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General introduction




Chapter 1

Air pollution is a complex mixture of particulate and gaseous pollutants
originating from both natural and anthropogenic sources. To assess the risks of
large population exposure to air pollution, exposure modeling is considered as a
useful surrogate for exposure monitoring. Although the chronic effect of air pollution
on cardiovascular mortality has been recognized in the past decades, little is known
on which particulate components are most harmful. A well-established modeling
approach and the combination of large cohort studies were used in this study to
explore the long-term association between air pollution and cardiovascular
mortality in Europe.

Exposure modeling

Exposure assessment is one of the key issues for health effect estimates in
environmental epidemiology. Although many epidemiological studies collected
detailed personal information on health outcomes and lifestyle factors, estimation
of individual long-term exposure to air pollution remains a challenge. Two landmark
cohort studies, the Harvard Six Cities' and the American Cancer Society (ACS)
studies?, compared mortality outcomes between cities using group level average
exposures from central monitoring sites within each city. However, numerous
studies have documented that air pollution concentrations of major air pollutants
varied substantially on a small geographical scale®®. For instance, between-site
variation of nitrogen dioxide (NO;) accounted for over 60% of total variation in four
European cities®. Large spatial variability of fine particles has been characterized in
Amsterdam, the Netherlands’ and Beijing, China®. Traffic-related pollutants such as
NO,, fine particles and black carbon decreased substantially within 100m from a
Los Angles highway and a highway in Somerville in the United Sates® °. One
epidemiological study has suggested larger cardiovascular mortality risks of
particulate matter variations within than between cities'®. Because of the
complexity of street configurations and pollution dispersion in a city, monitoring
alone is not feasible to capture population exposures to outdoor air pollution at
intra-urban scales. Moreover, routine monitoring stations often lack sufficient
spatial density to allow intra-urban epidemiological studies.

Over the recent decade, exposure studies have therefore attempted to
characterize spatial variation in urban air pollution. Various approaches have been
developed to improve the quality of exposure estimation™"" 2. Exposure modeling
was considered as a useful surrogate for expensive and time-consuming exposure
monitoring which is usually a major challenge in large epidemiological studies.
Exposure assessment approaches used in previous studies have included simple
indicator variables (e.g. traffic intensity in proximity to residence' ' or distance to
major road’ '® as exposure variables), interpolation techniques (e.g. kriging and
inverse distance weighing)'” and conventional dispersion models' ' to assess
human exposure to air pollution within a city. One of the limitations for the indicator
variables is that the implicit assumption of air pollution dispersion pattern may be
violated by wind patterns and topography conditions. Furthermore, no quantitative
information on exposure is obtained. Interpolation techniques usually require
spatially dense distribution of sampling sites and dispersion models are subject to

2



General introduction

relatively low spatial resolution in meteorological data and absence of accurate
emission data on a small scale®.

With the improvement of the accuracy of geographical data, air pollution models
incorporating geographical information system (GIS) are of increasing interest in
exposure assessment?" %%, In recent epidemiological studies, land use regression
(LUR) has been increasingly applied. Land use regression modeling is a GIS and
statistics based method that exploits land use, geographic and traffic
characteristics (e.g. traffic intensity, road length, population density) to explain
spatial concentration contrasts at monitoring sites. The advantages of LUR
modeling include its powerful computer mapping and spatial analyses technology
which integrate a wide range of potential sources relating to air pollution. Unlike
interpolation techniques solely relying on monitoring sites to smooth data, LUR
modeling is capable to predict fine scale variations of air pollutants for individual
level exposure by means of spatially refined explanatory predictor variables.
Furthermore, LUR modeling requires considerably fewer resource inputs and less
computing time than dispersion models®. Finally, LUR models are based on real
measurements.

Land use regression models have been initially developed in the SAVIAH (Small
Area Variation In Air quality and Health) study to investigate NO, spatial variation
within a few cities in Europe24 and subsequently applied in epidemiology in the past
decade (Briggs et al. 2005). In the TRAPCA (Traffic-Related Air Pollution on
Childhood Asthma) study, LUR models have been used to estimate PM, s (particle
dynamic diameter <2.5 ym) and absorbance (a marker for black carbon) at
residences of three ongoing birth cohorts throughout the Netherlands, in Munich,
Germany and Stockholm county, Sweden?®. Nowadays, numerous epidemiological
studies have widely expanded this approach throughout Europe, the United States
and Canada for long-term exposure to air pollutions on diverse health outcomes?".
Because of limitations in cost and logistics, most of the LUR studies focused on
exposure to air pollutants that can be measured with passive sampler, particularly
NO,. There are also an increasing number of studies on particulate matter (PM,.5)".
A few studies have investigated the development of LUR models for ultrafine
particle®® 2"?® or for species of volatile organic chemicals (VOCs) such as aromatic
hydrocarbons (BTEX) in Spain®**' and total VOCs in Canada and the United
States®*34. At the onset of this study, no particle composition LUR models (either
metal or chemical compounds) had been developed, with the exception of
elemental / black carbon®'. LUR models can be applied to most pollutants if a
suitably dense monitoring network and relevant source-related variable GIS
datasets are available®. .

Even though the LUR modeling technique has been extensively studied in the
past decade, performances of LUR models associated with prediction ability to
outdoor exposure have not been well explored. In a review of LUR models, Hoek et
al. (2008) raised several determinants such as site selection, precision of
geographic data and modeling strategies which may directly influence model
performances. The review noted that different methods to characterize prediction
ability of models were used in LUR studies. All studies acknowledged that the

model percentage explained variability (R2) provides a too optimistic value.
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Techniques that have been used include leave one out cross-validation (LOOCV)
and hold out validation (HV). The LOOCYV is used through successively excluding
one data point and simultaneously estimating the model parameters on the
remaining N-1 sites. The HV applies the models developed for the training sites to
estimate concentrations at external test monitoring sites. There are no empirical
LUR studies that have systematically compared results of LOOCV and HV
evaluations using training and test sets of varying sample sizes. Recently, Johnson
et al.(2011) estimated NOx, benzene and PM,5 concentrations in 318 census
blocks in New Haven with a dispersion model and used the modeled
concentrations for a systematic LUR model evaluation. Results suggested
relatively poor external validity for models based on small numbers of training
sites(20-40). However, since the air pollution concentrations at the sites in that
study were not actually measured but modeled, there is a need to explore LUR
model performance with varying sample sizes from real world measurements at
sites specifically selected for LUR model building.

Finally, the efficiency of the application of LUR models would be increased
significantly if models developed in one area could be used in another area. Hence,
there is an increased interest to investigate the transferability of LUR models to
other areas with similar predictor variables. As LUR models are empirical models,
transferability is a more critical issue than it is in dispersion models based upon
physical principles.

Air pollution and cardiovascular mortality

Associations between anthropogenic air pollution and human health effects have

been acknowledged for a few decades (Brunekreef and Holgate, 2002). After
several severe pollution events such as the London fog (1952)%, mortality risks
triggered by air pollution have been widely studied. Pollutants of interest included
gaseous pollutants e.g. sulfur dioxide (SO;), NO, and ozone and particulate matter
including Black Smoke. In recent decades, a growing concern of potential harmful
effects of ambient air pollutions on human health has been highlighted in terms of
particulate matter (airborne dynamic diameters < 2.5um, PM;5; <10um, PM+o; and
between 2.5um and 10um, coarse particles). Two large cohort studies, the Harvard
Six Cities (Dockery et al. 1993) and the ACS study (Pope 3™ et al. 1995) in the
United States found significant associations between long-term exposure to PMa 5
and natural- cause and cardio-pulmonary mortality.
Airborne PM consists of a heterogeneous mixture of solid and liquid particles
suspended in air, varying in size and chemical composition in space and time
% Effects of air pollution on cardiovascular mortality often contribute a majority of
the effects on all-cause mortality®” 3. Ambient PM pollution has been noticed as
one of the major contributor to cardiovascular disease. Since PM exposure is
ubiquitous worldwide, its accumulative burden on public health may be
substantial®® 3°.

Effects of air pollution on cardiovascular mortality can be both acute and chronic.
Therefore, relevant epidemiological studies have been designed in both short- and
long-term scale. Research linking short-term exposure to PM to cardiovascular
4
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mortality was more numerous and was often based on large populations in single
cities or more recently multiple cities worldwide®” *. One of the largest was the
National Morbidity, Mortality and Air Pollution Study (NMMAPS) in the United
States including 50 million people of the 20 largest cities*°. In this study, the excess
risk of cardiopulmonary mortality for each increase in the PMyo level of 10pg/m®
was 0.68% (95% confidence interval (Cl) 0.20-1.16%). Another large study which
was conducted in Europe, the Air Pollution and Health: A European Approach
(APHEA and extended APHEA-2) projects, investigated associations between fine
particle and mortality outcomes within 43 million people in 29 European cities*" 4.
The estimated increase in daily cardiovascular deaths was 0.69% (95% CI 0.31%
to 1.08%) for each 10pg/m3 increase in PM4o, which was consistent with the results
of the NMMAPS study*’. Recent studies have been expanded to Asian cities such
as in China*, Japan®, South Korea® and Thailand**, supporting the short-term
effects of particles on excess cardiovascular mortality.

Although short-term effects of air pollution on cardiovascular mortality have
been extensively documented, additional effects of long-term exposure may
occur?®. Emphasis has therefore been on cohort studies, with efforts to examine the
associations between long-term exposure to air pollution and chronic health effects.
Important confounding variables of personal differences have been extensively
controlled in several perspective cohort studies to minimize bias in air pollution
effect estimates. Long-term exposure to air pollutant is crucial in assessing the true
health-damaging effects of air pollution*’ such as the ascertainment of life
expectancy. The first large prospective cohort study that demonstrated effects of
long-term air pollution exposure on mortality was the Harvard Six Cities study in the
United States’. This study suggested that fine particles played a vital role in excess
cardiopulmonary mortality based on a cohort of 8111 adults with 14-16 years
follow-up. The findings were supported by the much larger ACS study in which
approximately 500,000 adults living in 50 states were followed up from 1982 to
19892 Potential personal confounding variables such as tobacco smoking and
other covariates have been well adjusted for in both studies. In the follow-up of the
Harvard Six Cities and the ACS studies, cardiovascular mortality risk was
separately analyzed from the cardiopulmonary combination, suggesting higher
risks of PM2 s exposure for cardiovascular- than for pulmonary- and overall natural
causes®®*°. In the extended analysis of the Harvard Six Cities study, Laden et al.
(2006)48 concluded that reduced PMs,5s concentrations were associated with
reduced cardiovascular mortality. The ACS extended study provided the first
opportunity to examine a broad category of cardiovascular effects of which
ischemic heart disease (IHD) showed the largest increase in risk (RR 1.18, 95% ClI
1.14-1.23) per 10ug/m?® and dominated the total death proportion*’.

Since the two landmark cohort studies, there is a growth of cohort studies
attempting to study air pollution mortality associations in other American, Canadian
and Asian cities. Meanwhile, studies on small-scale variations in air pollution
concentrations became popular. Evidence of elevated risk of cardiovascular
mortality associated with exposure to PMys was generally supported by the
Women’s Health Initiative (WHI)'®, Vancouver®®, Rome®! and Canadian national

cohort® studies but not by others (e.g. Netherlands national cohort (NLCS-AIR)%,
5
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Health Professionals®, truckers® and California teacher studies® in the United
States). A pooled meta-analysis by Hoek et al. (2013) calculated a significant
relative risk of PMy s for cardiovascular mortality of 10.6% (95% CI 5.4-16.0%) per
10ug/m?, about twice as large as the risk for all-cause mortality. However,
significant heterogeneity was observed across studies which could be partially
driven by differences in particle composition.

Although mortality effects of PM mass concentrations have been found, little is
known which constituents of particles are more toxic and are associated with higher
risks. The impact of particle composition on the health effects of particles is
currently one of the major research gaps. Several studies showed evidence of
acute effects of PM components on cardiovascular mortality, but results differed
between study areas®®°. Elevated risk effects of a few fuel combustion related
elemental trace markers (e.g. vanadium and zinc) were observed in some large
studies®’. Recent reviews concluded that with the current studies it is not possible
to identify specific components that are especially harmful®. Identification of health
effects of specific components is complicated by often high correlations among
components from similar sources and different degrees of measurement error®®. A
recent series of studies using a semi-experimental design identified different
components for different endpoints including sulfate / nitrate, ultrafine particles,
organic carbon and NO,%* ©°.

There is hardly any study on long-term exposure to PM constituents and
cardiovascular mortality except the California teacher studies which suggested that
the constituents responsible for the IHD mortality risks derived from combustion of
fossil fuel, biomass burning and crustal origin%. A major reason for the lack of
studies is the lack of spatially resolved monitoring data of particle composition. LUR
models for particle composition have not been published. Dispersion models are
hampered by uncertainties in emission estimates for specific particle components.

The ESCAPE Project

The European Study of Cohorts for Air Pollution Effects (ESCAPE) is a multi-
center European project, which aims at quantifying long-term health impacts of
outdoor air pollution. It covers more than 30 ongoing European cohort studies
including over 900,000 subjects across all ages. The aim of this study is to utilize
harmonized protocols for exposure assessment including air pollution sampling and
model development, and epidemiological data analyses with respect to statistical
modeling and confounder specifications, followed by pooling of results of cohort-
specific health analyses.

ESCAPE exposure assessment has been conducted since October 2008 in 36
European study areas. Air pollution measurements were simultaneously carried out
in three two-week periods in each study area including NO2, PM2 5 and PMo mass
concentrations and their composition (absorbance and element content). LUR
models were developed for each pollutant in individual study areas using a
standardized approach and were subsequently applied to predict annual average
concentrations of air pollutants at cohort residential addresses.

The ESCAPE epidemiological study included a broad representation of adverse
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health effects in four categories: 1) pregnancy outcomes and children’s respiratory
and allergic outcomes; 2) respiratory morbidity; 3) cardiovascular morbidity; 4)
mortality outcomes and cancer incidence. The mortality work package consists of
more than 300,000 participants in 22 existing cohorts across 14 European
countries. Natural and cardiovascular mortality and cancer incidence were
estimated in association with ambient air pollutants.

Thesis aims and outline

This thesis was developed within the framework of the ESCAPE project and
with the following specific aims:
1. To evaluate the performance of LUR models in terms of prediction ability
2. To develop LUR models for particle elemental composition
3. To estimate associations between long-term exposure to particle composition

and cardiovascular mortality

In chapter 2, we compare different methods to express the predictive ability of
LUR models, specifically model R?, LOOCV R? and hold-out validation R%. We
examined the effects of the number of training sampling sites on LUR model
performance in estimating NO, concentrations across the Netherlands. In chapter
3, we extend the findings of chapter 2 to evaluate the prediction ability of LUR
models for NO; and two particle composition metrics (PM..5 absorbance and PMyg
Cu) in 20 ESCAPE study areas, making use of independent NO, measurements. In
chapter 4, we develop multi-city LUR models for NO2, PM2 5 and PM, s absorbance
using the ESCAPE database based on a much larger number of monitoring sites
than the default study-area specific ESCAPE LUR models. We explore the
performance in terms of predictive power and transferability. In chapter 5, we
develop LUR models for PM elemental composition in each ESCAPE study area.
In chapter 6, we describe associations between elemental composition estimated
by the LUR models and cardiovascular mortality in 19 ESCAPE cohorts. Finally,
chapter 7 discusses the main findings of this thesis and address additional issues
and perspectives for future studies.
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Chapter 2

Abstract

Background: Land use regression (LUR) models have become popular to explain
the spatial variation of air pollution concentrations. Independent evaluation is
important.

Methods: We developed LUR models for nitrogen dioxide (NO;) using
measurements conducted at 144 sampling sites in the Netherlands. Sites were
randomly divided into training datasets with a size of 24, 36, 48, 72, 96, 108 and
120 sites. LUR models were evaluated using (1) internal “leave-one-out-cross-
validation (LOOCV)” within the training datasets and (2) external “hold-out”
validation (HV) against independent test datasets. In addition, we calculated Mean
Square Error based validation RZ%s.

Results: The mean adjusted model and LOOCV R? slightly decreased from 0.87 to
0.82 and 0.83 to 0.79, respectively, with increasing number of training sites. In
contrast, the mean HV R? was lowest (0.60) with the smallest training sets and
increased to 0.74 with the largest training sets. Predicted concentrations were more
accurate in sites with out of range values for prediction variables after changing
these values to the minimum or maximum of the range observed in the
corresponding training dataset.

Conclusion: LUR models for NO, perform less well, when evaluated against
independent measurements, when they are based on relatively small training sets.
In our specific application, models based on as few as 24 training sites, however,
achieved acceptable hold out validation R%s of, on average, 0.60.

LUR model and validation R* with different training sets
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Introduction

Many epidemiological studies have shown that air pollution is associated with
adverse health effects such as cardiovascular morbidity and mortality™2.
Concentrations of traffic related air pollutants have remarkable spatial variability at
the urban scale®*®. For epidemiological studies on the effects of air pollution, routine
monitoring networks are typically not sufficiently dense to represent small-scale
spatial contrasts well. Therefore, interest has increased in exposure modeling
incorporating Geographic Information System (GIS) data to capture small-scale
spatial variability in air pollution concentrations 67,

Land Use Regression (LUR) modeling is a GIS based method that uses land use
and traffic characteristics (e.g. traffic intensity, road length, population density) to
explain the spatial variation of measured air pollution concentrations with the
purpose to estimate long-term air pollution concentrations at unmeasured
locations. Nitrogen dioxide (NO.) is the pollutant for which most LUR models have
been reported. The validity of the model predictions strongly relies on the quality of
GIS predictor data, the selected monitoring sites, the complexity of the airshed,
inherent variability in concentrations and the accuracy of measurements at given
sites. The advantage of LUR modeling is the relatively simple input and low cost’®,
LUR models, especially when combined with geo-statistical methods such as
Kriging may perform at least as well or better than dispersion models”®.

Evaluation is an essential part of model development. The model R? is too
optimistic as linear regression optimizes the model for the data used whereas we
are typically interested in how well the model predicts at unmeasured locations,
such as addresses of participants of an epidemiological study. One evaluation
approach is the leave-one-out-cross-validation (LOOCV), which is used through
successively excluding one data point and simultaneously estimating the model
parameters on the remaining N-1 sites. This is popular in many studies to test the
internal validity. Another approach is the hold-out validation (HV) where a model is
evaluated against measurements conducted at independent external sites®.
However, few studies so far have reported hold-out validation results e.g. Beelen et
al. "°and Briggs et al."'. The required sample size for model-building has no strict
minimum but depends on the local determinants of spatial variabilitys. To our
knowledge there are no empirical LUR studies that have systematically compared
results of LOOCV and HV evaluations using training and test sets of varying
sample sizes. Recently, Johnson et al.'? estimated NOx, benzene and PMss
concentrations in 318 census blocks in New Haven with a dispersion model and
used the modeled concentrations for a systematic LUR model evaluation. Results
suggested relatively poor external validity for models based on small numbers of
training sites. However, since the air pollution concentrations at the sites in that
study were not actually measured but modeled, there is a need to explore LUR
model performance with varying sample sizes from real world measurements at
sites specifically selected for LUR model building.

For this purpose, we developed LUR models for datasets of varying sample sizes
using data from a nation-wide monitoring campaign conducted in the Netherlands
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in 2007. The goal was to compare the performance of LUR models assessed with
LOOCV and HV, in dependence of the number of training as well as test sites.

Methods

Study area and air pollution measurements.

We used NO; concentrations from the 2007 TRACHEA campaign in the
Netherlands for LUR model development. Details of the study design and
measurement methods have been published before. Briefly, 144 sites were
measured spread over the Netherlands (Fig. S1 in the supplement). The sampling
sites were divided over 26 regional background, 78 urban background and 40
traffic locations. Measurements were made at the facade of homes, as the goals
were to develop a model for residential exposures. Measurements were conducted
in four one-week sampling periods in January, April, June and September 2007,
covering the four seasons of the year. Sampling took place in the same week for all
144 sites. The mean concentration for each site was calculated and used for model
development.

NO, has been measured using Ogawa passive samplers and following the
Ogawa analysis protocol (Ogawa&Co V 3.98, USA, Inc.). For each batch of 40
filters, the average value of four laboratory blank filters was subtracted.

Predictor variables.

Geographic variables were generated and stored in a Geographic Information
System (GIS) using ArcGIS 9.3(ESRI, Redlands, California). In total, 76 potential
predictor variables were selected for model development (Table S1 in supplement).
For some of the geographical variables, we calculated a number of different buffers
around each of the sampling sites.

Land use variables were derived from the CORINE 2000 (COordination and
INformation on the Environment programme, European Comission) database with
a 100 meter grid cell unit. Specifically, 3 land use variables were considered for
model development: low-density residential, industry, and urban green combined
with forests and agriculture. Buffer sizes of 100, 300, 500, 1000, 5000 m were
evaluated. We did not consider port and airport variables because the number of
sites with non-zero values was very small, especially for small training datasets
with 24 or 36 measurement sites. For the same reason, we also excluded the
industry variable in buffer sizes of 100 and 300 m and urban green combined with
forests and agriculture variable within 100 m.

Household and population density were available from a national database with
100m grid cell unit obtained from the National Institute of Public Health and the
Environment. We calculated buffer sizes of 100, 300, 500, 1000 and 5000 m for
household and population density.

The local road network database (National Road Database (the National Wegen
Bestand, NWB)) was used to calculate distance to the nearest road, distance to the
nearest major road (=210.000 mvh/24h), total traffic intensity for the same type of
roads, from which intensity of heavy traffic was also evaluated separately. NWB is
the most complete and geographically precise road network in the Netherlands. For
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all roads, traffic intensity was assigned. Circular buffers were calculated for a radius
of 25, 50, 100, 300, 500 and 1000 m. Traffic loads variables were calculated by
multiplying the sum of traffic intensity with each road segment within the buffer, in a
unit of veh/(day*meter).

LUR Model development and evaluation

We divided the 144 sites into two groups: training datasets and test datasets.
The training datasets were used for model development and were divided in
fractions of 1/6, 1/4, 1/3, 1/2, 2/3, 3/4, 5/6 of the total number of 144 sites,
corresponding to 24, 36, 48, 72, 96, 108 and 120 sites. The complementary sites
were used as test datasets for external model evaluation following the approach
used by Johnson et al.’2. The test dataset was not fixed because we did not want
the results to depend on one specific dataset. For instance (for details, see Fig.S2
in supplement), the total of 144 sites was equally divided into four subsets of 36
sites. Each subset was alternately picked up as training dataset for modeling and
the remaining 108 sites were treated for external prediction. So in this step, four
models were developed. Site selection was repeated ten times to be able to study
the sampling variability of our procedures which produced 40 different training
datasets of 36 sites each. Subsequently, we exchanged the training dataset
(n=108) and the test dataset (n=36) for the same model constructions and
evaluations. Similar procedures were conducted to obtain training sets of 72, 48
and 24 sites respectively. Hence, a total of 280 training datasets and corresponding
test datasets were allocated for model development, as follows: 24 training sites
(60 models), 36 sites (40 models), 48 sites (30 models), 72 sites (20 models), 96
sites (30 models), 108 sites (40 models), 120 sites (60 models). In addition, we
conducted two sensitivity analyses to compare results obtained using different test
set sizes for a fixed training set size, and vice versa. We fixed test sets to 72 to
evaluate models based on 24, 36, 48 and 72 training sites. The test and training
sets were randomly selected thirty times and therefore 120 models were built. We
also built models based on randomly selected fixed training sets (N=24, 36, 48, 72).
Each model was evaluated against four test sets (N=24, 36, 48, 72) which were
randomly selected from the remaining sites. This work has been repeated thirty
times as well, generating 120 models (30 for each training set group)

We performed two selections: stratified and random. The stratified selection took
into account that the original 144 sites were deliberately chosen to reflect region of
the country, regional background, urban background and street locations. In the
random selection we ignored the design of the sampling campaign completely to
investigate whether model performance was affected by this difference in selection
of training sites.

Procedures of model development were similar to recent studies in the
Netherlands' . A supervised stepwise regression was used to develop the LUR
model. Firstly, all the potential variables were entered separately and the variable
that explained the largest percentage of variability in measured concentrations was
included. Secondly, the remaining variables were added individually and we
assessed whether the adjusted R? was increased by at least 1%. This procedure
was repeated until no more variables met this criterion. New variables were only
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entered in the model if the sign of the slope had the a priori specified direction
(Table S1), for example, positive for traffic intensity and negative for urban green.
Finally, geographic coordinate variables (X coordinate, Y coordinate, X+Y, X-Y)
were included using the same entry criterion. Variables were deleted in the final
stage when they were not statistically significant at the 0.10 level.

Several regression diagnostics were performed. We investigated the Cook’s
distance to examine potential influential observations, and excluded variables from
model development which were affected most by problematic sites that resulted in
high Cook’s distance value (>1). Variables with variance inflation factor (VIF) larger
than 3 were also excluded to avoid multicollinearity, starting with excluding the
variable with highest VIF.

We used two evaluation approaches: 1) Leave-one-out-cross-validation
(LOOCYV), which successively leaves out one site from the training dataset and
estimates models based on the remaining N-1 sites. In this procedure, the
variables in the model were the same as identified using the full training data set,
only the coefficients of the model changed. This is a common procedure in LUR
model evaluation'®. 2) Hold-out-validation, which applies the models developed for
the training sites to estimate concentrations at the external test dataset monitoring
sites. Two prediction errors were estimated: a) regression based R? (HV R?) which
was derived from correlations between predicted and observed values. b) mean
square error based R? (MSE-HV R?), taking into account absolute values in terms
of mean squared prediction error rather than merely correlation as stated in a). The
formula was defined as:

MSE

25

i=l1

MSE —HV R*=1-

(1)

where 7, is the average prediction in the training sample'® . MSE-HV R? can

yield negative values when, in the evaluation (test) set, the average of the observed
values performs better, in terms of mean squared error, than the predictions of the
model. Both evaluation approaches were performed once for each model and
therefore, were iteratively carried out for 280 times each. Prediction errors for both
evaluation methods were estimated by root mean squared error (RMSE).

In the paper, we report particularly the percentage explained variability (R2)
calculated for the model and the two evaluation methods (LOOCV and HV).

In addition to the national analysis, we also performed an analysis of the 79 sites
in the west and middle region because this study area corresponds more to the
typical metropolitan area scale used in many LUR studies.

All analyses were conducted with SAS version 9.2.

Results

Descriptive statistics of the measured NO, concentrations are shown in Table 1.
One street site in the city center of Utrecht was excluded from further analysis
because it was a narrow street canyon-type site which had the highest
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concentration of all (63.7 pg/m®), and serves as a two-way bus lane, carrying
diesel-powered buses which made it unlike any other street site in the data base. It
did not have particularly high traffic volumes otherwise. When in test sets, we found
that many models strongly under-predicted concentrations at this site. As we did
not want our exercise results to be dominated by an atypical site, we decided to
remove it from further analysis.

The LUR models typically included three to eight independent variables. The
mean number of predictors ranged from 4 for the n=24 training sets to 6 for the
n=120 datasets (Table S2). As shown in Figure S3, 69 variables appeared at least
once in models based on 24 training sites while only 24 variables appeared at least
once in models based on 120 training sites. In the latter models, the most
frequently included variables were the X+Y coordinate (100%), Population
density in a 5000 meter buffer (95%), Industry in a 500 meter buffer (66%) and
Inverse distance to major road (50%).

Fig.1 and Table 2 show the variation of adjusted model R?, LOOCV R? HV R?
and MSE-HV R?in relation to the number of sites in the stratified training datasets
for both the national and the regional scale. The mean adjusted model R? was
weakly inversely associated with the number of training sites. At the national scale,
the mean adjusted model R? decreased from 0.87 (n=24) to 0.82 (n=120). The
mean LOOCV R? was slightly lower, ranging from 0.83 (n=24) to 0.79 (n=120). In
contrast, the mean HV R? was positively associated with the number of sites in the
training dataset. The models based on 24 training sites explained on average 60%
of the variation in the independent test datasets. This increased to 74% when using
120 training sites. The MSE-HV R? was 3%-9% lower than HV R%. Only 2 out of 280
models had negative values of the MSE-HV R? (both for models based on 24
training sites), indicating that almost always, models predicted the measured
concentrations in the test sets better than the sample mean. The differences
between the mean LOOCV and HV R?, MSE HV R? were relatively large for models
using 24 training sites with a difference of 0.23 and 0.32, but when using the 120
training sites this difference was reduced to 0.05 and 0.14 respectively. The
variability of R? across models for the same N was higher for hold-out validation

Table 1 Distribution of measured NO, concentrations (ug/m®) from the TRACHEA study
stratified by site types (regional background, urban background and street)

Region Site® Number Min P25 P50 P75 Max
NL?® rb 26 10.3 14.5 17.6 20.9 30.1
ub 78 12.1 19.4 24.6 27.7 40.4
s 39 18.5 28.4 35.7 42.3 62.7
Total 143 10.3 19.2 25.7 30.8 62.7
W+M® rb 12 14.5 18.3 20.7 241 30.1
ub 45 17.7 24.9 27.0 29.1 40.4
S 21 24.5 31.2 40.0 42.8 53.1
Total 78 14.5 24.5 27.8 32.6 53.1

NL?®: the whole dataset of the Netherlands;
W+MP: west and middle region;
Site®: rb-regional background; ub-urban background; s-street.
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than for cross-validation and model development. Variability decreased with
increasing sample size of the training dataset for model and cross-validation R2.
For hold-out validation, variability was largest for the small training datasets and the
largest training datasets. The latter is likely due to the smaller test datasets. The
mean RMSE varied in predictable fashion with training set size and evaluation
method (Table 3), never exceeding 5.37 which is relatively small compared to the
measured range of about 10 to more than 60 pg/m>. In the analyses restricted to
the regions Middle and West, model performance was similar to the national one.
Similar variations of adjusted model, LOOCV, HV and MSE-HV R? were observed
in models using random site selections for the training datasets, compared to
models based on a stratified selection of training sites. For 24 training sites,
adjusted model, LOOCV, HV and MSE-HV R? were 0.87, 0.82, 0.60 and 0.50
respectively. For 120 training sites, adjusted model, LOOCV, HV R? and MSE-HV
R?were 0.82, 0.80, 0.73 and 0.62 respectively.

In our sensitivity analyses using fixed training set sizes or fixed test set sizes, we
obtained results which were very comparable to those found in our main analyses
(Figure S5 and Table S5).

For some models, especially the models based on small number of training sites,
the ranges of values for some independent variables in the model were smaller
than the ranges in values of these variables in the test datasets. As a result,
predictions for such sites in the test data set may become unrealistic, especially
when predictors such as inverse distance are non-linear. Two possible solutions to
this are to remove the site entirely, or to recode the value of the predictor variable
to the upper or lower limit of the range observed in the training sites. Figure 2 and
Table 4 compare the R? and the regression slopes of hold-out validations before
and after this range restriction. This procedure improved the HV and MSE HV R? by
3% and 9% respectively in small sets but the improvement decreased or vanished
in large sets. The regression coefficients of observed vs. predicted concentrations,
however, became much closer to unity showing that the models not only became

Table 2 Comparison of model adjusted model R?, leave one out cross validation (LOOCV)
R? and holdout (HV) R?in relation to size of training dataset in the whole Netherlands and
Middle and West region (with stratified selection by site type)

Region Training Mean (SD)
Sites (n) Model LOOCV HV MSE-HV

NL® 24 0.87 (0.05) 0.83(0.06) 0.60(0.08) 0.51(0.20)
36 0.86 (0.04) 0.82(0.05) 0.67 (0.07) 0.62(0.11)
48 0.85(0.03) 0.81(0.04) 0.67 (0.07) 0.63(0.12)
72 0.84 (0.03) 0.81(0.04) 0.71(0.05) 0.68(0.07)
96 0.82(0.02) 0.80(0.03) 0.73(0.06) 0.66(0.15)
108 0.82(0.02) 0.80(0.02) 0.72(0.08)  0.66(0.14)
) 120 0.82 (0.02) 0.79(0.02) 0.74(0.08) 0.65(0.18)
W+M 20 0.89 (0.05) 0.85(0.08) 0.60(0.10)  0.51(0.22)
40 0.86 (0.03) 0.83(0.04) 0.71(0.06) 0.64(0.10)

NL?: the whole dataset of the Netherlands;

W+M°®: West and Middle region.
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Figure 1 Model adjusted, LOOCV, HV and MSE-HV R? with increasing stratified selected
training sites in the whole Netherlands(A, C, E, G) as well as in the small region
(middle+west area)(B, D, F, H). The black lines show the trends of the plots which are
connected by mean values in training groups.

more precise but also more accurate. Figure 3 shows residual plots with and
without range restriction and it illustrates that range restriction removed the large
residuals, particularly for models based on small numbers of training sites. Similar
results were found in the analysis of sites in the west and middle of the country.
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Table 3 Mean and standard deviation of RMSE in LOOCV and HV with increasing
stratified selected training sites in the whole Netherlandsas well as in the smaller region
(Middle+West area)

Region Training Sites (n) MEAN (SD)
LOOCV HV

NL?® 24 3.70(0.63) 5.37(0.62)
36 3.78(0.43) 4.87(0.42)
48 3.89(0.34) 4.86(0.49)
72 3.86(0.30) 4.63(0.43)
96 4.01(0.25) 4.51(0.47)
108 3.97(0.19) 4.55(0.66)
120 4.04(0.21) 4.53(0.68)

W+M® 20 3.13(0.85) 4.81(0.71)
40 3.34(0.49) 4.29(0.45)

NL?: the whole dataset of the Netherlands;
W+MP: West and Middle region.
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Figure 2 Mean and standard deviations of the HV R? and corresponding regression
coefficients of association between measured and modeled concentration with increasing
number of training sites using stratified site selections, and unrestricted and restricted
ranges for predictor values at test sites.
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Hold-out validation with stratified selection
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Figure 3 Variations of model residuals (predicted — observed NO, concentrations) as a
function of averaged NO, concentrations ((predicted + observed NO, concentration) /2)
before (A, C, E) and after (B, D, F) range restrictions in hold-out validation with stratified
site selection. The dashed lines show the 95% Confidence Intervals of the residuals.

Table 4 HV R? and corresponding model regression coefficients in the Netherlands and
West and Middle region using stratified site selections after range restriction

Region  Training Mean (SD)
sites (n) Beta® Beta® Hv R?¢ MSE-HV R?*

NL? 24 0.75(0.19) 0.90(0.14) 0.63(0.09)  0.60 (0.21)
36 0.80(0.19) 0.93(0.14) 0.70(0.06)  0.67 (0.12)
48 0.84 (0.12) 0.92(0.08) 0.70(0.07)  0.64 (0.12)
72 0.87 (0.11)  0.93(0.10) 0.73(0.06)  0.68 (0.06)
96 0.92 (0.14) 0.96 (0.11) 0.75(0.06)  0.66 (0.15)
108 0.92(0.16) 0.95(0.13) 0.74(0.08)  0.66 (0.14)
120 0.95(0.17) 0.96(0.13) 0.74 (0.08)  0.65(0.18)

W+M® 20 0.74 (0.17) 0.92 (0.14) 0.65(0.10)  0.63(0.31)
40 0.84 (0.13) 0.96(0.10) 0.72(0.06)  0.67(0.11)

NL?: the whole dataset of the Netherlands; W+M": West and Middle region;

Beta®: Regression coefficient of the measured and predicted data before range restriction;
Beta®: Regression coefficient of the measured and predicted data after range restriction;
HV R?%: HV R? after the range restriction.

MSE HV R?%: MSE HV R? after the range restriction
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Discussion

In this study, we evaluated the performance of land-use regression models using
internal cross-validation and independent hold-out validation and investigated the
impact of increasing numbers of training sites. Hold-out validation R? increased as
expected with the number of training sites and was lower on average than the
corresponding cross-validation R?, especially for models based on the smallest
number of observations. Evaluation against fully independent datasets showed
better results with increasing number of training sites, but the improvements were
small beyond models based on 36 or 48 training sites. Constraining ranges of
independent variables in the test datasets to the ranges observed for these
variables in the training datasets improved the precision and especially the
accuracy of the models.

The model predictive power and LOOCV R? were highest with the smallest
training sets, decreasing only slightly by 4-5% towards the largest training sets.
Other studies found similar, relatively small differences between model R? and
LOOCV R? ™ 819 However, based on our results, the use of LOOCV is overly
optimistic to estimate model predictive power especially when the number of
training sites is relatively small. No studies made a systematic comparison of
model, LOOCV and HV R? in relation to the size of the training sets for model
development based on empirical data. Our work was inspired by a similar analysis
by Johnson et al."?. Their work found larger differences in adjusted model R? going
from small (n=25; model adjusted R? = 0.79) to large training sets (n=285; model
adjusted R?>=0.63). The variation of hold-out validation R? was even more dramatic,
changing from 0.28 with 25 training sites to 0.63 with 285 training sites. However,
input concentrations were produced by a dispersion model producing average
concentrations by census block, and not from measurements at carefully selected
sites such as in our study. In a smaller empirical study, Madsen et al. ° used training
sets of 20 and 40 sites for model-building, and independent validation sets of 29-60
sites and found adjusted model R®> of 0.77 and HV R® of 0.71-0.72 for
measurements conducted in 2005, n=80; and adjusted model R? of 0.74, HV R? of
0.64-0.67 for measurements conducted in 2008, n=69.

The larger model adjusted R? combined with lower HV R?in the smaller datasets
is likely explained by the phenomenon of over fitting® 2'. With many candidate
predictors, and relatively small numbers of training sites, there is a recognized risk
of over fitting models with artificially high model R? and relatively poor predictive
power for independent validation data sets® ?'. The problem is aggravated with
automatic model selection methods as the number of degrees of freedom is not
properly characterized by the final model?. Our modeling approach consisted of
offering 76 predictor variables using a supervised modeling approach, which may
explain the modest change of R? with increasing sampling size. We restricted
selection of predictors to a few with plausible coefficient signs and significant model
improvement, based upon adjusted R? and not R?. We fixed the shape of the
relationship to linear (most variables) or another a priori shape (e.g. inverse
distance). Our results suggest that model and evaluation R? did not depend on
the number of predictors in the models (table S2 in supplement). Our results do
24



Systematic evaluation of LUR for NO,

suggest, however, that the models based on the smallest size training sets were
less successful in predicting concentrations at independent test sites than models
based on larger training sets. Several investigators such as Bayak?®' suggest as a
rule of thumb to have at least 10 observations per predictor in the model.
Particularly models based on small training sets did not meet this criterion.
However, in a sensitivity analysis restricting the number of predictor variables to 2
or 3 for models based on 24 training sites and 3 or 4 for models based on 36
training sites (Figure S6 and Table S6), we found that as the number of variables
increased, not only the model adjusted R? and LOOCV R? increased (as expected),
but the HV and MSE HV R? increased as well. This suggest that in the models
developed in our main analyses, there was no over fitting compared to more
parsimonious models. This is likely the result of paying careful attention to
evaluating variables only when based on prior knowledge, a contribution is
expected, and to include it only when the contribution is in the expected direction.
Also, in choosing our monitoring sites, we paid careful attention to covering as
much as possible the expected ranges of potential predictor variables in the study
populations for which the models were being developed.

Especially when using small training sets, many of the evaluated predictor
variables were selected at least once into a model. This is probably due to the fact
that predictor variables are often correlated (e.g., traffic densities in buffers of
varying sizes). Evaluation of regression coefficients is not very useful in multiple
regression with correlated predictors. In the end we are interested in the capacity of
the models to precisely and accurately predict concentrations measured at
independent test sites.

Two approaches have been used for hold-out validation in previous studies.
Some studies have set aside a random or stratified selection of the study sites
measured and selected with the same procedure for model testing® > "', whereas
some studies have used other datasets using different monitoring methods and site
selections®* 2%, The latter studies can be useful if training set sizes were small. In
principal, the selected test sites should be equally representative for the purpose of
application of the LUR model. If the goal is assessment of air pollution exposures at
the residential address, sites near the fagade of homes are more useful than
hotspots located at kerbsides of the busiest roads. We are aware of one example
where a model developed from residential address-type sites did less well in
predicting concentrations measured at kerbsides for regulatory purposes .

The observation that variability in holdout R? across models increased for the
large training sets and thus small test sets, points to the importance of a sufficiently
large test set. This may explain the finding in the original SAVIAH study of higher
hold-out validation R? in test sets including 8-10 sites from regulatory monitoring
networks than in the model development training sets'". Our analysis suggests that
one should interpret these evaluation results with caution.

The purpose of any decent site selection procedure for monitoring to support
LUR model development will always be to represent the population to which the
model is going to be applied. With the usually limited number of monitoring sites
that can realistically be included, it is inevitable that in the usually much larger study

population, the home addresses of some subjects will have out-of-range predictor
25



Chapter 2

variable values, resulting in unrealistic predictions. The observation that restricting
the model predictions to the range of predictor variables observed in the training
dataset improved hold-out validation results both in terms of precision and
accuracy has implications for the application of LUR models. In principle, there are
three ways in which this information can be used when estimating concentrations at
home addresses of study populations: (1) by ignoring it completely — this will
produce unrealistically high or low predicted values for at least some of the
addresses, which in turn may influence subsequent epidemiological analyses; (2)
by recoding the out-of-range values for these predictor values to the highest or
lowest observed value in the model training set, as in our exercise — this will
produce more realistic, albeit somewhat biased predictions for these addresses
which are unlikely to affect epidemiological analyses much; (3) by removing all
addresses with such out-of-range predictor values from further analyses to avoid
any bias. A reasonable suggestion is to do both (2) and (3) and compare results. In
most applications so far (including several of our own), we suspect that (1) has
been applied, and we are not aware of published systematic comparisons of (2)
and (3).

In our study, we did not observe much difference in the results obtained by
stratified and random site selection. We anticipated that with random site selection,
evaluation results would be poorer as some training / test datasets could have
smaller contrast in (traffic) predictor variables, resulting in less stable models. It
should, however, be noted that the full dataset was not a random sample, but a
sample in which traffic locations were over represented. Especially in the larger
training sets, one would expect random selection to more or less represent the
predefined site categorization which is maintained in the stratified selection.

