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1. Introduction

Electrostatic electron lenses consist of several rotationally symmetric electrodes at dif-
ferent potentials. Deviations from rotational symmetry, whether caused by unroundness
of the electrodes or by misalignments between the electrodes, usually cause undesired
beam aberrations and are avoided as much as possible. In somesituations, of course,
non-rotational symmetry is created on purpose in order to create de
ection, stigmation
[1] or other multi-pole e�ects. To create multi-pole e�ects, t he construction usually con-
tains multiple electrodes around the optical axis of the system, multiple examples are
given in the book of Hawkes et al. [2]. A new concept proposed by Zonnevylle et al.
[3] intentionally breaks the rotational symmetry of an electrostatic lens into a mirror
symmetric con�guration. The proposed lens consists of �ve electrodes where the center
electrode is displaced in the lateral direction. This is what we call a 'shift lens'. This
shift lens moves the focused electron beam in the same lateral direction as the displaced
electrode. Applying a voltage di�erence between the center electrode and the neighbor
electrodes displaces the focused electron beam. This con�guration could be implemented
for alignment purposes in a multi-beam system. This kind of beam alignment is not ap-
plied for a single beam system, because beam de
ectors are much more suited and well
understood. Implementing this idea in a microfabricated multi-beam system should en-
able the correction of misalignment in a multi-beam MEMS system by only adjusting
the voltage on its central array electrode, as described by Zonnevylle et al. [3]. We re-
mark that in a multi-beam system such as for example the MAPPER [4] machine, each
beamlet column can be modeled as an individual system. To thebest of our knowledge,
there are no experimental or theoretical studies on the proposed shift lens. However,
introductions to non-rotational systems are found in literature, for example in chapter
23 of Hawkes and Kasper [2] and Whitmer et al. [5].

There are a couple of simulation programs available for theoretical studies in electron
optics. For example, EOD [6], SIMION [7], MEBS [8] and GPT [9]are commonly used in
this �eld. The interested reader is referred to the o�cial we bsite1 for a list of applications
per program. An overview of simulation programs including some speci�cations is given
in table 1.

It is Sturrock [10] who investigated the aberrations induced by small misalignments us-
ing a �rst order perturbative method on rotationally symmet ric systems. This approach
to non-rotational symmetric designs is known in the �eld as Sturrock's method. The
proposed model by Sturrock is valid as long as the perturbation is small, giving only
a �rst order approximation of the perturbed system with resp ect to the rotationally
symmetric design. This method is implemented in special versions of the simulation
programs developed by Munro [8] and Z�lamal [6] for the purpose of tolerance calcula-
tions. In standard rotationally symmetric systems these tolerances are the shifts and
tilts caused by machine tolerances and fabrication inaccuracies. In practice, the �rst

1 http://www.lencova.com (EOD), http://www.simion.com (SIMION), http://www.mebs.co.uk
(MEBS), http://www.pulsar.nl/gpt (GPT).
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Tool Method 2D/3D Tracer Relativistic Interactions
EOD FEM 2D, (3D) Runge-Kutta ? No

SIMION FDM 2D, 3D Runge-Kutta ? No
CPO3 BEM 2D, 3D Runge-Kutta ? No
MEBS FEM 2D, (3D) Runge-Kutta Yes Yes
GPT external 2D, 3D Runge-Kutta Yes Yes

OPERA FEM 2D, 3D Runge-Kutta Yes Yes

Table 1 { Overview of commonly used programs in the �eld of charged particle optics.
We identi�ed for every program the method of �eld calculation, which can be
the �nite di�erence method (FDM), �nite element method (FEM) or b oundary
element method (BEM). The only program that does not support native �eld
calculations is GPT (the user can import externally calculated �elds). Programs
that support perturbative approximations to symmetric solutions are labeled in
parenthesis (3D).

order approximation proposed by Sturrock is su�cient, because these shifts and tilts are
generally less than, or in the order of one percent of the diameter of the aperture of the
modeled lenses. However, Sturrock's method is not applicable to our shift lens, because
the displacement of the center electrode is much larger.

The �rst few attempts in simulating the shift lens are due to A .C. Zonnevylle, who
discovered that most of the programs barely produce the second order aberrations, and
the programs that do, take an unreasonable amount of computation time. Unfortunately,
the computation time cannot be addressed, because none of the programs are designed
to run natively on distributed computer systems. Conclusion: The shift lens cannot
be calculated by conventional methods.

The challenge of this project is to design a simulator capable of producing the desired
accuracy with the shift lens as an application. We have set upa list of requirements for
that purpose,

� The electric �eld and electron trajectories must be accurate enough to produce at
least the second order aberrations.

� Reduce the computation time by using massive concurrent ray-tracing of charged
particles.

With respect to future theoretical studies in electron optics, the list of requirements is
extended by,

� Possibility to simulate embedded systems with varying scales. For example, the
design of a nanometer sized emission tip embedded in a systemof centimeter size
[11, 12].

� Possibility to include Coulomb-interactions (all-pairs, slice-method [13, 11, 12],
Barnes-Hut [14, 15] or multi-pole methods [16]).
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In order to meet the proposed requirements, we decided to implement the following
ingredients to our custom built simulator,

� Boundary element method for calculating electrostatic �elds. Our logic for
this type of �eld calculations is based on �ve pillars,

1. Superior convergence in three-dimensional electrostatic simulations, see for
example Cubric et al. [17].

2. Direct evaluation of the electric �eld. This is to be compared to deriving the
electric �eld from the scalar potential �eld, which introdu ces an additional
error due to discrete di�erentiation.

3. The electric �eld is a continuous function in space, i.e. no need to interpolate
the electric �eld at the position of the particle.

4. This method allows a high-performance concurrent implementation.

5. E�cient solution to embedded systems with varying scales, see for example
[2].

� Geometrical integrators for solving the equations of motion. Our logic for this
particular class of integrators is based on the advantages due to preservation of the
symplectic structure, see for example Donnelly et al. [18] for a general introduction.

� Vector parallelism for massive concurrent ray-tracing of charged particles. We
speci�cally focus at an implementation for modern graphics cards by NVIDIA,
which can be used as low-cost high-performance vector processors. The interested
reader is referred to Garland et al. [19] for a �rst impression with respect to
scienti�c simulations using graphics cards by NVIDIA.

This thesis is organized as follows:

In chapter two we introduce the basics of ray-tracing relativistic charged particles in
static electromagnetic �elds, at �rst using a relativistic Lagrangian and later, via the
canonical Legendre-transformation, using a conserved Hamiltonian. We simplify the
Hamiltonian to meet the requirements of the shift lens, which only includes electrostatics.
The electrostatic Hamiltonian is identi�ed as separable and, based on the symplectic
structure, we discuss (1) time-reversal symmetry, (2) conservation of phase-space and
(3) the fourth order geometrical integrator by Blanes et al. [20] for solving the equations
of motion.

The subject of chapter three is to present a theoretical framework for calculating the
three-dimensional electrostatic �eld due to a system of electrodes. The idea is to approx-
imate the exact boundary integral by discretizing a system of electrodes into triangles
with a linearized surface charge density function per triangle. We introduce a systematic
approach for solving the unknown boundary values using vertex response functions and
Green's functions. This systematic approach for solving the boundary values is { for the
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sake of clarity { demonstrated by an example. After the example we focus on the numer-
ical evaluation of the electric �eld by transforming the boundary integral into an e�ective
point charge representation. In the last part of this chapter we introduce boundary error
analysis, which gives a measure for the quality of the discretized boundary.

In chapter four we focus on the implementation of the boundary element method specif-
ically for vector processors. In this chapter we brie
y touch the topics of memory
optimizations, which includes the caching of elements, memory coalescing and ordering
of data in arrays. The performance of our boundary element method is tested against
two graphics cards from NVIDIA and two multi-core scalar processors from INTEL.
The chapter concludes with a couple of diagrams explaining the di�erent stages of the
simulator. The �rst stage relates to the process of obtaining a triangulated boundary
in terms of faces and vertices. The boundary values are obtained in the second stage
by solving the Green's equation. Finally, two diagrams are used to explain the parallel
tracing of electron trajectories using a vector processor.

In chapter �ve we present the design, triangulation and results of the shift lens as an
example to illustrate the power of our simulation tool. At �r st we present our plan of
calculation, which basically answers the question: ,,How are we going to calculate the
aberrations?". The second section illustrates how a given design can be triangulated by
hand. After that we present the results of the shift lens including an error analysis.

In the �nal chapters we discuss the boundary element kernel of the simulator and the
results with respect to the shift lens. We also discuss the simulation of emission tips and
the e�ect of including Coulomb interactions into the theory. After giving the conclusion
of this project we present some follow up studies in the outlook based on our ideas of
improvements, (1) integrating electron trajectories using explicit symplectic adaptive
time-step methods, (2) improved triangulation using the multipole expansion and (3)
quality mesh generation and a method for automated mesh re�nement.

The thesis ends with a �nal remark on the presented work.
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2. Basics of Relativistic Ray-tracing

The purpose of this chapter is to formulate a mathematical framework for tracing rel-
ativistic charged particles in static electromagnetic �elds. At the heart of ray-tracing
charged particles in time-independent �elds are Maxwell's equations for electromag-
netism. Instead of directly using Newton's law for the trajectories, our approach is to
express the theory as a Hamiltonian where the electromagnetic �elds are coupled to
relativistic particles. The reason for this approach is that the Hamiltonian view is as-
sociated with symmetries, such as energy conservation and conservation of phase-space.
We require these symmetries to be present in our framework such that the resulting
trajectories are indeed Hamiltonian, even at the level of numerics.

Although we formulate a general theory to capture a broad range of future applications,
the shift lens does not include magnetostatics. The relativistic Hamiltonian involving
only electrostatics is separable and this simpli�es the equations of motion. Our strategy
for solving the equations of motion is to use the class of explicit geometrical integrators.
This class of intregrators is special because it respects the symmetries of the Hamiltonian.
We conclude that the resulting trajectories are superior tonon-symplectic solutions. In
particular we discuss the fourth order geometrical integrator by Blanes et al. [20]. By
our requirements, we verify that this integrator indeed respects the symmetries of the
Hamiltonian.

Most of the content of this chapter is part of the education of bachelor and master
studies in physics and mathematics. For example, the dynamics of Hamiltonian systems
are described in Goldstein [21] and { with respect to chargedparticles in electromagnetic
�elds { in Jackson [22]. More advanced theoretical topics onHamiltonian systems, such
as the symplectic structure and the conservation of phase-space (Liouville's theorem),
can be found in Landau [23], Goldstein [21], Rose [24] and Donnelly [18].

2.1. Maxwell's Time-independent Equations

We brie
y review Maxwell's equations for time-independent electromagnetism. Maxwell's
time-independent equations decouple into two seperate realms. The realm of electrostat-
ics is given by,

� 0r � E = � (1)

r � E = 0 (2)

Where � is the charge density and� 0 the permittivity of free space. Equation (2) shows
that the electrostatic �eld is free of curl and implies that i t can be written as a scalar
potential,

E = �r � (3)

Thomas Verduin 8
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The remaining equations form the realm of magnetostatics and are given by,

r � B = 0 (4)

r � B = � 0J (5)

Where � 0 is the permeability of free space. Equation (4) shows that the magnetostatic
�eld is free of divergence and implies that it can be written as a vector potential,

B = r � A (6)

The equation for the trajectory of a single particle in a time-independent electromagnetic
�eld is a textbook equation in relativistic Newtonian mechanics (see for example Jackson
[22]),

d
dt

m _q
q

1 � _q2

c2

= � � r (� � _q � A ) (7)

Where q is the position of the particle, � the charge of the particle, m the rest mass
of the particle and c the speed of light in vacuo. Although this view is physically
correct, we choose to formulate the framework of ray-tracing based on the principle of
energy conservation. This means that we ultimately presentthe theory as a relativistic
Hamiltonian. Our strategy is to follow Goldstein [21] and Jackson [22] by starting
with a Lagrangian for N relativistic particles coupled to the electromagnetic �eld. The
relativistic Hamiltonian is obtained by canonical transformation.

2.2. Relativistic Lagrangian

The dynamics of a system in the language of Lagrangian-mechanics is based on the
action principle,

S =
Z

L (q; _q) dt (8)

Where L = K � V is the Lagrangian with q the canonical coordinate. The equations of
motion are obtained by functional minimization of the action (� S = 0). Our goal is to
�nd the Lagrangian for N relativistic particles coupled to the electromagnetic �eld. We
start with the textbook equation for the relativistic kinet ic energy of a single particle,

K = � mc2

r

1 �
_q2

c2 + mc2 =
1
2

m _q2 +
3
8

m
_q4

c2 + O
�

_q6�
(9)

The mc2-term in the kinetic energy can be left out because the equations of motion are
invariant to constants in the Lagrangian. We obtain the full non-interacting Lagrangian
by including the potential function from the force law (7) an d generalizing to a system
of N particles,

L = �
NX

i =1

mi c2

r

1 �
_q2

i

c2 �
NX

i =1

� i (�( q i ) � _q i � A (q i )) (10)
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Where the summation runs overN particles. Conclusively, the trajectories of N rela-
tivistic charged particles coupled to a time-independent electromagnetic �eld follow from
functional variation,

�
Z  

NX

i =1

mi c2

r

1 �
_q2

i

c2 +
NX

i =1

� i (�( q i ) � _q i � A (q i ))

!

dt = 0 (11)

This results as expected into the force-law (7) applied toall particles,

d
dt

m _q iq
1 � _q2

i
c2

= � � r (�( q i ) � _q i � A (q i )) (12)

This concludes the dynamics of relativistic ray-tracing in the Lagrangian formalism.

2.3. Relativistic Hamiltonian

We use the Lagrangian of equation (10) for constructing the relativistic Hamiltonian.
At �rst we need to introduce the canonical momenta, which are obtained from the
Lagrangian as follows,

p i =
@L
@_q i

=
mi _q iq
1 � _q2

i
c2

+ � i A (q i ) (13)

The Hamiltonian is formally obtained by applying the Legendre transformation [21],

H =
NX

i =1

_q i
@L
@_q i

� L (14)

The equation for canonical momentum (13) is inverted and substituted into equation
(14). The net result is the following non-interacting Hamiltonian for N relativistic
particles coupled to a time-independent electromagnetic �eld,

H =
NX

i =1

mi c2

s

1 +
�

p i � � i A (q i )
mi c

� 2

+
NX

i =1

� i �( q i ) (15)

This Hamiltonian only depends on canonical position and canonical momentum instead
of the time-derivative of the canonical position. The corresponding equations of motion
for this Hamiltonian are,

_q i =
@H
@p i

=
1

r

1 +
�

p i � � i A (q i )
m i c

� 2

p i � � i A (q i )
mi

(16)

_p i = �
@H
@q i

= � i _q i � r � A (q i ) � � i r �( q i ) (17)
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This is identi�ed as a system of N coupled �rst order di�erential equations. Note that
the equations of motion are independentper particle. Although this theory includes
magnetostatics, we neglect it because the shift lens does not involve magnetism. The
only reason that it is mentioned here is for future applications. The general Hamiltonian
without magnetostatics reduces to,

H =
NX

i =1

mi c2

s

1 +
p2

i

(mi c)2 +
NX

i =1

� i �( q i ) (18)

This Hamiltonian has the following equations of motions,

_q i =
1

q
1 + p i

(m i c)2

p i

mi
(19)

_p i = � � i r �( q i ) (20)

Note that this electrostatic Hamiltonian (18) is separable in canonical position and
momentum. In other words, it can be written as H = F (p1; : : : ; pN ) + G(q1; : : : ; qN ).
Because the Hamiltonian is seperable, the equation for position (19) depends only on
canonical momentum. Similarly, the equation for momentum (20) dependsonly on
canonical position.

