume that 0 < α j < 1/2 for all j .
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Corollary 1 immediately implies the following.

Corollary 3. Let b1, . . . , bm, α1, . . . , αm be real numbers such that the α j are distinct and
strictly between 0 and 1/2 for all j . Then

inf
k∈Z

m
j=1

b j cos(2πα j k) < −
1

2m

m
j=1

|b j |.

Proof. Apply Corollary 1 with n = 2m and b j = b j−m when j > m and z j = exp(2π iα j )

when j ≤ m and z j = exp(−2π iα j−m) when j > m. �

Similarly Theorem 3 implies the following.

Corollary 4. Let b1, . . . , bm, α1, . . . , αm be real numbers such that the α j are distinct and
strictly between 0 and 1/2 for all j . Suppose in addition that none of the differences αi − α j
with i ≠ j and none of the sums αi + α j is rational. Then

inf
k∈Z

m
j=1

b j cos(2πα j k) < −
log(2m)

2π4 min
j

|b j |.

We introduce the notation

cS = − inf
k∈Z

m
j=1

b j cos(2πα j k),

cT = − inf
t∈R

m
j=1

b j cos(2πα j t).

In the notation cS, cT we suppress the dependence on the α’s and b’s. Of course, cS ≤ cT for all
numbers α j and b j .

Problem 2. What are the corresponding upper bounds for cT ?

The following result shows that cT = cS under a general condition.

Theorem 4. Let b1, . . . , bm be real numbers and let α1, . . . , αm be real numbers such that their
Q-span does not contain 1. Then cS = cT .

In the proof we use the following consequence of Kronecker’s theorem on simultaneous
Diophantine approximation.

Lemma 3. Let α1, . . . , αn be numbers such that their Q-span does not contain 1. Let t0 ∈ R.
Given δ > 0 there exist integers k, k1, . . . , kn such that |α j t0 − α j k − k j | < δ for j = 1, . . . , n.

Proof. Let β1, . . . , βd be a basis of the Q-vector space spanned by the α j . Choose λi j ∈ Q such
that

α j =

d
i=1

λi jβi .
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By a convenient choice of the βi we can see to it that λi j ∈ Z for all i, j . Put Λ = max j (


i |λi j |).
By Kronecker’s theorem ([2], Theorem 442) there exist integers k, m1, . . . , md such that

|βi t0 − βi k − mi | < δ/Λ

for i = 1, . . . , d. Here we use the information that the Q-span of the βi ’s does not contain 1. Put
k j =

d
i=1 λi j mi . Then we get, for j = 1, . . . , n,

|α j t0 − α j k − k j | ≤

d
i=1

|λi j | · |βi t0 − βi k − mi | <

d
i=1

|λi j |
δ

Λ
≤ δ. �

Proof of Theorem 4. It remains to prove that cT ≤ cS . Let ε > 0. Choose t0 such that

0 ≤ cT +

m
j=1

b j cos(2πα j t0) < ε.

We apply Lemma 3 with a δ which is so small that there exists an integer k0 with m
j=1

b j cos(2πα j t0) −

m
j=1

b j cos(2πα j k0)

 < ε.

Hence

0 ≤ cT +

m
j=1

b j cos(2πα j k0) < 2ε.

We deduce that

cT − cS = cT + inf
k∈Z

m
j=1

b j cos(2πα j k)

≤ cT +

m
j=1

b j cos(2πα j k0) < 2ε.

Since ε can be chosen arbitrarily close to zero, we conclude cS = cT . �
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