We found little difference in model explanatory power when comparing the
regional model to the country wide model. Also in this smaller area, model and
cross-validation R?> were smaller for the n=40 sites compared to the n=20 sites
whereas HV R? was higher for the n=40 sites. In both the national and the regional
analysis, the largest gain in hold out validation occurred between 24 (20) and 36
(40) observations in the training dataset. The R* and LOOCV R? of especially
models based upon fewer than 40 sites must be interpreted carefully. This does not
imply that these models are unreliable. Even for a model based upon 24 sites
across the Netherlands, a hold-out validation R? of 0.60 was obtained. The
quantitative results of this study may not apply to other study areas, depending e.g
on the complexity of the area with respect to sources and geography.

In summary, LUR model performance for NO; varies with the number of training
sites. Hold-out validation R? was lower than the corresponding cross-validation R?,
especially for the smallest training sets. Truly independent evaluation data are
especially useful when LUR models are developed from small training sets where
we have shown the adjusted model and LOOCV R?s to deviate most from the hold
out validation R?s. In our specific application, models based on as few as 24
training sites, however, achieved acceptable hold out validation R%s of, on average,
0.60.
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Description of the stratification of the sites in training/test sites selections

The monitoring sites have been selected in three types of locations, regional background,
urban background, and traffic, expecting relatively low values in regional background sites
and high values in traffic sites. In addition, sites were distributed throughout the
Netherlands. After the monitoring, sites were categorized into four regions, North, Middle,
West, and South areas according to the distributions of cities and spatial distributions of
concentrations, for instance, high concentrations were in the Middle and West regions and
lower concentrations in the North area. Therefore, for this evaluation, training sites were
selected based on two strata: region and site type. First, the number of training sites in
each region was chosen to be in proportion to the overall distribution of sites across
regions. Second, the number of training sites in each site type in each region was chosen
to be in proportion to overall distribution of sites across types within each region. Therefore,
the required number of sites in each type in each region was calculated.

As shown in Figure S2a, a total of 144 sites were equally divided into four fractions with
each subset of 36 sites. Each subset was alternately picked up as training dataset for
modeling and the remaining 108 sites were treated for external prediction. Therefore, four
models were developed and performed for evaluations. Site selections were performed ten
times to be able to study the sampling variability of our procedures which produced 40
training datasets. Subsequently, we exchanged the training dataset (n=108) and the test
dataset (n=36) for the same model constructions and validations (Figure S2b). Similar
produces were conducted for the two, three and six divisions with each training sites of 72,
48 and 24 sites. In total, 60 models were produced by 24 training sites, following 40 models
by 36 training sites, 30 models by 48 training sites, 20 models by 72 training sites, 30
models by 96 training sites, 40 models by 108 training sites and 60 models by 120 training
sites. Therefore, a total of 280 models were generated in the final stage for the whole of the
Netherlands. Note that after removal of one site, 143 sites remained. As a result, in each
individual model evaluation the training set OR the test set contained one less site,
depending on whether the excluded site was allocated to the training set or the test set. .

Figure S3 and Table S3 together show the frequency distributions of variables that
appear in the models in different training sets. More variables were selected into models
based on a small number of training sites than into models based on larger numbers of
training sites. For instance, 69 variables appear at least once in models based on 24
training sites while 24 variables appear at least once in models based on 120 training sites.
The most frequent variables in these models were X+Y coordinate (100%), population
density in 5000 meters buffer (95%), Industry in 500 (66%) meters buffer, Inverse distance
to major road (50%).

As a sensitivity analysis, test sets were fixed to 72 sites, and the remaining sites were
used for model building using training sets of 24, 36, 48 and 72 sites. The test sets and
training sets were randomly selected thirty times and therefore 120 models were built. As
shown in Figure S4 and Table S4, we found that for same test sets, model adjusted R?,
LOOCV R? decreased as the number of training sites increased. The median HV and
MSE-HV R? increased from 0.65 to 0.74 and 0.53 to 0.67 respectively with increasing
numbers of training sites. These results were completely in line with the results of our main
analyses which used varying rather than fixed sizes for training and test sets respectively.

As a further sensitivity analysis, models were built based on randomly selected fixed
training sets (N=24,36,48,72). For each model, four test sets (N=24, 36, 48, 72) were
evaluated which were randomly selected from the remaining sites of the 144 sites. This
work has been repeated for thirty times and therefore generated 120 models (30 of each
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training set groups) . As shown in Figure S5 and Table S5, for a fixed size of the training
sets, the median HV and MSE-HV R? did not vary much with the number of test sites. For
instance, the median HV and MSE-HV R? were 0.60, 0.58, 0.61, 0.64; and 0.57, 0.51, 0.55,
0.55 for 24, 36, 48 and 72 test sites used for evaluation of models based on 24 training
sites.

As another sensitivity analysis, we built models based on 24 and 36 training sites. We
restricted the maximum number of variables to 2 and 3 for 24 training sites, and 3 and 4 for
36 training sites respectively and compared results with those of our main analyses in
which we did not restrict the number of variables allowed to be selected into the models.
Figure S6 and Table S6 show the distributions of model adjusted R? the LOOCV, HV and
MSE-HV R? based on fixed number of variables. In total, 100 data sets (60 for N=24, 40 for
N=36) were used for modeling. The MSE-based HV R? was calculated according to
formula (1). When restricting the models based on training sets of 24 sites to 2 predictor
variables, model, LOOCV, HV as well as MSE-HV R? were clearly lower than when using 3
or more variables. The difference between models using 3, and models using 3 or more
variables were much less. There was no indication that HV and MSE_HV R? were
improved when restricting the number of prediction variables, suggesting that models
based on larger numbers of prediction variables did not do worse, in terms of precision and
accuracy of predictions, than more parsimonious models. When using 36 training sites,
differences between models based on 3, 4 or more predictor variables were fairly small.

Regional background

® Urban background

Street

Figure S1 Map of TRACHEA monitoring sites in the Netherlands
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Figure S2 Allocation scheme of mohitoring sites for training and test datasets. The boxes with the
same mark in different models show the same data sets. The example is for models based on 36
training sites and 108 test sites, and for 108 training sites and 36 test sites respectively.
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Table S1 Potential predictor variables for LUR model development with specified buffer sizes and a
priori defined directions of effect

GIS dataset Predictor variables Unit Buffer size(m) Direction
CORINE Low density residential m* 100, 300, 500, 1000, +
5000
CORINE Industry m? 500, 1000, 5000 +
CORINE Urban green+ Semi natural m? 300, 500, 1000, -
and forested areas 5000
Population Number of inhabitants n 100, 300, 500, 1000, +
density 5000
Household Number of households n 100, 300, 500, 1000, +
density 5000
- Coordinates m N/A N/A
Local road Traffic intensity on nearest veh/day N/A +
network road
Local road Distance to the nearest road m' m? N/A +
network (inverse distance and inverse
distance squared)
Local road Product of traffic intensity on veh/day/m N/A +
network nearest road and inverse of veh/day/m2

distance to the nearest road
and distance squared

Local road Traffic intensity on nearest veh/day N/A +
network major road

Local road Product of traffic intensity on veh/day/m N/A +
network nearest major road and veh/day/m2

inverse of distance to the
nearest major road and
distance squared

Local road Total traffic load of major roads veh/day*m 25, 50, 100, 300, +
network in a buffer (sum of (traffic 500, 1000

intensity * length of all

segments))
Local road Total traffic load of all roads in ~ veh/day*m 25, 50, 100, 300, +
network a buffer (sum of (traffic 500, 1000

intensity * length of all

segments))
Local road Heavy-duty traffic intensity on ~ veh/day N/A +
network nearest road
Local road Heavy-duty traffic intensity on ~ veh/day N/A +
network nearest major road
Local road Total heavy-duty traffic load of  veh/day*m 25, 50, 100, 300, +
network major roads in a buffer (sum of 500, 1000

(heavy-duty traffic intensity *

length of all segments))
Local road Total heavy-duty traffic load of  veh/day*m 25, 50, 100, 300, +
network all roads in a buffer (sum of 500, 1000

(heavy-duty traffic intensity *

length of all segments))

Central road Road length of all roads in a m 25, 50, 100, 300, +
network buffer 500, 1000
Central road Road length of major roads in m 25, 50, 100, 300, +
network a buffer 500, 1000
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Figure S6 Comparison of the model adjusted R?, the LOOCV, HV and MSE-HV R? based on fixed
number of variables (N=24, N variable=2, 3; N=36, N variable=3, 4; ALL, no variable restriction)

Table S2 Summary statistics of models in relation to number of training sites and number of
predictor variables included in the models. For instance, 2 models contain 2 variables respectively
based on 24 training sites with average adjusted model R* and LOOCV, HV R? of 0.83, 0.81 and
0.56.

Training sites (N) Variables (N) Models (N) Adjusted R* LOOCV R* HV R*

24 2 2 0.83 0.81 0.56
3 12 0.85 0.80 0.60
4 25 0.85 0.81 0.60
5 13 0.90 0.86 0.61
6 8 0.92 0.88 0.59
36 3 1 0.77 0.74 0.70
4 3 0.86 0.83 0.65
5 23 0.86 0.82 0.68
6 7 0.86 0.82 0.64
7 6 0.87 0.83 0.66
48 4 4 0.84 0.81 0.61
5 15 0.85 0.81 0.67
6 8 0.86 0.82 0.68
7 3 0.83 0.79 0.70
72 4 1 0.78 0.76 0.81
5 9 0.85 0.82 0.69
6 6 0.84 0.80 0.70
7 3 0.83 0.80 0.73
8 1 0.86 0.83 0.73
96 4 2 0.79 0.78 0.72
5 6 0.81 0.79 0.70
6 19 0.82 0.80 0.74
7 2 0.83 0.81 0.78
8 1 0.85 0.83 0.70
108 4 2 0.80 0.78 0.66
5 11 0.82 0.80 0.71
6 16 0.82 0.80 0.74
7 8 0.83 0.81 0.72
8 3 0.84 0.81 0.69
120 4 3 0.79 0.77 0.68
5 15 0.81 0.79 0.73
6 23 0.81 0.79 0.75
7 17 0.82 0.80 0.74
8 2 0.85 0.84 0.68
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Table S3 Variable names in correspondence to variable ID

ID Variable Names ID Variable Names

1 DISTINVMAJOR1 42 MAJORROADLENGTH_50
2 DISTINVMAJOR2 43 MAJORROADLENGTH_500
3 DISTINVNEAR1 44 NATURAL_GREEN_1000
4 DISTINVNEAR2 45 NATURAL_GREEN_300
5 HEAVYINTINVDIST 46 NATURAL_GREEN_500
6 HEAVYINTINVDIST2 47 NATURAL_GREEN_5000
7 HEAVYTRAFLOAD_100 48 POPEEA_100

8 HEAVYTRAFLOAD_1000 49 POPEEA_1000

9 HEAVYTRAFLOAD 25 50 POPEEA 300

10 HEAVYTRAFLOAD 300 51 POPEEA 500

11 HEAVYTRAFLOAD 50 52 POPEEA 5000

12 HEAVYTRAFLOAD_500 53 POP_100

13 HEAVYTRAFMAJOR 54 POP_1000

14 HEAVYTRAFMAJORLOAD_100 55 POP_300

15 HEAVYTRAFMAJORLOAD_ 1000 56 POP_500

16 HEAVYTRAFMAJORLOAD 25 57 POP_5000

17 HEAVYTRAFMAJORLOAD_300 58 ROADLENGTH_100

18 HEAVYTRAFMAJORLOAD 50 59 ROADLENGTH_1000

19 HEAVYTRAFMAJORLOAD_ 500 60 ROADLENGTH_25

20 HEAVYTRAFNEAR 61 ROADLENGTH_300

21 HHOLD_100 62 ROADLENGTH_50

22 HHOLD_1000 63 ROADLENGTH_500

23 HHOLD_ 300 64 TRAFLOAD_100

24 HHOLD_500 65 TRAFLOAD_1000

25 HHOLD_5000 66 TRAFLOAD_25

26 INDUSTRY_1000 67 TRAFLOAD_300

27 INDUSTRY_500 68 TRAFLOAD_50

28 INDUSTRY_5000 69 TRAFLOAD_500

29 INTINVDIST 70 TRAFMAJOR

30 INTINVDIST2 71 TRAFMAJORLOAD_100
31 INTMAJORINVDIST 72 TRAFMAJORLOAD_1000
32 INTMAJORINVDIST2 73 TRAFMAJORLOAD_ 25
33 LDRES_100 74 TRAFMAJORLOAD_300
34 LDRES_1000 75 TRAFMAJORLOAD_50
35 LDRES_300 76 TRAFMAJORLOAD_500
36 LDRES_500 77 TRAFNEAR

37 LDRES_5000 78 xcoord

38 MAJORROADLENGTH_100 79 xminusy

39 MAJORROADLENGTH_1000 80 xplusy

40 MAJORROADLENGTH_25 81 ycoord

41 MAJORROADLENGTH_300

Table S4 Distributions of model adjusted RZ, the LOOCV, HV and MSE-HV R? in prediction for 72
test sites with thirty iterations.

Train(N) TYPE Min P25 Median P75 Max
24 Model 0.74 0.83 0.86 0.92 0.96
24 LOoOCcvV 0.65 0.77 0.83 0.88 0.94
24 HV 0.32 0.57 0.65 0.71 0.74
24 MSE-HV -0.55 0.29 0.53 0.69 0.75
36 Model 0.76 0.81 0.84 0.88 0.91
36 Loocv 0.67 0.77 0.82 0.84 0.88
36 HV 0.47 0.63 0.68 0.71 0.79
36 MSE-HV 0.03 0.41 0.55 0.67 0.82
48 Model 0.71 0.81 0.83 0.86 0.90
48 LOOCV 0.65 0.77 0.80 0.83 0.89
48 HV 0.48 0.67 0.72 0.75 0.80
48 MSE-HV 0.13 0.55 0.64 0.69 0.83
72 Model 0.75 0.81 0.84 0.85 0.89
72 LOOCV 0.71 0.78 0.82 0.83 0.87
72 HV 0.58 0.68 0.74 0.76 0.82
72 MSE-HV 0.37 0.56 0.67 0.73 0.79
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Table S5 Distribution of model adjusted RZ, the LOOCV, HV and MSE-HV R? based on fixed size
training sets and a varying number of test sites with thirty iterations.

Train(N) Test(N) TYPE Min P25 Median P75 Max
24 - Model 0.73 0.82 0.87 0.91 0.97
24 - LOOCV 0.66 0.78 0.83 0.88 0.95
24 24 HV 0.19 0.53 0.60 0.65 0.92
24 24 MSE-HV -0.91 0.31 0.57 0.71 0.89
24 36 HV 0.36 0.48 0.58 0.72 0.88
24 36 MSE-HV -0.41 0.26 0.51 0.71 0.90
24 48 HV 0.34 0.49 0.61 0.74 0.84
24 48 MSE-HV -0.15 0.33 0.55 0.67 0.89
24 72 HV 0.36 0.53 0.64 0.68 0.80
24 72 MSE-HV -0.25 0.32 0.55 0.62 0.84
36 - Model 0.60 0.84 0.86 0.89 0.93
36 - LoocV 0.51 0.79 0.83 0.85 0.92
36 24 HV 0.27 0.62 0.70 0.76 0.88
36 24 MSE-HV 0.00 0.43 0.64 0.71 0.85
36 36 HV 0.39 0.64 0.71 0.75 0.84
36 36 MSE-HV 0.09 0.50 0.60 0.71 0.81
36 48 HV 0.44 0.62 0.69 0.73 0.81
36 48 MSE-HV 0.09 0.50 0.61 0.66 0.77
36 72 HV 0.43 0.64 0.71 0.73 0.81
36 72 MSE-HV 0.03 0.50 0.65 0.69 0.78
48 - Model 0.61 0.80 0.82 0.84 0.89
48 - LOocCV 0.53 0.76 0.78 0.80 0.86
48 24 HV 0.44 0.61 0.69 0.78 0.87
48 24 MSE-HV -0.07 0.53 0.66 0.76 0.88
48 36 HV 0.41 0.57 0.67 0.79 0.84
48 36 MSE-HV -0.15 0.43 0.62 0.72 0.86
48 48 HV 0.48 0.64 0.69 0.77 0.83
48 48 MSE-HV 0.01 0.50 0.62 0.73 0.85
48 72 HV 0.57 0.66 0.70 0.76 0.79
48 72 MSE-HV 0.16 0.53 0.64 0.74 0.85
72 - Model 0.79 0.81 0.84 0.86 0.88
72 - LOOCV 0.76 0.78 0.81 0.84 0.86
72 24 HV 0.54 0.66 0.73 0.79 0.87
72 24 MSE-HV 0.30 0.49 0.72 0.76 0.85
72 36 HV 0.58 0.70 0.76 0.78 0.86
72 36 MSE-HV 0.35 0.62 0.71 0.75 0.84
72 48 HV 0.54 0.69 0.75 0.76 0.82
72 48 MSE-HV 0.39 0.63 0.69 0.74 0.84
72 72 HV 0.54 0.70 0.74 0.78 0.82
72 72 MSE-HV 0.53 0.65 0.69 0.74 0.84

Table S6 Distribution of model adjusted Rz, the LOOCV, HV and MSE-HV R? based on fixed number

of variables (N=24, N variable=2, 3; N=36, N variable=3, 4)

Train(N) varnum TYPE Min P25 Median P75 Max
24 2 Model 0.48 0.64 0.71 0.78 0.93
24 3 Model 0.59 0.78 0.84 0.86 0.91
24 All Model 0.75 0.84 0.88 0.90 0.96
24 2 LOOCV 0.40 0.57 0.67 0.74 0.91
24 3 LOOCV 0.54 0.71 0.79 0.83 0.89
24 All LOOCV 0.67 0.80 0.83 0.87 0.95
24 2 HV 0.20 0.46 0.48 0.54 0.66
24 3 HV 0.43 0.56 0.61 0.67 0.77
24 All HV 0.46 0.57 0.64 0.71 0.79
24 2 MSE-HV -1.62 -0.06 0.09 0.33 0.68
24 3 MSE-HV -0.02 0.30 0.41 0.58 0.79
24 All MSE-HV -0.25 0.39 0.54 0.65 0.79
36 3 Model 0.58 0.75 0.79 0.82 0.88
36 4 Model 0.67 0.80 0.84 0.85 0.91
36 All Model 0.75 0.84 0.87 0.89 0.92
36 3 LOOCV 0.50 0.70 0.74 0.79 0.87
36 4 LOOCV 0.61 0.75 0.79 0.82 0.90
36 All LOOCV 0.63 0.80 0.83 0.85 0.91
36 3 HV 0.47 0.58 0.65 0.71 0.78
36 4 HV 0.53 0.62 0.68 0.72 0.80
36 All HV 0.57 0.67 0.70 0.75 0.81
36 3 MSE-HV 0.14 0.39 0.50 0.61 0.79
36 4 MSE-HV 0.19 0.48 0.55 0.67 0.83
36 All MSE-HV 0.40 0.55 0.61 0.72 0.83
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Chapter 3

Abstract

Land use regression models (LUR) frequently use leave-one-out-cross-validation
(LOOCV) to assess model fit, but recent studies suggested that this may
overestimate predictive ability in independent datasets. Our aim was to evaluate
LUR models for nitrogen dioxide (NO,y and particulate matter (PM) components
exploiting the high correlation between concentrations of PM metrics and NO,. LUR
models have been developed for NO,, PM; 5 absorbance and Copper (Cu) in PM4j
based on 20 sites in each of the 20 study areas of the ESCAPE project. Models
were evaluated with LOOCV and “hold-out evaluation (HEV)” using the correlation
of predicted NO, or PM concentrations with measured NO, concentrations at the 20
additional NO; sites in each area. For NO;, PM; 5 absorbance and PMy Cu, the
median LOOCV R?s were 0.83, 0.81 and 0.76 whereas the median HEV R?were
0.52, 0.44 and 0.40. There was a positive association between the LOOCV R?and
HEV R? for PM, 5 absorbance and PMio Cu. Our results confirm that the predictive
ability of LUR models based on relatively small training sets is overestimated by the
LOOCV R?s. Nevertheless, in most areas LUR models still explained a substantial
fraction of the variation of concentrations measured at independent sites.
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Introduction

Epidemiological studies have suggested that long term exposure to air pollution
is associated with adverse health effects'™. Some of these studies have relied on
estimating air pollution concentrations at the home addresses of study participants
using Land Use Regression methods* °. Within the ESCAPE (European Study of
Cohort for Air Pollution Effects) project, a comprehensive measurement program
was conducted in 36 European study areas between 2008 and 2011. Substantial
spatial variability of nitrogen oxide (NO,, NOy) and particulate matter (PM) was
identified within and between these areas® ’. To explain and predict within-area
variability, land use regression (LUR) models were developed using a standardized
approach®.

Land use regression (LUR) modeling is a Geographic Information System (GIS)
and statistics based method that exploits land use, geographic and traffic
characteristics (e.g. traffic intensity, road length, population density) to explain
spatial concentration variations at measured sites®. Within the ESCAPE project,
PM and NO,/NO, models have been developed in 20 and 36 study areas
respectively, using a standardized method® ' These models explained a large
fraction of spatial variance in the measured pollution concentrations, as measured
by R%s ranging from 55~95% for NO, and for PM, s absorbance.

Model evaluation is essential as the model R? may be artificially high'’. Two
common evaluation approaches are: the internal “leave-one-out-cross-validation
(LOOCV)” and the external “hold-out-evaluation (HEV)” against independent
measurements set aside for model evaluation. The HEV is preferable as it likely
better reflects the predictive power of the model at locations where no
measurements were taken, such as addresses of subjects in an epidemiological
study, assuming that validation sites are representative of the distribution of
subject’'s addresses. In a study with 144 NO, monitoring sites, we previously
reported that the model adjusted R? decreased slightly from 0.87 to 0.82 with the
increasing size of the training sets used for model development. In contrast, the
HEV R? increased from 0.60 to 0.74 with training set size from 24 to 120'. This is
likely due to some over-fitting'". Similar evaluations have been conducted in
Girona, Spain and in Oslo, Norway with somewhat different results: in Girona,
differences between LOOCV R? and HEV R? were larger than we found previously,
in Oslo they were smaller' ™.

All these studies of LUR model performance evaluation were conducted for NO,.
Sampling of PM requires more effort and usually the number of sampling sites is
not sufficient to allow for a separation into training and test dataset (for validation
purpose) of sufficient size. To the best of our knowledge, no evaluations have
been conducted for particulate matter LUR models.

Within the ESCAPE study area specific PM models were developed based on 20
training sites per area in most of the study areas®. In view of the recent model
evaluation studies which were restricted to single areas, the goal of this paper is to
evaluate model performance in all 20 ESCAPE study areas for spatial variation of
PM and NO..
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Methods

Study design

ESCAPE study areas included 20 sites with simultaneous measurements of both
PM and NO., and 20 sites where only NO, was measured in each area. As we did
not have PM concentration data available for sampling sites other than the 20 PM
sites in each area, we made use of the high correlation between the annual
average concentration of traffic-related PM metrics such as PM,s absorbance,
Copper in PMy (PMqo Cu) and NO,’.We assessed the performances of LUR
models developed using the PM/ NO; sites to predict the NO, concentrations at the
sites where only NO, was measured. We used this as a surrogate for the true
hold-out validation. In the paper we will refer to the PM / NO; sites as training sites
and the NO; only sites as test sites.

Study areas and air pollution measurements

Details of the ESCAPE study design and the measurement campaign have been
described previously® ’. Briefly, an intensive monitoring campaign was conducted
in 20 European study areas between October 2008 and May 2011. The
abbreviations regarding to the study areas are shown in table S1. In each area, we
chose sampling sites at street, urban background and regional background
locations. These sites were selected to represent the spatial distribution of
residential addresses of participants of cohort studies in these areas. Sampling of
NO, was conducted at 40 sites, at half of which we also sampled PM. In the
Netherlands/Belgium and Cataluina measurements were performed at 40 PM sites
and 80 NO; sites. At each of the PM sites, NO, was measured simultaneously. The
site  selection procedure (http://www.escapeproject.eu/manuals/index.php)
specified that the 20 PM sites had to be a random selection of the 40 sites in each
area. This was not always achieved as it is easier to find monitoring locations for
the passive NO, sampler than for the active PM samplers. We compared the
distributions of NO» concentrations measured at the sites where only nitrogen
oxides were measured, to those at the sites where both nitrogen oxides and PM
were measured. Each selected site was measured in three two-week sampling
periods in the cold, warm and intermediate seasons. Due to limited amount of
samplers, five sites and the reference site were measured simultaneously. The
measured values were adjusted for temporal variation using continuous
measurements at a background location which was not influenced by local pollution
and annual average concentrations for each site were calculated and were used for
model development.

NO, was measured using Ogawa badges and following the Ogawa analysis
protocol (Ogawa&Co V 3.98, USA, Inc.). PM,s and PM4, samples were collected
on pre-weighted filters using Harvard Impactors. These filters were then used to
measure absorbance and detect elemental composition (e.g. Cu) by Energy
Dispersive X-ray fluorescence (ED-XRF) at Cooper Environmental Services
(Portland, USA). More detail is provided in a separate paper (de Hoogh, in
preparation). Briefly, Forty-eight elements were measured. Quality assurance and
control included analysis of NIST reference material(SRM 1128 and SRM987). All
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analysis batches passed quality criteria of the laboratory. In each study area, about
20 field blanks and field duplicates were taken. We calculated the mean field blank
and the detection limit.

Predictor variables for LUR model

We extracted values for the GIS predictor variables at the coordinates of
sampling sites using ArcGIS (ESRI, Redlands, California). Details of the predictor
variables have been described in previous papers® . Briefly, the predictor
variables were derived from both centrally available Europe-wide GIS database
and locally collected GIS data from partners.

Central GIS predictor variables were comprised of road network, land use,
population density and altitude data. High resolution digital road network was
obtained from Eurostreets version 3.1(1:10,000 resolution) which were based on
the TeleAtlas MultiNetTM dataset for the year 2008. For all roads and major roads,
the total lengths of roads were calculated within a buffer size of 25, 50, 100, 300,
500, 1000 meters. Land use variables were derived from the CORINE
(Coordination and INformation on the Environmental programme) database for the
year 2000 for the buffer sizes of 100, 300, 500, 1000 and 5000 meters. Digital
elevation data (SRTM 90m) were obtained through the Shuttle Radar Topographic
Mission (http://srtm.csi.cgiar.org/).

Detailed road network with linked traffic intensity were available locally for most
study areas. The accuracy should be at least 10m compared to the central road
network. Data on traffic density were aggregated to annual means, as we were
modeling annual mean concentrations. We did not obtain traffic counts for the
exact monitoring hours as these traffic data were generally not available. Local land
use, population density, altitude and other local variables were also extracted for
modeling.

LUR model development

Models for PM,s absorbance were developed by local partners supervised
centrally while models for PM4y Cu were built centrally at IRAS (Institute for Risk
Assessment Sciences, Utrecht University). Separate models were built for each
area, we did not attempt to build a universal model to cover all study areas in view
of differences between areas not sufficiently characterized by the available GIS
data. For this paper we further developed models for NO,, using only the data from
the training sites. Detailed procedures of model development and results have
been published elsewhere® '°. LUR model results for elemental composition will be
published later. A supervised stepwise regression was used to develop the LUR
model. We first evaluated univariate regression of the corrected annual
concentrations by entering all potential predictor variables. The variable producing
the highest adjusted R? and having the a priori defined direction of effect (e.g.
positive for traffic intensity) was selected as the first predictor. Secondly, the
remaining variables were added separately and we assessed whether the variable
with the highest increase in adjusted R? improved the model by at least 1%. This
process continued until no more variable with the a priori specified sign could
increase the model adjusted R? by at least 1%. In the final step, we excluded the
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variables which had a p value >0.1. We checked whether the variance inflation
factor (VIF) was lower than 3 in order to avoid multi-collinearity.

Model evaluation

As previously described'?, we performed two evaluation approaches:

1. Leave-one-out-cross-validation (LOOCV), which successively left out one
site from the training data set and estimated models based on the remaining N-1
sites. In this procedure, the variables in the model were the same as identified
using the full training data set; only the coefficients of the model changed.

2. Hold-out evaluation (HEV). For NO, this was straightforward as we
compared NO, model predictions with measured NO, concentrations at test sites.
True HEV for PM components was infeasible as training sets for PM were too small
to split up for model building and validation. As an alternative, we evaluated PM
models by investigating the correlations between the predicted values of PM
metrics and the measured NO; at the test sets (HEV R?).

A systematic check of the model evaluations was conducted in the following
ways:

1. We restricted this analysis to PM components and areas with high
correlations with measured NO, (squared Pearson correlation coefficient
R%>0.5).

2. We further evaluated whether the PM models could also fit NO, well by
checking the correlations between predicted PM concentrations and
measured NO, concentrations (R?\o2) at the training sets and included only
areas where R%\o>was > 0.5.

3. Finally, we compared the variability and tested the distributions of NO; in the
training and the test sets of each area by simple boxplot and t-tests to assess
similarity of the two types of sites.

We compared the model performances of the PM metrics with the model
performance of the NO, models, the latter reflecting true HEV. We evaluated the
accuracy of the HEV only for the NO, model by calculating the root mean squared
error (RMSE) and the mean difference between predictions and observations (MD)
as the HEV for PM, 5 absorbance and PM,o Cu was indirect. As a check of our
approaching using correlation with NO, as surrogate for HEV, we made use of two
larger areas (the Netherlands & Belgium and Catalufa) with 40 PM sites. Ten
datasets were randomly generated for model development (n=20) and evaluation
(n=20) for PM,5s absorbance and PM, Cu. We compared the indirect HEV R?
(based on correlation with NO;) with true HEV in these two areas.

We calculated the HEV R? by truncating the values of predictors in the test data
sets that were outside the range of the values observed in the data set for model
development. This is standard procedure within ESCAPE for exposure assignment
and was done to prevent unrealistic predictions based on model extrapolations.
Our previous study showed that with a small amount of locations for model building,
the range of the variables for the model development may not cover the whole
range when they were extended to larger numbers of independent test sites.
Therefore, the predicted values may strongly deviate from the observations,
especially when non-linear functions are used such as 1/(distance to road). ' We
44



Evaluation of LUR for NO, and PM in Europe

explored the impact of truncation on HEV R?. Analyses were conducted with SAS
9.2.

Results

Table 1 shows the squared Pearson correlation coefficients between NO, and
selected PM components. Median correlations were high for both PM;s
absorbance and PMy Cu. Substantial variability of correlations was found between
study areas. For PM; 5 absorbance, the R? with NO, in all the ESCAPE study areas
were higher than 0.5. For PM,Cu, Gyor was the only area with low correlation with
NO,. The highest correlations between NO, and PM components were frequently
observed in big cities e.g. Munich (Germany), London/Oxford (United Kingdom),
Barcelona (Spain) and Paris (France) with large spatial concentration contrasts
compared with relatively small cities with smaller spatial contrast e.g. Gyor
(Hungry) and Kaunas (Lithuania)’.

Table 1 squared Pearson correlation coefficients (RZ) between measured NO, and PM, 5
absorbance and PMy, Cu in 20 European study areas.

Study areas PM, s absorbance PM;, Cu

Oslo, Norway 0.75 0.73
Stockholm, Sweden 0.86 0.64
Helsinki, Turku, Finland 0.81 0.91
Copenhagen, Denmark 0.86 0.84
Kaunas, Lithuania 0.55 0.69
Manchester, UK 0.74 0.76
London, Oxford, UK 0.88 0.89
Netherlands & Belgium 0.86 0.83
Ruhr area, Germany 0.89 0.91
Munich, Germany 0.87 0.94
Vorarlberg, Austria 0.59 0.70
Paris, France 0.90 0.89
Gyor, Hungary 0.65 0.25
Lugano, Switzerland 0.64 0.85
Turin, ltaly 0.87 0.81
Rome, ltaly 0.89 0.77
Barcelona, Spain 0.91 0.87
Catalunya, Spain 0.89 0.83
Athens, Greece 0.85 0.78
Herakion, Greece 0.63 0.66
Median 0.86 0.82

Interquartile range 0.19 0.17
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Figure 1 Boxplot of NO, concentrations at PM/NO; (training) sites and NO,-only (test) sites
in 20 ESCAPE study areas. The upper, middle and bottom layers of the box show the 75,
50, 25th percentiles of the dataset. NOS: Oslo, Norway; SST: Stockholm, Sweden; FIH:
Helsinki, Finland; DCO: Copenhagen, Denmark; LIK: Kaunas, Lithuania; UKM:
Manchester, UK; UKO: London/Oxford, UK; BNL:Netherlands and Belgium; GRU: Ruhr
area, Germany; GMU: Munich, Germany; AUV: Vorarlberg, Austria; FPA: Paris, France;
HUG: Gyor, Hungry; SWL: Lugano, Switzerland; ITU: Turin, Italy; IRO: Rome, ltaly; SPB:
Barcelona, Spain; SPC: Catalufia, Spain; GRA: Athens, Greece; GRH: Heraklion, Greece

Table 2 Comparison between model R? and LOOCV R? for NO, and PM components
(training sites), R? between predicted concentrations and measured NO, at training ~ sites
(RZNOZ) and R? between predicted concentrations and measured NO, at test sites (HEV RZ)
in 20 European study areas.

Modeled Pollutant ~ Model R* LOOCV R® R2%\02° HEV R*
Median IQR Median IQR Median IQR Median IQR
NO, 0.88 0.05 0.83 0.10 1.00 0.00 0.52 0.24
PM,s absorbance  0.87 0.13 0.81 0.16 0.80 0.07 0.44 0.35
PM;,Cu 0.82 0.18 0.76 0.22 0.77 0.11 0.40 0.25

®Model R?: Model adjusted R% "LOOCV R%* Leave-One-Out-Cross-validation R?

°R?\02 shows the correlations between predicted NO, or PM components concentrations
with measured NO, concentrations at the training sites, being the NO,/PM sites.

YHEV R? is hold-out evaluation R?, approximated by the correlation of model predictions
with measured NO, at test sites, which is NOy-only sites
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The variability of NO, concentrations was similar for the training sites and the test
sites for most areas (Figure 1). The mean NO, concentration did not differ
significantly between the training and the test sites, with the exception of the study
areas of Paris, Heraklion, Turin, Ruhr area, Oslo and Stockholm county (p<0.05).
Table 2 shows the distributions of model R?> and LOOCV R? for NO,, PM,s
absorbance and PM;oCu and R? between predicted concentrations and measured
NO; at the training sites (R?xo02) and test sites (HEV R?).

Figure 2 and online supplement tables S2-S4 show the model performance and
structure for all individual study areas, including the predictor variables in the
identified LUR models. Vorarlberg and Gyor were excluded from PM, s absorbance
and PMo Cu respectively due to lower Correlation R? with measured NO, or R%\o2
than 0.5. High median model R* were observed as 0.82 for PM, Cu, 0.87 for
PM, 5 absorbance and 0.88 for NO,. The median LOOCV R?s were 5~6% lower
than the model R%s. The median correlations (R*o02) of the PM model predictions
with the measured NO; concentrations in the training data sets were as high as the
squared correlations (Pearson R?) between observations (Table 1), ranging from
0.77 for PM4o Cu to 0.80 for PM, 5 absorbance. In contrast, the models explained
substantially less variation in the independent test data sets. The NO, models
developed on the 20 training sites had the best prediction ability (median HEV
R?=0.52). The RMSE and MD ranged from 3.18 to 18.57ug/m® (median: 6.53
ug/m®) and from -8.64 to 2.71 (median: -2.38 pg/m®) respectively. The PMys
absorbance and PM4y, Cu models explained only a slightly smaller fraction of the
measured NO; concentration than the NO, models (median HEV R?=0.44 and 0.40
respectively). The IQR of R?s of each pollutant was higher for hold-out evaluations
than for cross-validation and model development, indicating substantial variability
of HEV R?s across study areas.

Table 3 Comparison between model R and LOOCV R? for PM components and indirect
and direct hold out evaluation in the Netherlands& Belgium and Catalufia (median (IQR))

Pollutants ~ Areas Model R? LOOCV  R%.° HEVR? HEV
R%® (NO,)? R*(PM)°
PM, 5 BNL 0.90(0.06) 0.87(0.08) 0.83(0.04) 0.68(0.11) 0.76(0.13)
absorbance SPC 0.85(0.10) 0.81(0.14) 0.82(0.10) 0.56(0.15) 0.51(0.17)
BNL 0.84(0.04) 0.79(0.11) 0.83(0.07) 0.57(0.12) 0.56(0.09)
PM;,Cu SPC 0.82(0.08) 0.77(0.09) 0.71(0.10) 0.45(0.32) 0.45(0.36)

®Model R% Model adjusted R%; "LOOCV R% Leave-One-Out-Cross-validation R?

°R?\02 shows the correlations between predicted NO, or PM components concentrations
with measured NO, concentrations at the training sites, being the NO,/PM sites.

Indirect HEV R*(NO,): correlations between predicted PM components and measured
NO, at the 20 test sites.

®Direct HEV R? (PM): correlations between predicted and measured PM components at the
20 test sites. BNL: Belgium & the Netherlands; SPC: Catalufia, Spain. The 40 sites were
randomly divided in test and training sets 10 times
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model predictions with NO, measurements (at NO, -only sites. HEV R?) in 20 European
countries. See Figure 1 for coding of the locations.
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Figure 3 LOOCV R? (X-axis) versus HEV R? (Y-axis) in study areas. The codes
corresponding to the areas are shown in Figure 1 and Table S1. R%*p<0.1, **p<0.05
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In the sensitivity analysis with 10 sets of random selected 20 training and test PM
sites in the Netherlands and Belgium and in Catalufia, the HEV R? validated by the
same PM metric did not significantly deviate from the HEV R? validated by NO, for
PM, s absorbance and PM4, Cu (paired t-test, p>0.1). This supports our approach
of using of NO; as proxy to evaluate the PM models (Table 3 and Figure S2).
Similar differences were found between model R? and HEV R? for NO; in these two
areas as in the analysis comprising all study areas.

The HEV was calculated with truncated predictors. We saw that by restricting
the predictors in the test sets to the range of values that were obtained in the
training sets, improved the median HEV R%s by 8%, 5% and 8% for NO,, PM.
absorbance, and PM4, Cu respectively (Table S5).

Figure 3 presents scatterplots of R of LOOCV versus R? of HEV in individual
areas. In general, there were positive associations between LOOCV R? and HEV
R?, indicating that better models as judged from LOOCV were on average better in
HEV as well. The correlations were significant (p<0.1) for PM4, Cu and PMas
absorbance, but not for NO, (p=0.1). There was however a wide scatter. In some
areas, models that exhibited very stable performances in cross-validation reflected
much lower HEV R?s than the model R For instance, the models of NO, and PMg
Cu in Turin have both high model R? (>0.87) and high LOOCV R? (>0.82) whereas
the HEV R? dropped dramatically by over 66% from model R? (Table S2, 4). This
also applies to the models in a few other areas e.g. Paris, Kaunas, Heraklion and
Athens (Table S2-4). For NO,, the five areas with the lowest HEV R? (<0.40) were
predominantly in southern Europe (Turin, Paris, Athens, Heraklion and Rome).
For absorbance, the lowest HEV R? (<0.30) were found more spread, specifically in
Oslo, Helsinki, Kaunas, Athens and Heraklion. For Cu, the lowest HEV R? (<0.30)
were found more spread, specifically in Kaunas, Gyor, Turin, Athens and Heraklion.

Discussion

This study shows that for a wide range of study areas and pollutants including
NO,, PM,s absorbance and PM, Cu, model and LOOCV R? from land use
regression models based on relatively small training sets overestimate predictive
ability in independent test sets. Despite this overestimation, in most areas LUR
models still explained a substantial fraction of the spatial variation measured at
independent sites. The predictions were better for the areas e.g. Western Europe
with more detailed predictor variables.

Evaluations of LUR predictive power and the effects of varying the number of
sampling sites have been recently reported in four studies conducted in single
areas for the pollutant NO,'>"°. The conclusions of these studies were variable,
ranging from negligibly (LOOCV R% 0.67, HEV R% 0.64, N=20)" to seriously
inflated R? of model and LOOCV R?s compared to HEV R? (LOOCV R?% 0.72, HEV
R2 0.22, N=20)". Our results for NO, can be directly compared with these studies.
Our models based on a large multicenter study showed similar patterns as
observed in our recent work in the Netherlands only12, whereas the studies by
Basagana et al. (2012)" and Johnson et al. (2010) '® showed larger gaps between
HEV R? and model or LOOCV R?. In our current study the median HEV R? was still
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52%, indicating that a substantial fraction of the measured variation was explained
by the LUR models based upon 20 sites. In our previous work'?, we found a HEV
R? of 63% for models based upon 24 sites.

The differences between model R? and HEV R? for PM absorbance and Cu were
evaluated with the NO, concentration at the test sites, because independent PM
data were not available. The difference between model R?> and HEV R? for PM, s
absorbance and PM; o Cu was only slightly larger than for NO,. For these PM
metrics some of the gap is due to the use of NO, for the evaluation. To test this
impact, we divided the HEV R? by the R%yoz in table 3, which can be interpreted as
the highest possible squared correlation for PM metrics. This resulted in median
HEV R? of 62% and 52% for PM, 5 absorbance and PMyo Cu, respectively. These
adjusted HEVs are still much larger than the LOOCV. These PM metrics have
strong relations to tailpipe and non-tailpipe traffic emissions'® 7. We restricted the
evaluation to the areas with high correlation of the measured concentrations with
NO, (Table 1) and high correlations of PM model predictions with NO, at the sites
used for model development (Table S2, 4) (R*>0.5). Our sensitivity analysis
indicated that use of NO, proxy for HEV showed no significant difference as
compared to use of the same PM metrics for true HEV in the Netherlands &
Belgium and Catalufa, suggesting that it was reasonable to use NO; to evaluate
the prediction ability of PM, s absorbance and PMqy, Cu models in this study. A
limitation of the use of NO, for PM metrics evaluation is that we can only evaluate
the correlation and not the accuracy of the model. The evaluation of the NO;
models suggested that the predictions may slightly underestimate concentrations in
most of the study areas.