This concludes the dynamics of relativistic ray-tracing in the Hamiltonian formalism.
What remains to be discussed (and exploited) are the symmetries, which are inher-
ently part of Hamiltonian systems. This means that the symmetriesexist, whether the
equations of motion take the simpli�ed form (19, 20) or the more generic form (16, 17).

2.4. Hamiltonian Symmetries

2.4.1. Conservation of Energy

At �rst we observe that the Hamiltonian is an explicit time-i ndependent expression for
the total energy of the system,

dH
dt

=
NX

i =1

@H
@q i

_q i +
NX

i =1

@H
@p i

_p i =
NX

i =1

@H
@q i

@H
@p i

�
NX

i =1

@H
@p i

@H
@q i

= 0 (21)

Where we have used the equations of motion,_q i = @H
@p i

and _p i = � @H
@q i

. The second
obervation is that the equations of motion are invariant wit h respect to the following
transformation,

t ! � t
p i ! � p i

(22)

This invariant transformation is called time-reversal symmetry and is related to conser-
vation of energy in the following way. Suppose that we have a Hamiltonian and that we
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determine the trajectory of a particle in spacetime from some initial time t to t + � t.
This trajectory is a solution to the equations of motion and is illustrated in �gure 1.

forward evolution

Figure 1 { Illustration of a forward evolution where the trajectory starts with a state de-
�ned at time t and advances to the state at timet+� t. The displayed trajectory
is a solution of the equations of motion for a hypothetical Hamiltonian.

We apply the time-reversal transformation rule (22) and determine the trajectory start-
ing at time t + � t reversing to time t for the same Hamiltonian. This idea of reversing
the trajectory is illustrated in �gure 2

  
   

   
    

    backward evolution

Figure 2 { Illustration of a backward evolution where the trajectory start s with the state at
time t+� t and reverses to the state at timet. The path of the trajectory is again
a solution to the equations of motion for the same hypothetical Hamiltonian as
in �gure 1.

The trajectories in �gures 1 and 2 are identical because the equations of motion are
invariant to the given transformation (quoting R.P. Feynma n: ,,same equation, same
solution"). This also holds for trajectories over larger spans of time, because these
trajectories can be segmented into trajectories involvingsmaller time steps � t.

We now argue that this time-reversal symmetry is broken by non-conservative systems.
Suppose that there is a non-conservative force acting alongthe trajectory, which is a
force that is always directed opposite to the direction of motion ( F̂ = � p̂). This means
that the non-conservative force is dissipating energy inboth the forward and backward
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evolution. In other words, the dissipated energy in the forward evolution, can never
be compensated for by the backward evolution. Therefore, trajectories of forward and
backward evolution are not identical for non-conservativesystems.

This time-reversal symmetry is not immediately apparant from the Newtonian view, be-
cause the Newtonian force-law is in general also applicableto non-conservative systems.
The fact that we can express the theory in terms of a (conserved) Hamiltonian implies
that the trajectories are symmetric with respect to time-reversal symmetry.

2.4.2. Conservation of Phase-Space

In this section we would like to illustrate the conservation property of phase-space.
Suppose that we integrate the equations of motion by a�nite amount of time. That is,
we evolve from the statef q; pg to f q0; p0g in phase-space. In general, this transformation
can be written as amap,

q0 = Q(q; p) (23)

p0 = P(q; p) (24)

Where the functions Q and P are in general complicated non-linear functions. This
mapping of states is 'area' preserving for Hamiltonian systems2. It is not our intention
to give a full proof of this symmetry, which is also known as Liouville's theorem3. Instead,
our goal is to give an intuitive �rst order proof for the two di mensional case, which is
illustrated in �gure 3.

The coordinates in a surface integral over phase-space transforms as follows,
ZZ

� � � dqdp =
ZZ

� � � det J dq0dp0 (25)

Where J is the Jacobian matrix. The transformation is area preserving if and only if
det J = 1. In order to show this, consider an in�nitessimal area dA = d qdp in phase-
space. We want to determine the area dA0 = d q0dp0after an in�nitessimal advancement.
The linearized transformation of this element is obtained from a �rst order Taylor ex-
pansion of the phase-space variables and time,

dq0 = d q +
@2H(q; p)

@p@q
dt dq +

@2H(q; p)
@p@p

dt dp (26)

dp0 = d p �
@2H(q; p)

@q@q
dt dq �

@2H(q; p)
@q@p

dt dp (27)

2 The area is conserved in two-dimensional phase-space. In multi-dimensional phase-space it is the
hyper-volume that is preserved. We generically de�ne the el ement dq1 dp1 � � � dqN dpN in phase-
space by 'area' with single quotation marks.

3 The interested reader is referred to Landau [23] for example.
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time evolution

Figure 3 { This �gure illustrates the conservation of phase-space in two dimensions. Phase-
space reduces in two dimensions to a plot where the axes are relatingto canonical
momentum and canonical position. Phase-space has the structure of a symplec-
tic manifold, which means that the mappings from one state to another are
'area' preserving. The shape and orientation of the element in this �gure may
change, but the area remains invariant for Hamiltonian dynamics.

Where we have used the equations of motion. This in�nitessimal transformation can be
written in condensed notation as follows,

�
dq0

dp0

�
= J �

�
dq
dp

�
(28)

Where J is the Jacobian matrix relating the transformation from dA to dA0,

J =

"
1 + @2H (q;p)

@p@q dt @2H (q;p)
@p@p dt

� @2H (q;p)
@q@q dt 1 � @2H (q;p)

@q@p dt

#

(29)

The determinant of the Jacobian matrix evaluates to,

det J = 1 + O
�
�t 2�

(30)

This illustrates that the linearized transformation is area preserving. In mathematical
terms, phase-space has the structure of a symplectic manifold and the interested reader
is referred to Hofer et al. [25] for more details on symplectic topology with respect to
Hamiltonian dynamics.
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2.5. Geometrical Integrators

All that remains to be discussed is a numerical strategy for solving the equations of
motion (19, 20). If we consider the exact symmetries of the equations (time-reversal
symmetry and conservation of phase-space), then it is desirable that a numerical approx-
imation respects it. Such integrators exist4, see for example the integrators of Forest
[26], Yoshida [27], Omelyan [28] and Blanes [20].

Out of all possible integrators, we decided to implement thefourth order symplectic
integrator by Blanes et al. because that integrator outperforms with respect to e�ective
error [20]. There is also a sixth order version in that article, however the number of
force evaluations grows rapidly and we consider the sixth order integrator not worth the
extra complexity. We show that this explicit integrator res pects the exact symmetries
of the Hamiltonian as discussed before. We give, for the convenience of the reader, the
integrator by Blanes et al. in table 2.

First of all, note that the coe�cients of the integrator in ta ble 2 are symmetric. The
steps from top to bottom are identical to the reverse direction. This implies that the
integrator respects time-reversal symmetry. What about conservation of phase-space?
To illustrate this conservation principle we consider a small 'area' in phase-space. A
small 'area' at iteration i is given by the 'square' (Q i ; P i ) ! (Q i + � Q i ; P i + � P i ). An
iteration involving a change in canonical position (Q1; : : : ; Q7) transforms this 'area' as
follows,

Q i +1 = Q i + � i
@H
@p

�
�
�
�
P i

�t (31)

Q i +1 + � Q i +1 = Q i + � Q i + � i
@H
@p

�
�
�
�
P i + � P i

�t (32)

Subtracting and taking the limit of � Q and � P to zero gives,

�
� Q i +1

� P i +1

�
= J Q i �

�
� Q i

� P i

�
=

"
1 � i

@2H
@p@p �t

0 1

#

�
�
� Q i

� P i

�
(33)

This explicitly shows the Jacobian matrix JQ i relating the transformation from time t to
t + � i �t , where � i is the coe�cient in the integrator for that particular step. Repeating
this analysis for an iteration involving a change in canonical momentum (P1; : : : ; P6)
gives,

�
� Q i +1

� P i +1

�
= J P i �

�
� Q i

� P i

�
=

"
1 0

� i
@2H
@q@q �t 1

#

�
�
� Q i

� P i

�
(34)

Note that the determinant of the Jacobian due to an update involving a change in
canonical position (33) as well as canonical momentum (34) is 1 for all the individual

4 For a general introduction to numerical symplectic methods , see Donnelly [18].
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(Q0; P0) = ( q(t); p(t))

Q1 = Q0 + 7 :92036964311957� 10� 2 @H
@p

�
�
�
P 0

�t

�! P1 = P0 + 2 :09515106613362� 10� 1 @H
@q

�
�
�
Q 1

�t

Q2 = Q1 + 3 :53172906049774� 10� 1 @H
@p

�
�
�
P 1

�t

�! P2 = P1 � 1:43851773179818� 10� 1 @H
@q

�
�
�
Q 2

�t

Q3 = Q2 � 4:20650803577195� 10� 2 @H
@p

�
�
�
P 2

�t

�! P3 = P2 + 4 :34336666566456� 10� 1 @H
@q

�
�
�
Q 3

�t

Q4 = Q3 + 2 :19376955753499� 10� 1 @H
@p

�
�
�
P 3

�t

�! P4 = P3 + 4 :34336666566456� 10� 1 @H
@q

�
�
�
Q 4

�t

Q5 = Q4 � 4:20650803577195� 10� 2 @H
@p

�
�
�
P 4

�t

�! P5 = P4 � 1:43851773179818� 10� 1 @H
@q

�
�
�
Q 5

�t

Q6 = Q5 + 3 :53172906049774� 10� 1 @H
@p

�
�
�
P 5

�t

�! P6 = P5 + 2 :09515106613362� 10� 1 @H
@q

�
�
�
Q 6

�t

Q7 = Q6 + 7 :92036964311957� 10� 2 @H
@p

�
�
�
P 6

�t

(q(t + �t ); p(t + �t )) = ( Q7; P6)

Table 2 { The fourth order symplectic integrator by Blanes et al. [20] with coe�cients up
to 15 signi�cant digits. This integrator iterates by successive steps from some
initial state in phase-space at time t to time t + �t . Each step involves either
a change in canonical position or canonical momentum. The arrows identify
the steps involving a force calculation. There are in total six force evaluations
required to update a state in phase-space using this integrator. Remarkably, but
typical for higher order symplectic methods, some of the steps gobackwards in
time.

iterations. The transformation for a complete update involving all iterations is written
as the product of the individual transformations,

�
� Q i

� P i

�
= J Q 7 � JP 6 � � � JP 1 � JQ 1 �

�
� Q i � 1

� P i � 1

�
(35)

The determinant of the complete update evaluates to a product of determinants,
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det (JQ 7 � JP 6 � � � JP 1 � JQ 1 ) = det J Q 7 det JP 6 � � � det JP 1 det JQ 1 = 1 (36)

Where we have used the multiplicative mapping property of the determinant. We con-
clude that this integrator also respects conservation of phase-space.

The reader might have noticed that conservation of phase-space doesnot depend on
the speci�c coe�cients in tabel 2. This means that we could have picked any random
set of symmetric coe�cients without destroying the symmetr ies. Although that is true,
we emphasize that the coe�cients by Blanes et al. are specialbecause they give a
fourth order accurate integration with a particular low e�ective error . The interested
reader is referred to the original article by Blanes et al. [20] for more information on
how these coe�cients are obtained. Actually, the trajector ies of a numerical symplectic
integrator are equal to the exact dynamics of ashadowHamiltonian [18]. For example,
the dynamics obtained by a fourth order symplectic integrator are exact with respect to
a Hamiltonian of the following form,

eH = H + ( � � �)�t 4 + O
�
�t 5�

(37)

Where eH is the shadow Hamiltonian, H the actual Hamiltonian and the term in paren-
thesis is generically a function of phase-space variables.

The advantage of symplectic methods is that they o�er global stability. The area is
bounded by adjacent trajectories, and thus the coordinates(and hence the energy)
cannot increase (or decrease) without bound. Even in betternon-symplectic approx-
imations, such as the classical Runge-Kutta integrator, the energy deviates signi�cantly
from the initial value at su�ciently long times.
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3. Calculation of Electrostatic Fields

The equations of motion (19, 20) can only be calculated if thescalar potential function
� is known. The subject of this chapter is to introduce the rea der to calculating (ap-
proximations to) electrostatic �elds using the boundary element method. Electrostatics
�elds are derived from the potential function, which in the abscence of space-charge is a
solution to the Laplace-equation,

r 2� = 0 (38)

The solution to this equation is unique for a given Dirichlet boundary condition. There
are three ways to numerically approximate the potential function, which we brie
y dis-
cuss.

� Finite discretization methods are based on approximating the Laplace opera-
tor ( r 2) on a grid using discrete derivatives. The on-grid potentials are typically
found by relaxation methods, such as Gauss-Seidel iterations. This type of �eld
calculation using spherical coordinates was used in a premature development ver-
sion of our ray-tracing simulator, see for example the article of Cook et al. [11].

� Finite element methods discretize the solution domain into a �nite number
of geometrical elements, typically triangles (in 2D) or tetrahedrons (in 3D). Each
element is associated with an approximating function, for example an n-th or-
der polynomial. The coe�cients are obtained by minimizing t he potential energy
functional.

� Boundary element methods use the integral form of the Laplace equation,
which is an exact solution to the di�erential form. The idea is to �t boundary values
into the integral equation, rather than potentials or coe�c ients throughout space.
Once this is done, the integral equation is used again to numerically calculate the
potential (or electric �eld) anywhere in the solution domai n. This type of �eld
calculation is used in the current development version of the ray-tracing simulator,
see for example the article of Verduin et al. [12].

We have implemented the boundary element because of the following reasons (already
mentioned in the introduction), (1) superior convergence in three dimensional electro-
static simulations, (2) direct evaluation of the electric � eld (instead of numerically ap-
proximating the derivative of the potential), (3) the �eld s olution is continuous through-
out space, (4) allows e�cient concurrent implementation for vector processors, and (5)
potential to address embedded systems, i.e. systems with components at di�erent scales.

This section is organized as follows:

We start by introducing the exact boundary integral equation for a generic system of
n electrodes. The boundary integral is discretized into triangles and we express the
surface charge density function per triangle as a linear interpolation in terms of boundary
values. We present the functions for evaluating the boundary and discuss a strategy for
evaluating the integrals numerically. The boundary functions are used to construct
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Green's matrix which relates the boundary values to the boundary potentials. This
leads to Green's equation, which is solved in order to obtainthe boundary values. We
give, after the Green's equation, an elementary example to demonstrate the boundary
element method. After the example we focus on the numerical evaluation of the electric
�eld by transforming the boundary integral into an e�ective p oint charge representation.
Finally, we introduce boundary error analysis in order to estimate the quality of a given
discretized boundary.

3.1. Boundary Integral Equation

Suppose that we haveN electrodes in space, where each electrode has a static charge
distribution. The potential �eld in space due to one electrode is determined by integrat-
ing Coulomb's law, which is illustrated in �gure 4. The exact scalar potential due to an
arbitrary system of electrodes is determined by the superposition principle,

�( R ) =
nX

i =1

ZZZ

Vi

� i (r )
jR � r j

dV (39)

Where n is the number of electrodes and� is the volumic charge density. The indexi
enumerates the individual electrodes in the system.