The differences between model R? and HEV R? were recognized as a
phenomenon of some over-fitting, in combination with incomplete representation of
relevant area characteristics in small training sets'’ " '® The model R? and
LOOCV R? may be inflated when models are based on small nhumber of training
sites and when many candidate predictors are available. In the ESCAPE study, we
used a supervised approach with a priori defined directions of effects and restricted
the potential predictors to limit the risk of over-fitting. Our results showed that
despite substantial variability of LOOCV R? and HEV R? in study areas, the areas
with higher LOOCV R? tended to produce better predictions for the independent
data, therefore, suggested more robust performances of models in predicting
values at the cohort addresses in some areas.

We also noted that in a few areas, LOOCV R? was much lower than HEV R?. This
is likely explained at least in part by simple random variation (associations might
have been different in these areas with other training and/or test sets in these same
areas). However, the scatterplots in Figure 3 show that LOOCV R? and HEV R?
were positively associated, suggesting that models in some areas were truly more
predictive than in other areas. This is supported by Figures S1 which shows that
the HEV R? is positively associated with the correlation between NO, and PM
component measurements. The level of the HEV R? could be related to complexity
of study areas and quality of measurements and predictor variables. With more
detailed predictor variables, the models in the Western European centers generally

performed better than the models in other areas. This suggests a sensitivity
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analysis in the epidemiological analysis using HEV R? rather than LOOCV R
Previous studies displayed a slight reduction of NO, model R% and LOOCV R?s as
a function of increasing number of training sites'® ™ . Our results supported this
variation in model performances for a large number of areas using a standardized
sampling and modeling method. We compared performances between NO, models
which were centrally built for testing by IRAS based on 20 sites (40 for Netherlands
& Belgium and Catalufa) and models which were optimized by local partners
based on a full set of 40 sites (80 for Netherlands & Belgium and Catalufia). The
median R?s of model and LOOCYV cross validation decreased from 0.88 to 0.81 and
from 0.83 to 0.73 respectively (Fig.S3). The effect of restricting the out-of-range
predictor values to the range of the training sets has been discussed elsewhere'*
'3 Our results support that the range truncation approach increases the HEV R? of
our LUR models in most study areas. It is therefore important that the selected sites
cover the variability of predictor variables and pollutant concentrations in the study
area well®.

As the PM models will be applied to the epidemiological studies in all the
ESCAPE study areas, the quality of estimated exposure of cohorts will largely
depend on the prediction ability of models to the independent dataset, i.e. the HEV
R2. Although we cannot directly estimate absolute errors of PM metrics in the test
sets, the HEV R? with measured NO, can still be informative to the health studies.
We will, for instance, include model performance in meta-regressions of the
cohort-specific effect estimates which are currently being developed. In summary,
we found model R? and LOOCV R? to be substantially higher than HEV R? in LUR
models developed for PM, 5 absorbance and PM4o copper in 20 study areas across
Europe. Despite this overestimation, in most areas LUR models still explained a
substantial fraction of the variation measured at independent sites.
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Table S1 Coding list of study areas and number of sites per area

Code Study Area N N
(PM/NO>) (NO> only)

NOS Oslo, Norway 19 20
SST Stockholm, Sweden 19 20
FIH Helsinki, Turku, Finland 20 20
DCO Copenhagen, Denmark 20 20
LIK Kaunas, Lithuania 20 20
UKM Manchester, UK 19 20
UKO London, Oxford, UK 20 20
BNL Netherlands &Belgium 40 40
GRU Ruhr area, Germany 20 20
GMU Munich, Germany 20 20
AUV Vorarlberg, Austria 20 20
FPA Paris, France 20 20
HUG Gyor, Hungary 20 20
SWL Lugano, Switzerland 20 20
ITU Turin, ltaly 20 20
IRO Rome, Italy 20 20
SPB Barcelona, Spain 20 20
SPC Catalunya, Spain 40 40
GRA Athens, Greece 20 20
GRH Herakion, Greece 20 20

Code is country followed by area. Deviations from 20 due to exclusion of non-representative sites (Eeftens et al.
EST&t 2012;11195-11205)

Table S2 Model R?, LOOCV R? for NO, (NO,/PM sites) and R? root mean square errors (RMSE) and
MD between predicted NO, and measured NO, at NO, only sites in 20 European countries,
including predictor variables.

Code Model LOOCV HEV? RMSE MD" Variables
R’ R’ R? pg/m3 pg/m3

NOS 0.85 0.81 0.49 8.95 -8.64 HDRES5000
TRAFNEAR

SST 0.88 0.85 0.68 3.18 1.84 TRAFLOAD_50
ROADLENGTH_500

FIH 0.81 0.72 0.40 4.56 1.47 ROADLENGTH 50
POP_1000L
TRAFLOAD_50

DCO 0.88 0.83 0.52 8.10 -2.54 MAJORROADLENGTH 100
INDUSTRY_5000
POP_100

LIK 086 0.83 051  4.08 146 POP1000
INTMAJORINVDIST

UKM 0.87 0.77 0.42 3.92 -0.19 LDRES 1000
MAJORROADLENGTH_100
SQRALT
HDRES_300

ROADLENGTH_100
MAJORROADLENGTH_1000
UKO 0.90 0.87 0.74 7.79 -3.25 HLDRES5000

INTMAJORINVDIST
BNL 0.84 0.80 0.75 5.46 -4.58 ROADLENGTH500

TRAFMAJORLOAD_50
HEAVYTRAFMAJORLOAD
_25_1000

PORT_5000
HEAVYTRAFMAJORLOAD_25
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Code Model LOoCV HEV? RMSE MD" Variables (Continued)
R? R? R? pg/m3 pg/m3
GRU 0.95 0.93 0.60 7.1 -5.44 LDRES 100

TRAFLOAD_50
INDUSTRY_5000
MAJORROADLENGTH_1000
PM10_2008_20TO40

GMU 0.92 0.89 0.65 3.88 2.7 HD LD RES LVA1000
ROADLENGTH50
ROADLENGTH_300
TRAFLOADS50

AUV  0.73 0.70 0.50 5.64 -2.07 ROADLENGTH300
RES5000
TRAFLOAD300

FPA  0.90 0.86 0.19 18.57 -1.24 NATURAL 1000

TRAFMAJORLOAD_300
HUG 0.95 0.95 0.71 3.57 -3.27 TRAFLOAD 100
HDRES_500
INDUSTRY_5000
MAJORROADLENGTH_500
SWL 0.93 0.90 0.62 3.84 -1.09 SQRALT
TRAFMAJOR
TRAFLOADS500
TRAFLOAD50
ITU 0.87 0.83 0.04 12.37 -3.08 LDRES300
HDRES5000
ROADLENGHT100
NATURALS5000
IRO 0.83 0.74 0.34 943 -1.64 ROADLENGTH 1000
MAJORROADLENGTH_25
DISTINVMAJOR1

SPB  0.87 0.83 0.54 12.64 -5.97 INTINVDIST2
TRAFLOAD_100
HHOLD_5000
NATURAL_5000

SPC 0.80 0.74 0.70 12.25 -8.08 HDRES 5000

TRAFMAJORLOAD_500
NATURAL_5000
INTMAJORINVDIST2
ROADLENGHT_1000
GRA 0.87 0.73 0.25 9.70 -2.21 URBGREEN 5000
INDUSTRY_1000
HHOLD_500
ROADLENGTH_100
TRAFLOAD_300
TRAFMAJORLOAD_25
GRH 0.85 0.82 0.33 5.96 -4.00 POP 500
AIRPORT2_1000
DISTINVMAJORCA1

®HEV R? with variable range restriction;
MD: the mean of difference between predictions and observations per area.
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Table S3 Model R?, LOOCV R? for PM, 5 absorbance (NO./PM sites) and R? between predicted
PM, sABS and measured NO, at PM/NO, and NO, only sites in 20 European countries, including
predictor variables.

Code Model LOOCcvV R*no2” HEV Variables
R2 R2 R2b

NOS 0.95 0.93 0.79 0.29 NATURAL300

ROADLENGTH25
SQRALT
MAJORROADLENGTHS50
TRAFLOAD1000

SST 086 085 087 067 roadlength_500
heavytrafload_50
water_5000

FIH 061 047 057 023  TRAFLOAD 50
URBNATURAL_500L

DCo 09 0.86 08 0.66 MAJORROADLENGTH_300
HHOLD_5000
Trafnear
Industry_5000

LK 087 069 062 012  TRAFLOAD50
LDRES300
POP100
TRAFMAJOR

UkM 088 081 08 0.56 MAJORROADLENGTH_100
NATURAL_5000
URBGREEN_1000
ROADLENGTH_100

UKO 0.94 0.92 0.78 0.33 HEAVYTRAFLOAD500
HLDRES5000
DISTINVMAJORC2

BNL 0.91 0.89 0.81 0.75 TRAFLOAD 500
MAJORROADLENGTH50

REG_EST_PM25abs
HDLDRES_5000
HEAVYTRAFLOAD_50

GRU 0.97 0.94 0.88 0.67 heavytrafload_100
heavytrafload_100_1000
industry_5000
pop_1000

GMU 0.91 0.89 0.8 0.71 TRAFLOADS50
ROADLENGTH50
ROADLENGTHKSN3150_300

FPA 0.89 0.81 0.84 0.43 INDUSTRY 5000
HDRES_1000
TRAFMAJORLOAD_100

HUG  0.75 0.66 0.81 0.42 MAJORROADLENGTH_300
ROADLENGTH_500
TRAFLOAD_100
DISTINVMAJOR_C2

SWL 0.75 0.71 0.79 0.37 ROADLENGTH300
HEAVYTRAFLOADS0
SQRALT
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Code  Model LOOCV R°Nno2”  HEV Variables (Continued)

ITU 0.85 0.8 0.85 0.55 res1000

majorroadlength_100
natural5000

res100

trafload1000
natural1000

Intmajorinvdist
pop01_5000

SPB 0.83 0.8 0.8 0.77 hdres 300
intinvdist2
trafload_50

SPC 0.72 0.68 0.7 0.72 intmajorinvdist1
roadlenght_1000
natural_5000
distinvmajorc1

GRA 09 0.81 0.76 0.2 TRAFMAJORLOAD_25
ROADLENGTH_300
HDRES_5000
TRAFLOAD_500
MAJORROADLENGTH_50

GRH 0.51 0.4 0.52 0 POP 100

MAJORROADLENGTH_300

IRO 0.82 0.78 0.75 0.44

®R’No2) is correlations between predicted PM. s absorbance and measured NO, at PM/NO; sites
PHEV R? with variable range restriction;

Table S4 Model R?, LOOCV R? for PM;oCu (NO, sites) and R? between predicted PM;,Cu and
measured NO, at PM/NO, and NO, only sites in 20 European countries, including predictor
variables.

Code Model LOOoCcvV R°no2’ H2EbV Variables
R

RZ R2

NOS  0.78 0.72 0.81 0.3 SQRALT
DISTINVMAJOR1
TRAFLOAD1000

SST 0.87 0.84 0.53 0.45 HEAVYTRAFLOAD_500
DISTINVMAJOR1
HEAVYTRAFMAJOR

FIH 0.72 0.61 0.83 0.41 ROADLENGTH 50
POP_1000L
TRAFMAJORLOAD_50

DCO 092 0.91 0.77 0.85  TRAFLOAD_300

LIK 0.62 0.54 0.77 0.14 DISTINVMAJOR
TRAFLOAD500

UKM  0.92 0.87 0.8 0.39 ROADLENGTH 25
HDRES_300

MAJORROADLENGTH_100
MAJORROADLENGTH_100_1000

UKO 0.96 0.95 0.88 0.81 ROADLENGTH1000
TRAFLOAD25
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Code  Model LOOCV R°Nno2”  HEV Variables (Continued)
RZ RZ R2b

BNL 0.8 0.71 0.77 0.69 TRAFMAJORLOAD 50
ROADLENGTH25
PORT_5000
HEAVYTRAFMAJORLOAD 1000
TRAFNEAR

GRU  0.94 0.92 0.94 0.7 MAJORROADLENGTH_1000
TRAFLOAD_100
INDUSTRY_5000

GMU 0.75 0.71 0.9 0.32 INDUSTRY5000
TRAFNEAR
ROADLENGTH_50

AUV 0.89 0.87 0.63 0.54 ROADLENGTH300
RES5000
TRAFLOAD25

FPA 0.62 0.48 0.73 0.37 INDUSTRY 1000

TRAFLOAD_300
SWL 0.92 0.88 0.79 0.45 ROADLENGTH300

TRAFLOAD25

ITU 0.9 0.88 0.72 0.23 NATURAL5000
TRAFMAJORLOADS0
POP_WEIGHTED500

IRO 089 087 075 038  MAJORROADLENGTH_50
TRAFLOAD_1001
TRAFMAJORLOAD_25

SPB  0.83 0.79 0.81 0.53 NATURAL 5000
HHOLD_5000
DISTINVMAJOR1

SPC 075 0.67 0.76 0.52 INDUSTRY 1000
URBGREEN_1000
TRAFMAJORLOAD_50
DISTINVMAJOR1
GREEN_300
HDRES_5000

GRA 0.73 0.7 0.51 0.1 ROADLENGTH 100
TRAFMAJORLOAD_300
TRAFLOAD_25

GRH 055 0.4 0.64 0.08 MAJORROADLENGTH_25
POP_100

°R”no2) is correlations between predicted PM+oCu and measured NO; at PM/NO, sites
PHEV R? with variable range restriction;

Table S5 HEV R? before and after variable truncation.

Pollutants HEV* NO; HEV NO;
Median IQR Median IQR
NO, 0.44 0.30 0.52 0.24
PM, s absorbance 0.39 0.34 0.44 0.35
PM4,CU 0.34 0.31 0.40 0.25

HEV* is without variable truncation (restriction of predictor variable
values to those observed at the training sites). HEV = hold out
evaluation. IQR= interquartile rang
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Chapter 4

Abstract

Background: Land use regression (LUR) models have mostly been developed to
explain intra-urban variations in air pollution based on often small local monitoring
campaigns. Transferability of LUR models from city to city has been investigated,
but little is known about the performance of models based on large numbers of
monitoring sites covering a large area.

Objectives: To develop European and regional LUR models and to examine their
transferability to areas not used for model development.

Methods: We evaluated LUR models for nitrogen dioxide (NO;) and Particulate
Matter (PM.5, PM25s absorbance) by combining standardized measurement data
from 17 (PM) and 23 (NO;) ESCAPE study areas across 14 European countries for
PM and NO,. Models were evaluated with cross validation (CV) and hold-out
validation (HV). We investigated the transferability of the models by successively
excluding each study area from model building.

Results: The European model explained 56% of the concentration variability across
all sites for NO,, 86% for PM, 5 and 70% for PM, 5 absorbance. The HV R?s were
only slightly lower than the model R? (NO,: 54%, PM,.s: 80%, absorbance: 70%).
The European NO,, PM, 5 and PM, s absorbance models explained a median of
59%, 48% and 70% of within-area variability in individual areas. The transferred
models predicted a modest to large fraction of variability in areas which were
excluded from model building (median R%* 59% NO,; 42% PM.s; 67% PM.s
absorbance).

Conclusions: Using a large dataset from 23 European study areas, we were able to
develop LUR models for NO, and PM metrics that predicted measurements made
at independent sites and areas reasonably well. This finding is useful for assessing
exposure in health studies conducted in areas where no measurements were
conducted.
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Introduction

Many studies have documented adverse health effects associated with long-term
exposure to air pollutants . With the improvement of the accuracy of geographical
data, air pollution models incorporating data from geographical information system
(GIS) are of increasing interest in exposure assessment >*. Land use regression
(LUR) modeling is a popular method used for exposure assessment in health
studies *’. LUR is a GIS and statistics based method that exploits land use,
geographic and traffic characteristics (e.g. traffic intensity, road length, population
density) to explain spatial concentration variations at monitoring sites.

Land use regression models were mostly constructed and utilized to predict
concentrations within metropolitan areas ®"' or small regions'* '*. Often, models
have been based on measurements made at a relatively small number of sampling
sites (20~80 sites). Our recent study showed a positive association between the
number of sampling sites and the prediction capability of models for NO, based on
144 sites in the Netherlands ', in agreement with observations for Girona, Spain '°.
At least for some of the reported studies, there is still room to improve the model
performances if more sampling sites were selected 2. Several studies have
reported the possibilities of building models in large areas in Europe, United States
and Canada '®'. With a large number of sites, these models explained large
fractions of NO, variability (61%~90%) and modest fraction variability of PM
(40%~50%) across all sites. However, the large-area studies were all based upon
routine monitoring. Routine monitoring networks are often not optimally designed to
detect small-scale spatial variation within urban areas. There is generally only a
small number of sites within individual areas with often a lack of high exposure
settings. Because of the small number of routine monitoring sites within individual
cities, it is typically not possible to evaluate how well a large-area model explains
within-city variability. This is relevant for epidemiological studies based in individual
cities. A study in Switzerland based upon study-specific monitoring suggested that
a country wide model did not perform well within six of the eight geographically
diverse study areas %°.

The applicability of LUR models can be increased by transferring them to
adjacent areas with similar geography and GIS databases where no or few
measurements were conducted. The transferability of models has been
investigated for local and national models 2. Most of the earlier studies
recommended using the locally built models, even though transferred models
explained variations in concentrations fairly well. This is because all the transferred
models were city-city or country- country transfers for which local specific variables
were not available and there was no advantage in the number of sampling sites as
compared to the locally developed models.

So far, few studies attempted to explore the performance of LUR models with
combined geographical areas in terms of prediction ability and transferability at
independent sites and areas mainly due to lack of sufficient, comparable
measurement data.

In the context of the ESCAPE project (European Study of Cohorts for Air
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Pollution Effects), we applied a standardized approach for measurements, GIS
variable collection and model development for NO, and Particulate Matter (PM) in
36 study areas in Europe ?*?’. We recently published LUR models developed
within individual study areas for nitrogen dioxide (NO;) and particulate matter
(Beelen, et al. 2013; Eeftens et al. 2012a). The ESCAPE database provides a
unique opportunity to address important questions regarding application of LUR
models developed for even large areas. Therefore, the aims of this study are 1) to
develop LUR models for NO2, PM s and PM, s absorbance based on combining the
ESCAPE study areas across Europe and across four regions of Europe; 2) to
evaluate the model performances systematically in terms of the model fitting and
prediction ability; and 3) to investigate the transferability of the regional and
European models to monitoring sites and areas not included in the model building.

Methods

Study areas and air pollution measurements

Details of the ESCAPE study design and the measurement campaign have been
described previously 2* . Briefly, an intensive monitoring campaign was
conducted in 36 European study areas between October 2008 and May 2011.
ESCAPE included 20 areas with simultaneous measurements of both PM and NO,
at 20 sites per area, and 20 sites where only NO, was measured. In an additional
16 areas only NO, measurements were conducted at 40 sites per area. The
number of measurement sites was doubled in the large study area of the
Netherlands & Belgium. In each area, we chose sampling sites at street, urban
background and regional background locations. These sites were selected to
represent the spatial distribution of air pollution and residential addresses of
participants of cohort studies in these areas. Annual averaged concentrations were
calculated from three samples in different seasons and were adjusted for temporal
trends with data from continuous reference sites in each area. In this paper, we
selected the 23 areas (Figure1) in which traffic intensity variables were available for
LUR model building in line with the importance of traffic intensity variables in model
development ?’. This included 17 of the 20 PM/ NO, areas and 6 of the 16 NO only
areas. We allocated the areas to 4 regions according to the geographical location,
the characteristics of the climate, the traffic intensity levels and the configuration of
the cities/country. These regions included five areas in north Europe (Oslo,
Stockholm, Copenhagen, Helsinki, Umea), seven in the west (Netherlands and
Belgium, London, Manchester, Bradford, Ruhr area, Erfurt, Paris), six in the center
(Munich, Vorarlberg, Gyér, Lugano, Grenoble, Lyon) and five in the south (Turin,
Rome, Athens, Barcelona, Marseille) (Figure1 and Table S1).

For this study we selected NO,, PM,5s absorbance and PM,5s to represent
traffic-related and a more complex mixture of sources, respectively. NO, was
measured using Ogawa badges following the Ogawa analysis protocol (Ogawa&Co
V 3.98, USA, Inc.). PM25 samples were collected on pre-weighted filters using
Harvard Impactors, and were then used to measure absorbance®*%.
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Figure 1 Map of study areas including region indication (blue: north Europe; green: west
Europe; red: central Europe; orange: south Europe)

Predictor variables

We extracted values for the GIS predictor variables at the coordinates of
sampling sites using ArcGIS (ESRI, Redlands, California). Details of the predictor
variables have been described in previous papers 2® ?’. Briefly, the predictor
variables were derived from both centrally available Europe-wide GIS databases
and locally collected GIS data by the local centers using standard definitions.

Central GIS predictor variables included road network, land use, population
density and altitude data. The digital road network was obtained from Eurostreets
version 3.1 for the year 2008. For all roads and major roads, the total lengths of
roads were calculated within a buffer size of 25, 50, 100, 300, 500, 1000 meters.
Traffic intensity data were not available for this road network. Land use variables
were derived from the CORINE (Coordination and INformation on the
Environmental programme) database for the year 2000 for the buffer sizes of 100,
300, 500, 1000 and 5000 meters. Digital elevation data (SRTM 90m) were obtained
through the Shuttle Radar Topographic Mission (http://srtm.csi.cgiar.org/). Detailed
road network with linked traffic intensity were obtained from local sources for all 23
areas. Local land use, population density, altitude and other local variables were
also locally extracted for modeling.

For the regional and European models, we pooled the data by including all the
central GIS predictors and the local traffic variables with traffic intensity. We
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combined the centrally available land use variables high and low residence density,
and the natural and urban green variables as not all the areas contained them
separately. We made efforts to incorporate more local common variables for
specific regions to capture regional variations. We included regional background
concentrations of NO,, PM absorbance and PM, s as the mean of the measured
concentrations at (1 to 3) ESCAPE regional background sites in each local study
area to characterize the spatial differences between study areas. In total, 49
variables were evaluated at the European level and 54, 53, 54, 64 variables in the
north, west, middle and south regions (see Supplemental Material, Table S2).

Model development

A total of 960 NO; sites and 356 PM sites were available for modeling from 23
and 17 study areas respectively. Detailed procedures of the NO, and PM model
development have been published elsewhere 26,27 The regional and European
models were developed using the same strictly standardized approaches. Briefly, a
supervised stepwise regression was used to develop the LUR model. We first
evaluated univariate regression of the annual concentrations by entering all
potential predictor variables. We forced the regional background concentration
variable in the first step (for the European and regional models). Then the
variable which produced the highest adjusted R? and which had the a priori defined
direction of effect (e.g. positive for traffic intensity) was selected as the second
predictor. Secondly, the remaining variables were added separately and we
assessed whether the variable with the highest increase in adjusted R? improved
the model by at least 1%. This process continued until no more variable with the a
priori specified sign could increase the model adjusted R? by at least 1%. In the
final step, we excluded the variables which had a p value >0.1. We checked
whether the variance inflation factor (VIF) was lower than 3 in order to avoid
multi-collinearity.

Model evaluations

We used three approaches for model evaluation:

1. We investigated the model fit at individual study areas by applying the
European/regional model to the sites of each area that were used for modeling.
The Modeliwa R? shows the within area variations explained by the
European/regional models which is directly comparable with the R? of
area-specific models. The Modelintra R?is important for studies conducted within
individual cities that use the European/regional model. The overall R? is
relevant for multi-city studies that exploit both within and between city-
variability of air pollution contrasts.

2. We conducted cross validations: 1) leave-one-out-cross-validation (LOOCV),
which successively left out one site from the N observations (N=960 for NO»
and 356 for PM) that was used for model development and refitted developed
models based on the remaining N-1 sites. This was iterated N times and the R?
was obtained from the regression model of the observations against the
predictions. LOOCV R? may not sufficiently reflect the stability of model fit if the
number of sites for modeling is very large. Therefore, we also used 2)
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leave-one-area-out-cross-validation (LOAOCYV) by leaving out all observations
from a complete area, refitting the model as in LOOCV, and investigating the
agreement between predicted and observed concentrations for each area that
was left out. It reflects the heterogeneity of model fit due to regional variations
between study areas.

3. The hold-out validation (HV) is an evaluation of model predictive power to
independent sites not used for model building. It reflects the prediction ability of
models to the cohort addresses within the areas on which the models had been
established. As a test, we divided the full set into two parts, the training sets
were used for modeling and the remaining test sets were used for external
evaluation. For NO,, we developed models using the PM/ NO, sites with 20-40
sites per area (480 sites in total) as training sets and the remaining 480
NO,-only sites as test sets. For PM,5 and PM,s absorbance, a randomly
selected 25% of the PM sites stratified by study area were used for validation
purpose as we had fewer sites available for PM model building than for NO,
model building. The HV R? is the squared Pearson correlation between
predictions and observations at the independent sites throughout the whole
study area. We calculated the HV R? by truncating the values of predictors in
the test data sets that were outside the range of the values observed in the
data set for model development, to prevent unrealistic predictions based on
model extrapolations ™. Prediction errors were estimated by root mean
squared error (RMSE).

Transferability of LUR models

To evaluate the prediction abilities of the regional/ European models to
independent individual study areas, we developed the regional and European
models by excluding one area at a time and applied the transferred models directly
to the sites of the area that was left out. Therefore, 23 NO, models and 17 PM
models were built respectively until each of the study areas had been excluded
once from model building.
The TRANS; o R? is the squared Pearson correlation between observed and
predicted values in each of the remaining area that was excluded from modeling.
The TRANS R? . is different from the Modeliva R? as the measurements
conducted in the respective validation areas were completely left out from model
development.

Results

NO, and PM concentrations

Table 1 shows the concentration distributions of NO, and PM metrics across the
study areas by site types. Substantial spatial variations were found for all the
pollutants across Europe. The variability was larger for NO, than for PMy5s. The
spatial variability for PM, s absorbance was intermediate between PM, 5 and NO..
Concentration contrasts were larger at the street sites for NO, and PMg;s
absorbance
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Table 1 Distributions of measured annual average NO, and PM concentrations across
Europe

Pollutants Type? N° Min P25 Median P75 Max
NO, S 454 11.80 2548 33.98 49.90 109.00
(ug/m®) UB 414 3.03 1538 22.88 30.67 57.63

RB 92 153 956 1548 17.98 3287
PM,.s S 166 7.87 12.03 17.18 21.17 36.30
(ug/m?®) UB 144 562 1097 1587 18.62 32.59

RB 47 442 1120 13.86 16.64 23.24

PM, sabsorbance S 166 0.78 1.63 216 2.81 5.09

(10°m™) UB 144 053 1.23 1.67 2.01 3.03

RB 47 0.33 0.92 1.16 145 2.37

asite types: S-street sites; UB-urban background; RB-regional background:;
®total number of sites in the study areas
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Figure 2 Scatterplot of predicted and measured PM, s with study areas color coded and two
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than at the urban and rural background sites. Concentration contrasts for PM; 5
were more similar at all the site types, suggesting an influence of multiple sources
in addition to traffic.

Models in combined areas

Table 2 shows the model details of NO,, PM and PM; 5 absorbance combining all
the European study areas. The NO;, PM,s and PM;s absorbance models
explained 56%, 86% and 70%, respectively, of the variation across all sites, which
includes both within and between area variations. The LOOCV R? was 1% lower
than or identical to the model R% The LOAOCV R? was 5% and 6% lower than the
model R? for NO; and PM_s, and was identical to the PM, s absorbance model R?
The hold-out validation R?s (50% training vs. 50% test sites for NO, 75% training
vs. 25% test sites for PM metrics) were nearly identical to the model R?s, explaining
54%, 80% and 70% for NO,, PM25 and PM,s absorbance at the independent
validation sites respectively (see Supplemental Material, Table S3). The HV RMSE
values were close to the values of LOOCV and LOAOCV RMSE for NO, and PM
metrics. The RMSE values were relatively small compared to the range of
measurements as shown in Table S3 (see Supplemental Material).

All the models in Table 2 included traffic intensity variables. The regional

background concentration explained a large fraction (71%) of variation in PMazs
documenting the importance of between-area differences for PM, s as compared to
that for the more traffic-related pollutants NO, and PM, s absorbance.
The regional models performed equally well as the European models in all regions
except Southern Europe, where none of the models performed well in terms of the
predictions to the independent sites (HV R% 0-0.23) (see Supplemental Material,
Table S4).

As shown in Table 2, the median within-area variability (Modelinta RZ) explained
by the European model for NO, and absorbance at individual study areas was
similar to the overall model R?, suggesting predominant sources of local emissions.
For PM, 5, the median model,y2 R?> was much lower than the overall model R? (0.48
vs. 0.86). Figure 2 and Figure S1 present the correlation between predicted and
measured PM, s, PM, 5 absorbance and NO; by study areas. As the figures show,
the variation of PM, 5 between areas was substantial compared to the within areas
variation. On the contrary, for NO, and PM;5s absorbance, variation within areas
was substantial compared to the variation between areas. The observations are
more under-predicted within individual areas for PM metrics (median regression
slope: 0.47 PM,s; 0.57 PM,s absorbance; 0.56 NO,) than across the whole
European study areas (regression slope: 0.85 PM,5; 0.70 PM; s absorbance; 0.57
NO,).

Transferability

Table 3, shows the performance of the models which used all monitoring data
excluding one area at the time. These models explained on average 57%, 84% and
69% variability of NO2, PM25s and PM;ys absorbance respectively. The model
structures and R?s were similar to the models in Table 2 which were based on all
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Figure 3 Transferability (TRANS 4 Rz) of the European models for NO, and PM in the 23
study areas. See Figure 2 for coding reference.

Table 3 Transferability of European models to areas which were not used for model
building for NO,, PM, 5 and PM; 5 absorbance (median (IQR)).

Model Modelia® TRANSia”

R? R? R? RMSE
NO, 0.57(0.01) 0.59(0.19) 0.59(0.09) 5.58(2.28)
PM,s 0.84(0.01) 0.48(0.16) 0.42(0.17) 1.14(0.58)
Absorbance 0.69(0.01) 0.70(0.19) 0.67(0.21) 0.23(0.07)

aModel,wa R%: R? of within-area variation explained by European model, the same data as
in table 2

®TRANS, o squared correlations and RMSE between the predictions and observations at
independent areas.

study areas. They included the same variable categories but with to some extent
different buffer sizes. The models predicted the spatial variations of NO, and PM; 5
absorbance well in the areas not used for model building with median TRANSnia
R%s of 0.59 for NO, and 0.67 for PM, s absorbance. Transferability was less for
PM, s with a median R? of 0.42. The same pattern was found for the model R?
focusing on within-area variability only (Modelinra). The variation in prediction R%s
was relatively small for NO, with an IQR of 0.09, but larger for PM25 (IQR 0.17) and
PM, s absorbance (IQR 0.21) showing that predictions were less comparable for
the two PM metrics. The variation is shown in figure 3 and Figure S2. Interestingly,
this did not depend so much on area as on the specific combination of area and
component. For example, the areas in Hungary (Gyor), Germany (Munich) and
Austria (Vorarlberg) showed decent model fit and predictability for NO, and PM; 5
absorbance, but almost no model fit and predictability for PM,s. The transferred
regional models showed similar characteristics as those of the European models,
while the median TRANS;wa R? was slightly lower (see Supplemental Material,
Table S5).
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Discussion

In this study we developed LUR models for NO,, PM2 s and PM. s absorbance
with combined measurement data from 23 study areas across Europe. For NO;
and PM, s absorbance, these models predicted spatial variations in areas not used
for model building well. For PM, s, prediction R?s were moderate for intra-urban
variation.

Comparisons with other studies

Our European models performed comparable or even better in predictions of
NO; and PM, 5 than other published study results '® " '°; Beckerman et al. 2013).
For PM,5s absorbance, this is the first report of LUR models in such a large
geographical area. We observed no heterogeneity of model fit across study areas
in the European model (LOAOCV R?s were close to the model R?). Our European
and regional models have several strengths compared to local models in previous
studies: 1) our sampling sites were deliberately chosen to represent real population
exposures as compared to most other studies using routine monitoring stations '¢-%;
2) we incorporated local traffic intensity data not available in Europe-wide
databases. All the models included traffic intensity variables, improving model fit
over models not having local traffic intensity data.

Our PM3 5 European model explained a median of 48% within-area variations as
compared to the overall model R? of 86% which was largely explained by
substantial differences in regional background concentrations. This was consistent
with the R®s of the Canadian and American PM,.s model (46% and 63%) of which
the satellite data alone explained 41% and 52% of the variability respectively '
PM 5 is well known to be a regional pollutant with a large fraction of secondary
aerosol, not explained well by the local GIS and traffic variables typically available
for LUR model building.

Comparison with ESCAPE area-specific models

The ESCAPE area-specific models explained a median of 82%, 71% and 89% of
the concentration variations for NO,, PM> s and PM,s absorbance 26,27 This is
higher than the R? of within-area variability explained by the European models in
Table 2 (Modelintra R?: 59%, 48%, 70% respectively) However, we and others have
shown that NO, and PM models based on small training sets and a large number of
variables overestimate predictive ability in independent test sets 2 The Hold Out
Validation R? in these analyses were in the same order of magnitude as shown in
this paper, documenting that with large numbers of training sites, model R? are
actually very close to Hold Out validation R?s with average differences of the model
R?s versus HV R®s of just 2%, 6% and 0% for NO,, PM,.s and PM, 5 absorbance.

Most of the combined models included traffic variables in both large (=500m) and
small buffers (<50m), representing general area characteristics as well as localized
influences. In contrast to the study-area specific ESCAPE models ?®?” | none of our
European models included population/residence density but instead selected road
length in large buffers which likely also represents urban-rural difference in terms of
population distributions °.
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Transferability of combined models

Previous studies on the transferability of LUR models were mainly focusing on
city-to-city or country-to-country transferability. *° concluded that the SAVIAH
models could be applied to other UK cities after calibrating with data from a few
monitoring sites. Poplawski et al. (2009) and Allen et al.(2011) observed that local
calibration may improve the predictions of the Canadian city specific models to a
few other comparable cities in Canada and the United States. Vienneau et al. (2010)
found reasonable transferability of British and the Dutch models between these two
countries. Only one study in Canada investigated the transferability of national NO,
models to explain spatial variations of NO, in seven specific areas (Edmonton,
Montreal, Sarnia, Toronto, Victoria, Vancouver and Winnipeg) with mean
TRANSwa R? of 0.43 ', All the previous studies concluded that the performances
of the transferred models were worse than those of the local source models. Our
results show prediction capabilities for the traffic related pollutants NO, and PM; 5
absorbance which are at a par with those documented, in terms of Hold Out
validation R?s, with previous local exercises '* '°. This is likely due to the fact that
the ESCAPE study used highly standardized monitoring and GIS data for model
building across all areas. This suggests that our combined models can be carefully
applied to other areas in Europe with common predictors, similar geographies and
availability of regional background concentration of this area. Traffic related
pollutant models (NO, and PM; s absorbance) showed stronger prediction power
than those of models representing mixed sources (PMas). In individual areas of
central Europe, the multi-cities models performed poorly however, probably due to
the lack of an important local predictor variable, e.g. residential density in Munich
and Vorarlberg, industry in Hungary or altitude in Lugano. Therefore, caution is
need when transferring the European models to cities with other specifications
beyond the explanatory variables (e.g. industrial city, harbor city).

Implications for epidemiological studies

So far, epidemiological studies have mostly used locally developed exposure
models. This was not different in ESCAPE where the health findings based on
these local exposure models are currently being published. A logical next step is to
compare the estimates and epidemiological results with those obtained using
predictions from a European model as input, because for exposure assessment
with LUR models, the most efforts are mainly in sampling campaign and GIS data
collection. Hence, there is also the perspective to include new study populations
from areas where local measurements were never conducted but relevant predictor
variables are available.

Conclusions

European LUR models for NO,, PM, 5 and PM, 5 absorbance were found to have
reasonable power to predict spatial variations of these components in areas not
used for model building.

73



Chapter 4

References

—_

. Brunekreef, B.; Holgate, S. T., Air pollution and health. Lancet 2002, 360, (9341), 1233-42.

2. Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.;et al., A review of
land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric
Environment 2008, 42, (33), 7561-7578.

3. Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; et al., A
review and evaluation of intraurban air pollution exposure models. Journal of Exposure Analysis
and Environmental Epidemiology 2005, 15, (2), 185-204.

4. Bellander, T.; Berglind, N.; Gustavsson, P.; Jonson, T.; Nyberg, F.; Pershagen, G.; et al., Using
geographic information systems to assess individual historical exposure to air pollution from
traffic and house heating in Stockholm. Environmental Health Perspectives 2001, 109, (6),
633-639.

5. Gehring, U.; Wijga, A. H.; Fischer, P.; de Jongste, J. C.; Kerkhof, M.; Koppelman, G. H.; et al.,
Traffic-related air pollution, preterm birth and term birth weight in the PIAMA birth cohort study.
Environmental Research 2011, 111, (1), 125-135.

6. Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; et al., Long-term
exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome.
Environ Health Perspect 2013, 121, (3), 324-31.

7. Estarlich, M.; Ballester, F.; Aguilera, I.; Fernandez-Somoano, A.; Lertxundi, A.; Llop, S.; et al.,
Residential exposure to outdoor air pollution during pregnancy and anthropometric measures at
birth in @ multicenter cohort in Spain. Environ Health Perspect 2011, 119, (9), 1333-8.

8. Madsen, C.; Carlsen, K. C. L.; Hoek, G.; Oftedal, B.; Nafstad, P.; Meliefste, K.; et al., Modeling
the intra-urban variability of outdoor traffic pollution in Oslo, Norway - A GA(2)LEN project.
Atmospheric Environment 2007, 41, (35), 7500-7511.

9. Marshall, J. D.; Nethery, E.; Brauer, M., Within-urban variability in ambient air pollution:
Comparison of estimation methods. Atmospheric Environment 2008, 42, (6), 1359-1369.

10.Hoek, G.; Beelen, R.; Kos, G.; Dijkema, M.; van der Zee, S. C.; Fischer, P. H.; et al., Land Use
Regression Model for Ultrafine Particles in Amsterdam. Environmental Science & Technology
2011, 45, (2), 622-628.

11.Su, J. G.; Jerrett, M.; Beckerman, B.; Wilhelm, M.; Ghosh, J. K.; Ritz, B., Predicting traffic-related
air pollution in Los Angeles using a distance decay regression selection strategy. Environmental
Research 2009, 109, (6), 657-670.

12.Henderson, S. B.; Beckerman, B.; Jerrett, M.; Brauer, M., Application of land use regression to
estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter.
Environmental Science & Technology 2007, 41, (7), 2422-2428.

13.Brauer, M.; Hoek, G.; van Vliet, P.; Meliefste, K.; Fischer, P.; Gehring, U.; et al., Estimating
long-term average particulate air pollution concentrations: application of traffic indicators and
geographic information systems. Epidemiology 2003, 14, (2), 228-39.

14.Wang, M.; Beelen, R.; Eeftens, M.; Meliefste, K.; Hoek, G.; Brunekreef, B., Systematic
Evaluation of Land Use Regression Models for NO,. Environ Sci Technol 2012, 46, (8),
4481-4489.

15.Basagana, X.; Rivera, M.; Aguilera, |.; Agis, D.; Bouso, L.; Elosua, R.; et al., Effect of the number
of measurement sites on land use regression models in estimating local air pollution.
Atmospheric Environment 2012, 54, 634-642.

16.Vienneau, D.; de Hoogh, K.; Briggs, D., A GIS-based method for modelling air pollution
exposures across Europe. Sci Total Environ 2009, 408, (2), 255-266.

17.Hystad, P.; Setton, E.; Cervantes, A.; Poplawski, K.; Deschenes, S.; Brauer, M.; et al., Creating
National Air Pollution Models for Population Exposure Assessment in Canada. Environmental
Health Perspectives 2011, 119, (8), 1123-1129.

18.Hart, J. E.; Yanosky, J. D.; Puett, R. C.; Ryan, L.; Dockery, D. W.; Smith, T. J.; et al., Spatial
Modeling of PMso and NO, in the Continental United States, 1985-2000. Environmental Health
Perspectives 2009, 117, (11), 1690-1696.

19.Beelen, R.; Hoek, G.; Pebesma, E.; Vienneau, D.; de Hoogh, K.; Briggs, D. J., Mapping of
background air pollution at a fine spatial scale across the European Union. Sci Total Environ

74



Mutli-Cities LUR Models

2009, 407, (6), 1852-1867.

20.Liu, L. J. S.; Tsai, M. Y.; Keidel, D.; Gemperli, A.; Ineichen, A.; Hazenkamp-von Arx, M.; et al.,
Long-term exposure models for traffic related NO, across geographically diverse areas over
separate years. Atmospheric Environment 2012, 46, 460-471.

21.Poplawski, K.; Gould, T.; Setton, E.; Allen, R.; Su, J.; Larson, T.; et al., Intercity transferability of
land use regression models for estimating ambient concentrations of nitrogen dioxide. J Expo Sci
Env Epid 2009, 19, (1), 107-117.

22.Allen, R. W.; Amram, O.; Wheeler, A. J.; Brauer, M., The transferability of NO and NO, land use
regression models between cities and pollutants. Atmospheric Environment 2011, 45, (2),
369-378.

23.Vienneau, D.; de Hoogh, K.; Beelen, R.; Fischer, P.; Hoek, G.; Briggs, D., Comparison of
land-use regression models between Great Britain and the Netherlands. Atmos Environ 2010, 44,
(5), 688-696.

24.Cyrys, J.; Eeftens, M.; Heinrich, J.; Ampe, C.; Armengaud, A.; Beelen, R.; et al., Variation of NO,
and NO, concentrations between and within 36 European study areas: results from the
ESCAPE study. Atmos Environ 2012, 62, 374 - 390.