In electrostatics, however, the charges of interest are on the boundary [22], which is
illustrated in �gure 5. The integral equation can therefore be written as a boundary
integral,

�( R ) =
nX

i =1

� i (R ) =
nX

i =1

ZZ

Si

� i (r )
jR � r j

dA (40)

Where � is the surface charge density and� is the potential due to an individual elec-
trode. Note that Coulomb's law (except for r = 0) is an exact solution to the Laplace
equation,

r 2 1
jR j

= �r
R

jR j3
=

jR j2

jR j5
�

1

jR j3
= 0 (41)

By construction, any surface integral with Coulomb's law is also an exact solution to
the Laplace equation,

r 2
ZZ

S

1
jR j

dA =
ZZ

S
r 2 1

jR j
dA = 0 (42)

The boundary integral given by equation (40) is therefore also an exact solution to the
Laplace equationr 2� = 0.

The problem of the boundary element method is to determine (approximate) the sur-
face charge density function in the boundary integral (40). This surface charge density
function is constrained, because the boundary integral must evaluate the boundary to
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Figure 4 { Schematic diagram for calculating the electrostatic potential �eld in general.
The �gure illustrates a solid body in space relative to the origin O. This body
has some static charge distribution, which is given as a volumic chargedensity.
The potential �eld at R is obtained by integrating the di�erential for the entire
body.

the potentials of the electrodes. In general, obtaining an analytical expression for the
surface charge density function is far too complicated. In order to handle any electrode
con�guration we split the boundary into smaller and more managable geometrical ele-
ments. Without loss of generality, we can express the boundary integral as a limit of
in�nite triangles 5.

� i (R ) = lim
n i !1

n iX

j =1

' i;j (R ) = lim
n i !1

n iX

j =1

ZZ

4 i;j

� i;j (r )
jR � r j

dA (43)

Where n i is the number of triangles and the index j enumerates the triangles for the
electrode of consideration. The potential due to an individual triangle is given by the
function ' . To be precise,' i;j (R ) means the potential at R due to the j -th triangle from

5 The reader might wonder why triangles? The reason is three folded, (1) triangulation of surfaces is
a well-established �eld of research in computational geometry, (2) any surface can be approximated
by triangles and (3) triangular elements are computational ly managable objects.
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Figure 5 { This �gures illustrates that the charges of interest are on the boundary in elec-
trostatics. The charge distribution on the surface is given as a surface charge
density. This means that the potential is obtained by integrating over the sur-
face instead of integrating the entire body.

the i -the electrode. This limit of triangles converges because the integration measure
in equation (40) can be splitted into two triangles. The exact boundary integral in
discrete numerics is approximated by a�nite number of triangles. An explicit example
of triangulation by hand is given in the chapter of the shift lens.

Cook

3.2. Vertex Response Functions

Although the boundary is discretized into triangles, the surface charge density function
� (r ) of each element is still an analytical function. We focus onone element and, for
the sake of simplicity, neglect the electrode enumeration and use the simpli�ed notation
' i;j ! ' . Consider a triangular element of the boundary, which is illustrated in �gure
6. The verticesA , B and C of the triangle are associated with scalar potentials �A , � B

and � C and unknown boundary values� A , � B and � C .

We follow Nielson [29] and de�ne the linear interpolated charge density on the surface
of the triangle in terms of the boundary values,

� (r ) � � A 
 A (r ) + � B 
 B (r ) + � C 
 C (r ) (44)

The functions 
 A , 
 B and 
 C are maps from spatial coordinates to barycentric coordi-
nates. These coordinate mappings have the following property,


 A (A ) = 1 ; 
 B (A ) = 0 ; 
 C (A ) = 0

 A (B ) = 0 ; 
 B (B ) = 1 ; 
 C (B ) = 0

 A (C) = 0 ; 
 B (C) = 0 ; 
 C (C) = 1

(45)
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Figure 6 { De�nition of triangular elements with a linearly interpolated charge d ensity
function. The vertices A , B and C are associated with a prede�ned potential �
and an unknown boundary value� . The charge density function of this triangle
is obtained by linear interpolation of the boundary values. Each side has a
length given by the small roman letter a, b or c.

Such that � (A ) = � A , � (B ) = � B and � (C) = � C . The scalar potential at position R
due to a triangle with linear interpolated charge density is obtained by substituting the
linearized charge density function into the surface integral,

' (R ) � � A

ZZ

4


 A (r )
jR � r j

dA + � B

ZZ

4


 B (r )
jR � r j

dA + � C

ZZ

4


 C (r )
jR � r j

dA (46)

This can be written in condensed notation as follows,

' (R ) = � A gA (R ) + � B gB (R ) + � C gC (R ) (47)

Where the boundary values are seperated from and multipliedby vertex response func-
tions,

gA (R ) =
ZZ

4


 A (r )
jR � r j

dA (48)

gB (R ) =
ZZ

4


 B (r )
jR � r j

dA (49)

gC (R ) =
ZZ

4


 C (r )
jR � r j

dA (50)

These functions are interpreted as the scalar potential response at positionR due to a
unit boundary value at one of the vertices A , B or C and the other boundary values
zero.

The general practice of these response functions is to evaluate the potential at the vertices
of triangles, because that is where we have de�ned the boundary potential. We have
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tried to determine general closed-form expressions for theresponse functions. Although
we think that it is possible to do, we consider it not worth the extra complexity when
compared to naive adaptive numerical integration. The onlyproblem in numerics arises
when we evaluate theself potential at one of the vertices, because the integrand is
divergent for that case. The only satisfying solution6 is to �nd analytical closed-form
expressions. This turns out to be a tedious calculation (theinterested reader is referred
to appendix A). The resulting (coordinate invariant) closed-form expressions for the
potential at vertex A evaluate to,

gA (A ) =
4
a

log
s

s � a
(51)

gB (A ) =
4
a

�
1
2

a2 + b2 � c2

a2 log
s

s � a
�

b� c
a

�
(52)

gC (A ) =
4
a

�
1
2

a2 � b2 + c2

a2 log
s

s � a
+

b� c
a

�
(53)

Where 4 is the area ands the semiperimeter of the triangle. The potential at any of the
other vertices is obtained by relabeling the vertices and edges. To our best knowledge,
these closed-form expressions (51), (52) and (53) are not known and especially not for the
linearly interpolated charge density function. For completeness we mention the response
functions for the uniform distributed triangle,

g(R ) = gA (R ) + gB (R ) + gC (R ) =
ZZ

4

dA
jR � r j

(54)

g(A ) = 2
4
a

log
s

s � a
= 2gA (A ) (55)

This concludes the element analysis, which is used to determine the unknown boundary
values.

3.3. Construction of Green's Matrix

We now present a method to determine the unknown boundary values, such that the
vertices of the entire boundary have the desired potential. First of all, note that the
boundary integral (40) after triangulation reads,

�( R ) =
nX

i =1

n iX

j =1

' i;j (R ) (56)

6 Other solutions involve evaluating at a height h, which regularizes the divergent part of the integral
[2]. This introduces arti�cial boundaries: Instead of one p hysical boundary, we would have two
boundaries. The �rst boundary de�nes the charge density fun ction such that on another boundary
(at height h) the potential is �xed.
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Where the �rst summation runs over all electrodes and the second summation runs
over all triangles of that particular electrode. We drop, without loss of generality, the
electrode enumeration and instead enumerate over the wholecollection of triangles,

�( R ) =
~nX

i =1

' i (R ) (57)

Where the total number of triangles ~n equals
P n

i =1 n i . Remember that for the potential
contribution per triangle (47), the boundary values are multiplied linearly by vertex
response functions. This means that we can seperate out the boundary values from the
response functions forall elements and group shared boundary values together, i.e.,

�( R ) =
MX

i =1

Gi (R )� i =
�
G1(R ) � � � GM (R )

�
�

2

6
4

� 1
...

� M

3

7
5 (58)

Where we have introduced Green's functionGi (R ) into the equation. The purpose of
the Green's function is to evaluate the potential at R due to all elements with a unit
boundary value located at vertex i and all other boundary values are zero. Note that the
summation runs up to M , which de�nes the number of unique vertices7. The pseudocode
for evaluating the Green's function is given in algorithm 1.

Algorithm 1 Pseudocode for calculating Green's function.
1: � i = 1
2: � j = 0 8j 6= i
3:

4: Gi (R ) = 0
5: for all boundary elementsdo
6: Gi (R ) += potential at R due to boundary element.
7: end for

Now we construct a system of equations by evaluating the Green's function (58) at all
unique vertices,

�( R 1) =
P M

i =1 Gi (R 1)� i
...

�( R M ) =
P M

i =1 Gi (R M )� i

(59)

We evaluate at the vertices because that is precisely where we have de�ned the potential.
This system of equations can be written in condensed notation as follows,

2

6
4

G1;1 � � � G1;M
...

. . .
GM; 1 GM;M

3

7
5 �

2

6
4

� 1
...

� M

3

7
5 =

2

6
4

� 1
...

� M

3

7
5 (60)

7 Connected triangles have shared vertices and thus also shared boundary values.

Thomas Verduin 24



Computational Charged Particle Optics

The square matrix is the Green's matrix and relates the boundary values to the vertex
potentials. Here Gi;j is short notation for Gj (vertexi ). Note that this is a system of M
equations with M unknowns. We obtain the unknown boundary values by solving the
matrix equation8,

G � S = P (61)

This equation can be solved if the determinant is unequal to zero and has the following
solution,

S = G � 1 � P (62)

This concludes the abstract construction of Green's matrixand solving for the unknown
boundary values.

3.3.1. Elementary Example

There is nothing that clari�es more than an elementary example to illustrate the bound-
ary element method. We show how to construct Green's matrix for the case of a square
boundary expressed as two connected triangles. Suppose that we discretized a square
boundary into two connected triangles with four unique vertices as illustrated in �gure
7. Every vertex is associated with a prede�ned potential � an d an unknown boundary
value � .

The boundary integral (57) for this particular case evaluates to a sum of two triangles,

�( R ) = ' (1) (R ) + ' (2) (R ) (63)

Where upperscript in parenthesis identi�es the triangle. The next step is to group the
boundary values from the boundary integral,

�( R ) = ' (1) (R ) + ' (2) (R )

= g(1)
1 (R )� 1 + g(1)

2 (R )� 2 + g(1)
3 (R )� 3 + g(2)

2 (R )� 2 + g(2)
3 (R )� 3 + g(2)

4 (R )� 4

= g(1)
1 (R )� 1 +

�
g(1)

2 (R ) + g(2)
2 (R )

�
� 2 +

�
g(1)

3 (R ) + g(2)
3 (R )

�
� 3 + g(2)

4 (R )� 4

This expression evaluates in accordance with equation (58)to,

�( R ) = G1(R )� 1 + G2(R )� 2 + G3(R )� 1 + G4(R )� 4 (64)

Where the Green's functions are expressed as follows,

G1(R ) = g(1)
1 (R ) (65)

G2(R ) = g(1)
2 (R ) + g(2)

2 (R ) (66)

G3(R ) = g(1)
3 (R ) + g(2)

3 (R ) (67)

G4(R ) = g(2)
4 (R ) (68)

8 Matrix equations can be solved numerically using multi-cor e implementations of LAPACK, for exam-
ple, ATLAS ( http://math-atlas.sourceforge.net/ ) by Whaley et al. [30] and the Math Kernel
Library by Intel ( http://software.intel.com/en-us/intel-mkl ).
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triangle 2

triangle 1

Figure 7 { This �gure illustrates a square boundary discretized as two triangles. The cor-
ners of this square are �xed at a particular potential. Note that th e boundary
values � 2 and � 3 are shared by both triangles. This system is used as an ex-
ample to demonstrate the construction of Green's matrix. In that example, the
boundary values � 1, � 2, � 3 and � 4 are determined such that the potential at
the cornersR 1, R 2, R 3 and R 4 evaluate to the corresponding potentials.

This shows that the Green's functions for the shared vertices (66) and (67) are con-
structed by vertex response functions fromboth triangles. We obtain the Green's matrix
equation for this sytem by evaluating (64) at every unique vertex,

2

6
6
4

G1(R 1) G2(R 1) G3(R 1) G4(R 1)
G1(R 2) G2(R 2) G3(R 2) G4(R 2)
G1(R 3) G2(R 3) G3(R 3) G4(R 3)
G1(R 4) G2(R 4) G3(R 4) G4(R 4)

3

7
7
5 �

2

6
6
4

� 1

� 2

� 3

� 4

3

7
7
5 =

2

6
6
4

� 1

� 2

� 3

� 4

3

7
7
5 (69)

This equation can be solved for the unknown boundary values� 1, � 2, � 3 and � 4.
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3.4. Point Charge Representation

What we have not discussed so far ishow to actually numerically calculate the electric
�eld from the vertex response functions. First of all, note that the electric �eld is
determined from the vertex response functions by applying the gradient operator,

E(R ) = � � A r gA (R ) � � B r gB (R ) � � C r gC (R ) (70)

Where the vectorial response functions evaluate to,

r gA (R ) = �
ZZ

4

 A (r )

R � r

jR � r j3
dA (71)

r gB (R ) = �
ZZ

4

 B (r )

R � r

jR � r j3
dA (72)

r gC (R ) = �
ZZ

4

 C (r )

R � r

jR � r j3
dA (73)

At �rst glance, we are tempted to integrate (at least) one dimension out of the response
functions. This implies that the boundary response functions change from a de�nite
double integral into a di�erence of single de�nite integrals,

ZZ

S
f dA !

Z ���

���
F dl �

Z ���

���
F dl (74)

There is a catch however. Suppose that we want to evaluate theresponse functions
for a point far away from the triangle. In that case, the two contributions from the
single integrals are close to equal. Subtracting two numbers close to equal with �nite
precision results in a loss of signi�cant digits [31]. We do not prefer this approach
because this is the most common application for evaluating the vertex response functions.
Instead, we suggest to use direct two dimensional quadrature to approximate the double
integrals9. This means that, by using Gaussian-qudrature10, the electric �eld per triangle
is approximated as,

� r ' (R ) =
ZZ

4
� (r )

R � r

jR � r j3
dA �

nX

i =1

mX

j =1

wi;j � (r i;j )
R � r i;j

jR � r i;j j3
(75)

Where the double integrals are replaced by double summation, the discrete vectorsr i;j

are the abscissae of integration andwi;j are the corresponding weights [32, 33]. The
order of integration is �xed 11 and is related to the summation countsn and m.

9 By no means do we imply that this is the best methodology. We co nsider this approach convenient
and su�cient for this thesis. Another way to tackle the integ rals is to use the more sophisticated
multipole expansion, which is discussed in the outlook.

10 This is a very commonly applied technique in the �eld of numer ical analysis for approximating
integrals. See for example Babolian et al. [32] and Laurie [33].

11 Why not adapative integration? The reason is that the integr als of di�erent triangles are not treated
equally by adapative integration. For instance, one integr al may require more evaluations than
another and therefore adapative integration is not really w ell-suited for vector processors.
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Observe that the integral in (75) is reduced to nothing but the evaluation of a superpo-
sition of point charges located at the abscissae where each point charge has an e�ective
charge of,

~� i;j = wi;j � (r i;j ) (76)

We emphasize that this approach replacesevery triangle by point charges. For instance,
the 4-point Gauss-Legendre rule applied to both dimensions(summation count n = m)
replaces each triangle by 4� 4 = 16 e�ective point charges. The complete collection
of e�ective point charges can be determined ab initio for the entire boundary. In other
words, the net electric �eld is determined by,

E(R) = �r �( R ) �
~MX

k=1

~� k
R � ~r k

jR � ~r k j3
(77)

Where the summation runs overall e�ective point charges. The total number of point
charges ~M equals the number of triangles� the number of e�ective point charges per
triangle.
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3.5. Boundary Error Analysis

In the last part of the chapter on calculating electric �elds we would like to introduce
the subject of error analysis. To that order, consider the elementary example presented
in �gure 7. The boundary values obtained from equation (69) are such that the scalar
potential is �xed at the vertices. What about the potential away from the vertices
anywhere in the interior? In general, if we de�ne � 1 = � 2 = � 3 = � 4 = � then the
potential in the interior is not equal to �. Therefore, the idea that we pursue is that the
calculated potential in respect to the expected potential on the surface is a direct measure
for the quality of the boundary solution. To accomplish this, we need to evaluate the
vertex response functions for pointsinside a triangle because that is what our boundary
is made of. If we resort on numerics, then we face the problem of divergent integrals.
The other way is to derive an analytical solution, which in general gives expressions too
complicated to manage.

Although it appears that we are stuck, we do have a solution tothis problem: we can
�nd the potential for interior points by construction. This method works as follows.
Suppose that we want to calculate the potential at the incenter of the triangle12. We
insert a point iat the incenter such that the total area of the triangle is splitted into
three triangles with equal area (�gure 8).

Figure 8 { Illustration of splitting a triangle into three connected triangles. T his triangle
is splitted by inserting a point at the incenter. Note that this point is s hared as
a vertex by all three triangles. Although we choose the incenter, the presented
method works for any point in the interior of the triangle. The incent er is
convenient because it equally divides the area.

12 This method works for any point in the interior of the triangle. The incenter is convenient because
it equally divides the area.
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Observe that the incenter of the original triangle is located at the vertices of the smaller
triangles. The problem is solved because we do know how to calculate analytically the
potential at the vertex of a triangle, see equations (51), (52) and (53). The potential at
the incenter is obtained by the principle of superposition (�gure 9).

Figure 9 { This �gure illustrates that the potential for an internal point can be obtained
by construction. The triangle of interest is splitted into three new t riangles,
where each triangle shares the point of interest as a vertex. The potential at
this vertex is evaluated analytically per triangle. The net potential is obtained
by the superposition principle, i.e. adding the potential contribution from all
three triangles at this vertex.

All that we need is a pseudo boundary value for the incenter, which can be obtained
from equation (44). For the special case of the incenter, thepseudo boundary value
evaluates to,

� � =
1
2

� A a + � B b+ � C c
s

(78)

In practice, the boundary error is measured by obtaining thecalculated potential (after
solving) for all triangles and determine the deviation from the expected potential. The
triangulation of the boundary needs to be reconsidered if the boundary solution deviates
substantially from a prede�ned tolerance13. At the moment we do this by trial and
error14. In the outlook we discuss automated mesh re�nement.

13 In principle, this can be de�ned per triangle such that speci al regions of the boundary are subjected
to stricter tolerances.

14 We know for instance that the largest errors are found in the sharp edges of the boundary. Therefore
we manually apply mesh re�nement to those areas in particula r.
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4. Implementation

In this chapter we focus on the implementation of the boundary element method. At
�st we show that boundary element method in general can be stated in the natural
parallel language of a vector processor, such as graphics cards. Roughly speaking, the
power of the vector processor comes from the fact that there are many threads running
concurrently, essentially maximizing parallism at the cost of light weight arithmetic.
The implemenation is optimized further by considering several memory strategies, such
as (1) caching structures, (2) utilizing memory coalescingand (3) optimized ordering of
data in arrays. We implement the boundary element method using the e�ective point
charge representation and demonstrate the performance by testing against two graphics
cards from NVIDIA and two multi-core scalar processors fromINTEL.

The chapter concludes with the three processing stages of the simulator. The �rst stage
exports a triangulated boundary in terms of faces and vertices. These faces and vertices
are the input of the second stage, which constructs the Green's matrix and solves for the
unknown boundary values. The net result of that module is a boundary solution and is
used in the third stage which calculates the trajectories ofprede�ned particles using the
vector processor as a device for evaluating the electric-�eld.

4.1. Boundary Element Kernel

4.1.1. Vector Processing

At �rst we investigate the arithmetic structure of the bound ary element method. Sup-
pose that we haveN particles distributed in space. This system ofN particles can only
be updated if we calcualte the electric �eld at every particle. We do this by evaluating
equation (20) applied to all particles. The problem of calculating the electric �eld at
every particle can be stated in matrix format as follows,

Field Element 1 Element 2 � � � Element M

E(q1) = �r ' 1(q1) + �r ' 2(q1) + � � � + �r ' M (q1)

E(q2) = �r ' 1(q2) + �r ' 2(q2) + � � � + �r ' M (q2)

...

E(qN ) = �r ' 1(qN ) + �r ' 2(qN ) + � � � + �r ' M (qN )

(79)

Where ' is the potential due to an individual element of the boundary. There are two
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signi�cant observations. First of all, note that every row can be calculated independently.
This means that parallelism is applicable with respect to individual particles. The second
observation is that every column represents a single boundary element, which is evaluated
for multiple particles. In terms of arithmetic, the evaluat ion of a boundary element is a
static algorithm and involves in our case15 a constant number of operations (see algorithm
2). This type of parallelism is formally classi�ed as single instruction, multiple data.

Algorithm 2 Pseudocode for parallel calculation of electric �elds on a vector processor.

1: for all particles do
2: E(particle)  0
3: end for
4:

5: for all boundary elementsdo
6: for all particles do
7: E(particle) += �eld at particle due to boundary element
8: end for
9: end for

Vector processors (such as graphics cards) are dedicated tosuch parallelism, see for
example Garland et al. [19] and Luebke et al. [34]. Therefore, the problem of evaluating
the electric �eld at N particles due to M boundary elements can be stated in the natural
language of a vector processor.

4.1.2. Caching of Boundary Elements

While looking at algorithm 2, we can see that the inner loop involves one boundary
element at a time and is reused by all particles. Boundary elements have a representation
in memory (in terms of parameters) and the most trivial optim ization is to avoid excessive
memory requests as much as possible. This can be achieved by requesting the parameters
of the boundary element only once and store the parameters temporarily inside a cache,
where it can be reused at low cost.

In practice we divide the matrix representation (79) into sub-matrices de�ned on a grid
where each sub-matrix has a seperate cache. This principle is illustrated in �gure 10.
The reason for this particular approach in terms of sub-matrices is that vector processors
usually have limited amount of available cache. On top of that, the caching structure
in �gure 10 matches with the design of graphics cards, where sub-matrices are called
'blocks' on a 'grid' (see Garland et al. [19]). The number of blocks in �gure 10 is
determined as follows,

nx = 1 + b
total number of boundary elements

number of boundary elements per block
c (80)

15 This is why we avoid adaptive integration of boundary integr als.
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Figure 10 { Illustration of parallel design for vector processors with elementcaching. This
�gure divides the matrix of (79) into sub-matrices de�ned on a grid, where
each sub-matrix has a seperate cache. The parallism is in the direction of the
particles and the blocks are addressed from left to right. The calculation 
ow
is explained in the text.

ny = 1 + b
total number of particles

number of particles per block
c (81)

Where the actual size of a block is limited by the hardware resources of the vector
processor. The size of the local cache for each block is computed as follows,

cache = bytes per boundary element� number of boundary elements per block (82)

Let us explain the calculation 
ow of �gure 10 in words. Consider the top left block with
n threads. At �rst the cache is loaded with the �rst m elements, after which the the
block calculatesn particles concurrently. All threads in that block are e�ecti vely reusing
the m elements in the cache. The �rst block completes after the contributions from all
m elements of that block have been added to then particles. Then, the program jumps
to the next block on the right and repeats the procedure. Thismeans that the cache
of the new block is loaded with the next elements in line and the �eld contributions are
calculated until all elements of that block are issued. Thisprocess is repeated until the
�nal block of that row is reached, after which the program jumps to the �rst column
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again of a new row. The vector processor initiates the calculation not with one block
at a time, but with many blocks distributed over the �rst colu mn concurrently. In the
extreme case, the entire �rst column of �gure 10 is launched for parallel execution.

The original algorithm 2 is modi�ed to include caching of boundary elements and is
given in algorithm 3.

Algorithm 3 Pseudocode for parallel calculation of electric �elds using element caching
on a vector processor.

1: for all particles do
2: E(particle)  0
3: end for
4:

5: for all vertical blocks do
6: for all horizontal blocks do
7: for all boundary elements in blockdo
8: copy boundary element to local cache
9: end for

10: for all boundary elements in local cachedo
11: for all particles in block do
12: E(particle) += �eld at particle due to boundary element
13: end for
14: end for
15: end for
16: end for

The estimated performance increase with respect to memory requests is determined by,

number of particles per block� number of elements per block
number of elements per block

(83)

Note that this is only an estimation, because we have not taken into account (if available)
the instrinsic memory caching structures (L1, L2, . . . ) of the hardware.

4.1.3. Coalesced Memory Access

We have minimized the amount of memory requests, but we have not yet looked into
the actual memory calls themselves. How is memory transferred and can we optimize
that further? The answer to the latter is yes, because the memory bus usually fetches
chunks of data (multiple bits), which can be optimized and is called coalesced memory
access (see Davidson et al. [35]). We explain this idea by theuse of a simpli�ed model
of the memory bus, which is given in �gure 11.

Suppose that we request four non-aligned elements (labelled as 1, 2, 3 and 4) from
memory, as illustrated in �gure 12. The memory bus needs to beaddressed three times
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memory random access memory

ed ed

Figure 11 { Illustration of a simple memory model with random access memory and a
memory bus. Random access memory is aligned and every request involves
the transfer of elements in random access memory via the memory bus.

in order to ful�ll that requrest, because the memory bus only fetches chunks of aligned
data and the data for that particular request is not sequentially ordered and aligned.

memory random access memory

ed ed

Figure 12 { Illustration of uncoalesced memory access. The elements 1, 2, 3 and 4 in
random access memory are requested. In this example, the memory bus needs
to be addressed three times, because the elements are not sequentially ordered
and aligned.

The resolution to the uncoalesced access pattern of �gure 12is to properly align the data,
such that the memory bus is only addressed once when the four elements are requested.
This is called coalesced memory access and is illustrated in�gure 13.
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memory random access memory

ed ed

Figure 13 { Illustration of coalesced memory access. The elements 1, 2, 3 and4 in random
access memory are requested. The memory bus, in comparison to �gure 12,
needs to be addressed only once, because the elements are sequential and
properly aligned.

Suppose that our boundary is de�ned as an e�ective point charge representation given
by equation (77). This means that the boundary is represented in memory as point
charges with parameters de�ning the location x i , yi , zi and the e�ective charge � i per
particle. The ordering of the parameters allows two options,

� Array of structure , where the parameters per boundary element are grouped
together and pushed sequentially to a queue. This is illustrated in �gure 14.

� Structure of arrays , where the parameters are distributed over four distinct
arrays and each array relates to one parameter. This is illustrated in �gure 15.

As a �nal remark on memory optimizations, we emphasize that the uncoalesced access
of memory via the memory bus is not expected to be as extreme asillustrated in �gures
12 and 14. The reason is that processors usually have multiple intrinsic caches denoted
by L1, L2, and so on. Where L1 is the fastest and closest to the working threads, but
usually the smallest of all. These caches, however, cannot be controlled by the user
directly. This is viewed in contrast to the programmable caches of the vector processor
illustrated in �gure 10
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memory random access memory

ed ed

Figure 14 { Illustration of memory ordered as an array of structure. This �g ure domon-
strates the request of thex positions of the boundary charges, which can be
a typical operation in the arithmetic 
ow of the vector processor. Note that
this type of memory ordering does not allow coalesced memory access.
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memory random access memory

ed ed

Figure 15 { Illustration of memory ordered as a structure of array. This �gu re domon-
strates the request of thex positions of the boundary charges, which can be
a typical operation in the arithmetic 
ow of the vector processor. Note that
this type of memory ordering enables coalesced access of memory.
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4.1.4. Kernel Performance

We demonstrate the performance of our boundary element kernel with respect to scalar
processors, because that is what the conventional simulation tools in electron optics are
designed for. We have at our disposal the following hardware,

� GeForce GTX-480 by NVIDIA with 448 CUDA cores running at 1215 MHz
(processor clock). This graphics card was introduced in the�rst quarter of 2010.

� Quadro FX-4800 by NVIDIA with 192 CUDA cores running at 1204 MHz (pro-
cessor clock). This high-end graphics card was introduced in the fourth quarter of
2008.

� INTEL Xeon-5650 with 6 physical cores (12 threads using hyperthreading) run-
ning at 2.66 GHz with 12 MB of cache. This processor was introduced in the �rst
quarter of 2010.

� INTEL i7-860 with 4 physical cores (8 threads using hyperthreading) running at
2.8 GHz with 8 MB of cache. This processor was introduced in the third quarter
of 2009.

The boundary element kernel evalutes the e�ective point charges given by equation (77).
The actual distribution of point charges does not a�ect computation time, only the
number of boundary elements and the choice of hardware are relevant. We are therefore
free to use a randomized set of boundary point charges. In order to maximize parallelism,
we choose the number of points in space (where the 'boundary'is evaluated) to be much
larger than the number of boundary elements. This choice saturates the hardware with
respect to parallelism and the performance is measured as the number of boundary point
charges per second.

At �rst we run performance simulations on the scalar processors by INTEL 16. The results
are given in �gure 16, where we have plotted the number of boundary charges per second
versus the number of threads. The next run of performance simulations are targeting
the graphics cards from NVIDIA. The results are given in �gur e 17, where we have
plotted the number of boundary charges per second versus theblock size. The peak
performances from �gures 16 and 17 are summarized per devicein �gure 18.

16 We have used OpenMP (http://openmp.org ) for implementing scalar parallelism.
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Figure 16 { Maximum performance of the boundary element kernel measuredfor scalar
processors from INTEL. This �gure gives the number of evaluatedboundary
charges per second as a function of the number of threads. The boundary
charges are randomly distributed. This test maximizes parallism, because the
number of particles is much larger than the number of boundary charges. The
two curves correspond to the INTEL X5650 and INTEL i7-860 processor. Note
that the curves initially grow linear and �nally 
atten out. This happen s when
the number of threads becomes larger than the physical core count. The errors
bars are obtained from repeating this test many times.
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Figure 17 { Maximum performance of the boundary element kernel measuredfor graph-
ics cards from NVIDIA. This �gure gives the number of evaluated boundary
charges per second as a function of the number of elements per block (see �g-
ure 10). The boundary charges are randomly distributed. This test maximizes
parallism, because the number of particles is much larger than the number
of boundary charges. The performance is measured for two graphics cards,
GeForce GTX-480 and Quadro FX-4800. The four curves correspond to single

oating point precision (GeForce-GTX-480-
t and Quadro-FX-48 00-
t) and
double 
oating point precision (GeForce-GTX-480-dbl and Quadro-FX-4800-
dbl). The errors bars are obtained from repeating this many times.
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Figure 18 { Peak performance of the boundary element kernel measured for all test devices.
This �gure gives the peak performance as the number of evaluatedboundary
charges per second. The peak performance of the INTEL processor is the
maximum found in �gure 16. The peak performance of the graphics card from
NVIDIA is the maximum found in �gure 17.
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4.2. Processing Stages

Suppose that we have an electron optical problem and that we want to simulate this
problem using the program of this thesis. What precisely needs to be done? And what
does the typical work
ow look like? We now focus on answeringthose questions. The
program of this thesis divides the simulation into three sequentially connected stages,
where the output of one stage is (part of) the input of the next stage,

1. Triangulation of the boundary. This is a prelimary stage and can be done
either by hand or an external program capable of discretizing a boundary into
triangular elements. The only requirement is that the output of this stage produces
two �les, (1) a vertex �le and (2) a corresponding faces �le. T he structure of those
�les is discussed in detail later on.