25.Eeftens, M.; Tsai, M.; Ampe, C.; Anwander, B.; Beelen, R.; Cesaroni, G.; et al., Spatial variation
of PMys, PMyg, PM,s absorbance and PMcoarse concentrations between and within 20
European study areas and the relationship with NO, - Results of the ESCAPE project.
Atmospheric Environment 2012, 62, 303 - 317.

26.Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; et al.,,
Development of land use regression models for PM, 5, PM, 5 absorbance, PM,, and PMcoarse in
20 European study areas; results of the ESCAPE project. Environ Sci Technol 2012,
11195-11205.

27.Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; et al,
Development of NO, and NO, land use regression models for estimating air pollution exposure in
36 study areas in Europe - the ESCAPE project. Atmos Environ 2013, 72, 10 - 23.

28.Wang, M.; Beelen, R.; Basagana, X.; Becker, T.; Cesaroni, G.; de Hoogh, K.; et al., B,,
Evaluation of Land Use Regression Models for NO, and Particulate Matter in 20 European Study
Areas: The ESCAPE Project. Environ Sci Technol 2013, 47, (9), 4357-64.

29.de Hoogh, K.; Wang, M.; Adam, M.; Badaloni, C.; Beelen, R.; Birk, M.; et al., Development of
land use regression models for particle composition in 20 study areas in Europe. Environ Sci
Technol 2013.

30.Briggs, D. J.; de Hoogh, C.; Guiliver, J.; Wills, J.; Elliott, P.; Kingham, S.; et al.,, A
regression-based method for mapping traffic-related air pollution: application and testing in four
contrasting urban environments. Sci Total Environ 2000, 253, (1-3), 151-167.

75






Chapter 4

Appendix




Chapter 4

Table S1 Coding of the study areas and regional background concentration levels

Code Type Region Study Area
NOS PM/NO, North Oslo, Norway
SST PM/NO, North Stockholm, Sweden
FIH PM/NO; North Helsinki, Turku, Finland
DCO PM/NO2 North Copenhagen, Denmark
SUM NO2 North Umea,Sweden
UKM PM/NO, West Manchester, UK
UKO PM/NO2 West London, Oxford, UK
BNL PM/NO- West Netherlands &Belgium
GRU PM/NO, West Ruhr area, Germany
GRE NO; West Erfurt, Germany
UKB NO, West Bradford, UK
FPA PM/NO2 West Paris, France
GMU PM/NO2 Central Munich, Germany
AUV PM/NO, Central Vorarlberg, Austria
FLY NO, Central Lyon, France
HUG PM/NO2 Central Gyor, Hungary
SWL PM/NO; Central Lugano, Switzerland
FGR NO, Central Grenoble, France
ITU PM/NO; South Turin, Italy
IRO PM/NO, South Rome, ltaly
SPB PM/NO; South Barcelona, Spain
FMA NO2 South Marseille, France
GRA PM/NO> South Athens, Greece
Table S2 List of predictor variables for model development, buffer sizes and a priori defined direction
of effect
Region®  Variable Buffer size (m) Direction
All High and low residential density 100, 300, 500, 1000, +
5000
All Port 300, 500, 1000, 5000 +
All Industry 300, 500, 1000, 5000 +
All Urban green and natural areas 100, 300, 500, 1000, -
5000
All Squared root of altitude - -
All Road length 50, 100, 300, 500, 1000 +
All Major road length 50, 100, 300, 500, 1000
All Traffic intensity in the nearest road NA +
All (Squared) Inverse distance to the nearest road NA +
All (Squared) Invest distance to the nearest road*traffic NA +
intensity in the nearest road
All Traffic intensity in the major road NA +
All (Squared) Inverse distance to the nearest major road NA +
All (Squared) Invest distance to the major road *traffic NA +
intensity in the major road
All Total traffic load of roads in a buffer (sum of (traffic 50, 100, 300, 500, 1000 +
intensity * length of all segments))
All Total traffic load of major roads in a buffer (sum of (traffic 50, 100, 300, 500, 1000 +
intensity * length of all segments))
NE,WE, Population 100, 300, 500, 1000, +
SE 5000
CE,SE Urban green 100, 300, 500, 1000, -
5000
CE,SE Natural areas 100, 300, 500, 1000, -
5000
SE High residential density 100, 300, 500, 1000, +
5000
SE Low residential density 100, 300, 500, 1000, +

5000

2All: all study areas; NE: north Europe; WE: west Europe; CE: central Europe; SE: south Europe
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Table S3 Descriptive of European model performances for NO, and PM metrics using 50% NO,
training sets and 75% PM training sets for modeling and the remaining 50% and 25% test sets for
hold-out validation

Model  N? Determinants Partial  Beta Loocv HV°®
R R ’RMSE  R’RMSE
NO2 480 Regional background concentration;  0.08 3.36E-01 0.55/10.35 0.54/11.20
Traffic load in 50m; 0.37 2.60E-06  (ug/m®) (ng/m®)
Road length in 1000m; 0.52 2.65E-04
Natural and Green in 5000m; 0.55 -2.19E-07
Traffic intensity on the nearest road; 0.57 1.90E-04
Intercept 1.10E+01
PMas 270  Regional background concentration; 0.71 9.63E-01 0.85/2.27 0.80/2.78
Traffic load between 50m and 1000m;  0.82 5.37E-09  (ug/m) (Hg/m®)
Road length in 50m; 0.84 6.89E-03
Traffic load in 50m; 0.86 4.94E-07
Intercept 4.72E-01
PM2s 270  Regional background concentration; 0.29 9.58E-01 0.68/0.47 0.70/0.45
ABS® Traffic load in 50m; 0.56 2.13E-07  (10°m™) (10°m™)
Road length in 500m; 0.66 3.53E-05
Industry in 5000m; 0.68 2.50E-08
Natural and Green in 5000m; 0.69 -8.65E-09
Intercept 1.11E-01

N: number of training sites for modeling; PM, s ABS: PM, 5 absorbance
°The HV R%s represent the correlation between predicted and measured concentrations at validation monitoring
sites not used for model building (50% for NO», 25% for PM metrics, see methods section).

Table S4 Descriptive of model performances at regional scales using full number of sites

Regi Determinants Partial Beta Modelinra LOOCVY LAOC HV®
-on® R? R¥IQR°  R? VR?> R
NE  NO;(N°=200, final model R*=0.61)

Regional background concentration; 0.20 9.75E-01 0.63/0.15 0.63 0.52 0.57

Traffic load between 50 and 300m 0.48 8.45E-08

Traffic load in 50m 0.55 2.64E-06

Road length in 1000m; 0.60 1.19E-04

Traffic load in 300 and 1000m; 0.61 2.06E-08

Intercept 2.34E-01

PM,.5(N°=78, final model R?=0.70)

Regional background concentration; 0.28 5.39E-01 0.68/0.25 0.66 0.59 0.60

Natural and Green in 1000m; 0.64 -1.03E-06

Traffic density*inverse distance to the 0.67 2.04E-04

nearest road; 0.69 1.28E-04

Road length between 50 and 500m; 0.70 9.17E-03

Major road length in 50m; 4.26E+00

Intercept

PM;sabsorbance(NP=78, final model R?=0.69)

Regional background concentration; 0.12 6.77E-01 0.80/0.11  0.62 0.02 0.69

Traffic load in 50m; 0.50 1.12E-07

Road length in 500m; 0.59 2.26E-05

Natural and green in 5000m; 0.64 -1.00E-08

Inverse distance to major road; 0.69 1.49E+00

Intercept 5.57E-01
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Table S4 Descriptive of model performances at regional scales using full number of site(Continued)

Regi-  Determinants Partial Beta Modelinra LOOCV LAOC  HV®
on® R? RYIQR° R? VR* R
WE NO. (N°=320, final model R?=0.64)
Regional background concentration;  0.00 -2.55E-02 0.65/0.29 0.61 0.54 0.64
Traffic load in 50m; 0.41 4.89E-06
Population in 1000m; 0.58 2.88E-04
Squared altitude; 0.62 -6.02E-01
Major road length in 500m; 0.64 1.37E-03
Intercept 2.37E+01
PM. 5 (N°=119, final model R?=0.80)
Regional background concentration; 0.68 7.35E-01 0.48/0.13 0.78 0.71 0.71
Major road length in 50m; 0.79 1.47E-02
Industry in 5000m; 0.80 1.07E-07
Intercept 4.42E+00
PM_ sabsorbance(N°=119, final model R?*=0.75)
Regional background concentration;  0.01 6.51E-02 0.80/0.10 0.70 0.68 0.74
Traffic load in 50m; 0.56 2.78E-07
Major road length in 1000m; 0.69 1.47E-05
Population in 1000m; 0.73 8.33E-06
Traffic load in major roads in 500m;  0.75 2.06E-09
Intercept 1.03E+00
CE NO; (N°=240, final model R°=0.63)
Traffic load in 1000m; 0.54 5.63E-08 0.57/0.10 0.61 0.36 0.56
Traffic intensity to the nearest road; 0.60 2.74E-04
Road length in 50m; 0.63 2.02E-02
PM.5 (N°=79, final model R?=0.82)
Regional background concentration;  0.72 1.17E+00 0.25/0.48 0.79 0.34 0.84
Road length in 50m; 0.81 8.44E-03
Traffic load in 100m; 0.82 1.76E-07
Intercept -2.61E+00
PM;sabsorbance(N°=79, final model R’=0.61)
Regional background concentration;  0.00 8.70E-01 0.63/0.06 0.55 0.55 0.15
Traffic load in major roads in 50m; 0.38 1.82E-07
Road length in 300m; 0.53 1.05E-04
Natural and Green in 5000m 0.61 -1.62E-08
Intercept 4.19E-01
SE NO; (N°=200, final model R°=0.75)
Regional background concentration;  0.00 -1.22E+00 0.63/0.25 0.70 0.12 0.23
Low residual density in 5000m; 0.53 5.42E-07
Population in 1000m; 0.65 1.85E-04
Traffic intensity to the major road; 0.70 3.00E-04
Road length in 50m; 0.75 2.90E-02
Intercept 1.563E+01
PM..s (N°=80, final model R?>=0.23)
Road length in 100m; 0.10 3.91E-03 0.50/0.13 0.17 0.00 0.00
Traffic density in nearest road; 0.23 1.56E-04
Intercept 1.69E+01
PM;_sabsorbance(N°=80, final model R?=0.59)
Regional background concentration;  0.01 9.23E-04 0.67/0.08 0.53 0.42 0.16
Traffic density in nearest road; 0.42 2.15E-05
Natural in 5000m; 0.53 -3.46E-08
Major road length in 50m; 0.59 3.50E-03
Intercept 2.59E+00

°NE: north Europe; WE: west Europe; CE: central Europe; SE: south Europe; °N: number of training sites for

modeling;

°The Modeliya R?s show the median and Inter Quartile Range of the within-area variability explained by the

Regional model in individual areas

“The HV R’ represent the correlation between predicted and measured concentrations at validation

monitoring sites not used for model building (50% for NO2, 25% for PM metrics, see methods section).
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Figure S1 Scatterplot of predicted and measured of NO, and PM, 5 absorbance with study areas
color coded. Coding of areas please see table S1.
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Figure S2 Modelinta RZ) of the European models for NO, and PM in the 23 study areas. Coding of
areas please see table S1

Table S5 Transferability of the regional models to the independent areas not used for model building
(Median(IQR))

Region Regional model
Model(R?) TRANSa (R) 2
NO. North 0.67(0.00) 0.71(0.42)
West 0.68(0.00) 0.69(0.16)
Central 0.68(0.00) 0.54(0.25)
South 0.65(0.00) 0.43(0.25)
All° 0.68(0.01) 0.58(0.32)
PMas North 0.69(0.04) 0.36(0.35)
West 0.82(0.01) 0.40(0.19)
Central 0.86(0.07) 0.12(0.21)
South 0.71(0.22) 0.31(0.22)
All° 0.77(0.17) 0.32(0.28)
PM, 5 absorbance North 0.69(0.00) 0.55(0.41)
West 0.75(0.00) 0.77(0.30)
Central 0.61(0.00) 0.52(0.19)
South 0.59(0.00) 0.40(0.18)
Al 0.69(0.14) 0.49(0.39)

*TRANS;wa: squared correlations between the predictions and observations at independent areas.
PAll: Median and interquartile range of regional model R?s and TRANSiya R’s in all the study area
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Chapter 5

Abstract

Land Use Regression (LUR) models have been used to describe/model spatial
variability of annual mean concentrations of traffic related pollutants like nitrogen
dioxide (NO>), nitrogen oxides (NOy) and particulate matter (PM). No models have
yet been published of elemental composition. As part of the ESCAPE project, we
measured the elemental composition in both the PMo and PM, 5 fraction sizes at
20 sites in each of 20 study areas across Europe. LUR models for eight a priori
selected elements; copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulphur (S),
silicon (Si), vanadium (V) and zinc (Zn) were developed. Good models were
developed for Cu, Fe and Zn in both fractions (PMso and PM5) explaining on
average between 67 and 79% of the concentration variance (R?) with a large
variability between areas. Traffic variables were the dominant predictors, reflecting
non-tailpipe emissions. Models for V and S in the PM4o and PM, 5 fractions and Si,
Ni and K in the PMy fraction performed moderately with R? ranging from 50 to 61%.
Si, NI and K models for PM, s performed poorest with R? under 50%. The LUR
models are used to estimate exposures to elemental composition in the health
studies involved in ESCAPE.
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LUR for PM compositions

Introduction

Associations between long term air pollution and health effects have been widely
reported.1'3 The influence of road traffic related emissions on cardio-respiratory
morbidity and mortality is well documented.* Most epidemiological studies have
reported associations of mortality and hospital admissions due to respiratory and
cardiovascular disease with particulate matter (PM) characterized as the mass
concentration of particles <10um or <2.5um (PMi, and PM;s, respectively).
Particulate matter is a complex mixture varying spatially and temporally in chemical
composition and particle size related to the sources from which they originate. A
major uncertainty is which components within the PM mixtures are responsible for
the health effects.>® Components for which associations have been reported
include (transition) metals, elemental carbon, inorganic secondary aerosols (sulfate,
nitrate) and organic components but the evidence is not consistent.>® Most studies
that have assessed health effects related to elemental composition have been
short-term exposure studies using e.g. data for the US Chemical Speciation
network from a few sites”® or specially designed short-term campaigns.® Very few
studies have assessed health effects related to long-term exposure to elemental
composition.™ Lack of spatially resolved elemental composition measurement data
and a lack of models for elemental composition have contributed to this gap. So far
the emphasis of epidemiological research into traffic-related air pollution and health
has focused on NO,, the soot content of PM and ultrafines, all reflecting exhaust
emissions.* There is increasing concern about non-tailpipe emissions including
brake and tyre wear which may result in high concentrations of transition metals
such as Cu and Fe.®

Land use regression has been used to model the spatial variation of the annual
mean concentrations for a range of traffic-related pollutants including NO,, NO,
PM1o, PM.5, the soot (EC) content of PM2s and VOCs." More recently LUR has
been used to predict the spatial variability of polycyclic aromatic hydrocarbons
(PAHSs)'? but to our knowledge not for elemental composition.

Within the Framework of the European Study of Cohorts for Air Pollution Effects
(ESCAPE), we measured intra-urban spatial variation of NO2, PM4p, PM25 and its
elemental composition in 20 study areas across Europe. LUR models were
developed based on these measurements. LUR models for NO2, PM+o, PM2 5 and
PM,5s absorbance have been published.”> " ESCAPE is an EU wide study
investigating the relationship between traffic-related pollution and health, using
existing cohorts to which a harmonized exposure assessment is applied. The
exposures derived from these LUR models will be used to explore associations
between these elements, alone or in combination, and specific health outcomes.

The aim of this paper is to describe the development and performance of LUR
models in 20 study areas across Europe, for 8 a priori selected trace elements:
copper (Cu), iron (Fe), potassium (K), nickel (Ni), vanadium (V), sulphur (S), silicon
(Si) and zinc (Zn) in both the PM2 5 and PMy, size fractions.
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Methods

In ESCAPE we a priori selected 8 from the 48 measured elements for further
epidemiological evaluation. The set of elements was selected based upon
evidence for health effects (toxicity), representation of major anthropogenic
sources, a high percentage of detected samples (>75%) and good precision of
measurements. We selected Cu, Fe and Zn mainly for (non-tailpipe) traffic
emissions; S for long-range transport; Ni and V for mixed oil burning / industry; Si
for crustal material and K for biomass burning.”” Elements may have multiple
sources, so they do not necessarily represent single sources.

Sampling and analysis

A particulate matter monitoring campaign was conducted in 20 study areas
across Europe between October 2008 and April 2011 (see table of content). The
monitoring campaign has been described in detail by Eeftens et al,’® including a
description of the study areas and the monitoring equipment used. Briefly,
measurements for each area were conducted over a one year period, obtained
during three 2-weekly periods across a year to capture seasonal variations. The
spatial variation of PM concentrations across the study areas was measured with
20 monitoring sites. These were positioned close to roads (traffic sites), in urban
areas away from roads (urban background) and in rural settings (rural background)
with on average 12, 6 and 2 of these site types respectively. A common sampling
protocol was used for the monitoring site selection. Measurements were performed
simultaneously at five sites. One reference site, located in an urban or rural
background location depending on the study area, was established to measure
continuously for 2-week periods during the year to adjust for temporal variation.
This site was used in the calculation of the temporally adjusted annual average
concentrations for each of the 20 monitoring sites

Monitoring was performed using the Harvard impactor, which collects particle
matter smaller than 2.5 ym (PM25) and 10 ym (PM1o) on separate filters using an
air flow of appr. 10 I/min. All PM4o and PM, s samples were analysed for elemental
composition using Energy Dispersive X-ray fluorescence (XRF). Analyses were
performed in Cooper Environmental Services, Portland USA. Filters were analysed
between December 2010 and July 2011, after a first series of analyses on June
2010 to test adequate detection. Forty-eight elements were measured. Quality
assurance and control included analysis of NIST reference material (SRM 1228
and SRM 987), repeated analysis of a multi-elemental quality control standard
(Multi 30585) and replicate analysis of about 10% of the samples. All analysis
batches passed the quality criteria of the laboratory. In addition, about 20 field
blanks and field duplicates were taken in each study area. From the field blanks we
calculated the mean field blank and the detection limit (DL). Field duplicates were
used to calculate the precision of measurements expressed as coefficient of
variation.™

Concentrations were calculated by multiplying the reported concentration of an
element (ug/cm?) with the exposed filter area (7.8 cm?), subtracting the study
area-specific mean field blank and dividing by the sample volume. Limits of
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detection per study area were calculated as three times the standard deviation of
field blanks divided by the nominal sample volume of 25.2 m® Concentration
values of individual samples below the DL were retained and not replaced with a
standard value. In these calculations we removed 6 of the about 400 blanks,
because of extreme values.

Annual averages were calculated after adjusting for temporal variation measured
at the continuous reference site. For each of the three sampling periods, the
absolute difference of the concentration measured in that period from the overall
annual mean at the reference site was used as adjustment, following procedures
for PMyo, PM2s and soot.”>® In a few cases extreme concentrations measured at
the reference site resulted in negative adjusted average concentrations for
individual elements. Log-transformation of the concentrations did not resolve this
problem. We decided to exclude these extreme sampling periods from the analysis
per element. Extreme was defined as an elemental concentration at the reference
site higher than four times the interquartile range above the 75" percentile of the
reference site measurements or below the 25" percentile. Outliers were detected
for 31 of in total 8320 (20 areas x 26 periods x 16 elements) sampling periods. In 11
study areas, PM sampling occasionally failed at the reference site. Elemental
concentrations were estimated using routine monitoring sites,'® provided that the
squared correlation between the measured element and the routinely measured
component was higher than 0.50. With the exception of the London study area, no
elemental composition was available from routine networks and we therefore used
PMyo, PM25, NO2 and NOy. Particularly the non-traffic elements could not be well
predicted and were left missing. Site-specific averages were only calculated if two
or three valid adjusted samples were obtained. These procedures resulted in 92
missing values for all elements, sites and areas (7040 in total).

GIS predictor data

The geographical location of the monitoring sites was determined using a
combination of GPS readings at the site and manual corrections using detailed
local road maps to ensure the correct position of the site in relation to the road
network.

Potential predictor variables for LUR model development covering a range of
potential emission sources were extracted for all study areas, at the monitoring site
locations, using the geographical information system (GIS) ArcGIS 9.3 & 10 (ESRI,
Redlands, CA, USA). A detailed description of the geographical input data used can
be found in Eeftens et al.™® In brief, geographical data was split into centrally and
locally sourced data. Central datasets were obtained at the European level for all
study areas including information on roads (EuroStreets version 3.1), land use
(CORINE land cover 2000), altitude (SRTM 90m Digital Elevation Data) and
population (enhanced EEA population density data using CORINE land cover
2000). Where available, local data was obtained by the individual centres and
included data on traffic flows, more detailed land use and emission data.

Road and traffic intensity variables were extracted in circular buffers of 25, 50,
100, 300, 500 and 1000m reflecting the local influence of these sources on air
pollution levels. Land cover variables were extracted in buffer distances of 100
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Figure 1 Annual mean concentrations (ng/m®) for 8 elements in PM,s (top) and PM;,
(bottom) fractions — study areas® are shown from north to south (note the different scales
on the y-axis for these elements between PM, s and PM,, fraction).

®NOS: Oslo (Norway); SST: Stockholm County (Sweden); FIH: Helsinki/Turku (Finland);
DCO: Copenhagen (Denmark); LIK: Kaunas (Lithuania); UKM: Manchester (United
Kingdom); UKO: London/Oxford (United Kingdom); BNL: Netherlands/ Belgium; GRU:
Ruhr Area (Germany); GMU: Munich/Augsburg (Germany); AUV: Vorarlberg (Austria); FPA:
Paris (France); HUG: Gyor (Hungary); SWL: Lugano (Switzerland); ITU: Turin (ltaly); IRO:
Rome (ltaly); SPB: Barcelona (Spain); SPC: Catalunya (Spain); GRA: Athens (Greece);
GRH: Heraklion (Greece)
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, 300, 500, 1000 and 5000m. Buffer distances of 1000 and more were included to
reflect regional influences, not picked up by the smaller buffers. In addition,
indicators variables such as distance to the nearest (main) road and traffic intensity
on the nearest road were computed and included in the database. A descriptive
table of all variables can be found in the Supporting Information Table S1.

LUR model development

Land use regression (LUR) models for the 8 elements in both fractions (PM4 and
PM. 5) were developed centrally at IRAS, NL for the individual 20 study areas using
a standardised approach programmed in SAS 9.2. Eeftens et al. describes in detail
the supervised stepwise selection procedure used to develop the linear regression
models.”™ In brief, predictors giving the highest adjusted R? were subsequently
added to the model if they conformed to the direction of effect defined a priori and
added more than 1% to the adjusted R?. The final models were checked for p-value
(removed when p-value > 0.10), co-linearity (variables with Variance Inflation
Factor (VIF) > 3 were removed and model rerun) and influential observations
(models with Cook’s D > 1 were further examined). The final models were
evaluated by leave-one-out cross validation (LOOCV) and Morans’s | to indicate
possible spatial autocorrelation in the residuals.

We assessed the effect of seasonality by calculating the variability of the ratio of
PM;oCu concentrations between ftraffic sites and urban background sites across
seasons and by evaluating the correlation between the PM1,Cu measurements in
the different seasons. To closer investigate differences between the PM models we
applied the best PM1o model structure to the PM, 5 data and compared the model
performances with the best PM,s models. We also evaluated the correlation
between the predicted elemental concentrations and the previous developed PM
and absorbance models at the 20 (and in Belgium/Netherlands and Barcelona 40)
NO,/NOy sites. For this purpose we developed new NO; and NOy models using the
PM sites.

Results

Measurements

The eight selected elements for the development of land use regression models
were detected in the large majority (>80%) of the samples. Precision was best for S,
Cu and Fe but poorer for Ni and V especially in study areas with low concentration
levels (Tables S3 and S4).

Box plots of the PM, 5 and PMy, fractions of Cu, Fe, K, Ni, S, Si, V and Zn annual
mean concentrations measured in the 20 study areas are shown in figure 1 and
pollutant ranges are shown in Table S2. A more detailed interpretation of the
measured concentrations will be published separately. In brief, substantial
variations of annual mean concentrations were observed within and between the
majority of study areas and elements. The largest within-area contrasts were found
for Cu, Fe, Si and Zn, with the largest contrasts generally found in South European
study areas. The exceptions were Si and K where the largest within area contrasts
were found in Oslo, Stockholm and Helsinki/Turku.The smallest within-area

89



Chapter 5

RMSE [ng/m’] RMSE [ng/im’| RMSE [ng/m’] RMSE [ng/m’] RMSE [ng/m’] RMSE [ng/m’| RMSE [ng/m’| RMSE [ng/m’]
88R22,. B8 EEE ., 8828938, 882222 €883 F§ERE . 0+ oa-0o B2 L o«
W= o +IIC ot + W o o Heo + v + Wl we I +
| + wo [ + Vel Il o -H vl + Va9 B [ + vo| ICE
!. logss - +f ods -. odst | + ods - 4 ods L+ ods- |+ oas | JE
I + lass - [+ ass! [ + ads - + ads [ + ads ﬂ ads - - ass |+
1 + lou - L+ ol +1 ou f | + ou u | ol H_. ol L + ou i | +
| + LT | + nu T | i nu L | nu | 3 nu 1 + | nu || +
o | + s + ws | | + | s ws ws s+ ws| +
W= o H—— o + om H o L o = onn
+ BT+ K vdd + | vad = v I+ v 1 Hovas | L *
1 + v [ + v [ | +  mv | EELY + v v +
= IRl | + o | | + | o = L+ o “ UG | +
H + o [ + Nuo| + -” nuot + H nuo [ | + nuo- -H 5 -H
- + | e - - + e + g I + e .n g - [ + g E |
1 + o] + o | | + o LC—Eon = on E=on [ i
i | + win- [l + - win + 1 win +IC win I + | win- W= wn [ | +
L= o i Eon o W= + [ =
[ + ooar | + ooa Eoc =z [ + ooa I oo [ +looai g, [ ¥
o, =+ ‘ﬂm | ¥, o+ | i - , | EEEETES +lC s F +IO
af T s 2 [E 1ss| 2 [X 1ss | [ +  1ss ” z ] 1SS m| I +] 1ss | | +
L + son | +  son| [ + SON | | +  son mm L + son | + | son 1 +
S s3c s 238 3o 2ESgoe 288 oS PESgSS 2ESigoe PSS 2SS oS
grae2,. 3 8§ 888, 882898, §82222 88389, F§EEE. 0+ oo o B 22 o
E o = o K o + | ) Hao = o+ I oo I+
= wo | ) [ + | vaer | t we L+ Va9 vao- | + | ot | +
I+ os I+ os w W osst [ + oss - [ % ods E o [ + oas) [ +
1 + 1 ads 1 T s [ + | ass Lt ads E ads = s [ | ast [+
L + | oul 1 + - ou o | ERpe | -H ol E o 1 +
1 LRI | + nu + IO o +IC— = | ISR | +
[ | + ws | + ws [ + | s ws ws i s+ ws L +
= o K o+ + T o ONH L+ onH ! onH onH
. + vas | + vdd W= v vdd + [l ves | = v I +
= v v I F ] v AV | Y N EE ANY | R
[ | + o [ + o .H NS UG | * wol WL + nwo- WD -H
= e C + o o) nuo + nuo L= no | N | +
| + ng [ | + g -H e e+ —H e H | +! e - | | + RG] | BE3
1 4 oin: | + oin = on oxn + H on i ICE on- = on 1 +
[ | 3 win L, [[ + win win win E— wn —= wn | T | +
= 2 i >N M 1  Eon o
I + ooa | + ooa | +| oog I o | + ooa CIE o [ o E
| 4 Hid L + HA 40 ns + IC v + I we = ws | =
| + 1ss [ T s v [ * | iss| 2 1ss E_ s 5 -H 188 5 K s S =
s + son | + son 57 W s mz * son =+ Cson ST son mz - * | son SN +
o o o o : | o
283388 2833353538 28585355 23583553 238338 25853588 2553558 285835 ¢8
A & RS B By Y| A A

+ RMSE

I Model LoOCV

Figure 2 LUR model performance and evaluation model building R?, LOOCV R? and RMSE

for PM, 5 (left) and PMyo (right) — study areas are shown from north to south.
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contrasts were found for S. In addition, a positive north south gradient was
observed with higher concentrations of most elements measured in southern study
areas. Measured annual mean S in PM,5s concentrations, for example, show a
steady increasing north-south gradient with averages from 369 ng/m*® measured in
Oslo, Norway to 1657 ng/m3 in Athens, Greece. The median PM, s/PMy fraction for
all study areas were 0.30, 0.21, 0.56, 0.62, 0.91, 0.18, 0.72 and 0.64 for Cu, Fe, K,
Ni, S, Si, V and Zn respectively. This is also illustrated in figure 1; larger amounts of
Cu, Fe and Si are found in the PMy fraction, whereas S and V were predominantly
found in the fine fraction, which is in line with published results.’ 7

Land Use Regression Modeling

Land use regression models could be developed for the majority of the study
areas and elements. From a potential 320 models (20 study areas x 8 elements x 2
size fractions), 292 models were developed. For 99% of these models, no evidence
of spatial autocorrelation in the residuals was detected (Moran’s I: p > 0.05). For 29
element-study area combinations, 19 in the PM,5 fraction and 10 in PMyo, no
models could be developed. The maijority of the unsuccessful modelling attempts
(models without any significant predictor) were in Lugano (Switzerland), Kaunas
(Lithuania) and Gyor (Hungary) with 8, 7 and 6 respectively. The large number of
missing models in Lugano was due to missing data in reference site periods which
meant that several sites (4) could not be adjusted and therefore not used. The
elements with the largest fraction of missing models were S, Ni and V (7, 6 and 5
respectively). The lack of any model was probably related to small within-area
variability (e.g. S) and poor precision of the measurements in areas with low
concentrations (Ni and V).

Figure 2 shows the model R?, LOOCV R? and RMSE by study area and element,
with full model details shown in Table S4. Table 1 presents the mean and range of
R? of the models. To explore which predictor variables contribute to particular
elements in each fraction, the predictor variables were grouped into five categories
(population, industry, ports, natural and traffic). Figure 3 shows a count of the
number of study areas having at least 1 predictor within each of the defined
categories.

Table 1 Average model R? and LOOCV R? for each element by fraction

PMso PM2 5
Pollutant Number of  Average Average  Number of  Average Average
models of model of LOOCV  models of model of LOOCV

R? R? R? R?
Copper (Cu) 20 0.79 0.73 20 0.72 0.65
Iron (Fe) 20 0.76 0.70 19 0.71 0.65
Potassium (K) 19 0.53 0.45 18 0.45 0.35
Nickel (Ni) 18 0.55 0.47 16 0.43 0.34
Sulphur (S) 16 0.57 0.48 17 0.50 0.42
Silicon (Si) 19 0.61 0.52 17 0.48 0.39
Vanadium (V) 19 0.55 0.46 16 0.50 0.40

Zinc (Zn) 19 0.73 0.66 18 0.67 0.59

91



Chapter 5

20 4

15 -

10

Count

PM10Cu  PM10Fe PM10K PM10Ni PM10S PM10Si PM10V PM10Zn

Count

PM2.5Cu PM2.5Fe PM25K  PM2.5Ni PM2.5S PM2.5Si PM2.5V  PM2.5Zn

Bl Population [ Jindustry [ Port [ Natural [l Traffic |
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predictor variable categories: population; industry; ports/airports; natural; traffic for PM4q
(top) and PM, 5 (bottom).

Copper (Cu) models

LUR models for all study areas were developed with most (17 for both PMo and
PM, 5 fractions) producing a R? and LOOCV R? greater than 50%. The low R®s in
some study areas are likely to be due to the small variation observed in the
measurement data. Poor models in Heraklion can be explained by the lack of local
traffic flow data. Generally, the predictor variables explaining the variance were
dominated by traffic and road related variables, occurring in 20 PM4,Cu and 19
PM2sCu models (see Figure 3). Traffic intensity was a predictor variable in all 20
PM,5Cu models and in 18 PM1,Cu models, whereas road length came in as a
predictor in 12 PM25Cu and 14 PM1,Cu models (see Table S4).

Iron (Fe) models

Similar to the LUR models developed for copper, LUR models for iron with R? and
LOOCYV R? greater than 0.50 were developed in most study areas (17 PM1oFe and
15 PMzsFe). Low model and LOOCV R®s can, in most other study areas, be
explained by small variations in measured Fe concentrations. This is not the case
for PMysFe in Athens, where significant variation was measured, but a good LUR
could not be developed. Traffic intensity and road length were predictor variables in
the majority of models; respectively 20 in PMFe models and 18 in PMysFe
models. Population and/or residential areas also added to the explained variance in
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the majority of models (13 in PM4oFe and 11 in PM_sFe).

Potassium (K) models

Land use regression models developed for potassium (19 for PMcK and 18 for
PM,5K) had a lower model R?than the Cu/Fe/Zn models. The average model R*s
were 0.53 in the PMy, fraction and 0.45 for PM25, with only 12 and 7 models
respectively with a model R? more than 0.50. Predictor variables associated with
natural land (9 and 10 in PM,sK and PMoK respectively) and road and/or traffic
variables (12 in PM1oK and 10 in PM2sK) were present in the majority of models.

Nickel (Ni) models

As shown in Figure 1, largest variations in nickel measurements were found in
southern Europe and this was reflected in relatively good models in Italy and Spain
for PM4oNi and in Spain and Athens for PM, sNi. Belgium/Netherlands was the only
other study area with a good model (LOOCV > 50%) in both fractions. Apart from
traffic and road occurring in 13 PM+o models, no clear predictor variable category
was dominant with the number of variables evenly distributed across the different
categories (Figure 3). Port land use and distance to the harbour were predictors in
the models for some study areas with major harbours (Netherlands Rotterdam,
Barcelona, Athens and Heraklion). In the Netherlands, the Ni model further
included a highly significant geographic coordinate, describing a decrease of
concentrations with increasing distance to the sea.

Sulphur (S) models

Sulphur models were developed with mixed success; the average LOOCV R?
was 0.48 for PM4,S and 0.42 for PM,sS. Measured sulphur concentrations were
progressively higher going southwards, combined with a small increase in contrast
within the study area observed in the same direction. This larger contrast again led
to better models for Spain (both fractions) and Athens (PM25S). The dominant
predictor variable was traffic, which came into 10 PMS and 11 PM25S models.

Silicon (Si) models

LUR model R®s for silicon ranged considerably with high model R?s in Oslo,
Stockholm and Helsinki/Turku for PM>5Si and in Oslo and Stockholm for PM1oSi,
coinciding with highest contrast of measured silicon in northern Europe. As shown
in Figure 3, similar as with sulphur, the dominant predictor variable in the LUR
models was traffic (15 in PM1g and 13 in PMz25)

Vanadium (V) models
Models developed for vanadium varied with the best models in Oslo,
Belgium/Netherlands and Southern Europe for both fractions. Like nickel, variations
of measured vanadium concentrations were highest in the southern study areas of
Spain and Greece, probably explaining high performing models in these areas. In
addition, PM«V and PM,5V models for areas located near ports (Oslo,
Helsinki/Turku, Copenhagen, Belgium/Netherlands, Ruhr area (with major inland
river ports), Barcelona (PM2sV only), Catalunya (PM:V only), Athens and
Heraklion) generally included a large buffer for the port variable (5000m). V models
93



Chapter 5

contained port more often than Ni models. Population variables entered the models
relatively frequently.

Zinc (Zn) models

Zinc was successfully modelled in most study areas with average model LOOCV
R? of 0.66 and 0.59 respectively for the PMo and PMys fraction. Figure 1 shows
high levels and contrast in measured zinc concentrations in Southern European
study areas which resulted in slightly better models going southwards, especially
for PM,sZi. Compared to the other predictor variables, traffic predictor variables
were dominant.

Sensitivity analyses
Correlation of model predictions with standard NO»/PM models

The median R? of the Cu, Fe and PM1 Zn model predictions with the NO, and
PM. s absorbance model predictions was about 0.60, with large variability between
the study areas (Table S5). PM1y Fe model predictions were higher correlated with
especially absorbance (Median R?=0.72). Model predictions of all components with
PMyo or PMzs models were generally moderate (R?<0.4), with the exception of Si
and PM;o and PM coarse (R2=0.57 and 0.67).

Seasonality

The ratio between PM4,Cu concentrations measured at traffic and urban
background sites was on average 2.4, 1.8, 2.1 and 1.9 in spring, summer, autumn
and winter respectively, with northern European countries showing higher ratios
compared to southern European countries. Correlations between PMq,Cu
measurements for all sites between the seasons were similar with a median R of
0.88.

Model Transfer

When applying the PM1o model structure to PM; 5 data, on average 10% less
variability was explained when compared to the best PM; s models, with Cu models
showing the largest difference (15% on average) and Ni showing the smallest (6%).

Discussion

To our knowledge, no study has attempted to develop land use regression
models for the spatial variation of long term ambient concentrations of elemental
composition in the PM4o and PM_ 5 fractions. Land use regression models for 8 a
priori selected elements were developed with success. Good LUR models were
developed for Cu, Fe and Zn in both PM4y and PM,5 fractions explaining, on
average, between 67 and 79% of the variance. Moderate models were developed
for S, Si, Ni, V, K for PM4 and V and S for PM, 5 with model R? ranging from 50 to
61%. Models for the elements K, Ni and Si in the PM, 5 fraction performed poorest
with both average model and LOOCV R2s below 50%. For all eight elements, PM1q
models explained, on average, more variance when compared to PM; s models; 64%
compared to 56%.
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Performance of LUR models between elements

The explained variability for the components Cu, Zn and Fe was similar to the
reported values in previous studies for the more commonly modeled components
NO, and soot." For the other five elements, explained variance was in the low end
of the range of R? reported. For the same ESCAPE study areas we recently
reported median model R? of 71%, 89% and 77% for PMzs, PM2 s absorbance and
PMy, respectively.’® For NO,, the median R? was 83%."* Compared to the more
commonly modeled components, there was more variability in performance
between areas for the elements, with low R?in several areas and occasionally no
models possible. In comparison, for PM,5, PM, s absorbance and PMy models
were possible for all areas.

The difference in explained variability between the pollutants and between the
study areas is likely related to differences in contrast in the measured
concentrations and availability of predictor variables representing the major source
of a component. Viana et al. provided an overview of results of studies in Europe
investigating source apportionment of particulate matter.”> The eight trace
elements selected in this study were found to be mainly associated with the
following main sources types; vehicle source (Fe, Zn, and Cu), crustal source (Si,
Fe) and mixed industrial/fuel oil combustion (V, Ni). Within these source types, Fe
was mostly associated with road dust and brake abrasion, Zn and Cu with tyre and
brake abrasion and Si with re-suspended road dust. Both V and Ni were linked to
crude oil and derived mainly from shipping emissions. The distinction between road
dust and crustal source was often difficult because of overlapping profiles.'

Good LUR models were developed for Cu, Fe and Zn, which are all associated
with non-tailpipe emissions from road traffic. Consistently, traffic related predictor
variables dominated the other source categories. Previous land use regression
studies have documented the importance of traffic variables for models of NO, and
consequently developed the specification of traffic variables as predictor
variables."! Based upon these previous studies, the ESCAPE study put a lot of
effort into collecting predictor variables describing traffic sources. Furthermore
traffic sites were overrepresented in the monitoring campaigns. Previous studies on
traffic have exclusively focussed on exhaust emissions, represented by NO, and
occasionally soot or EC. Our study adds that we can also model components of the
non-exhaust emissions well. Model R?s were slightly lower than for PMys
absorbance, possibly because the emission is less well represented by traffic
intensity variables. Finally, other difficulties to capture sources of these components
(e.g. soil) may complicate modelling. When models are applied to addresses of the
subjects participating in the cohort studies, an important issue is whether the
predictions of the Cu, Fe and Zn models can be distinguished from the absorbance
models (Table S5). The predictions of the Cu and Fe and to a lesser extent Zn
models on average had a moderately high correlation with the predictions of the
NO,, NO4 and PM, 5 absorbance models. This suggests that in the epidemiological
analysis, it may be possible to evaluate the independent effects of non-tailpipe and
tailpipe markers of traffic. However, in some areas, the correlation is too high to
separate the two markers.

Models for elements which are predominantly emitted by other sources than
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traffic, which are not represented by our GIS data, were more difficult to develop
with the set of available predictor variables. No specific predictor variables, for
example, were available which could pick up sources of secondary inorganic
aerosols (S), soil material (Si) and biomass burning (K).

The Ni and V models were overall poorer, related mostly to very low
concentrations in areas without the main sources present. In areas with higher
concentrations, models with a good R? could be developed. Ports are important
sources, represented in the predictor variables by CORINE land cover, a proxy for
ship emissions. In contrast to road traffic, shipping emissions do not affect all study
areas, e.g. most inland areas are not affected and consequently show very low
concentrations (e.g. Munich, Lugano). While the port variable occurs frequently in
the vanadium models it is not often in the models for nickel. Industry land use was
rarely included in models, although specific industrial process may emit Ni and V."®
We, however, did not have specific information on type of industry. In the
Netherlands, the port variable may actually represent both shipping emissions and
emissions from the oil refineries located near the Rotterdam harbour. Some models
contain traffic variables, e.g. the Ruhr area Ni model includes only road length in a
1000m buffer. These variables likely do not represent direct traffic emissions, but
account for the observed urban-rural differences in concentrations.

Given the small within-study area variability, the performance of the S models
was reasonable. S is affected by large scale regional sources and less affected by
local sources. Models accounted for the modestly increased urban rural differences
and the sulphur emissions of diesel vehicles. In a few models industry and port was
included, consistent with the identification of the Ni/\VV/SO4* cluster as a source.’
Si models contained fewer traffic variables compared to the Cu, Fe and Zn models,
suggesting that our models were able to provide some distinction between soil and
road dust. The Si models often included the same predictor variables as the PM
coarse model published previously,13 accounting for especially urban — rural
differences.

K models were relatively poor because we did not have specific GIS predictor
variables for biomass burning, except in Helsinki/Turku. A study in Vancouver,
modeled wood smoke levels, but this study was based upon a detailed emission
inventory.®
The increasing north-south gradient observed in measured concentrations of some
elements was also found by Viana et al’® who attributed this to the influence of
African dust.

Differences across study areas

With regards to study area, as shown in Table S6, the fewest number of models
were developed in Lugano and Kaunas (respectively 8 and 10 out of 16 elements),
however, the 8 LUR models created in Lugano showed on average the highest
variance (86%). On the contrary, LUR models in Kaunas, together with Heraklion
and Gyor, explained the least variance (33, 36 and 37% respectively). In most of
the study areas models were developed for 15 or 16 elements. Of those, Barcelona
(72%), Cataluna (71%) and Athens (69%) were high performing study areas with
consistent high model R?s. Differences between study areas can be explained by
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concentration level and related precision of the measurements (Ni, V), within study
area concentration contrast, complexity of the study area and the availability of GIS
data. We previously reported that lack of traffic intensity data resulted in poorer
models.™

PM10 and PM2_5 models

On average, elemental PM4; models in most study areas explained a higher
variance than elemental PM;5s models. The exceptions were the study areas
Munich, Athens, Ruhr area and Gyor were PM, s models yielded higher model R%s.
The difference is probably explained by the higher concentrations measured in the
PMyo fraction. Furthermore, especially Cu, Zn, Fe and Si are concentrated in the
coarse fraction. The PM» s measurement reflects the tail of this coarse fraction and
represents the source less well. We preferred to model the PM4o concentration and
not the coarse (PM1o — PM25) fraction, because PM; 5 reflects the tail of the coarse
particle fraction. Additional analysis on applying the PM, model to PM,s data
revealed a drop in explained variability, justifying the development of separate
models for both fractions.

Seasonality
We tested seasonality in the PM1,Cu fraction and, on the basis of our monitoring
data, found no evidence of significant differences between the seasons.

Limitations

One of the main limitations of this study is the limited number of monitoring sites,
20 per study area, the LUR models are based on, as also discussed in Eeftens et
al.” Despite the small number of sites, LUR models were developed that differed
substantially between elements broadly reflecting known sources. We refrained
from combining study areas as we anticipated that the available GIS predictors
might lack specificity for the specific elements, which would be aggravated for
larger areas, e.g. for the general industry land use variable. The limited number of
monitoring sites also affects the validation of the LUR models. The validation
method selected for ESCAPE, and which indeed is used in many other studies,
was leave-one-out-cross-validation (LOOCV). Recent studies, however, suggested
that this may significantly overestimate predictive ability in independent datasets.'®
20 Wang et al. evaluated this by using the high correlation between PM metrics and
NO,/NOy concentrations to estimate elemental concentration of Cu at NO2/NOy
only monitoring sites.?’ External hold-out-evaluation (HEV) was then used to test
the LUR models for Cu on the independent set of 20 monitoring sites. Even though
the results confirmed that LOOCV R®s are overestimated when using small sample
set, the LUR models still explained a large fraction of the spatial variation within a
study area (appr 50% for PMCu).

A further limitation is the lack of specific GIS variables for especially industry and
wood smoke. More specific GIS data for these sources are difficult to obtain. We
evaluated source-specific emission data in some areas, but these rarely explained
variatign over the available GIS variables, probably because of a too large spatial
scale.
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We also recognise that due care must be taken if using some of the poorer LUR
models in health studies, for example by incorporating the cross validation R%in a
sensitivity analysis.
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Chapter 5

Table S3. Detection limits (DL, ng/mg) and % samples > DL in PM, 5 and PMyq

Element DL® PM1o PM2s
Min Max

Cu 0.5 15 929 95
Fe 13 6.1 100 100
K 0.9 20.9 100 100
Ni 0.1 0.3 90 88
S 0.0 17.0 100 100
Si 4.2 16.1 100 100
\% 0.1 0.3 96 95
Zn 0.6 2.0 100 100

“range across study areas

Table S4. Coefficient of variation (%) obtained from duplicate samples by study area

Study Area N Cu Fe K Ni S Si \% Zn
NOS 19 42 48 7.0 347 5.9 75 13.0 3.6
SST 22 1418 64 6.8 3044 34 6.8 16.2 70.0
FIH 24 13.6 19.7 15.6 314 5.2 27.7 14.9 12.0
DCO 19 12.8 6.3 4.9 96.5 44 15.6 7.0 8.4
LIK 20 6.6 4.1 4.0 104.1 2.9 5.6 20.8 3.1
UKM 15 11.8 10.7 8.4 1004 54 7.8 201 7.3
UKO 14 6.3 6.7 5.7 1322 52 6.4 18.8 7.2
BNL 19 9.5 8.2 74 13.1 6.0 13.1 8.8 11.6
GRU 23 8.6 45 26.8 221 11.8 4.7 19.8 6.0
GMU 13 5.8 3.2 7.0 80.1 3.0 4.0 58.0 9.8
AUV 23 15.9 16.4 4.8 1479 3.2 16.2 63.0 9.5
FPA 22 5.3 8.4 8.4 394 8.4 43 14.4 33.8
HUG 23 6.8 5.6 9.4 102.8 6.7 55 18.8 9.0
SWL 14 12.6 14.6 7.3 231 7.7 12.8 246 6.0
ITU 24 9.0 10.5 8.4 184 6.4 12.6 17.6 8.6
IRO 25 5.3 5.2 4.5 18.3 4.4 4.4 134 5.3
SPB/SPC 25 7.4 6.7 9.1 13.9 43 7.7 7.9 7.3
GRA 22 5.7 45 5.8 14.7 34 4.4 8.0 5.8
GRH 21 18.9 6.2 7.9 194 23 5.3 42 13.4
Median 8.6 6.4 7.3 347 5.2 6.8 16.2 8.4
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LUR for PM compositions

Table S6. Average model R? and LOOCV R? for each study area by fraction

PM10 PM2.5
Study area Number of Average of Average of Number of Average of Average of
models model R LOOCV R? models model R? LOOCV R®

NOS 8 0.83 0.77 8 0.63 0.54
SST 8 0.76 0.70 7 0.56 0.47
FIH 8 0.46 0.34 8 0.46 0.38
DCO 8 0.66 0.61 8 0.49 0.42
LIK 6 0.39 0.29 4 0.24 0.15
UKM 8 0.58 0.49 7 0.56 0.49
UKO 8 0.61 0.56 8 0.46 0.38
BNL 8 0.64 0.56 8 0.59 0.54
GRU 8 0.61 0.54 7 0.62 0.52
GMU 8 0.62 0.54 7 0.71 0.58
AUV 8 0.58 0.50 7 0.52 0.43
FPA 8 0.68 0.59 8 0.56 0.45
HUG 6 0.37 0.26 4 0.38 0.29
SWL 4 0.87 0.81 4 0.84 0.80
ITU 8 0.76 0.72 8 0.61 0.53
IRO 8 0.75 0.70 8 0.53 0.46
SPB 8 0.77 0.70 8 0.68 0.59
SPC 8 0.76 0.71 8 0.66 0.60
GRA 8 0.65 0.54 7 0.74 0.67
GRH 6 0.40 0.29 7 0.32 0.22
Grand 150 0.64 0.56 141 0.56 0.48
Total
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Chapter 6

Abstract

Background: Associations between long-term exposure to ambient particulate
matter (PM) and cardiovascular (CVD) mortality have been widely recognized.
However, health effects of long-term exposure to constituents of PM on total CVD
mortality have not been explored.

Aims: The aim of this study is to examine the association of PM composition with
cardiovascular mortality.

Methods: We used data from 19 European ongoing cohorts within the framework of
the ESCAPE and TRANSPHORM projects. Residential annual average exposure
to elemental constituents (Copper, Iron, Potassium, Nickel, Sulfur, Silicon,
Vanadium and Zinc) within PM;5 and PMy, was estimated using Land Use
Regression models. Cohort-specific analyses were conducted using Cox
proportional hazards models with a standardized protocol. Random-effects
meta-analysis was used to calculate pooled effect estimates.

Results: The total population consisted of 322,291 participants, with 9,545 CVD
deaths. We found no associations between any of the elemental constituents in
PM. 5 or PM4o and CVD mortality. Most of the hazard ratios were close to unity, with
the exception of PM2.5 Si, and S in PMz s and PMyj.

Conclusion: In a joint analysis of 19 European cohorts, we found no significant
association between long-term exposure to 8 elemental constituents of particles
and total cardiovascular mortality.
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PM constituents and CVD mortality

Introduction

Recent studies of health effects of particulate matter (PM) show accumulating
evidence of adverse effects on cardiovascular (CVD) mortality " 2. However, effect
estimates of long-term exposure to PM2 5 and PMy (particles <2.5 ym and 10 ym in
aerodynamic diameter) varied among different studies and geographical locations,
showing elevated risks in some cities and areas in Europe and the United States *°
but no or little association in others " . The recent study within the ESCAPE
(European Study of Cohorts for Air Pollution Effects) project by Beelen et al.
(2013)° reported no associations between PM mass concentrations and CVD
mortality in 19 ongoing cohorts in Europe while the magnitude of the association of
individual cohort differed among study areas, suggesting that more specific
examinations are needed taking individual particle components into account rather
than including size as only indicator.

Ambient PM; s and PM, represent a heterogeneous mixture of constituents from
diverse sources e.g. fossil fuel combustion, biomass burning and human activity °.
However, little is known about which PM constituents are associated with higher
risks. Several studies showed evidence of acute effects of PM components on CVD
mortality, but results varied among studies ""'*. The reasons for these differences
are not clear but may include methodological differences as well as true variations
related to PM composition and/or population susceptibility. . Long-term effects of
specific elemental components on CVD mortality have only been examined by a
single study which suggested that the constituents responsible for the mortality
risks were from combustion of fossil fuel, biomass burning and crustal origin '°.

The aim of this study is to investigate effects of long term exposure to PM
constituents on all CVD mortality using standardized methods within the ESCAPE
(European Study of Cohorts for Air Pollution Effects) and TRANSPHORM
(Transport related Air Pollution and Health impacts — Integrated Methodologies for
Assessing Particulate Matter) projects using data from 19 ongoing cohort studies.

Methods

The association between PM constituents and cardiovascular mortality was
analyzed in each cohort separately using a common statistical protocol for
exposure assessment, outcome definition, confounder models and statistical
analysis. Cohort-specific results were pooled together and evaluated at the
coordinating institute (IRAS, Utrecht University). The individual effect estimates
were combined by random-effects meta-analysis '®. Pooling of the cohort data was
not possible due to data transfer and privacy issues. Random-effects meta-analysis
had the advantage of including both inter-area and inter-cohort differences which
were not entirely addressed by the available data on confounders.
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PM constituents and CVD mortality

Study populations

Our analysis included 19 cohorts from 12 countries where PM measurements
were available: Finland (FINRISK), Norway (HUBRO), Sweden (SNAC-K, SALT,
Sixty, SDPP), Denmark (DCH), the Netherlands (EPIC-MORGEN, EPIC-
PROSPECT), Germany (SALIA, KORA), the United Kingdom (EPIC-Oxford),
Austria (VHMPP), Switzerland (SAPALDIA), France (E3N), ltaly (EPIC-Turin,
SIDRIA-Turin, EPIC-Rome), and Greece (EPIC-Athens) (Table 1). Detailed
information of the study design and the characteristics of each cohort have been
described in online supplement 1. The study areas of most cohorts consisted of a
large city and its surrounding area. Some of the cohorts included large regions of
the country such as EPIC-MORGEN in the Netherlands, EPIC-Oxford covering
much of the UK, the VHM&PP cohort in Vorarlberg, Austria, and SAPALDIA in three
cities of Switzerland. All included cohort studies were approved by the institutional
medical Ethics Committees and conducted in accordance with the Declaration of
Helsinki. All subjects provided written informed consent.

Definition of cardiovascular mortality outcome

In all cohorts, follow-up was based upon linkage to mortality registries. All CVD
outcome mortality was defined on the basis of the underlying cause of death
recorded on death certificates as ICD-9: 400-440; ICD-10: 110-170.

Exposure assessment

Within ESCAPE, we a priori selected 8 elements (Copper (Cu), iron (Fe),
potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V) and zinc (Zn)).
These elements were included because they reflected a variety of particle sources,
had evidences for toxicity and had a high percentage (>75%) of well-detected
samples. Elemental concentrations at the baseline residential addresses of study
participants were estimated by Land Use Regression models (LUR) following a
standardized procedure described previously 7. Briefly, three two-week
measurements of PM were conducted during different seasons between October
2008 and May 2011 in each cohort study area (1 year per study area). Annual
average concentrations of PM constituents were obtained by adjusting temporal
variation measured at a continuous background sampling site in the entire period 2.
PM filters with aerodynamic diameter <2.5um (PM.5) and <10um (PMq) were
weighed before and after each measurement centrally at IRAS, Utrecht University
and were then sent to the Cooper Environmental Services (Portland, OR, USA) to
detect metal components. All filters were analyzed for elemental compositions
using X-Ray Fluorescence (XRF). Details of the measurement, analysis and results
have been published elsewhere . Area-specific LUR models were developed for
each element to explain annual concentrations using traffic and land use predictor
variables in a GIS database. Models explained modest to large fractions of
variation of PM constituents (see table S2-17 in online supplement 2). However, 16
of 224 models of the 12 countries (14 study areas) could not be built as no single
predictor variable met the predefined inclusion criteria 1 (see table S1 in online
supplement 2). To avoid extreme values of PM constituents at cohort addresses,
we truncated the values of the predictor variables to the upper or lower limit of
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PM constituents and CVD mortality

those at the measurement sites.This procedure was previously applied for nitrogen
oxides and mass particulate matter'® % and has been shown to result in more
realistic exposure estimates for these pollutants?’.

Statistical analyses

Cohort specific analyses

Cox proportional hazards models were used for the cohort specific analyses, with
age as the underlying time scale. Censoring occurred at the time of death for
non-CVD causes, out migration, loss to follow-up for other reasons, or at end of
follow-up, whichever came first. Air pollution exposure was analyzed as a linear
variable. Potential confounders were available from questionnaires at baseline. A
priori we specified three confounder models with increasing level of adjustment.
Confounder models were decided based upon previous cohort studies of air
pollution and mortality and availability of data in a majority of the cohorts. Model 1
included age (time axis), gender, and calendar time (year(s) of enrollment) only.
Model 2 adjusted for additional individual level variables: smoking status
(never/former/present), smoking intensity, smoking duration, environmental
tobacco smoke, fruit intake, vegetables intake, alcohol consumption (linear and
squared term), body mass index (BMI) (linear and squared term), educational level
(low, medium, high), occupational class (white/blue collar classification),
employment status, and marital status. Model 3 further adjusted for area-level
socio-economic status (SES) variables (mostly mean income of neighborhood or
municipality). Model 3 was selected as the main confounder model. Only subjects
with complete information for Model 3 variables were included in the analyses (see
table S1-19 in online supplement 3).

As constituents from similar sources may be highly correlated with each other,
we conducted two-pollutant models for all elements, adjusting for all the standard
pollutants (NO2, NOx, PM,s, PMo, PM25 absorbance and coarse particles) and
elements separately. We restricted our two-pollutant models to the cohorts with
Pearson correlations between LUR based estimates of the two pollutants lower
than 0.7 to avoid multicollinearity %,

In sensitivity analyses, we added to Model 3 prevalent hypertension and physical
activity, and as further classical cardiovascular risk factors: prevalent diabetes and
cholesterol level. Extended confounder models were used in sensitivity analyses
because some of the air pollution effect might be mediated by these factors.

Meta-analysis

Meta-analyses of cohort-specific estimates were conducted using the
Dersimonian-Laird method with random effects. Hazard ratios (HR) and 95%
confidence intervals (Cls) were calculated for fixed increments. The increments for
each constituent were selected to cover the range in concentrations over most
study areas. Heterogeneity between cohorts was quantified by the 1% statistic and
tested by the X? test from Cochran’s Q statistic®.

Effect modification was tested by pooling estimates from different regions of
ESCAPE (north: Sweden, Norway, Finland, Denmark; west and middle: the United
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Kingdom, the Netherlands, Germany, France, Austria, Switzerland; south: Italy and
Greece).

In addition, we estimated pooled effects restricted to cohorts with leave-one-out
cross validation (LOOCV) R? lower and higher than 0.5 for each element.

All cohort-specific analyses and meta-analyses were done in STATA, version
10-12 (StataCorp, College Station, TX, USA). We defined statistical significance as
p value <0.05 in the Cox and meta-regression models.

Results

Characteristics of the study population

The entire study population consisted of 322,291 participants contributing
4,551,184 person year at risk (average time of follow-up 12.4 years), with 9,545
CVD deaths during follow-up (Table 1). Cohorts were recruited mostly in the 1990s.
Cohorts differed in the number of participants, the mean baseline age, and
availability of data on confounders (Table 2 and table S1-19 in online supplement 3).
Age gender, smoking status, and area-level SES were available for all cohorts.
Smoking intensity and duration were available as continuous variables for all
cohorts, except VHM&PP and E3N. VHM&PP had data on occupation and
employment status, but not on education.

Air pollution exposure

Concentration distributions of estimated particle constituents varied substantially
between and within study areas (see figure S1-2 in online supplement 4). Cu, Fe
and Zn (in PM2s and PMy) showed highest overall concentrations in southern
Europe and high spatial contrasts in all study areas. Highest concentrations and
contrasts of crustal elements (K and Si) were observed for cohorts in north and
south Europe. Exposure contrasts of V and especially S were much larger between
than within study areas. Correlations between estimated elemental concentrations
and total mass concentrations in the same size fractions (PM.s or PM4) were
modest on average (0.5<r<0.7) for traffic tracers (e.g. Cu, Fe and Zn) and for
elements which made up a relatively large fraction of PM (e.g. K, S, Si) and were
lower (0.2<r<0.5) for V and Ni (see table S1 in online supplement 5). Correlation
ranges were wide for all the elements across study areas.

Main results

We found no consistent associations between any of the elemental constituents
of PM2s or PMyg and CVD mortality in the main model based on pooled analyses of
19 cohorts (model 3 in Table 3), even though some cohort-specific associations
were found for some elements (Figure 1). Most of the pooled HRs were close to
unity for PM constituents, with exception of S and PM;5 Si. HR for PM, 5 Si was
1.17 (95% CI: 0.93-1.47) per 100ng/m® and for S in PM,s and PMyo the HRs were
1.08 (95% Cl: 0.95-1.22) and 1.09 (95% Cl: 0.90-1.32) per 200ng/m? respectively.
The crude adjustment models (model 1 with adjustment only for calendar year and
gender in Table 3) showed relatively high HRs and wide confidence intervals. The
HRs were reduced to unity with shrinking confidence interval in each stage after
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adjustment for individual level confounders (model 2 in Table 3) and area-level
socio-economic status variables (model 3 in Table 3). Nevertheless, positive effects
of some elements were observed in a few cohorts on CVD mortality individually
such as the Dutch EPIC- PROSPECT cohort (PM25 Si, Zn and PM4 S), and the
German SALIA (PMz5 Si and PMyg Si, K, Zn) and KORA (PM25 Fe, Si, Zn and PMyj
Cu, Fe, Si, S) cohorts.

Heterogeneity between the results of individual cohorts varied substantially
across constituents (1°: 0% ~ 58%, significant for Cu, Fe, S, Si and Zn), and was
generally larger for the elemental constituents than for PM mass (Table 3). HRs of
constituents-CVD meta-analyses showed similar results for both using random
effects (default method) and fixed effects (Figure 1).

Table 3 Association® between CVD mortality and exposure to PM constituents: Results
from random-effects meta-analyses (HRs and 95% Cls), p-value of model 3 and 12 (phe;) of
test for heterogeneity of effect estimates between cohorts

N°  Exposure Model 1° Model 2° Model 3° Pm® P I°
19 Cu PM,s  1.03(0.88-1.21) 0.96(0.83-1.11) 0.90(0.77-1.07) 0.26 0.03 42.77
19 PM;;  1.00(0.89-1.13) 0.95(0.84-1.08) 0.93(0.82-1.06) 0.29 0.01 48.83
19 Fe PM,s 1.07(0.94-1.23) 1.01(0.89-1.15) 0.99(0.87-1.11) 0.82 0.09 31.93
19 PM;;  1.03(0.91-1.16) 0.98(0.86-1.12) 0.96(0.84-1.09) 0.55 0.00 53.49
18 K PM,s 0.98(0.94-1.02) 0.98(0.94-1.02) 0.98(0.94-1.02) 0.37 0.62 0.00
18 PMo 1.02(0.94-1.11) 1.01(0.94-1.07) 1.00(0.93-1.08) 0.92 0.27 15.03
14 Ni PM,s 1.05(0.86-1.28) 0.98(0.78-1.24) 0.97(0.78-1.21) 0.80 0.02 48.63
17 PM;;  1.12(0.93-1.36) 1.02(0.87-1.19) 1.01(0.88-1.16) 0.90 0.35 9.11
18 S PMys  1.27(1.01-1.61) 1.09(0.97-1.24) 1.08(0.95-1.22) 0.25 0.68 0.00
18 PMy,  1.21(0.97-1.50) 1.11(0.92-1.33) 1.09(0.90-1.32) 0.40 0.06 36.46
16 Si  PM,s  1.28(0.98-1.66) 1.21(0.94-1.54) 1.17(0.93-1.47) 0.21 0.01 52.04
18 PMy,  1.09(0.93-1.28) 1.03(0.91-1.17) 1.01(0.90-1.13) 0.85 0.08 33.87
15 V. PM,s  1.14(0.86-1.52) 1.00(0.79-1.27) 1.00(0.80-1.24) 0.99 0.19 24.10
18 PMy,  1.04(0.83-1.30) 1.01(0.86-1.18) 1.00(0.85-1.17) 0.99 0.32 11.10
19 Zn PM,s  1.08(0.90-1.29) 1.06(0.90-1.25) 1.04(0.88-1.24) 0.63 0.00 58.59
19 PMy,  1.06(0.91-1.24) 1.03(0.90-1.19) 1.00(0.86-1.16) 0.99 0.00 57.47
19 PM,s°  1.18(1.00-1.38) 1.04(0.93-1.17) 0.99(0.91-1.08) 0.80 0.80 0.00
19 PM®  1.10(0.95-1.26) 1.04(0.92-1.16) 1.02(0.91-1.14) 0.69 0.69 20.20

®Effects are presented for an increase of 5 ng/m® for PM,5 Cu, 20ng/m® for PM4o Cu, 100ng/m° for PM,5 Fe,
500ng/m® for PM1o Fe, 50ng/m® for PMzs K, 10ng/m® for PMyo K, 1ng/m® for PMzs Ni, 2ng/m® for PMqo Ni,
200ng/m® for PM,s S, 200ng/m® for PMyo S, 100ng/m? for PMzs Si, 500ng/m® for PMyo Si, 2ng/m® for PMas V,
3ng/m? for PMyq V, 10ng/m® for PMz.s Zn, 20ng/m? for PMyo Zn

®N: number of cohorts in the meta-analysis

°Model 1: adjusted for gender and calendar time; Model 2: as in Model 1 also adjusting for smoking status,
smoking intensity, smoking duration, environmental tobacco smoke, fruit intake, vegetables intake, alcohol
consumption, body mass index, education level, occupational class, employment status, marital status; and
Model 3: as in model 2 also adjusting for area-level socio-economic status

Pm: p-value of HR from meta regression in model 3; ®Association between CVD mortality and PM5s, PMqg
mass concentrations reported by Beelen et al. (Submitted)g.
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Chapter 6

Sensitivity analyses

Additional adjustments for hypertension and physical activity, diabetes and
cholesterol, and noise did not change the main results of the pooled analyses (table
S1-4 in online supplement 6). Using two-pollutant models adjusting for NO NO,
NOx or PM metrics respectively, while restricting analyses to cohorts with
correlations of the two pollutants lower than 0.7 did not change the HRs compared
to the single pollutant models in the same cohorts. With a few exceptions, the HR of
S was significantly elevated after adjusting for Cu in the same fraction of PM (PM; 5
1.18, 95%Cl: 1.02-1.36; PM1o 1.35, 95%Cl: 1.06-1.72) per 200 ng/m* (Figure S1-2
in online supplement 6), but in view of the many analyses performed, this could be
a chance finding. Restricting the meta-analyses to cohorts for which the exposure
model had LOOCV R?s of at least 0.5 resulted in removal of many cohorts for
estimates of K, Ni, S and V in PM25s. No heterogeneity was observed between
stratified cohorts with LOOCV R? higher and lower than 0.5. No association was
found after this restriction (Table S5 in online supplement 6). Restricting analyses
to cohorts with port and industrial sources for trace markers of PMo V and Ni, we
found slightly elevated but not significant associations with CVD mortality (V 1.04,
95%Cl: 0.90-1.21; Ni 1.07, 95%Cl: 0.80-1.42 per 3ng/m°). Stratified analyses
showed slight differences of HRs among regions but generally no association was
identified for any of the elemental constituents on CVD mortality (Table S6 in online
supplement 6). Stratified analyses showed elevated effect of PM,s S on CVD
mortality for cohorts with average ages older than 50 years (1.35 95%CI: 1.03-1.77
per 200ng/m>) with respect to that with ages younger than 50 (1.01 95%Cl:
0.88-1.17).

Discussion

This study found no significant association between a comprehensive set of
elemental constituents of PM and overall cardiovascular mortality based on 19
European cohorts. Most of the hazard ratios were close to unity, with exception for
PM, s Si and S in PM» 5 and PMyq.

The strengths of this study include: 1) we recruited a large population of 19 study
cohorts from 12 countries with a relatively long follow-up history and with detailed
personal information; 2) we incorporated a comprehensive set of potential
confounders including smoking status and intensity, area-level SES and other
important variables, which are at least as intense as those in previous studies e.g.
the large U.S. ACS study ?*; 3) we implemented standardized land use regression
models for many of the measured PM elemental constituents for fine scale
predictions ' ?°; few previous European and American studies assessed PM
constituents by modeling but assigned individual exposures from the nearest
monitoring stations.

Our study is an extension study of Beelen et al. (2013)° who reported no
significant associations between any of the pollutants NO2, NOx, PM,5, PM4o and
PM, s absorbance and a number of CVD mortality outcomes based on the ESCAPE
study cohorts. Both studies recruited the same number of cohorts across Europe
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for PM and applied similar standardized protocols in exposure assessment,
confounder selections and statistical analyses. The median correlations between
elemental constituents and PM mass concentrations were from low to modest
across study areas, suggesting that mortality effects from elemental constituents
could be different from the particle mass mortality effects.

However, we did not identify any significant associations between CVD mortality
and PM elemental constituents across the 19 cohorts. Most of the hazard ratios
were close to unity for PM constituents and were in line with the findings from PM; 5
and PMyq ® This is different from the relatively high correlations between PM, 5 and
constituents (0.67[K]<r<0.84[Zn]) in the California Teachers Study (CTS) of which
the HRs of all the constituents exhibited similar elevated risks of mortality outcomes
to the effect estimates of PMy5 '°.

To the best of our knowledge, associations between long-term exposure to
elemental constituents and total CVD mortality have not been studied. Only one
study reported long-term effects of several PM constituents on ischemic heart
disease (IHD) mortality in the CTS study '°. In contrast to the CTS study '°, we pay
particular attention to within-area exposures of constituents to individual cohort
members as substantial spatial variability has been identified within each study
areas for most of the elements (Tsai et al. in preparation). Exposure error may
occur if within-city variability was not taken into account %. In addition, the CTS
cohort has relatively larger exposure contrasts (between counties) to the elements
(Fe, K, Si and Zn) and older population on average which may increase
susceptibility to air pollution exposure compared to the cohorts in our study.

Although elemental effects on cardiovascular disease have been examined in a
few short-term studies, results varied substantially across areas. In countrywide
studies, effects estimates were significantly increased only for V and Ni in the
United States 2. In our study, V and Ni were mainly explained by a combination
of industry, port, residential density and traffic variables, in agreement with previous
European source apportionment studies which suggested fuel (and its derivates
e.g. shipping emission) /residual oil combustion and industrial emissions 2°. We
restricted analyses to the cohorts with port and industry variables for PM1, V and Ni
respectively (DCH, EPIC-MORGEN, SNAC-K, SALT, Sixty, SDPP, EPIC-Athens for
both V and Ni and SALIA for V, SIDRIA/EPIC-Turin for Ni). We observed stronger
associations though not statistically significant. This is in agreement with the finding
of a concurrent study which showed negative associations between Ni or V and
lung function in cohorts with elemental concentrations influenced by distance to
port in the LUR models *°. The variations in particular of Cu, Fe and Zn were
explained by traffic related variables (e.g. traffic intensity and road length) in many
cohort areas. Cu, Fe and Zn are recognized as trace markers of traffic from a
combination of brake/tire-wear, vehicle exhausts and road dusts 2°. Some large
scale, short-term studies in the U.S showed no association between CVD
outcomes and Cu, Fe and Zn #"*? in line with our study results whereas four other
studies found associations with Cu, Fe or Zn in smaller regions ' '%3":32 We found
stronger associations between CVD mortality and PM,5 Si, S in PM2s and PMyg
than other constituents though not statistically significant. Mineral and road dust are

the primary sources of Si 2°. The cardio-toxicity effects of PM,s Si have been
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presented in some studies """ but not in others 2 2% 3" 32 g is part of vehicle
exhausts but is mostly determined by secondary aerosol formation. In this study,
the spatial variation of S was mostly explained by traffic and residential density
variables'’) and thus S represents traffic emissions and possibly residential oil
combustion. We found significant associations for PM, s S in the cohorts older than
50 year on average with respect to that in the subset of younger ages. This finding
was consistent with the results of a previous study that elder people were more
vulnerable to PM, 5 than younger people *.

PM,s and PM4o are often associated with both the constituent concentrations
and the health outcome, making it difficult to disentangle element contributions
from those of PM mass®*. Mostofsky et al. (2012)** evaluated several solution
strategies, including modeling with constituent proportions, PM species as modifier
or residual analyses which yielded fairly similar effect estimates across models.
Following the strategy proposed by Mostofsky et al. (2012)*, we conducted
two-pollutant model by adjusting individual pollutants (including PM metrics and
nitrogen oxides). We further restricted the analyses to the cohorts with correlations
between the two pollutants lower than 0.7 as regression model may become highly
unstable when incorporating two pollutants that are highly correlated®. The null
effects of constituents remained after adjusting for NO,/NOx and PM metrics,
except for S in PM2s and PM4o adjusted for Cu in the same size fractions. The
increased effects of S in PM35s and PMy, could be explained by chance finding
given the large number of two-pollutant models for one component. Consistently,
the Cu effects decreased after the adjustment of S in the same size fraction (Figure
S1-2 in online supplement 6).

We observed higher heterogeneity in pooled HRs for some constituents than for
PM.5s and PMyg in our previous studyg. This is partially due to the differences in
particle compositions across study areas (correlations between PM mass and
constituents varied substantially between study areas)"”

A limitation in our study is that the LUR models used for exposure assessment
were based on air pollution measurements in the period 2008-2011 while cohort
studies included in ESCAPE started in the past (1985-2007 with most studies
starting in the mid-90s). Three recent studies in the Netherlands®®, Great Britain®,
Rome %, and Vancouver® have shown that for periods up to 10 years spatial air
pollution contrasts of NO, often remained the same. This indicates that the LUR
models based on current NO, data are able to predict historical exposure well. This
finding may be applicable to traffic-related constituents such as Cu, Fe and Zn
whereas is still unclear for the other constituents. In addition, the LUR models
explained fairly large concentration contrasts of constituents in most of the study
areas but had poor predictions for several PM; 5 constituents (e.g. K, Ni, S and V) in
several study areas. This is due to lack of proper variables for specific sources, for
instance biomass burning for K and regional transport for S. We restricted the
analyses to the cohorts with reliable estimates and the effects of these constituents
on CVD mortality did not change from the main results.

In summary, we did not find significant associations between any of the
elemental constituents of particles and overall cardiovascular mortality in the 19

European cohort studies. Elevated risks were found for CVD mortality and PM; 5 Si,
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S in PM2s and PMy respectively, although not significant.
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Online supplement 1: Description of each cohort and study area
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Figure S1: Cohort locations in which both PM and nitrogen oxides were measured

The National FINRISK Study (FINRISK), Finland

FINRISK surveys have been conducted every five years since 1972 to monitor the risk factor
trends of chronic diseases, including cardiovascular diseases, diabetes, cancer, asthma, and
allergy. For each survey, a stratified random sample has been selected from the 25-64 (74 since
1997) year old inhabitants in different regions of Finland. The ESCAPE study used FINRISK data
from four surveys (1992, 1997, 2002, and 2007) and two study regions (the cities of Helsinki and
Vantaa, and Turku city with its nearby municipalities). The FINRISK study protocol has been
described elsewhere'.

The surveys included a self-administered questionnaire (the questions focus mainly on
socioeconomic factors, medical history, health behaviour, and psychosocial factors) and a clinical
examination including measurements of height, weight and blood pressure and blood sampling. The
participants have been annually followed up through 31 December, 2008 (up to 16 years) for fatal
and nonfatal coronary and stroke events, and total mortality. The National Hospital Discharge
Register and the National Causes of Death Register were used to identify these events. These
registers cover every hospitalization in Finland and every death of permanent residents in Finland,
yielding in practice 100% coverage of the follow-up events® °. In addition, we used the drug
reimbursement records from the Social Insurance Institution of Finland to identify subjects who had
developed diabetes or hypertension during the follow-up period.

The population-based Oslo Health Study (HUBRO), Norway

HUBRO was designed to identify health needs and the priorities of the health sector within Oslo,
to monitor the developments and trends of diseases and their associated risks, to estimate the
prevalence and later the incidence of chronic diseases, to investigate the social and geographical
differences in health and associated risk factors and to initiate research to further investigate the
aetiology of major health problems®. HUBRO was carried out in the city of Oslo from May 2000 to
September 2001. All men and women born in the following years: 1924, 1925, 1940, 1941, 1954,
1955, 1960, 1969, and 1970, who resided in Oslo on December 31, 1999, were invited to participate.
58 178 subjects were invited and 22 699 individuals (39%) participated in the study. The
questionnaires covered the following topics: health and chronic diseases, family history of disease,
risk factors and lifestyles, social network, education, occupation, use of health services, and use of
medicine. A physical exam was performed to obtain data on blood pressure, pulse recording, and
collection of venous non-fasting blood samples. HUBRO was linked to the Norwegian Cause of
Death Registry including deaths up to December 31, 2010, and was also linked to the Cancer
Registry of Norway including cancers up to December 31, 2009.

SNAC-K, The Swedish National study of Aging and Care in Kungsholmen (SNAC-K), Sweden
SNAC-K is an ongoing longitudinal study aiming to investigate the ageing process and identify
possible preventive strategies to improve health and care in elderly adults®. The study population
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consists of randomly sampled individuals >=60 years old and in a central area of Stockholm
(Kungsholmen) between March 2001 and June 2004. The sample was stratified for age and year of
assessment giving sub-cohorts with 60, 66, 72, 78, 81, 84, 87, 90, 93, 96, and 99+ year olds.
Information was collected through social interviews, assessment of physical functioning, clinical
examination (incl. geriatric, neurological and physical assessments) as well as cognitive
assessment. At baseline, information regarding events prior to the study period was gathered. The
follow-up interval is six years for the younger age cohorts, and three years for the older age cohorts
(81+). During the follow-up intervals, medical events of all subjects are registered through linkage
with primary care registry and hospital discharge registry (available for all subjects in Sweden). In
case of death, hospital and cause of death registries provide the clinical information, and informant
interviews are carried out. The same protocol as for the baseline data collection is used during the
follow-up, though only concerning the follow-up period. Website of study:
http://www.aldrecentrum.se/snack- /index.htm. Any outcomes based on the Swedish nationwide
health registries (such as the myocardial infarction and stroke registries, the cause-of-death register
and the national patient register) have been used.

Stockholm Screening Across the Lifespan Twin study (SALT) & Twin GENE (subcohort),
Sweden

The SALT study was set-up to screen all twins born in Sweden before 1958 for the most common
complex diseases with a focus on cardiovascular diseases®’. Twin Gene is a sub-study involving
establishing a biobank with DNA and serum from SALT participants. SALT is a telephone interview,
which took place between 1998-2002. For the purposes of this study, only twins living in Stockholm
County are included in the analyses. Information concerning birth order and weight, zygosity,
contact with twin partner and family constellation, diseases, use of medication, occupation,
education, life style habits, gender- and age-specific (hormone replacement therapy) and memory
problems (age > 65 ) was collected. In Twin Gene, twins born before 1958 were contacted
2004-2008, a total number of ~2500 participants was available. Health and medication data were
collected from questionnaires. Blood sampling material was mailed to study subjects, who contacted
a local health care centre for blood sampling and a health check-up. Height, weight, circumference
of waist and hip, and blood pressure was measured and blood was collected. Any outcomes based
on the Swedish nationwide health registries (such as the myocardial infarction and stroke registries,
the cause-of-death register and the national patient register) have been used.

Stockholm 60 year olds & IMPROVE, Sweden

The 60 year olds cohort is a study aiming to identify biological and socio-economic risk factors
and predictors for cardiovascular diseases™. Recruitment took place between August 1997 and
March 1999. A random sample of every third man and woman living in Stockholm County, who was
born between 1 July 1937 and 30 June 1938, was invited to the 60 year olds study. In total ~4100
subjects were included. Height, weight, BMI, Waist/Hip ratio and resting ECD, blood pressure and
fasting blood samples were taken during a physical examination, while a comprehensive
questionnaire was completed, including information on socioeconomic, medical and life-style
factors. The study was supplemented 2003 by the IMPROVE project (an ongoing multi cohort study
into genetics and CVDs). In Stockholm, IMPROVE is a sub-cohort consisting of ~500 participants
from the 60 year olds cohort with inclusion criteria of having at least three risk factors for the
metabolic syndrome. For IMPROVE, three follow-ups were conducted, blood and urine were
collected, socio-economic data, quantitative B-mode ultra sound examination of carotid arteries and
replicate B-mode ultrasound was performed, and vascular events were recorded. Any outcomes
based on the Swedish nationwide health registries (such as the myocardial infarction and stroke
registries, the cause-of-death register and the national patient register) have been used.

Stockholm SDPP, - Stockholm diabetes preventive programme (SDPP), Sweden

The Stockholm diabetes prevention programme, a population-based prospective study, aimed at
investigating the aetiology of type 2 diabetes and developing prevention strategies for type 2
diabetes®. An initial survey included all men and women in the targeted age group in Stockholm
County; for men in four municipalities (Varmdo, Upplands Bro, Tyresd and Sigtuna), and for women
these four plus a fifth municipality (Upplands Vasby). All were screened by a questionnaire
regarding presence of own diabetes and diabetes in relatives. Subjects with family history of
diabetes (FHD) and randomly selected subjects without FHD, all without previously diagnosed
diabetes, were invited to a health examination. This baseline study, 1992-1994 for men and
1996-1998 for women, comprised 7949 subjects, aged 35-56 years, and about 50% had FHD. In the
follow-up study 8-10 years later, 2383 men (2002-2004) and 3329 women (2004-2006) participated.
At the health examinations, both at baseline and follow-up, an extensive questionnaire (information
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on lifestyle factors, such as physical activity, dietary habits, tobacco use, alcohol consumption,
health status, socioeconomic status and psychosocial conditions) was completed. Diabetes heredity
was confirmed and measurements of weight, height, hip and waist circumference as well as blood
pressure were performed. In addition, an oral glucose tolerance test (OGTT) was made, and blood
was sampled at fasting state and 2 hour after glucose intake. Outcomes based on the Swedish
nationwide health registries (such as the myocardial infarction and stroke registries, the
cause-of-death register, and the national patient register) have been used.

Danish Diet Cancer and Health study (DCH), Denmark

The primary aim of the DCH study is to investigate diet and lifestyle in relation to incidence of
cancer and other chronic diseases'’. The study combines the collection of questionnaire data with
storing of biological specimen in order to investigate genetic susceptibility and gene-environment
interactions with regard to diet, dietary compounds, and the risk of cancer, and indeogenous
markers of nutritional, metabolic, and hormonal characteristics of study participants. Historical
residential history of the study participants is available, which facilitate studies of air pollution and
noise. The study enrolled participants in two areas, Copenhagen and Aarhus, Denmark. 160 725
individuals aged 50-64 years were invited to participate between December 1993 and May 1997. All
participants were Danish-born, living in the Copenhagen or Aarhus areas and without medical
history of cancer diagnosis registered in the Danish Cancer Registry at the time of invitation. Out of
the 160 725 people invited, which were a random sample of all eligible individuals in the specified
areas, 57 053 were enrolled. Due to the geographical limitations of the land use regression, only the
almost 40 000 participants from the Copenhagen area were included in the ESCAPE analyses. On
enrolment, each participant completed self-administered questionnaires (in Danish) that included
questions on dietary habits, health status, family history of cancer, social factors, reproductive
factors, smoking, environmental smoking, and lifestyle habits. Anthropometric measurements
including blood pressure and blood samples were also obtained. The DCH cohort is followed up
regularly by use of complete nationwide registers hence the loss to follow-up is virtually nil. Data on
cancer incidence from the Danish Cancer Registry and data on cause-specific mortality from the
Danish Mortality Registry were used.

Study on the influence of Air pollution on Lung function, Inflammation and Aging (SALIA),
Germany

The SALIA study was initiated in 1985 as part of Environmental Health surveys to monitor health
effects of outdoor air pollution in the heavily polluted Ruhr Area' ', It was an element of the Clean
Air Plan initiated by the Government of North-Rhine Westphalia in Germany. The geographic
regions covered were parts of Dortmund (1985, 1990), Duisburg (1990), Essen (1990),
Gelsenkirchen (1986,1990) and Herne (1986). They were chosen to represent a range of polluted
areas with high traffic load and steel and coal industries. Two non-industrial small towns, Dilmen
(1985) and Borken (1985, 1986, 1987, 1990, 1993, 1994) were chosen as reference areas. The
Research Institute for Environmental Medicine in Diusseldorf (then Medical Institute of
Environmental Hygiene) coordinated the studies. The baseline investigations of SALIA were
cross-sectional surveys. They were conducted on 4757 women in the local health departments in
March and April between 1985 and 1994. Sampling included all women of German nationality aged
54 to 55 residing in the selected areas. Women were selected because men in these areas mainly
worked in the mining industry with very high occupational exposure probably masking the effects of
air pollution. Postal questionnaires were sent out and included information about airway diseases
and covariates. The filled in questionnaires were checked at the day of investigation. Overall
questionnaire response was 70%. Specific measurements (lung function, determination of
immunological markers, and xenobiotics) were added in subgroups. All investigations were done
according to standardized operating procedures.