2. Solving for boundary values. This stage constructs the Green's matrix (see
section 3.3) for the boundary obtained from the �rst stage. The unknown boundary
values are solved for and the complete boundary, which now includes the boundary
values, is exported to the next stage.

3. Ray-tracing of particles. The boundary is transformed into an e�ective point
charge representation (see section 3.4 and in particular equation (77)). Particles
with a prede�ned initial state are traced through the electr ic �eld using the ge-
ometrical integrator described in section 2.5. The states (canonical position and
canonical momentum) are exported per iteration and for every particle to a �le.

There is, in reality, a fourth stage which is not mentioned here. In the fourth stage,
the trajectories are interpreted and is usually combined with post-analysis in order to
extract the results of interest. We now discuss for the remainder of this chapter the
processing stages in more detail.

4.2.1. Stage 1: Triangulation of the Boundary

This is the preliminary stage and involves the design of the electrostatic boundary. The
actual steps of the �rst stage are schematically given in �gure 19.

� Design of electrostatic boundary. The electron optical problem of interest
involves an electrostatic boundary, which must be designedat �rst. The design
can be made by hand or by using a program as long as the boundaryis given
in a format which can be discretized into triangles. An example of electrostatic
boundary design is given in the chapter of the shift lens.

� Triangulation. There are two ways to do this. The boundary can be triangu-
lated by hand using a home-built program or script. The other option is to use an
external programs capable of discretizing the boundary into triangles17. An exam-

17 For example, MATLAB (which has built-in Delaunay functions ) or the program "Triangle" from J.R.
Shewchuk (http://www.cs.cmu.edu/ ~quake/triangle.html ).
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design of electrostatic boundary

boundary triangulation

export
es
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faces

Figure 19 { Schematic diagram illustrating the steps of the �rst stage. The �r st step is to
design the electrostatic boundary for the problem at hand. The second step
discretizes the boundary into triangles, which can be done by hand or by an
external program. The triangles of the boundary are exported to two seperate
�les, of which the "vertices �le" describes the vertices of all triang les and the
"faces �le" describes the faces by connecting the vertices.

ple of triangulation is given in the chapter of the shift lens, where we completely
discretize the system by hand.

� Exporting the boundary. We explain the export format of this stage by using
the elementary example given in �gure 7. The vertices of thatexample are exported
in the following comma seperated format,

vertex 1 ! (R 1)x ; (R 1)y ; (R 1)z; � 1

vertex 2 ! (R 2)x ; (R 2)y ; (R 2)z; � 2

vertex 3 ! (R 3)x ; (R 3)y ; (R 3)z; � 3

vertex 4 ! (R 4)x ; (R 4)y ; (R 4)z; � 4

The corresponding faces of that boundary are exported as follows,

face 1 ! vertex 1 ; vertex 2 ; vertex 3
face 2 ! vertex 2 ; vertex 3 ; vertex 4

The primary reason for this particular format is that the shared vertices, such as
the ones in the elementary example, can easily be encoded.
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Note that it does not matter how the triangulated boundary is obtained. The only
requirement is that the output of this stage gives the triangulated boundary with the
vertices and faces exported to seperate �les, because that is the input for the next stage.

4.2.2. Stage 2: Solving for Boundary Values

The purpose of the second stage is to solve for the boundary values, such that the
boundary has the desired potential upon evaluation. The steps of this stage are given
in �gure 20. The input is directly connected to the output of t he previous stage given
in �gure 19.

construction of Green's matrix

e for
boun alues

export
boundary solution

import
es

import
faces

Figure 20 { Schematic diagram illustrating the steps of the second stage. Theinput of this
stage is the boundary given in the format of vertices and faces. The second
step is to construct Green's matrix for that particular boundary. The matrix
equation is solved for the boundary values and the complete boundary, which
now includes the boundary values, is exported in the �nal step as a single �le.
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� Importing the boundary. The triangulated boundary of the �rst stage is im-
ported, which at the moment does not include boundary values. We verify that
no duplicate vertices exist, because otherwise the Green'smatrix becomes singu-
lar. We also verify that all referenced vertices in the faces�le indeed exist in the
vertices �le.

� Construction of Green's matrix. The matrix equation is constructed by follow-
ing the details of section 3.3, where the vertex response functions are calculated
using adapative Gaussian quadrature. We have implemented the nested Gauss-
Kronrod quadrature rules from which also an error estimate can be derived [33].

� Solving for boundary values. Now that Green's matrix is constructed, we
can start solving the matrix equation (60) for the unknown boundary values. We
use the parallel DGESV (Double GEneral SolVer) function from the INTEL Math
Kernel Library 18 to do so.

� Exporting the boundary solution. The boundary of the elementary example
is now exported in the following format,

triangle 1 ! (R 1)x ; (R 1)y ; (R 1)z; � 1; � 1

(R 2)x ; (R 2)y ; (R 2)z; � 2; � 2

(R 3)x ; (R 3)y ; (R 3)z; � 3; � 3

triangle 2 ! (R 2)x ; (R 2)y ; (R 2)z; � 2; � 2

(R 3)x ; (R 3)y ; (R 3)z; � 3; � 3

(R 4)x ; (R 4)y ; (R 4)z; � 4; � 4

Where the components of the triangle are explicitly encodedtogether with the
potentials and boundary values per vertex. This single �le completely describes
the boundary and is called the "boundary solution �le". Note that in this format
the shared vertices are duplicated, because there is no needanymore for keeping
track of shared vertices.

The boundary solution obtained by this stage is the input of the next stage, where the
particles with a prede�ned state are traced through the electric �eld of the boundary.

4.2.3. Stage 3: Ray-tracing of Particles

The purpose of this stage is to solve the equations of motion for N particles, where
the particles are traversing through the electric �eld of the boundary from the previous
stage. This stage is divided into two parts (see �gure 21 and 22), where the �rst part
is devoted to initialization. The boundary is transformed into an e�ective point charge
representation and copied to the vector processor. In the second part (trace-loop), the
trajectories are determined by using the vector processor for calculating the electric �eld

18 http://software.intel.com/en-us/intel-mkl
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(detail view given in �gure 22). The states of the particles are exported to a �le, which
are then used for post-analysis speci�cally for the problemat hand.

� Import of boundary solution. The boundary solution of the previous stage is
imported without modi�cations.

� Import of particle de�nitions. The initial state of all charged particles involved
in the simulation are described in the particle de�nition �l e. The format used for
describing the states is as follows,

particle 1 ! (q1)x ; (q1)y ; (q1)z
(p1)x ; (p1)y ; (p1)z
m1; � 1

particle 2 ! (q2)x ; (q2)y ; (q2)z
(p2)x ; (p2)y ; (p2)z
m2; � 2

...
...

� Transfrom boundary into point charge representation. The boundary so-
lution is transformed to an e�ective point charge representation as described in
section 3.4. We have implemented the fourth order Gauss-Legendre quadrature
rule [32] for evaluating the electric �eld. This means that every triangle is replaced
by 4 � 4 = 16 e�ective point charges. The parameters of the boundary charges are
ordered in accordance with �gure 15 such that memory access is coalesced.

� Trace-loop. This is the core business of the tracer, which we discuss in detail
seperately from the rest of the steps. The detailed view is given in �gure 22.

We now discuss the trace-loop give by �gure 22. The actions inthe trace-loop are target-
ing the host (the computer that controls the vector processor) and the vector processor.
The positions of the particles are copied to the vector processor at the beginning of the
iteration. The vector processor then calculates the electric �eld for all the particles in
accordance with the implementation given in section 4.1. When the vector processor has
completed calculating the �elds, the results are copied to the host such that the electric
�eld at the particles is available to program running on the host. This concludes the
actions of the vector processor.

In the mean time (parallel to the �eld calculations of the vector processor), the host
can do several tasks. The �rst task is to export the current state of the particles to a
�le. Althoug the Coulomb interactions are not used at the moment, we mention that
they can be calculated by the host, for example by using Barnes-Hut. The host and
vector processor are synchronized after all tasks have beencompleted. What remains to
be done is to update the states of the particles (see section 2.5), After this update, the
next iteration starts and the whole procedure is repeated until a terminating condition
is satis�ed.
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import
boundary
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particle
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transform boundary
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e� e point charge
representation

copy to e
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export
traces

Figure 21 { Schematic diagram illustrating the steps of the third stage. The input of this
stage involves two de�nitions, (1) the boundary solution of the previous stage
and (2) the initial particle de�nitions. The boundary solution is trans formed
into an e�ective point charge representation, which is then copied to the vector
processor. This concludes the initialization. The actual tracing takes place in
the trace-loop of which a detailed view is given in �gure 22.
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Figure 22 { Schematic diagram illustrating the steps of the trace-loop. This diagram is
nested into the diagram of �gure 21. The left side of the diagram represents
the actions for the host (the computer that is controlling the vector processor)
and the right side represents the actions targeting the vector processor. The
operations of the host and vector processor are running in parallel and are
synchronized before the next iteration starts. The Coulomb interactions are
not used at the moment, but are mentioned for future applications (this is
discussed in the outlook). Note that the diagram is repeated for successive
iterations of which only two are illustrated. The details of the iteratio ns are
given in the text.

Thomas Verduin 49



Computational Charged Particle Optics

5. Application: Shift Lens

In this chapter we apply the simulator of this thesis to a speci�c application: The shift
lens. The shift lens constists of a system of �ve electrodes of which the center electrode
is displaced in the lateral direction [3]. The motivation for this lens is mentioned in the
introduction. Our goal is to calculate the higher order aberrations of this lens. This is
a di�cult task, because most of the convential programs mentioned in table 1 barely
produce the second order aberrations, and the programs thatdo, take an unreasonable
amount of time. This chapter also serves as a template for simulating an electron optical
problem using the simulator this thesis.

The ultimate goal is to calculate the higher order aberrations of the shift lens and our
plan of calculation for doing so is given in the �rst section. We propose to calculate the
aberrations using the thin lens model and �t the �nal de
ecti on angles in the plane of
the thin lens to a Taylor expansion involving several orders. The aberrations are related
to the orders in the Taylor expansion and this approach is discussed in detail.

In the next section we focus on the electrostatic design of the boundary of the shift lens.
The boundary is discretized by hand using two dimensional triangulated primitives and
projections. This triangulation is not uniform, but has mor e triangles distributed close
to the sharp edges in order to accomodate the strong electric�eld.

The chapter concludes with the results of the simulation including an error analysis.

5.1. Plan of Calculation

At �rst we examine the design and function of the shift lens. The speci�cations of the
shift lens are given in detail in �gure 23. The function of thi s lens is to de
ect a parallel
incoming electron in a particular direction. This de
ectio n is in the direction of the
displacement of the center electrode (see �gure 24).

The idea is not only to calculate this de
ection, but also the aberrations of this shift
lens. Because in the end, we want to have the smallest focusedspot with the largest
possible current. The problem is that the aberrations causethe size of focused spot to
increase. So the theoretical study of this lens is actually the study of the aberrations
caused by this lens. The interested reader is referred to Hecht [36] for details on di�erent
types of aberrations.

The way we are going to study this lens is by using the model of athin lens (see �gure
25). This thin lens captures the de
ection properties of the shift lens and therefore
also the aberrations. All that we need to do is to trace electrons through the shift lens
and determine the �nal de
ection angle after the lens19. This �nal de
ection angle is
then related to the initial position, such that the de
ectio n of an incoming electron is

19 This must be far enough such that the lens no longer has any signi�cant in
uence on the trajectory.
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Figure 23 { Schematic two dimensional view of the shift lens [3]. This system consists
of �ve electrodes of which the center electrode (e3) is displaced laterally in
the range of 0 to 20 micron. All �ve electrodes must be seen as rotationally
symmetric. This means that each electrode in the diagram is in reality a
solid disc with a hole in the center. The potential of the center electrode is
varied from 2 kV to 8 kV. The neightbor electrodes (e2 and e4) are at the
�xed potential of 5 kV. The outermost electrode (e1 and e5) are at the �xed
potential of 0 V.

related to that particular position in the plane. For each particle we determine the �nal
de
ection angle in the plane as follows,

� (x0; y0) =
px

pz
(84)

� (x0; y0) =
py

pz
(85)

Where � is the de
ection in the x-direction and � the de
ection in the y-direction. The
coordinatesx0 and y0 are the initial coordinates of the electron before enteringthe lens20.
The �nal momenta of the particles are taken with respect to a measurement plane and
thus need to be interpolated. The de
ection functions � and � can be measured by
tracing many electrons with di�erent initial positions. We e xpress these functions in

20 This is the position where the parallel incoming ray hits the plane of the thin lens approximation.
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y ew
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Figure 24 { Illustration of the beam de
ection due to the displacement of the center elec-
trode. In the top image we see that the beam shows no de
ection in the
yz-plane, because the electrode is not shifted in that direction. The bottom
image shows the xz-plane and that is the plane in which the center electrode
is displaced. The beam is de
ected in the xz-plane, because the de
ection is
in the same direction as the displacement of the electrode.

incoming electron

optical ax

Figure 25 { Illustration of the thin lens approximation. The shift lens can be stu died as
a thin lens approximation, where the plane of the thin lens de
ects parallel
incoming electrons according to the actual de
ection function of the shift lens.
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general as a Taylor expansion up to and including ordern,

� (x; y) = � 0;0 +
nX

i =1

iX

j =0

� i � j;j x i � j yj (86)

� (x; y) = � 0;0 +
nX

i =1

iX

j =0

� i � j;j x i � j yj (87)

This expansion is too general because the shift lens has mirror symmetry, which is best
seen in �gure 24. The consequence of the mirror symmetry is that odd powers ofy drop
out of the � (x; y) function and even powers ofy drop out of the � (x; y) function. The
resulting Taylor expansion for the shift lens evaluates to,

� (x; y) = � 0;0 +
nX

i =1

iX

j =0 ;2;4;:::

� i � j;j x i � j yj (88)

� (x; y) =
nX

i =1

iX

j =1 ;3;5;:::

� i � j;j x i � j yj (89)

The coe�cients in this Taylor expansion are related to the di �erent types of aberrations
[37, 36, 24, 13]. The plan of calculation is to trace many electrons through the shift lens
at random and �t the Taylor expansions (88) and (89) against a collection of de
ection
angles in the measurement plane. We repeat the calculation of the coe�cients by varying
the displacement and voltage of the center electrode. The aberrations of the shift lens
can then be related to the amount of displacement and voltageof the center electrode.