Height and weight was measured at the day of investigation. These measurements are not
available for more than 10% of all women. Therefore BMI was not included in the ESCAPE analysis,
after having demonstrated that BMI did influence the results only marginally.

Follow-ups were set up to investigate the effects of outdoor air pollution and changes in pollution
on respiratory health and mortality. In 1990, women investigated in 1984/1986 had a first follow-up
investigation including a questionnaire and a lung function testing. A mortality follow-up of all women
having participated in the baseline investigation was conducted in 2003 and in 2008 by the Institute
of Epidemiology Helmholtz Munich. All surviving women were asked to participate in a questionnaire
follow-up in 2006 and invited to eventually participate in a follow-up investigation. All women with
lung-function available at baseline were invited to a more detailed follow-up investigation, which
started in 2007.
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The mortality analyses of ESCAPE use questionnaire data from the baseline investigation and the
data from the mortality follow-ups. All these data were available to be included in the ESCAPE
analysis.

All women with geocoded addresses at baseline were included in the analysis (4,663). Two
continuous covariates were used as year of recruitment, early (1985, 1986, and 1987) and late
(1990, 1993, and 1994) years. Coding was year of recruitment — 1900, recruitment before 1990 was
coded as 90 in the late variable, recruitment after 1990 was coded as 87 in the early variable. No
dietary covariates were available, environmental tobacco smoke was a combined variable from
home and work place, occupational exposure was extreme temperature and dust. Area SES was
defined as income-rate per five-digit postcode-area.

The Cooperative Health Research in the Region of Augsburg (KORA), Germany

KORA is a cohort study based on four cross-sectional surveys of a random sample of inhabitants
of the Augsburg region1 . Main objectives of the baseline study were to investigate cardiovascular
and other chronic diseases regarding: 1) to assess health indicators (morbidity, mortality) and health
care (utilization, costs), 2) to quantify the prevalence of risk factors, and 3) to study the impact of
lifestyle, metabolic and genetic factors. The follow-up studies aimed to assess also time-trends in
risk factors and health over a period of seven to ten years. Two cross-sectional
population-representative surveys were conducted in 1994-1995 (survey S3) and 1999-2001
(survey S4) in the city of Augsburg and two adjacent rural counties to include all inhabitants of the
Augsburg region with German nationality aged 25 to 74 (n=400 000). Follow-up examinations of
survey S3 and S4 participants were carried out seven to ten years later. Baseline examination
included standardized interviews, physical examination, and blood sampling. All investigations were
done according to standardized operating procedures.

Follow-up investigations were conducted in 2004-2005 for survey S3 and in 2006-2008 for survey
S4. 2974 and 3080 of survey S3 and S4 participants attended the follow-up examinations including
standardized computer-assisted interview, self-administered questionnaire, physical examination,
and blood sampling. Survival was ascertained for S3 participants in 2008 through Population
Registry search and is available from the time of recruitment until December 31 2007. Survival of S4
participants was ascertained through a combination of returned questionnaires and subsequent
Population Registry search and is available from recruitment until December 31, 2008. Causes of
death are abstracted for all deaths from the death certificates. For the ESCAPE analyses a
study/baseline indicator was included instead of calendar time.

The Vorarlberg Health Monitoring and Prevention Program (VHM&PP), Austria

The VHM&PP study is a prevention program routinely performed by the Agency of Social and
Preventive Medicine and covers all adults of the whole province'* ™. " It has been ongoing since
1985 and data are presently available until 2005. Recruitment and follow-up has been ongoing that
means during the whole period new persons were recruited and already recruited persons came for
follow-up visits. The total adult population of the state Vorarlberg is covered, with voluntary
enrolment. Data are available from 1985 to 2005 at present on 185 330 persons, corresponding to
about 65% participation. Their age at recruitment rangew from 18-97 years (mean=42). The
screening examination takes place in the practice of the local physicians; a self-administered
questionnaire is also applied. The same protocol was applied at baseline and follow-up
examinations. A total of 132 242 geocodes were assigned exposures. 30 718 geocodes (18.85%)
were omitted if: 1) they were entirely outside of the Vorarlberg state, 2) within 300m of the state
boundary (lack of GIS data in neighboring countries), and 3) if their elevation was > 600m.
Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA),
Switzerland

SAPALDIA is a multi-center study performed in eight geographic areas representing the range of
environmental, meteorological, and socio-demographic conditions in Switzerland™. A random
population sample across eight geographic areas (Aarau, Basel, Davos, Geneva, Lugano, Montana,
Payerne, and Wald) was obtained in 1991, with follow-ups in 2002 and 2010. The main aim of the
study was to assess the effect of air pollution (outdoor and indoor) on respiratory and cardiovascular
health, with a special focus on how the respiratory and cardio-vascular systems interact in this
regard, and on the role of lifestyle and genetic background. In 1991, 9651 subjects, aged 18 to 60
years, were recruited via detailed interviews and more than 90% provided valid spirometry results.
The follow-up in 2002 obtained health information and anthropometric data from physical
re-examination with spirometry and blood sampling, blood pressure measurement, and heart rate
variability in a subsample (<50yrs). The most recent follow-up (SAPALDIA 3) was in 2010. In the
third assessment, study subjects were also asked in detail about chronic diseases having been

147



Chapter 6

diagnosed and treated since the second survey. Questionnaire domains are the following:
respiratory health and disease, cardiovascular health and disease, chronic disease and relevant risk
factors, women’s health, allergies, medications, drug use, exposure to air pollutants, sleep apnea,
and health care resources used. SAPALDIA did not obtain information on physical activity, alcohol
intake, and nutrition at baseline in 1991. Within ESCAPE, only the areas of Basel, Geneva, and
Lugano were included, with PM measurements in Lugano only.

Italian Studies on Respiratory Disorders in Childhood and Environment (SIDRIA)

The SIDRIA study has been an extension of the ISAAC initiative in Italy (International Study on
Asthma and Allergies in Childhood), a worldwide survey to analyse variations in prevalence of
symptoms asthma, rhinitis, and atopic eczema'’. A cross-sectional survey was carried out between
October 1994 and March 1995 in eight centres in northern and central Italy using standardised
questionnaires (response rate=94%). Parents of first and second graders from a representative
sample of primary schools, and adolescents in the third year of a representative sample of junior
high schools answered a self-administered questionnaire on the child’s health status, as well as
their personal respiratory health status and various risk factors, including education, occupation,
housing conditions, smoking habits, and traffic intensity in their area of residence. The data used
within ESCAPE are from the subset of parents recruited in two metropolitan areas: Rome and Turin,
in the context of a project co-funded by the Ministry of Health (Programma Strategico Ambiente e
Salute, Ricerca Finalizzata ex-art.12, 2006). A record linkage has been performed with the
Municipal Registry Office Databases to collect the residential history of parents who were living in
Rome and Turin with their children at the time of the survey. In the city of Turin the project was
performed through a collaboration between SIDRIA and the regional Unit of Epidemiology (ASL
TO3), in the context of the Turin Longitudinal Study, a census-based cohort study following up
health outcomes of people censused in Turin since 1971. It was possible to identify ~16 000 adults.

European Prospective Investigation into Cancer and Nutrition (EPIC)

The European Prospective Investigation into Cancer and Nutrition (EPIC), which covers a large
cohort of half a million men and women from 23 European centers in 10 Western European
countries, was designed to study the relationship between diet and the risk of chronic diseases,
particularly cancer'®. Five of these centers were included in ESCAPE. The selection of ESCAPE
participants was done centrally at Imperial College, UK using the central EPIC database.

EPIC- Monitoring Project on Risk Factors and chronic diseases in the Netherlands
(MORGEN), The Netherlands

The MORGEN cohort consists of a general population sample of 10 260 men and 12 394 women
aged 20-59 years from three Dutch towns (Amsterdam, Doetinchem and Maastricht)'®. From 1993
to 1997 each year a new random sample, consisting of 6000 subjects, was examined. A total of 50
766 persons were invited to participate in the MORGEN cohort. Those who replied received two
questionnaires by mail (a general questionnaire on socio- demographic factors, lifestyle and health
indicators, and an FFQ and were invited to visit the local Public Health Service for a medical
examination). The EPIC-MORGEN cohort and the EPIC-PROSPECT cohort have been joined to
form the EPIC-NL cohort. All members of the EPIC-NL cohort are followed for changes in vital status
and the occurrence of diseases by linkage with several registries, including the Municipality registry
for vital status, the Dutch National Cancer registry for occurrence of cancer, the Central Bureau of
Statistics registry for causes of death, and a National Hospital Discharge Diagnosis registry for
occurrence of cardiovascular diseases or type 2 diabetes. Changes in some exposure status are
assessed by questionnaires during follow-up. Part of the MORGEN cohort (Doetinchem participants)
is re-invited every five years for a physical examination in addition to questionnaire information. The
MORGEN cohort of EPIC-NL is linked to the Dutch Cancer Registry because participants are
residing in several geographical areas covered by different regional integral cancer centres.

EPIC-Prospect, the Netherlands

A total of ~17 500 healthy women, living in Utrecht and surroundings, were enrolled®. Women
were recruited from breast cancer screening participants, age 50-70 years at enrolment. The
purpose of the EPIC-PROSPECT study is to assess the relation between nutrition and cancer and
other chronic diseases. Baseline information was collected between 1993-1997 on the basis of two
self-administered questionnaires and a medical examination. The general questionnaire contains
questions on demographic characteristics, presence of chronic diseases of interest, and risk factors
for chronic diseases of interest, i.e. blood pressure, serum cholesterol, reproductive history of
women, family history, smoking habits, drinking of alcohol, and physical activity. Dietary intake was
assessed using detailed food frequency questionnaires. A medical examination was performed
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including measurement of blood pressure, anthropometric measurements and taking of blood. All
EPIC-PROSPECT participants are followed-up by questionnaire at 3-5 year intervals. The
questionnaire collects information on changes in lifestyle habits as well as on health status. All
incident and prevalent cancer cases were identified through linkage to the regional cancer registry,
IKMN (Integraal Kankercentrum Midden Nederland), then from the National Cancer Registry from
2008 onwards. Vital status and cause-specific mortality information is obtained through linkage to
the municipality registries and Central Buro of Statistics.

European Prospective Investigation into Cancer and Nutrition (EPIC) —Oxford, UK

The Oxford cohort was recruited from the nationwide general population in urban and rural areas
throughout the United Kingdom, although a large percentage comes from Southern parts of England
and big cities such as London?'. The cohort contains 65 429 men and women over 20 years of age
recruited through medical general practices or by post between 1993 and 1999, with an emphasis on
vegetarians. The questionnaires gathered information on diet (FFQ and 24hr recall), social and
demographic factors, lifestyle, anthropometrics, medical history of diseases, and prevalent cancers;
approximately 20 000 gave a blood sample. Participants who consented were followed-up from
recuritment by "flagging” on the NHS Central Registers (NHSCRs) in England and Wales (via the
Office for National Statistics), Scotland (via the General Registry Office) and Northern Ireland (via the
Northern Ireland Cancer Registry) via automatic notifications. The date of each event and coding of
the cancer site or type and the causes of death were recorded according to the 10" revision of the
International Classification of Diseases (ICD-10). For incident cancers, tumour morphology is also
coded, according to WHO ICD-O. EPIC-Oxford website: http://www.epic-oxford.org. The study
population was restricted to ~45 650 participants living within 400Km threshold of ESCAPE
monitoring sites.

EPIC -Turin

Recruitment took place from 1993 and involved blood donors and other healthy volunteers,
accruing 10 604 participants by 1998%2. Co-operation with the local cancer registry and the local
health authority allows for access to hospital discharge information and all newly diagnosed cancer
cases. Follow-up started in 1998, including collaboration with the local cancer registry, the
demographic computerized archives of the Torino area and the discharge report database for
hospital patients.

EPIC-Greece

Recruitment of volunteers in EPIC-Greece started in 1994, and was completed in 19998 In total,
16 619 women and 11 953 men were recruited from Greece nationwide. Data collection on medical
and reproductive history, socio-demographic and lifestyle factors and habitual diet was performed
via interview and a baseline examination that recorded measurement of anthropometric data and
collection of blood samples. The follow-up of study participants was initiated in January 1997 and
focused on the update of information on lifestyle factors and the health status. Due to the lack of a
national cancer registry and the country-wide nature of EPIC-Greece, information is being collected
through self-administered questionnaires or telephone interviews. Reported diagnoses of interest
were further ascertained through consultation of medical files in hospitals and clinics all over Greece,
or through the collection of death certificates from the regional death registries, in case of death.
Participants that contribute to the ESCAPE analyses are residents from the Prefecture of Attica
(which comprises mainly the Greater Athens Area, and hence called EPIC-Athens in the
manuscript). Based on GIS availability, we included only the members if the EPIC cohort who were
residents of 16 municipalities, specifically Athens, Agios loannis Rentis, Amaroussion, Egaleo,
Galatsi, Halandri, llioupolis, Kalithea, Moschato, Nea lonia, Nea Smyrni, Nikaia, Peristeri, Pireaus,
Tavros, and Zografou.

Etude Epidémiologique auprés de femmes de la Mutuelle Générale de ’Education Nationale
(E3N), France

E3N is a large ongoing prospective cohort consisting of 98 995 French women born between
1925 and 1950, subscribing to the health insurance plan for public education system employees,
and who voluntarily enrolled in 1990-1991%. The main objective of the study was to investigate the
risk factors for breast cancer among women in particular hormonal factors and diet. This study
began in 1990 when a baseline questionnaire (Q1) was sent to the 103 089 out of the 494 458
women subscribed to the health insurance plan for public education system employees women
aged 40-65 years who agreed to participate. Follow up questionnaires were sent in January 1992
(Q2) and then approximately every two years thereafter. The most recent update questionnaires
was sent in June 2008 (Q9) and another one in 2010. The base population covers the whole country
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of France and participation was based on voluntary agreement. To date, participants have been
followed for 18 years (from 1991 to 2008) with complete data available from 2005. All the
questionnaires are self-administered and are sent by mail to participants in French language and
returned to the study centre at IGR, Paris. Biological material was collected in 1996 on 25 000
women out of the 68 000 (who lived in communes with at least 1000 participants) invited to
participate in the setting up of the biological bank. While the E3N study includes a large population
in all France, exposure assessment for the ESCAPE project was available only for 4 cities: Paris,
Lyon, Grenoble and Marseille. PM measurements were only done in Paris. E3N is the French
component of EPIC.
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Online supplement 2

Online supplement 2: Exposure assessment procedures and LUR model
results for all study areas

Exposure assessment

Air pollution concentrations at the baseline residential addresses of study participants were
estimated by Land Use Regression (LUR) models following a standardized procedure that has been
described elsewhere 2. In brief, air pollution monitoring campaigns were performed between
October 2008 and May 2011 in all study areas. Three two-week measurements of particles with
aerodynamic diameter <2.5um (PM,5) and <10um (PM;,) were performed at 20 sites in 19 study
areas. The three measurements were then averaged, adJusting for temporal trends using data
from a background monitoring site with continuous data *°. PM filters were weighted before and
after each measurement centrally at IRAS, Utrecht University and were then sent to Cooper
Environmental Services (Portland, OR, USA) to detect metal components. All filters were analyzed
for elemental composition using X-Ray Fluorescence (XRF)3. Predictor variables on nearby traffic
intensity, population/household density and land use were derived from Geographic Information
Systems (GIS), and were evaluated to explain spatial variation of annual average concentrations
using regression modeling. LUR model results for all study areas are shown below. The LUR
models were used to estimate ambient air pollution concentration at the participants’ addresses. If
values of predictor variables for the cohort addresses were outside the range of values for the
monitoring sites, values were truncated to the minimum and maximum values at the monitoring sites.
Truncation was performed to prevent unrealistic predictions (e.g. related to too small distance to
roads in GIS) and because we did not want to extrapolate the derived model beyond the range for
which it was developed. Truncation has been shown to improve predictions at independent sites®.
In total, 13 of 208 constituents’ models were not available for cohorts in corresponding areas (Table
S1). The lack of any model was probably related to small within-area variability (e.g. S), poor
precision of the measurements with low concentrations (Ni and V), lack of availability of predictor
variables representing the major source of a component, and complexity of the study area.

Table S1 Study areas of cohorts where LUR models were not available

Constitutes | PMs 5 PM;q

Cu NA NA

Fe NA NA

K SALIA, Germany HUBRO, Norway

Ni SNAC-K, Sweden SAPALDIA, Switzerland
SALT/Twin gene, Sweden HUBRO, Norway

60-y/IMPROVE, Sweden
SDPP, Sweden

S SAPALDIA, Switzerland SAPALDIA, Switzerland

Si SAPALDIA, Switzerland SAPALDIA, Switzerland
EPIC-Athens, Greece
HUBRO, Norway

\Y SAPALDIA, Switzerland SAPALDIA, Switzerland
KORA, Germany
VHM&PP, Austria
HUBRO, Norway

Zn NA NA
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Table S2 PM;o and PM, 5 Cu model details

Cohort Type | LOOC | °Traffic | "Traffic °POP | °RES | ®Industry | 'Green [ %Port | "Alt [ 'XY
i (£100m) | (>100m)
FINRISK PMy, | 0.61 X X
PM,s | 0.84 X X
HUBRO PMy | 0.87 X X
PM,s | 0.76 X X X
SNAC-K PMy, | 0.84 X X
PM,s | 0.61 X X
SALT PMy, | 0.84 X X
PM,s | 0.61 X X
60-yr PMio 0.84 X X
PM,s | 0.61 X X
SDPP PMy, | 0.84 X X
PM,s | 0.61 X X
DCH PMy | 0.91 X
PM,s | 0.61 X X
EPIC- PMy [ 0.71 X X X
MORGEN, PM,s | 0.81 X X X
EPIC- PMy | 0.71 X X X
PROSPECT, | PM,s | 0.81 X X X
SALIA PMy | 0.92 X X X
PM,s | 0.9 X X X X
EPIC- Oxford | PMy, | 0.95 X X
PM.s | 0.79 X X
KORA PMy, | 0.71 X X
PM,s | 0.76 X X X
VHM&PP PMy, | 0.95 X X X
PM,s | 0.38 X X
SAPALDIA, PMy, | 0.84 X X
PM,s | 0.83 X X
E3N PMy | 0.48 X X
PM,s | 0.51 X X X
EPIC- Turin PMy, | 0.88 X X X
PM,s | 0.85 X X X
SIDRIA- PMy | 0.88 X X X
Turin PM,s | 0.85 X X X
SIDRIA- PMy, | 0.87 X X
Rome PM; 5 0.78 X X
EPIC- Athens | PMy, | 0.7 X X
PM,s | 0.76 X X X X

“Traffic (100m) includes all traffic intensity and road length variables within 100m
®Traffic (>100m) includes all traffic intensity and road length variables beyond 100m
°POP indicates the number of inhabitants

RES includes low and high density residential

°Industry indicates industry area

‘Green includes natural green and urban green variables

SPort indicates port area

"Alt: altitude of measured sites

'XY: coordinate variables which indicates the trends of concentrations
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Cohort Type | LOOC | ®Traffic PTraffic ‘POP [ °RES | °Industry | 'Green [ °Port | "Alt | XY
i (£100m) | (>100m)
FINRISK PMy, | 0.47 X X X
PM,s | 0.63 X X X
HUBRO PMy | 0.92 X X
PM,s | 0.82 X X
SNAC-K PMy, | 0.68 X X
PM,s | 0.9 X X X X
SALT PMy, | 0.68 X X
PMys | 0.9 X X X X
60-yr PM;o 0.68 X X
PM..s 0.9 X X X X
SDPP PMy, | 0.68 X X
PMys | 0.9 X X X X
DCH PMy | 0.92 X X
PM,s | 0.91 X X X X
EPIC- PMy |07 X X X
MORGEN, PM,s | 0.73 X X X
EPIC- PMy |07 X X X
PROSPECT, | PM,s | 0.73 X X X
SALIA PMy | 0.85 X X X X
PMps | 0.62 X X X
EPIC- Oxford | PMy, | 0.95 X X
PMps | 0.92 X X
KORA PMy | 0.82 X X X
PMps | 0.62 X X X
VHM&PP PMy | 0.62 X X
PM,s | 0.46 X X
SAPALDIA, PMy, | 0.85 X X
PM,s | 0.83 X X
E3N PMy | 05 X X
PM,s | 0.79 X X X
EPIC- Turin PMy | 0.86 X X X
PM,s | 0.83 X X X X
SIDRIA- Turin | PMy, | 0.86 X X X
PM,s | 0.83 X X X X
SIDRIA- PMy, | 0.82 X X X
Rome PM,s | 0.67 X X
EPIC- Athens | PMy, | 0.75 X X X X
PMys | 0.11 X X

“Traffic (100m) includes all traffic intensity and road length variables within 100m
®Traffic (>100m) includes all traffic intensity and road length variables beyond 100m
°POP indicates the number of inhabitants

RES includes low and high density residential

°Industry indicates industry area
‘Green includes natural green and urban green variables

SPort indicates port area

"Alt: altitude of measured sites

'XY: coordinate variables which indicates the trends of concentrations
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Table S4 PM;o and PM, 5 K model details

Cohort Type | LOOC | “Traffic PTraffic POP | °RES | °Industry | 'Green | ®Port | "Alt [ XY
v (£100m) | (>100m)
FINRISK PMy, | 0.24 X X
PM,s | 0.09 X
HUBRO PMy, | 0.9 X X X X
PM,s | 0.32 X X
SNAC-K PMy | 0.76 X X
PM,s | 0.55 X X
SALT PMy | 0.76 X X
PM,s | 0.55 X X
60-yr PM;q 0.76 X X
PM,s | 0.55 X X
SDPP PMy | 0.76 X X
PM,s | 0.55 X X
DCH PMy | 0.15 X
PM,s | 0.53 X X
EPIC- PMy | 045 X X
MORGEN, PM,s | 0.25 X X
EPIC- PMy | 0.45 X X
PROSPECT, PM,s | 0.25 X X
SALIA PMy | 0.14 X
PM,s | NA
EPIC- Oxford | PMy, | 0.56 X
PM,s | 0.14 X
KORA PMy | 0.63 X X
PM,s | 0.38 X X X
VHM&PP PMy | 0.6 X X X
PM,s | 0.69 X X X
SAPALDIA, PMy | 0.67 X X
PM,s | 0.78 X X X
E3N PMy | 0.52 X X
PM,s | 0.31 X X X
EPIC- Turin PMy | 0.48 X X X
PM,s | 0.11 X X
SIDRIA- Turin | PMy, | 0.48 X X X
PM,s | 0.11 X X
SIDRIA- Rome | PMy, | 0.57 X X
PM,s | 0.41 X X
EPIC- Athens | PMy | 0.13 X
PM,s | 0.51 X X X

“Traffic (100m) includes all traffic intensity and road length variables within 100m
®Traffic (>100m) includes all traffic intensity and road length variables beyond 100m
°POP indicates the number of inhabitants

RES includes low and high density residential

°Industry indicates industry area

‘Green includes natural green and urban green variables

SPort indicates port area

"Alt: altitude of measured sites

'XY: coordinate variables which indicates the trends of concentrations
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Cohort Type | LOOC | *Traffic PTraffic °‘POP [ °RES | ®Industry | 'Green [ °Port | "Alt [ XY
v (£100m) | (>100m)
FINRISK PMy | 0.18 X
PM,s | 0.08 X
HUBRO PMy, | 0.62 X X
PM,s | 0.48 X
SNAC-K PMy, | 0.81 X X X X
PMs | NA
SALT PMy, | 0.81 X X X X
PM,s | NA
60-yr PMy, | 0.81 X X X X
PMys | NA
SDPP PMy, | 0.81 X X X X
PMs | NA
DCH PMy, | 0.55 X X
PM,s | 0.05 X
EPIC- PMy | 073 X X X
MORGEN, PM,s; | 0.72 X X
EPIC- PMy | 073 X X X
PROSPECT, | PM,s; | 0.72 X X
SALIA PMy | 0.1 X
PMs | 0.2 X
EPIC- Oxford | PMy, | 0.43 X X
PM,s | 0.09 X
KORA PMy | 0.49 X X
PMps | 0.32 X X X
VHM&PP PMy | 0.1 X
PMps | 0.1 X
SAPALDIA, PMyy | NA
PMys | NA
E3N PMy, | 0.54 X
PMys | 0.12 X
EPIC- Turin PMy | 0.79 X X X X
PM,s | 0.38 X
SIDRIA- PMy | 0.79 X X X X
Turin PM, 5 0.38 X
SIDRIA- PMy, | 0.86 X X
Rome PM,s | 0.18 X
EPIC- Athens | PM;, | 0.47 X X X
PM,s | 0.83 X X

“Traffic (100m) includes all traffic intensity and road length variables within 100m
®Traffic (>100m) includes all traffic intensity and road length variables beyond 100m
°POP indicates the number of inhabitants

RES includes low and high density residential

°Industry indicates industry area

‘Green includes natural green and urban green variables

SPort indicates port area

"Alt: altitude of measured sites

'XY: coordinate variables which indicates the trends of concentrations
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Table S6 PM;o and PM, 5 S model details

Cohort Type | LOOC | ®Traffic PTraffic ‘POP [ °RES | °Industry | 'Green [ °Port | "Alt | XY
i (£100m) | (>100m)
FINRISK PMy | NA
PM,s | 0.23 X
HUBRO PMy, [ 0.48 X X X
PM,s | 0.07 X
SNAC-K PMy, | 0.18 X
PM,s | 0.24 X
SALT PMy | 0.18 X
PM,s | 0.24 X
60-yr PM;o 0.18 X
PM,s | 0.24 X
SDPP PMy [ 0.18 X
PM,s | 0.24 X
DCH PMy, | 0.46 X X
PM,s | 0.61 X X
EPIC- PMy | 0.39 X X X
MORGEN, PM,s | 0.27 X X
EPIC- PMy | 0.39 X X X
PROSPECT, | PM,s | 0.27 X X
SALIA PMy, | 0.55 X X X
PMys | 0.5 X X
EPIC- Oxford | PMy, | 0.05 X
PMps | 0.02 X
KORA PMy | 0.37 X X X
PM,s | 0.7 X X X X
VHM&PP PMy | 0.55 X X X
PM,s | 0.53 X X
SAPALDIA, PMyy | NA
PMys | NA
E3N PMy, | 0.78 X X X X
PM,s | 0.29 X X X
EPIC- Turin PMy | 0.57 X X X
PM,s | 0.39 X X
SIDRIA- Turin | PMy, | 0.57 X X X
PM,s | 0.39 X X
SIDRIA- PMy, | 0.38 X X
Rome PM.s | 0.33 X X
EPIC- Athens | PMy, | 0.46 X
PM,s | 0.67 X X X

“Traffic (100m) includes all traffic intensity and road length variables within 100m
®Traffic (>100m) includes all traffic intensity and road length variables beyond 100m
°POP indicates the number of inhabitants

RES includes low and high density residential

°Industry indicates industry area

‘Green includes natural green and urban green variables

SPort indicates port area

"Alt: altitude of measured sites

'XY: coordinate variables which indicates the trends of concentrations
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Table S7 PM1o and PM, 5 Si model details

Cohort Type | LOOC | °Traffic "Traffic °POP | °RES | ®Industry | 'Green [ %Port [ "Alt [ XY
v (£100m) | (>100m)
FINRISK PMy, | 057 X X
PMys | 0.72 X X X
HUBRO PMy, | 0.82 X X
PM,s | 0.77 X X X X
SNAC-K PMy, | 0.77 X X
PM,s | 0.65 X X
SALT PMy, | 077 X X
PM,s | 0.65 X X
60-yr PMy | 0.77 X X
PM,s | 0.65 X X
SDPP PMy, | 077 X X
PM,s | 0.65 X X
DCH PMy |06 X X
PMys | 0.17 X
EPIC- PMy, | 0.26 X X
MORGEN, PMps | 0.39 X X
EPIC- PMy | 0.26 X X
PROSPECT, | PM,s | 0.39 X X
SALIA PMy |07 X X X
PM,s | 0.4 X
EPIC- PM;o
Oxford 0.49 X
PM,s | 0.17 X
KORA PMy, | 0.64 X X X
PM,s | 0.55 X X X
VHM&PP PMy, | 0.48 X X
PMys | 0.15 X X
SAPALDIA, | PMy, NA
PMzs | NA
E3N PM;, | 0.61 X X
PMys | 0.5 X X X
EPIC-Turin | PMy, [ 0.61 X X X
PM,s | 0.54 X X X
SIDRIA- PM;, | 0.61 X X X
Turin PM,s | 0.54 X X X
SIDRIA- PMy, | 0.6 X X X
Rome PM,s | 0.43 X X
EPIC- PM;, | 0.39 X X
Athens PM,5 NA

“Traffic (£100m) includes all traffic intensity and road length variables within 100m
®Traffic (>100m) includes all traffic intensity and road length variables beyond 100m
°POP indicates the number of inhabitants

RES includes low and high density residential

°Industry indicates industry area

‘Green includes natural green and urban green variables

SPort indicates port area

"Alt: altitude of measured sites

'XY: coordinate variables which indicates the trends of concentrations
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Table S8 PM1o and PM, 5 V model details

Cohort Type | LOOC | “Traffic PTraffic °POP | °RES | °Industry | 'Green | %Port | "Alt [ XY
i (£100m) | (>100m)
FINRISK PMy | 0.16 X X
PMs | 0.3 X
HUBRO PMy, | 0.83 X X X
PMps | 0.42 X
SNAC-K PMy, | 0.7 X X X
PM,s | 0.07 X
SALT PMy, | 07 X X X
PM,s | 0.07 X
60-yr PMy | 0.7 X X X
PM,s | 0.07 X
SDPP PMy | 0.7 X X X
PM,s | 0.07 X
DCH PMy | 0.59 X X
PM,s | 0.38 X
EPIC- PMy | 0.67 X X
MORGEN, PM,s | 0.63 X X
EPIC- PMy | 0.67 X X
PROSPECT, | PMys | 0.63 X X
SALIA PMy | 0.52 X X X
PM,s | 0.48 X X
EPIC- PMo
Oxford 0.29 X
PMps | 0.24 X
KORA PMy | 0.04 X
PM,s | NA
VHM&PP PMy | 0.00 X
PM,s | NA
SAPALDIA, | PMy [ NA
PM,s | NA
E3N PMy | 0.59 X X
PM,s | 0.28 X
EPIC-Turin | PMy, | 0.62 X X
PM,s | 0.36 X
SIDRIA- PMy | 0.62 X X
Turin PM, 5 0.36 X
SIDRIA- PMy | 0.68 X X X
Rome PM.s | 0.09 X
EPIC- PMy | 0.72 X X
Athens PM,s | 0.92 X X X

“Traffic (<100m) includes all traffic intensity and road length variables within 100m
®Traffic (>100m) includes all traffic intensity and road length variables beyond 100m
°POP indicates the number of inhabitants

‘RES includes low and high density residential

°Industry indicates industry area

‘Green includes natural green and urban green variables

SPort indicates port area

"Alt: altitude of measured sites

'XY: coordinate variables which indicates the trends of concentrations
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Table S9 PM;o and PM, 5 Zn model details

Cohort Type | LOOC | “Traffic PTraffic POP [ 'RES | °Industry | 'Green | ®Port | "Alt [ XY
v (£100m) | (>100m)
FINRISK PMy | NA
PM,s | NA
HUBRO PMy | 0.75 X X
PMys | 0.7 X X X X
SNAC-K PMy | 0.87 X X
PM,s | 0.24 X
SALT PMy, | 0.87 X X
PM,s | 0.24 X
60-yr PMiq 0.87 X X
PM,s | 0.24 X
SDPP PMy, | 0.87 X X
PM,s | 0.24 X
DCH PMy | 0.72 X X
PM,s | 0.11 X
EPIC- PMy | 0.57 X X
MORGEN, [ PM,s; | 0.58 X X
EPIC- PMy | 0.57 X X
PROSPECT | PMzs | 5o X X
SALIA PMy, | 05 X X
PM,s | 0.58 X X X X X
EPIC- PM,
Oxford 0.77 X X X
PM; .5 0.63 X X
KORA PMy | 0.65 X X
PM,s | 0.53 X X X X
VHM&PP PMy | 0.79 X X X X
PM,s | 0.44 X X X
SAPALDIA, | PMy, | 0.86 X X X
PM,s | 0.75 X X
E3N PMy | 0.73 X X
PM,s | 0.76 X X X X
EPIC- Turin | PMy, | 0.91 X X X X
PM,s | 0.78 X X X X
SIDRIA- PMy | 0.91 X X X X
Turin PMys | 0.78 X X X X
SIDRIA- PMy | 0.81 X X
Rome PM, s 0.75 X X X
EPIC- PMy | 0.73 X X X X X
Athens PMys | 0.9 X X X X

*Traffic (<100m) includes all traffic intensity and road length variables within 100m

®Traffic (>100m) includes all traffic intensity and road length variables beyond 100m

°POP indicates the number of inhabitants ; “RES includes low and high density residential
°Industry indicates industry area; ‘Green includes natural green and urban green variables
?Port indicates port area; "Alt: altitude of measured sites

'XY: coordinate variables which indicates the trends of concentrations
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Online supplement 3: Study population characteristics at baseline for each
cohort (variables included in main model 3)

Table S1: Study population characteristics at baseline for HUBRO with complete confounder

information in main model 3 (N = 18,234)

Variable Mean (SD)
Age at baseline 48.3 (15.2)
Number of cigarette equivalents/day (lifetime average) 6.7 (8. 4)
Years of regular smoking 11.5 (14.4)
BMI (kg/m?) 25.7 (4.1)
Unemployment rate (municipality level) (%) 1.8 (0.7)
N (%)

Gender

- Women 10,236 (56.1%)

- Men 7998 (43.9%)
Calendar year

- 2000 7928 (43.5%)

- 2001 10,306 (56.5%)
Smoking status

- Current 4752 (26.1%)

- Former 5094 (27.9%)

- Never 8388 (46.0%)
Alcohol consumption

- Weekly 9228 (50.6%)

. Occasionally 7358 (40.4%)

- Never/not past year
Intake of fruit

. Daily

- Weekly

. Rarely
Intake of vegetables

- Daily

. Weekly

- Rarely
Marital status

. Single

- Married/living with partner

- Divorced/separated

- Widowed
Educational level

- Low

- Medium

- ___High

1648 (9.0%)

7284 (39.9%)
8881 (48.7%)
2069 (11.3%)

(

2646 (14.5%)
12,503 (68.6%)
3085 (16.9%)

(
5645 (31.0%)
9089 (49.8%)
2474 (13.6%)
1026 (5.6%)

3234 (17.7%)
6597 (36.2%)
8403 (46.1%)

Table S2: Study population characteristics at baseline for DCH with complete confounder

information in main model 3 (N = 35,458)

Variable Mean (SD)
Age at baseline 56.7 (4.4)
Number of cigarette equivalents/day (current) 6.3 (10.4)
Years of regular smoking 18.7 (17.1)
Intake of fruit (g/day) 183.2 (151.2)
Intake of vegetables (g/day) 175.9 (99.2)
Alcohol consumption (g/day) 21.7 (22.8)
BMI (kg/m?) 26.0 (4.1)
Average income (municipality) (100,000 Dkr) 1.9 (0.4)
N (%)

Gender

- Women 19,171 (54.1%)

- Men 16,287 (45.9%)
Calendar year

- 1993 86 (0.2%)

- 1994 3712 (10.5%)

- 1995 11,034 (31.1%)

- 1996 14,726 (41.5%)

- 1997 5900 (16.6%)
Smoking status

- Current 12,737 (35.9%)

. Former 9851 (27.8%)

- Never 12,870 (36.3%)
Marital status

- Single 2317 (6.5%)

- Married/living with partner 24,544 (69.2%)

- Divorced/separated 6539 (18.4%)

- Widowed 2058 (5 8%)
Educational level

- Low 10,490 (29.6%)

- Medium 16,844 (47.5%)

- High 8124 (22.9%)
Environmental tobacco smoke at work and/or home

- No 12,654 (35.7%)

- Yes 22,804 (64.3%)

Employment status
- Not employment
- Employed

7073 (19.9%)
28,385 (80.1%)
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Table S3: Study population characteristics at baseline for FINRISK with complete confounder
information in main model 3 (N = 10,224)

Variable Mean (SD)
Age at baseline 47.9 (13.2)
Number of cigarette equivalents/day (current) 3.8(7.8)
Years of regular smoking 8.6 (12.2)
Alcohol consumption® 0.9 (1.3)
BMI (kg/m*) 26.4 (4.6)
Average income (3km) (EUR) 22,954 (5459)
N (%)

Gender

- Women 5501 (53.8%)

- Men 4723 (46.2%)
Calendar year

- 1992 2783 (27.2%)

- 1997 2941 (28.8%)

- 2002 2418 (23.7%)

- 2007 2082 (20.4%)
Smoking status

. Current 2638 (25.8%)

- Former 2947 (28.8%)

- Never 4639 (45.4%)
Marital status

- Single 1611 (15.8%)

. Married/living with partner 7170 (70.1%)

- Divorced/separated 1100 (10.8%)

- Widowed 343 (3.4%)
Educational level

- Low 3167 (31.0%)

- Medium 5291 (51.8%)

- High 1766 (17.3%)
Environmental tobacco smoke at work and/or home

- No

- Yes 8322 (81.4%)

1902 (18.6%)

Intake of fruit

- Daily 6783 (66.3%)

- Weekly 2639 (25.8%)

- Seldom 592 (5.8%)

- Never 210 (2.1%)
Intake of vegetables

- Daily 6973 (68.2%)

- Weekly 2550 (24.9%)

- Seldom 488 (4.8%)

- Never 213 (2.1%)
Occupational class

- Blue collar 1528 (14.9%)

- White collar 5435 (53.2%)

- Students/housewives/retired/ 3261 (31.9%)

unemployed

Employment status

- Employed/Self-employed 7073 (69.2%)

. Unemployed 621 (6.1%)

- Homemaker/housewife 347 (3.4%)

- Retired 2183 (21.4%)
Area indicator

- Helsinki and Vantaa 4935 (48.3%)

- Turku area 5289 (51.7%)

? Number of glasses of alcoholic drink during last week
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Table S4: Study population characteristics at baseline for SNAC-K with complete confounder
information in main model 3 (N = 2401)

Variable Mean (SD)
Age at baseline 70.3 (8.1)
Number of cigarette equivalents/day (lifetime average) 7.1(9.5)
Years of regular smoking 9.8 (15.2)
BMI (kg/m?) 26.0 (4.1)
Average income (neighborhood) (SEK) 352,638 (26,928)
N (%)

Gender

- Women 1441 (60.0%)

- Men 960 (40.0%)
Calendar year

- 2001 512 (21.3%)

- 2002 691 (28.8%)

- 2003 798 (33.2%)

- 2004 400 (16.7%)
Smoking status

- Current 378 (15.7%)

. Former 960 (40.0%)

- Never 1063 (44.3%)
Marital status

- Single 305 (12.7%)

- Married/living with partner 1301 (54.2%)

. Divorced/separated 364 (15.2%)

- Widowed 431 (18.0%)
Educational level

- Low 509 (21.2%)

- Medium 1039 (43.3%)

- High 853 (35.5%)
Environmental tobacco smoke at work

- No 810 (33.7%)

- Yes 1591 (66.3%)
Environmental tobacco smoke at home

- No

- Yes 1094 (45.6%)

1307 (54.4%)

Occupation class

. Blue collar 387 (16.1%)

- White collar 2014 (83.9%)
Employment status

- Other 1714 (71.4%)

- Employed 687 (28.6%)
Alcohol consumption

- Daily 524 (21.8%)

- Weekly 643 (26.8%)

- Seldom 1060 (44.1%)

- Never 174 (7.2%)

Table S5: Study population characteristics at baseline for SALIA with complete confounder
information in main model 3 (N = 4352)

Variable Mean (SD)
Age at baseline 54.5 (0.6)
Number of cigarette equivalents/day (current) 2.6 (6.6)
Years of regular smoking 4.4 (10.5)
Average income (postal code area) (EUR) 973.6 (69.1)
N (%)

Gender

- Women 4352 (100%)

- Men 0(0%)
Calendar year

- 1985-1987 1667 (38.3%)

- 1990-1994 2685 (61.7%)
Smoking status

- Current 729 (16.7%)

- Former 379 (8.7%)

- Never 3244 (745%)
Educational level

- Low 1255 (28.8%)

- Medium 2094 (48.1%)

- High 1003 (23.0%)
Environmental tobacco smoke at work and/or home

- No 2141 (49.2%)

- Yes 2211 (50.8%)
Occupational exposure to dust

- No 3923 (90.1%)

- Yes 429 (9.9%)
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Table S6: Study population characteristics at baseline for SALT / Twin gene with complete

confounder information in main model 3 (N = 5473)

Variable Mean (SD)
Age at baseline 58.0 (9.9)
Number of cigarette equivalents/day (lifetime average) 8.5(9.7)
Years of regular smoking 16.7 (17.3)
BMI (kg/m?) 28.6 (4.1)
N (%)

Gender

- Women 3050 (55.7%)

- Men 2423 (44.3%)
Calendar year

- 1998 262 (4.8%)

- 1999 1467 (26.8%)

- 2000 1410 (25.8%)

- 2001 1177 (21.5%)

- 2002 1157 (21.1%)
Smoking status

- Current 1295 (23.7%)

. Former 2059 (37.6%)

- Never 2119 (38.7%)
Marital status

- Single 784 (14.3%)

- Married/living with partner
. Divorced/separated
- Widowed
Educational level
. Low
- Medium
- High
Individual level socioeconomic status
- Low
. Medium
- High
Mean income (municipality level) (SEK)
- Quartile 1
- Quartile 2
- Quartile 3
- Quartile 4

3723 (68.0%)
612 (11.2%)
354 (6.5%)

1179 (21.5%)
2360 (43.1%)
1934 (35.3%)

(
1643 (30.0%)
2842 (51.9%)
988 (18.1%)

1528 (27.9%)
2366 (43.2%)
221 (4.0%)
1358 (24.8%)

Table S7: Study population characteristics at baseline for SDPP with complete confounder

information in main model 3 (N = 7408)

Variable Mean (SD)
Age at baseline 47.1 (5.0)
Number of cigarette equivalents/day (lifetime average) 8 5(8.8)

Years of regular smoking 3 (12 4)

Alcohol consumption®
BMI (kg/m*)
Average income (municipality) (SEK)

Gender
. Women
- Men
Calendar year
- 1992
1993
1994
1996
1997
- 1998
Smoking status
- Current
- Former
- Never
Marital status
- Single/living alone
- Married/living with partner
Educational level
- Low
- Medium
. High
Occupatlon class
Worker/blue collar
- White collar
Employment status
- Not employment
- Employed
Intake of fruit
- Daily/weekly
- Seldom
- Never

3(1. )
256(4

0)
277,069 (18,711)

N (%)

4570 (61.7%)
2838 (38.3%)
(

292 (3.9%)
1741 (23.5%)
805 (10.9%)
1815 (24.5%)
2378 (32.1%)
377 (5.1%)

1928 (26.0%)
2711 (36.6%)
2769 (37.4%)

1217 (16.4%)
6191 (83.6%)

(
(
(
(
(
(
(
1892 (25.5%)
3321 (44.8%)
2195 (29.6%)
(
(
(8
(
(
(

2451 (33.1%)
4957 (66.9%)

606
6802

2%)
91.8%)

6845 (92.4%)
482 (6.5%)
81 (1.1%)

@ Number of glasses of alcoholic drink per day.
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Table S8: Study population characteristics at baseline for 60-yr/IMPROVE with complete confounder

information in main model 3 (N = 3612)

Variable

Age at baseline

Number of cigarette equivalents/day (lifetime average)

Years of regular smoking

Alcohol consumption (g/day)

BMI (kg/m*)

Average income (municipality) (SEK)

Gender

- Women

- Men
Calendar year

- 1997

- 1998

. 1999
Smoking status

- Current

. Former

- Never
Environmental tobacco smoke at work and/or home

. No

- Yes

Marital status
- Single
. Married/living with partner
- Divorced/separated
- Widowed
Educational level
- Low
. Medium
- High
Occupation class
. Blue collar
- Low white collar
- High white
Employment status
- Employed/Self-employed
- Unemployed
- Homemaker/housewife
- Retired
Intake of fruit
- Daily
- Weekly
- Seldom/never
Intake of vegetables
- Daily
- Weekly
- Seldom/never

1897 (52.5%)
1715 (47.5%)

757 (21.0%)
2772 (76.7%)
83 (2.3%)

761 (21.0%)
1371 (38.0%)
1480 (41.0%)

1898
1714

52.5%)
47.5%)

161 (4.5%)

2587 (71.6%)
617 (17.1%)
247 (6.8%)

995 (27.5%)
1596 (44.2%)
1021 (28.3%)

820 (22.7%)
1977 (54.7%)
815 (22.6%)

1857 (51.4%)
351 (9.7%)
276 (7.6%)
(
(

~Ne~ o~

1128 (31.2%)

2318 (64.2%)
1015 (28.1%)
279 (1.7%)

476 (13.2%)
3085 (85.4%)
51 (1.4%)

Table S9: Study population characteristics at baseline for E3N with complete confounder information

in main model 3 (N = 14,313)

Variable Mean (SD)
Age at baseline 53.0 (6.7)
Intake of fruit (g/day) 242.0 (164.7)
Intake of vegetables (g/day) 242.0 (126.8)
Alcohol consumption (g/day) 12.0 (15.1)
BMI (kg/m?) 22.8(3.2)
Unemployment rate (regional scale) 9.4 (1.0)
N (%)

Gender

- Women 14,313 (100%)

- Men 0 (0%)
Calendar year

- 1993 10,751 (75.1%)

- 1994 2257 (15.8%)

- 1995 917 (6.4%)

- 1996 388 (2.7%)
Smoking status

- Current 2364 (16.5%)

- Former 4886 (34.1%)

- Never 7063 (49.3%)
Educational level

- Low 710 (5.0%)

- Medium 856 (6.0%)

- High 12,747 (89.0%)
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Table S10: Study population characteristics at baseline for EPIC-PROSPECT with complete
confounder information in main model 3 (N = 15,670)

Variable Mean (SD)
Age at baseline 57.7 (6.0)
Number of cigarette equivalents/day (lifetime average) 5.7 (7.4)
Years of regular smoking 15.2 (16.5)
Intake of fruit (g/day) 231.6 (139.2)
Intake of vegetables (g/day) 136.3 (52.5)
Alcohol consumption (g/day) 9.0 (12.4)
BMI (kg/m?) 25.5 (4.1)
Percentage of people with low income (municipality) 35.9(2.7)
Percentage of people with low income (neighborhood) 35.8(7.2)
N (%)
Gender
- Women 15,670 (100%)
- Men 0 (0%)
Calendar year
- 1993 1354 (8.6%)
- 1994 4071 (26.0%)
- 1995 4023 (25.7%)
- 1996 4102 (26.2%)
- 1997 2120 (13.5%)
Smoking status
- Current 3454 (22.0%)
- Former 5166 (33.0%)
- Never 7050 (45.0%)
Marital status
- Single 888 (5.7%)
- Married/living with partner 12,046 (76.9%)
- Divorced/separated 1252 (8.0%)
- Widowed 1484 (9.5%)
Educational level
- Low 3478 (22.2%)
- Medium 9685 (61.8%)
- ___High 2507 (16.0%)

Table S11: Study population characteristics at baseline for EPIC-Oxford with complete confounder

information in main model 3 (N = 38,941)

Variable Mean (SD)
Age at baseline 45.8 (13.7)
Number of cigarette equivalents/day (lifetime average) 5.0 (8.3)
Years of regular smoking 6.7 (11.2)
Intake of fruit (g/day) 259.9 (204.5)
Intake of vegetables (g/day) 281.0 (156.4)
Alcohol consumption (g/day) 9.1 (11.7)
BMI (kg/m*) 24.0 (3.9)
Carstairs index 2001 (continuous) -1.5(2.3)
N (%)

Gender

- Women 30,178 (77.5%)

- Men 8763 (22.5%)
Calendar year

- 1993 311 (0.8%)

- 1994 5345 (13.7%)

- 1995 7009 (18.0%)

- 1996 13,399 (34.4%)

- 1997 7854 (20.2%)

- 1998-2001 5023 (12.9%)
Smoking status

. Current 4016 (10.3%)

- Former 10,294 (26.4%)

- Never 24,631 (63.3%)
Marital status

- Single 6336 (16.3%)

. Married/living with partner 27,554 (70.8%)

- Divorced/separated 3474 (8.9%)

- Widowed 1577 (4.0%)
Educational level

- Low 14,194 (36.5%)

- Medium 9391 (24.1%)

- High 15,356 (3.9%)

Employment status
. Employed/self-employed
- Unemployed
- Stay at home
- Retired

28,230 (72.5%)
958 (2.5%)
4593 (11.8%)
5160 (13.3%)
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Table S12: Study population characteristics at baseline for SAPALDIA with complete confounder
information in main model 3 (N = 3473)

Variable Mean (SD)
Age at baseline 41.1 (11.8)
Number of cigarette equivalents/day (lifetime average) 11.5 (14 5)
Years of regular smoking 10.7 (12.4)
BMI (kg/m?) 23.7 (4.0)
Average educational level (neighborhood)? 3.2(0.3)
(%)

Gender

- Women 1807 (52.0%)

- Men 1666 (48.0%)
Calendar year

- 1991 3473 (100%)
Smoking status

- Current 1259 (36.3%)

. Former 740 (21.3%)

- Never 1474 (42.4%)
Marital status

- Single 1214 (35.0%)

- Married/living with partner 1885 (54.3%)

- Divorced/separated 305 (8.8%)

- Widowed 69 (2.0%)
Educational level

- Low 522 (15.0%)

- Medium 2222 (64.0%)

- High 729 (21.0%)
Environmental tobacco smoke at home

- No 3000 (86.4%)

- Yes 473 (13.6%)
Environmental tobacco smoke at work

- No 3163 (91.1%)

- Yes 310 (8.9%)
Employment status

- Employed 2931 (84.4%)

. Unemployed 54 (1.6%)

- Stay at home or retired 488 (14.0%)

@ Average of a 7-categories (1-7) level of education variable, calculated for participants living within the same neighborhood
zone

Table S13: Study population characteristics at baseline for EPIC-MORGEN with complete
confounder information in main model 3 (N = 16,446)

Variable Mean (SD)
Age at baseline 43.9 (10.9)
Number of cigarette equivalents/day (lifetime average) 10.4 (11.1)
Years of regular smoking 14.3 (13.7)
Intake of fruit (g/day) 171.9 (129.2)
Intake of vegetables (g/day) 126.6 (51.8)
Alcohol consumption (g/day) 12.7 (18.0)
BMI (kg/m?) 25.2 (4.0)
Percentage of people with low income (neighborhood) 41.6 (7.4)
N (%)
Gender
- Women 8946 (54.4%)
- Men 7500 (45.6%)
Calendar year
- 1993 3566 (21.7%)
- 1994 2948 (17.9%)
- 1995 3568 (21.7%)
- 1996 3365 (20.5%)
- 1997 2999 (18.2%)
Smoking status
- Current 5923 (36.0%)
- Former 4762 (29.0%)
- Never 5761 (35.0%)

Marital status

Single

Married/living with partner
Divorced/separated

Widowed

Educational level

3669 (22.3%)
11,118 (67.6%)
1311 (8.0%)
348 (2.1%)

- Low 1954 (11.9%)
- Medium 10,752 (65.4%)
- High 3740 (22.7%)
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Table S14: Study population characteristics at baseline for KORA with complete confounder
information in main model 3 (N = 8399)

Variable Mean (SD)
Age at baseline 49.5 (13.8)
Number of cigarette equivalents/day (lifetime average) 9.2 (13.3)
Years of regular smoking 12.0 (14.2)
Alcohol consumption (g/day) 16.3 (22.3)
BMI (kg/m*) 27.2 (4.6)
Percentage of people with low income (5km grid) 28.2 (18.4)
N (%)

Gender

- Women 4270 (50.8%)

- Men 4129 (49.2%)
Calendar year

- 1994-1995 4299 (51.2%)

- 1999-2001 4100 (48.8%)
Smoking status

- Current 2183 (26.0%)

- Former 2546 (30.3%)

. Never 3670 (43.7%)
Marital status

- Single 872 (10.4%)

. Married/living with partner 6356 (75.7%)

- Divorced/separated 635 (7.6%)

- Widowed 536 (6.4%)
Educational level

- Low 1059 (12.6%)

- Medium 6270 (74.7%)

- High 1070 (12.7%)
Environmental tobacco smoke at home

- No 6390 (76.1%)

- Yes 2009 (23.9%)
Environmental tobacco smoke at work

- No 6328 (75.3%)

- Yes 2071 (24.7%)
Employment status

- Employed/self-employed 4894 (58.3%)

- Unemployed 273 (3.3%)

. Stay at home 1170 (13.9%)

- Retired 2062 (24.6%)
Intake of fruit

- Daily 4995 (59.5%)

- Weekly 2547 (30.3%)

- Seldom/never
Intake of vegetables

- Daily

- Weekly

- Seldom/never

857 (10.2%)

3953 (47.1%)
3821 (45.5%)
625 (7.4%)

Table S15: Study population characteristics at baseline
information in main model 3 (N = 117,824)

for VHM&PP with complete confounder

Variable Mean (SD)
Age at baseline 41.9 (14.9)
BMI (kg/m?) 24.8 (4.3)
Average income (municipality) (EUR) 25,119 (1273)
N (%)

Gender

- Women 66,042 (56.1%)

- Men 51,782 (43.9%)
Calendar year

- 1985-1989 58,490 (49.6%)

- 1990-1994 26,393 (22.4%)

- 1995-1999 18,414 (15.6%)

- 2000-2005 14,527 (12.3%)
Smoking status

- Current 28,255 (24.0%)

- Former 7233 (6.1%)

- Never 82,336 (69.9%)
Marital status

- Single 20,134 (17.1%)

. Married/living with partner 80,572 (68.4%)

- Divorced/separated 8962 (7.6%)

- Widowed 8156 (6.9%)
Occupational class

- White collar 66,348 (56.3%)

- Blue collar 40,961 (34.8%)

- Others (mainly self-employed)
Employment status

10,515 (8.9%)

- Employed/self-employed 81,705 (69.3%)
- Unemployed 4126 (3.5%)
- Retired 31,993 (27.2%)
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Table S16: Study population characteristics at baseline for EPIC-Turin with complete confounder
information in main model 3 (N = 7261)

Variable Mean (SD)
Age at baseline 50.4 (7.5)
Number of cigarette equivalents/day (lifetime average) 7.2(8.2)
Years of regular smoking 17.6 (16.3)
Intake of fruit (g/day) 318.2(182.2)
Intake of vegetables (g/day) 181.8 (100.2)
Alcohol consumption (g/day) 18.1 (20.3)
BMI (kg/m?) 25.3(3.8)
N (%)

Gender

- Women 3,461 (47.7%)

- Men 3,800 (52.3%)
Calendar year

- 1993 457 (6.3%)

- 1994 1264 (17.4%)

- 1995 2318 (31.9%)

- 1996 1541 (21.2%)

- 1997 1432 (19.7%)

- 1998 251 (3.5%)
Smoking status

. Current 1830 (25.2%)

- Former 2339 (32.2%)

- Never 3092 (42.6%)
Marital status

- Not married (single, widowed, separated, 1045 (14.4%)

divorced) 6216 (85.6%)

- Married
Educational level

- Low 3168 (43.6%)

- Medium 3104 (42.7%)

- High 989 (13.6%)
Deprivation index (quintiles) (census block)

- | (less deprived) 1876 (25.8%)

Il 1659 (22.8%)
1] 1350 (18.6%)
\% 1411 (19.4%)
V (more deprived) 965 (13.3%)

Table S17: Study population characteristics at baseline for SIDRIA-Turin with complete confounder
information in main model 3 (N = 5054)

Variable Mean (SD)
Age at baseline 44.2 (6.2)
Number of cigarette equivalents/day (current) 9.3 (10.2)
Years of regular smoking 11.3 (10.6)
N (%)

Gender

. Women 2620 (51.8%)

- Men 2434 (48.2%)
Calendar year

- 1999 5054 (100%)
Smoking status

. Current 2110 (41.7%)

- Former 1047 (20.7%)

- Never 1897 (37.5%)
Marital status

- Married/living with partner 4820 (95.4%)

- Single/divorced/separated/ widowed 234 (4.6%)
Educational level

- Low 884 (17.5%)

- Medium 3604 (71.3%)

- High 566 (11.2%)
Environmental tobacco smoke at home

- No 4389 (86.8%)

- Yes 665 (13.2%)
Occupational class

. Blue collar 2120 (41.9%)

- White collar 1529 (30.3%)

- Other 1405 (27.8%)
Employment status

- Employed 3649 (72.2%)

- Unemployed 351 (6.9%)

- Homemaker/housewife/retired 1054 (20.9%)
Deprivation index (quintiles) (census block)

- | (less deprived) 878 (17.4%)

- Il 1049 (20.8%)

- 1] 931 (18.4%)

- \% 1097 (21.7%)

- V (more deprived) 1099 (21.7%)
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Table S18: Study population characteristics at baseline for SIDRIA-Rome with complete confounder
information in main model 3 (N = 9177)

Variable Mean (SD)
Age at baseline 44.3 (6.0)
Number of cigarette equivalents/day (current) 10.1 (10.5)
Years of regular smoking 11.7 (10.4)
N (%)

Gender

- Women 4848 (52.8%)

- Men 4329 (47.2%)
Calendar year

- 1999 9177 (100%)
Smoking status

- Current 3898 (42.5%)

- Former 2106 (22.9%)

- Never 3173 (34.6%)
Marital status

- Married/living with partner 9177 (100%)
Educational level

- Low 4121 (44.9%)

- Medium 3681 (40.1%)

- High 1375 (15.0%)
Occupation class

- Non-manual 4783 (52.1%)

- Manual 1179 (12.8%)

- Worker unspecified 521 (5.7%)

- Unemployed 392 (4.3%)

- Housewife 2302 (25.1%)
Index of socioeconomic position (census block)

- 1 (=High) 1703 (18.6%)

-2 1684 (18.4%)

- 3 1667 (18.2%)

- 4 1797 (19.6%)

- 5(=Low) 2326 (25.3%)

Table S19: Study population characteristics at baseline for EPIC-Athens with complete confounder
information in main model 3 (N = 4192)

Variable Mean (SD)
Age at baseline 49.4 (11.7)
Number of cigarette equivalents/day (lifetime average) 1.7 (15.0)
Years of regular smoking 10.8 (13.1)
Intake of fruit (g/day) 402.6 (258.2)
Intake of vegetables (g/day) 609.5 (288.6)
Alcohol consumption (g/day) 9.2 (14.5)
BMI (kg/m*) 27.5 (4.5)
N (%)

Gender

- Women 2306 (55.0%)

- Men 1886 (45.0%)
Calendar year

- 1994 1582 (37.7%)

- 1995 1100 (26.2%)

- 1996 367 (8.8%)

- 1997 457 (10.9%)

- 1998 278 (6.6%)

- 1999 408 (9.7%)
Smoking status

- Current 1707 (40.7%)

- Former 830 (19.8%)

. Never 1655 (39.5%)
Marital status

- Single 394 (9.4%)

- Married/living with partner 3270 (78.0%)

- Divorced/separated 266 (6.3%)

- Widowed 262 (6.3%)
Educational level

- Low 990 (23.6%)

- Medium 1753 (41.8%)

- High 1449 (34.6%)
Occupation class

. Blue collar 493 (11.8%)

- White collar 1990 (47.5%)

- Other 1709 (40.8%)
Employment status

- Employed/self-employed 2804 (66.9%)

- Unemployed 28 (0.7%)

- Homemaker/housewife 669 (16.0%)

- Retired 691 (16.5%)
Educational level (municipality level)

- 1: Low (primary) 214 (5.1%)

- 2: Medium (secondary) 3277 (78.2%)

- 3: High (higher) 701 (16.7%)
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Online supplement 6

Online supplement 6: Sensitivity analysis

Table S1 Association® between CVD mortality and exposure to PM constituents: Results from
random-effects meta-analyses (HRs and 95% ClIs) (using additional hypertension confounder)

Model3+ prevalent
hypertension and
Exposure Cohorts physical act|V|ty Model3"
Cu PMas 18 0.90(0.75-1.09) 0.90(0.76-1.07)
PM1o 18 0.92(0.80-1.07) 0.93(0.82-1.06)
Fe PMa.s 18 0.97(0.85-1.12) 0.98(0.87-1.11)
PM1o 18 0.97(0.84-1.12) 0.95(0.84-1.09)
K PMa.s 17 0.97(0.94-1.01) 0.98(0.94-1.02)
PMj1o 17 0.99(0.93-1.05) 1.00(0.93-1.08)
Ni PMa.s 14 0.95(0.72-1.27) 0.97(0.78-1.21)
PMj1o 17 1.00(0.82-1.21) 1.01(0.88-1.16)
S PMa.s 18 1.05(0.93-1.20) 1.08(0.95-1.22)
PMj1o 18 1.07(0.89-1.28) 1.09(0.90-1.32)
Si PMa.s 16 1.15(0.90-1.47) 1.17(0.93-1.47)
PMj1o 18 1.01(0.90-1.13) 1.01(0.90-1.13)
\' PMy 5 15 0.99(0.77-1.29) 1.00(0.80-1.24)
PMj1o 18 0.98(0.78-1.22) 1.00(0.85-1.17)
Zn PMy 5 18 1.04(0.84-1.28) 1.04(0.87-1.24)
PM1o 18 0.99(0.84-1. 16) 1.00(0.86-1. 16)

®Effects are presented for an mcrease of 5 ng/m® for PM25 Cu, 20ng/m® for PMyo Cu, 100ng/m for PMy5 Fe,
500ng/m for PM4o Fe, 50ng/m for PM25 K, 10ng/m for PMyo K, 1ng/m for PM25 Ni, 2ng/m for PM1o Ni,
200ng/m for PMz2s5 S, 200ng/m for PM1o S, 100ng/m for PM25 Si, 500ng/m for PMqo Si, 2ng/m for PM25 V,
3ng/m for PMo V, 10ng/m for PM25 Zn, 20ng/m for PM1o Zn.

Pthe same cohorts were used in these two models.

Table S2 Association® between CVD mortality and exposure to PM constituents: Results from
random-effects meta-analyses (HRs and 95% Cls) ) (using additional hypertension, prevalent
diabetes, and cholesterol confounder)

Model3+ prevalent
hypertension, physical
activity ,prevalent dlabetes
Exposure Cohorts and cholesterol level® Model3"
Cu |PMys 18 0.91(0.74-1.12) 0.92(0.73-1.15)
PM1o 18 0.92(0.78-1.07) 0.94(0.75-1.17)
Fe |PMys 18 0.97(0.84-1.11) 1.01(0.84-1.21)
PM1o 18 0.96(0.83-1.11) 0.94(0.76-1.16)
K [PMys 17 0.98(0.94-1.02) 0.98(0.94-1.02)
PM1o 17 0.98(0.92-1.03) 1.01(0.89-1.14)
Ni |PMas 14 0.96(0.70-1.31) 0.89(0.63-1.27)
PM1o 17 0.97(0.79-1.19) 0.97(0.80-1.16)
S |PMas 18 1.05(0.92-1.20) 1.07(0.94-1.22)
PM1o 18 1.06(0.86-1.29) 1.08(0.84-1.39)
Si_ |PMas 16 1.15(0.90-1.47) 1.25(0.90-1.72)
PM1o 18 0.99(0.89-1.11) 1.01(0.83-1.24)
V. | PMzs 15 0.98(0.74-1.28) 0.94(0.69-1.28)
PM1o 18 0.97(0.82-1.16) 0.97(0.73-1.29)
Zn | PMys 18 1.04(0.85-1.28) 1.05(0.84-1.31)
PM1o 18 0.98(0.84-1.15) 1.00(0.82-1.22)

®Effects are presented for an |ncrease of 5 ng/m® for PM25 Cu, 20ng/m® for PMyo Cu, 100ng/m for PM25 Fe,
500ng/m for PMyo Fe, 50ng/m for PM2s K, 10ng/m for PM1o K, 1ng/m® for PMzs Ni, 2ng/m® for PM1o Ni,
200ng/m for PMz2s S, 200ng/m for PM1o S, 100ng/m for PM25 Si, 500ng/m for PMqo Si, 2ng/m for PM25 V,
3ng/m for PM1o V, 10ng/m for PM25 Zn, 20ng/m for PM1o Zn.

® the same cohorts were used in these two models.
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Table S3 Association® between CVD mortality and exposure to PM constituents: Results from
random-effects meta-analyses (HRs and 95% Cls) (using additional noise continuous variable
confounder)

Model3+noise
Exposure Cohorts (continuous variable)b Model3"
Cu |PMys 11 0.80(0.62-1.02) 0.93(0.71-1.21)
PMio 1 0.88(0.75-1.04) 1.00(0.84-1.18)
Fe |PMas 1 0.90(0.8-1.02) 1.00(0.87-1.15)
PMio 1 0.87(0.75-1.03) 0.97(0.85-1.11)
K [PMgys 10 1.15(0.94-1.42) 1.07(0.89-1.28)
PM1o 10 1.03(0.94-1.14) 1.02(0.89-1.18)
Ni |PMys 8 0.81(0.66-0.99) 0.88(0.69-1.11)
PM1o 10 0.81(0.66-1.00) 0.94(0.79-1.12)
S |PMzs 1 1.18(0.90-1.54) 1.21(0.96-1.53)
PM1o 10 1.08(0.75-1.55) 1.17(0.84-1.62)
Si |PMys 10 1.13(0.95-1.35) 1.25(0.95-1.65)
PM1o 10 1.00(0.87-1.15) 1.03(0.89-1.20)
V.  |PMgs 9 0.84(0.57-1.23) 0.98(0.68-1.42)
PM1o 10 0.94(0.69-1.27) 0.98(0.79-1.21)
Zn |PMys 1 1.13(0.91-1.39) 1.08(0.81-1.43)
PM1o 1 1.05(0.89-1 23) 1.07(0.92-1 24)

®Effects are presented for an |ncrease of 5 ng/m® for PM25 Cu, 20ng/m’ for PM1o Cu, 100ng/m for PMzs Fe,
500ng/m for PMyo Fe, 50ng/m for PM2s K, 10ng/m for PMq K, 1ng/m for PM_5 Ni, 2ng/m for PMjo Ni,
200ng/m for PM25 S, 200ng/m for PMyo S, 100ng/m for PM2 5 Si, 500ng/m for PMyq Si, 2ng/m for PM2s V,
3ng/m for PM1o V, 10ng/m for PMz5 Zn, 20ng/m for PM1o Zn.

® the same cohorts were used in these two models.

Table S4 Association® between CVD mortality and exposure to PM constituents: Results from
random-effects meta-analyses (HRs and 95% Cls) (using additional noise category variable
confounder)

Model3+noise

Exposure Cohorts (categorical variable)b Model3"
Cu |PMys 11 0.81(0.61-1.09) 0.93(0.71-1.21)
PMio 1 0.90(0.73-1.12) 1.00(0.84-1.18)

Fe |PMas 11 0.92(0.81-1.04) 1.00(0.87-1.15)
PMio 1 0.88(0.74-1.06) 0.97(0.85-1.11)

K [PMzs 10 1.16(0.94-1.42) 1.07(0.89-1.28)
PMio 10 1.02(0.92-1.13) 1.02(0.89-1.18)

Ni |PMys 8 0.82(0.66-1.02) 0.88(0.69-1.11)
PMio 10 0.82(0.67-1.01) 0.94(0.79-1.12)

S |PMys 11 1.21(0.93-1.59) 1.21(0.96-1.53)
PMio 10 1.09(0.73-1.64) 1.17(0.84-1.62)

Si_ |PMys 10 1.16(0.92-1.47) 1.25(0.95-1.65)
PMio 10 0.99(0.84-1.17) 1.03(0.89-1.20)

V.  |PMs 9 0.84(0.60-1.19) 0.98(0.68-1.42)
PMio 10 0.92(0.71-1.21) 0.98(0.79-1.21)

Zn |PMys 11 1.15(0.92-1.44) 1.08(0.81-1.43)
PM1o 11 1.09(0.94-1. 26) 1.07(0.92-1 24)

°Effects are presented for an |ncrease of 5 ng/m® for PM25 Cu, 20ng/m® for PM1o Cu, 100ng/m for PMzs Fe,
500ng/m for PMyo Fe, 50ng/m for PM2s K, 10ng/m for PMo K, 1ng/m for PMz5 Ni, 2ng/m for PM1o Ni,
200ng/m for PMz2s S, 200ng/m for PM1o S, 100ng/m for PM2s Si, 500ng/m for PM1o Si, 2ng/m for PM25 V,
3ng/m for PM1o V, 10ng/m® for PMg.5 Zn, 20ng/m? for PMg Zn.

® the same cohorts were used in these two models.
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Table S5 Adjusted association between CVD mortality and PM constituents: Results from
random-effects meta-analyses from cohorts with LOOCV R? higher than 0.5 (HRs and 95%-Cls)?

Exposure N°® Model 3 NP Model3 Phet®
(LOOCV R*<0.5)° (LOOCV R*>0.5)°
Cu PMas [0 NA 19 0.90(0.77-1.07) NA
PM1o 0 NA 18 0.95(0.84-1.08) NA
Fe PMas | 2 1.16(0.88-1.53) 17 0.97(0.85-1.10) 0.25
PM1o 2 0.65(0.50-0.85) 17 1.01(0.90-1.14) 0.01
K PMy.s 10 0.97(0.81-1.16) 8 0.99(0.85-1.17) 0.82
PM1o 8 0.99(0.73-1.35) 10 0.99(0.94-1.05) 0.98
Ni PMas | 8 0.95(0.68-1.32) 3 1.02(0.83-1.25) 0.73
PM1o 6 1.02(0.84-1.23) 11 1.00(0.81-1.23) 0.89
S PMy.5 14 1.17(0.94-1.46) 4 1.04(0.89-1.21) 0.36
PMo 13 1.21(0.87-1.69) 5 1.00(0.84-1.19) 0.32
Si PM,s | 8 1.22(0.72-2.05) 8 1.08(0.89-1.31) 0.66
PM1o 5 0.91(0.71-1.15) 13 1.04(0.91-1.18) 0.34
Y, PM .5 12 1.09(0.69-1.73) 3 1.00(0.81-1.25) 0.75
PM1o 4 0.82(0.62-1.07) 14 1.07(0.92-1.25) 0.09
Zn PMos | 7 0.68(0.32-1.42) 12 1.09(0.90-1.33) 0.22
PM1o 2 1.31(0.79-2.15) 17 096(084111) 0.25

“Effects are presented for an mcrease of 5 ng/m® for PM25 Cu, 20ng/m® for PMyo Cu, 100ng/m for PM25 Fe,
500ng/m for PMyo Fe, 50ng/m for PM25 K, 10ng/m for PMq K, 1ng/m for PM_5 Ni, 2ng/m for PM1o Ni,
200ng/m for PMz2s5 S, 200ng/m for PMqo S, 100ng/m for PMy5 Si, 500ng/m® for PMyq Si, 2ng/m® for PMzs V,
3ng/m for PMyo V, 10ng/m for PM25 Zn, 20ng/m for PM1o Zn.
®N: number of cohorts in the meta- -analysis
°Main model with full cohorts compared to main model with LOOCV R? of cohorts higher or lower than 0.5.
dheterogeneity of HR between cohorts with LOOCV R? higher and lower than 0.5

Table S6 Adjusted association between CVD mortality and PM constituents: Results from
random-effects meta-analyses from three European regions (HRs and 95%-Cls)®

Exposure N® North® N® | Westand Central® | N° South® Pret”
Cu | PMys | 7 0.76(0.52-1.10) 8 | 0.99(0.80-1.22) 4 | 0.84(0.57-1.25) 0.48
PMio 7 | 0.93(0.80-1.07) 8 | 0.94(0.69-1.27) 4 | 0.93(0.80-1.10) 0.95

Fe | PMas | 7 | 0.95(0.85-1.06) 8 | 1.07(0.81-1.42) 4 | 0.95(0.70-1.28) 0.47
PMy1o 7 | 0.92(0.81-1.05) 8 | 0.98(0.72-1.32) 4 ] 0.97(0.80-1.17) 0.74

K | PMas 7 | 1.06(0.87-1.28) 7 | 0.98(0.94-1.02) 4 | 0.87(0.69-1.10) 0.45
PM1o 6 | 1.03(0.95-1.12) 8 | 1.10(0.77-1.56) 4 | 0.93(0.78-1.10) 0.75

Ni | PMas | 3] 0.82(0.54-1.25) 7 | 0.99(0.65-1.50) 4 | 1.07(0.69-1.65) 0.74
PM1o 6 | 0.92(0.67-1.26) 7 | 0.92(0.71-1.20) 4 | 1.16(0.93-1.44) 0.37

S | PM2s 7 | 1.36(0.90-2.05) 7 | 1.06(0.93-1.22) 4 | 0.84(0.24-2.94) 0.44
PMy1o 7 | 0.93(0.67-1.29) 7 | 1.18(0.80-1.73) 4 | 1.21(0.77-1.89) 0.65

Si | PMys 6 | 1.03(0.91-1.16) 6 | 1.57(0.91-2.73) 2 | 1.04(0.42-2.58) 0.21
PM1o 7 | 1.02(0.95-1.10) 7 | 1.08(0.70-1.66) 4 | 0.98(0.69-1.38) 0.97

V | PMgs 6 | 1.23(0.72-2.07) 5 | 0.82(0.48-1.37) 4 | 0.93(0.25-2.34) 0.56
PM1o 7 | 1.05(0.84-1.30) 7 | 0.82(0.54-1.27) 4 | 0.88(0.53-1.44) 0.53

Zn | PMys | 7 | 0.66(0.30-1.45) 8 | 1.08(0.90-1.29) 4 | 1.08(0.59-2.01) 0.62
PM1o 7 | 0.90(0.73-1.11) 8 | 1.04(0.80-1.37) 4 | 0.99(0.67-1.46) 0.74

“Effects are presented for an mcrease of 5 ng/m® for PM25 Cu, 20ng/m® for PMy Cu, 100ng/m for PM25 Fe,
500ng/m for PMyo Fe, 50ng/m for PM2s K, 10ng/m for PMqo K, 1ng/m for PM_5 Ni, 2ng/m for PMjo Ni,
200ng/m for PM2s S, 200ng/m for PMyo S, 100ng/m for PM2 5 Si, 500ng/m for PMyq Si, 2ng/m for PM2s V,
3ng/m for PM1o V, 10ng/m for PMz5 Zn, 20ng/m for PM1o Zn.
®N: number of cohorts in each region
°North: FINRISK, HUBRO, SNAC-K, SALT, Sixty, SDPP, DCH; West and Central: EPIC-MORGEN,
EPIC_PROSPECT, SALIA, EPIC-Oxford, KORA, VHM&PP, SAPALDIA, E3N; South, EPIC-Turin, SIDRIA-Turin,
SIDRIA-Rome, EPIC-Athens

dheterogeneity of HR between regions
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Chapter 7

The objective of this thesis is to develop and evaluate LUR models for air
pollutants such as NO, and particulate constituents as well as to investigate the
associations between constituents and cardiovascular mortality. The research is
conducted within the framework of the European Study of Cohorts for Air Pollution
Effects (ESCAPE) study which aims at qualifying chronic health effects of outdoor
air pollution. This study has benefited from the large dataset collected by a
standard protocol in exposure assessment and the large population of cohorts in
multiple cities of Europe. With the unique dataset, we are able to gain insight into
the performances of LUR models and the effects of constituents of ambient
particles on cardiovascular mortality in a number of European study areas.

Main findings

Evaluation is an essential part of LUR model development. In chapter 2, we
made use of a large study including 144 sites with NO, concentration data in the
Netherlands. Hold-out validation (HV) R?® was substantially lower than the
corresponding cross-validation R?, especially for the smallest training sets. LUR
model performance for NO; varied with the number of training sites: HV increased
and LOOCYV decreased with larger training datasets. Truly independent evaluation
data are especially useful when LUR models are developed from small training sets.
In our study, models based on as few as 24 training sites across the Netherlands,
achieved acceptable hold out validation R?s of, on average, 0.60.

In view of this, we evaluated LUR models in all 20 ESCAPE study areas with PM
and NO, data for NO, and traffic-related particulate matter (PM) components in
chapter 3. True HV was not possible as in each area PM was measured at 20 sites
only. We used the NO, measurements at the 20 sites without PM measurements
as an approximation, exploiting the high correlation between concentrations of PM
metrics (absorbance and Cu) and NO,. Our results confirm that the predictive
ability of LUR models based on relatively small training sets is overestimated by the
LOOCV R?s. Nevertheless, in most areas LUR models still explained a substantial
fraction of the variation of concentrations measured at independent sites.

In chapter 4, we attempted to develop European and regional LUR models by
combining 23 and 17 ESCAPE study areas for NO, and PM, respectively, and to
evaluate the model performances. These combined models are based on large
numbers of training sites. The European models explained 56% of the
concentration variability across all sites for NO, (based on 960 sites), and 86% and
70% for PM2s and PM;s absorbance, respectively (based on 356 sites). The
prediction ability of the European models was only slightly overestimated by model
R?. For NO, and PM, s absorbance, these models predicted spatial variations in
areas not used for model building well. For PM, 5, prediction R?s were moderate for
intra-urban variation. These results suggested that it is possible to include new
study populations from areas where local measurements were never conducted but
relevant predictor variables included in the LUR models are available.

In chapter 5 we developed LUR models for eight a priori selected particle
elements; copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulphur (S), silicon (Si),
vanadium (V) and zinc (Zn) for all study areas using a specially written
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standardized script. Good models were developed for Cu, Fe and Zn in both
fractions (PM1; and PM,5) explaining on average between 67 and 79% of the
concentration variance (R?) with, however, a large variability between areas.
Traffic variables were the dominant predictors, reflecting non-tailpipe emissions.
Models for V and S in the PM o and PM., 5 fractions and Si, Ni and K in the PMqg
fraction performed moderately with median R? ranging from 50 to 61%. Si, Nl and K
models for PM, s performed poorest with median R? below 50%. Lack of specific
predictor variables e.g. on wood burning emissions for K and small spatial variation
(e.g. for S) likely contributed to poorer models.

With the estimates of particle composition concentrations calculated using the
LUR models developed in chapter 5, we assessed the association with
cardiovascular mortality in 19 cohorts across Europe, adjusting for major
confounders. We found no significant association between long-term exposure to 8
elemental constituents of particles and total cardiovascular mortality in a joint
analysis of these cohorts. Most of the hazard ratios were close to unity, with the
exception of PM25 Si and S in PM25 and PMyo (chapter 6). The HR for Si in PM;5
was 1.17 (95% CI: 0.93-1.47) per 100ng/m3 and for S in PM, s and PMyo the HR
was 1.08(95% Cl: 0.95-1.22) and 1.09(95% Cl: 0.90-1.32) per 200ng/m°
respectively.

Land use regression model development

Although there is no rigorous rule for the number of sampling sites needed for
LUR modeling, our studies suggested that modeling with small number of sampling
sites may overestimate the prediction ability of LUR model to independent locations.
These findings were consistent with the results of other studies in Spain and
Canada" 2. In most of the ESCAPE study areas, LUR models still explained a
substantial fraction of the variation of concentrations measured at independent
sites. Our study followed the strict ESCAPE measurement and modeling criteria
using a standardized protocol for air pollution measurements, modeling procedures
and data collection in exposure assessment in all study areas, aiming at
representing spatially harmonized and physically interpretable distribution of cohort
exposures across study areas. However, since LUR modeling is an empirical
technique, there is no gold standard method for model developments’ *. Table 1
summarizes current main techniques to derive LUR models. Many studies used
various strategies including basic backward, forward or stepwise linear regression
techniques to develop a parsimonious model from a large predictor variables
dataset to maximizing percentage of explained spatial variability (model R?)*.
Within the ESCAPE project, we used a supervised forward stepwise procedure to
select influential predictors from a large set of a priori defined predictor variables.
Each variable had an a priori hypothesized effect of direction based on physical
principles in order to generate an interpretable model structure and to reduce

the over fitting risk®. This strategy has been widely used for LUR model
development in many studies®®. The models generally explained modest to large
spatial concentration contrasts. Other studies used an automatic forward variable
selection approach without any restrictions on expected sign and significance of
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General discussion

variable coefficients as well as on the effects of multicollinearity between variables
with the purpose to maximize the model R?°. Although the simple method usually
produced high model R? the prediction ability of the models may be overestimated
as shown in chapters 2 and 3.

Several studies in the Netherlands and UK established a hierarchical approach
to model air pollution concentrations assuming ambient concentrations as a
combination of rural and urban background, and within-urban local contributions
from traffic” ' ''. Concentrations at predefined rural background sites were
interpolated using inverse distance weight (IDW) approach in the first stage to
generate a regional background concentration of air pollution. The residuals of the
urban and street sites were then explained by multiple regression models in the
following stages using urban background and traffic variables respectively. Since
this approach relied on more theoretical knowledge with efforts to explain regional
transport and local emissions separately it may increase the likelihood of
transferring the developed models elsewhere*. Further, concentrations at urban
and regional background sites may be better predicted compared to an overall
model that may be dominated by traffic predictors. However, the approach is
limited by the availability of a sufficient number of rural sites and is usually not
possible in small regions or at city-wide scale due to homogenous regional
distribution in spatial coverage. Instead of using smoothed- regional variable,
Brauer et al. (2003) incorporated an indicator variable in the Dutch model by
classifying regions according to influential factors such as population, meteorology
etc. In ESCAPE, the multilevel strategy was not applied but we did evaluate
whether the addition of regional estimates at the end of modeling with GIS
predictors improved the model R? in larger study areas such as the Netherlands.

Instead of IDW, several studies used Kriging in a two-stage LUR framework'* 1>
2 This approach incorporated a spatial smooth term and was powerful to reduce
spatial autocorrelation in the residuals. Several studies have documented
consistently that the two-stage model slightly outperformed and was more robust
than multiple linear regression models®. In ESCAPE, spatial autocorrelation in
residuals has been investigated in the model development using Moran’s | and was
generally very low and insignificant for area-specific LUR models across study
areas. However, since significant modest spatial autocorrelation has been reported
in a Canadian national model for PMys, further research is needed to assess the
spatial autocorrelation within the European models and to develop a two-stage
model for comparison.

Concerning sampling approach and selection of predictor variables for spatial
modeling, Su et al. (2009a,b)'® ' used a location-allocation algorithm for site
selection and a programmable distance decay regression selection strategy to
decide appropriate buffers of variables which resulted in 86% and 85% of the
explained variance in measured NO, and NOx. This method took population
distribution into account and required intensive computation based on geographic
data to select qualified sites from existing monitoring sites®'. In ESCAPE, we
conducted a relatively pragmatic strategy in monitoring sites selection by taking
different site types into account. We allocated 20%-40% of the sites to (busy) street

locations expected to exhibit the largest concentration contrasts for model
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development. We also used different buffer sizes for the predictor variables largest
radius of 5km based on observed air pollutants’ dispersion behaviors in urban
environments. Our models explained large fractions of variability which were at
least comparable with, or even better in some study areas than the model R?
produced by Su et al. (2009)'® "7

Recently, a stricter algorithm, Deletion/Substitution/Addition (DSA), has been
introduced under the frame work of LUR methodology'® . The DSA approach
uses an aggressive covariate search algorithm to fit a generalized linear model.
Instead of maximizing model R? this approach seeks to search for the best
predictive model by asymptotically optimizing cross-validation R? and tests nearly
all the covariate combination of both polynomial and interaction terms'®. Since the
DSA algorithm seeks to balance the needs to maximize predictive power and to
minimize over-fitting, this algorithm has been reported with both good estimates
and performance (LOOCV R?=0.79 for PM,5'® and 0.71 for NO,'®). Basagana
recently compared the performance of the DSA algorithm with that of the ESCAPE
standard procedure with Spanish NO, data, showing that even though model R? of
the LUR model was less inflated by using the DSA than the ESCAPE procedure,
the prediction ability (HV R2) of the DSA was, however, lower than the ESCAPE
procedure especially when the number of training sites are larger than 30 (HV:
MLR with constraints 32%-51% versus 29%-47%, N=30-120)?.