5.2. De�nition of Electrodes

In this section we illustrate how to triangulate the design of �gure 23 by hand. From
�gure 23 we see that the shift lens is made out of �ve similar designed electrodes. The
idea is to triangulate only one electrode and use that triangulation as a template for the
others. We split the electrode into two seperate parts, (1) the inner cylinder and (2) the
enclosing discs at the left and right of this cylinder. The inner cylinder is constructed
by triangulating a two dimensional plane (see �gure 26).

The triangulated plane of �gure 26 is projected onto the surface of a cylinder by using
the following transformation,

x ! x0 + R cos�

y ! y0 + R sin �

z ! z0 + z

Where R is the radius of the cylinder,x0, y0 and z0 determines the position of the cylinder
in three dimensional space. The resulting projection onto the cylinder is illustrated in
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Figure 26 { Illustration of a triangulated plane where the size of the triangles vary in the
vertical direction. This plane is used for the construction of an electrode of
the shift lens. The triangulated cylinder is obtained by projecting this plane
onto the surface of a cylinder. In the horizontal direction we havethe angular
dimension (ranging from 0 to 2� ) and the vertical axis represents the axial
direction of the cylinder. Note that the vertices in the vertical dire ction are
not equally distributed. The distance between the vertices decreases as we get
closer to the ends. The vertices in the vertical direction are distributed with
a log scale.

�gure 27. Note that the triangles in �gure 27 decrease in sizeas we approach the ends
of the cylinder. This is a consequence of the vertical vertexdistribution in the plane of
�gure 26, where the vertices are distributed with a log scale. The ends of the cylinder
corresponds to the sharp edges of the electrode and the potential �eld lines close to
that surface must follow this sharp edge. This is where the electric �eld is the strongest
and we therefore decrease the size of the triangles approaching this edge in order to
accurately model this e�ect.

The second component of the electrode is constructed by triangulating the surface of a
disc with a hole in the center, which is shown in �gure 28. The number of angular nodes
at the inner radius of this disc is equal to the number of angular nodes in the cylinder
map of �gure 26. This ensures that the two objects can be merged into one single object
without artefacts. The electrode is constructed by mergingtwo of the discs to the ends
of the cylinder. The net result of that is given in �gure 29.

The shift lens of �gure 23 is constructed by placing �ve copies of the electrode in �gure
(29) together in accordance with the schematic design of �gure 23. The net result is the
triangulated boundary of the shift lens, which is given as a wireframe in �gure 30
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Figure 27 { Illustration of a triangulated cylinder. This object is obtained by tr iangulat-
ing a two dimensional plane and projecting that plane onto the surface of a
cylinder. Note that there are more triangles distributed at the ends of the
cylinder to accomodate the strong �eld.
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Figure 28 { Illustration of a triangulated disc with a hole in the center. This is a co mponent
of the electrode of the shift lens. An electrode of the shift lens is constructed
by merging two of these discs to the ends of the cylinder in �gure 27.Note
that most of the triangles are distributed close to the inner radius.
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Figure 29 { Illustration of a triangulated electrode of the shift lens. This electrode is
obtained by merging two discs (�gure 28) to the ends of the cylinder(�gure 27).
The triangles at the ends of the cylinder are exactly matching with the triangles
at the inner radius of the disc, such that the vertices at the intersection are
shared. The number of triangles close to the ends of the cylinder is larger
because that is where the sharp edges of the electrode are located.
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Figure 30 { Wireframe model of the triangulated boundary of the shift lens. This is the
triangulated boundary representing the schematic design of �gure 23. This
boundary is obtained by triangulating one electrode as a template and repeat
that electrode �ve times.
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5.3. Simulation Results

The coe�cients of the Taylor expansion of the de
ection angl e in the x-direction are
described by equation (88) and are called alpha-coe�cients. Similarly, the coe�cients
for the Taylor expansion in the y-direction are described by equation (89) and are called
beta-coe�cients. In general, these coe�cients are functions of the displacement (D )
and voltage (V ) of the center electrode, i.e. � (D; V ) and � (D; V ). We evaluate these
coe�cients by simulating 5 prede�ned displacements (0, 5, 10, 15 and 20 micron) and
50 prede�ned voltages ranging from 2 kV to 8 kV. This means that every coe�cient in
the Taylor expansion is determined for 5� 50 = 250 di�erent settings. The electrons
are launched parallel to the z-axis with an initial energy of 5 kV. The details of the
simulation are summarized in table 3 and table 4.

Number of . . . Quantity
Triangles per simulation 25.700
E�ective point charges per triangle 16
E�ective point charges per simulation 411.200
Trajectories per simulation 4096
Iterations per trajectory per simulation 2.000
Simulations 250
Trajectories 1� 106

Force evaluations 2� 109

Boundary point charge evaluations 8� 1014

Table 3 { Table showing the quantities involved in the simulation of the shift lens.

Time of . . . Quantity
Solving boundary per simulation 15 minutes
Tracing per simulation 14 minutes
Tracing per particle (derived) 200 milliseconds
Total simulation time 61 hours

Table 4 { Table showing the computation times for simulating the shift lens.

The results for the zeroth order coe�cient are given in �gure 32. The �rst order results
are given in �gures 33 and 34. The second order results are given in �gures 35, 36 and
37. The results up to �fth order are given in appendix B.

The �rst order coe�cients in �gures 33 and 34 relate to the �rs t order de
ection in the x
and y direction respectively. These coe�cients relate to the focal distance as,f x = � 1

� 1;0

and f y = � 1
� 0;1

. The e�ect of astigmatism is obtained by subtracting the focal distance
in the x direction from the focal distance in the y direction. The net result is given in
�gure 31.
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Figure 31 { Illustration of the e�ect of astigmatism in the shift lens. This �gure is obtained
by subtracting the focal distance in the x direction from the focal distance in
the y direction. Note that the error bars in this �gure are too small to see.
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5.3.1. Zeroth-order Coe�cient
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Figure 32 { Graphical representation of the zeroth order coe�cient obtain ed from simu-
lating the shift lens of �gure 23. This �gure represents the x0y0-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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5.3.2. First-order Coe�cient
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Figure 33 { Graphical representation of the �rst order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x1y0-term in the Taylor
expansion of the de
ection angle given by equation (88). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis. Note tha t the error
bars in this �gure are too small to see.
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Figure 34 { Graphical representation of the �rst order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x0y1-term in the Taylor
expansion of the de
ection angle given by equation (89). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis. Note tha t the error
bars in this �gure are too small to see.
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5.3.3. Second-order Coe�cient
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Figure 35 { Graphical representation of the second order coe�cient obtained from simu-
lating the shift lens of �gure 23. This �gure represents the x2y0-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Figure 36 { Graphical representation of the second order coe�cient obtained from simu-
lating the shift lens of �gure 23. This �gure represents the x1y1-term in the
Taylor expansion of the de
ection angle given by equation (89). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Figure 37 { Graphical representation of the second order coe�cient obtained from simu-
lating the shift lens of �gure 23. This �gure represents the x0y2-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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5.3.4. Error Analysis

Results have a meaning only when they are given with an error estimate. With respect
to our simulation, we can think of �ve possible causes for theerror in the coe�cients
� (D; V ) and � (D; V ),

1. Truncation errors due to �nite precision.

2. Error in trajectory due to inexact solving of boundary values.

3. Error in trajectory due to discrete boundary triangulati on.

4. Error in trajectory due to time-step of integration.

5. Statistical error in �tting the coe�cients due to number o f trajectories.

We assume that error contributions from the �rst two items ar e negligible when compared
to the others. The total error due to items 3 to 5 combined is estimated by repeating the
simulation with a 10% increase of the number of triangles (25.700 ! 28.270), number of
iterations (2000 ! 2200) and number of particles (4096! 4505). The estimated error is
then determined by taking twice the di�erence with respect to the initial measurement.
This concept is illustrated in �gure 38. The underlying assumption is that such an
increase of the parameters is a process that converges. In other words, the result of a third
run with another 10% increase with respect to the second run is expected somewhere
inside the domain of convergence.

�rst run

second run

domain of convergence

Figure 38 { Illustration of how the error is analyzed. The simulation is repeated with a
higher accuracy (second run). The estimated error is determinedby taking
twice the di�erence with respect to the initial measurement.

This analysis is applied toall coe�cients and results in the error bars displayed in �gures
32 till 37 and all �gures in appendix B.

Although we have an error estimate in the �gures, what we are really looking for is
an estimate for the error per order, because that is more representative in terms of
electron optical analysis. Instead of maintaining all errors in shift and voltage sweeps
per coe�cient, we consider the maximum relative error per order which is given in table

Thomas Verduin 67



Computational Charged Particle Optics

5. This error is obtained by taking the maximum of the relative error of all points in
the plot of a coe�cient. Actually, this gives us two tables, o ne for the � -coe�cients and
one for the � -coe�cients,

� �
i;j = max � �

i;j (D; V ) (90)

� �
i;j = max � �

i;j (D; V ) (91)

The resulting error in table 5, however, is the maximum of that as well,

� i;j = max
�

� �
i;j ; � �

i;j

�
(92)

Where i is related to the order andj is related to the power ofy in the Taylor expansion,
such that � i;j is the maximum relative error corresponding to the terms in the expansion
with x i � j yj . This means that the relative error in the � -coe�cient and � -coe�cient is
always less than or equal to what is given in table 5 for a particular order.

Order y0-terms y1-terms y2-terms y3-terms y4-terms y5-terms
0 2� 10� 10

1 7� 10� 10 7� 10� 10

2 4� 10� 6 7� 10� 6 1� 10� 5

3 5� 10� 6 7� 10� 6 7� 10� 6 5� 10� 6

4 4� 10� 3 6� 10� 3 5� 10� 3 1� 10� 2 4� 10� 3

5 3� 10� 3 5� 10� 3 4� 10� 3 4� 10� 3 6� 10� 3 4� 10� 3

Table 5 { Table showing the largest relative errors in the de
ection coe�cien ts. Each error
in this table corresponds to a particular term in the expansion of equation (88)
and (89). The i -th row (order) and j -th column (power of y) represents the
term in the expansion with x i � j yj . The relative error in the � -coe�cient and � -
coe�cient is always less than or equal to what is given in the table for aparticular
order. An explicit interpretation for the �rst few orders is given in t he text.

The �rst few orders in table 5 are interpreted as follows. The zeroth order coe�cient
has a maximum relative error of 2� 10� 10 for the � 0;0 coe�cient, which is the largest
maximum relative error found in �gure 32. The �rst order coe� cient has a maximum
relative error of 7� 10� 10 for the � 1;0 coe�cient and 7 � 10� 10 for the � 0;1 coe�cient,
which can be found in �gures 33 and 34 respectively. The second order coe�cient has
a maximum relative error of 4� 10� 6 for the � 2;0 coe�cient (�gure 35), 7 � 10� 6 for the
� 1;1 coe�cient (�gure 36) and 1 � 10� 5 for the � 0;2 coe�cient (�gure 37).

Thomas Verduin 68



Computational Charged Particle Optics

6. Discussion

We divide the discussion into three seperate subjects. At �rst we discuss the performance
of the boundary element kernel with respect to the availablehardware. We focus in
particular on the results of �gures 16, 17 and 18. The second topic relates to the shift
lens simulation. We discuss the �rst few orders of the coe�cients given in �gures 33 till
37 and verify whether the results are consistent with our expectations. We also compare
the program of this thesis against the conventional programs. Finally we discuss the
use of this simulator speci�cally for the case of emission tips and the consequence of
including Coulomb interactions to the theory.

6.1. Boundary Element Kernel

The �rst remarkable observation in �gure 18 is that the perfo rmance ratio of the GPU's
for single precision versus double precision is of order 10.This comes however as no
surprise: The Quadro FX-4800 and GeForce GTX-480 have 8 times as many arithmetic
logical units (ALU's) for single precision than for double precision21. What this means
is that when the ALU's for double precision are saturated, the arithmetic operations are
queued to the available ALU's. Fortunately, the performance ratio of single precision
versus double precision is reduced to a factor of 2 for the newer generation of graphics
cards from NVIDIA.

The second observation is that the performance measure in �gure 17 is independent of the
block size. This means that the execution time is completelydominated by arithmetic.
This is good news, because this tells us that the performanceof the boundary element
kernel scales with newer graphics cards22. This also holds for INTEL processors in �gure
16, where we can see that the performance increases linear with respect to the number of
physical cores. Although the INTEL processors support hyperthreading, note that the
performance plot 
attens out when the number of threads is larger than the physical core
count. This means that the arithmetic load per thread is too large for hyperthreading
to make a di�erence.

The reader might wonder if the copying of states and �eld evaluations between host and
device in the tracer (see �gure 22) causes signi�cant overhead and delays. The increase
in computation time due to the memory transfers is negligible, because the calculation
of the electric �eld practically consumes all computation time (99%). The shift lens,
for example, involves approximately 106 memory transfers from host to device and vice
versa. With respect to total computation time, the time consumed by these transfers is
of order minutes. We consider that negligible in comparisonto the 61 hours mentioned
in table 4.

21 Single precision is usually su�cient for image processing, analysis and graphical applications. This is
the most common �eld of application for these graphics cards in particular.

22 Newer graphics cards are more likely to o�er increased parallelism instead of faster memory.
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6.2. Shift Lens Simulation

6.2.1. Consistencies in the Aberration Curves

At �rst we discuss the curves of the Taylor coe�cients given i n �gures 32 to 37. We do
not want to go into a detailed physical explanation of those curves, because the goal of
this project is the design of a simulator and not to extract physical conclusions from the
aberration coe�cients. The physical interpretation of tho se curves is discussed in the
latest article by Zonnevylle23. Instead we discuss the results by verifying some expected
consistencies.

At �rst we consider the case where the potential of the centerelectrode is equal to the
potential of the neighbor electrodes (� V = 0). This means that we can ignore the
center electrode, because it does not contribute to the �eldinside the lens anymore.
The results must therefore be una�ected by displacements of the center electrode. This
is precisely what we see: The displacement curves ofevery �gure collapse together at
� V = 0, meaning that the coe�cients are independent of the amount of displacement.

The second consistency is related to the fact that when thereis no displacement, the
shift lens becomes completely rotationally symmetric. This has at least the following two
consequences, (1) the zeroth order coe�cient must vanish and (2) the lens must be free
of astigmatism. The reason for (1) is that a global translation to the de
ection angle in
one particular direction destroys rotational symmetry. We see in �gure 32 that the curve
for no displacement is on top of the horizontal axis and thus vanishes as required. The
reason for (2) is that the de
ection in the x direction and y direction must be the same
because of rotational invariance. We see in �gure 31 that thecurve for no displacement
is also on top of the horizontal axis and thus vanishes as required.

For the last consistency, consider the case where the potential of the center electrode is
either 2 kV, 5 kV or 8 kV. The electrons areaccelerating if the potential is increasing and
decelerating if the potential is decreasing. As we go from one electrode tothe other, the
potential increases or decreases and thus the particles areaccelerating or decelerating in
that region accordingly. If the potential of the center electrode is 8 kV, then from left
to right we have the following sequence: accelerate, accelerate, accelerate, decelerate,
accelerate. The sequence for 2 kV is: accelerate, decelerate, accelerate, decelerate.
The 5 kV case is special because then the potential does not change from the second
electrode to the fourth electrode and the sequence reduces to: accelerate (electrode 1
! 2), decelerate (electrode 4! 5). Note that the largest momentum at the center is
obtained for the 8 kV case. Thelowest momentum at the center is obtained for the 2
kV case. This is directly related to the accuracy, because weuse a �xed time step for
the geometrical integrator. If the momentum is large, then the electron takes bigger
steps in space. The consequence is that the electric �eld is less accurately probed and
therefore increases the error of the trace. The errors of theshift lens are exceptionally

23 The title of that article is ,,De
ection properties of an ele ctrostatic electron lens with a shifted
electrode." and has been submitted to JVST for publication.
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small and this e�ect can only be seen in the �gures of the highest order with the largest
displacement. For example, the curve of 20 micron displacement in �gure 53 (appendix
B) shows that the error bars from left to right are increasing as expected.