In summary, the performance of modeling procedures in the ESCAPE study has
been well evaluated. Development of LUR model in the future should consider less
empirical strategy (i.e. more theoretical based restriction). For instance, predictor
variables should be more specific for emission sources. Buffer selections of
predictor variables should rely on dispersion patterns or spatial distribution
characteristics to be more representative in model structures. More sampling sites
are needed if available to minimize over-fitting risk. Although the ESCAPE LUR
models explained fairly large fractions of spatial contrasts based on 40 and 20 sites
for NO, and PM respectively, we realize that there is still room to improve the
model performances especially for PM if more sampling sites were available.
However, this is always a trade-off between better quality of modeling and more
study areas with limited funding and resources in multi-cities study such as
ESCAPE. Further research is needed to compare models with different approaches
such as the two-stage modeling with kriging and the DSA algorithm.

Comparison between LUR and dispersion models

This thesis has evaluated the land use regression (LUR) technique and explored
its performance in terms of prediction ability. Dispersion modeling is another main
approach that has been extensively applied to characterize small-scale spatial
variability of air pollution?. For many years, these two approaches have been
implemented in fine scale exposure assessment for epidemiological studies®>.

Dispersion models generally rely on dispersion theory (e.g. Gaussian plume
equation)24 and utilize data on emission, meteorological conditions and
topographical data to simulate the physic-chemical processes of transport and
atmospheric chemistry when estimating outdoor air pollution concentrations?. Like
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LUR models, recent dispersion models have been used in conjunction with GIS to
provide more realistic and higher spatial-resolved predictions than the conventional
ones. Currently, comparison of LUR and dispersion model has not been widely
conducted. In general, LUR modeling has advantages in its relatively simple inputs,
its straightforward constructing procedures, and its capability of fine scale
predictions, but often suffers from lack of temporal and larger spatial scale data®.
Dispersion modeling is more advanced in covering larger periods of time whenever
multi-year records of emissions and meteorological conditions are available, but is
subject to relatively low spatial resolution in meteorological data and absence of
accurate emission data on a small scale®. In this section we will compare the
performances of the two kinds of models from previous studies supplemented with
part of the study thesis.

Spatial aspects

A growing number of studies compared the two techniques with emphasis on the
ability of spatial predictions. To achieve a fair comparison, an independent
validation air pollution data set is usually required aside from the sites used for
modeling which could be either Hold-out Validation (HV)-based®® ?” or routine
monitoring sites?®. As documented in chapters 2 and 3, LUR model R? can be
inflated by 20-30% for training sets of 24-40 sites. Published comparisons have
been summarized in table 2. Comparisons were mostly conducted in European
cities with one exception in Vancouver, Canada. Locally developed dispersion
models were employed in each study area due to different characteristics and data
quality in local emissions, meteorology and topography. Emission data of
dispersion models were less complete for PM,5 in most of the studies hence
comparisons have been mainly on NO; prediction.

Overall, few comparisons have been performed in different settings using
different dispersion models at different spatial scales. The CMAQ and FARM model
(Table 2) did not model small-scale variation but only the urban background.
Furthermore, even fewer studies had the ability to compare the models at a
sufficient number of independent sites. Comparisons at a small number of
validation sites (e.g. 10) can be difficult to interpret. In some studies, LUR model
outperformed localized dispersion model, i.e. correlations between predictions and
observations at external sites were larger for LUR model than for the dispersion
model. In two studies in the Netherlands the opposite was found. The number of
training sites for LUR modeling in the comparison studies is modest to high
(40-497). The difference between model R? and HV R? is generally small, though
some models even predicted higher HV R? than the model R?. This is attributable to
the use of small validation sets with respect to corresponding large training sets, for
instance 72 versus 8 sites in Huddersfield?® and 116 versus 14 sites in Vancouver?®.
Our systematic evaluation in chapter 2 (Figure 1) has demonstrated higher HV R?
than model R? occasionally from hundreds iterative computations®, suggesting that
predictions may be highly variable with small validation sets. The findings of the
Dutch studies can be explained from several reasons (e.g. different sampling
periods, quality of important predictor variables), one of which is the use of a
large-area LUR model on a smaller-area, e.g. a Dutch national LUR model applied
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to the Rijnmond area (1404 km?), the Netherlands®”.This could be deduced from
the observations in our study (chapter 2 table 2) that the models that were based
on similar number of training sites as Beelen et al (2010)*” and Dijkema et al
(2011)*" were still able to predict at least 67% HV R?s at the validation sites
throughout the Netherlands®. The aforementioned problem may be even worse for
particulate matter (PM) and some of their compositions (e.g. S and K), which have
clearly shown larger between-area than within-area variability in the ESCAPE
multi-cities in chapter 4 and in Tsai et al. (in preparation), than for traffic-related
pollutants e.g. NO,. Our European model basically predicted little variations for
PMa s concentrations in some central European cities which is partially due to lack
of representative local predictor variables. Gulliver et al. (2011)?® recommended
including information on site type which may partially overcome such problem. It is
worth noting that comparisons in Munich and Swiss cities were not ideal because
independent validation sets were not available for LUR models in these studies® *.
However, our study in chapter 3 (Figure 2) exhibited that the ESCAPE Munich
model can predict 62% variations at independent sites even based on 20 training
sites. Meanwhile, our European NO, model based on 480 sites showed that the HV
R? was almost equal to the model R? (model R? 0.57 versus HV R? 0.54) (chapter 4
table S3). These results suggested that the predictions of the LUR models in Cyrys
et al. (2005) and Liu et al. (2012) were reliable.

The ESCAPE study produced a rich empirical air pollution dataset and a large
number of city-specific LUR models for air pollutants which can be used to conduct
more comparisons with dispersion models. A comparison between ESCAPE
published LUR models and local dispersion models in available study areas is
ongoing (de Hoogh, in preparation). One of the foreseenable problems is the
selection of validation sites. Use of grouped jack-knife analysis seems infeasible
especially for PM due to the small number of sites (20 per area). Using the
AirBase regulatory monitoring sites for validation may avoid the above problem but
the interpretation of results may be difficult as the validation sites may not be
representative to population exposures and there are few sites within the individual
cities/study areas that were included in ESCAPE. Alternatively, validating air
pollution at external independent areas has been implemented for the European
LUR models in chapter 4 (transferability) and therefore is potentially available to
conduct reasonable comparison with local dispersion models. As an example in
table 2, a Rome PM;5 dispersion model reported by Cesaroni et al (2013)33
presented 41% agreement at a subset of 18 of the total 20 ESCAPE sampling sites
(2 regional sites outside Rome were excluded) compared to 54% predicted by our
European PM; s model for all 20 sites.

Temporal aspects

Dispersion models are powerful tools to produce historical exposures if relevant
emission and meteorological data are available, hence it has been suggested to
assess retrospective individual exposure of air pollution?’. Downs et al. (2007)*
assessed PM1o exposures between 1990 and 2002 using a Swiss dispersion model
to assess effects of reduced exposure to PMyy and decline in lung function in
adults.
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Land use regression models are usually constrained to short temporal coverage
of purpose-designed monitoring campaigns which requires additional steps to
extrapolate predictions over time*. Recent epidemiological studies increasingly
relied on LUR modeling to predict historical annual or seasonal exposure to
ambient air pollution using recent/current air pollution data®**’. In our study, the
LUR models used for exposure assessment were based on air pollution
measurements in the period 2008-2011 while cohort studies included in ESCAPE
started in the past (1985-2007 with most studies starting in the mid-90s). Thus
evidence was needed to validate the extrapolation of LUR model estimates back in
time. So far, five studies investigated the performance of back-extrapolation of LUR
model estimates for NO, in the Netherlands®®, Great Britain®®, Rome*°, Oslo*' and
Vancouver*’. These studies show that for periods from 3 to up to 18 years NO;
spatial contrasts often remained the same, even with a decrease in concentrations
over time. This indicates that LUR modeling is able to provide reliable estimates for
historical exposure. However, this finding can only be generalized to cities or
countries with limited reconstruction activities and a stable development history,
and therefore is applicable to many European countries but not to all. Furthermore,
it is not clear whether this finding can be generalized to more complex particulate
mixtures.

LUR models often model annual average concentrations. Recently, more
sophisticated spatiotemporal LUR models have been developed in the United
States' ** and Canada* which incorporated temporally resolved data from
continuous regulatory monitoring networks and satellites. This hybrid approach
applied multistage weighted and smoothing techniques over space and time and
was capable to estimate national scale spatiotemporal variability of air pollution.
Several epidemiological studies have adopted this approach to estimate both
long-term and short-term associations between hospitalization and mortality in
concurrent period** *°. A disadvantage of the updated LUR models we just referred
to stems from the relatively coarse spatial resolution (10km x 10km) which misses
small-scale variability thus is not suitable for within-city comparisons such as the
ESCAPE study.

An alternative approach is to combine dispersion and LUR in one module. Few
recent studies in Europe developed local spatiotemporal models as a combination
of regression based and local dispersion models in the context of assessing health
effects of long-term exposure to air pollution in a large cohort® *¢. A logical next
step is therefore to develop local and European-wide spatiotemporal models taking
the advantages of dispersion model and the European AirBase regulatory network.

Validity of LUR model in predicting personal exposures

Determinants of residential outdoor air pollution

Although this thesis documented a reasonable prediction ability of LUR models of
concentrations for the pollutants NO,, PM, 5 absorbance, and the Cu, Fe and Zn
content of PM, it should be noted that these estimates reflect residential outdoor
concentrations. Residential outdoor concentrations are often used as a surrogate
for personal exposure, the ideal exposure for epidemiological studies. Some
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studies consistently showed that residential indoor concentrations serve as an
important indicator for personal exposure given the large fraction of time people
spend at home*" *%. Indoor concentrations are affected by infiltration of outdoor air
and indoor sources. For pollutants with strong indoor sources, residential outdoor
exposure alone may not be a good proxy for personal exposure. For instance, a
large-scale population study in six European cities (EXPOLIS study) illustrated a
fair amount of indoor PMys and NO, concentration contributions from indoor
smoking, and gas stove and fuel heating respectively*®. A study in 14 U.S. cities
found that short-term effects of PM4o presented stronger association with hospital
admission with lower usage of air conditioning, explained by the strong influence of
infiltration rates®®. Van Roosbroeck et al. found no differences between the
personal exposures to PM2 s and NO» of adults living on high- or low-traffic streets
because of the influence on exposures of time-activity patterns, indoor sources,
and ventilation®'. They further suggested that the effect of exposure to outdoor air
pollution on respiratory and other health effects may be substantially attenuated
when exposure measurement used outdoor concentration in children’s schools
instead of personal exposure52.

Association between LUR outdoor predictions and personal exposure

Despite a fair number of studies documenting often moderate to strong
associations between temporal variation of outdoor, indoor and personal exposure,
the validity of LUR modeling regarding to personal exposure has been scarcely
investigated. Only four studies attempted to validate the accuracy of estimates of
LUR modeling by personal exposure monitoring.

One study was conducted in Vancouver, Canada with aims to characterize the
difference between personal exposure to air pollutants and intra-urban
concentration estimates using a LUR model and to identify other determinants
associated with personal exposure®. This study included 62 non-smoking pregnant
women with 1-3 48-hour personal measurements for NO, NO,, fine particle and
soot annual estimates from LUR modeling have been corrected by continuous
measurements to generate monthly estimates to compare with simultaneous
personal exposure. The authors found that the LUR outdoor predictions were only
associated with NO and NO, personal exposure while use of gas stove has
significant impact on the personal exposure to all the pollutants comparing with
using electronic stove

Another study in Hamilton, Canada recruited a panel of 33 elderly adults for
72-hour personal exposures with concurrent residential indoor and outdoor
measurements in three seasons®. In addition, a monitoring network-based LUR
model was previously developed of which the estimates of annual average NO,
concentrations were subsequently compared with the short- term personal
measurements. The authors found that personal NO, exposure was consistently
and strongly associated with contemporaneously collected indoor (Pearson
correlation R=0.86) and outdoor (Pearson correlation R=0.72) concentrations,
whereas personal exposure was not associated with annual estimates of NO;
predicted by the LUR model. The authors explained it as the influence by temporal
differences in the concentrations given the short time scale of personal
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measurement. Another important factor is the use of regulatory monitoring sites for
the development of an NO, LUR model which may not be representative to
residential outdoor exposure. As the study showed, the NO, predictive values of
the LUR model were only weakly associated with outdoor NO, concentrations
(Pearson correlation R=0.33). This study illustrated the challenges of obtaining a
sufficiently large temporal and spatial coverage when comparing personal
measurements with estimates from LUR models.

A recent study in Manchester, UK included 85 non-smoking pregnant women
with a 48-hour personal measurement®. The ESCAPE NOx LUR model has been
adjusted by temporal trends to obtain monthly average of outdoor exposures. The
authors found that the associations between LUR model outdoor predictions and
personal exposures became remarkedly stronger after monthly adjustment
(R2=0.09 versus 0.59) which supported the importance of comparing personal
exposure with model prediction at the same time scale.

More recently, the VE®SPA project has been done in Europe to validate the
effects of LUR models from the ESCAPE project in estimating residential outdoor
concentrations on long-term personal exposures for NO2, PM; 5 (including soot)56
and elemental constituents (In preparation). In the first report focusing on NO,
PM,s and soot, three panels of 15 subjects following a school child or elderly time
activity pattern from Helsinki (Finland), Utrecht (The Netherlands) and Barcelona
(Spain) living in three different types of areas (semi-urban, urban background and
near traffic residences) participated. In this study six 96-hour indoor, outdoor and
personal measurements over three seasons were collected to increase the
temporal coverage of personal exposure monitoring. Annual average air pollution
concentrations were calculated from individual measurements by adjusting
temporal trends from a reference site with continuous measurements. These
averages were compared with annual average concentrations of air pollutants
predicted by LUR models based on the ESCAPE purpose-designed sites. Soot was
the only component of which the estimated concentrations were significantly
associated with outdoor, indoor and personal exposures across the three study
areas (agreement: outdoor>indoor> personal). Interestingly, elevated and
significant correlations for all modeled pollutants were observed in a pooled
analysis. In contrast to previous studies, the agreements between modeled and
outdoor measured were considerably high for NO, and soot particles, confirming
the findings of LUR performances in chapter 4. This study suggested the use of
LUR modeled traffic-related pollutants with less indoor sources as proxy for
personal exposure.

These studies have suggested that modeling outdoor concentrations without
taking personal activity and household information into account may generate slight
to large exposure error from true personal exposure depending on how these
pollutants are related to these factors. This error may reduce the statistical power to
detect true causal effects between air pollution and health outcomes.

The predictive power of personal exposure is related to a number of factors,
including personal time-activity patterns, ventilation characteristics, type of indoor
source, and residential outdoor exposure. Few studies attempted to use LUR-style

models to predict indoor concentrations or personal exposures. Finding no
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association between personal NO, exposure and outdoor predictions by LUR
model, Sahsuvaroglu and his colleagues (2009) combined illustrative household
and personal activity factors in the original model to explore personal NO,
exposures for these participants, showing that the LUR model partially predicted
NO, exposures in the presence of time-activity diaries (e.g. gas stove, windows or
time indoors for NO,; model R?=0.32-0.33)**. Another study in Vancouver on
exploring LUR predictions for personal exposures of pregnant women found
consistently that the effects of outdoor estimates by LUR on personal exposure did
not significantly differ with and without personal (e.g. gas stove) adjustment for all
pollutants except soot, and thus suggested use of outdoor concentrations
estimates as proxies for exposure in epidemiological studies®®. Recent studies
made efforts to establish a multi-stage framework to incorporate personal
estimates from separate models for indoor and outdoor exposure®” *%. This
integration included modeling outdoor concentration by LUR, simulating
indoor-outdoor infiltration factor according to 1/0 measurements and available
questionnaire and finally estimating personal exposure by weighing indoor versus
outdoor time activity patterns of participants.

In the ESCAPE study, we modeled residential outdoor concentrations assuming
that indoor and, more importantly, personal concentrations were correlated with
outdoor concentrations. This has been validated by the VE>SPA study which
suggested to use intra-urban LUR model for especially soot in epidemiology.

Health effects at between- and within-area level

Associations between air pollution and health effects can be studied either by
using between or within study area exposure contrasts or both depending on the
study interests and the characteristics of air pollutants in space. Within the
ESCAPE study, cohort-specific analyses were conducted within individual study
areas with emphasis on exposure to traffic related pollutants. The effect estimates
therefore indicated the health effects due to exposure in different locations in a
study area, which usually consisted of an urban area with surrounding more rural
areas. This design has benefited from a growing body of evidence that gradients of
exposure to air pollutants were substantial in a small spatial scale especially for
traffic-related pollutants® °. In the ESCAPE study, a majority of the pollutants
showed substantial within-city variation supporting the needs of exploring their
effects linked to CVD mortality and other endpoints'™ ®" ®2. For the traffic-related
pollutants (e.g. NO,, soot, Cu and Fe), within-city variances were larger than
between-city variances. Several studies confirmed the importance of with-city
variability as a risk factor for mortality due to air pollution®® ®*. Within-city effects of
PM,5s on CVD mortality were larger than between-city effects in one study65. For
constituents of particles, differences in the compositions of PM emitted from nearby
emission sources may trigger different responses of health effects related to CVD
within a city®®. Regardless of characterizing spatial heterogeneity of air pollutants
within a city may result in severe exposure errors with both classical and Berkson
types®” %, Such exposure misclassifications may diminish the risk effects toward
null®®. On the contrary, assessing exposure with refined spatial resolution within a
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city may be more powerful to probe the true deleterious effects on CVD mortality.
Nevertheless if there are large contrasts in exposure across cities, the design of
comparing health effects across cities remains powerful. For PMz5 and K, S in PM,
the within-city variability was much smaller than the between-city variability',
suggesting that these metrics tended to vary in a large spatial scale’™. Therefore,
the between city design is also needed.

A recent review on CVD mortality risk linked to PM, s found an significant effect
(RR 1.15 95%CI 1.04, 1.27) per 10 pg/m® based on a series of large cohorts
studies?®®. However, most of the studies were conducted in the U.S. and Canada.
Geographic differences in CVD risk due to PM have been reported between North
American and European cities’". In the ESCAPE study with 19 cohorts, no
associations were found between PM and CVD mortality whereas effect estimates
varied between study areas’?, suggesting the differences in mobile (e.g. diesel
emission in Europe) and stationary (e.g. coal combustions) sources in different
regions of Europe. Although the results of area-specific studies were inconsistent
across study areas”>"°, elevated risks of CVD mortality were consistently related to
V and Ni in both PM25 and PMy in the large U.S. national time-series study’® "’.
Long-term studies have not yet been done except the California Teacher Study
(CTS) which indicated that constituents derived from combustion of fossil fuel as
well as those of crustal origin were associated with cardiopulmonary and ischemic
heart disease (IHD) mortality’®. In contrast, our study found no associations
between all the eight elements (copper, iron, potassium, nickel, sulfur, silicon,
vanadium and zinc) and total CVD mortality based on 19 European cohorts. The
inconsistency can possibly be explained by the differences in exposure
assessment, characteristics of participants and confounders adjustments between
European and American cohorts. Because of the limited number of long-term
studies on CVD mortality in relation to PM constituents, the role of important
constituents remains less clear. However, toxicological studies have identified
several transition metals (copper, iron, vanadium, nickel, and zinc) that are likely to
promote inflammation (e.g. TNF-a, PMN) and oxidative stress’®®'. Sources such
as non-exhaust emissions (copper and zinc) are important for pulmonary toxicity®'.
Because a constituent is emitted from several sources and a single source emits
several pollutants®, the null effect of our study results could be interpreted as that
the power of single constituents may be weak to represent the effect of its relevant
sources whereas it is unclear whether a joint set of similar trace markers can
increase the power to detect such effect. One source apportionment study
exhibited that road dust, minerals and fuel oil from grouped constituents were
associated with daily CVD mortality83. It is valuable to investigate the adverse CVD
health effects linked to sources of pollution in the future.

Lessons learned from the ESCAPE study and perspectives in
China

Mortality risks attributable to ambient air pollution has become one of the major
concerns and challenges for Chinese public health administrations. Although
associations between air pollution and CVD, respiratory and total non-accidental
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mortality has been widely documented by short-term studies in Chinese
mega-citie384, mortality effects of long-term air pollution exposure have been
understood less mainly due to lack of efficient quantitative techniques in exposure
assessment. The ESCAPE study has implemented a successful method to quantify
spatial variability of air pollution for cohort studies. Several lessons are learned in
air pollution exposure assessment from this thesis and the ESCAPE study.

Firstly, exposure modeling of intra-urban spatial variability of air pollution is
needed for cohort studies. So far, exposure assessment in China has merely relied
on a central station or a small number of monitoring stations in a city. For instance,
a prospective cohort (the China National Hypertension Follow-up Survey) recruited
158,666 adults, of which only 70,947 subjects (44.7%) were eligible for the air
pollution survey due to inadequate ambient monitoring stations®®>. Mesoscale
dispersion models are often used in Chinese studies for air pollution simulation in
regional and city scales. These dispersion models have relatively coarse spatial
resolution (finest resolution of 4km by 4km) as well as modest agreement with
spatial measurements. For instance, a common used WRF-CMAQ (Weather
Research and Forecasting-Community Multiscale Air Quality) dispersion model has
been evaluated in the CAREBeijing-2006 (Campaign for Air Quality Research in
Beijing and the Surrounding Region) which presented agreement of 0.7 (R) with
measured aerosol optical depth (AOD) values®. Dispersion modeling predictions
are often difficult to implement for multiple pollutants because input sources are
possibly incomplete%. In this thesis, we have demonstrated that LUR modeling is a
powerful approach to predict small-scale variability of air pollution in many
European cities. Hence this modeling framework can potentially be applied in
meta-cities of China. LUR modeling has been developed in a few studies in Tianjin
and Jinan cities®”®. The model explained 62% and 64% for NO, and PMyq in
Jinan(N=14) and 89% and 84% for NO, and PM1q in Tianjin (N=20) respectively,
suggesting that it is feasible to develop LUR models in Chinese cities with relatively
good model R2. In contrast to the ESCAPE study, these studies relied on routine
monitoring sites rather than purpose-decided sampling sites.

Secondly, the necessity of a standard protocol has been clarified, which needs to
be kept throughout the exposure assessment for multi-city studies. The intention is
to minimize possible errors that may lead to heterogeneity in study results. A
universal protocol was followed in ESCAPE study throughout the whole air pollution
sampling, data collections, modeling procedures and statistical analyses, which
reduced heterogeneity of estimated effects across study areas. In China,
substantial heterogeneity of effect estimates of air pollution on various mortality
outcomes has been found in a recent comprehensive review of the Chinese
short-term studies®® as well as the China Air Pollution and Health Effects
multi-cities Study (CAPES)®. At least, some of the errors were attributable to the
differences in the measurements and statistical analyses in individual studies.
Therefore, use of a standard protocol may help to reduce heterogeneity between
studies.

Thirdly, sites distribution should be purposely designed to represent the
anticipated spatial variation of air pollution at home addresses of participants rather

than simply applying routine monitoring sites in the epidemiologic studies. Although
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the number of the Chinese national routine monitoring stations for PM; s have been
increased to 1500 throughout the country, most of the station settings were not
densely distributed within a city (except a few number of big cities e.g. Beijing N=35)
and were not representative to population exposures. Besides, the monitoring data
are not easily accessible. Concentration contrasts in mega-cities such as Beijing
and Shanghai may be larger than those of the ESCAPE study areas. Given the
complexity of city configurations and the characteristics of multiple sources air
pollution which are more obvious in these Chinese mega-cities, sites should be
more densely distributed surrounding populations with more efforts to capture
hotspot concentration variances of air pollution.

Fourthly, predictor variables should be as specific and accurate as possible to
explain known sources of air pollutants. In the ESCAPE study, local predictor
variables were encouraged to be included complementary to the central dataset.
Importantly, it is advisable to incorporate traffic intensity variables if they are locally
available. Traffic variables have been once reported for modeling in Tianjin,
China®®. Whereas, traffic intensity data are generally difficult to obtain in other
Chinese cities which will constrain the prediction ability of LUR models. An
alternative approach includes providing manually traffic counts on the nearest road
of sampling sites in urban settings®'. This however is not feasible for studies
involving large study populations. Moreover, the problem of accumulation effect of
air pollution in street canyon is more worthy of attention in many Chinese cities due
to rapid urbanization and high buildings compared to some of the European study
areas included in ESCAPE. The obstruction of air flow in street canyon can be
quantified by GIS based approaches such as the SkyView factor (a measure of the
total fraction of visible sky) which are able to improve the prediction ability of the
LUR model®. A difference from the Chinese situation is that many residents are
living in high rise apartment buildings in the city center. Since the concentration of
air pollution decreases from lower to higher elevation®, an appropriate algorithm is
needed to take this factor into account. Another encountered challenge is the
rapid undergoing urbanization in many Chinese cities since the past decades which
may violate the assumption of stability over time for LUR models for long-term
health study. Therefore, use of LUR modeling is more suitable in prospective than
in retrospective applications. Developing LUR models combining a temporal term
by means of satellite data or national network might overcome such shortcomings
in regional or national scale studies in the future.

Fifthly, understanding and assessing the role of exposure measurement error in
health effects assessment are central issues for the design and implementation of
health effect cohort studies®. This is essentially important in Chinese cities where
exposure measurement errors in air pollution epidemiology come in various
dominant forms such as data quality, fewer predictor resources and more complex
city structure than those in the ESCAPE study areas. Furthermore, exposure to
indoor emissions may be more obvious in Chinese homes than in western homes®.
Therefore, validity of LUR models are needed especially for pollutants with
significant indoor sources. Assessing the predictive power of LUR model should
rely on agreement with measurements at independent validation sets.

Sixthly, it is promising to explore transferability of LUR model based on large
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multi-cities dataset to other Chinese areas. The uneven urbanization facilitates
highly centered available resources in mega-cities in the east coast. The situation
is similar to the United States where national monitoring networks are centered on
the east and west coasts. It is desirable to develop a countrywide LUR model
based on accessible monitoring sites of big cities to predict air pollution
concentrations in small towns where no measurements are available. Moreover,
developing a national-wide LUR incorporation with satellite data have been
demonstrated as a useful tool to greatly improve the model (R?)'®*® and therefore
is applicable to the areas with less monitoring resources.

Seventhly, modeling long-term exposure to PM compositions is possible if
relevant predictor variables are available and accessible. This allows identifying
source-related health effects which is helpful for policy makers to regulate air
pollution. In China, short-term studies have suggested that PM, s constituents from
the combustion of fossil fuel may have an important influence on the mortality
outcomes attributable to PM2,596. However, long-term study on health effects of air
pollution is still a big challenge due to lack of exposure measures. There is a need
to explore a proper algorithm of LUR modeling for PM compositions in China.

Overall, LUR modeling is a promising technique to satisfy the urgent needs of
assessing long-term health effects of exposure to ambient air pollution in China.
The experiences from the ESCAPE project will provide precious guidance to
facilitate its adaption in China. Nevertheless, developing a local satisfactory LUR
model is still challenging and needs more practical experiences in China.

Conclusion

Our study is among the first empirical LUR studies that has systematically
compared results of LOOCV and HV evaluations using training and test sets of
varying sample sizes and is also the first that evaluated particulate matter LUR
models in such a large number of study areas (N=20) within the framework of the
ESCAPE study. Our study with the Dutch dataset suggested that truly independent
evaluation data are especially useful when LUR models are developed from small
training sets where we have shown the adjusted model and LOOCV R®s to deviate
most from the hold out validation R%s.

This was supported with the ESCAPE models showing that for a wide range of
study areas and pollutants including NO,, PM, s absorbance and PMy Cu, model
and LOOCV R? from land use regression models based on relatively small training
sets overestimate predictive ability in independent test sets. Despite of this, in most
areas LUR models still explained a substantial fraction of the spatial variation
measured at independent sites.

European LUR models for NO, and PM,5s absorbance were found to have
reasonable power to predict spatial variations of these components in areas not
used for model building. For PM, 5, prediction R?s were moderate for intra-urban
variation.

For the first time, we have attempted to develop land use regression models for
the spatial variation of long term ambient concentrations of elemental composition
in the PM4o and PM 5 fractions. Good LUR models were developed for Cu, Fe and
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Zn in both PM and PM. 5 fractions. Moderate models were developed for S, Si, Ni,
V, K for PM4g and V and S for PM,5. Models for the elements K, Ni and Si in the
PM. 5 fraction performed poorest.

Our study provided the first result that no associations were found between
long-term exposure to these 8 elemental constituents of particles (Cu, Fe, K, Ni, S,
Si, V and Zn in PM,5 and PMyo) and total cardiovascular mortality based on 19
European cohorts. Most of the hazard ratios were close to unity.
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Exposure assessment is one of the key issues for health effect estimates in
environmental epidemiology. Recent interest has increased in exposure modeling
incorporating Geographic Information System (GIS) data to capture small-scale
spatial variability in air pollution concentrations. Land use regression (LUR)
modeling is one of the most popular models due to the high resolution mapping
technique. Even although LUR technique has been studied extensively in the past
decades, performances of LUR models associated with prediction ability to outdoor
exposure have not been well explored. Furthermore, transferability of LUR models
from city to city has been investigated, but little is known about the performance of
models based on large numbers of monitoring sites covering a large area.
Ambient PM,s and PMyy (particle dynamic diameter <2.5 ym and 10um)
represent a heterogeneous mixture of constituents from diverse sources e.g. fossil
fuel combustion, biomass burning and human activity. However, it is still unclear
which PM constituents are associated with higher risks. Cardiovascular (CVD)
mortality contributes a majority of the all-cause mortality in many studies. Several
studies showed evidence of acute effects of PM components on CVD mortality, but
results were inconsistent. Very few studies have assessed health effects related to
long-term exposure to elemental composition. Lack of spatially resolved elemental
composition measurement data and a lack of models for elemental composition
have contributed to this gap.
The multi-center European Study of Cohorts for Air Pollution Effects (ESCAPE)
aims at quantifying long-term impacts of air pollution on diverse health outcomes.
This thesis is within the framework of the ESCAPE project and with specific aims:
1. To evaluate the performances of LUR models in terms of model fit and
prediction ability

2. To develop LUR models for particle compositions

3. To estimate associations between long-term exposure to particle compositions
and cardiovascular mortality

Evaluation is an essential part of Land Use Regression (LUR) model
development. In chapter 2, we developed LUR models for nitrogen dioxide (NO5)
using measurements conducted at 144 sampling sites in the Netherlands. Sites
were randomly divided into training datasets with a size of 24, 36, 48, 72, 96, 108
and 120 sites. LUR models were evaluated wusing (1) internal
“‘leave-one-out-cross-validation (LOOCV)” within the training datasets and (2)
external “hold-out” validation (HV) against independent test datasets. LUR model
performance for NO; varies with the number of training sites. Hold-out validation
(HV) R? was lower than the corresponding cross-validation R?, especially for the
smallest training sets. Our study suggested that truly independent evaluation data
are especially useful when LUR models are developed from small training sets
where we have shown the adjusted model and LOOCV R®s to deviate most from
the hold out validation R®s. In our specific application, models based on as few as
24 training sites, however, achieved acceptable hold out validation R%s of, on
average, 0.60.

Following on the findings in chapter 2, LUR models have been further developed
for NO2, PM2 5 absorbance and Copper (Cu) in PM4o based on 20 sites in each of

the 20 study areas of the ESCAPE project with PM data (Chapter 3). Models were
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evaluated with LOOCV and “hold-out evaluation (HEV)” using the correlation of
predicted NO, or PM concentrations with measured NO, concentrations at the 20
additional NO; sites in each area. Our results confirm that the predictive ability of
LUR models based on relatively small training sets is overestimated by the LOOCV
R?s. Nevertheless, in most areas LUR models still explained a substantial fraction
of the variation of concentrations measured at independent sites.

In chapter 4, we evaluated LUR models for NO, and Particulate Matter (PMz 5,
PM, s absorbance) by combining standardized measurement data from 17 (PM)
and 23 (NO,) ESCAPE study areas across 14 European countries for PM and NO..
Additionally, we investigated the transferability of the models by successively
excluding each study area from model building and applying developed models to
these excluded areas to test the model performance. Using a large dataset from 23
European study areas, we were able to develop LUR models for NO, and PM
metrics that predicted measurements made at independent sites and areas
reasonably well. For PM, s, prediction R2s were moderate for intra-urban variation.
This finding is useful for assessing exposure in health studies conducted in areas
where no measurements were conducted.

In chapter 5, LUR models for eight a priori selected elements; copper (Cu), iron
(Fe), potassium (K), nickel (Ni), sulphur (S), silicon (Si), vanadium (V) and zinc (Zn)
were developed. Good models were developed for Cu, Fe and Zn in both fractions
(PM1o and PM;5) explaining on average between 67 and 79% of the concentration
variance (R? with a large variability between areas. Traffic variables were the
dominant predictors, reflecting non-tailpipe emissions. Models for V and S in the
PMio and PM,s fractions and Si, Ni and K in the PMy, fraction performed
moderately with R? ranging from 50 to 61%. Si, NI and K models for PM;s
performed poorest with R? under 50%. The LUR models are used to estimate
exposures to elemental composition in the health studies involved in ESCAPE.

Chapter 6 focuses on the association between long-term exposure to these eight
elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) of particles and total
cardiovascular mortality within the framework of the ESCAPE and TRANSPHORM
projects. Residential annual average exposure to elemental constituents within
PM.5s and PMy, was estimated by LUR models. Cohort-specific analyses were
conducted using Cox proportional hazards models with a standardized protocol.
Random-effects meta-analysis was used to combine pooled effect estimates for 19
European cohorts. Our study provided the first result that no associations were
found between long-term exposure to these eight elemental constituents of
particles and total cardiovascular mortality. Most of the hazard ratios were close to
unity.
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Blootstellingsschatting is één van de belangrijkste kwesties voor de schatting
van gezondheidseffecten in milieu-epidemiologie. Recent is de belangstelling
toegenomen om Geografisch Informatie Systeem (GIS) data op te nemen in de
blootstellingsmodellering om zo kleinschalige ruimtelijke variabiliteit van
luchtverontreinigingsconcentraties vast te stellen. Land Use Regressie (LUR)
modellering is een van de meest populaire modellen vanwege de hoge resolutie
van deze zogeheten mapping techniek. Hoewel de LUR techniek uitgebreid
bestudeerd is in de afgelopen decennia, is het toepassen van de LUR modellen
voor het voorspellen van buitenlucht concentraties niet goed onderzocht.
Daarnaast is de toepassing van LUR modellen van stad tot stad onderzocht, maar
er is weinig bekend over de prestaties van de modellen gebaseerd op een groot
aantal meetlocaties in een groot gebied.

PM.s en PMjo, deeltjes in de omgeving met een zogeheten dynamische
diameter kleiner dan 2.5 ym en 10 ym, vormen een heterogeen mengsel van
bestanddelen uit diverse bronnen zoals verbranding van fossiele brandstoffen,
biomassaverbranding en menselijke activiteiten. Het is echter nog onduidelijk
welke elementen in fijn stof geassocieerd zijn met een hoger gezondheidsrisico.
Cardiovasculaire (CVD) sterfte draagt sterk bij aan de totale mortaliteit in veel
studies. Verschillende studies toonden acute effecten van PM componenten op
CVD sterfte, maar de resultaten waren inconsistent. Zeer weinig studies hebben de
gezondheidseffecten van lange-termijn blootstelling aan elementen in fijn stof
onderzocht. Gebrek aan meetgegevens van PM componenten en een gebrek aan
modellen om PM componenten te schatten hebben bijgedragen aan deze kloof.

De multi-center European Study of Cohorts for Air Pollution Effects (ESCAPE) is
gericht op het kwantificeren van de effecten op lange termijn van
luchtverontreiniging op diverse gezondheidsuitkomsten.

Dit proefschrift is geschreven in het kader van het ESCAPE-project en heeft de
specifieke doelstellingen:

1. De prestaties van LUR modellen evalueren in termen van model fitting en het
voorspellend vermogen

2. LUR modellen ontwikkelen voor PM componenten

3. Schattingen maken voor de associatie tussen langdurige blootstelling aan PM
componenten en cardiovasculaire mortaliteit

Evaluatie is een essentieel onderdeel van LUR modelontwikkeling. In hoofdstuk
2 hebben we LUR modellen ontwikkeld voor stikstofdioxide (NO;), gebruikmakend
van metingen uitgevoerd op 144 meetpunten in Nederland. De meetpunten werden
willekeurig verdeeld in datasets met een omvang van 24, 36, 48, 72, 96, 108 en
120 meetpunten. LUR modellen werden geévalueerd met behulp van (1) interne
"leave-one-out-cross-validatie (LOOCV)" binnen de datasets en (2) externe
"hold-out" validatie (HV) in vergelijking met onafhankelijke test-datasets. LUR
model prestaties voor NO, varieerden met het aantal meetpunten. De R? voor
hold-out validatie was lager dan de overeenkomstige cross-validatie R?, vooral
voor de kleinste data sets. Onze studie suggereert dat werkelijk onafhankelijke
evaluatiegegevens vooral waardevol zijn wanneer LUR modellen worden
ontwikkeld voor kleine data sets, voor deze wijken de model en LOOCV R%s het
meeste af van de hold-out validatie R®s. In onze studie hadden modellen op basis

van 24 meetpunten echter aanvaardbare hold-out validatie R?% van gemiddeld
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0,60.

Naar aanleiding van de bevindingen in hoofdstuk 2 zijn de LUR modellen verder
ontwikkeld voor NO,, PM,5s absorptie en koper (Cu) in PMy gebaseerd op 20
locaties in elk van de 20 studiegebieden met PM-gegevens binnen het
ESCAPE-project (hoofdstuk 3). Modellen werden geévalueerd met LOOCV en
"hold-out evaluatie (HEV)" gebruikmakend van de correlatie van de voorspelde
NO, of PM-concentraties met gemeten NO,-concentraties op de 20 extra NO;
locaties in elk studiegebied. Onze resultaten bevestigen dat het voorspellend
vermogen van LUR modellen op basis van relatief kleine data sets wordt overschat
door de LOOCV R?s. Niettemin verklaren de LUR modellen in de meeste gebieden
nog een aanzienlijke fractie van de variatie van de concentraties gemeten op
onafhankelijke sites.

In hoofdstuk 4 hebben we LUR modellen geévalueerd voor NO, en fijn stof
(PM25, PM,s-absorptie) door gestandaardiseerde meetgegevens te combineren
van 17 (PM) en 23 (NO;) ESCAPE studiegebieden in 14 Europese landen.
Daarnaast hebben we de bruikbaarheid van de modellen onderzocht door
achtereenvolgens elk studiegebied afzonderlijk uit te sluiten in de modelbouw en
vervolgens de ontwikkelde modellen toe te passen op de uitgesloten gebieden om
zo de prestaties van het model te testen. Met behulp van een grote dataset van 23
Europese studie gebieden waren we in staat om voor NO; en PM LUR modellen te
ontwikkelen die metingen op onafhankelijke sites en gebieden redelijk goed
voorspellen. Voor PM. 5 waren de R?s redelijk voorspellend voor de intra-stedelijke
variant. Deze bevinding is nuttig voor het schatten van blootstelling in
gezondheidsstudies in gebieden waar geen metingen werden uitgevoerd.

In hoofdstuk 5 worden LUR modellen voor acht a priori geselecteerde elementen,
koper (Cu), ijzer (Fe), kalium (K), nikkel (Ni), zwavel (S), silicium (Si), vanadium (V)
en zink ( Zn) ontwikkeld. Goede modellen konden worden ontwikkeld voor Cu, Fe
en Zn in beide fracties (PM1o en PMy5). Deze verklaren gemiddeld tussen 67% en
79% van de gemeten variantie met een grote variabiliteit tussen gebieden.
Verkeersvariabelen waren de dominante voorspellers, wat de niet-uitlaat emissies
van deze elementen weerspiegelt. Modellen voor V en S in de PMyy en PM25 en
voor Si, Ni en K in de PMqo-fractie gaven een matige R? van 50 tot 61%. Si, Ni en
K-modellen voor PM; 5 gaven de slechtste R? van onder de 50%. De LUR modellen
worden gebruikt om de blootstelling aan PM componenten te schatten in de
gezondheidsstudies in het ESCAPE-project.

Hoofdstuk 6 richt zich op de relatie tussen langdurige blootstelling aan deze acht
PM componenten (Cu, Fe, K, Ni, S, Si, V en Zn) en totale cardiovasculaire
mortaliteit zoals onderzocht in het kader van de ESCAPE en TRANSPHORM
projecten. Residentiéle jaargemiddelde blootstelling aan PM componenten werd
geschat door LUR modellen. Cohort-specifieke analyses werden uitgevoerd met
behulp van Cox proportionele hazard modellen met een gestandaardiseerd
protocol. Random-effecten meta-analyse werd gebruikt om gepoolde effect
schattingen te maken door 19 Europese cohorten te combineren. Onze studie heeft
als eerste de associaties tussen langdurige blootstelling aan deze acht PM
componenten en totale cardiovasculaire mortaliteit onderzocht. Er werden geen
associaties gevonden, de meeste hazard ratio's waren dicht bij 1.
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