6.2.2. Comparison to the Conventional Programs

The only conventional program in table 1 that also uses the boundary element method
is CPO3. That program, however, doesnot produce the second order aberrations of the
shift lens. The only sensible reason we can think of is because that program has a strict
limitation on the number of triangles. It does not allow more than 5.000 triangles, prob-
ably to protect the user from too large computation times. And for good reason: CPO3
would take 'forever' with 25.700 triangles applied to 250 simulations involving 4.096
particles. If we roughly estimate that the performance of CPO3 becomes comparable to
our boundary element kernel for INTEL processors, then the shift lens simulation would
take more than three quarters of a year.

We do not have a hard encoded restriction with respect to element count, because there
is no reason to do so. In the worst case we arepractically limited by the amount of
available memory. For example, the Green's matrix for the shift lens has about 600
million entries. The amount of memory required for such a matrix is already close to
4.5 GB. On the other hand, the trace of an electron with 2.000 iterations in an electric
�eld due to 25.700 triangles takes e�ectively about 200 milliseconds using the GeForce
GTX-480 running at double precision (see table 4). Therefore it is not computation
time, but available memory that limits our boundary triangu lation.

We think that CPO3 fails because it cannot handle 25.700 triangles. If CPO3 could,
then the results are expected to become similar, because themethod of �eld calculation
is essentially the same24 and both integrators are fourth order (maybe CPO3 needs a
few more iterations due to non-symplectic integration). The remaining conventional
tools (SIMION, MEBS and OPERA) either use the �nite element m ethod or the �nite
di�erence method for �eld calculations. We have excluded EODfrom that list because it
does not support full three dimensional electrostatics. At�rst we note that Cubric et al.
[17] concluded that the BEM converges faster than FEM and FDMin three dimensional
electrostatic simulations. That conclusion, however, does not consider the nature of
parallelism which can drastically a�ect the convergence rate for a whole ensemble of
trajectories. The �eld calculations of FEM and FDM are based on discretizing solution
space and as consequence of that, su�er from sub-optimal vector parallelism in the
following way. The electric �eld at the particles is in general obtained from di�erent
parts of solution space. One particle is here and another is there and in order to obtain
the �elds, we need to consider di�erent parts of solution space25. This does not match

24 We do not know how CPO3 computes the integrals.
25 This leads to randomized memory access and pushes the caching e�ciency to the lowest when many

particles are distributed over solution space. In the worse case we also need the surrounding elements
or grid nodes in order to numerically di�erentiate the scala r potential.
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the design of a vector processor: particles are not treated equally. The best parallism in
that case is o�ered by scalar processors.

We now argue that vector parallelism outperforms the scalartype with respect to three
dimensional electrostatic �eld calculations. Consider the performance graph of the IN-
TEL processors in �gure 16. Furthermore, we assumethat the performance increases
linearly with the number of physical cores26. How many physical INTEL X5650 cores
do we need in order to meet the double-precision performanceof the GeForce GTX-480?
The answer is approximately 135 physical cores. In order to illustrate that vector par-
allism for �eld calculations is superior in the extreme sense, consider the latest graphics
card from NVIDIA with KEPLER architecture. The estimated do uble precision per-
formance (based on TFLOPS) for this architecture is about 1011 boundary charges per
second. About 3.500 physical INTEL X5650 cores are requiredto meet that perfor-
mance. In other words, the performance is comparable to asuper computer and comes
already for the amazing price of approximatelye 600 in the Netherlands. Cluster 10 of
these devices intoone big tower and you have the estimated performance replacement
of 35.000 physical INTEL X5650 cores. There is no other conclusion: Vector parallelism
in BEM is superior in three dimensional electrostatic �eld calculations.

6.3. Emission Tips and Coulomb Interactions

Electron optical simulations sometimes include the emission of electrons from a cathode,
see for example Verduin et al. [12]. The structure of simulation changes for emission
tips, because then the number of particlesN is no longer a constant. Tips, whether they
are cold-�eld emitters or thermal emitters, introduce a current to the simulation. This
means that electrons are created at random at the emission surface and eliminated after
the measurement plane. Although this introduces additional practical complexity, it does
not change the theoretical framework. The conservation laws (time-reversal symmetry
and conservation of phase-space) are still valid. The reason is that the equations of
motion are independent per particle and therefore the conservation laws are applicable
per particle as well. What is di�erent with respect to the shif t lens is that the summation
of the total energy (involving all particles) does not add up to a constant. That, however,
is not a necessary requirement of the conservation laws. Letus be more precise: the
Hamiltonian of this system can be written as a sum ofN independent one-particle
Hamiltonians,

H = H 1 + H 2 + � � � + H N (93)

The conservation laws are valid for Hamiltonian systems, regardless of how many parti-
cles are involved. Therefore the advantages of symplectic integrators are still of use with
respect to creating and eliminating particles.

26 This is an over-estimate, because in reality, the independent nature of the scalar processors introduces
additional overhead.
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The game seems to change when we start to include Coulomb interactions. At �rst we
consider the interacting Hamiltonian with a constant number of particles,

H e� e = H +
1

4�� 0

NX

i =1

NX

j 6= i

� i � j

jq i � q j j
(94)

This is only a classical approximation because the interactions are consideredinstanta-
neous, which is forbidden by relativity. This interaction term de stroys conservation of
phase-space, because Liouville's theorem states that 
owsin phase-space are incompress-
ible and thus the divergence must be zero [25]. What has changed in the analysis is that
the 'area' element in phase-space of �gure 3 now includes particles contributing from
the inside out27. This means that the 
ow is no longer incompressible (forcesare acting
from within the 'area'), hence conservation of phase-spaceis destroyed. To make things
even worse, energy is no longer conserved on aper particle basis if we allow creation
and elimination of particles to the interacting Hamiltonia n. In order to see this, note
that the interacting Hamiltonian cannot be written as a sum of independent one-particle
Hamiltonians, similar to equation (93). This means that the interacting Hamiltonian
can only be conserved if the total number of particles is constant. The advantages of
symplectic integrators are rendered useless and perform inthe case of an interacting
Hamiltonian with varying number of particles as good as non-symplectic integrators of
similar order.

7. Conclusion

The challenge of this project is to design a simulator for electrostatic electron optics
satisfying the following requirements, (1) the electric �eld and electron trajectories must
be accurate enough to produce at least the second order aberrations and (2) reduce the
computation time by using massive concurrent ray-tracing of charged particles. We have
demonstrated that these requirements are satis�ed in an application that could not be
simulated using conventional methods. The simulation of the shift lens produced the
�fth order aberration coe�cients with a relative error of le ss than one percent. This is
an exceptional result, because (1) the �fth order aberrations are not produced by any
of the conventional tools and (2) that amount of accuracy is usually accepted for the
second order aberrations in electron optics. All coe�cients up to �fth order are obtained
in approximately 61 hours of simulation using the GeForce GTX-480 from NVIDIA
running at double precision. If we include the error analysis, the total simulation time
approximately doubles.

27 The in�nitessimal area of our �rst order derivation did not i nclude forces from the inside out. Our
analysis was based on external forces applied to the outer edge.
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8. Outlook

Although the simulator has proven to be successful, we do have some ideas for im-
provement. Our ideas on improvement are related to (1) the symplectic integrators, (2)
numerical integration of triangular elements and (3) boundary triangulation. We discuss
these topics in corresponding order.

8.1. Adaptive Symplectic and Reversible Integrators

The number of �eld evaluations can be optimized by considering adaptive time step-
ping in the integration of the equations of motion. This basically means that the time
step decreases whenever the particle traverses through strong �elds, but becomes larger
when the �eld is weak. In other words, with adaptive time stepping, the integrator is
more accurate at strong �elds than at weak �elds. For symplectic integrators, the use
of a variable time step signi�cantly decreases the e�ciency of the method. Actually,
all of the advantages of symplectic integrators are lost in standard variable time step
implementations [38, 39].

There are, however, several ways to overcome this problem. The �rst and most easy
approach is to use multiple time stepping where the vector �eld is decoupled and inte-
grated over di�erent parts with constant time-steps [40, 41, 42]. With respect to the
shift lens, the most basic implementation divides space into three regions: (1) before the
lens, (2) within the lens and (3) after the lens. The smallesttime step is then assigned
to within the lens, where the �eld is the strongest. The downside is that this method is
not generic, i.e. the multi-stepper needs to be de�ned for every speci�c problem.

The second approach is more generic and considers the strategy in which the adaptive
step size is made reversible [43, 44, 45, 46]. This is basically achieved by introducing a
di�erential equation for the variable time step, which is solved using symmetric methods.

The third approach is the deepest and transforms the Hamiltonian using a time re-
parametrization to a new system, which is either reversibleor Hamiltonian [47]. This
transformed system is then integrated using a constant timestep, which provides a vari-
able step implementation to the original system. Systems can be made Hamiltonian using
a Poincar�e transformation and depending on the characteristics of the transformation,
symplectic methods can either become explicit [48, 49, 50, 51] or implicit [45, 52, 53].

We have a preference for the second (reversible time step) and third method (transform-
ing the Hamiltonian), because those methods are independent of the problem at hand.
Unfortunately, transforming a Hamiltonian using time reparametrization is complicated
matter. To our best knowledge, reparametrizations of relativistic Hamiltonians in three
spatial dimensions do not exist in literature. Therefore, we cannot tell whether a trans-
formation of our Hamiltonian (18) is possible, let alone feasible. The best practical
solution is probably to investigate the implementation of a reversible time step method.
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8.2. Multipole Expansion of Triangular Elements

In contrast to numerical Gaussian quadrature, we illustrate another approach for evalu-
ating the surface integrals of (48), (49) and (50). At �rst we rewrite the integral to the
following form,

' (R ) =
ZZ

4

� (r )
jR � r j

dA =
1

jR CM j

ZZ

4

� (r )
r

1 + r 2
CM � 2 R CM �r CM

R 2
CM

dA (95)

Where the vectors with subscript are taken with respect to the center of mass of the
triangle. Taylor expanding the square root in the denominator of equation (95) gives us,

' (R ) =
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jR CM j

ZZ

4
� (r )

�
1 �

1
2

r 2
CM � 2R CM � r CM

R 2
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�

dA (96)

The lowest order in this expansion evaluates to the monopoleterm,

Q0 =

RR
4 � (r ) dA

jR CM j
(97)

The next-to-lowest order in the expansion evaluates to the dipole term,

Q1 =

RR
4 � (r )r CM dA � R CM

jR CM j3
(98)

First of all, note that all integrals in the expansion can be determined ab initio28. Also
note that we can reuse the reciprocal square root with respect to the center of mass
(jR CM j), because that same term appears in every order of the expansion. This in
comparison to the point charge representation, whereevery point charge of the triangle
requires the evaluation of a square root. Therefore, the multipole expansion reduces the
number of square root evaluations to only one per triangle. This is ben�cial because the
evaluation of a reciprocal square root is the most expensiveoperation in the algorithm.
The question is, however, does the multipole expansion converge faster than the point
charge representation? We do not know and therefore cannot tell whether this really
improves the integration. The only way is to try and see, which is unfortunately beyond
the scope of time for this thesis.

28 The integrals for higher order terms are coupled to powers of the components of the position vec-
tor R CM . The dipole term, for instance, involves the following thre e moments: (r CM )x (R CM )x ,
(r CM )y (R CM )y and (r CM )z (R CM )z . Where the integral is only a�ecting the components of r CM and
can therefore be calculated ab initio.
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8.3. Improved Triangulation

Perhaps the biggest improvement can be made in the triangulation of surfaces. The
shift lens is triangulated completely by hand, this includes custom mesh re�nement at
sharp edges. Our approach is far from optimal, especially because the triangulation of
surfaces is a well-established �eld in computational geometry. Consider for instance the
guaranteed quality mesh generation for curved surfaces by Chew et al. [54] and the
Delaunay mesh re�nement algorithm by Ruppert [55].

Perhaps we can take this even one step further in the direction of automated mesh
re�nement based on our boundary error analysis. The idea that we have is as follows.
We start with a bare triangulation of our surface, i.e. using the least amount of regular
triangles29 that captures the design. From then on we follow this procedure,

1. Determine the boundary values by solving Green's equation.

2. Evaluate the error as the deviation of the calculated potential from the expected
potential for all triangles.

3. Find the triangle with the largest error.

4. If the largest error is greater than the maximum allowable tolerance, then re�ne
that particular triangle (see �gure 39) and restart with ite m 1. Otherwise we are
done.

Figure 39 { Basic re�nement rule of a triangular element. Three new nodes areinserted
at the centers of each edge. The three nodes are connected such that the big
triangle is now divided into four smaller triangles. Note that the smaller trian-
gles are congruential by construction. The quality of the individual triangles
are therefore as good as the original triangle.

The advantage of this type of re�nement, when compared to standard methods in com-
putational geometry, is that the boundary re�nement is based on the error in potential.
The disadvantage is that the computation time grows very fast, because each iteration
involves the construction of Green's matrix and solving for the boundary values. This
method is feasible as long as the computation time devoted totracing particles is much
larger than obtaining a triangulated boundary. Interestin g to note is that the rule of
re�nement given by �gure 39 breaks continuity of the surface charge density function.
To see this, consider the re�nement given in �gure 40. Vertex B in this �gure is not
shared by the upper triangle and is therefore not related to the charge density function of
29 The angles of a regular triangle are more or less similar. This is preferred because triangles become

sharp when one of the angles is relatively small.
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Figure 40 { Example of re�nement leading to a discontinuous charge density function.
Initially, a square is made out of two triangles of which only the lower triangle
is re�ned. The surface charge density function at B is discontinuous, because
that particular node is not a vertex of the upper triangle.

the upper triangle. This means that the surface charge density function over the entire
square is no longer guaranteed to be continuous. This is not really a problem, because
the only requirement is that each vertex of the boundary is unique30.

30 The Green's matrix becomes singular for degenerate vertices.

Thomas Verduin 77



Computational Charged Particle Optics

9. Final Remark

We have come a long way to develop this simulator. The �rst concept of the simulator
was already created around the time of my bachelor in appliedphysics at Delft univer-
sity of technology. The original idea was that building my own simulator gives more
understanding of the underlying physics rather than using proprietary software, press a
button and get the result.

The earliest simulator was based on the �nite di�erence method in spherical coordinates
and that already proved to be successful, because it was usedin a article by Cook
et al. [11]. At some point we started investigating other types of �eld calculations
and in particular the boundary element method. We started playing with graphics
cards for scienti�c calculations and �gured out that the cor e of the simulator could be
translated to the language of the graphics cards. This version allowed us to investigate
an electron optical problem that could not be investigated otherwise and led to the
publication of another article of which I am the main author [12]. We gave a presentation
of the results of that article at the EIPBN conference in Las Vegas. After that I got
involved into more advanced mathematical topics related toHamiltonian dynamics and
symplectic integration. Finally, after a long struggle wit h the vertex potential integrals, I
managed to derive the closed-form expressions (51), (52) and (53). The total framework
is presented in this thesis.

In the end I was introduced to the shift lens of A.C. Zonnevylle, who was struggling with
the accuracy and computation time of the conventional programs. We decided to solve
that problem with my custom built simulator. The results of t he lower orders (�gures
32 till 37 and some derived �gures) are submitted to JVST for publication. This is the
third article in line.

The higher order aberration curves in appendix B probably keep us occupied for the
years to come, because it is very di�cult to explain them physically. In the mean time,
this simulator keeps developing and probably is going to be used for other problems in
electron optics as well. The ultimate goal is to develop the fastest and most accurate
simulator ever for charged particle optics. And by looking at the results of this thesis,
we seem to have made a big step in the direction of achieving that.
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A. Derivation of Vertex Potential

The purpose of this appendix is to reproduce the vertex response functions given by
equations (51), (51) and (53). It is not our intention to give a full proof, instead we give
the summary of each integration stage. The reason is that we value the roadmap of this
derivation more than explicitly giving all integral steps.

Let us begin by choosing a particular coordinate system for ageneral triangle. We choose
the origin of that system to coincide with vertex A , where the horizontal axis is in the
direction of B � A . The triangle is now completely determined by the coordinatesx2; x3

and y3, which is illustrated in �gure 41.

b

A(0,0) B(x 2,0)

C(x 3,y 3)

a

c

Figure 41 { Derivation.

We derive explicit closed-form expressions for the triangle given in �gure 41. At �rst
we derive the coordinate mappings and express the vertex response functions in terms
of integrals for this particular coordinate system. The integrals of the vertex response
functions are linear combinations of basic interpolation integrals, which are evaluated
analytically. The resulting expressions, however, are given with respect to the coordinate
system of �gure 41. At last we generalize the interpolation integrals to coordinate-
invariant expressions and transform the vertex response functions to coordinate-invariant
form.
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A.1. Interpolation Integrals

The coordinate mappings given in equation (44) for this particular coordinate system
evaluate explicitly to,


 A (x; y) = 1 �
1
x2

x +
x3 � x2

x2y3
y (99)


 B (x; y) =
1
x2

x �
x3

x2y3
y (100)


 C (x; y) = 1 � 
 A (x; y) � 
 B (x; y) =
x2

x2y3
y (101)

The reader can verify that this mapping indeed satis�es the following conditions,


 A (0; 0) = 1 ; 
 A (x2; 0) = 0 ; 
 A (x2; y3) = 0

 B (0; 0) = 0 ; 
 B (x2; 0) = 1 ; 
 B (x2; y3) = 0

 C (0; 0) = 0 ; 
 C (x2; 0) = 0 ; 
 C (x2; y3) = 1

(102)

The charge density function (44) is a linear combination of the mapping functions and
evaluates for this coordinate system to,
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This means that the vertex response functions (48), (49) and(50) evaluate to,
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gB (A ) =
Z y3

0

Z x2 � x 2 � x 3
y 3

y

x 3
y 3

y

1
x2

x � x3
x2y3

y
p

x2 + y2
dxdy (105)

gC (A ) =
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Note that each integral is a linear combination involving integrals with 1p
x2+ y2

, xp
x2+ y2

and yp
x2+ y2

. These integrals are called 'interpolation integrals' andall that remains to

be done is to �nd analytical expressions for those integrals. We start with the uniform
distributed integral ( 1p

x2+ y2
), followed by the horizontal distributed integral ( xp

x2+ y2
)

and �nally we address the vertical distributed integral ( yp
x2+ y2

).
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A.1.1. Uniform Distributed Integral

The uniform distributed integral involves the integration of 1p
x2+ y2

. We start by inte-

grating out one dimension,

Ry3
0

Rx2 � x 2 � x 3
y 3

y
x 3
y 3

y
dxdyp
x2+ y2

= (107)

Ry3
0 log

r

y2+
�

x2 � x 2 � x 3
y 3

y
� 2

+ x2 � x 2 � x 3
y 3

y
s �

x 2
3

y 2
3

+1
�

y2+ x 3
y 3

y

dy

This gives us two new integrals, because logxy = log x � logy. The integral of the upper
logarithm is evaluated as follows,

Ry3
0 log

 r

y2 +
�

x2 � x2 � x3
y3

y
� 2

+ x2 � x2 � x3
y3

y

!

dy

= (108)

x2y3p
(x2 � x3)2+ y2

3

log
p

(x2 � x3)2+ y2
3

p
y2

3 + x2
3+( x2 � x3)2+ y2

3 � x2(x2 � x3)

x2

p
(x2 � x3)2+ y2

3 � x2(x2 � x3)

+

y3 log
� p

y2
3 + x2

3 + x3

�
� y3

The lower logarithm evaluates to,

Z y3

0
log

 s �
x2

3

y2
3

+ 1
�

y2 +
x3

y3
y

!

dy = y3 log
� q

x2
3 + y2

3 + x3

�
� y3 (109)

The resulting expression for the uniform distributed triangle is obtained by subtracting
the integrals of the upper and lower logarithm,

Ry3
0

Rx2 � x 2 � x 3
y 3

y
x 3
y 3

y
dxdyp
x2+ y2

= (110)

x2y3p
(x2 � x3)2+ y2

3

log
p

(x2 � x3 )2+ y2
3

p
y2

3 + x2
3+( x2 � x3)2+ y2

3 � x2(x2 � x3)

x2

p
(x2 � x3)2+ y2

3 � x2(x2 � x3)
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A.1.2. Horizontal Distributed Integral

The horizontal distributed integral involves the integrat ion of xp
x2+ y2

. We start by

integrating out one dimension,

Ry3
0

Rx2 � x 2 � x 3
y 3

y
x 3
y 3

y
xdxdyp
x2+ y2

= (111)
Ry3
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r

y2 +
�

x2 � x2 � x3
y3

y
� 2

dy �
Ry3

0

r �
x2

3
y2

3
+ 1

�
y2dy

The �rst term is an integral of the type
p

� + �y + y2 which evaluates to,

Ry3
0

r

y2 +
�

x2 � x2 � x3
y3

y
� 2

dy

= (112)

1
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�
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(x2 � x3 )2+ y2
3

� p
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+
1
2y3

p
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The second term is a trivial one of the type
R

y dy and evaluates to,

Z y3
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y2dy =
1
2

y3

q
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3 (113)

The resulting expression for the horizontal distributed triangle evaluates to,

Ry3
0

Rx2 � x 2 � x 3
y 3

y
x 3
y 3

y
xdxdyp
x2+ y2

= (114)

1
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A.1.3. Vertical Distributed Integral

The vertical distributed integral involves the integratio n of yp
x2+ y2

. We start by inte-

grating out one dimension,

Ry3
0

Rx2 � x 2 � x 3
y 3

y
x 3
y 3

y
ydxdyp
x2+ y2

= (115)
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x 2
3

y 2
3

+1
�

y2+ x 3
y 3

y

dy

This is basically the same expression as for the uniform distributed triangle, but involves
an additional y-term. The upper logarithm evalutes to,

Ry3
0 y log
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�
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The lower logarithm evaluates to,

Z y3

0
y log

 s �
x2

3

y2
3

+ 1
�

y2 +
x3

y3
y

!

dy =
1
2

y2
3 log

� q
x2

3 + y2
3 + x3

�
�

1
4

y2
3 (117)
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The resulting expression for the vertical distributed triangle evaluates to,
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y 3

y
x 3
y 3

y
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= (118)
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A.2. Coordinate Invariant Representation

In principle we are done, because we now have closed-form expressions for the interpo-
lation integrals. The vertex response functions are obtained by the linear combinations
given by equations (104), (105) and (106). Note that the interpolation integrals are
expressed in terms of the coordinate system given by �gure 41. However, the vertex
response functions of the triangle in �gure 41 do not depend on any coordinate system.
We can rotate the triangle or choose another coordinate system, but this does not a�ect
the vertex potential.

We now transform the interpolation integrals to coordinate-invariant form. First of all,
note that many of the terms in the interpolation integrals can be identi�ed as invari-
ants31,

q
(x3 � x2)2 + y2

3 ! a (119)
q

x2
3 + y2

3 ! b (120)

x2 ! c (121)

The remaining term (x2x3) seems to have no corresponding invariant at �rst sight.
However, it turns out that this term can be expressed as an invariant using Heron's
formula for the area of the triangle,

x2x3 =
p

b2c2 � h2c2 =
p

b2c2 � 44 2

=

r

b2c2 � b2c2 +
1
4

(b2 + c2 � a2)2

=
1
2

�
b2 + c2 � a2�

(122)

31 Invariants, for example, are the length of the sides, the area and (semi)perimeter of the triangle.
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Where 4 is the area of the triangle. The uniform distributed integral transforms to,
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(123)

The horizontal distributed integral transforms to,
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The vertical distributed integral transforms to,
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Where s is the semiperimeter (a+ b+ c
2 ) of the triangle and 4 the area.

A.3. Vertex Response Functions

The vertex response functions are obtained by the linear combinations given by equations
(104), (105) and (106). If we use the coordinate-invariant form of the interpolation
integrals, then the resulting expressions for the vertex response functions are transformed
into coordinate-invariant form as well32. The resulting expressions are,

gA (A ) =
4
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log
s

s � a
(126)
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(127)

gC (A ) =
4
a

�
1
2

a2 � b2 + c2

a2 log
s

s � a
+

b� c
a

�
(128)

Where the vertex response functions are expressed with invariants, such as the length
of the sides (a, b or c), the area (4 ) and the semiperimeter (a+ b+ c

2 ) of the triangle.

32 This derivation involves additionally the interpretation of the constants in the linear combination as
invariants.
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B. Aberration Curves

B.1. Alpha De
ection Coe�cients
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Figure 42 { Graphical representation of the zeroth order coe�cient obtain ed from simu-
lating the shift lens of �gure 23. This �gure represents the x0y0-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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First-order
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Figure 43 { Graphical representation of the �rst order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x1y0-term in the Taylor
expansion of the de
ection angle given by equation (88). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis. Note tha t the error
bars in this �gure are too small to see.
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Second-order
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Figure 44 { Graphical representation of the second order coe�cient obtained from simu-
lating the shift lens of �gure 23. This �gure represents the x2y0-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Figure 45 { Graphical representation of the second order coe�cient obtained from simu-
lating the shift lens of �gure 23. This �gure represents the x0y2-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Third-order
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Figure 46 { Graphical representation of the third order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x3y0-term in the Taylor
expansion of the de
ection angle given by equation (88). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis. Note tha t the error
bars in this �gure are too small to see.
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Figure 47 { Graphical representation of the third order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x1y2-term in the Taylor
expansion of the de
ection angle given by equation (88). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis. Note tha t the error
bars in this �gure are too small to see.

Thomas Verduin 91



Computational Charged Particle Optics

Fourth-order
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Figure 48 { Graphical representation of the fourth order coe�cient obtain ed from simu-
lating the shift lens of �gure 23. This �gure represents the x4y0-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.

Thomas Verduin 92



Computational Charged Particle Optics

-5.00e-12

+0.00e+00

+5.00e-12

+1.00e-11

+1.50e-11

+2.00e-11

+2.50e-11

-3000 -2000 -1000  0  1000  2000  3000

a
22

 c
oe

ffi
ci

en
t

center electrode [V]

0 micron
5 micron

10 micron
15 micron
20 micron

Figure 49 { Graphical representation of the fourth order coe�cient obtain ed from simu-
lating the shift lens of �gure 23. This �gure represents the x2y2-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Figure 50 { Graphical representation of the fourth order coe�cient obtain ed from simu-
lating the shift lens of �gure 23. This �gure represents the x0y4-term in the
Taylor expansion of the de
ection angle given by equation (88). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Fifth-order
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Figure 51 { Graphical representation of the �fth order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x5y0-term in the Taylor
expansion of the de
ection angle given by equation (88). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis.
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Figure 52 { Graphical representation of the �fth order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x3y2-term in the Taylor
expansion of the de
ection angle given by equation (88). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis.
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Figure 53 { Graphical representation of the �fth order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x1y4-term in the Taylor
expansion of the de
ection angle given by equation (88). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis.
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B.2. Beta De
ection Coe�cients
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Figure 54 { Graphical representation of the �rst order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x0y1-term in the Taylor
expansion of the de
ection angle given by equation (89). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis. Note tha t the error
bars in this �gure are too small to see.
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Second-order
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Figure 55 { Graphical representation of the second order coe�cient obtained from simu-
lating the shift lens of �gure 23. This �gure represents the x1y1-term in the
Taylor expansion of the de
ection angle given by equation (89). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Third-order

-1.32e-08

-1.30e-08

-1.28e-08

-1.26e-08

-1.24e-08

-1.22e-08

-1.20e-08

-3000 -2000 -1000  0  1000  2000  3000

b 2
1
 c

oe
ffi

ci
en

t

center electrode [V]

0 micron
5 micron

10 micron
15 micron
20 micron

Figure 56 { Graphical representation of the third order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x2y1-term in the Taylor
expansion of the de
ection angle given by equation (89). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis. Note tha t the error
bars in this �gure are too small to see.

Thomas Verduin 100



Computational Charged Particle Optics

-1.27e-08

-1.26e-08

-1.25e-08

-1.24e-08

-1.23e-08

-1.22e-08

-1.21e-08

-1.20e-08

-3000 -2000 -1000  0  1000  2000  3000

b 0
3
 c

oe
ffi

ci
en

t

center electrode [V]

0 micron
5 micron

10 micron
15 micron
20 micron

Figure 57 { Graphical representation of the third order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x0y3-term in the Taylor
expansion of the de
ection angle given by equation (89). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis. Note tha t the error
bars in this �gure are too small to see.
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Fourth-order
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Figure 58 { Graphical representation of the fourth order coe�cient obtain ed from simu-
lating the shift lens of �gure 23. This �gure represents the x3y1-term in the
Taylor expansion of the de
ection angle given by equation (89). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Figure 59 { Graphical representation of the fourth order coe�cient obtain ed from simu-
lating the shift lens of �gure 23. This �gure represents the x1y3-term in the
Taylor expansion of the de
ection angle given by equation (89). This �gure
illustrates how the coe�cient changes when the displacement and potential of
the center electrode is varied. Each seperate curve representsa displacement
(0, 5, 10, 15 or 20 micron) of the center electrode. The horizontal axis gives
the potential di�erence of the center electrode with respect to the neighbor
electrodes. The actual value of the coe�cient is given by the vertical axis.
Note that the error bars in this �gure are too small to see.
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Fifth-order
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Figure 60 { Graphical representation of the �fth order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x4y1-term in the Taylor
expansion of the de
ection angle given by equation (89). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis.
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Figure 61 { Graphical representation of the �fth order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x2y3-term in the Taylor
expansion of the de
ection angle given by equation (89). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis.
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Figure 62 { Graphical representation of the �fth order coe�cient obtained from simulating
the shift lens of �gure 23. This �gure represents the x0y5-term in the Taylor
expansion of the de
ection angle given by equation (89). This �gureillustrates
how the coe�cient changes when the displacement and potential ofthe center
electrode is varied. Each seperate curve represents a displacement (0, 5, 10, 15
or 20 micron) of the center electrode. The horizontal axis gives the potential
di�erence of the center electrode with respect to the neighbor electrodes. The
actual value of the coe�cient is given by the vertical axis.
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